]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/rbd.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 /*
45 * The basic unit of block I/O is a sector. It is interpreted in a
46 * number of contexts in Linux (blk, bio, genhd), but the default is
47 * universally 512 bytes. These symbols are just slightly more
48 * meaningful than the bare numbers they represent.
49 */
50 #define SECTOR_SHIFT 9
51 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
52
53 #define RBD_DRV_NAME "rbd"
54 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
55
56 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
57
58 #define RBD_MAX_SNAP_NAME_LEN 32
59 #define RBD_MAX_OPT_LEN 1024
60
61 #define RBD_SNAP_HEAD_NAME "-"
62
63 /*
64 * An RBD device name will be "rbd#", where the "rbd" comes from
65 * RBD_DRV_NAME above, and # is a unique integer identifier.
66 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
67 * enough to hold all possible device names.
68 */
69 #define DEV_NAME_LEN 32
70 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
71
72 #define RBD_NOTIFY_TIMEOUT_DEFAULT 10
73
74 /*
75 * block device image metadata (in-memory version)
76 */
77 struct rbd_image_header {
78 u64 image_size;
79 char *object_prefix;
80 __u8 obj_order;
81 __u8 crypt_type;
82 __u8 comp_type;
83 struct ceph_snap_context *snapc;
84 size_t snap_names_len;
85 u32 total_snaps;
86
87 char *snap_names;
88 u64 *snap_sizes;
89
90 u64 obj_version;
91 };
92
93 struct rbd_options {
94 int notify_timeout;
95 };
96
97 /*
98 * an instance of the client. multiple devices may share an rbd client.
99 */
100 struct rbd_client {
101 struct ceph_client *client;
102 struct rbd_options *rbd_opts;
103 struct kref kref;
104 struct list_head node;
105 };
106
107 /*
108 * a request completion status
109 */
110 struct rbd_req_status {
111 int done;
112 int rc;
113 u64 bytes;
114 };
115
116 /*
117 * a collection of requests
118 */
119 struct rbd_req_coll {
120 int total;
121 int num_done;
122 struct kref kref;
123 struct rbd_req_status status[0];
124 };
125
126 /*
127 * a single io request
128 */
129 struct rbd_request {
130 struct request *rq; /* blk layer request */
131 struct bio *bio; /* cloned bio */
132 struct page **pages; /* list of used pages */
133 u64 len;
134 int coll_index;
135 struct rbd_req_coll *coll;
136 };
137
138 struct rbd_snap {
139 struct device dev;
140 const char *name;
141 u64 size;
142 struct list_head node;
143 u64 id;
144 };
145
146 /*
147 * a single device
148 */
149 struct rbd_device {
150 int dev_id; /* blkdev unique id */
151
152 int major; /* blkdev assigned major */
153 struct gendisk *disk; /* blkdev's gendisk and rq */
154 struct request_queue *q;
155
156 struct rbd_client *rbd_client;
157
158 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
159
160 spinlock_t lock; /* queue lock */
161
162 struct rbd_image_header header;
163 char *image_name;
164 size_t image_name_len;
165 char *header_name;
166 char *pool_name;
167 int pool_id;
168
169 struct ceph_osd_event *watch_event;
170 struct ceph_osd_request *watch_request;
171
172 /* protects updating the header */
173 struct rw_semaphore header_rwsem;
174 /* name of the snapshot this device reads from */
175 char *snap_name;
176 /* id of the snapshot this device reads from */
177 u64 snap_id; /* current snapshot id */
178 /* whether the snap_id this device reads from still exists */
179 bool snap_exists;
180 int read_only;
181
182 struct list_head node;
183
184 /* list of snapshots */
185 struct list_head snaps;
186
187 /* sysfs related */
188 struct device dev;
189 };
190
191 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
192
193 static LIST_HEAD(rbd_dev_list); /* devices */
194 static DEFINE_SPINLOCK(rbd_dev_list_lock);
195
196 static LIST_HEAD(rbd_client_list); /* clients */
197 static DEFINE_SPINLOCK(rbd_client_list_lock);
198
199 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev);
200 static void rbd_dev_release(struct device *dev);
201 static ssize_t rbd_snap_add(struct device *dev,
202 struct device_attribute *attr,
203 const char *buf,
204 size_t count);
205 static void __rbd_remove_snap_dev(struct rbd_snap *snap);
206
207 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
208 size_t count);
209 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
210 size_t count);
211
212 static struct bus_attribute rbd_bus_attrs[] = {
213 __ATTR(add, S_IWUSR, NULL, rbd_add),
214 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
215 __ATTR_NULL
216 };
217
218 static struct bus_type rbd_bus_type = {
219 .name = "rbd",
220 .bus_attrs = rbd_bus_attrs,
221 };
222
223 static void rbd_root_dev_release(struct device *dev)
224 {
225 }
226
227 static struct device rbd_root_dev = {
228 .init_name = "rbd",
229 .release = rbd_root_dev_release,
230 };
231
232
233 static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
234 {
235 return get_device(&rbd_dev->dev);
236 }
237
238 static void rbd_put_dev(struct rbd_device *rbd_dev)
239 {
240 put_device(&rbd_dev->dev);
241 }
242
243 static int rbd_refresh_header(struct rbd_device *rbd_dev, u64 *hver);
244
245 static int rbd_open(struct block_device *bdev, fmode_t mode)
246 {
247 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
248
249 rbd_get_dev(rbd_dev);
250
251 set_device_ro(bdev, rbd_dev->read_only);
252
253 if ((mode & FMODE_WRITE) && rbd_dev->read_only)
254 return -EROFS;
255
256 return 0;
257 }
258
259 static int rbd_release(struct gendisk *disk, fmode_t mode)
260 {
261 struct rbd_device *rbd_dev = disk->private_data;
262
263 rbd_put_dev(rbd_dev);
264
265 return 0;
266 }
267
268 static const struct block_device_operations rbd_bd_ops = {
269 .owner = THIS_MODULE,
270 .open = rbd_open,
271 .release = rbd_release,
272 };
273
274 /*
275 * Initialize an rbd client instance.
276 * We own *ceph_opts.
277 */
278 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts,
279 struct rbd_options *rbd_opts)
280 {
281 struct rbd_client *rbdc;
282 int ret = -ENOMEM;
283
284 dout("rbd_client_create\n");
285 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
286 if (!rbdc)
287 goto out_opt;
288
289 kref_init(&rbdc->kref);
290 INIT_LIST_HEAD(&rbdc->node);
291
292 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
293
294 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
295 if (IS_ERR(rbdc->client))
296 goto out_mutex;
297 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
298
299 ret = ceph_open_session(rbdc->client);
300 if (ret < 0)
301 goto out_err;
302
303 rbdc->rbd_opts = rbd_opts;
304
305 spin_lock(&rbd_client_list_lock);
306 list_add_tail(&rbdc->node, &rbd_client_list);
307 spin_unlock(&rbd_client_list_lock);
308
309 mutex_unlock(&ctl_mutex);
310
311 dout("rbd_client_create created %p\n", rbdc);
312 return rbdc;
313
314 out_err:
315 ceph_destroy_client(rbdc->client);
316 out_mutex:
317 mutex_unlock(&ctl_mutex);
318 kfree(rbdc);
319 out_opt:
320 if (ceph_opts)
321 ceph_destroy_options(ceph_opts);
322 return ERR_PTR(ret);
323 }
324
325 /*
326 * Find a ceph client with specific addr and configuration.
327 */
328 static struct rbd_client *__rbd_client_find(struct ceph_options *ceph_opts)
329 {
330 struct rbd_client *client_node;
331
332 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
333 return NULL;
334
335 list_for_each_entry(client_node, &rbd_client_list, node)
336 if (!ceph_compare_options(ceph_opts, client_node->client))
337 return client_node;
338 return NULL;
339 }
340
341 /*
342 * mount options
343 */
344 enum {
345 Opt_notify_timeout,
346 Opt_last_int,
347 /* int args above */
348 Opt_last_string,
349 /* string args above */
350 };
351
352 static match_table_t rbd_opts_tokens = {
353 {Opt_notify_timeout, "notify_timeout=%d"},
354 /* int args above */
355 /* string args above */
356 {-1, NULL}
357 };
358
359 static int parse_rbd_opts_token(char *c, void *private)
360 {
361 struct rbd_options *rbd_opts = private;
362 substring_t argstr[MAX_OPT_ARGS];
363 int token, intval, ret;
364
365 token = match_token(c, rbd_opts_tokens, argstr);
366 if (token < 0)
367 return -EINVAL;
368
369 if (token < Opt_last_int) {
370 ret = match_int(&argstr[0], &intval);
371 if (ret < 0) {
372 pr_err("bad mount option arg (not int) "
373 "at '%s'\n", c);
374 return ret;
375 }
376 dout("got int token %d val %d\n", token, intval);
377 } else if (token > Opt_last_int && token < Opt_last_string) {
378 dout("got string token %d val %s\n", token,
379 argstr[0].from);
380 } else {
381 dout("got token %d\n", token);
382 }
383
384 switch (token) {
385 case Opt_notify_timeout:
386 rbd_opts->notify_timeout = intval;
387 break;
388 default:
389 BUG_ON(token);
390 }
391 return 0;
392 }
393
394 /*
395 * Get a ceph client with specific addr and configuration, if one does
396 * not exist create it.
397 */
398 static struct rbd_client *rbd_get_client(const char *mon_addr,
399 size_t mon_addr_len,
400 char *options)
401 {
402 struct rbd_client *rbdc;
403 struct ceph_options *ceph_opts;
404 struct rbd_options *rbd_opts;
405
406 rbd_opts = kzalloc(sizeof(*rbd_opts), GFP_KERNEL);
407 if (!rbd_opts)
408 return ERR_PTR(-ENOMEM);
409
410 rbd_opts->notify_timeout = RBD_NOTIFY_TIMEOUT_DEFAULT;
411
412 ceph_opts = ceph_parse_options(options, mon_addr,
413 mon_addr + mon_addr_len,
414 parse_rbd_opts_token, rbd_opts);
415 if (IS_ERR(ceph_opts)) {
416 kfree(rbd_opts);
417 return ERR_CAST(ceph_opts);
418 }
419
420 spin_lock(&rbd_client_list_lock);
421 rbdc = __rbd_client_find(ceph_opts);
422 if (rbdc) {
423 /* using an existing client */
424 kref_get(&rbdc->kref);
425 spin_unlock(&rbd_client_list_lock);
426
427 ceph_destroy_options(ceph_opts);
428 kfree(rbd_opts);
429
430 return rbdc;
431 }
432 spin_unlock(&rbd_client_list_lock);
433
434 rbdc = rbd_client_create(ceph_opts, rbd_opts);
435
436 if (IS_ERR(rbdc))
437 kfree(rbd_opts);
438
439 return rbdc;
440 }
441
442 /*
443 * Destroy ceph client
444 *
445 * Caller must hold rbd_client_list_lock.
