]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
rbd: clear EXISTS flag if mapped snapshot disappears
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36
37 #include <linux/kernel.h>
38 #include <linux/device.h>
39 #include <linux/module.h>
40 #include <linux/fs.h>
41 #include <linux/blkdev.h>
42
43 #include "rbd_types.h"
44
45 #define RBD_DEBUG /* Activate rbd_assert() calls */
46
47 /*
48 * The basic unit of block I/O is a sector. It is interpreted in a
49 * number of contexts in Linux (blk, bio, genhd), but the default is
50 * universally 512 bytes. These symbols are just slightly more
51 * meaningful than the bare numbers they represent.
52 */
53 #define SECTOR_SHIFT 9
54 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
55
56 #define RBD_DRV_NAME "rbd"
57 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
58
59 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
60
61 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
62 #define RBD_MAX_SNAP_NAME_LEN \
63 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
64
65 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
66
67 #define RBD_SNAP_HEAD_NAME "-"
68
69 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
70
71 /* This allows a single page to hold an image name sent by OSD */
72 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
73 #define RBD_IMAGE_ID_LEN_MAX 64
74
75 #define RBD_OBJ_PREFIX_LEN_MAX 64
76
77 /* Feature bits */
78
79 #define RBD_FEATURE_LAYERING (1<<0)
80 #define RBD_FEATURE_STRIPINGV2 (1<<1)
81 #define RBD_FEATURES_ALL \
82 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
83
84 /* Features supported by this (client software) implementation. */
85
86 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
87
88 /*
89 * An RBD device name will be "rbd#", where the "rbd" comes from
90 * RBD_DRV_NAME above, and # is a unique integer identifier.
91 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
92 * enough to hold all possible device names.
93 */
94 #define DEV_NAME_LEN 32
95 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
96
97 /*
98 * block device image metadata (in-memory version)
99 */
100 struct rbd_image_header {
101 /* These four fields never change for a given rbd image */
102 char *object_prefix;
103 u64 features;
104 __u8 obj_order;
105 __u8 crypt_type;
106 __u8 comp_type;
107
108 /* The remaining fields need to be updated occasionally */
109 u64 image_size;
110 struct ceph_snap_context *snapc;
111 char *snap_names;
112 u64 *snap_sizes;
113
114 u64 stripe_unit;
115 u64 stripe_count;
116 };
117
118 /*
119 * An rbd image specification.
120 *
121 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122 * identify an image. Each rbd_dev structure includes a pointer to
123 * an rbd_spec structure that encapsulates this identity.
124 *
125 * Each of the id's in an rbd_spec has an associated name. For a
126 * user-mapped image, the names are supplied and the id's associated
127 * with them are looked up. For a layered image, a parent image is
128 * defined by the tuple, and the names are looked up.
129 *
130 * An rbd_dev structure contains a parent_spec pointer which is
131 * non-null if the image it represents is a child in a layered
132 * image. This pointer will refer to the rbd_spec structure used
133 * by the parent rbd_dev for its own identity (i.e., the structure
134 * is shared between the parent and child).
135 *
136 * Since these structures are populated once, during the discovery
137 * phase of image construction, they are effectively immutable so
138 * we make no effort to synchronize access to them.
139 *
140 * Note that code herein does not assume the image name is known (it
141 * could be a null pointer).
142 */
143 struct rbd_spec {
144 u64 pool_id;
145 const char *pool_name;
146
147 const char *image_id;
148 const char *image_name;
149
150 u64 snap_id;
151 const char *snap_name;
152
153 struct kref kref;
154 };
155
156 /*
157 * an instance of the client. multiple devices may share an rbd client.
158 */
159 struct rbd_client {
160 struct ceph_client *client;
161 struct kref kref;
162 struct list_head node;
163 };
164
165 struct rbd_img_request;
166 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
167
168 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
169
170 struct rbd_obj_request;
171 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
172
173 enum obj_request_type {
174 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
175 };
176
177 enum obj_req_flags {
178 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
179 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
180 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
181 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
182 };
183
184 struct rbd_obj_request {
185 const char *object_name;
186 u64 offset; /* object start byte */
187 u64 length; /* bytes from offset */
188 unsigned long flags;
189
190 /*
191 * An object request associated with an image will have its
192 * img_data flag set; a standalone object request will not.
193 *
194 * A standalone object request will have which == BAD_WHICH
195 * and a null obj_request pointer.
196 *
197 * An object request initiated in support of a layered image
198 * object (to check for its existence before a write) will
199 * have which == BAD_WHICH and a non-null obj_request pointer.
200 *
201 * Finally, an object request for rbd image data will have
202 * which != BAD_WHICH, and will have a non-null img_request
203 * pointer. The value of which will be in the range
204 * 0..(img_request->obj_request_count-1).
205 */
206 union {
207 struct rbd_obj_request *obj_request; /* STAT op */
208 struct {
209 struct rbd_img_request *img_request;
210 u64 img_offset;
211 /* links for img_request->obj_requests list */
212 struct list_head links;
213 };
214 };
215 u32 which; /* posn image request list */
216
217 enum obj_request_type type;
218 union {
219 struct bio *bio_list;
220 struct {
221 struct page **pages;
222 u32 page_count;
223 };
224 };
225 struct page **copyup_pages;
226
227 struct ceph_osd_request *osd_req;
228
229 u64 xferred; /* bytes transferred */
230 int result;
231
232 rbd_obj_callback_t callback;
233 struct completion completion;
234
235 struct kref kref;
236 };
237
238 enum img_req_flags {
239 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
240 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
241 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
242 };
243
244 struct rbd_img_request {
245 struct rbd_device *rbd_dev;
246 u64 offset; /* starting image byte offset */
247 u64 length; /* byte count from offset */
248 unsigned long flags;
249 union {
250 u64 snap_id; /* for reads */
251 struct ceph_snap_context *snapc; /* for writes */
252 };
253 union {
254 struct request *rq; /* block request */
255 struct rbd_obj_request *obj_request; /* obj req initiator */
256 };
257 struct page **copyup_pages;
258 spinlock_t completion_lock;/* protects next_completion */
259 u32 next_completion;
260 rbd_img_callback_t callback;
261 u64 xferred;/* aggregate bytes transferred */
262 int result; /* first nonzero obj_request result */
263
264 u32 obj_request_count;
265 struct list_head obj_requests; /* rbd_obj_request structs */
266
267 struct kref kref;
268 };
269
270 #define for_each_obj_request(ireq, oreq) \
271 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
272 #define for_each_obj_request_from(ireq, oreq) \
273 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_safe(ireq, oreq, n) \
275 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
276
277 struct rbd_mapping {
278 u64 size;
279 u64 features;
280 bool read_only;
281 };
282
283 /*
284 * a single device
285 */
286 struct rbd_device {
287 int dev_id; /* blkdev unique id */
288
289 int major; /* blkdev assigned major */
290 struct gendisk *disk; /* blkdev's gendisk and rq */
291
292 u32 image_format; /* Either 1 or 2 */
293 struct rbd_client *rbd_client;
294
295 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
296
297 spinlock_t lock; /* queue, flags, open_count */
298
299 struct rbd_image_header header;
300 unsigned long flags; /* possibly lock protected */
301 struct rbd_spec *spec;
302
303 char *header_name;
304
305 struct ceph_file_layout layout;
306
307 struct ceph_osd_event *watch_event;
308 struct rbd_obj_request *watch_request;
309
310 struct rbd_spec *parent_spec;
311 u64 parent_overlap;
312 struct rbd_device *parent;
313
314 /* protects updating the header */
315 struct rw_semaphore header_rwsem;
316
317 struct rbd_mapping mapping;
318
319 struct list_head node;
320
321 /* sysfs related */
322 struct device dev;
323 unsigned long open_count; /* protected by lock */
324 };
325
326 /*
327 * Flag bits for rbd_dev->flags. If atomicity is required,
328 * rbd_dev->lock is used to protect access.
329 *
330 * Currently, only the "removing" flag (which is coupled with the
331 * "open_count" field) requires atomic access.
332 */
333 enum rbd_dev_flags {
334 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
335 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
336 };
337
338 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
339
340 static LIST_HEAD(rbd_dev_list); /* devices */
341 static DEFINE_SPINLOCK(rbd_dev_list_lock);
342
343 static LIST_HEAD(rbd_client_list); /* clients */
344 static DEFINE_SPINLOCK(rbd_client_list_lock);
345
346 static int rbd_img_request_submit(struct rbd_img_request *img_request);
347
348 static void rbd_dev_device_release(struct device *dev);
349
350 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
351 size_t count);
352 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
353 size_t count);
354 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
355
356 static struct bus_attribute rbd_bus_attrs[] = {
357 __ATTR(add, S_IWUSR, NULL, rbd_add),
358 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
359 __ATTR_NULL
360 };
361
362 static struct bus_type rbd_bus_type = {
363 .name = "rbd",
364 .bus_attrs = rbd_bus_attrs,
365 };
366
367 static void rbd_root_dev_release(struct device *dev)
368 {
369 }
370
371 static struct device rbd_root_dev = {
372 .init_name = "rbd",
373 .release = rbd_root_dev_release,
374 };
375
376 static __printf(2, 3)
377 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
378 {
379 struct va_format vaf;
380 va_list args;
381
382 va_start(args, fmt);
383 vaf.fmt = fmt;
384 vaf.va = &args;
385
386 if (!rbd_dev)
387 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
388 else if (rbd_dev->disk)
389 printk(KERN_WARNING "%s: %s: %pV\n",
390 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
391 else if (rbd_dev->spec && rbd_dev->spec->image_name)
392 printk(KERN_WARNING "%s: image %s: %pV\n",
393 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
394 else if (rbd_dev->spec && rbd_dev->spec->image_id)
395 printk(KERN_WARNING "%s: id %s: %pV\n",
396 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
397 else /* punt */
398 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
399 RBD_DRV_NAME, rbd_dev, &vaf);
400 va_end(args);
401 }
402
403 #ifdef RBD_DEBUG
404 #define rbd_assert(expr) \
405 if (unlikely(!(expr))) { \
406 printk(KERN_ERR "\nAssertion failure in %s() " \
407 "at line %d:\n\n" \
408 "\trbd_assert(%s);\n\n", \
409 __func__, __LINE__, #expr); \
410 BUG(); \
411 }
412 #else /* !RBD_DEBUG */
413 # define rbd_assert(expr) ((void) 0)
414 #endif /* !RBD_DEBUG */
415
416 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
417 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
418 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
419
420 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
421 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
423 u64 snap_id);
424 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
425 u8 *order, u64 *snap_size);
426 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
427 u64 *snap_features);
428 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
429
430 static int rbd_open(struct block_device *bdev, fmode_t mode)
431 {
432 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
433 bool removing = false;
434
435 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
436 return -EROFS;
437
438 spin_lock_irq(&rbd_dev->lock);
439 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
440 removing = true;
441 else
442 rbd_dev->open_count++;
443 spin_unlock_irq(&rbd_dev->lock);
444 if (removing)
445 return -ENOENT;
446
447 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
448 (void) get_device(&rbd_dev->dev);
449 set_device_ro(bdev, rbd_dev->mapping.read_only);
450 mutex_unlock(&ctl_mutex);
451
452 return 0;
453 }
454
455 static int rbd_release(struct gendisk *disk, fmode_t mode)
456 {
457 struct rbd_device *rbd_dev = disk->private_data;
458 unsigned long open_count_before;
459
460 spin_lock_irq(&rbd_dev->lock);
461 open_count_before = rbd_dev->open_count--;
462 spin_unlock_irq(&rbd_dev->lock);
463 rbd_assert(open_count_before > 0);
464
465 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
466 put_device(&rbd_dev->dev);
467 mutex_unlock(&ctl_mutex);
468
469 return 0;
470 }
471
472 static const struct block_device_operations rbd_bd_ops = {
473 .owner = THIS_MODULE,
474 .open = rbd_open,
475 .release = rbd_release,
476 };
477
478 /*
479 * Initialize an rbd client instance.
480 * We own *ceph_opts.
481 */
482 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
483 {
484 struct rbd_client *rbdc;
485 int ret = -ENOMEM;
486
487 dout("%s:\n", __func__);
488 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
489 if (!rbdc)
490 goto out_opt;
491
492 kref_init(&rbdc->kref);
493 INIT_LIST_HEAD(&rbdc->node);
494
495 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
496
497 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
498 if (IS_ERR(rbdc->client))
499 goto out_mutex;
500 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
501
502 ret = ceph_open_session(rbdc->client);
503 if (ret < 0)
504 goto out_err;
505
506 spin_lock(&rbd_client_list_lock);
507 list_add_tail(&rbdc->node, &rbd_client_list);
508 spin_unlock(&rbd_client_list_lock);
509
510 mutex_unlock(&ctl_mutex);
511 dout("%s: rbdc %p\n", __func__, rbdc);
512
513 return rbdc;
514
515 out_err:
516 ceph_destroy_client(rbdc->client);
517 out_mutex:
518 mutex_unlock(&ctl_mutex);
519 kfree(rbdc);
520 out_opt:
521 if (ceph_opts)
522 ceph_destroy_options(ceph_opts);
523 dout("%s: error %d\n", __func__, ret);
524
525 return ERR_PTR(ret);
526 }
527
528 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
529 {
530 kref_get(&rbdc->kref);
531
532 return rbdc;
533 }
534
535 /*
536 * Find a ceph client with specific addr and configuration. If
537 * found, bump its reference count.
538 */
539 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
540 {
541 struct rbd_client *client_node;
542 bool found = false;
543
544 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
545 return NULL;
546
547 spin_lock(&rbd_client_list_lock);
548 list_for_each_entry(client_node, &rbd_client_list, node) {
549 if (!ceph_compare_options(ceph_opts, client_node->client)) {
550 __rbd_get_client(client_node);
551
552 found = true;
553 break;
554 }
555 }
556 spin_unlock(&rbd_client_list_lock);
557
558 return found ? client_node : NULL;
559 }
560
561 /*
562 * mount options
563 */
564 enum {
565 Opt_last_int,
566 /* int args above */
567 Opt_last_string,
568 /* string args above */
569 Opt_read_only,
570 Opt_read_write,
571 /* Boolean args above */
572 Opt_last_bool,
573 };
574
575 static match_table_t rbd_opts_tokens = {
576 /* int args above */
577 /* string args above */
578 {Opt_read_only, "read_only"},
579 {Opt_read_only, "ro"}, /* Alternate spelling */
580 {Opt_read_write, "read_write"},
581 {Opt_read_write, "rw"}, /* Alternate spelling */
582 /* Boolean args above */
583 {-1, NULL}
584 };
585
586 struct rbd_options {
587 bool read_only;
588 };
589
590 #define RBD_READ_ONLY_DEFAULT false
591
592 static int parse_rbd_opts_token(char *c, void *private)
593 {
594 struct rbd_options *rbd_opts = private;
595 substring_t argstr[MAX_OPT_ARGS];
596 int token, intval, ret;
597
598 token = match_token(c, rbd_opts_tokens, argstr);
599 if (token < 0)
600 return -EINVAL;
601
602 if (token < Opt_last_int) {
603 ret = match_int(&argstr[0], &intval);
604 if (ret < 0) {
605 pr_err("bad mount option arg (not int) "
606 "at '%s'\n", c);
607 return ret;
608 }
609 dout("got int token %d val %d\n", token, intval);
610 } else if (token > Opt_last_int && token < Opt_last_string) {
611 dout("got string token %d val %s\n", token,
612 argstr[0].from);
613 } else if (token > Opt_last_string && token < Opt_last_bool) {
614 dout("got Boolean token %d\n", token);
615 } else {
616 dout("got token %d\n", token);
617 }
618
619 switch (token) {
620 case Opt_read_only:
621 rbd_opts->read_only = true;
622 break;
623 case Opt_read_write:
624 rbd_opts->read_only = false;
625 break;
626 default:
627 rbd_assert(false);
628 break;
629 }
630 return 0;
631 }
632
633 /*
634 * Get a ceph client with specific addr and configuration, if one does
635 * not exist create it.
636 */
637 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
638 {
639 struct rbd_client *rbdc;
640
641 rbdc = rbd_client_find(ceph_opts);
642 if (rbdc) /* using an existing client */
643 ceph_destroy_options(ceph_opts);
644 else
645 rbdc = rbd_client_create(ceph_opts);
646
647 return rbdc;
648 }
649
650 /*
651 * Destroy ceph client
652 *
653 * Caller must hold rbd_client_list_lock.
654 */
655 static void rbd_client_release(struct kref *kref)
656 {
657 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
658
659 dout("%s: rbdc %p\n", __func__, rbdc);
660 spin_lock(&rbd_client_list_lock);
661 list_del(&rbdc->node);
662 spin_unlock(&rbd_client_list_lock);
663
664 ceph_destroy_client(rbdc->client);
665 kfree(rbdc);
666 }
667
668 /*
669 * Drop reference to ceph client node. If it's not referenced anymore, release
670 * it.
671 */
672 static void rbd_put_client(struct rbd_client *rbdc)
673 {
674 if (rbdc)
675 kref_put(&rbdc->kref, rbd_client_release);
676 }
677
678 static bool rbd_image_format_valid(u32 image_format)
679 {
680 return image_format == 1 || image_format == 2;
681 }
682
683 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
684 {
685 size_t size;
686 u32 snap_count;
687
688 /* The header has to start with the magic rbd header text */
689 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
690 return false;
691
692 /* The bio layer requires at least sector-sized I/O */
693
694 if (ondisk->options.order < SECTOR_SHIFT)
695 return false;
696
697 /* If we use u64 in a few spots we may be able to loosen this */
698
699 if (ondisk->options.order > 8 * sizeof (int) - 1)
700 return false;
701
702 /*
703 * The size of a snapshot header has to fit in a size_t, and
704 * that limits the number of snapshots.
