]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
rbd: kill off the snapshot list
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36
37 #include <linux/kernel.h>
38 #include <linux/device.h>
39 #include <linux/module.h>
40 #include <linux/fs.h>
41 #include <linux/blkdev.h>
42
43 #include "rbd_types.h"
44
45 #define RBD_DEBUG /* Activate rbd_assert() calls */
46
47 /*
48 * The basic unit of block I/O is a sector. It is interpreted in a
49 * number of contexts in Linux (blk, bio, genhd), but the default is
50 * universally 512 bytes. These symbols are just slightly more
51 * meaningful than the bare numbers they represent.
52 */
53 #define SECTOR_SHIFT 9
54 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
55
56 #define RBD_DRV_NAME "rbd"
57 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
58
59 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
60
61 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
62 #define RBD_MAX_SNAP_NAME_LEN \
63 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
64
65 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
66
67 #define RBD_SNAP_HEAD_NAME "-"
68
69 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
70
71 /* This allows a single page to hold an image name sent by OSD */
72 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
73 #define RBD_IMAGE_ID_LEN_MAX 64
74
75 #define RBD_OBJ_PREFIX_LEN_MAX 64
76
77 /* Feature bits */
78
79 #define RBD_FEATURE_LAYERING (1<<0)
80 #define RBD_FEATURE_STRIPINGV2 (1<<1)
81 #define RBD_FEATURES_ALL \
82 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
83
84 /* Features supported by this (client software) implementation. */
85
86 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
87
88 /*
89 * An RBD device name will be "rbd#", where the "rbd" comes from
90 * RBD_DRV_NAME above, and # is a unique integer identifier.
91 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
92 * enough to hold all possible device names.
93 */
94 #define DEV_NAME_LEN 32
95 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
96
97 /*
98 * block device image metadata (in-memory version)
99 */
100 struct rbd_image_header {
101 /* These four fields never change for a given rbd image */
102 char *object_prefix;
103 u64 features;
104 __u8 obj_order;
105 __u8 crypt_type;
106 __u8 comp_type;
107
108 /* The remaining fields need to be updated occasionally */
109 u64 image_size;
110 struct ceph_snap_context *snapc;
111 char *snap_names;
112 u64 *snap_sizes;
113
114 u64 stripe_unit;
115 u64 stripe_count;
116 };
117
118 /*
119 * An rbd image specification.
120 *
121 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122 * identify an image. Each rbd_dev structure includes a pointer to
123 * an rbd_spec structure that encapsulates this identity.
124 *
125 * Each of the id's in an rbd_spec has an associated name. For a
126 * user-mapped image, the names are supplied and the id's associated
127 * with them are looked up. For a layered image, a parent image is
128 * defined by the tuple, and the names are looked up.
129 *
130 * An rbd_dev structure contains a parent_spec pointer which is
131 * non-null if the image it represents is a child in a layered
132 * image. This pointer will refer to the rbd_spec structure used
133 * by the parent rbd_dev for its own identity (i.e., the structure
134 * is shared between the parent and child).
135 *
136 * Since these structures are populated once, during the discovery
137 * phase of image construction, they are effectively immutable so
138 * we make no effort to synchronize access to them.
139 *
140 * Note that code herein does not assume the image name is known (it
141 * could be a null pointer).
142 */
143 struct rbd_spec {
144 u64 pool_id;
145 const char *pool_name;
146
147 const char *image_id;
148 const char *image_name;
149
150 u64 snap_id;
151 const char *snap_name;
152
153 struct kref kref;
154 };
155
156 /*
157 * an instance of the client. multiple devices may share an rbd client.
158 */
159 struct rbd_client {
160 struct ceph_client *client;
161 struct kref kref;
162 struct list_head node;
163 };
164
165 struct rbd_img_request;
166 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
167
168 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
169
170 struct rbd_obj_request;
171 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
172
173 enum obj_request_type {
174 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
175 };
176
177 enum obj_req_flags {
178 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
179 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
180 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
181 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
182 };
183
184 struct rbd_obj_request {
185 const char *object_name;
186 u64 offset; /* object start byte */
187 u64 length; /* bytes from offset */
188 unsigned long flags;
189
190 /*
191 * An object request associated with an image will have its
192 * img_data flag set; a standalone object request will not.
193 *
194 * A standalone object request will have which == BAD_WHICH
195 * and a null obj_request pointer.
196 *
197 * An object request initiated in support of a layered image
198 * object (to check for its existence before a write) will
199 * have which == BAD_WHICH and a non-null obj_request pointer.