446 */
447 static void rbd_client_release(struct kref *kref)
448 {
449 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
450
451 dout("rbd_release_client %p\n", rbdc);
452 spin_lock(&rbd_client_list_lock);
453 list_del(&rbdc->node);
454 spin_unlock(&rbd_client_list_lock);
455
456 ceph_destroy_client(rbdc->client);
457 kfree(rbdc->rbd_opts);
458 kfree(rbdc);
459 }
460
461 /*
462 * Drop reference to ceph client node. If it's not referenced anymore, release
463 * it.
464 */
465 static void rbd_put_client(struct rbd_device *rbd_dev)
466 {
467 kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
468 rbd_dev->rbd_client = NULL;
469 }
470
471 /*
472 * Destroy requests collection
473 */
474 static void rbd_coll_release(struct kref *kref)
475 {
476 struct rbd_req_coll *coll =
477 container_of(kref, struct rbd_req_coll, kref);
478
479 dout("rbd_coll_release %p\n", coll);
480 kfree(coll);
481 }
482
483 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
484 {
485 return !memcmp(&ondisk->text,
486 RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT));
487 }
488
489 /*
490 * Create a new header structure, translate header format from the on-disk
491 * header.
492 */
493 static int rbd_header_from_disk(struct rbd_image_header *header,
494 struct rbd_image_header_ondisk *ondisk,
495 u32 allocated_snaps)
496 {
497 u32 snap_count;
498
499 if (!rbd_dev_ondisk_valid(ondisk))
500 return -ENXIO;
501
502 snap_count = le32_to_cpu(ondisk->snap_count);
503 if (snap_count > (SIZE_MAX - sizeof(struct ceph_snap_context))
504 / sizeof (u64))
505 return -EINVAL;
506 header->snapc = kmalloc(sizeof(struct ceph_snap_context) +
507 snap_count * sizeof(u64),
508 GFP_KERNEL);
509 if (!header->snapc)
510 return -ENOMEM;
511
512 if (snap_count) {
513 header->snap_names_len = le64_to_cpu(ondisk->snap_names_len);
514 header->snap_names = kmalloc(header->snap_names_len,
515 GFP_KERNEL);
516 if (!header->snap_names)
517 goto err_snapc;
518 header->snap_sizes = kmalloc(snap_count * sizeof(u64),
519 GFP_KERNEL);
520 if (!header->snap_sizes)
521 goto err_names;
522 } else {
523 WARN_ON(ondisk->snap_names_len);
524 header->snap_names_len = 0;
525 header->snap_names = NULL;
526 header->snap_sizes = NULL;
527 }
528
529 header->object_prefix = kmalloc(sizeof (ondisk->block_name) + 1,
530 GFP_KERNEL);
531 if (!header->object_prefix)
532 goto err_sizes;
533
534 memcpy(header->object_prefix, ondisk->block_name,
535 sizeof(ondisk->block_name));
536 header->object_prefix[sizeof (ondisk->block_name)] = '\0';
537
538 header->image_size = le64_to_cpu(ondisk->image_size);
539 header->obj_order = ondisk->options.order;
540 header->crypt_type = ondisk->options.crypt_type;
541 header->comp_type = ondisk->options.comp_type;
542
543 atomic_set(&header->snapc->nref, 1);
544 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
545 header->snapc->num_snaps = snap_count;
546 header->total_snaps = snap_count;
547
548 if (snap_count && allocated_snaps == snap_count) {
549 int i;
550
551 for (i = 0; i < snap_count; i++) {
552 header->snapc->snaps[i] =
553 le64_to_cpu(ondisk->snaps[i].id);
554 header->snap_sizes[i] =
555 le64_to_cpu(ondisk->snaps[i].image_size);
556 }
557
558 /* copy snapshot names */
559 memcpy(header->snap_names, &ondisk->snaps[snap_count],
560 header->snap_names_len);
561 }
562
563 return 0;
564
565 err_sizes:
566 kfree(header->snap_sizes);
567 header->snap_sizes = NULL;
568 err_names:
569 kfree(header->snap_names);
570 header->snap_names = NULL;
571 err_snapc:
572 kfree(header->snapc);
573 header->snapc = NULL;
574
575 return -ENOMEM;
576 }
577
578 static int snap_by_name(struct rbd_image_header *header, const char *snap_name,
579 u64 *seq, u64 *size)
580 {
581 int i;
582 char *p = header->snap_names;
583
584 for (i = 0; i < header->total_snaps; i++) {
585 if (!strcmp(snap_name, p)) {
586
587 /* Found it. Pass back its id and/or size */
588
589 if (seq)
590 *seq = header->snapc->snaps[i];
591 if (size)
592 *size = header->snap_sizes[i];
593 return i;
594 }
595 p += strlen(p) + 1; /* Skip ahead to the next name */
596 }
597 return -ENOENT;
598 }
599
600 static int rbd_header_set_snap(struct rbd_device *rbd_dev, u64 *size)
601 {
602 int ret;
603
604 down_write(&rbd_dev->header_rwsem);
605
606 if (!memcmp(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
607 sizeof (RBD_SNAP_HEAD_NAME))) {
608 rbd_dev->snap_id = CEPH_NOSNAP;
609 rbd_dev->snap_exists = false;
610 rbd_dev->read_only = 0;
611 if (size)
612 *size = rbd_dev->header.image_size;
613 } else {
614 u64 snap_id = 0;
615
616 ret = snap_by_name(&rbd_dev->header, rbd_dev->snap_name,
617 &snap_id, size);
618 if (ret < 0)
619 goto done;
620 rbd_dev->snap_id = snap_id;
621 rbd_dev->snap_exists = true;
622 rbd_dev->read_only = 1;
623 }
624
625 ret = 0;
626 done:
627 up_write(&rbd_dev->header_rwsem);
628 return ret;
629 }
630
631 static void rbd_header_free(struct rbd_image_header *header)
632 {
633 kfree(header->object_prefix);
634 kfree(header->snap_sizes);
635 kfree(header->snap_names);
636 ceph_put_snap_context(header->snapc);
637 }
638
639 /*
640 * get the actual striped segment name, offset and length
641 */
642 static u64 rbd_get_segment(struct rbd_image_header *header,
643 const char *object_prefix,
644 u64 ofs, u64 len,
645 char *seg_name, u64 *segofs)
646 {
647 u64 seg = ofs >> header->obj_order;
648
649 if (seg_name)
650 snprintf(seg_name, RBD_MAX_SEG_NAME_LEN,
651 "%s.%012llx", object_prefix, seg);
652
653 ofs = ofs & ((1 << header->obj_order) - 1);
654 len = min_t(u64, len, (1 << header->obj_order) - ofs);
655
656 if (segofs)
657 *segofs = ofs;
658
659 return len;
660 }
661
662 static int rbd_get_num_segments(struct rbd_image_header *header,
663 u64 ofs, u64 len)
664 {
665 u64 start_seg = ofs >> header->obj_order;
666 u64 end_seg = (ofs + len - 1) >> header->obj_order;
667 return end_seg - start_seg + 1;
668 }
669
670 /*
671 * returns the size of an object in the image
672 */
673 static u64 rbd_obj_bytes(struct rbd_image_header *header)
674 {
675 return 1 << header->obj_order;
676 }
677
678 /*
679 * bio helpers
680 */
681
682 static void bio_chain_put(struct bio *chain)
683 {
684 struct bio *tmp;
685
686 while (chain) {
687 tmp = chain;
688 chain = chain->bi_next;
689 bio_put(tmp);
690 }
691 }
692
693 /*
694 * zeros a bio chain, starting at specific offset
695 */
696 static void zero_bio_chain(struct bio *chain, int start_ofs)
697 {
698 struct bio_vec *bv;
699 unsigned long flags;
700 void *buf;
701 int i;
702 int pos = 0;
703
704 while (chain) {
705 bio_for_each_segment(bv, chain, i) {
706 if (pos + bv->bv_len > start_ofs) {
707 int remainder = max(start_ofs - pos, 0);
708 buf = bvec_kmap_irq(bv, &flags);
709 memset(buf + remainder, 0,
710 bv->bv_len - remainder);
711 bvec_kunmap_irq(buf, &flags);
712 }
713 pos += bv->bv_len;
714 }
715
716 chain = chain->bi_next;
717 }
718 }
719
720 /*
721 * bio_chain_clone - clone a chain of bios up to a certain length.
722 * might return a bio_pair that will need to be released.
723 */
724 static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
725 struct bio_pair **bp,
726 int len, gfp_t gfpmask)
727 {
728 struct bio *tmp, *old_chain = *old, *new_chain = NULL, *tail = NULL;
729 int total = 0;
730
731 if (*bp) {
732 bio_pair_release(*bp);
733 *bp = NULL;
734 }
735
736 while (old_chain && (total < len)) {
737 tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
738 if (!tmp)
739 goto err_out;
740
741 if (total + old_chain->bi_size > len) {
742 struct bio_pair *bp;
743
744 /*
745 * this split can only happen with a single paged bio,
746 * split_bio will BUG_ON if this is not the case
747 */
748 dout("bio_chain_clone split! total=%d remaining=%d"
749 "bi_size=%u\n",
750 total, len - total, old_chain->bi_size);
751
752 /* split the bio. We'll release it either in the next
753 call, or it will have to be released outside */
754 bp = bio_split(old_chain, (len - total) / SECTOR_SIZE);
755 if (!bp)
756 goto err_out;
757
758 __bio_clone(tmp, &bp->bio1);
759
760 *next = &bp->bio2;
761 } else {
762 __bio_clone(tmp, old_chain);
763 *next = old_chain->bi_next;
764 }
765
766 tmp->bi_bdev = NULL;
767 gfpmask &= ~__GFP_WAIT;
768 tmp->bi_next = NULL;
769
770 if (!new_chain) {
771 new_chain = tail = tmp;
772 } else {
773 tail->bi_next = tmp;
774 tail = tmp;
775 }
776 old_chain = old_chain->bi_next;
777
778 total += tmp->bi_size;
779 }
780
781 BUG_ON(total < len);
782
783 if (tail)
784 tail->bi_next = NULL;
785
786 *old = old_chain;
787
788 return new_chain;
789
790 err_out:
791 dout("bio_chain_clone with err\n");
792 bio_chain_put(new_chain);
793 return NULL;
794 }
795
796 /*
797 * helpers for osd request op vectors.