705 */
706 snap_count = le32_to_cpu(ondisk->snap_count);
707 size = SIZE_MAX - sizeof (struct ceph_snap_context);
708 if (snap_count > size / sizeof (__le64))
709 return false;
710
711 /*
712 * Not only that, but the size of the entire the snapshot
713 * header must also be representable in a size_t.
714 */
715 size -= snap_count * sizeof (__le64);
716 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
717 return false;
718
719 return true;
720 }
721
722 /*
723 * Create a new header structure, translate header format from the on-disk
724 * header.
725 */
726 static int rbd_header_from_disk(struct rbd_image_header *header,
727 struct rbd_image_header_ondisk *ondisk)
728 {
729 u32 snap_count;
730 size_t len;
731 size_t size;
732 u32 i;
733
734 memset(header, 0, sizeof (*header));
735
736 snap_count = le32_to_cpu(ondisk->snap_count);
737
738 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
739 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
740 if (!header->object_prefix)
741 return -ENOMEM;
742 memcpy(header->object_prefix, ondisk->object_prefix, len);
743 header->object_prefix[len] = '\0';
744
745 if (snap_count) {
746 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
747
748 /* Save a copy of the snapshot names */
749
750 if (snap_names_len > (u64) SIZE_MAX)
751 return -EIO;
752 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
753 if (!header->snap_names)
754 goto out_err;
755 /*
756 * Note that rbd_dev_v1_header_read() guarantees
757 * the ondisk buffer we're working with has
758 * snap_names_len bytes beyond the end of the
759 * snapshot id array, this memcpy() is safe.
760 */
761 memcpy(header->snap_names, &ondisk->snaps[snap_count],
762 snap_names_len);
763
764 /* Record each snapshot's size */
765
766 size = snap_count * sizeof (*header->snap_sizes);
767 header->snap_sizes = kmalloc(size, GFP_KERNEL);
768 if (!header->snap_sizes)
769 goto out_err;
770 for (i = 0; i < snap_count; i++)
771 header->snap_sizes[i] =
772 le64_to_cpu(ondisk->snaps[i].image_size);
773 } else {
774 header->snap_names = NULL;
775 header->snap_sizes = NULL;
776 }
777
778 header->features = 0; /* No features support in v1 images */
779 header->obj_order = ondisk->options.order;
780 header->crypt_type = ondisk->options.crypt_type;
781 header->comp_type = ondisk->options.comp_type;
782
783 /* Allocate and fill in the snapshot context */
784
785 header->image_size = le64_to_cpu(ondisk->image_size);
786
787 header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
788 if (!header->snapc)
789 goto out_err;
790 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
791 for (i = 0; i < snap_count; i++)
792 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
793
794 return 0;
795
796 out_err:
797 kfree(header->snap_sizes);
798 header->snap_sizes = NULL;
799 kfree(header->snap_names);
800 header->snap_names = NULL;
801 kfree(header->object_prefix);
802 header->object_prefix = NULL;
803
804 return -ENOMEM;
805 }
806
807 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
808 {
809 const char *snap_name;
810
811 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
812
813 /* Skip over names until we find the one we are looking for */
814
815 snap_name = rbd_dev->header.snap_names;
816 while (which--)
817 snap_name += strlen(snap_name) + 1;
818
819 return kstrdup(snap_name, GFP_KERNEL);
820 }
821
822 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
823 {
824 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
825 u32 which;
826
827 for (which = 0; which < snapc->num_snaps; which++)
828 if (snapc->snaps[which] == snap_id)
829 return which;
830
831 return BAD_SNAP_INDEX;
832 }
833
834 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
835 u64 snap_id)
836 {
837 u32 which;
838
839 which = rbd_dev_snap_index(rbd_dev, snap_id);
840 if (which == BAD_SNAP_INDEX)
841 return NULL;
842
843 return _rbd_dev_v1_snap_name(rbd_dev, which);
844 }
845
846 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
847 {
848 if (snap_id == CEPH_NOSNAP)
849 return RBD_SNAP_HEAD_NAME;
850
851 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
852 if (rbd_dev->image_format == 1)
853 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
854
855 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
856 }
857
858 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
859 u64 *snap_size)
860 {
861 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
862 if (snap_id == CEPH_NOSNAP) {
863 *snap_size = rbd_dev->header.image_size;
864 } else if (rbd_dev->image_format == 1) {
865 u32 which;
866
867 which = rbd_dev_snap_index(rbd_dev, snap_id);
868 if (which == BAD_SNAP_INDEX)
869 return -ENOENT;
870
871 *snap_size = rbd_dev->header.snap_sizes[which];
872 } else {
873 u64 size = 0;
874 int ret;
875
876 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
877 if (ret)
878 return ret;
879
880 *snap_size = size;
881 }
882 return 0;
883 }
884
885 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
886 u64 *snap_features)
887 {
888 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
889 if (snap_id == CEPH_NOSNAP) {
890 *snap_features = rbd_dev->header.features;
891 } else if (rbd_dev->image_format == 1) {
892 *snap_features = 0; /* No features for format 1 */
893 } else {
894 u64 features = 0;
895 int ret;
896
897 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
898 if (ret)
899 return ret;
900
901 *snap_features = features;
902 }
903 return 0;
904 }
905
906 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
907 {
908 const char *snap_name = rbd_dev->spec->snap_name;
909 u64 snap_id;
910 u64 size = 0;
911 u64 features = 0;
912 int ret;
913
914 if (strcmp(snap_name, RBD_SNAP_HEAD_NAME)) {
915 snap_id = rbd_snap_id_by_name(rbd_dev, snap_name);
916 if (snap_id == CEPH_NOSNAP)
917 return -ENOENT;
918 } else {
919 snap_id = CEPH_NOSNAP;
920 }
921
922 ret = rbd_snap_size(rbd_dev, snap_id, &size);
923 if (ret)
924 return ret;
925 ret = rbd_snap_features(rbd_dev, snap_id, &features);
926 if (ret)
927 return ret;
928
929 rbd_dev->mapping.size = size;
930 rbd_dev->mapping.features = features;
931
932 /* If we are mapping a snapshot it must be marked read-only */
933
934 if (snap_id != CEPH_NOSNAP)
935 rbd_dev->mapping.read_only = true;
936
937 return 0;
938 }
939
940 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
941 {
942 rbd_dev->mapping.size = 0;
943 rbd_dev->mapping.features = 0;
944 rbd_dev->mapping.read_only = true;
945 }
946
947 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
948 {
949 rbd_dev->mapping.size = 0;
950 rbd_dev->mapping.features = 0;
951 rbd_dev->mapping.read_only = true;
952 }
953
954 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
955 {
956 char *name;
957 u64 segment;
958 int ret;
959
960 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
961 if (!name)
962 return NULL;
963 segment = offset >> rbd_dev->header.obj_order;
964 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
965 rbd_dev->header.object_prefix, segment);
966 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
967 pr_err("error formatting segment name for #%llu (%d)\n",
968 segment, ret);
969 kfree(name);
970 name = NULL;
971 }
972
973 return name;
974 }
975
976 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
977 {
978 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
979
980 return offset & (segment_size - 1);
981 }
982
983 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
984 u64 offset, u64 length)
985 {
986 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
987
988 offset &= segment_size - 1;
989
990 rbd_assert(length <= U64_MAX - offset);
991 if (offset + length > segment_size)
992 length = segment_size - offset;
993
994 return length;
995 }
996
997 /*
998 * returns the size of an object in the image
999 */
1000 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1001 {
1002 return 1 << header->obj_order;
1003 }
1004
1005 /*
1006 * bio helpers
1007 */
1008
1009 static void bio_chain_put(struct bio *chain)
1010 {
1011 struct bio *tmp;
1012
1013 while (chain) {
1014 tmp = chain;
1015 chain = chain->bi_next;
1016 bio_put(tmp);
1017 }
1018 }
1019
1020 /*
1021 * zeros a bio chain, starting at specific offset
1022 */
1023 static void zero_bio_chain(struct bio *chain, int start_ofs)
1024 {
1025 struct bio_vec *bv;
1026 unsigned long flags;
1027 void *buf;
1028 int i;
1029 int pos = 0;
1030
1031 while (chain) {
1032 bio_for_each_segment(bv, chain, i) {
1033 if (pos + bv->bv_len > start_ofs) {
1034 int remainder = max(start_ofs - pos, 0);
1035 buf = bvec_kmap_irq(bv, &flags);
1036 memset(buf + remainder, 0,
1037 bv->bv_len - remainder);
1038 bvec_kunmap_irq(buf, &flags);
1039 }
1040 pos += bv->bv_len;
1041 }
1042
1043 chain = chain->bi_next;
1044 }
1045 }
1046
1047 /*
1048 * similar to zero_bio_chain(), zeros data defined by a page array,
1049 * starting at the given byte offset from the start of the array and
1050 * continuing up to the given end offset. The pages array is
1051 * assumed to be big enough to hold all bytes up to the end.
1052 */
1053 static void zero_pages(struct page **pages, u64 offset, u64 end)
1054 {
1055 struct page **page = &pages[offset >> PAGE_SHIFT];
1056
1057 rbd_assert(end > offset);
1058 rbd_assert(end - offset <= (u64)SIZE_MAX);
1059 while (offset < end) {
1060 size_t page_offset;
1061 size_t length;
1062 unsigned long flags;
1063 void *kaddr;
1064
1065 page_offset = (size_t)(offset & ~PAGE_MASK);
1066 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1067 local_irq_save(flags);
1068 kaddr = kmap_atomic(*page);
1069 memset(kaddr + page_offset, 0, length);
1070 kunmap_atomic(kaddr);
1071 local_irq_restore(flags);
1072
1073 offset += length;
1074 page++;
1075 }
1076 }
1077
1078 /*
1079 * Clone a portion of a bio, starting at the given byte offset
1080 * and continuing for the number of bytes indicated.
1081 */
1082 static struct bio *bio_clone_range(struct bio *bio_src,
1083 unsigned int offset,
1084 unsigned int len,
1085 gfp_t gfpmask)
1086 {
1087 struct bio_vec *bv;
1088 unsigned int resid;
1089 unsigned short idx;
1090 unsigned int voff;
1091 unsigned short end_idx;
1092 unsigned short vcnt;
1093 struct bio *bio;
1094
1095 /* Handle the easy case for the caller */
1096
1097 if (!offset && len == bio_src->bi_size)
1098 return bio_clone(bio_src, gfpmask);
1099
1100 if (WARN_ON_ONCE(!len))
1101 return NULL;
1102 if (WARN_ON_ONCE(len > bio_src->bi_size))
1103 return NULL;
1104 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1105 return NULL;
1106
1107 /* Find first affected segment... */
1108
1109 resid = offset;
1110 __bio_for_each_segment(bv, bio_src, idx, 0) {
1111 if (resid < bv->bv_len)
1112 break;
1113 resid -= bv->bv_len;
1114 }
1115 voff = resid;
1116
1117 /* ...and the last affected segment */
1118
1119 resid += len;
1120 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1121 if (resid <= bv->bv_len)
1122 break;
1123 resid -= bv->bv_len;
1124 }
1125 vcnt = end_idx - idx + 1;
1126
1127 /* Build the clone */
1128
1129 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1130 if (!bio)
1131 return NULL; /* ENOMEM */
1132
1133 bio->bi_bdev = bio_src->bi_bdev;
1134 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1135 bio->bi_rw = bio_src->bi_rw;
1136 bio->bi_flags |= 1 << BIO_CLONED;
1137
1138 /*
1139 * Copy over our part of the bio_vec, then update the first
1140 * and last (or only) entries.
1141 */
1142 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1143 vcnt * sizeof (struct bio_vec));
1144 bio->bi_io_vec[0].bv_offset += voff;
1145 if (vcnt > 1) {
1146 bio->bi_io_vec[0].bv_len -= voff;
1147 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1148 } else {
1149 bio->bi_io_vec[0].bv_len = len;
1150 }
1151
1152 bio->bi_vcnt = vcnt;
1153 bio->bi_size = len;
1154 bio->bi_idx = 0;
1155
1156 return bio;
1157 }
1158
1159 /*
1160 * Clone a portion of a bio chain, starting at the given byte offset
1161 * into the first bio in the source chain and continuing for the
1162 * number of bytes indicated. The result is another bio chain of
1163 * exactly the given length, or a null pointer on error.
1164 *
1165 * The bio_src and offset parameters are both in-out. On entry they
1166 * refer to the first source bio and the offset into that bio where
1167 * the start of data to be cloned is located.
1168 *
1169 * On return, bio_src is updated to refer to the bio in the source
1170 * chain that contains first un-cloned byte, and *offset will
1171 * contain the offset of that byte within that bio.
1172 */
1173 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1174 unsigned int *offset,
1175 unsigned int len,
1176 gfp_t gfpmask)
1177 {
1178 struct bio *bi = *bio_src;
1179 unsigned int off = *offset;
1180 struct bio *chain = NULL;
1181 struct bio **end;
1182
1183 /* Build up a chain of clone bios up to the limit */
1184
1185 if (!bi || off >= bi->bi_size || !len)
1186 return NULL; /* Nothing to clone */
1187
1188 end = &chain;
1189 while (len) {
1190 unsigned int bi_size;
1191 struct bio *bio;
1192
1193 if (!bi) {
1194 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1195 goto out_err; /* EINVAL; ran out of bio's */
1196 }
1197 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1198 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1199 if (!bio)
1200 goto out_err; /* ENOMEM */
1201
1202 *end = bio;
1203 end = &bio->bi_next;
1204
1205 off += bi_size;
1206 if (off == bi->bi_size) {
1207 bi = bi->bi_next;
1208 off = 0;
1209 }
1210 len -= bi_size;
1211 }
1212 *bio_src = bi;
1213 *offset = off;
1214
1215 return chain;
1216 out_err:
1217 bio_chain_put(chain);
1218
1219 return NULL;
1220 }
1221
1222 /*
1223 * The default/initial value for all object request flags is 0. For
1224 * each flag, once its value is set to 1 it is never reset to 0
1225 * again.
1226 */
1227 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1228 {
1229 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1230 struct rbd_device *rbd_dev;
1231
1232 rbd_dev = obj_request->img_request->rbd_dev;
1233 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1234 obj_request);
1235 }
1236 }
1237
1238 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1239 {
1240 smp_mb();
1241 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1242 }
1243
1244 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1245 {
1246 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1247 struct rbd_device *rbd_dev = NULL;
1248
1249 if (obj_request_img_data_test(obj_request))
1250 rbd_dev = obj_request->img_request->rbd_dev;
1251 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1252 obj_request);
1253 }
1254 }
1255
1256 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1257 {
1258 smp_mb();
1259 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1260 }
1261
1262 /*
1263 * This sets the KNOWN flag after (possibly) setting the EXISTS
1264 * flag. The latter is set based on the "exists" value provided.
1265 *
1266 * Note that for our purposes once an object exists it never goes
1267 * away again. It's possible that the response from two existence
1268 * checks are separated by the creation of the target object, and
1269 * the first ("doesn't exist") response arrives *after* the second
1270 * ("does exist"). In that case we ignore the second one.
1271 */
1272 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1273 bool exists)
1274 {
1275 if (exists)
1276 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1277 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1278 smp_mb();
1279 }
1280
1281 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1282 {
1283 smp_mb();
1284 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1285 }
1286
1287 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1288 {
1289 smp_mb();
1290 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1291 }
1292
1293 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1294 {
1295 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1296 atomic_read(&obj_request->kref.refcount));
1297 kref_get(&obj_request->kref);
1298 }
1299
1300 static void rbd_obj_request_destroy(struct kref *kref);
1301 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1302 {
1303 rbd_assert(obj_request != NULL);
1304 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1305 atomic_read(&obj_request->kref.refcount));
1306 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1307 }
1308
1309 static void rbd_img_request_get(struct rbd_img_request *img_request)
1310 {
1311 dout("%s: img %p (was %d)\n", __func__, img_request,
1312 atomic_read(&img_request->kref.refcount));
1313 kref_get(&img_request->kref);
1314 }
1315
1316 static void rbd_img_request_destroy(struct kref *kref);
1317 static void rbd_img_request_put(struct rbd_img_request *img_request)
1318 {
1319 rbd_assert(img_request != NULL);
1320 dout("%s: img %p (was %d)\n", __func__, img_request,
1321 atomic_read(&img_request->kref.refcount));
1322 kref_put(&img_request->kref, rbd_img_request_destroy);
1323 }
1324
1325 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1326 struct rbd_obj_request *obj_request)
1327 {
1328 rbd_assert(obj_request->img_request == NULL);
1329
1330 /* Image request now owns object's original reference */
1331 obj_request->img_request = img_request;
1332 obj_request->which = img_request->obj_request_count;
1333 rbd_assert(!obj_request_img_data_test(obj_request));
1334 obj_request_img_data_set(obj_request);
1335 rbd_assert(obj_request->which != BAD_WHICH);
1336 img_request->obj_request_count++;
1337 list_add_tail(&obj_request->links, &img_request->obj_requests);
1338 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1339 obj_request->which);
1340 }
1341
1342 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1343 struct rbd_obj_request *obj_request)
1344 {
1345 rbd_assert(obj_request->which != BAD_WHICH);
1346
1347 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1348 obj_request->which);
1349 list_del(&obj_request->links);
1350 rbd_assert(img_request->obj_request_count > 0);
1351 img_request->obj_request_count--;
1352 rbd_assert(obj_request->which == img_request->obj_request_count);
1353 obj_request->which = BAD_WHICH;
1354 rbd_assert(obj_request_img_data_test(obj_request));
1355 rbd_assert(obj_request->img_request == img_request);
1356 obj_request->img_request = NULL;
1357 obj_request->callback = NULL;
1358 rbd_obj_request_put(obj_request);
1359 }
1360
1361 static bool obj_request_type_valid(enum obj_request_type type)
1362 {
1363 switch (type) {
1364 case OBJ_REQUEST_NODATA:
1365 case OBJ_REQUEST_BIO:
1366 case OBJ_REQUEST_PAGES:
1367 return true;
1368 default:
1369 return false;
1370 }
1371 }
1372
1373 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1374 struct rbd_obj_request *obj_request)
1375 {
1376 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1377
1378 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1379 }
1380
1381 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1382 {
1383
1384 dout("%s: img %p\n", __func__, img_request);
1385
1386 /*
1387 * If no error occurred, compute the aggregate transfer
1388 * count for the image request. We could instead use
1389 * atomic64_cmpxchg() to update it as each object request
1390 * completes; not clear which way is better off hand.