200 *
201 * Finally, an object request for rbd image data will have
202 * which != BAD_WHICH, and will have a non-null img_request
203 * pointer. The value of which will be in the range
204 * 0..(img_request->obj_request_count-1).
205 */
206 union {
207 struct rbd_obj_request *obj_request; /* STAT op */
208 struct {
209 struct rbd_img_request *img_request;
210 u64 img_offset;
211 /* links for img_request->obj_requests list */
212 struct list_head links;
213 };
214 };
215 u32 which; /* posn image request list */
216
217 enum obj_request_type type;
218 union {
219 struct bio *bio_list;
220 struct {
221 struct page **pages;
222 u32 page_count;
223 };
224 };
225 struct page **copyup_pages;
226
227 struct ceph_osd_request *osd_req;
228
229 u64 xferred; /* bytes transferred */
230 int result;
231
232 rbd_obj_callback_t callback;
233 struct completion completion;
234
235 struct kref kref;
236 };
237
238 enum img_req_flags {
239 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
240 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
241 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
242 };
243
244 struct rbd_img_request {
245 struct rbd_device *rbd_dev;
246 u64 offset; /* starting image byte offset */
247 u64 length; /* byte count from offset */
248 unsigned long flags;
249 union {
250 u64 snap_id; /* for reads */
251 struct ceph_snap_context *snapc; /* for writes */
252 };
253 union {
254 struct request *rq; /* block request */
255 struct rbd_obj_request *obj_request; /* obj req initiator */
256 };
257 struct page **copyup_pages;
258 spinlock_t completion_lock;/* protects next_completion */
259 u32 next_completion;
260 rbd_img_callback_t callback;
261 u64 xferred;/* aggregate bytes transferred */
262 int result; /* first nonzero obj_request result */
263
264 u32 obj_request_count;
265 struct list_head obj_requests; /* rbd_obj_request structs */
266
267 struct kref kref;
268 };
269
270 #define for_each_obj_request(ireq, oreq) \
271 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
272 #define for_each_obj_request_from(ireq, oreq) \
273 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_safe(ireq, oreq, n) \
275 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
276
277 struct rbd_mapping {
278 u64 size;
279 u64 features;
280 bool read_only;
281 };
282
283 /*
284 * a single device
285 */
286 struct rbd_device {
287 int dev_id; /* blkdev unique id */
288
289 int major; /* blkdev assigned major */
290 struct gendisk *disk; /* blkdev's gendisk and rq */
291
292 u32 image_format; /* Either 1 or 2 */
293 struct rbd_client *rbd_client;
294
295 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
296
297 spinlock_t lock; /* queue, flags, open_count */
298
299 struct rbd_image_header header;
300 unsigned long flags; /* possibly lock protected */
301 struct rbd_spec *spec;
302
303 char *header_name;
304
305 struct ceph_file_layout layout;
306
307 struct ceph_osd_event *watch_event;
308 struct rbd_obj_request *watch_request;
309
310 struct rbd_spec *parent_spec;
311 u64 parent_overlap;
312 struct rbd_device *parent;
313
314 /* protects updating the header */
315 struct rw_semaphore header_rwsem;
316
317 struct rbd_mapping mapping;
318
319 struct list_head node;
320
321 /* sysfs related */
322 struct device dev;
323 unsigned long open_count; /* protected by lock */
324 };
325
326 /*
327 * Flag bits for rbd_dev->flags. If atomicity is required,
328 * rbd_dev->lock is used to protect access.
329 *
330 * Currently, only the "removing" flag (which is coupled with the
331 * "open_count" field) requires atomic access.