798 */
799 static struct ceph_osd_req_op *rbd_create_rw_ops(int num_ops,
800 int opcode, u32 payload_len)
801 {
802 struct ceph_osd_req_op *ops;
803
804 ops = kzalloc(sizeof (*ops) * (num_ops + 1), GFP_NOIO);
805 if (!ops)
806 return NULL;
807
808 ops[0].op = opcode;
809
810 /*
811 * op extent offset and length will be set later on
812 * in calc_raw_layout()
813 */
814 ops[0].payload_len = payload_len;
815
816 return ops;
817 }
818
819 static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
820 {
821 kfree(ops);
822 }
823
824 static void rbd_coll_end_req_index(struct request *rq,
825 struct rbd_req_coll *coll,
826 int index,
827 int ret, u64 len)
828 {
829 struct request_queue *q;
830 int min, max, i;
831
832 dout("rbd_coll_end_req_index %p index %d ret %d len %llu\n",
833 coll, index, ret, (unsigned long long) len);
834
835 if (!rq)
836 return;
837
838 if (!coll) {
839 blk_end_request(rq, ret, len);
840 return;
841 }
842
843 q = rq->q;
844
845 spin_lock_irq(q->queue_lock);
846 coll->status[index].done = 1;
847 coll->status[index].rc = ret;
848 coll->status[index].bytes = len;
849 max = min = coll->num_done;
850 while (max < coll->total && coll->status[max].done)
851 max++;
852
853 for (i = min; i<max; i++) {
854 __blk_end_request(rq, coll->status[i].rc,
855 coll->status[i].bytes);
856 coll->num_done++;
857 kref_put(&coll->kref, rbd_coll_release);
858 }
859 spin_unlock_irq(q->queue_lock);
860 }
861
862 static void rbd_coll_end_req(struct rbd_request *req,
863 int ret, u64 len)
864 {
865 rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
866 }
867
868 /*
869 * Send ceph osd request
870 */
871 static int rbd_do_request(struct request *rq,
872 struct rbd_device *rbd_dev,
873 struct ceph_snap_context *snapc,
874 u64 snapid,
875 const char *object_name, u64 ofs, u64 len,
876 struct bio *bio,
877 struct page **pages,
878 int num_pages,
879 int flags,
880 struct ceph_osd_req_op *ops,
881 struct rbd_req_coll *coll,
882 int coll_index,
883 void (*rbd_cb)(struct ceph_osd_request *req,
884 struct ceph_msg *msg),
885 struct ceph_osd_request **linger_req,
886 u64 *ver)
887 {
888 struct ceph_osd_request *req;
889 struct ceph_file_layout *layout;
890 int ret;
891 u64 bno;
892 struct timespec mtime = CURRENT_TIME;
893 struct rbd_request *req_data;
894 struct ceph_osd_request_head *reqhead;
895 struct ceph_osd_client *osdc;
896
897 req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
898 if (!req_data) {
899 if (coll)
900 rbd_coll_end_req_index(rq, coll, coll_index,
901 -ENOMEM, len);
902 return -ENOMEM;
903 }
904
905 if (coll) {
906 req_data->coll = coll;
907 req_data->coll_index = coll_index;
908 }
909
910 dout("rbd_do_request object_name=%s ofs=%llu len=%llu\n", object_name,
911 (unsigned long long) ofs, (unsigned long long) len);
912
913 osdc = &rbd_dev->rbd_client->client->osdc;
914 req = ceph_osdc_alloc_request(osdc, flags, snapc, ops,
915 false, GFP_NOIO, pages, bio);
916 if (!req) {
917 ret = -ENOMEM;
918 goto done_pages;
919 }
920
921 req->r_callback = rbd_cb;
922
923 req_data->rq = rq;
924 req_data->bio = bio;
925 req_data->pages = pages;
926 req_data->len = len;
927
928 req->r_priv = req_data;
929
930 reqhead = req->r_request->front.iov_base;
931 reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
932
933 strncpy(req->r_oid, object_name, sizeof(req->r_oid));
934 req->r_oid_len = strlen(req->r_oid);
935
936 layout = &req->r_file_layout;
937 memset(layout, 0, sizeof(*layout));
938 layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
939 layout->fl_stripe_count = cpu_to_le32(1);
940 layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
941 layout->fl_pg_pool = cpu_to_le32(rbd_dev->pool_id);
942 ceph_calc_raw_layout(osdc, layout, snapid, ofs, &len, &bno,
943 req, ops);
944
945 ceph_osdc_build_request(req, ofs, &len,
946 ops,
947 snapc,
948 &mtime,
949 req->r_oid, req->r_oid_len);
950
951 if (linger_req) {
952 ceph_osdc_set_request_linger(osdc, req);
953 *linger_req = req;
954 }
955
956 ret = ceph_osdc_start_request(osdc, req, false);
957 if (ret < 0)
958 goto done_err;
959
960 if (!rbd_cb) {
961 ret = ceph_osdc_wait_request(osdc, req);
962 if (ver)
963 *ver = le64_to_cpu(req->r_reassert_version.version);
964 dout("reassert_ver=%llu\n",
965 (unsigned long long)
966 le64_to_cpu(req->r_reassert_version.version));
967 ceph_osdc_put_request(req);
968 }
969 return ret;
970
971 done_err:
972 bio_chain_put(req_data->bio);
973 ceph_osdc_put_request(req);
974 done_pages:
975 rbd_coll_end_req(req_data, ret, len);
976 kfree(req_data);
977 return ret;
978 }
979
980 /*
981 * Ceph osd op callback
982 */
983 static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
984 {
985 struct rbd_request *req_data = req->r_priv;
986 struct ceph_osd_reply_head *replyhead;
987 struct ceph_osd_op *op;
988 __s32 rc;
989 u64 bytes;
990 int read_op;
991
992 /* parse reply */
993 replyhead = msg->front.iov_base;
994 WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
995 op = (void *)(replyhead + 1);
996 rc = le32_to_cpu(replyhead->result);
997 bytes = le64_to_cpu(op->extent.length);
998 read_op = (le16_to_cpu(op->op) == CEPH_OSD_OP_READ);
999
1000 dout("rbd_req_cb bytes=%llu readop=%d rc=%d\n",
1001 (unsigned long long) bytes, read_op, (int) rc);
1002
1003 if (rc == -ENOENT && read_op) {
1004 zero_bio_chain(req_data->bio, 0);
1005 rc = 0;
1006 } else if (rc == 0 && read_op && bytes < req_data->len) {
1007 zero_bio_chain(req_data->bio, bytes);
1008 bytes = req_data->len;
1009 }
1010
1011 rbd_coll_end_req(req_data, rc, bytes);
1012
1013 if (req_data->bio)
1014 bio_chain_put(req_data->bio);
1015
1016 ceph_osdc_put_request(req);
1017 kfree(req_data);
1018 }
1019
1020 static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
1021 {
1022 ceph_osdc_put_request(req);
1023 }
1024
1025 /*
1026 * Do a synchronous ceph osd operation
1027 */
1028 static int rbd_req_sync_op(struct rbd_device *rbd_dev,
1029 struct ceph_snap_context *snapc,
1030 u64 snapid,
1031 int flags,
1032 struct ceph_osd_req_op *ops,
1033 const char *object_name,
1034 u64 ofs, u64 len,
1035 char *buf,
1036 struct ceph_osd_request **linger_req,
1037 u64 *ver)
1038 {
1039 int ret;
1040 struct page **pages;
1041 int num_pages;
1042
1043 BUG_ON(ops == NULL);
1044
1045 num_pages = calc_pages_for(ofs , len);
1046 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1047 if (IS_ERR(pages))
1048 return PTR_ERR(pages);
1049
1050 ret = rbd_do_request(NULL, rbd_dev, snapc, snapid,
1051 object_name, ofs, len, NULL,
1052 pages, num_pages,
1053 flags,
1054 ops,
1055 NULL, 0,
1056 NULL,
1057 linger_req, ver);
1058 if (ret < 0)
1059 goto done;
1060
1061 if ((flags & CEPH_OSD_FLAG_READ) && buf)
1062 ret = ceph_copy_from_page_vector(pages, buf, ofs, ret);
1063
1064 done:
1065 ceph_release_page_vector(pages, num_pages);
1066 return ret;
1067 }
1068
1069 /*
1070 * Do an asynchronous ceph osd operation
1071 */
1072 static int rbd_do_op(struct request *rq,
1073 struct rbd_device *rbd_dev,
1074 struct ceph_snap_context *snapc,
1075 u64 snapid,
1076 int opcode, int flags,
1077 u64 ofs, u64 len,
1078 struct bio *bio,
1079 struct rbd_req_coll *coll,
1080 int coll_index)
1081 {
1082 char *seg_name;
1083 u64 seg_ofs;
1084 u64 seg_len;
1085 int ret;
1086 struct ceph_osd_req_op *ops;
1087 u32 payload_len;
1088
1089 seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
1090 if (!seg_name)
1091 return -ENOMEM;
1092
1093 seg_len = rbd_get_segment(&rbd_dev->header,
1094 rbd_dev->header.object_prefix,
1095 ofs, len,
1096 seg_name, &seg_ofs);
1097
1098 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
1099
1100 ret = -ENOMEM;
1101 ops = rbd_create_rw_ops(1, opcode, payload_len);
1102 if (!ops)
1103 goto done;
1104
1105 /* we've taken care of segment sizes earlier when we
1106 cloned the bios. We should never have a segment
1107 truncated at this point */
1108 BUG_ON(seg_len < len);
1109
1110 ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1111 seg_name, seg_ofs, seg_len,
1112 bio,
1113 NULL, 0,
1114 flags,
1115 ops,
1116 coll, coll_index,
1117 rbd_req_cb, 0, NULL);
1118
1119 rbd_destroy_ops(ops);
1120 done:
1121 kfree(seg_name);
1122 return ret;
1123 }
1124
1125 /*
1126 * Request async osd write
1127 */
1128 static int rbd_req_write(struct request *rq,
1129 struct rbd_device *rbd_dev,
1130 struct ceph_snap_context *snapc,
1131 u64 ofs, u64 len,
1132 struct bio *bio,
1133 struct rbd_req_coll *coll,
1134 int coll_index)