1391 */
1392 if (!img_request->result) {
1393 struct rbd_obj_request *obj_request;
1394 u64 xferred = 0;
1395
1396 for_each_obj_request(img_request, obj_request)
1397 xferred += obj_request->xferred;
1398 img_request->xferred = xferred;
1399 }
1400
1401 if (img_request->callback)
1402 img_request->callback(img_request);
1403 else
1404 rbd_img_request_put(img_request);
1405 }
1406
1407 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1408
1409 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1410 {
1411 dout("%s: obj %p\n", __func__, obj_request);
1412
1413 return wait_for_completion_interruptible(&obj_request->completion);
1414 }
1415
1416 /*
1417 * The default/initial value for all image request flags is 0. Each
1418 * is conditionally set to 1 at image request initialization time
1419 * and currently never change thereafter.
1420 */
1421 static void img_request_write_set(struct rbd_img_request *img_request)
1422 {
1423 set_bit(IMG_REQ_WRITE, &img_request->flags);
1424 smp_mb();
1425 }
1426
1427 static bool img_request_write_test(struct rbd_img_request *img_request)
1428 {
1429 smp_mb();
1430 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1431 }
1432
1433 static void img_request_child_set(struct rbd_img_request *img_request)
1434 {
1435 set_bit(IMG_REQ_CHILD, &img_request->flags);
1436 smp_mb();
1437 }
1438
1439 static bool img_request_child_test(struct rbd_img_request *img_request)
1440 {
1441 smp_mb();
1442 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1443 }
1444
1445 static void img_request_layered_set(struct rbd_img_request *img_request)
1446 {
1447 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1448 smp_mb();
1449 }
1450
1451 static bool img_request_layered_test(struct rbd_img_request *img_request)
1452 {
1453 smp_mb();
1454 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1455 }
1456
1457 static void
1458 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1459 {
1460 u64 xferred = obj_request->xferred;
1461 u64 length = obj_request->length;
1462
1463 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1464 obj_request, obj_request->img_request, obj_request->result,
1465 xferred, length);
1466 /*
1467 * ENOENT means a hole in the image. We zero-fill the
1468 * entire length of the request. A short read also implies
1469 * zero-fill to the end of the request. Either way we
1470 * update the xferred count to indicate the whole request
1471 * was satisfied.
1472 */
1473 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1474 if (obj_request->result == -ENOENT) {
1475 if (obj_request->type == OBJ_REQUEST_BIO)
1476 zero_bio_chain(obj_request->bio_list, 0);
1477 else
1478 zero_pages(obj_request->pages, 0, length);
1479 obj_request->result = 0;
1480 obj_request->xferred = length;
1481 } else if (xferred < length && !obj_request->result) {
1482 if (obj_request->type == OBJ_REQUEST_BIO)
1483 zero_bio_chain(obj_request->bio_list, xferred);
1484 else
1485 zero_pages(obj_request->pages, xferred, length);
1486 obj_request->xferred = length;
1487 }
1488 obj_request_done_set(obj_request);
1489 }
1490
1491 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1492 {
1493 dout("%s: obj %p cb %p\n", __func__, obj_request,
1494 obj_request->callback);
1495 if (obj_request->callback)
1496 obj_request->callback(obj_request);
1497 else
1498 complete_all(&obj_request->completion);
1499 }
1500
1501 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1502 {
1503 dout("%s: obj %p\n", __func__, obj_request);
1504 obj_request_done_set(obj_request);
1505 }
1506
1507 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1508 {
1509 struct rbd_img_request *img_request = NULL;
1510 struct rbd_device *rbd_dev = NULL;
1511 bool layered = false;
1512
1513 if (obj_request_img_data_test(obj_request)) {
1514 img_request = obj_request->img_request;
1515 layered = img_request && img_request_layered_test(img_request);
1516 rbd_dev = img_request->rbd_dev;
1517 }
1518
1519 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1520 obj_request, img_request, obj_request->result,
1521 obj_request->xferred, obj_request->length);
1522 if (layered && obj_request->result == -ENOENT &&
1523 obj_request->img_offset < rbd_dev->parent_overlap)
1524 rbd_img_parent_read(obj_request);
1525 else if (img_request)
1526 rbd_img_obj_request_read_callback(obj_request);
1527 else
1528 obj_request_done_set(obj_request);
1529 }
1530
1531 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1532 {
1533 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1534 obj_request->result, obj_request->length);
1535 /*
1536 * There is no such thing as a successful short write. Set
1537 * it to our originally-requested length.
1538 */
1539 obj_request->xferred = obj_request->length;
1540 obj_request_done_set(obj_request);
1541 }
1542
1543 /*
1544 * For a simple stat call there's nothing to do. We'll do more if
1545 * this is part of a write sequence for a layered image.
1546 */
1547 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1548 {
1549 dout("%s: obj %p\n", __func__, obj_request);
1550 obj_request_done_set(obj_request);
1551 }
1552
1553 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1554 struct ceph_msg *msg)
1555 {
1556 struct rbd_obj_request *obj_request = osd_req->r_priv;
1557 u16 opcode;
1558
1559 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1560 rbd_assert(osd_req == obj_request->osd_req);
1561 if (obj_request_img_data_test(obj_request)) {
1562 rbd_assert(obj_request->img_request);
1563 rbd_assert(obj_request->which != BAD_WHICH);
1564 } else {
1565 rbd_assert(obj_request->which == BAD_WHICH);
1566 }
1567
1568 if (osd_req->r_result < 0)
1569 obj_request->result = osd_req->r_result;
1570
1571 BUG_ON(osd_req->r_num_ops > 2);
1572
1573 /*
1574 * We support a 64-bit length, but ultimately it has to be
1575 * passed to blk_end_request(), which takes an unsigned int.
1576 */
1577 obj_request->xferred = osd_req->r_reply_op_len[0];
1578 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1579 opcode = osd_req->r_ops[0].op;
1580 switch (opcode) {
1581 case CEPH_OSD_OP_READ:
1582 rbd_osd_read_callback(obj_request);
1583 break;
1584 case CEPH_OSD_OP_WRITE:
1585 rbd_osd_write_callback(obj_request);
1586 break;
1587 case CEPH_OSD_OP_STAT:
1588 rbd_osd_stat_callback(obj_request);
1589 break;
1590 case CEPH_OSD_OP_CALL:
1591 case CEPH_OSD_OP_NOTIFY_ACK:
1592 case CEPH_OSD_OP_WATCH:
1593 rbd_osd_trivial_callback(obj_request);
1594 break;
1595 default:
1596 rbd_warn(NULL, "%s: unsupported op %hu\n",
1597 obj_request->object_name, (unsigned short) opcode);
1598 break;
1599 }
1600
1601 if (obj_request_done_test(obj_request))
1602 rbd_obj_request_complete(obj_request);
1603 }
1604
1605 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1606 {
1607 struct rbd_img_request *img_request = obj_request->img_request;
1608 struct ceph_osd_request *osd_req = obj_request->osd_req;
1609 u64 snap_id;
1610
1611 rbd_assert(osd_req != NULL);
1612
1613 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1614 ceph_osdc_build_request(osd_req, obj_request->offset,
1615 NULL, snap_id, NULL);
1616 }
1617
1618 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1619 {
1620 struct rbd_img_request *img_request = obj_request->img_request;
1621 struct ceph_osd_request *osd_req = obj_request->osd_req;
1622 struct ceph_snap_context *snapc;
1623 struct timespec mtime = CURRENT_TIME;
1624
1625 rbd_assert(osd_req != NULL);
1626
1627 snapc = img_request ? img_request->snapc : NULL;
1628 ceph_osdc_build_request(osd_req, obj_request->offset,
1629 snapc, CEPH_NOSNAP, &mtime);
1630 }
1631
1632 static struct ceph_osd_request *rbd_osd_req_create(
1633 struct rbd_device *rbd_dev,
1634 bool write_request,
1635 struct rbd_obj_request *obj_request)
1636 {
1637 struct ceph_snap_context *snapc = NULL;
1638 struct ceph_osd_client *osdc;
1639 struct ceph_osd_request *osd_req;
1640
1641 if (obj_request_img_data_test(obj_request)) {
1642 struct rbd_img_request *img_request = obj_request->img_request;
1643
1644 rbd_assert(write_request ==
1645 img_request_write_test(img_request));
1646 if (write_request)
1647 snapc = img_request->snapc;
1648 }
1649
1650 /* Allocate and initialize the request, for the single op */
1651
1652 osdc = &rbd_dev->rbd_client->client->osdc;
1653 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1654 if (!osd_req)
1655 return NULL; /* ENOMEM */
1656
1657 if (write_request)
1658 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1659 else
1660 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1661
1662 osd_req->r_callback = rbd_osd_req_callback;
1663 osd_req->r_priv = obj_request;
1664
1665 osd_req->r_oid_len = strlen(obj_request->object_name);
1666 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1667 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1668
1669 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1670
1671 return osd_req;
1672 }
1673
1674 /*
1675 * Create a copyup osd request based on the information in the
1676 * object request supplied. A copyup request has two osd ops,
1677 * a copyup method call, and a "normal" write request.
1678 */
1679 static struct ceph_osd_request *
1680 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1681 {
1682 struct rbd_img_request *img_request;
1683 struct ceph_snap_context *snapc;
1684 struct rbd_device *rbd_dev;
1685 struct ceph_osd_client *osdc;
1686 struct ceph_osd_request *osd_req;
1687
1688 rbd_assert(obj_request_img_data_test(obj_request));
1689 img_request = obj_request->img_request;
1690 rbd_assert(img_request);
1691 rbd_assert(img_request_write_test(img_request));
1692
1693 /* Allocate and initialize the request, for the two ops */
1694
1695 snapc = img_request->snapc;
1696 rbd_dev = img_request->rbd_dev;
1697 osdc = &rbd_dev->rbd_client->client->osdc;
1698 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1699 if (!osd_req)
1700 return NULL; /* ENOMEM */
1701
1702 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1703 osd_req->r_callback = rbd_osd_req_callback;
1704 osd_req->r_priv = obj_request;
1705
1706 osd_req->r_oid_len = strlen(obj_request->object_name);
1707 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1708 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1709
1710 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1711
1712 return osd_req;
1713 }
1714
1715
1716 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1717 {
1718 ceph_osdc_put_request(osd_req);
1719 }
1720
1721 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1722
1723 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1724 u64 offset, u64 length,
1725 enum obj_request_type type)
1726 {
1727 struct rbd_obj_request *obj_request;
1728 size_t size;
1729 char *name;
1730
1731 rbd_assert(obj_request_type_valid(type));
1732
1733 size = strlen(object_name) + 1;
1734 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1735 if (!obj_request)
1736 return NULL;
1737
1738 name = (char *)(obj_request + 1);
1739 obj_request->object_name = memcpy(name, object_name, size);
1740 obj_request->offset = offset;
1741 obj_request->length = length;
1742 obj_request->flags = 0;
1743 obj_request->which = BAD_WHICH;
1744 obj_request->type = type;
1745 INIT_LIST_HEAD(&obj_request->links);
1746 init_completion(&obj_request->completion);
1747 kref_init(&obj_request->kref);
1748
1749 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1750 offset, length, (int)type, obj_request);
1751
1752 return obj_request;
1753 }
1754
1755 static void rbd_obj_request_destroy(struct kref *kref)
1756 {
1757 struct rbd_obj_request *obj_request;
1758
1759 obj_request = container_of(kref, struct rbd_obj_request, kref);
1760
1761 dout("%s: obj %p\n", __func__, obj_request);
1762
1763 rbd_assert(obj_request->img_request == NULL);
1764 rbd_assert(obj_request->which == BAD_WHICH);
1765
1766 if (obj_request->osd_req)
1767 rbd_osd_req_destroy(obj_request->osd_req);
1768
1769 rbd_assert(obj_request_type_valid(obj_request->type));
1770 switch (obj_request->type) {
1771 case OBJ_REQUEST_NODATA:
1772 break; /* Nothing to do */
1773 case OBJ_REQUEST_BIO:
1774 if (obj_request->bio_list)
1775 bio_chain_put(obj_request->bio_list);
1776 break;
1777 case OBJ_REQUEST_PAGES:
1778 if (obj_request->pages)
1779 ceph_release_page_vector(obj_request->pages,
1780 obj_request->page_count);
1781 break;
1782 }
1783
1784 kfree(obj_request);
1785 }
1786
1787 /*
1788 * Caller is responsible for filling in the list of object requests
1789 * that comprises the image request, and the Linux request pointer
1790 * (if there is one).
1791 */
1792 static struct rbd_img_request *rbd_img_request_create(
1793 struct rbd_device *rbd_dev,
1794 u64 offset, u64 length,
1795 bool write_request,
1796 bool child_request)
1797 {
1798 struct rbd_img_request *img_request;
1799
1800 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1801 if (!img_request)
1802 return NULL;
1803
1804 if (write_request) {
1805 down_read(&rbd_dev->header_rwsem);
1806 ceph_get_snap_context(rbd_dev->header.snapc);
1807 up_read(&rbd_dev->header_rwsem);
1808 }
1809
1810 img_request->rq = NULL;
1811 img_request->rbd_dev = rbd_dev;
1812 img_request->offset = offset;
1813 img_request->length = length;
1814 img_request->flags = 0;
1815 if (write_request) {
1816 img_request_write_set(img_request);
1817 img_request->snapc = rbd_dev->header.snapc;
1818 } else {
1819 img_request->snap_id = rbd_dev->spec->snap_id;
1820 }
1821 if (child_request)
1822 img_request_child_set(img_request);
1823 if (rbd_dev->parent_spec)
1824 img_request_layered_set(img_request);
1825 spin_lock_init(&img_request->completion_lock);
1826 img_request->next_completion = 0;
1827 img_request->callback = NULL;
1828 img_request->result = 0;
1829 img_request->obj_request_count = 0;
1830 INIT_LIST_HEAD(&img_request->obj_requests);
1831 kref_init(&img_request->kref);
1832
1833 rbd_img_request_get(img_request); /* Avoid a warning */
1834 rbd_img_request_put(img_request); /* TEMPORARY */
1835
1836 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1837 write_request ? "write" : "read", offset, length,
1838 img_request);
1839
1840 return img_request;
1841 }
1842
1843 static void rbd_img_request_destroy(struct kref *kref)
1844 {
1845 struct rbd_img_request *img_request;
1846 struct rbd_obj_request *obj_request;
1847 struct rbd_obj_request *next_obj_request;
1848
1849 img_request = container_of(kref, struct rbd_img_request, kref);
1850
1851 dout("%s: img %p\n", __func__, img_request);
1852
1853 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1854 rbd_img_obj_request_del(img_request, obj_request);
1855 rbd_assert(img_request->obj_request_count == 0);
1856
1857 if (img_request_write_test(img_request))
1858 ceph_put_snap_context(img_request->snapc);
1859
1860 if (img_request_child_test(img_request))
1861 rbd_obj_request_put(img_request->obj_request);
1862
1863 kfree(img_request);
1864 }
1865
1866 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1867 {
1868 struct rbd_img_request *img_request;
1869 unsigned int xferred;
1870 int result;
1871 bool more;
1872
1873 rbd_assert(obj_request_img_data_test(obj_request));
1874 img_request = obj_request->img_request;
1875
1876 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1877 xferred = (unsigned int)obj_request->xferred;
1878 result = obj_request->result;
1879 if (result) {
1880 struct rbd_device *rbd_dev = img_request->rbd_dev;
1881
1882 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1883 img_request_write_test(img_request) ? "write" : "read",
1884 obj_request->length, obj_request->img_offset,
1885 obj_request->offset);
1886 rbd_warn(rbd_dev, " result %d xferred %x\n",
1887 result, xferred);
1888 if (!img_request->result)
1889 img_request->result = result;
1890 }
1891
1892 /* Image object requests don't own their page array */
1893
1894 if (obj_request->type == OBJ_REQUEST_PAGES) {
1895 obj_request->pages = NULL;
1896 obj_request->page_count = 0;
1897 }
1898
1899 if (img_request_child_test(img_request)) {
1900 rbd_assert(img_request->obj_request != NULL);
1901 more = obj_request->which < img_request->obj_request_count - 1;
1902 } else {
1903 rbd_assert(img_request->rq != NULL);
1904 more = blk_end_request(img_request->rq, result, xferred);
1905 }
1906
1907 return more;
1908 }
1909
1910 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1911 {
1912 struct rbd_img_request *img_request;
1913 u32 which = obj_request->which;
1914 bool more = true;
1915
1916 rbd_assert(obj_request_img_data_test(obj_request));
1917 img_request = obj_request->img_request;
1918
1919 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1920 rbd_assert(img_request != NULL);
1921 rbd_assert(img_request->obj_request_count > 0);
1922 rbd_assert(which != BAD_WHICH);
1923 rbd_assert(which < img_request->obj_request_count);
1924 rbd_assert(which >= img_request->next_completion);
1925
1926 spin_lock_irq(&img_request->completion_lock);
1927 if (which != img_request->next_completion)
1928 goto out;
1929
1930 for_each_obj_request_from(img_request, obj_request) {
1931 rbd_assert(more);
1932 rbd_assert(which < img_request->obj_request_count);
1933
1934 if (!obj_request_done_test(obj_request))
1935 break;
1936 more = rbd_img_obj_end_request(obj_request);
1937 which++;
1938 }
1939
1940 rbd_assert(more ^ (which == img_request->obj_request_count));
1941 img_request->next_completion = which;
1942 out:
1943 spin_unlock_irq(&img_request->completion_lock);
1944
1945 if (!more)
1946 rbd_img_request_complete(img_request);
1947 }
1948
1949 /*
1950 * Split up an image request into one or more object requests, each
1951 * to a different object. The "type" parameter indicates whether
1952 * "data_desc" is the pointer to the head of a list of bio
1953 * structures, or the base of a page array. In either case this
1954 * function assumes data_desc describes memory sufficient to hold
1955 * all data described by the image request.