332 */
333 enum rbd_dev_flags {
334 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
335 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
336 };
337
338 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
339
340 static LIST_HEAD(rbd_dev_list); /* devices */
341 static DEFINE_SPINLOCK(rbd_dev_list_lock);
342
343 static LIST_HEAD(rbd_client_list); /* clients */
344 static DEFINE_SPINLOCK(rbd_client_list_lock);
345
346 static int rbd_img_request_submit(struct rbd_img_request *img_request);
347
348 static void rbd_dev_device_release(struct device *dev);
349
350 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
351 size_t count);
352 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
353 size_t count);
354 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
355
356 static struct bus_attribute rbd_bus_attrs[] = {
357 __ATTR(add, S_IWUSR, NULL, rbd_add),
358 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
359 __ATTR_NULL
360 };
361
362 static struct bus_type rbd_bus_type = {
363 .name = "rbd",
364 .bus_attrs = rbd_bus_attrs,
365 };
366
367 static void rbd_root_dev_release(struct device *dev)
368 {
369 }
370
371 static struct device rbd_root_dev = {
372 .init_name = "rbd",
373 .release = rbd_root_dev_release,
374 };
375
376 static __printf(2, 3)
377 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
378 {
379 struct va_format vaf;
380 va_list args;
381
382 va_start(args, fmt);
383 vaf.fmt = fmt;
384 vaf.va = &args;
385
386 if (!rbd_dev)
387 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
388 else if (rbd_dev->disk)
389 printk(KERN_WARNING "%s: %s: %pV\n",
390 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
391 else if (rbd_dev->spec && rbd_dev->spec->image_name)
392 printk(KERN_WARNING "%s: image %s: %pV\n",
393 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
394 else if (rbd_dev->spec && rbd_dev->spec->image_id)
395 printk(KERN_WARNING "%s: id %s: %pV\n",
396 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
397 else /* punt */
398 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
399 RBD_DRV_NAME, rbd_dev, &vaf);
400 va_end(args);
401 }
402
403 #ifdef RBD_DEBUG
404 #define rbd_assert(expr) \
405 if (unlikely(!(expr))) { \
406 printk(KERN_ERR "\nAssertion failure in %s() " \
407 "at line %d:\n\n" \
408 "\trbd_assert(%s);\n\n", \
409 __func__, __LINE__, #expr); \
410 BUG(); \
411 }
412 #else /* !RBD_DEBUG */
413 # define rbd_assert(expr) ((void) 0)
414 #endif /* !RBD_DEBUG */
415
416 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
417 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
418 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
419
420 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
421 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
423 u64 snap_id);
424 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
425 u8 *order, u64 *snap_size);
426 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
427 u64 *snap_features);
428 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
429
430 static int rbd_open(struct block_device *bdev, fmode_t mode)
431 {
432 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
433 bool removing = false;
434
435 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
436 return -EROFS;
437
438 spin_lock_irq(&rbd_dev->lock);
439 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
440 removing = true;
441 else
442 rbd_dev->open_count++;
443 spin_unlock_irq(&rbd_dev->lock);
444 if (removing)
445 return -ENOENT;
446
447 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
448 (void) get_device(&rbd_dev->dev);
449 set_device_ro(bdev, rbd_dev->mapping.read_only);
450 mutex_unlock(&ctl_mutex);
451
452 return 0;
453 }
454
455 static int rbd_release(struct gendisk *disk, fmode_t mode)
456 {
457 struct rbd_device *rbd_dev = disk->private_data;
458 unsigned long open_count_before;
459
460 spin_lock_irq(&rbd_dev->lock);
461 open_count_before = rbd_dev->open_count--;
462 spin_unlock_irq(&rbd_dev->lock);
463 rbd_assert(open_count_before > 0);
464
465 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
466 put_device(&rbd_dev->dev);
467 mutex_unlock(&ctl_mutex);
468
469 return 0;
470 }
471
472 static const struct block_device_operations rbd_bd_ops = {
473 .owner = THIS_MODULE,
474 .open = rbd_open,
475 .release = rbd_release,
476 };
477
478 /*
479 * Initialize an rbd client instance.
480 * We own *ceph_opts.
481 */
482 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
483 {
484 struct rbd_client *rbdc;
485 int ret = -ENOMEM;
486
487 dout("%s:\n", __func__);
488 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
489 if (!rbdc)
490 goto out_opt;
491
492 kref_init(&rbdc->kref);
493 INIT_LIST_HEAD(&rbdc->node);
494
495 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
496
497 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
498 if (IS_ERR(rbdc->client))
499 goto out_mutex;
500 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
501
502 ret = ceph_open_session(rbdc->client);
503 if (ret < 0)
504 goto out_err;
505
506 spin_lock(&rbd_client_list_lock);
507 list_add_tail(&rbdc->node, &rbd_client_list);
508 spin_unlock(&rbd_client_list_lock);
509
510 mutex_unlock(&ctl_mutex);
511 dout("%s: rbdc %p\n", __func__, rbdc);
512
513 return rbdc;
514
515 out_err:
516 ceph_destroy_client(rbdc->client);
517 out_mutex:
518 mutex_unlock(&ctl_mutex);
519 kfree(rbdc);
520 out_opt:
521 if (ceph_opts)
522 ceph_destroy_options(ceph_opts);
523 dout("%s: error %d\n", __func__, ret);
524
525 return ERR_PTR(ret);
526 }
527
528 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
529 {
530 kref_get(&rbdc->kref);
531
532 return rbdc;
533 }
534
535 /*
536 * Find a ceph client with specific addr and configuration. If
537 * found, bump its reference count.