1135 {
1136 return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1137 CEPH_OSD_OP_WRITE,
1138 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1139 ofs, len, bio, coll, coll_index);
1140 }
1141
1142 /*
1143 * Request async osd read
1144 */
1145 static int rbd_req_read(struct request *rq,
1146 struct rbd_device *rbd_dev,
1147 u64 snapid,
1148 u64 ofs, u64 len,
1149 struct bio *bio,
1150 struct rbd_req_coll *coll,
1151 int coll_index)
1152 {
1153 return rbd_do_op(rq, rbd_dev, NULL,
1154 snapid,
1155 CEPH_OSD_OP_READ,
1156 CEPH_OSD_FLAG_READ,
1157 ofs, len, bio, coll, coll_index);
1158 }
1159
1160 /*
1161 * Request sync osd read
1162 */
1163 static int rbd_req_sync_read(struct rbd_device *rbd_dev,
1164 u64 snapid,
1165 const char *object_name,
1166 u64 ofs, u64 len,
1167 char *buf,
1168 u64 *ver)
1169 {
1170 struct ceph_osd_req_op *ops;
1171 int ret;
1172
1173 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_READ, 0);
1174 if (!ops)
1175 return -ENOMEM;
1176
1177 ret = rbd_req_sync_op(rbd_dev, NULL,
1178 snapid,
1179 CEPH_OSD_FLAG_READ,
1180 ops, object_name, ofs, len, buf, NULL, ver);
1181 rbd_destroy_ops(ops);
1182
1183 return ret;
1184 }
1185
1186 /*
1187 * Request sync osd watch
1188 */
1189 static int rbd_req_sync_notify_ack(struct rbd_device *rbd_dev,
1190 u64 ver,
1191 u64 notify_id)
1192 {
1193 struct ceph_osd_req_op *ops;
1194 int ret;
1195
1196 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1197 if (!ops)
1198 return -ENOMEM;
1199
1200 ops[0].watch.ver = cpu_to_le64(ver);
1201 ops[0].watch.cookie = notify_id;
1202 ops[0].watch.flag = 0;
1203
1204 ret = rbd_do_request(NULL, rbd_dev, NULL, CEPH_NOSNAP,
1205 rbd_dev->header_name, 0, 0, NULL,
1206 NULL, 0,
1207 CEPH_OSD_FLAG_READ,
1208 ops,
1209 NULL, 0,
1210 rbd_simple_req_cb, 0, NULL);
1211
1212 rbd_destroy_ops(ops);
1213 return ret;
1214 }
1215
1216 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1217 {
1218 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1219 u64 hver;
1220 int rc;
1221
1222 if (!rbd_dev)
1223 return;
1224
1225 dout("rbd_watch_cb %s notify_id=%llu opcode=%u\n",
1226 rbd_dev->header_name, (unsigned long long) notify_id,
1227 (unsigned int) opcode);
1228 rc = rbd_refresh_header(rbd_dev, &hver);
1229 if (rc)
1230 pr_warning(RBD_DRV_NAME "%d got notification but failed to "
1231 " update snaps: %d\n", rbd_dev->major, rc);
1232
1233 rbd_req_sync_notify_ack(rbd_dev, hver, notify_id);
1234 }
1235
1236 /*
1237 * Request sync osd watch
1238 */
1239 static int rbd_req_sync_watch(struct rbd_device *rbd_dev)
1240 {
1241 struct ceph_osd_req_op *ops;
1242 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1243 int ret;
1244
1245 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_WATCH, 0);
1246 if (!ops)
1247 return -ENOMEM;
1248
1249 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1250 (void *)rbd_dev, &rbd_dev->watch_event);
1251 if (ret < 0)
1252 goto fail;
1253
1254 ops[0].watch.ver = cpu_to_le64(rbd_dev->header.obj_version);
1255 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1256 ops[0].watch.flag = 1;
1257
1258 ret = rbd_req_sync_op(rbd_dev, NULL,
1259 CEPH_NOSNAP,
1260 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1261 ops,
1262 rbd_dev->header_name,
1263 0, 0, NULL,
1264 &rbd_dev->watch_request, NULL);
1265
1266 if (ret < 0)
1267 goto fail_event;
1268
1269 rbd_destroy_ops(ops);
1270 return 0;
1271
1272 fail_event:
1273 ceph_osdc_cancel_event(rbd_dev->watch_event);
1274 rbd_dev->watch_event = NULL;
1275 fail:
1276 rbd_destroy_ops(ops);
1277 return ret;
1278 }
1279
1280 /*
1281 * Request sync osd unwatch
1282 */
1283 static int rbd_req_sync_unwatch(struct rbd_device *rbd_dev)
1284 {
1285 struct ceph_osd_req_op *ops;
1286 int ret;
1287
1288 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_WATCH, 0);
1289 if (!ops)
1290 return -ENOMEM;
1291
1292 ops[0].watch.ver = 0;
1293 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1294 ops[0].watch.flag = 0;
1295
1296 ret = rbd_req_sync_op(rbd_dev, NULL,
1297 CEPH_NOSNAP,
1298 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1299 ops,
1300 rbd_dev->header_name,
1301 0, 0, NULL, NULL, NULL);
1302
1303
1304 rbd_destroy_ops(ops);
1305 ceph_osdc_cancel_event(rbd_dev->watch_event);
1306 rbd_dev->watch_event = NULL;
1307 return ret;
1308 }
1309
1310 struct rbd_notify_info {
1311 struct rbd_device *rbd_dev;
1312 };
1313
1314 static void rbd_notify_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1315 {
1316 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1317 if (!rbd_dev)
1318 return;
1319
1320 dout("rbd_notify_cb %s notify_id=%llu opcode=%u\n",
1321 rbd_dev->header_name, (unsigned long long) notify_id,
1322 (unsigned int) opcode);
1323 }
1324
1325 /*
1326 * Request sync osd notify
1327 */
1328 static int rbd_req_sync_notify(struct rbd_device *rbd_dev)
1329 {
1330 struct ceph_osd_req_op *ops;
1331 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1332 struct ceph_osd_event *event;
1333 struct rbd_notify_info info;
1334 int payload_len = sizeof(u32) + sizeof(u32);
1335 int ret;
1336
1337 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_NOTIFY, payload_len);
1338 if (!ops)
1339 return -ENOMEM;
1340
1341 info.rbd_dev = rbd_dev;
1342
1343 ret = ceph_osdc_create_event(osdc, rbd_notify_cb, 1,
1344 (void *)&info, &event);
1345 if (ret < 0)
1346 goto fail;
1347
1348 ops[0].watch.ver = 1;
1349 ops[0].watch.flag = 1;
1350 ops[0].watch.cookie = event->cookie;
1351 ops[0].watch.prot_ver = RADOS_NOTIFY_VER;
1352 ops[0].watch.timeout = 12;
1353
1354 ret = rbd_req_sync_op(rbd_dev, NULL,
1355 CEPH_NOSNAP,
1356 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1357 ops,
1358 rbd_dev->header_name,
1359 0, 0, NULL, NULL, NULL);
1360 if (ret < 0)
1361 goto fail_event;
1362
1363 ret = ceph_osdc_wait_event(event, CEPH_OSD_TIMEOUT_DEFAULT);
1364 dout("ceph_osdc_wait_event returned %d\n", ret);
1365 rbd_destroy_ops(ops);
1366 return 0;
1367
1368 fail_event:
1369 ceph_osdc_cancel_event(event);
1370 fail:
1371 rbd_destroy_ops(ops);
1372 return ret;
1373 }
1374
1375 /*
1376 * Request sync osd read
1377 */
1378 static int rbd_req_sync_exec(struct rbd_device *rbd_dev,
1379 const char *object_name,
1380 const char *class_name,
1381 const char *method_name,
1382 const char *data,
1383 int len,
1384 u64 *ver)
1385 {
1386 struct ceph_osd_req_op *ops;
1387 int class_name_len = strlen(class_name);
1388 int method_name_len = strlen(method_name);
1389 int ret;
1390
1391 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_CALL,
1392 class_name_len + method_name_len + len);
1393 if (!ops)
1394 return -ENOMEM;
1395
1396 ops[0].cls.class_name = class_name;
1397 ops[0].cls.class_len = (__u8) class_name_len;
1398 ops[0].cls.method_name = method_name;
1399 ops[0].cls.method_len = (__u8) method_name_len;
1400 ops[0].cls.argc = 0;
1401 ops[0].cls.indata = data;
1402 ops[0].cls.indata_len = len;
1403
1404 ret = rbd_req_sync_op(rbd_dev, NULL,
1405 CEPH_NOSNAP,
1406 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1407 ops,
1408 object_name, 0, 0, NULL, NULL, ver);
1409
1410 rbd_destroy_ops(ops);
1411
1412 dout("cls_exec returned %d\n", ret);
1413 return ret;
1414 }
1415
1416 static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1417 {
1418 struct rbd_req_coll *coll =
1419 kzalloc(sizeof(struct rbd_req_coll) +
1420 sizeof(struct rbd_req_status) * num_reqs,
1421 GFP_ATOMIC);
1422
1423 if (!coll)
1424 return NULL;
1425 coll->total = num_reqs;
1426 kref_init(&coll->kref);
1427 return coll;
1428 }
1429
1430 /*
1431 * block device queue callback
1432 */
1433 static void rbd_rq_fn(struct request_queue *q)
1434 {
1435 struct rbd_device *rbd_dev = q->queuedata;
1436 struct request *rq;
1437 struct bio_pair *bp = NULL;
1438
1439 while ((rq = blk_fetch_request(q))) {
1440 struct bio *bio;
1441 struct bio *rq_bio, *next_bio = NULL;
1442 bool do_write;
1443 unsigned int size;
1444 u64 op_size = 0;
1445 u64 ofs;
1446 int num_segs, cur_seg = 0;
1447 struct rbd_req_coll *coll;
1448 struct ceph_snap_context *snapc;
1449
1450 /* peek at request from block layer */
1451 if (!rq)
1452 break;
1453
1454 dout("fetched request\n");
1455
1456 /* filter out block requests we don't understand */
1457 if ((rq->cmd_type != REQ_TYPE_FS)) {
1458 __blk_end_request_all(rq, 0);
1459 continue;
1460 }
1461
1462 /* deduce our operation (read, write) */
1463 do_write = (rq_data_dir(rq) == WRITE);
1464
1465 size = blk_rq_bytes(rq);