1956 */
1957 static int rbd_img_request_fill(struct rbd_img_request *img_request,
1958 enum obj_request_type type,
1959 void *data_desc)
1960 {
1961 struct rbd_device *rbd_dev = img_request->rbd_dev;
1962 struct rbd_obj_request *obj_request = NULL;
1963 struct rbd_obj_request *next_obj_request;
1964 bool write_request = img_request_write_test(img_request);
1965 struct bio *bio_list;
1966 unsigned int bio_offset = 0;
1967 struct page **pages;
1968 u64 img_offset;
1969 u64 resid;
1970 u16 opcode;
1971
1972 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
1973 (int)type, data_desc);
1974
1975 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1976 img_offset = img_request->offset;
1977 resid = img_request->length;
1978 rbd_assert(resid > 0);
1979
1980 if (type == OBJ_REQUEST_BIO) {
1981 bio_list = data_desc;
1982 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
1983 } else {
1984 rbd_assert(type == OBJ_REQUEST_PAGES);
1985 pages = data_desc;
1986 }
1987
1988 while (resid) {
1989 struct ceph_osd_request *osd_req;
1990 const char *object_name;
1991 u64 offset;
1992 u64 length;
1993
1994 object_name = rbd_segment_name(rbd_dev, img_offset);
1995 if (!object_name)
1996 goto out_unwind;
1997 offset = rbd_segment_offset(rbd_dev, img_offset);
1998 length = rbd_segment_length(rbd_dev, img_offset, resid);
1999 obj_request = rbd_obj_request_create(object_name,
2000 offset, length, type);
2001 kfree(object_name); /* object request has its own copy */
2002 if (!obj_request)
2003 goto out_unwind;
2004
2005 if (type == OBJ_REQUEST_BIO) {
2006 unsigned int clone_size;
2007
2008 rbd_assert(length <= (u64)UINT_MAX);
2009 clone_size = (unsigned int)length;
2010 obj_request->bio_list =
2011 bio_chain_clone_range(&bio_list,
2012 &bio_offset,
2013 clone_size,
2014 GFP_ATOMIC);
2015 if (!obj_request->bio_list)
2016 goto out_partial;
2017 } else {
2018 unsigned int page_count;
2019
2020 obj_request->pages = pages;
2021 page_count = (u32)calc_pages_for(offset, length);
2022 obj_request->page_count = page_count;
2023 if ((offset + length) & ~PAGE_MASK)
2024 page_count--; /* more on last page */
2025 pages += page_count;
2026 }
2027
2028 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2029 obj_request);
2030 if (!osd_req)
2031 goto out_partial;
2032 obj_request->osd_req = osd_req;
2033 obj_request->callback = rbd_img_obj_callback;
2034
2035 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2036 0, 0);
2037 if (type == OBJ_REQUEST_BIO)
2038 osd_req_op_extent_osd_data_bio(osd_req, 0,
2039 obj_request->bio_list, length);
2040 else
2041 osd_req_op_extent_osd_data_pages(osd_req, 0,
2042 obj_request->pages, length,
2043 offset & ~PAGE_MASK, false, false);
2044
2045 if (write_request)
2046 rbd_osd_req_format_write(obj_request);
2047 else
2048 rbd_osd_req_format_read(obj_request);
2049
2050 obj_request->img_offset = img_offset;
2051 rbd_img_obj_request_add(img_request, obj_request);
2052
2053 img_offset += length;
2054 resid -= length;
2055 }
2056
2057 return 0;
2058
2059 out_partial:
2060 rbd_obj_request_put(obj_request);
2061 out_unwind:
2062 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2063 rbd_obj_request_put(obj_request);
2064
2065 return -ENOMEM;
2066 }
2067
2068 static void
2069 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2070 {
2071 struct rbd_img_request *img_request;
2072 struct rbd_device *rbd_dev;
2073 u64 length;
2074 u32 page_count;
2075
2076 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2077 rbd_assert(obj_request_img_data_test(obj_request));
2078 img_request = obj_request->img_request;
2079 rbd_assert(img_request);
2080
2081 rbd_dev = img_request->rbd_dev;
2082 rbd_assert(rbd_dev);
2083 length = (u64)1 << rbd_dev->header.obj_order;
2084 page_count = (u32)calc_pages_for(0, length);
2085
2086 rbd_assert(obj_request->copyup_pages);
2087 ceph_release_page_vector(obj_request->copyup_pages, page_count);
2088 obj_request->copyup_pages = NULL;
2089
2090 /*
2091 * We want the transfer count to reflect the size of the
2092 * original write request. There is no such thing as a
2093 * successful short write, so if the request was successful
2094 * we can just set it to the originally-requested length.
2095 */
2096 if (!obj_request->result)
2097 obj_request->xferred = obj_request->length;
2098
2099 /* Finish up with the normal image object callback */
2100
2101 rbd_img_obj_callback(obj_request);
2102 }
2103
2104 static void
2105 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2106 {
2107 struct rbd_obj_request *orig_request;
2108 struct ceph_osd_request *osd_req;
2109 struct ceph_osd_client *osdc;
2110 struct rbd_device *rbd_dev;
2111 struct page **pages;
2112 int result;
2113 u64 obj_size;
2114 u64 xferred;
2115
2116 rbd_assert(img_request_child_test(img_request));
2117
2118 /* First get what we need from the image request */
2119
2120 pages = img_request->copyup_pages;
2121 rbd_assert(pages != NULL);
2122 img_request->copyup_pages = NULL;
2123
2124 orig_request = img_request->obj_request;
2125 rbd_assert(orig_request != NULL);
2126 rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2127 result = img_request->result;
2128 obj_size = img_request->length;
2129 xferred = img_request->xferred;
2130
2131 rbd_dev = img_request->rbd_dev;
2132 rbd_assert(rbd_dev);
2133 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2134
2135 rbd_img_request_put(img_request);
2136
2137 if (result)
2138 goto out_err;
2139
2140 /* Allocate the new copyup osd request for the original request */
2141
2142 result = -ENOMEM;
2143 rbd_assert(!orig_request->osd_req);
2144 osd_req = rbd_osd_req_create_copyup(orig_request);
2145 if (!osd_req)
2146 goto out_err;
2147 orig_request->osd_req = osd_req;
2148 orig_request->copyup_pages = pages;
2149
2150 /* Initialize the copyup op */
2151
2152 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2153 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2154 false, false);
2155
2156 /* Then the original write request op */
2157
2158 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2159 orig_request->offset,
2160 orig_request->length, 0, 0);
2161 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2162 orig_request->length);
2163
2164 rbd_osd_req_format_write(orig_request);
2165
2166 /* All set, send it off. */
2167
2168 orig_request->callback = rbd_img_obj_copyup_callback;
2169 osdc = &rbd_dev->rbd_client->client->osdc;
2170 result = rbd_obj_request_submit(osdc, orig_request);
2171 if (!result)
2172 return;
2173 out_err:
2174 /* Record the error code and complete the request */
2175
2176 orig_request->result = result;
2177 orig_request->xferred = 0;
2178 obj_request_done_set(orig_request);
2179 rbd_obj_request_complete(orig_request);
2180 }
2181
2182 /*
2183 * Read from the parent image the range of data that covers the
2184 * entire target of the given object request. This is used for
2185 * satisfying a layered image write request when the target of an
2186 * object request from the image request does not exist.
2187 *
2188 * A page array big enough to hold the returned data is allocated
2189 * and supplied to rbd_img_request_fill() as the "data descriptor."
2190 * When the read completes, this page array will be transferred to
2191 * the original object request for the copyup operation.
2192 *
2193 * If an error occurs, record it as the result of the original
2194 * object request and mark it done so it gets completed.
2195 */
2196 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2197 {
2198 struct rbd_img_request *img_request = NULL;
2199 struct rbd_img_request *parent_request = NULL;
2200 struct rbd_device *rbd_dev;
2201 u64 img_offset;
2202 u64 length;
2203 struct page **pages = NULL;
2204 u32 page_count;
2205 int result;
2206
2207 rbd_assert(obj_request_img_data_test(obj_request));
2208 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2209
2210 img_request = obj_request->img_request;
2211 rbd_assert(img_request != NULL);
2212 rbd_dev = img_request->rbd_dev;
2213 rbd_assert(rbd_dev->parent != NULL);
2214
2215 /*
2216 * First things first. The original osd request is of no
2217 * use to use any more, we'll need a new one that can hold
2218 * the two ops in a copyup request. We'll get that later,
2219 * but for now we can release the old one.
2220 */
2221 rbd_osd_req_destroy(obj_request->osd_req);
2222 obj_request->osd_req = NULL;
2223
2224 /*
2225 * Determine the byte range covered by the object in the
2226 * child image to which the original request was to be sent.
2227 */
2228 img_offset = obj_request->img_offset - obj_request->offset;
2229 length = (u64)1 << rbd_dev->header.obj_order;
2230
2231 /*
2232 * There is no defined parent data beyond the parent
2233 * overlap, so limit what we read at that boundary if
2234 * necessary.
2235 */
2236 if (img_offset + length > rbd_dev->parent_overlap) {
2237 rbd_assert(img_offset < rbd_dev->parent_overlap);
2238 length = rbd_dev->parent_overlap - img_offset;
2239 }
2240
2241 /*
2242 * Allocate a page array big enough to receive the data read
2243 * from the parent.
2244 */
2245 page_count = (u32)calc_pages_for(0, length);
2246 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2247 if (IS_ERR(pages)) {
2248 result = PTR_ERR(pages);
2249 pages = NULL;
2250 goto out_err;
2251 }
2252
2253 result = -ENOMEM;
2254 parent_request = rbd_img_request_create(rbd_dev->parent,
2255 img_offset, length,
2256 false, true);
2257 if (!parent_request)
2258 goto out_err;
2259 rbd_obj_request_get(obj_request);
2260 parent_request->obj_request = obj_request;
2261
2262 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2263 if (result)
2264 goto out_err;
2265 parent_request->copyup_pages = pages;
2266
2267 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2268 result = rbd_img_request_submit(parent_request);
2269 if (!result)
2270 return 0;
2271
2272 parent_request->copyup_pages = NULL;
2273 parent_request->obj_request = NULL;
2274 rbd_obj_request_put(obj_request);
2275 out_err:
2276 if (pages)
2277 ceph_release_page_vector(pages, page_count);
2278 if (parent_request)
2279 rbd_img_request_put(parent_request);
2280 obj_request->result = result;
2281 obj_request->xferred = 0;
2282 obj_request_done_set(obj_request);
2283
2284 return result;
2285 }
2286
2287 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2288 {
2289 struct rbd_obj_request *orig_request;
2290 int result;
2291
2292 rbd_assert(!obj_request_img_data_test(obj_request));
2293
2294 /*
2295 * All we need from the object request is the original
2296 * request and the result of the STAT op. Grab those, then
2297 * we're done with the request.
2298 */
2299 orig_request = obj_request->obj_request;
2300 obj_request->obj_request = NULL;
2301 rbd_assert(orig_request);
2302 rbd_assert(orig_request->img_request);
2303
2304 result = obj_request->result;
2305 obj_request->result = 0;
2306
2307 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2308 obj_request, orig_request, result,
2309 obj_request->xferred, obj_request->length);
2310 rbd_obj_request_put(obj_request);
2311
2312 rbd_assert(orig_request);
2313 rbd_assert(orig_request->img_request);
2314
2315 /*
2316 * Our only purpose here is to determine whether the object
2317 * exists, and we don't want to treat the non-existence as
2318 * an error. If something else comes back, transfer the
2319 * error to the original request and complete it now.
2320 */
2321 if (!result) {
2322 obj_request_existence_set(orig_request, true);
2323 } else if (result == -ENOENT) {
2324 obj_request_existence_set(orig_request, false);
2325 } else if (result) {
2326 orig_request->result = result;
2327 goto out;
2328 }
2329
2330 /*
2331 * Resubmit the original request now that we have recorded
2332 * whether the target object exists.
2333 */
2334 orig_request->result = rbd_img_obj_request_submit(orig_request);
2335 out:
2336 if (orig_request->result)
2337 rbd_obj_request_complete(orig_request);
2338 rbd_obj_request_put(orig_request);
2339 }
2340
2341 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2342 {
2343 struct rbd_obj_request *stat_request;
2344 struct rbd_device *rbd_dev;
2345 struct ceph_osd_client *osdc;
2346 struct page **pages = NULL;
2347 u32 page_count;
2348 size_t size;
2349 int ret;
2350
2351 /*
2352 * The response data for a STAT call consists of:
2353 * le64 length;
2354 * struct {
2355 * le32 tv_sec;
2356 * le32 tv_nsec;
2357 * } mtime;
2358 */
2359 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2360 page_count = (u32)calc_pages_for(0, size);
2361 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2362 if (IS_ERR(pages))
2363 return PTR_ERR(pages);
2364
2365 ret = -ENOMEM;
2366 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2367 OBJ_REQUEST_PAGES);
2368 if (!stat_request)
2369 goto out;
2370
2371 rbd_obj_request_get(obj_request);
2372 stat_request->obj_request = obj_request;
2373 stat_request->pages = pages;
2374 stat_request->page_count = page_count;
2375
2376 rbd_assert(obj_request->img_request);
2377 rbd_dev = obj_request->img_request->rbd_dev;
2378 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2379 stat_request);
2380 if (!stat_request->osd_req)
2381 goto out;
2382 stat_request->callback = rbd_img_obj_exists_callback;
2383
2384 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2385 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2386 false, false);
2387 rbd_osd_req_format_read(stat_request);
2388
2389 osdc = &rbd_dev->rbd_client->client->osdc;
2390 ret = rbd_obj_request_submit(osdc, stat_request);
2391 out:
2392 if (ret)
2393 rbd_obj_request_put(obj_request);
2394
2395 return ret;
2396 }
2397
2398 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2399 {
2400 struct rbd_img_request *img_request;
2401 struct rbd_device *rbd_dev;
2402 bool known;
2403
2404 rbd_assert(obj_request_img_data_test(obj_request));
2405
2406 img_request = obj_request->img_request;
2407 rbd_assert(img_request);
2408 rbd_dev = img_request->rbd_dev;
2409
2410 /*
2411 * Only writes to layered images need special handling.
2412 * Reads and non-layered writes are simple object requests.
2413 * Layered writes that start beyond the end of the overlap
2414 * with the parent have no parent data, so they too are
2415 * simple object requests. Finally, if the target object is
2416 * known to already exist, its parent data has already been
2417 * copied, so a write to the object can also be handled as a
2418 * simple object request.
2419 */
2420 if (!img_request_write_test(img_request) ||
2421 !img_request_layered_test(img_request) ||
2422 rbd_dev->parent_overlap <= obj_request->img_offset ||
2423 ((known = obj_request_known_test(obj_request)) &&
2424 obj_request_exists_test(obj_request))) {
2425
2426 struct rbd_device *rbd_dev;
2427 struct ceph_osd_client *osdc;
2428
2429 rbd_dev = obj_request->img_request->rbd_dev;
2430 osdc = &rbd_dev->rbd_client->client->osdc;
2431
2432 return rbd_obj_request_submit(osdc, obj_request);
2433 }
2434
2435 /*
2436 * It's a layered write. The target object might exist but
2437 * we may not know that yet. If we know it doesn't exist,
2438 * start by reading the data for the full target object from
2439 * the parent so we can use it for a copyup to the target.
2440 */
2441 if (known)
2442 return rbd_img_obj_parent_read_full(obj_request);
2443
2444 /* We don't know whether the target exists. Go find out. */
2445
2446 return rbd_img_obj_exists_submit(obj_request);
2447 }
2448
2449 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2450 {
2451 struct rbd_obj_request *obj_request;
2452 struct rbd_obj_request *next_obj_request;
2453
2454 dout("%s: img %p\n", __func__, img_request);
2455 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2456 int ret;
2457
2458 ret = rbd_img_obj_request_submit(obj_request);
2459 if (ret)
2460 return ret;
2461 }
2462
2463 return 0;
2464 }
2465
2466 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2467 {
2468 struct rbd_obj_request *obj_request;
2469 struct rbd_device *rbd_dev;
2470 u64 obj_end;
2471
2472 rbd_assert(img_request_child_test(img_request));
2473
2474 obj_request = img_request->obj_request;
2475 rbd_assert(obj_request);
2476 rbd_assert(obj_request->img_request);
2477
2478 obj_request->result = img_request->result;
2479 if (obj_request->result)
2480 goto out;
2481
2482 /*
2483 * We need to zero anything beyond the parent overlap
2484 * boundary. Since rbd_img_obj_request_read_callback()
2485 * will zero anything beyond the end of a short read, an
2486 * easy way to do this is to pretend the data from the
2487 * parent came up short--ending at the overlap boundary.