1466 ofs = blk_rq_pos(rq) * SECTOR_SIZE;
1467 rq_bio = rq->bio;
1468 if (do_write && rbd_dev->read_only) {
1469 __blk_end_request_all(rq, -EROFS);
1470 continue;
1471 }
1472
1473 spin_unlock_irq(q->queue_lock);
1474
1475 down_read(&rbd_dev->header_rwsem);
1476
1477 if (rbd_dev->snap_id != CEPH_NOSNAP && !rbd_dev->snap_exists) {
1478 up_read(&rbd_dev->header_rwsem);
1479 dout("request for non-existent snapshot");
1480 spin_lock_irq(q->queue_lock);
1481 __blk_end_request_all(rq, -ENXIO);
1482 continue;
1483 }
1484
1485 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1486
1487 up_read(&rbd_dev->header_rwsem);
1488
1489 dout("%s 0x%x bytes at 0x%llx\n",
1490 do_write ? "write" : "read",
1491 size, (unsigned long long) blk_rq_pos(rq) * SECTOR_SIZE);
1492
1493 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1494 coll = rbd_alloc_coll(num_segs);
1495 if (!coll) {
1496 spin_lock_irq(q->queue_lock);
1497 __blk_end_request_all(rq, -ENOMEM);
1498 ceph_put_snap_context(snapc);
1499 continue;
1500 }
1501
1502 do {
1503 /* a bio clone to be passed down to OSD req */
1504 dout("rq->bio->bi_vcnt=%hu\n", rq->bio->bi_vcnt);
1505 op_size = rbd_get_segment(&rbd_dev->header,
1506 rbd_dev->header.object_prefix,
1507 ofs, size,
1508 NULL, NULL);
1509 kref_get(&coll->kref);
1510 bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1511 op_size, GFP_ATOMIC);
1512 if (!bio) {
1513 rbd_coll_end_req_index(rq, coll, cur_seg,
1514 -ENOMEM, op_size);
1515 goto next_seg;
1516 }
1517
1518
1519 /* init OSD command: write or read */
1520 if (do_write)
1521 rbd_req_write(rq, rbd_dev,
1522 snapc,
1523 ofs,
1524 op_size, bio,
1525 coll, cur_seg);
1526 else
1527 rbd_req_read(rq, rbd_dev,
1528 rbd_dev->snap_id,
1529 ofs,
1530 op_size, bio,
1531 coll, cur_seg);
1532
1533 next_seg:
1534 size -= op_size;
1535 ofs += op_size;
1536
1537 cur_seg++;
1538 rq_bio = next_bio;
1539 } while (size > 0);
1540 kref_put(&coll->kref, rbd_coll_release);
1541
1542 if (bp)
1543 bio_pair_release(bp);
1544 spin_lock_irq(q->queue_lock);
1545
1546 ceph_put_snap_context(snapc);
1547 }
1548 }
1549
1550 /*
1551 * a queue callback. Makes sure that we don't create a bio that spans across
1552 * multiple osd objects. One exception would be with a single page bios,
1553 * which we handle later at bio_chain_clone
1554 */
1555 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1556 struct bio_vec *bvec)
1557 {
1558 struct rbd_device *rbd_dev = q->queuedata;
1559 unsigned int chunk_sectors;
1560 sector_t sector;
1561 unsigned int bio_sectors;
1562 int max;
1563
1564 chunk_sectors = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1565 sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1566 bio_sectors = bmd->bi_size >> SECTOR_SHIFT;
1567
1568 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
1569 + bio_sectors)) << SECTOR_SHIFT;
1570 if (max < 0)
1571 max = 0; /* bio_add cannot handle a negative return */
1572 if (max <= bvec->bv_len && bio_sectors == 0)
1573 return bvec->bv_len;
1574 return max;
1575 }
1576
1577 static void rbd_free_disk(struct rbd_device *rbd_dev)
1578 {
1579 struct gendisk *disk = rbd_dev->disk;
1580
1581 if (!disk)
1582 return;
1583
1584 rbd_header_free(&rbd_dev->header);
1585
1586 if (disk->flags & GENHD_FL_UP)
1587 del_gendisk(disk);
1588 if (disk->queue)
1589 blk_cleanup_queue(disk->queue);
1590 put_disk(disk);
1591 }
1592
1593 /*
1594 * reload the ondisk the header
1595 */
1596 static int rbd_read_header(struct rbd_device *rbd_dev,
1597 struct rbd_image_header *header)
1598 {
1599 ssize_t rc;
1600 struct rbd_image_header_ondisk *dh;
1601 u32 snap_count = 0;
1602 u64 ver;
1603 size_t len;
1604
1605 /*
1606 * First reads the fixed-size header to determine the number
1607 * of snapshots, then re-reads it, along with all snapshot
1608 * records as well as their stored names.
1609 */
1610 len = sizeof (*dh);
1611 while (1) {
1612 dh = kmalloc(len, GFP_KERNEL);
1613 if (!dh)
1614 return -ENOMEM;
1615
1616 rc = rbd_req_sync_read(rbd_dev,
1617 CEPH_NOSNAP,
1618 rbd_dev->header_name,
1619 0, len,
1620 (char *)dh, &ver);
1621 if (rc < 0)
1622 goto out_dh;
1623
1624 rc = rbd_header_from_disk(header, dh, snap_count);
1625 if (rc < 0) {
1626 if (rc == -ENXIO)
1627 pr_warning("unrecognized header format"
1628 " for image %s\n",
1629 rbd_dev->image_name);
1630 goto out_dh;
1631 }
1632
1633 if (snap_count == header->total_snaps)
1634 break;
1635
1636 snap_count = header->total_snaps;
1637 len = sizeof (*dh) +
1638 snap_count * sizeof(struct rbd_image_snap_ondisk) +
1639 header->snap_names_len;
1640
1641 rbd_header_free(header);
1642 kfree(dh);
1643 }
1644 header->obj_version = ver;
1645
1646 out_dh:
1647 kfree(dh);
1648 return rc;
1649 }
1650
1651 /*
1652 * create a snapshot
1653 */
1654 static int rbd_header_add_snap(struct rbd_device *rbd_dev,
1655 const char *snap_name,
1656 gfp_t gfp_flags)
1657 {
1658 int name_len = strlen(snap_name);
1659 u64 new_snapid;
1660 int ret;
1661 void *data, *p, *e;
1662 struct ceph_mon_client *monc;
1663
1664 /* we should create a snapshot only if we're pointing at the head */
1665 if (rbd_dev->snap_id != CEPH_NOSNAP)
1666 return -EINVAL;
1667
1668 monc = &rbd_dev->rbd_client->client->monc;
1669 ret = ceph_monc_create_snapid(monc, rbd_dev->pool_id, &new_snapid);
1670 dout("created snapid=%llu\n", (unsigned long long) new_snapid);
1671 if (ret < 0)
1672 return ret;
1673
1674 data = kmalloc(name_len + 16, gfp_flags);
1675 if (!data)
1676 return -ENOMEM;
1677
1678 p = data;
1679 e = data + name_len + 16;
1680
1681 ceph_encode_string_safe(&p, e, snap_name, name_len, bad);
1682 ceph_encode_64_safe(&p, e, new_snapid, bad);
1683
1684 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
1685 "rbd", "snap_add",
1686 data, p - data, NULL);
1687
1688 kfree(data);
1689
1690 return ret < 0 ? ret : 0;
1691 bad:
1692 return -ERANGE;
1693 }
1694
1695 static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1696 {
1697 struct rbd_snap *snap;
1698 struct rbd_snap *next;
1699
1700 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
1701 __rbd_remove_snap_dev(snap);
1702 }
1703
1704 /*
1705 * only read the first part of the ondisk header, without the snaps info
1706 */
1707 static int __rbd_refresh_header(struct rbd_device *rbd_dev, u64 *hver)
1708 {
1709 int ret;
1710 struct rbd_image_header h;
1711
1712 ret = rbd_read_header(rbd_dev, &h);
1713 if (ret < 0)
1714 return ret;
1715
1716 down_write(&rbd_dev->header_rwsem);
1717
1718 /* resized? */
1719 if (rbd_dev->snap_id == CEPH_NOSNAP) {
1720 sector_t size = (sector_t) h.image_size / SECTOR_SIZE;
1721
1722 dout("setting size to %llu sectors", (unsigned long long) size);
1723 set_capacity(rbd_dev->disk, size);
1724 }
1725
1726 /* rbd_dev->header.object_prefix shouldn't change */
1727 kfree(rbd_dev->header.snap_sizes);
1728 kfree(rbd_dev->header.snap_names);
1729 /* osd requests may still refer to snapc */
1730 ceph_put_snap_context(rbd_dev->header.snapc);
1731
1732 if (hver)
1733 *hver = h.obj_version;
1734 rbd_dev->header.obj_version = h.obj_version;
1735 rbd_dev->header.image_size = h.image_size;
1736 rbd_dev->header.total_snaps = h.total_snaps;
1737 rbd_dev->header.snapc = h.snapc;
1738 rbd_dev->header.snap_names = h.snap_names;
1739 rbd_dev->header.snap_names_len = h.snap_names_len;
1740 rbd_dev->header.snap_sizes = h.snap_sizes;
1741 /* Free the extra copy of the object prefix */
1742 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
1743 kfree(h.object_prefix);
1744
1745 ret = __rbd_init_snaps_header(rbd_dev);
1746
1747 up_write(&rbd_dev->header_rwsem);
1748
1749 return ret;
1750 }
1751
1752 static int rbd_refresh_header(struct rbd_device *rbd_dev, u64 *hver)
1753 {
1754 int ret;
1755
1756 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1757 ret = __rbd_refresh_header(rbd_dev, hver);
1758 mutex_unlock(&ctl_mutex);
1759
1760 return ret;
1761 }
1762
1763 static int rbd_init_disk(struct rbd_device *rbd_dev)
1764 {
1765 struct gendisk *disk;
1766 struct request_queue *q;
1767 int rc;
1768 u64 segment_size;
1769 u64 total_size = 0;
1770
1771 /* contact OSD, request size info about the object being mapped */
1772 rc = rbd_read_header(rbd_dev, &rbd_dev->header);
1773 if (rc)
1774 return rc;
1775
1776 /* no need to lock here, as rbd_dev is not registered yet */
1777 rc = __rbd_init_snaps_header(rbd_dev);
1778 if (rc)
1779 return rc;
1780
1781 rc = rbd_header_set_snap(rbd_dev, &total_size);
1782 if (rc)
1783 return rc;
1784
1785 /* create gendisk info */
1786 rc = -ENOMEM;
1787 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1788 if (!disk)
1789 goto out;
1790
1791 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
1792 rbd_dev->dev_id);
1793 disk->major = rbd_dev->major;
1794 disk->first_minor = 0;
1795 disk->fops = &rbd_bd_ops;
1796 disk->private_data = rbd_dev;
1797
1798 /* init rq */
1799 rc = -ENOMEM;
1800 q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1801 if (!q)
1802 goto out_disk;
1803
1804 /* We use the default size, but let's be explicit about it. */
1805 blk_queue_physical_block_size(q, SECTOR_SIZE);
1806
1807 /* set io sizes to object size */
1808 segment_size = rbd_obj_bytes(&rbd_dev->header);
1809 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
1810 blk_queue_max_segment_size(q, segment_size);
1811 blk_queue_io_min(q, segment_size);
1812 blk_queue_io_opt(q, segment_size);
1813
1814 blk_queue_merge_bvec(q, rbd_merge_bvec);
1815 disk->queue = q;
1816
1817 q->queuedata = rbd_dev;
1818
1819 rbd_dev->disk = disk;
1820 rbd_dev->q = q;
1821
1822 /* finally, announce the disk to the world */
1823 set_capacity(disk, total_size / SECTOR_SIZE);
1824 add_disk(disk);
1825
1826 pr_info("%s: added with size 0x%llx\n",
1827 disk->disk_name, (unsigned long long)total_size);
1828 return 0;
1829
1830 out_disk:
1831 put_disk(disk);
1832 out:
1833 return rc;
1834 }
1835
1836 /*
1837 sysfs
1838 */
1839
1840 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
1841 {
1842 return container_of(dev, struct rbd_device, dev);
1843 }
1844
1845 static ssize_t rbd_size_show(struct device *dev,
1846 struct device_attribute *attr, char *buf)
1847 {
1848 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1849 sector_t size;
1850
1851 down_read(&rbd_dev->header_rwsem);
1852 size = get_capacity(rbd_dev->disk);
1853 up_read(&rbd_dev->header_rwsem);
1854
1855 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
1856 }
1857
1858 static ssize_t rbd_major_show(struct device *dev,
1859 struct device_attribute *attr, char *buf)
1860 {
1861 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1862
1863 return sprintf(buf, "%d\n", rbd_dev->major);
1864 }
1865
1866 static ssize_t rbd_client_id_show(struct device *dev,
1867 struct device_attribute *attr, char *buf)
1868 {
1869 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1870
1871 return sprintf(buf, "client%lld\n",
1872 ceph_client_id(rbd_dev->rbd_client->client));
1873 }
1874
1875 static ssize_t rbd_pool_show(struct device *dev,
1876 struct device_attribute *attr, char *buf)
1877 {
1878 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1879
1880 return sprintf(buf, "%s\n", rbd_dev->pool_name);
1881 }
1882
1883 static ssize_t rbd_pool_id_show(struct device *dev,
1884 struct device_attribute *attr, char *buf)
1885 {
1886 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1887
1888 return sprintf(buf, "%d\n", rbd_dev->pool_id);
1889 }
1890
1891 static ssize_t rbd_name_show(struct device *dev,
1892 struct device_attribute *attr, char *buf)
1893 {
1894 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1895
1896 return sprintf(buf, "%s\n", rbd_dev->image_name);
1897 }
1898
1899 static ssize_t rbd_snap_show(struct device *dev,
1900 struct device_attribute *attr,
1901 char *buf)
1902 {
1903 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1904
1905 return sprintf(buf, "%s\n", rbd_dev->snap_name);
1906 }
1907
1908 static ssize_t rbd_image_refresh(struct device *dev,
1909 struct device_attribute *attr,
1910 const char *buf,
1911 size_t size)
1912 {
1913 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1914 int ret;
1915
1916 ret = rbd_refresh_header(rbd_dev, NULL);
1917
1918 return ret < 0 ? ret : size;
1919 }
1920
1921 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
1922 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
1923 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1924 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
1925 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
1926 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
1927 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1928 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1929 static DEVICE_ATTR(create_snap, S_IWUSR, NULL, rbd_snap_add);
1930
1931 static struct attribute *rbd_attrs[] = {
1932 &dev_attr_size.attr,
1933 &dev_attr_major.attr,
1934 &dev_attr_client_id.attr,
1935 &dev_attr_pool.attr,
1936 &dev_attr_pool_id.attr,
1937 &dev_attr_name.attr,
1938 &dev_attr_current_snap.attr,
1939 &dev_attr_refresh.attr,
1940 &dev_attr_create_snap.attr,
1941 NULL
1942 };
1943
1944 static struct attribute_group rbd_attr_group = {
1945 .attrs = rbd_attrs,
1946 };
1947
1948 static const struct attribute_group *rbd_attr_groups[] = {
1949 &rbd_attr_group,
1950 NULL
1951 };
1952
1953 static void rbd_sysfs_dev_release(struct device *dev)
1954 {
1955 }
1956
1957 static struct device_type rbd_device_type = {
1958 .name = "rbd",
1959 .groups = rbd_attr_groups,
1960 .release = rbd_sysfs_dev_release,
1961 };
1962
1963
1964 /*
1965 sysfs - snapshots
1966 */
1967
1968 static ssize_t rbd_snap_size_show(struct device *dev,
1969 struct device_attribute *attr,
1970 char *buf)
1971 {
1972 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1973
1974 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
1975 }
1976
1977 static ssize_t rbd_snap_id_show(struct device *dev,
1978 struct device_attribute *attr,
1979 char *buf)
1980 {
1981 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1982
1983 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
1984 }
1985
1986 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
1987 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
1988
1989 static struct attribute *rbd_snap_attrs[] = {
1990 &dev_attr_snap_size.attr,
1991 &dev_attr_snap_id.attr,
1992 NULL,
1993 };
1994
1995 static struct attribute_group rbd_snap_attr_group = {
1996 .attrs = rbd_snap_attrs,
1997 };
1998
1999 static void rbd_snap_dev_release(struct device *dev)
2000 {
2001 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2002 kfree(snap->name);
2003 kfree(snap);
2004 }
2005
2006 static const struct attribute_group *rbd_snap_attr_groups[] = {
2007 &rbd_snap_attr_group,
2008 NULL
2009 };
2010
2011 static struct device_type rbd_snap_device_type = {
2012 .groups = rbd_snap_attr_groups,
2013 .release = rbd_snap_dev_release,
2014 };
2015
2016 static void __rbd_remove_snap_dev(struct rbd_snap *snap)
2017 {
2018 list_del(&snap->node);
2019 device_unregister(&snap->dev);
2020 }
2021
2022 static int rbd_register_snap_dev(struct rbd_snap *snap,
2023 struct device *parent)
2024 {
2025 struct device *dev = &snap->dev;
2026 int ret;
2027
2028 dev->type = &rbd_snap_device_type;
2029 dev->parent = parent;
2030 dev->release = rbd_snap_dev_release;
2031 dev_set_name(dev, "snap_%s", snap->name);
2032 ret = device_register(dev);
2033
2034 return ret;
2035 }
2036
2037 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2038 int i, const char *name)
2039 {
2040 struct rbd_snap *snap;
2041 int ret;
2042
2043 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2044 if (!snap)
2045 return ERR_PTR(-ENOMEM);
2046
2047 ret = -ENOMEM;
2048 snap->name = kstrdup(name, GFP_KERNEL);
2049 if (!snap->name)
2050 goto err;
2051
2052 snap->size = rbd_dev->header.snap_sizes[i];
2053 snap->id = rbd_dev->header.snapc->snaps[i];
2054 if (device_is_registered(&rbd_dev->dev)) {
2055 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
2056 if (ret < 0)
2057 goto err;
2058 }
2059
2060 return snap;
2061
2062 err:
2063 kfree(snap->name);
2064 kfree(snap);
2065
2066 return ERR_PTR(ret);
2067 }
2068
2069 /*
2070 * search for the previous snap in a null delimited string list
2071 */
2072 const char *rbd_prev_snap_name(const char *name, const char *start)
2073 {
2074 if (name < start + 2)
2075 return NULL;
2076
2077 name -= 2;
2078 while (*name) {
2079 if (name == start)
2080 return start;
2081 name--;
2082 }
2083 return name + 1;
2084 }
2085
2086 /*
2087 * compare the old list of snapshots that we have to what's in the header
2088 * and update it accordingly. Note that the header holds the snapshots
2089 * in a reverse order (from newest to oldest) and we need to go from
2090 * older to new so that we don't get a duplicate snap name when
2091 * doing the process (e.g., removed snapshot and recreated a new
2092 * one with the same name.