2488 */
2489 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2490 obj_end = obj_request->img_offset + obj_request->length;
2491 rbd_dev = obj_request->img_request->rbd_dev;
2492 if (obj_end > rbd_dev->parent_overlap) {
2493 u64 xferred = 0;
2494
2495 if (obj_request->img_offset < rbd_dev->parent_overlap)
2496 xferred = rbd_dev->parent_overlap -
2497 obj_request->img_offset;
2498
2499 obj_request->xferred = min(img_request->xferred, xferred);
2500 } else {
2501 obj_request->xferred = img_request->xferred;
2502 }
2503 out:
2504 rbd_img_obj_request_read_callback(obj_request);
2505 rbd_obj_request_complete(obj_request);
2506 }
2507
2508 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2509 {
2510 struct rbd_device *rbd_dev;
2511 struct rbd_img_request *img_request;
2512 int result;
2513
2514 rbd_assert(obj_request_img_data_test(obj_request));
2515 rbd_assert(obj_request->img_request != NULL);
2516 rbd_assert(obj_request->result == (s32) -ENOENT);
2517 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2518
2519 rbd_dev = obj_request->img_request->rbd_dev;
2520 rbd_assert(rbd_dev->parent != NULL);
2521 /* rbd_read_finish(obj_request, obj_request->length); */
2522 img_request = rbd_img_request_create(rbd_dev->parent,
2523 obj_request->img_offset,
2524 obj_request->length,
2525 false, true);
2526 result = -ENOMEM;
2527 if (!img_request)
2528 goto out_err;
2529
2530 rbd_obj_request_get(obj_request);
2531 img_request->obj_request = obj_request;
2532
2533 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2534 obj_request->bio_list);
2535 if (result)
2536 goto out_err;
2537
2538 img_request->callback = rbd_img_parent_read_callback;
2539 result = rbd_img_request_submit(img_request);
2540 if (result)
2541 goto out_err;
2542
2543 return;
2544 out_err:
2545 if (img_request)
2546 rbd_img_request_put(img_request);
2547 obj_request->result = result;
2548 obj_request->xferred = 0;
2549 obj_request_done_set(obj_request);
2550 }
2551
2552 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2553 {
2554 struct rbd_obj_request *obj_request;
2555 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2556 int ret;
2557
2558 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2559 OBJ_REQUEST_NODATA);
2560 if (!obj_request)
2561 return -ENOMEM;
2562
2563 ret = -ENOMEM;
2564 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2565 if (!obj_request->osd_req)
2566 goto out;
2567 obj_request->callback = rbd_obj_request_put;
2568
2569 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2570 notify_id, 0, 0);
2571 rbd_osd_req_format_read(obj_request);
2572
2573 ret = rbd_obj_request_submit(osdc, obj_request);
2574 out:
2575 if (ret)
2576 rbd_obj_request_put(obj_request);
2577
2578 return ret;
2579 }
2580
2581 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2582 {
2583 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2584
2585 if (!rbd_dev)
2586 return;
2587
2588 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2589 rbd_dev->header_name, (unsigned long long)notify_id,
2590 (unsigned int)opcode);
2591 (void)rbd_dev_refresh(rbd_dev);
2592
2593 rbd_obj_notify_ack(rbd_dev, notify_id);
2594 }
2595
2596 /*
2597 * Request sync osd watch/unwatch. The value of "start" determines
2598 * whether a watch request is being initiated or torn down.
2599 */
2600 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2601 {
2602 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2603 struct rbd_obj_request *obj_request;
2604 int ret;
2605
2606 rbd_assert(start ^ !!rbd_dev->watch_event);
2607 rbd_assert(start ^ !!rbd_dev->watch_request);
2608
2609 if (start) {
2610 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2611 &rbd_dev->watch_event);
2612 if (ret < 0)
2613 return ret;
2614 rbd_assert(rbd_dev->watch_event != NULL);
2615 }
2616
2617 ret = -ENOMEM;
2618 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2619 OBJ_REQUEST_NODATA);
2620 if (!obj_request)
2621 goto out_cancel;
2622
2623 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2624 if (!obj_request->osd_req)
2625 goto out_cancel;
2626
2627 if (start)
2628 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2629 else
2630 ceph_osdc_unregister_linger_request(osdc,
2631 rbd_dev->watch_request->osd_req);
2632
2633 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2634 rbd_dev->watch_event->cookie, 0, start);
2635 rbd_osd_req_format_write(obj_request);
2636
2637 ret = rbd_obj_request_submit(osdc, obj_request);
2638 if (ret)
2639 goto out_cancel;
2640 ret = rbd_obj_request_wait(obj_request);
2641 if (ret)
2642 goto out_cancel;
2643 ret = obj_request->result;
2644 if (ret)
2645 goto out_cancel;
2646
2647 /*
2648 * A watch request is set to linger, so the underlying osd
2649 * request won't go away until we unregister it. We retain
2650 * a pointer to the object request during that time (in
2651 * rbd_dev->watch_request), so we'll keep a reference to
2652 * it. We'll drop that reference (below) after we've
2653 * unregistered it.
2654 */
2655 if (start) {
2656 rbd_dev->watch_request = obj_request;
2657
2658 return 0;
2659 }
2660
2661 /* We have successfully torn down the watch request */
2662
2663 rbd_obj_request_put(rbd_dev->watch_request);
2664 rbd_dev->watch_request = NULL;
2665 out_cancel:
2666 /* Cancel the event if we're tearing down, or on error */
2667 ceph_osdc_cancel_event(rbd_dev->watch_event);
2668 rbd_dev->watch_event = NULL;
2669 if (obj_request)
2670 rbd_obj_request_put(obj_request);
2671
2672 return ret;
2673 }
2674
2675 /*
2676 * Synchronous osd object method call. Returns the number of bytes
2677 * returned in the outbound buffer, or a negative error code.
2678 */
2679 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2680 const char *object_name,
2681 const char *class_name,
2682 const char *method_name,
2683 const void *outbound,
2684 size_t outbound_size,
2685 void *inbound,
2686 size_t inbound_size)
2687 {
2688 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2689 struct rbd_obj_request *obj_request;
2690 struct page **pages;
2691 u32 page_count;
2692 int ret;
2693
2694 /*
2695 * Method calls are ultimately read operations. The result
2696 * should placed into the inbound buffer provided. They
2697 * also supply outbound data--parameters for the object
2698 * method. Currently if this is present it will be a
2699 * snapshot id.
2700 */
2701 page_count = (u32)calc_pages_for(0, inbound_size);
2702 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2703 if (IS_ERR(pages))
2704 return PTR_ERR(pages);
2705
2706 ret = -ENOMEM;
2707 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2708 OBJ_REQUEST_PAGES);
2709 if (!obj_request)
2710 goto out;
2711
2712 obj_request->pages = pages;
2713 obj_request->page_count = page_count;
2714
2715 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2716 if (!obj_request->osd_req)
2717 goto out;
2718
2719 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2720 class_name, method_name);
2721 if (outbound_size) {
2722 struct ceph_pagelist *pagelist;
2723
2724 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2725 if (!pagelist)
2726 goto out;
2727
2728 ceph_pagelist_init(pagelist);
2729 ceph_pagelist_append(pagelist, outbound, outbound_size);
2730 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2731 pagelist);
2732 }
2733 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2734 obj_request->pages, inbound_size,
2735 0, false, false);
2736 rbd_osd_req_format_read(obj_request);
2737
2738 ret = rbd_obj_request_submit(osdc, obj_request);
2739 if (ret)
2740 goto out;
2741 ret = rbd_obj_request_wait(obj_request);
2742 if (ret)
2743 goto out;
2744
2745 ret = obj_request->result;
2746 if (ret < 0)
2747 goto out;
2748
2749 rbd_assert(obj_request->xferred < (u64)INT_MAX);
2750 ret = (int)obj_request->xferred;
2751 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2752 out:
2753 if (obj_request)
2754 rbd_obj_request_put(obj_request);
2755 else
2756 ceph_release_page_vector(pages, page_count);
2757
2758 return ret;
2759 }
2760
2761 static void rbd_request_fn(struct request_queue *q)
2762 __releases(q->queue_lock) __acquires(q->queue_lock)
2763 {
2764 struct rbd_device *rbd_dev = q->queuedata;
2765 bool read_only = rbd_dev->mapping.read_only;
2766 struct request *rq;
2767 int result;
2768
2769 while ((rq = blk_fetch_request(q))) {
2770 bool write_request = rq_data_dir(rq) == WRITE;
2771 struct rbd_img_request *img_request;
2772 u64 offset;
2773 u64 length;
2774
2775 /* Ignore any non-FS requests that filter through. */
2776
2777 if (rq->cmd_type != REQ_TYPE_FS) {
2778 dout("%s: non-fs request type %d\n", __func__,
2779 (int) rq->cmd_type);
2780 __blk_end_request_all(rq, 0);
2781 continue;
2782 }
2783
2784 /* Ignore/skip any zero-length requests */
2785
2786 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2787 length = (u64) blk_rq_bytes(rq);
2788
2789 if (!length) {
2790 dout("%s: zero-length request\n", __func__);
2791 __blk_end_request_all(rq, 0);
2792 continue;
2793 }
2794
2795 spin_unlock_irq(q->queue_lock);
2796
2797 /* Disallow writes to a read-only device */
2798
2799 if (write_request) {
2800 result = -EROFS;
2801 if (read_only)
2802 goto end_request;
2803 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2804 }
2805
2806 /*
2807 * Quit early if the mapped snapshot no longer
2808 * exists. It's still possible the snapshot will
2809 * have disappeared by the time our request arrives
2810 * at the osd, but there's no sense in sending it if
2811 * we already know.
2812 */
2813 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2814 dout("request for non-existent snapshot");
2815 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2816 result = -ENXIO;
2817 goto end_request;
2818 }
2819
2820 result = -EINVAL;
2821 if (offset && length > U64_MAX - offset + 1) {
2822 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2823 offset, length);
2824 goto end_request; /* Shouldn't happen */
2825 }
2826
2827 result = -ENOMEM;
2828 img_request = rbd_img_request_create(rbd_dev, offset, length,
2829 write_request, false);
2830 if (!img_request)
2831 goto end_request;
2832
2833 img_request->rq = rq;
2834
2835 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2836 rq->bio);
2837 if (!result)
2838 result = rbd_img_request_submit(img_request);
2839 if (result)
2840 rbd_img_request_put(img_request);
2841 end_request:
2842 spin_lock_irq(q->queue_lock);
2843 if (result < 0) {
2844 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2845 write_request ? "write" : "read",
2846 length, offset, result);
2847
2848 __blk_end_request_all(rq, result);
2849 }
2850 }
2851 }
2852
2853 /*
2854 * a queue callback. Makes sure that we don't create a bio that spans across
2855 * multiple osd objects. One exception would be with a single page bios,
2856 * which we handle later at bio_chain_clone_range()
2857 */
2858 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2859 struct bio_vec *bvec)
2860 {
2861 struct rbd_device *rbd_dev = q->queuedata;
2862 sector_t sector_offset;
2863 sector_t sectors_per_obj;
2864 sector_t obj_sector_offset;
2865 int ret;
2866
2867 /*
2868 * Find how far into its rbd object the partition-relative
2869 * bio start sector is to offset relative to the enclosing
2870 * device.
2871 */
2872 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2873 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2874 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2875
2876 /*
2877 * Compute the number of bytes from that offset to the end
2878 * of the object. Account for what's already used by the bio.
2879 */
2880 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2881 if (ret > bmd->bi_size)
2882 ret -= bmd->bi_size;
2883 else
2884 ret = 0;
2885
2886 /*
2887 * Don't send back more than was asked for. And if the bio
2888 * was empty, let the whole thing through because: "Note
2889 * that a block device *must* allow a single page to be
2890 * added to an empty bio."
2891 */
2892 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2893 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2894 ret = (int) bvec->bv_len;
2895
2896 return ret;
2897 }
2898
2899 static void rbd_free_disk(struct rbd_device *rbd_dev)
2900 {
2901 struct gendisk *disk = rbd_dev->disk;
2902
2903 if (!disk)
2904 return;
2905
2906 rbd_dev->disk = NULL;
2907 if (disk->flags & GENHD_FL_UP) {
2908 del_gendisk(disk);
2909 if (disk->queue)
2910 blk_cleanup_queue(disk->queue);
2911 }
2912 put_disk(disk);
2913 }
2914
2915 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2916 const char *object_name,
2917 u64 offset, u64 length, void *buf)
2918
2919 {
2920 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2921 struct rbd_obj_request *obj_request;
2922 struct page **pages = NULL;
2923 u32 page_count;
2924 size_t size;
2925 int ret;
2926
2927 page_count = (u32) calc_pages_for(offset, length);
2928 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2929 if (IS_ERR(pages))
2930 ret = PTR_ERR(pages);
2931
2932 ret = -ENOMEM;
2933 obj_request = rbd_obj_request_create(object_name, offset, length,
2934 OBJ_REQUEST_PAGES);
2935 if (!obj_request)
2936 goto out;
2937
2938 obj_request->pages = pages;
2939 obj_request->page_count = page_count;
2940
2941 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2942 if (!obj_request->osd_req)
2943 goto out;
2944
2945 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2946 offset, length, 0, 0);
2947 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2948 obj_request->pages,
2949 obj_request->length,
2950 obj_request->offset & ~PAGE_MASK,
2951 false, false);
2952 rbd_osd_req_format_read(obj_request);
2953
2954 ret = rbd_obj_request_submit(osdc, obj_request);
2955 if (ret)
2956 goto out;
2957 ret = rbd_obj_request_wait(obj_request);
2958 if (ret)
2959 goto out;
2960
2961 ret = obj_request->result;
2962 if (ret < 0)
2963 goto out;
2964
2965 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2966 size = (size_t) obj_request->xferred;
2967 ceph_copy_from_page_vector(pages, buf, 0, size);
2968 rbd_assert(size <= (size_t)INT_MAX);
2969 ret = (int)size;
2970 out:
2971 if (obj_request)
2972 rbd_obj_request_put(obj_request);
2973 else
2974 ceph_release_page_vector(pages, page_count);
2975
2976 return ret;
2977 }
2978
2979 /*
2980 * Read the complete header for the given rbd device.
2981 *
2982 * Returns a pointer to a dynamically-allocated buffer containing
2983 * the complete and validated header. Caller can pass the address
2984 * of a variable that will be filled in with the version of the
2985 * header object at the time it was read.
2986 *
2987 * Returns a pointer-coded errno if a failure occurs.
2988 */
2989 static struct rbd_image_header_ondisk *
2990 rbd_dev_v1_header_read(struct rbd_device *rbd_dev)
2991 {
2992 struct rbd_image_header_ondisk *ondisk = NULL;
2993 u32 snap_count = 0;
2994 u64 names_size = 0;
2995 u32 want_count;
2996 int ret;
2997
2998 /*
2999 * The complete header will include an array of its 64-bit
3000 * snapshot ids, followed by the names of those snapshots as
3001 * a contiguous block of NUL-terminated strings. Note that
3002 * the number of snapshots could change by the time we read
3003 * it in, in which case we re-read it.
3004 */
3005 do {
3006 size_t size;
3007
3008 kfree(ondisk);
3009
3010 size = sizeof (*ondisk);
3011 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3012 size += names_size;
3013 ondisk = kmalloc(size, GFP_KERNEL);
3014 if (!ondisk)
3015 return ERR_PTR(-ENOMEM);
3016
3017 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3018 0, size, ondisk);
3019 if (ret < 0)
3020 goto out_err;
3021 if ((size_t)ret < size) {
3022 ret = -ENXIO;
3023 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3024 size, ret);
3025 goto out_err;
3026 }
3027 if (!rbd_dev_ondisk_valid(ondisk)) {
3028 ret = -ENXIO;
3029 rbd_warn(rbd_dev, "invalid header");
3030 goto out_err;
3031 }
3032
3033 names_size = le64_to_cpu(ondisk->snap_names_len);
3034 want_count = snap_count;
3035 snap_count = le32_to_cpu(ondisk->snap_count);
3036 } while (snap_count != want_count);
3037
3038 return ondisk;
3039
3040 out_err:
3041 kfree(ondisk);
3042
3043 return ERR_PTR(ret);
3044 }
3045
3046 /*
3047 * reload the ondisk the header
3048 */
3049 static int rbd_read_header(struct rbd_device *rbd_dev,
3050 struct rbd_image_header *header)
3051 {
3052 struct rbd_image_header_ondisk *ondisk;
3053 int ret;
3054
3055 ondisk = rbd_dev_v1_header_read(rbd_dev);
3056 if (IS_ERR(ondisk))
3057 return PTR_ERR(ondisk);
3058 ret = rbd_header_from_disk(header, ondisk);
3059 kfree(ondisk);
3060
3061 return ret;
3062 }
3063
3064 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3065 {
3066 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3067 return;
3068
3069 if (rbd_dev->mapping.size != rbd_dev->header.image_size) {
3070 sector_t size;
3071
3072 rbd_dev->mapping.size = rbd_dev->header.image_size;
3073 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3074 dout("setting size to %llu sectors", (unsigned long long)size);
3075 set_capacity(rbd_dev->disk, size);
3076 }
3077 }
3078
3079 /*
3080 * only read the first part of the ondisk header, without the snaps info
3081 */
3082 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev)
3083 {
3084 int ret;
3085 struct rbd_image_header h;
3086
3087 ret = rbd_read_header(rbd_dev, &h);
3088 if (ret < 0)
3089 return ret;
3090
3091 down_write(&rbd_dev->header_rwsem);
3092
3093 /* Update image size, and check for resize of mapped image */
3094 rbd_dev->header.image_size = h.image_size;
3095 rbd_update_mapping_size(rbd_dev);
3096
3097 /* rbd_dev->header.object_prefix shouldn't change */
3098 kfree(rbd_dev->header.snap_sizes);
3099 kfree(rbd_dev->header.snap_names);
3100 /* osd requests may still refer to snapc */
3101 ceph_put_snap_context(rbd_dev->header.snapc);
3102
3103 rbd_dev->header.image_size = h.image_size;
3104 rbd_dev->header.snapc = h.snapc;
3105 rbd_dev->header.snap_names = h.snap_names;
3106 rbd_dev->header.snap_sizes = h.snap_sizes;
3107 /* Free the extra copy of the object prefix */
3108 if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3109 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3110 kfree(h.object_prefix);
3111
3112 up_write(&rbd_dev->header_rwsem);
3113
3114 return ret;
3115 }
3116
3117 /*
3118 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3119 * has disappeared from the (just updated) snapshot context.