2093 */
2094 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev)
2095 {
2096 const char *name, *first_name;
2097 int i = rbd_dev->header.total_snaps;
2098 struct rbd_snap *snap, *old_snap = NULL;
2099 struct list_head *p, *n;
2100
2101 first_name = rbd_dev->header.snap_names;
2102 name = first_name + rbd_dev->header.snap_names_len;
2103
2104 list_for_each_prev_safe(p, n, &rbd_dev->snaps) {
2105 u64 cur_id;
2106
2107 old_snap = list_entry(p, struct rbd_snap, node);
2108
2109 if (i)
2110 cur_id = rbd_dev->header.snapc->snaps[i - 1];
2111
2112 if (!i || old_snap->id < cur_id) {
2113 /*
2114 * old_snap->id was skipped, thus was
2115 * removed. If this rbd_dev is mapped to
2116 * the removed snapshot, record that it no
2117 * longer exists, to prevent further I/O.
2118 */
2119 if (rbd_dev->snap_id == old_snap->id)
2120 rbd_dev->snap_exists = false;
2121 __rbd_remove_snap_dev(old_snap);
2122 continue;
2123 }
2124 if (old_snap->id == cur_id) {
2125 /* we have this snapshot already */
2126 i--;
2127 name = rbd_prev_snap_name(name, first_name);
2128 continue;
2129 }
2130 for (; i > 0;
2131 i--, name = rbd_prev_snap_name(name, first_name)) {
2132 if (!name) {
2133 WARN_ON(1);
2134 return -EINVAL;
2135 }
2136 cur_id = rbd_dev->header.snapc->snaps[i];
2137 /* snapshot removal? handle it above */
2138 if (cur_id >= old_snap->id)
2139 break;
2140 /* a new snapshot */
2141 snap = __rbd_add_snap_dev(rbd_dev, i - 1, name);
2142 if (IS_ERR(snap))
2143 return PTR_ERR(snap);
2144
2145 /* note that we add it backward so using n and not p */
2146 list_add(&snap->node, n);
2147 p = &snap->node;
2148 }
2149 }
2150 /* we're done going over the old snap list, just add what's left */
2151 for (; i > 0; i--) {
2152 name = rbd_prev_snap_name(name, first_name);
2153 if (!name) {
2154 WARN_ON(1);
2155 return -EINVAL;
2156 }
2157 snap = __rbd_add_snap_dev(rbd_dev, i - 1, name);
2158 if (IS_ERR(snap))
2159 return PTR_ERR(snap);
2160 list_add(&snap->node, &rbd_dev->snaps);
2161 }
2162
2163 return 0;
2164 }
2165
2166 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2167 {
2168 int ret;
2169 struct device *dev;
2170 struct rbd_snap *snap;
2171
2172 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2173 dev = &rbd_dev->dev;
2174
2175 dev->bus = &rbd_bus_type;
2176 dev->type = &rbd_device_type;
2177 dev->parent = &rbd_root_dev;
2178 dev->release = rbd_dev_release;
2179 dev_set_name(dev, "%d", rbd_dev->dev_id);
2180 ret = device_register(dev);
2181 if (ret < 0)
2182 goto out;
2183
2184 list_for_each_entry(snap, &rbd_dev->snaps, node) {
2185 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
2186 if (ret < 0)
2187 break;
2188 }
2189 out:
2190 mutex_unlock(&ctl_mutex);
2191 return ret;
2192 }
2193
2194 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2195 {
2196 device_unregister(&rbd_dev->dev);
2197 }
2198
2199 static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
2200 {
2201 int ret, rc;
2202
2203 do {
2204 ret = rbd_req_sync_watch(rbd_dev);
2205 if (ret == -ERANGE) {
2206 rc = rbd_refresh_header(rbd_dev, NULL);
2207 if (rc < 0)
2208 return rc;
2209 }
2210 } while (ret == -ERANGE);
2211
2212 return ret;
2213 }
2214
2215 static atomic64_t rbd_id_max = ATOMIC64_INIT(0);
2216
2217 /*
2218 * Get a unique rbd identifier for the given new rbd_dev, and add
2219 * the rbd_dev to the global list. The minimum rbd id is 1.
2220 */
2221 static void rbd_id_get(struct rbd_device *rbd_dev)
2222 {
2223 rbd_dev->dev_id = atomic64_inc_return(&rbd_id_max);
2224
2225 spin_lock(&rbd_dev_list_lock);
2226 list_add_tail(&rbd_dev->node, &rbd_dev_list);
2227 spin_unlock(&rbd_dev_list_lock);
2228 }
2229
2230 /*
2231 * Remove an rbd_dev from the global list, and record that its
2232 * identifier is no longer in use.
2233 */
2234 static void rbd_id_put(struct rbd_device *rbd_dev)
2235 {
2236 struct list_head *tmp;
2237 int rbd_id = rbd_dev->dev_id;
2238 int max_id;
2239
2240 BUG_ON(rbd_id < 1);
2241
2242 spin_lock(&rbd_dev_list_lock);
2243 list_del_init(&rbd_dev->node);
2244
2245 /*
2246 * If the id being "put" is not the current maximum, there
2247 * is nothing special we need to do.
2248 */
2249 if (rbd_id != atomic64_read(&rbd_id_max)) {
2250 spin_unlock(&rbd_dev_list_lock);
2251 return;
2252 }
2253
2254 /*
2255 * We need to update the current maximum id. Search the
2256 * list to find out what it is. We're more likely to find
2257 * the maximum at the end, so search the list backward.
2258 */
2259 max_id = 0;
2260 list_for_each_prev(tmp, &rbd_dev_list) {
2261 struct rbd_device *rbd_dev;
2262
2263 rbd_dev = list_entry(tmp, struct rbd_device, node);
2264 if (rbd_id > max_id)
2265 max_id = rbd_id;
2266 }
2267 spin_unlock(&rbd_dev_list_lock);
2268
2269 /*
2270 * The max id could have been updated by rbd_id_get(), in
2271 * which case it now accurately reflects the new maximum.
2272 * Be careful not to overwrite the maximum value in that
2273 * case.
2274 */
2275 atomic64_cmpxchg(&rbd_id_max, rbd_id, max_id);
2276 }
2277
2278 /*
2279 * Skips over white space at *buf, and updates *buf to point to the
2280 * first found non-space character (if any). Returns the length of
2281 * the token (string of non-white space characters) found. Note
2282 * that *buf must be terminated with '\0'.
2283 */
2284 static inline size_t next_token(const char **buf)
2285 {
2286 /*
2287 * These are the characters that produce nonzero for
2288 * isspace() in the "C" and "POSIX" locales.
2289 */
2290 const char *spaces = " \f\n\r\t\v";
2291
2292 *buf += strspn(*buf, spaces); /* Find start of token */
2293
2294 return strcspn(*buf, spaces); /* Return token length */
2295 }
2296
2297 /*
2298 * Finds the next token in *buf, and if the provided token buffer is
2299 * big enough, copies the found token into it. The result, if
2300 * copied, is guaranteed to be terminated with '\0'. Note that *buf
2301 * must be terminated with '\0' on entry.
2302 *
2303 * Returns the length of the token found (not including the '\0').
2304 * Return value will be 0 if no token is found, and it will be >=
2305 * token_size if the token would not fit.
2306 *
2307 * The *buf pointer will be updated to point beyond the end of the
2308 * found token. Note that this occurs even if the token buffer is
2309 * too small to hold it.
2310 */
2311 static inline size_t copy_token(const char **buf,
2312 char *token,
2313 size_t token_size)
2314 {
2315 size_t len;
2316
2317 len = next_token(buf);
2318 if (len < token_size) {
2319 memcpy(token, *buf, len);
2320 *(token + len) = '\0';
2321 }
2322 *buf += len;
2323
2324 return len;
2325 }
2326
2327 /*
2328 * Finds the next token in *buf, dynamically allocates a buffer big
2329 * enough to hold a copy of it, and copies the token into the new
2330 * buffer. The copy is guaranteed to be terminated with '\0'. Note
2331 * that a duplicate buffer is created even for a zero-length token.
2332 *
2333 * Returns a pointer to the newly-allocated duplicate, or a null
2334 * pointer if memory for the duplicate was not available. If
2335 * the lenp argument is a non-null pointer, the length of the token
2336 * (not including the '\0') is returned in *lenp.
2337 *
2338 * If successful, the *buf pointer will be updated to point beyond
2339 * the end of the found token.
2340 *
2341 * Note: uses GFP_KERNEL for allocation.
2342 */
2343 static inline char *dup_token(const char **buf, size_t *lenp)
2344 {
2345 char *dup;
2346 size_t len;
2347
2348 len = next_token(buf);
2349 dup = kmalloc(len + 1, GFP_KERNEL);
2350 if (!dup)
2351 return NULL;
2352
2353 memcpy(dup, *buf, len);
2354 *(dup + len) = '\0';
2355 *buf += len;
2356
2357 if (lenp)
2358 *lenp = len;
2359
2360 return dup;
2361 }
2362
2363 /*
2364 * This fills in the pool_name, image_name, image_name_len, snap_name,
2365 * rbd_dev, rbd_md_name, and name fields of the given rbd_dev, based
2366 * on the list of monitor addresses and other options provided via
2367 * /sys/bus/rbd/add.
2368 *
2369 * Note: rbd_dev is assumed to have been initially zero-filled.
2370 */
2371 static int rbd_add_parse_args(struct rbd_device *rbd_dev,
2372 const char *buf,
2373 const char **mon_addrs,
2374 size_t *mon_addrs_size,
2375 char *options,
2376 size_t options_size)
2377 {
2378 size_t len;
2379 int ret;
2380
2381 /* The first four tokens are required */
2382
2383 len = next_token(&buf);
2384 if (!len)
2385 return -EINVAL;
2386 *mon_addrs_size = len + 1;
2387 *mon_addrs = buf;
2388
2389 buf += len;
2390
2391 len = copy_token(&buf, options, options_size);
2392 if (!len || len >= options_size)
2393 return -EINVAL;
2394
2395 ret = -ENOMEM;
2396 rbd_dev->pool_name = dup_token(&buf, NULL);
2397 if (!rbd_dev->pool_name)
2398 goto out_err;
2399
2400 rbd_dev->image_name = dup_token(&buf, &rbd_dev->image_name_len);
2401 if (!rbd_dev->image_name)
2402 goto out_err;
2403
2404 /* Create the name of the header object */
2405
2406 rbd_dev->header_name = kmalloc(rbd_dev->image_name_len
2407 + sizeof (RBD_SUFFIX),
2408 GFP_KERNEL);
2409 if (!rbd_dev->header_name)
2410 goto out_err;
2411 sprintf(rbd_dev->header_name, "%s%s", rbd_dev->image_name, RBD_SUFFIX);
2412
2413 /*
2414 * The snapshot name is optional. If none is is supplied,
2415 * we use the default value.
2416 */
2417 rbd_dev->snap_name = dup_token(&buf, &len);
2418 if (!rbd_dev->snap_name)
2419 goto out_err;
2420 if (!len) {
2421 /* Replace the empty name with the default */
2422 kfree(rbd_dev->snap_name);
2423 rbd_dev->snap_name
2424 = kmalloc(sizeof (RBD_SNAP_HEAD_NAME), GFP_KERNEL);
2425 if (!rbd_dev->snap_name)
2426 goto out_err;
2427
2428 memcpy(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
2429 sizeof (RBD_SNAP_HEAD_NAME));
2430 }
2431
2432 return 0;
2433
2434 out_err:
2435 kfree(rbd_dev->header_name);
2436 kfree(rbd_dev->image_name);
2437 kfree(rbd_dev->pool_name);
2438 rbd_dev->pool_name = NULL;
2439
2440 return ret;
2441 }
2442
2443 static ssize_t rbd_add(struct bus_type *bus,
2444 const char *buf,
2445 size_t count)
2446 {
2447 char *options;
2448 struct rbd_device *rbd_dev = NULL;
2449 const char *mon_addrs = NULL;
2450 size_t mon_addrs_size = 0;
2451 struct ceph_osd_client *osdc;
2452 int rc = -ENOMEM;
2453
2454 if (!try_module_get(THIS_MODULE))
2455 return -ENODEV;
2456
2457 options = kmalloc(count, GFP_KERNEL);
2458 if (!options)
2459 goto err_nomem;
2460 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
2461 if (!rbd_dev)
2462 goto err_nomem;
2463
2464 /* static rbd_device initialization */
2465 spin_lock_init(&rbd_dev->lock);
2466 INIT_LIST_HEAD(&rbd_dev->node);
2467 INIT_LIST_HEAD(&rbd_dev->snaps);
2468 init_rwsem(&rbd_dev->header_rwsem);
2469
2470 /* generate unique id: find highest unique id, add one */
2471 rbd_id_get(rbd_dev);
2472
2473 /* Fill in the device name, now that we have its id. */
2474 BUILD_BUG_ON(DEV_NAME_LEN
2475 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
2476 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
2477
2478 /* parse add command */
2479 rc = rbd_add_parse_args(rbd_dev, buf, &mon_addrs, &mon_addrs_size,
2480 options, count);
2481 if (rc)
2482 goto err_put_id;
2483
2484 rbd_dev->rbd_client = rbd_get_client(mon_addrs, mon_addrs_size - 1,
2485 options);
2486 if (IS_ERR(rbd_dev->rbd_client)) {
2487 rc = PTR_ERR(rbd_dev->rbd_client);
2488 goto err_put_id;
2489 }
2490
2491 /* pick the pool */
2492 osdc = &rbd_dev->rbd_client->client->osdc;
2493 rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
2494 if (rc < 0)
2495 goto err_out_client;
2496 rbd_dev->pool_id = rc;
2497
2498 /* register our block device */
2499 rc = register_blkdev(0, rbd_dev->name);
2500 if (rc < 0)
2501 goto err_out_client;
2502 rbd_dev->major = rc;
2503
2504 rc = rbd_bus_add_dev(rbd_dev);
2505 if (rc)
2506 goto err_out_blkdev;
2507
2508 /*
2509 * At this point cleanup in the event of an error is the job
2510 * of the sysfs code (initiated by rbd_bus_del_dev()).
2511 *
2512 * Set up and announce blkdev mapping.
2513 */
2514 rc = rbd_init_disk(rbd_dev);
2515 if (rc)
2516 goto err_out_bus;
2517
2518 rc = rbd_init_watch_dev(rbd_dev);
2519 if (rc)
2520 goto err_out_bus;
2521
2522 return count;
2523
2524 err_out_bus:
2525 /* this will also clean up rest of rbd_dev stuff */
2526
2527 rbd_bus_del_dev(rbd_dev);
2528 kfree(options);
2529 return rc;
2530
2531 err_out_blkdev:
2532 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2533 err_out_client:
2534 rbd_put_client(rbd_dev);
2535 err_put_id:
2536 if (rbd_dev->pool_name) {
2537 kfree(rbd_dev->snap_name);
2538 kfree(rbd_dev->header_name);
2539 kfree(rbd_dev->image_name);
2540 kfree(rbd_dev->pool_name);
2541 }
2542 rbd_id_put(rbd_dev);
2543 err_nomem:
2544 kfree(rbd_dev);
2545 kfree(options);
2546
2547 dout("Error adding device %s\n", buf);
2548 module_put(THIS_MODULE);
2549
2550 return (ssize_t) rc;
2551 }
2552
2553 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
2554 {
2555 struct list_head *tmp;
2556 struct rbd_device *rbd_dev;
2557
2558 spin_lock(&rbd_dev_list_lock);
2559 list_for_each(tmp, &rbd_dev_list) {
2560 rbd_dev = list_entry(tmp, struct rbd_device, node);
2561 if (rbd_dev->dev_id == dev_id) {
2562 spin_unlock(&rbd_dev_list_lock);
2563 return rbd_dev;
2564 }
2565 }
2566 spin_unlock(&rbd_dev_list_lock);
2567 return NULL;
2568 }
2569
2570 static void rbd_dev_release(struct device *dev)
2571 {
2572 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2573
2574 if (rbd_dev->watch_request) {
2575 struct ceph_client *client = rbd_dev->rbd_client->client;
2576
2577 ceph_osdc_unregister_linger_request(&client->osdc,
2578 rbd_dev->watch_request);
2579 }
2580 if (rbd_dev->watch_event)
2581 rbd_req_sync_unwatch(rbd_dev);
2582
2583 rbd_put_client(rbd_dev);
2584
2585 /* clean up and free blkdev */
2586 rbd_free_disk(rbd_dev);
2587 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2588
2589 /* done with the id, and with the rbd_dev */
2590 kfree(rbd_dev->snap_name);
2591 kfree(rbd_dev->header_name);
2592 kfree(rbd_dev->pool_name);
2593 kfree(rbd_dev->image_name);
2594 rbd_id_put(rbd_dev);
2595 kfree(rbd_dev);
2596
2597 /* release module ref */
2598 module_put(THIS_MODULE);
2599 }
2600
2601 static ssize_t rbd_remove(struct bus_type *bus,
2602 const char *buf,
2603 size_t count)
2604 {
2605 struct rbd_device *rbd_dev = NULL;
2606 int target_id, rc;
2607 unsigned long ul;
2608 int ret = count;
2609
2610 rc = strict_strtoul(buf, 10, &ul);
2611 if (rc)
2612 return rc;
2613
2614 /* convert to int; abort if we lost anything in the conversion */
2615 target_id = (int) ul;
2616 if (target_id != ul)
2617 return -EINVAL;
2618
2619 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2620
2621 rbd_dev = __rbd_get_dev(target_id);
2622 if (!rbd_dev) {
2623 ret = -ENOENT;
2624 goto done;
2625 }
2626
2627 __rbd_remove_all_snaps(rbd_dev);
2628 rbd_bus_del_dev(rbd_dev);
2629
2630 done:
2631 mutex_unlock(&ctl_mutex);
2632 return ret;
2633 }
2634
2635 static ssize_t rbd_snap_add(struct device *dev,
2636 struct device_attribute *attr,
2637 const char *buf,
2638 size_t count)
2639 {
2640 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2641 int ret;
2642 char *name = kmalloc(count + 1, GFP_KERNEL);
2643 if (!name)
2644 return -ENOMEM;
2645
2646 snprintf(name, count, "%s", buf);
2647
2648 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2649
2650 ret = rbd_header_add_snap(rbd_dev,
2651 name, GFP_KERNEL);
2652 if (ret < 0)
2653 goto err_unlock;
2654
2655 ret = __rbd_refresh_header(rbd_dev, NULL);
2656 if (ret < 0)
2657 goto err_unlock;
2658
2659 /* shouldn't hold ctl_mutex when notifying.. notify might
2660 trigger a watch callback that would need to get that mutex */
2661 mutex_unlock(&ctl_mutex);
2662
2663 /* make a best effort, don't error if failed */
2664 rbd_req_sync_notify(rbd_dev);
2665
2666 ret = count;
2667 kfree(name);
2668 return ret;
2669
2670 err_unlock:
2671 mutex_unlock(&ctl_mutex);
2672 kfree(name);
2673 return ret;
2674 }
2675
2676 /*
2677 * create control files in sysfs
2678 * /sys/bus/rbd/...
2679 */
2680 static int rbd_sysfs_init(void)
2681 {
2682 int ret;
2683
2684 ret = device_register(&rbd_root_dev);
2685 if (ret < 0)
2686 return ret;
2687
2688 ret = bus_register(&rbd_bus_type);
2689 if (ret < 0)
2690 device_unregister(&rbd_root_dev);
2691
2692 return ret;
2693 }
2694
2695 static void rbd_sysfs_cleanup(void)
2696 {
2697 bus_unregister(&rbd_bus_type);
2698 device_unregister(&rbd_root_dev);
2699 }
2700
2701 int __init rbd_init(void)
2702 {
2703 int rc;
2704
2705 rc = rbd_sysfs_init();
2706 if (rc)
2707 return rc;
2708 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
2709 return 0;
2710 }
2711
2712 void __exit rbd_exit(void)
2713 {
2714 rbd_sysfs_cleanup();
2715 }
2716
2717 module_init(rbd_init);
2718 module_exit(rbd_exit);
2719
2720 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
2721 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
2722 MODULE_DESCRIPTION("rados block device");
2723
2724 /* following authorship retained from original osdblk.c */
2725 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
2726
2727 MODULE_LICENSE("GPL");