3120 */
3121 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3122 {
3123 u64 snap_id;
3124
3125 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3126 return;
3127
3128 snap_id = rbd_dev->spec->snap_id;
3129 if (snap_id == CEPH_NOSNAP)
3130 return;
3131
3132 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3133 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3134 }
3135
3136 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3137 {
3138 u64 image_size;
3139 int ret;
3140
3141 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3142 image_size = rbd_dev->header.image_size;
3143 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3144 if (rbd_dev->image_format == 1)
3145 ret = rbd_dev_v1_refresh(rbd_dev);
3146 else
3147 ret = rbd_dev_v2_refresh(rbd_dev);
3148
3149 /* If it's a mapped snapshot, validate its EXISTS flag */
3150
3151 rbd_exists_validate(rbd_dev);
3152 mutex_unlock(&ctl_mutex);
3153 if (ret)
3154 rbd_warn(rbd_dev, "got notification but failed to "
3155 " update snaps: %d\n", ret);
3156 if (image_size != rbd_dev->header.image_size)
3157 revalidate_disk(rbd_dev->disk);
3158
3159 return ret;
3160 }
3161
3162 static int rbd_init_disk(struct rbd_device *rbd_dev)
3163 {
3164 struct gendisk *disk;
3165 struct request_queue *q;
3166 u64 segment_size;
3167
3168 /* create gendisk info */
3169 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3170 if (!disk)
3171 return -ENOMEM;
3172
3173 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3174 rbd_dev->dev_id);
3175 disk->major = rbd_dev->major;
3176 disk->first_minor = 0;
3177 disk->fops = &rbd_bd_ops;
3178 disk->private_data = rbd_dev;
3179
3180 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3181 if (!q)
3182 goto out_disk;
3183
3184 /* We use the default size, but let's be explicit about it. */
3185 blk_queue_physical_block_size(q, SECTOR_SIZE);
3186
3187 /* set io sizes to object size */
3188 segment_size = rbd_obj_bytes(&rbd_dev->header);
3189 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3190 blk_queue_max_segment_size(q, segment_size);
3191 blk_queue_io_min(q, segment_size);
3192 blk_queue_io_opt(q, segment_size);
3193
3194 blk_queue_merge_bvec(q, rbd_merge_bvec);
3195 disk->queue = q;
3196
3197 q->queuedata = rbd_dev;
3198
3199 rbd_dev->disk = disk;
3200
3201 return 0;
3202 out_disk:
3203 put_disk(disk);
3204
3205 return -ENOMEM;
3206 }
3207
3208 /*
3209 sysfs
3210 */
3211
3212 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3213 {
3214 return container_of(dev, struct rbd_device, dev);
3215 }
3216
3217 static ssize_t rbd_size_show(struct device *dev,
3218 struct device_attribute *attr, char *buf)
3219 {
3220 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3221
3222 return sprintf(buf, "%llu\n",
3223 (unsigned long long)rbd_dev->mapping.size);
3224 }
3225
3226 /*
3227 * Note this shows the features for whatever's mapped, which is not
3228 * necessarily the base image.
3229 */
3230 static ssize_t rbd_features_show(struct device *dev,
3231 struct device_attribute *attr, char *buf)
3232 {
3233 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3234
3235 return sprintf(buf, "0x%016llx\n",
3236 (unsigned long long)rbd_dev->mapping.features);
3237 }
3238
3239 static ssize_t rbd_major_show(struct device *dev,
3240 struct device_attribute *attr, char *buf)
3241 {
3242 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3243
3244 if (rbd_dev->major)
3245 return sprintf(buf, "%d\n", rbd_dev->major);
3246
3247 return sprintf(buf, "(none)\n");
3248
3249 }
3250
3251 static ssize_t rbd_client_id_show(struct device *dev,
3252 struct device_attribute *attr, char *buf)
3253 {
3254 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3255
3256 return sprintf(buf, "client%lld\n",
3257 ceph_client_id(rbd_dev->rbd_client->client));
3258 }
3259
3260 static ssize_t rbd_pool_show(struct device *dev,
3261 struct device_attribute *attr, char *buf)
3262 {
3263 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3264
3265 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3266 }
3267
3268 static ssize_t rbd_pool_id_show(struct device *dev,
3269 struct device_attribute *attr, char *buf)
3270 {
3271 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3272
3273 return sprintf(buf, "%llu\n",
3274 (unsigned long long) rbd_dev->spec->pool_id);
3275 }
3276
3277 static ssize_t rbd_name_show(struct device *dev,
3278 struct device_attribute *attr, char *buf)
3279 {
3280 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3281
3282 if (rbd_dev->spec->image_name)
3283 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3284
3285 return sprintf(buf, "(unknown)\n");
3286 }
3287
3288 static ssize_t rbd_image_id_show(struct device *dev,
3289 struct device_attribute *attr, char *buf)
3290 {
3291 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3292
3293 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3294 }
3295
3296 /*
3297 * Shows the name of the currently-mapped snapshot (or
3298 * RBD_SNAP_HEAD_NAME for the base image).
3299 */
3300 static ssize_t rbd_snap_show(struct device *dev,
3301 struct device_attribute *attr,
3302 char *buf)
3303 {
3304 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3305
3306 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3307 }
3308
3309 /*
3310 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3311 * for the parent image. If there is no parent, simply shows
3312 * "(no parent image)".
3313 */
3314 static ssize_t rbd_parent_show(struct device *dev,
3315 struct device_attribute *attr,
3316 char *buf)
3317 {
3318 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3319 struct rbd_spec *spec = rbd_dev->parent_spec;
3320 int count;
3321 char *bufp = buf;
3322
3323 if (!spec)
3324 return sprintf(buf, "(no parent image)\n");
3325
3326 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3327 (unsigned long long) spec->pool_id, spec->pool_name);
3328 if (count < 0)
3329 return count;
3330 bufp += count;
3331
3332 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3333 spec->image_name ? spec->image_name : "(unknown)");
3334 if (count < 0)
3335 return count;
3336 bufp += count;
3337
3338 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3339 (unsigned long long) spec->snap_id, spec->snap_name);
3340 if (count < 0)
3341 return count;
3342 bufp += count;
3343
3344 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3345 if (count < 0)
3346 return count;
3347 bufp += count;
3348
3349 return (ssize_t) (bufp - buf);
3350 }
3351
3352 static ssize_t rbd_image_refresh(struct device *dev,
3353 struct device_attribute *attr,
3354 const char *buf,
3355 size_t size)
3356 {
3357 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3358 int ret;
3359
3360 ret = rbd_dev_refresh(rbd_dev);
3361
3362 return ret < 0 ? ret : size;
3363 }
3364
3365 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3366 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3367 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3368 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3369 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3370 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3371 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3372 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3373 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3374 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3375 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3376
3377 static struct attribute *rbd_attrs[] = {
3378 &dev_attr_size.attr,
3379 &dev_attr_features.attr,
3380 &dev_attr_major.attr,
3381 &dev_attr_client_id.attr,
3382 &dev_attr_pool.attr,
3383 &dev_attr_pool_id.attr,
3384 &dev_attr_name.attr,
3385 &dev_attr_image_id.attr,
3386 &dev_attr_current_snap.attr,
3387 &dev_attr_parent.attr,
3388 &dev_attr_refresh.attr,
3389 NULL
3390 };
3391
3392 static struct attribute_group rbd_attr_group = {
3393 .attrs = rbd_attrs,
3394 };
3395
3396 static const struct attribute_group *rbd_attr_groups[] = {
3397 &rbd_attr_group,
3398 NULL
3399 };
3400
3401 static void rbd_sysfs_dev_release(struct device *dev)
3402 {
3403 }
3404
3405 static struct device_type rbd_device_type = {
3406 .name = "rbd",
3407 .groups = rbd_attr_groups,
3408 .release = rbd_sysfs_dev_release,
3409 };
3410
3411 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3412 {
3413 kref_get(&spec->kref);
3414
3415 return spec;
3416 }
3417
3418 static void rbd_spec_free(struct kref *kref);
3419 static void rbd_spec_put(struct rbd_spec *spec)
3420 {
3421 if (spec)
3422 kref_put(&spec->kref, rbd_spec_free);
3423 }
3424
3425 static struct rbd_spec *rbd_spec_alloc(void)
3426 {
3427 struct rbd_spec *spec;
3428
3429 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3430 if (!spec)
3431 return NULL;
3432 kref_init(&spec->kref);
3433
3434 return spec;
3435 }
3436
3437 static void rbd_spec_free(struct kref *kref)
3438 {
3439 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3440
3441 kfree(spec->pool_name);
3442 kfree(spec->image_id);
3443 kfree(spec->image_name);
3444 kfree(spec->snap_name);
3445 kfree(spec);
3446 }
3447
3448 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3449 struct rbd_spec *spec)
3450 {
3451 struct rbd_device *rbd_dev;
3452
3453 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3454 if (!rbd_dev)
3455 return NULL;
3456
3457 spin_lock_init(&rbd_dev->lock);
3458 rbd_dev->flags = 0;
3459 INIT_LIST_HEAD(&rbd_dev->node);
3460 init_rwsem(&rbd_dev->header_rwsem);
3461
3462 rbd_dev->spec = spec;
3463 rbd_dev->rbd_client = rbdc;
3464
3465 /* Initialize the layout used for all rbd requests */
3466
3467 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3468 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3469 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3470 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3471
3472 return rbd_dev;
3473 }
3474
3475 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3476 {
3477 rbd_put_client(rbd_dev->rbd_client);
3478 rbd_spec_put(rbd_dev->spec);
3479 kfree(rbd_dev);
3480 }
3481
3482 /*
3483 * Get the size and object order for an image snapshot, or if
3484 * snap_id is CEPH_NOSNAP, gets this information for the base
3485 * image.
3486 */
3487 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3488 u8 *order, u64 *snap_size)
3489 {
3490 __le64 snapid = cpu_to_le64(snap_id);
3491 int ret;
3492 struct {
3493 u8 order;
3494 __le64 size;
3495 } __attribute__ ((packed)) size_buf = { 0 };
3496
3497 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3498 "rbd", "get_size",
3499 &snapid, sizeof (snapid),
3500 &size_buf, sizeof (size_buf));
3501 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3502 if (ret < 0)
3503 return ret;
3504 if (ret < sizeof (size_buf))
3505 return -ERANGE;
3506
3507 if (order)
3508 *order = size_buf.order;
3509 *snap_size = le64_to_cpu(size_buf.size);
3510
3511 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3512 (unsigned long long)snap_id, (unsigned int)*order,
3513 (unsigned long long)*snap_size);
3514
3515 return 0;
3516 }
3517
3518 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3519 {
3520 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3521 &rbd_dev->header.obj_order,
3522 &rbd_dev->header.image_size);
3523 }
3524
3525 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3526 {
3527 void *reply_buf;
3528 int ret;
3529 void *p;
3530
3531 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3532 if (!reply_buf)
3533 return -ENOMEM;
3534
3535 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3536 "rbd", "get_object_prefix", NULL, 0,
3537 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3538 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3539 if (ret < 0)
3540 goto out;
3541
3542 p = reply_buf;
3543 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3544 p + ret, NULL, GFP_NOIO);
3545 ret = 0;
3546
3547 if (IS_ERR(rbd_dev->header.object_prefix)) {
3548 ret = PTR_ERR(rbd_dev->header.object_prefix);
3549 rbd_dev->header.object_prefix = NULL;
3550 } else {
3551 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3552 }
3553 out:
3554 kfree(reply_buf);
3555
3556 return ret;
3557 }
3558
3559 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3560 u64 *snap_features)
3561 {
3562 __le64 snapid = cpu_to_le64(snap_id);
3563 struct {
3564 __le64 features;
3565 __le64 incompat;
3566 } __attribute__ ((packed)) features_buf = { 0 };
3567 u64 incompat;
3568 int ret;
3569
3570 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3571 "rbd", "get_features",
3572 &snapid, sizeof (snapid),
3573 &features_buf, sizeof (features_buf));
3574 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3575 if (ret < 0)
3576 return ret;
3577 if (ret < sizeof (features_buf))
3578 return -ERANGE;
3579
3580 incompat = le64_to_cpu(features_buf.incompat);
3581 if (incompat & ~RBD_FEATURES_SUPPORTED)
3582 return -ENXIO;
3583
3584 *snap_features = le64_to_cpu(features_buf.features);
3585
3586 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3587 (unsigned long long)snap_id,
3588 (unsigned long long)*snap_features,
3589 (unsigned long long)le64_to_cpu(features_buf.incompat));
3590
3591 return 0;
3592 }
3593
3594 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3595 {
3596 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3597 &rbd_dev->header.features);
3598 }
3599
3600 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3601 {
3602 struct rbd_spec *parent_spec;
3603 size_t size;
3604 void *reply_buf = NULL;
3605 __le64 snapid;
3606 void *p;
3607 void *end;
3608 char *image_id;
3609 u64 overlap;
3610 int ret;
3611
3612 parent_spec = rbd_spec_alloc();
3613 if (!parent_spec)
3614 return -ENOMEM;
3615
3616 size = sizeof (__le64) + /* pool_id */
3617 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3618 sizeof (__le64) + /* snap_id */
3619 sizeof (__le64); /* overlap */
3620 reply_buf = kmalloc(size, GFP_KERNEL);
3621 if (!reply_buf) {
3622 ret = -ENOMEM;
3623 goto out_err;
3624 }
3625
3626 snapid = cpu_to_le64(CEPH_NOSNAP);
3627 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3628 "rbd", "get_parent",
3629 &snapid, sizeof (snapid),
3630 reply_buf, size);
3631 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3632 if (ret < 0)
3633 goto out_err;
3634
3635 p = reply_buf;
3636 end = reply_buf + ret;
3637 ret = -ERANGE;
3638 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3639 if (parent_spec->pool_id == CEPH_NOPOOL)
3640 goto out; /* No parent? No problem. */
3641
3642 /* The ceph file layout needs to fit pool id in 32 bits */
3643
3644 ret = -EIO;
3645 if (parent_spec->pool_id > (u64)U32_MAX) {
3646 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3647 (unsigned long long)parent_spec->pool_id, U32_MAX);
3648 goto out_err;
3649 }
3650
3651 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3652 if (IS_ERR(image_id)) {
3653 ret = PTR_ERR(image_id);
3654 goto out_err;
3655 }
3656 parent_spec->image_id = image_id;
3657 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3658 ceph_decode_64_safe(&p, end, overlap, out_err);
3659
3660 rbd_dev->parent_overlap = overlap;
3661 rbd_dev->parent_spec = parent_spec;
3662 parent_spec = NULL; /* rbd_dev now owns this */
3663 out:
3664 ret = 0;
3665 out_err:
3666 kfree(reply_buf);
3667 rbd_spec_put(parent_spec);
3668
3669 return ret;
3670 }
3671
3672 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3673 {
3674 struct {
3675 __le64 stripe_unit;
3676 __le64 stripe_count;
3677 } __attribute__ ((packed)) striping_info_buf = { 0 };
3678 size_t size = sizeof (striping_info_buf);
3679 void *p;
3680 u64 obj_size;
3681 u64 stripe_unit;
3682 u64 stripe_count;
3683 int ret;
3684
3685 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3686 "rbd", "get_stripe_unit_count", NULL, 0,
3687 (char *)&striping_info_buf, size);
3688 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3689 if (ret < 0)
3690 return ret;
3691 if (ret < size)
3692 return -ERANGE;
3693
3694 /*
3695 * We don't actually support the "fancy striping" feature
3696 * (STRIPINGV2) yet, but if the striping sizes are the
3697 * defaults the behavior is the same as before. So find
3698 * out, and only fail if the image has non-default values.
3699 */
3700 ret = -EINVAL;
3701 obj_size = (u64)1 << rbd_dev->header.obj_order;
3702 p = &striping_info_buf;
3703 stripe_unit = ceph_decode_64(&p);
3704 if (stripe_unit != obj_size) {
3705 rbd_warn(rbd_dev, "unsupported stripe unit "
3706 "(got %llu want %llu)",
3707 stripe_unit, obj_size);
3708 return -EINVAL;
3709 }
3710 stripe_count = ceph_decode_64(&p);
3711 if (stripe_count != 1) {
3712 rbd_warn(rbd_dev, "unsupported stripe count "
3713 "(got %llu want 1)", stripe_count);
3714 return -EINVAL;
3715 }
3716 rbd_dev->header.stripe_unit = stripe_unit;
3717 rbd_dev->header.stripe_count = stripe_count;
3718
3719 return 0;
3720 }
3721
3722 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3723 {
3724 size_t image_id_size;
3725 char *image_id;
3726 void *p;
3727 void *end;
3728 size_t size;
3729 void *reply_buf = NULL;
3730 size_t len = 0;
3731 char *image_name = NULL;
3732 int ret;
3733
3734 rbd_assert(!rbd_dev->spec->image_name);
3735
3736 len = strlen(rbd_dev->spec->image_id);
3737 image_id_size = sizeof (__le32) + len;
3738 image_id = kmalloc(image_id_size, GFP_KERNEL);
3739 if (!image_id)
3740 return NULL;
3741
3742 p = image_id;
3743 end = image_id + image_id_size;
3744 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3745
3746 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3747 reply_buf = kmalloc(size, GFP_KERNEL);
3748 if (!reply_buf)
3749 goto out;
3750
3751 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3752 "rbd", "dir_get_name",
3753 image_id, image_id_size,
3754 reply_buf, size);
3755 if (ret < 0)
3756 goto out;
3757 p = reply_buf;
3758 end = reply_buf + ret;
3759
3760 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3761 if (IS_ERR(image_name))
3762 image_name = NULL;
3763 else
3764 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3765 out:
3766 kfree(reply_buf);
3767 kfree(image_id);
3768
3769 return image_name;
3770 }
3771
3772 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3773 {
3774 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3775 const char *snap_name;
3776 u32 which = 0;
3777
3778 /* Skip over names until we find the one we are looking for */
3779
3780 snap_name = rbd_dev->header.snap_names;
3781 while (which < snapc->num_snaps) {
3782 if (!strcmp(name, snap_name))
3783 return snapc->snaps[which];
3784 snap_name += strlen(snap_name) + 1;
3785 which++;
3786 }
3787 return CEPH_NOSNAP;
3788 }
3789
3790 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3791 {
3792 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3793 u32 which;
3794 bool found = false;
3795 u64 snap_id;
3796
3797 for (which = 0; !found && which < snapc->num_snaps; which++) {
3798 const char *snap_name;
3799
3800 snap_id = snapc->snaps[which];
3801 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3802 if (IS_ERR(snap_name))
3803 break;
3804 found = !strcmp(name, snap_name);
3805 kfree(snap_name);
3806 }
3807 return found ? snap_id : CEPH_NOSNAP;
3808 }
3809
3810 /*
3811 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3812 * no snapshot by that name is found, or if an error occurs.
3813 */
3814 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3815 {
3816 if (rbd_dev->image_format == 1)
3817 return rbd_v1_snap_id_by_name(rbd_dev, name);
3818
3819 return rbd_v2_snap_id_by_name(rbd_dev, name);
3820 }
3821
3822 /*
3823 * When an rbd image has a parent image, it is identified by the
3824 * pool, image, and snapshot ids (not names). This function fills
3825 * in the names for those ids. (It's OK if we can't figure out the
3826 * name for an image id, but the pool and snapshot ids should always
3827 * exist and have names.) All names in an rbd spec are dynamically
3828 * allocated.
3829 *
3830 * When an image being mapped (not a parent) is probed, we have the
3831 * pool name and pool id, image name and image id, and the snapshot
3832 * name. The only thing we're missing is the snapshot id.
3833 */
3834 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3835 {
3836 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3837 struct rbd_spec *spec = rbd_dev->spec;
3838 const char *pool_name;
3839 const char *image_name;
3840 const char *snap_name;
3841 int ret;
3842
3843 /*
3844 * An image being mapped will have the pool name (etc.), but
3845 * we need to look up the snapshot id.
3846 */
3847 if (spec->pool_name) {
3848 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3849 u64 snap_id;
3850
3851 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3852 if (snap_id == CEPH_NOSNAP)
3853 return -ENOENT;
3854 spec->snap_id = snap_id;
3855 } else {
3856 spec->snap_id = CEPH_NOSNAP;
3857 }
3858
3859 return 0;
3860 }
3861
3862 /* Get the pool name; we have to make our own copy of this */
3863
3864 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3865 if (!pool_name) {
3866 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3867 return -EIO;
3868 }
3869 pool_name = kstrdup(pool_name, GFP_KERNEL);
3870 if (!pool_name)
3871 return -ENOMEM;
3872
3873 /* Fetch the image name; tolerate failure here */
3874
3875 image_name = rbd_dev_image_name(rbd_dev);
3876 if (!image_name)
3877 rbd_warn(rbd_dev, "unable to get image name");
3878
3879 /* Look up the snapshot name, and make a copy */
3880
3881 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3882 if (!snap_name) {
3883 ret = -ENOMEM;
3884 goto out_err;
3885 }
3886
3887 spec->pool_name = pool_name;
3888 spec->image_name = image_name;
3889 spec->snap_name = snap_name;
3890
3891 return 0;
3892 out_err:
3893 kfree(image_name);
3894 kfree(pool_name);
3895
3896 return ret;
3897 }
3898
3899 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3900 {
3901 size_t size;
3902 int ret;
3903 void *reply_buf;
3904 void *p;
3905 void *end;
3906 u64 seq;
3907 u32 snap_count;
3908 struct ceph_snap_context *snapc;
3909 u32 i;
3910
3911 /*
3912 * We'll need room for the seq value (maximum snapshot id),
3913 * snapshot count, and array of that many snapshot ids.
3914 * For now we have a fixed upper limit on the number we're
3915 * prepared to receive.
3916 */
3917 size = sizeof (__le64) + sizeof (__le32) +
3918 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3919 reply_buf = kzalloc(size, GFP_KERNEL);
3920 if (!reply_buf)
3921 return -ENOMEM;
3922
3923 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3924 "rbd", "get_snapcontext", NULL, 0,
3925 reply_buf, size);
3926 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3927 if (ret < 0)
3928 goto out;
3929
3930 p = reply_buf;
3931 end = reply_buf + ret;
3932 ret = -ERANGE;
3933 ceph_decode_64_safe(&p, end, seq, out);
3934 ceph_decode_32_safe(&p, end, snap_count, out);
3935
3936 /*
3937 * Make sure the reported number of snapshot ids wouldn't go
3938 * beyond the end of our buffer. But before checking that,
3939 * make sure the computed size of the snapshot context we
3940 * allocate is representable in a size_t.
3941 */
3942 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3943 / sizeof (u64)) {
3944 ret = -EINVAL;
3945 goto out;
3946 }
3947 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3948 goto out;
3949 ret = 0;
3950
3951 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3952 if (!snapc) {
3953 ret = -ENOMEM;
3954 goto out;
3955 }
3956 snapc->seq = seq;
3957 for (i = 0; i < snap_count; i++)
3958 snapc->snaps[i] = ceph_decode_64(&p);
3959
3960 rbd_dev->header.snapc = snapc;
3961
3962 dout(" snap context seq = %llu, snap_count = %u\n",
3963 (unsigned long long)seq, (unsigned int)snap_count);
3964 out:
3965 kfree(reply_buf);
3966
3967 return ret;
3968 }
3969
3970 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
3971 u64 snap_id)
3972 {
3973 size_t size;
3974 void *reply_buf;
3975 __le64 snapid;
3976 int ret;
3977 void *p;
3978 void *end;
3979 char *snap_name;
3980
3981 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3982 reply_buf = kmalloc(size, GFP_KERNEL);
3983 if (!reply_buf)
3984 return ERR_PTR(-ENOMEM);
3985
3986 snapid = cpu_to_le64(snap_id);
3987 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3988 "rbd", "get_snapshot_name",
3989 &snapid, sizeof (snapid),
3990 reply_buf, size);
3991 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3992 if (ret < 0) {
3993 snap_name = ERR_PTR(ret);
3994 goto out;
3995 }
3996
3997 p = reply_buf;
3998 end = reply_buf + ret;
3999 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4000 if (IS_ERR(snap_name))
4001 goto out;
4002
4003 dout(" snap_id 0x%016llx snap_name = %s\n",
4004 (unsigned long long)snap_id, snap_name);
4005 out:
4006 kfree(reply_buf);
4007
4008 return snap_name;
4009 }
4010
4011 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
4012 {
4013 int ret;
4014
4015 down_write(&rbd_dev->header_rwsem);
4016
4017 ret = rbd_dev_v2_image_size(rbd_dev);
4018 if (ret)
4019 goto out;
4020 rbd_update_mapping_size(rbd_dev);
4021
4022 ret = rbd_dev_v2_snap_context(rbd_dev);
4023 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4024 if (ret)
4025 goto out;
4026 out:
4027 up_write(&rbd_dev->header_rwsem);
4028
4029 return ret;
4030 }
4031
4032 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4033 {
4034 struct device *dev;
4035 int ret;
4036
4037 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4038
4039 dev = &rbd_dev->dev;
4040 dev->bus = &rbd_bus_type;
4041 dev->type = &rbd_device_type;
4042 dev->parent = &rbd_root_dev;
4043 dev->release = rbd_dev_device_release;
4044 dev_set_name(dev, "%d", rbd_dev->dev_id);
4045 ret = device_register(dev);
4046
4047 mutex_unlock(&ctl_mutex);
4048
4049 return ret;
4050 }
4051
4052 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4053 {
4054 device_unregister(&rbd_dev->dev);
4055 }
4056
4057 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4058
4059 /*
4060 * Get a unique rbd identifier for the given new rbd_dev, and add
4061 * the rbd_dev to the global list. The minimum rbd id is 1.
4062 */
4063 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4064 {
4065 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4066
4067 spin_lock(&rbd_dev_list_lock);
4068 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4069 spin_unlock(&rbd_dev_list_lock);
4070 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4071 (unsigned long long) rbd_dev->dev_id);
4072 }
4073
4074 /*
4075 * Remove an rbd_dev from the global list, and record that its
4076 * identifier is no longer in use.
4077 */
4078 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4079 {
4080 struct list_head *tmp;
4081 int rbd_id = rbd_dev->dev_id;
4082 int max_id;
4083
4084 rbd_assert(rbd_id > 0);
4085
4086 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4087 (unsigned long long) rbd_dev->dev_id);
4088 spin_lock(&rbd_dev_list_lock);
4089 list_del_init(&rbd_dev->node);
4090
4091 /*
4092 * If the id being "put" is not the current maximum, there
4093 * is nothing special we need to do.
4094 */
4095 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4096 spin_unlock(&rbd_dev_list_lock);
4097 return;
4098 }
4099
4100 /*
4101 * We need to update the current maximum id. Search the
4102 * list to find out what it is. We're more likely to find
4103 * the maximum at the end, so search the list backward.
4104 */
4105 max_id = 0;
4106 list_for_each_prev(tmp, &rbd_dev_list) {
4107 struct rbd_device *rbd_dev;
4108
4109 rbd_dev = list_entry(tmp, struct rbd_device, node);
4110 if (rbd_dev->dev_id > max_id)
4111 max_id = rbd_dev->dev_id;
4112 }
4113 spin_unlock(&rbd_dev_list_lock);
4114
4115 /*
4116 * The max id could have been updated by rbd_dev_id_get(), in
4117 * which case it now accurately reflects the new maximum.
4118 * Be careful not to overwrite the maximum value in that
4119 * case.
4120 */
4121 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4122 dout(" max dev id has been reset\n");
4123 }
4124
4125 /*
4126 * Skips over white space at *buf, and updates *buf to point to the
4127 * first found non-space character (if any). Returns the length of
4128 * the token (string of non-white space characters) found. Note
4129 * that *buf must be terminated with '\0'.
4130 */
4131 static inline size_t next_token(const char **buf)
4132 {
4133 /*
4134 * These are the characters that produce nonzero for
4135 * isspace() in the "C" and "POSIX" locales.
4136 */
4137 const char *spaces = " \f\n\r\t\v";
4138
4139 *buf += strspn(*buf, spaces); /* Find start of token */
4140
4141 return strcspn(*buf, spaces); /* Return token length */
4142 }
4143
4144 /*
4145 * Finds the next token in *buf, and if the provided token buffer is
4146 * big enough, copies the found token into it. The result, if
4147 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4148 * must be terminated with '\0' on entry.
4149 *
4150 * Returns the length of the token found (not including the '\0').
4151 * Return value will be 0 if no token is found, and it will be >=
4152 * token_size if the token would not fit.
4153 *
4154 * The *buf pointer will be updated to point beyond the end of the
4155 * found token. Note that this occurs even if the token buffer is
4156 * too small to hold it.
4157 */
4158 static inline size_t copy_token(const char **buf,
4159 char *token,
4160 size_t token_size)
4161 {
4162 size_t len;
4163
4164 len = next_token(buf);
4165 if (len < token_size) {
4166 memcpy(token, *buf, len);
4167 *(token + len) = '\0';
4168 }
4169 *buf += len;
4170
4171 return len;
4172 }
4173
4174 /*
4175 * Finds the next token in *buf, dynamically allocates a buffer big
4176 * enough to hold a copy of it, and copies the token into the new
4177 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4178 * that a duplicate buffer is created even for a zero-length token.
4179 *
4180 * Returns a pointer to the newly-allocated duplicate, or a null
4181 * pointer if memory for the duplicate was not available. If
4182 * the lenp argument is a non-null pointer, the length of the token
4183 * (not including the '\0') is returned in *lenp.
4184 *
4185 * If successful, the *buf pointer will be updated to point beyond
4186 * the end of the found token.
4187 *
4188 * Note: uses GFP_KERNEL for allocation.
4189 */
4190 static inline char *dup_token(const char **buf, size_t *lenp)
4191 {
4192 char *dup;
4193 size_t len;
4194
4195 len = next_token(buf);
4196 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4197 if (!dup)
4198 return NULL;
4199 *(dup + len) = '\0';
4200 *buf += len;
4201
4202 if (lenp)
4203 *lenp = len;
4204
4205 return dup;
4206 }
4207
4208 /*
4209 * Parse the options provided for an "rbd add" (i.e., rbd image
4210 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4211 * and the data written is passed here via a NUL-terminated buffer.
4212 * Returns 0 if successful or an error code otherwise.
4213 *
4214 * The information extracted from these options is recorded in
4215 * the other parameters which return dynamically-allocated
4216 * structures:
4217 * ceph_opts
4218 * The address of a pointer that will refer to a ceph options
4219 * structure. Caller must release the returned pointer using
4220 * ceph_destroy_options() when it is no longer needed.
4221 * rbd_opts
4222 * Address of an rbd options pointer. Fully initialized by
4223 * this function; caller must release with kfree().
4224 * spec
4225 * Address of an rbd image specification pointer. Fully
4226 * initialized by this function based on parsed options.
4227 * Caller must release with rbd_spec_put().
4228 *
4229 * The options passed take this form:
4230 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4231 * where:
4232 * <mon_addrs>
4233 * A comma-separated list of one or more monitor addresses.
4234 * A monitor address is an ip address, optionally followed
4235 * by a port number (separated by a colon).
4236 * I.e.: ip1[:port1][,ip2[:port2]...]
4237 * <options>
4238 * A comma-separated list of ceph and/or rbd options.
4239 * <pool_name>
4240 * The name of the rados pool containing the rbd image.
4241 * <image_name>
4242 * The name of the image in that pool to map.
4243 * <snap_id>
4244 * An optional snapshot id. If provided, the mapping will
4245 * present data from the image at the time that snapshot was
4246 * created. The image head is used if no snapshot id is
4247 * provided. Snapshot mappings are always read-only.
4248 */
4249 static int rbd_add_parse_args(const char *buf,
4250 struct ceph_options **ceph_opts,
4251 struct rbd_options **opts,
4252 struct rbd_spec **rbd_spec)
4253 {
4254 size_t len;
4255 char *options;
4256 const char *mon_addrs;
4257 char *snap_name;
4258 size_t mon_addrs_size;
4259 struct rbd_spec *spec = NULL;
4260 struct rbd_options *rbd_opts = NULL;
4261 struct ceph_options *copts;
4262 int ret;
4263
4264 /* The first four tokens are required */
4265
4266 len = next_token(&buf);
4267 if (!len) {
4268 rbd_warn(NULL, "no monitor address(es) provided");
4269 return -EINVAL;
4270 }
4271 mon_addrs = buf;
4272 mon_addrs_size = len + 1;
4273 buf += len;
4274
4275 ret = -EINVAL;
4276 options = dup_token(&buf, NULL);
4277 if (!options)
4278 return -ENOMEM;
4279 if (!*options) {
4280 rbd_warn(NULL, "no options provided");
4281 goto out_err;
4282 }
4283
4284 spec = rbd_spec_alloc();
4285 if (!spec)
4286 goto out_mem;
4287
4288 spec->pool_name = dup_token(&buf, NULL);
4289 if (!spec->pool_name)
4290 goto out_mem;
4291 if (!*spec->pool_name) {
4292 rbd_warn(NULL, "no pool name provided");
4293 goto out_err;
4294 }
4295
4296 spec->image_name = dup_token(&buf, NULL);
4297 if (!spec->image_name)
4298 goto out_mem;
4299 if (!*spec->image_name) {
4300 rbd_warn(NULL, "no image name provided");
4301 goto out_err;
4302 }
4303
4304 /*
4305 * Snapshot name is optional; default is to use "-"
4306 * (indicating the head/no snapshot).
4307 */
4308 len = next_token(&buf);
4309 if (!len) {
4310 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4311 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4312 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4313 ret = -ENAMETOOLONG;
4314 goto out_err;
4315 }
4316 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4317 if (!snap_name)
4318 goto out_mem;
4319 *(snap_name + len) = '\0';
4320 spec->snap_name = snap_name;
4321
4322 /* Initialize all rbd options to the defaults */
4323
4324 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4325 if (!rbd_opts)
4326 goto out_mem;
4327
4328 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4329
4330 copts = ceph_parse_options(options, mon_addrs,
4331 mon_addrs + mon_addrs_size - 1,
4332 parse_rbd_opts_token, rbd_opts);
4333 if (IS_ERR(copts)) {
4334 ret = PTR_ERR(copts);
4335 goto out_err;
4336 }
4337 kfree(options);
4338
4339 *ceph_opts = copts;
4340 *opts = rbd_opts;
4341 *rbd_spec = spec;
4342
4343 return 0;
4344 out_mem:
4345 ret = -ENOMEM;
4346 out_err:
4347 kfree(rbd_opts);
4348 rbd_spec_put(spec);
4349 kfree(options);
4350
4351 return ret;
4352 }
4353
4354 /*
4355 * An rbd format 2 image has a unique identifier, distinct from the
4356 * name given to it by the user. Internally, that identifier is
4357 * what's used to specify the names of objects related to the image.
4358 *
4359 * A special "rbd id" object is used to map an rbd image name to its
4360 * id. If that object doesn't exist, then there is no v2 rbd image
4361 * with the supplied name.
4362 *
4363 * This function will record the given rbd_dev's image_id field if
4364 * it can be determined, and in that case will return 0. If any
4365 * errors occur a negative errno will be returned and the rbd_dev's
4366 * image_id field will be unchanged (and should be NULL).
4367 */
4368 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4369 {
4370 int ret;
4371 size_t size;
4372 char *object_name;
4373 void *response;
4374 char *image_id;
4375
4376 /*
4377 * When probing a parent image, the image id is already
4378 * known (and the image name likely is not). There's no
4379 * need to fetch the image id again in this case. We
4380 * do still need to set the image format though.
4381 */
4382 if (rbd_dev->spec->image_id) {
4383 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4384
4385 return 0;
4386 }
4387
4388 /*
4389 * First, see if the format 2 image id file exists, and if
4390 * so, get the image's persistent id from it.
4391 */
4392 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4393 object_name = kmalloc(size, GFP_NOIO);
4394 if (!object_name)
4395 return -ENOMEM;
4396 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4397 dout("rbd id object name is %s\n", object_name);
4398
4399 /* Response will be an encoded string, which includes a length */
4400
4401 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4402 response = kzalloc(size, GFP_NOIO);
4403 if (!response) {
4404 ret = -ENOMEM;
4405 goto out;
4406 }
4407
4408 /* If it doesn't exist we'll assume it's a format 1 image */
4409
4410 ret = rbd_obj_method_sync(rbd_dev, object_name,
4411 "rbd", "get_id", NULL, 0,
4412 response, RBD_IMAGE_ID_LEN_MAX);
4413 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4414 if (ret == -ENOENT) {
4415 image_id = kstrdup("", GFP_KERNEL);
4416 ret = image_id ? 0 : -ENOMEM;
4417 if (!ret)
4418 rbd_dev->image_format = 1;
4419 } else if (ret > sizeof (__le32)) {
4420 void *p = response;
4421
4422 image_id = ceph_extract_encoded_string(&p, p + ret,
4423 NULL, GFP_NOIO);
4424 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4425 if (!ret)
4426 rbd_dev->image_format = 2;
4427 } else {
4428 ret = -EINVAL;
4429 }
4430
4431 if (!ret) {
4432 rbd_dev->spec->image_id = image_id;
4433 dout("image_id is %s\n", image_id);
4434 }
4435 out:
4436 kfree(response);
4437 kfree(object_name);
4438
4439 return ret;
4440 }
4441
4442 /* Undo whatever state changes are made by v1 or v2 image probe */
4443
4444 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4445 {
4446 struct rbd_image_header *header;
4447
4448 rbd_dev_remove_parent(rbd_dev);
4449 rbd_spec_put(rbd_dev->parent_spec);
4450 rbd_dev->parent_spec = NULL;
4451 rbd_dev->parent_overlap = 0;
4452
4453 /* Free dynamic fields from the header, then zero it out */
4454
4455 header = &rbd_dev->header;
4456 ceph_put_snap_context(header->snapc);
4457 kfree(header->snap_sizes);
4458 kfree(header->snap_names);
4459 kfree(header->object_prefix);
4460 memset(header, 0, sizeof (*header));
4461 }
4462
4463 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4464 {
4465 int ret;
4466
4467 /* Populate rbd image metadata */
4468
4469 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4470 if (ret < 0)
4471 goto out_err;
4472
4473 /* Version 1 images have no parent (no layering) */
4474
4475 rbd_dev->parent_spec = NULL;
4476 rbd_dev->parent_overlap = 0;
4477
4478 dout("discovered version 1 image, header name is %s\n",
4479 rbd_dev->header_name);
4480
4481 return 0;
4482
4483 out_err:
4484 kfree(rbd_dev->header_name);
4485 rbd_dev->header_name = NULL;
4486 kfree(rbd_dev->spec->image_id);
4487 rbd_dev->spec->image_id = NULL;
4488
4489 return ret;
4490 }
4491
4492 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4493 {
4494 int ret;
4495
4496 ret = rbd_dev_v2_image_size(rbd_dev);
4497 if (ret)
4498 goto out_err;
4499
4500 /* Get the object prefix (a.k.a. block_name) for the image */
4501
4502 ret = rbd_dev_v2_object_prefix(rbd_dev);
4503 if (ret)
4504 goto out_err;
4505
4506 /* Get the and check features for the image */
4507
4508 ret = rbd_dev_v2_features(rbd_dev);
4509 if (ret)
4510 goto out_err;
4511
4512 /* If the image supports layering, get the parent info */
4513
4514 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4515 ret = rbd_dev_v2_parent_info(rbd_dev);
4516 if (ret)
4517 goto out_err;
4518
4519 /*
4520 * Don't print a warning for parent images. We can
4521 * tell this point because we won't know its pool
4522 * name yet (just its pool id).
4523 */
4524 if (rbd_dev->spec->pool_name)
4525 rbd_warn(rbd_dev, "WARNING: kernel layering "
4526 "is EXPERIMENTAL!");
4527 }
4528
4529 /* If the image supports fancy striping, get its parameters */
4530
4531 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4532 ret = rbd_dev_v2_striping_info(rbd_dev);
4533 if (ret < 0)
4534 goto out_err;
4535 }
4536
4537 /* crypto and compression type aren't (yet) supported for v2 images */
4538
4539 rbd_dev->header.crypt_type = 0;
4540 rbd_dev->header.comp_type = 0;
4541
4542 /* Get the snapshot context, plus the header version */
4543
4544 ret = rbd_dev_v2_snap_context(rbd_dev);
4545 if (ret)
4546 goto out_err;
4547
4548 dout("discovered version 2 image, header name is %s\n",
4549 rbd_dev->header_name);
4550
4551 return 0;
4552 out_err:
4553 rbd_dev->parent_overlap = 0;
4554 rbd_spec_put(rbd_dev->parent_spec);
4555 rbd_dev->parent_spec = NULL;
4556 kfree(rbd_dev->header_name);
4557 rbd_dev->header_name = NULL;
4558 kfree(rbd_dev->header.object_prefix);
4559 rbd_dev->header.object_prefix = NULL;
4560
4561 return ret;
4562 }
4563
4564 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4565 {
4566 struct rbd_device *parent = NULL;
4567 struct rbd_spec *parent_spec;
4568 struct rbd_client *rbdc;
4569 int ret;
4570
4571 if (!rbd_dev->parent_spec)
4572 return 0;
4573 /*
4574 * We need to pass a reference to the client and the parent
4575 * spec when creating the parent rbd_dev. Images related by
4576 * parent/child relationships always share both.
4577 */
4578 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4579 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4580
4581 ret = -ENOMEM;
4582 parent = rbd_dev_create(rbdc, parent_spec);
4583 if (!parent)
4584 goto out_err;
4585
4586 ret = rbd_dev_image_probe(parent);
4587 if (ret < 0)
4588 goto out_err;
4589 rbd_dev->parent = parent;
4590
4591 return 0;
4592 out_err:
4593 if (parent) {
4594 rbd_spec_put(rbd_dev->parent_spec);
4595 kfree(rbd_dev->header_name);
4596 rbd_dev_destroy(parent);
4597 } else {
4598 rbd_put_client(rbdc);
4599 rbd_spec_put(parent_spec);
4600 }
4601
4602 return ret;
4603 }
4604
4605 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4606 {
4607 int ret;
4608
4609 ret = rbd_dev_mapping_set(rbd_dev);
4610 if (ret)
4611 return ret;
4612
4613 /* generate unique id: find highest unique id, add one */
4614 rbd_dev_id_get(rbd_dev);
4615
4616 /* Fill in the device name, now that we have its id. */
4617 BUILD_BUG_ON(DEV_NAME_LEN
4618 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4619 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4620
4621 /* Get our block major device number. */
4622
4623 ret = register_blkdev(0, rbd_dev->name);
4624 if (ret < 0)
4625 goto err_out_id;
4626 rbd_dev->major = ret;
4627
4628 /* Set up the blkdev mapping. */
4629
4630 ret = rbd_init_disk(rbd_dev);
4631 if (ret)
4632 goto err_out_blkdev;
4633
4634 ret = rbd_bus_add_dev(rbd_dev);
4635 if (ret)
4636 goto err_out_disk;
4637
4638 /* Everything's ready. Announce the disk to the world. */
4639
4640 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4641 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4642 add_disk(rbd_dev->disk);
4643
4644 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4645 (unsigned long long) rbd_dev->mapping.size);
4646
4647 return ret;
4648
4649 err_out_disk:
4650 rbd_free_disk(rbd_dev);
4651 err_out_blkdev:
4652 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4653 err_out_id:
4654 rbd_dev_id_put(rbd_dev);
4655 rbd_dev_mapping_clear(rbd_dev);
4656
4657 return ret;
4658 }
4659
4660 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4661 {
4662 struct rbd_spec *spec = rbd_dev->spec;
4663 size_t size;
4664
4665 /* Record the header object name for this rbd image. */
4666
4667 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4668
4669 if (rbd_dev->image_format == 1)
4670 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4671 else
4672 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4673
4674 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4675 if (!rbd_dev->header_name)
4676 return -ENOMEM;
4677
4678 if (rbd_dev->image_format == 1)
4679 sprintf(rbd_dev->header_name, "%s%s",
4680 spec->image_name, RBD_SUFFIX);
4681 else
4682 sprintf(rbd_dev->header_name, "%s%s",
4683 RBD_HEADER_PREFIX, spec->image_id);
4684 return 0;
4685 }
4686
4687 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4688 {
4689 int ret;
4690
4691 rbd_dev_unprobe(rbd_dev);
4692 ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4693 if (ret)
4694 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4695 kfree(rbd_dev->header_name);
4696 rbd_dev->header_name = NULL;
4697 rbd_dev->image_format = 0;
4698 kfree(rbd_dev->spec->image_id);
4699 rbd_dev->spec->image_id = NULL;
4700
4701 rbd_dev_destroy(rbd_dev);
4702 }
4703
4704 /*
4705 * Probe for the existence of the header object for the given rbd
4706 * device. For format 2 images this includes determining the image
4707 * id.
4708 */
4709 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4710 {
4711 int ret;
4712 int tmp;
4713
4714 /*
4715 * Get the id from the image id object. If it's not a
4716 * format 2 image, we'll get ENOENT back, and we'll assume
4717 * it's a format 1 image.
4718 */
4719 ret = rbd_dev_image_id(rbd_dev);
4720 if (ret)
4721 return ret;
4722 rbd_assert(rbd_dev->spec->image_id);
4723 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4724
4725 ret = rbd_dev_header_name(rbd_dev);
4726 if (ret)
4727 goto err_out_format;
4728
4729 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4730 if (ret)
4731 goto out_header_name;
4732
4733 if (rbd_dev->image_format == 1)
4734 ret = rbd_dev_v1_probe(rbd_dev);
4735 else
4736 ret = rbd_dev_v2_probe(rbd_dev);
4737 if (ret)
4738 goto err_out_watch;
4739
4740 ret = rbd_dev_spec_update(rbd_dev);
4741 if (ret)
4742 goto err_out_probe;
4743
4744 ret = rbd_dev_probe_parent(rbd_dev);
4745 if (!ret)
4746 return 0;
4747
4748 err_out_probe:
4749 rbd_dev_unprobe(rbd_dev);
4750 err_out_watch:
4751 tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4752 if (tmp)
4753 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4754 out_header_name:
4755 kfree(rbd_dev->header_name);
4756 rbd_dev->header_name = NULL;
4757 err_out_format:
4758 rbd_dev->image_format = 0;
4759 kfree(rbd_dev->spec->image_id);
4760 rbd_dev->spec->image_id = NULL;
4761
4762 dout("probe failed, returning %d\n", ret);
4763
4764 return ret;
4765 }
4766
4767 static ssize_t rbd_add(struct bus_type *bus,
4768 const char *buf,
4769 size_t count)
4770 {
4771 struct rbd_device *rbd_dev = NULL;
4772 struct ceph_options *ceph_opts = NULL;
4773 struct rbd_options *rbd_opts = NULL;
4774 struct rbd_spec *spec = NULL;
4775 struct rbd_client *rbdc;
4776 struct ceph_osd_client *osdc;
4777 int rc = -ENOMEM;
4778
4779 if (!try_module_get(THIS_MODULE))
4780 return -ENODEV;
4781
4782 /* parse add command */
4783 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4784 if (rc < 0)
4785 goto err_out_module;
4786
4787 rbdc = rbd_get_client(ceph_opts);
4788 if (IS_ERR(rbdc)) {
4789 rc = PTR_ERR(rbdc);
4790 goto err_out_args;
4791 }
4792 ceph_opts = NULL; /* rbd_dev client now owns this */
4793
4794 /* pick the pool */
4795 osdc = &rbdc->client->osdc;
4796 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4797 if (rc < 0)
4798 goto err_out_client;
4799 spec->pool_id = (u64)rc;
4800
4801 /* The ceph file layout needs to fit pool id in 32 bits */
4802
4803 if (spec->pool_id > (u64)U32_MAX) {
4804 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4805 (unsigned long long)spec->pool_id, U32_MAX);
4806 rc = -EIO;
4807 goto err_out_client;
4808 }
4809
4810 rbd_dev = rbd_dev_create(rbdc, spec);
4811 if (!rbd_dev)
4812 goto err_out_client;
4813 rbdc = NULL; /* rbd_dev now owns this */
4814 spec = NULL; /* rbd_dev now owns this */
4815
4816 rbd_dev->mapping.read_only = rbd_opts->read_only;
4817 kfree(rbd_opts);
4818 rbd_opts = NULL; /* done with this */
4819
4820 rc = rbd_dev_image_probe(rbd_dev);
4821 if (rc < 0)
4822 goto err_out_rbd_dev;
4823
4824 rc = rbd_dev_device_setup(rbd_dev);
4825 if (!rc)
4826 return count;
4827
4828 rbd_dev_image_release(rbd_dev);
4829 err_out_rbd_dev:
4830 rbd_dev_destroy(rbd_dev);
4831 err_out_client:
4832 rbd_put_client(rbdc);
4833 err_out_args:
4834 if (ceph_opts)
4835 ceph_destroy_options(ceph_opts);
4836 kfree(rbd_opts);
4837 rbd_spec_put(spec);
4838 err_out_module:
4839 module_put(THIS_MODULE);
4840
4841 dout("Error adding device %s\n", buf);
4842
4843 return (ssize_t)rc;
4844 }
4845
4846 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4847 {
4848 struct list_head *tmp;
4849 struct rbd_device *rbd_dev;
4850
4851 spin_lock(&rbd_dev_list_lock);
4852 list_for_each(tmp, &rbd_dev_list) {
4853 rbd_dev = list_entry(tmp, struct rbd_device, node);
4854 if (rbd_dev->dev_id == dev_id) {
4855 spin_unlock(&rbd_dev_list_lock);
4856 return rbd_dev;
4857 }
4858 }
4859 spin_unlock(&rbd_dev_list_lock);
4860 return NULL;
4861 }
4862
4863 static void rbd_dev_device_release(struct device *dev)
4864 {
4865 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4866
4867 rbd_free_disk(rbd_dev);
4868 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4869 rbd_dev_clear_mapping(rbd_dev);
4870 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4871 rbd_dev->major = 0;
4872 rbd_dev_id_put(rbd_dev);
4873 rbd_dev_mapping_clear(rbd_dev);
4874 }
4875
4876 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4877 {
4878 while (rbd_dev->parent) {
4879 struct rbd_device *first = rbd_dev;
4880 struct rbd_device *second = first->parent;
4881 struct rbd_device *third;
4882
4883 /*
4884 * Follow to the parent with no grandparent and
4885 * remove it.
4886 */
4887 while (second && (third = second->parent)) {
4888 first = second;
4889 second = third;
4890 }
4891 rbd_assert(second);
4892 rbd_dev_image_release(second);
4893 first->parent = NULL;
4894 first->parent_overlap = 0;
4895
4896 rbd_assert(first->parent_spec);
4897 rbd_spec_put(first->parent_spec);
4898 first->parent_spec = NULL;
4899 }
4900 }
4901
4902 static ssize_t rbd_remove(struct bus_type *bus,
4903 const char *buf,
4904 size_t count)
4905 {
4906 struct rbd_device *rbd_dev = NULL;
4907 int target_id;
4908 unsigned long ul;
4909 int ret;
4910
4911 ret = strict_strtoul(buf, 10, &ul);
4912 if (ret)
4913 return ret;
4914
4915 /* convert to int; abort if we lost anything in the conversion */
4916 target_id = (int) ul;
4917 if (target_id != ul)
4918 return -EINVAL;
4919
4920 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4921
4922 rbd_dev = __rbd_get_dev(target_id);
4923 if (!rbd_dev) {
4924 ret = -ENOENT;
4925 goto done;
4926 }
4927
4928 spin_lock_irq(&rbd_dev->lock);
4929 if (rbd_dev->open_count)
4930 ret = -EBUSY;
4931 else
4932 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4933 spin_unlock_irq(&rbd_dev->lock);
4934 if (ret < 0)
4935 goto done;
4936 ret = count;
4937 rbd_bus_del_dev(rbd_dev);
4938 rbd_dev_image_release(rbd_dev);
4939 module_put(THIS_MODULE);
4940 done:
4941 mutex_unlock(&ctl_mutex);
4942
4943 return ret;
4944 }
4945
4946 /*
4947 * create control files in sysfs
4948 * /sys/bus/rbd/...
4949 */
4950 static int rbd_sysfs_init(void)
4951 {
4952 int ret;
4953
4954 ret = device_register(&rbd_root_dev);
4955 if (ret < 0)
4956 return ret;
4957
4958 ret = bus_register(&rbd_bus_type);
4959 if (ret < 0)
4960 device_unregister(&rbd_root_dev);
4961
4962 return ret;
4963 }
4964
4965 static void rbd_sysfs_cleanup(void)
4966 {
4967 bus_unregister(&rbd_bus_type);
4968 device_unregister(&rbd_root_dev);
4969 }
4970
4971 static int __init rbd_init(void)
4972 {
4973 int rc;
4974
4975 if (!libceph_compatible(NULL)) {
4976 rbd_warn(NULL, "libceph incompatibility (quitting)");
4977
4978 return -EINVAL;
4979 }
4980 rc = rbd_sysfs_init();
4981 if (rc)
4982 return rc;
4983 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4984 return 0;
4985 }
4986
4987 static void __exit rbd_exit(void)
4988 {
4989 rbd_sysfs_cleanup();
4990 }
4991
4992 module_init(rbd_init);
4993 module_exit(rbd_exit);
4994
4995 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4996 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4997 MODULE_DESCRIPTION("rados block device");
4998
4999 /* following authorship retained from original osdblk.c */
5000 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5001
5002 MODULE_LICENSE("GPL");