538 */
539 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
540 {
541 struct rbd_client *client_node;
542 bool found = false;
543
544 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
545 return NULL;
546
547 spin_lock(&rbd_client_list_lock);
548 list_for_each_entry(client_node, &rbd_client_list, node) {
549 if (!ceph_compare_options(ceph_opts, client_node->client)) {
550 __rbd_get_client(client_node);
551
552 found = true;
553 break;
554 }
555 }
556 spin_unlock(&rbd_client_list_lock);
557
558 return found ? client_node : NULL;
559 }
560
561 /*
562 * mount options
563 */
564 enum {
565 Opt_last_int,
566 /* int args above */
567 Opt_last_string,
568 /* string args above */
569 Opt_read_only,
570 Opt_read_write,
571 /* Boolean args above */
572 Opt_last_bool,
573 };
574
575 static match_table_t rbd_opts_tokens = {
576 /* int args above */
577 /* string args above */
578 {Opt_read_only, "read_only"},
579 {Opt_read_only, "ro"}, /* Alternate spelling */
580 {Opt_read_write, "read_write"},
581 {Opt_read_write, "rw"}, /* Alternate spelling */
582 /* Boolean args above */
583 {-1, NULL}
584 };
585
586 struct rbd_options {
587 bool read_only;
588 };
589
590 #define RBD_READ_ONLY_DEFAULT false
591
592 static int parse_rbd_opts_token(char *c, void *private)
593 {
594 struct rbd_options *rbd_opts = private;
595 substring_t argstr[MAX_OPT_ARGS];
596 int token, intval, ret;
597
598 token = match_token(c, rbd_opts_tokens, argstr);
599 if (token < 0)
600 return -EINVAL;
601
602 if (token < Opt_last_int) {
603 ret = match_int(&argstr[0], &intval);
604 if (ret < 0) {
605 pr_err("bad mount option arg (not int) "
606 "at '%s'\n", c);
607 return ret;
608 }
609 dout("got int token %d val %d\n", token, intval);
610 } else if (token > Opt_last_int && token < Opt_last_string) {
611 dout("got string token %d val %s\n", token,
612 argstr[0].from);
613 } else if (token > Opt_last_string && token < Opt_last_bool) {
614 dout("got Boolean token %d\n", token);
615 } else {
616 dout("got token %d\n", token);
617 }
618
619 switch (token) {
620 case Opt_read_only:
621 rbd_opts->read_only = true;
622 break;
623 case Opt_read_write:
624 rbd_opts->read_only = false;
625 break;
626 default:
627 rbd_assert(false);
628 break;
629 }
630 return 0;
631 }
632
633 /*
634 * Get a ceph client with specific addr and configuration, if one does
635 * not exist create it.
636 */
637 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
638 {
639 struct rbd_client *rbdc;
640
641 rbdc = rbd_client_find(ceph_opts);
642 if (rbdc) /* using an existing client */
643 ceph_destroy_options(ceph_opts);
644 else
645 rbdc = rbd_client_create(ceph_opts);
646
647 return rbdc;
648 }
649
650 /*
651 * Destroy ceph client
652 *
653 * Caller must hold rbd_client_list_lock.
654 */
655 static void rbd_client_release(struct kref *kref)
656 {
657 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
658
659 dout("%s: rbdc %p\n", __func__, rbdc);
660 spin_lock(&rbd_client_list_lock);
661 list_del(&rbdc->node);
662 spin_unlock(&rbd_client_list_lock);
663
664 ceph_destroy_client(rbdc->client);
665 kfree(rbdc);
666 }
667
668 /*
669 * Drop reference to ceph client node. If it's not referenced anymore, release
670 * it.
671 */
672 static void rbd_put_client(struct rbd_client *rbdc)
673 {
674 if (rbdc)
675 kref_put(&rbdc->kref, rbd_client_release);
676 }
677
678 static bool rbd_image_format_valid(u32 image_format)
679 {
680 return image_format == 1 || image_format == 2;
681 }
682
683 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
684 {
685 size_t size;
686 u32 snap_count;
687
688 /* The header has to start with the magic rbd header text */
689 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
690 return false;
691
692 /* The bio layer requires at least sector-sized I/O */
693
694 if (ondisk->options.order < SECTOR_SHIFT)
695 return false;
696
697 /* If we use u64 in a few spots we may be able to loosen this */
698
699 if (ondisk->options.order > 8 * sizeof (int) - 1)
700 return false;
701
702 /*
703 * The size of a snapshot header has to fit in a size_t, and
704 * that limits the number of snapshots.
705 */
706 snap_count = le32_to_cpu(ondisk->snap_count);
707 size = SIZE_MAX - sizeof (struct ceph_snap_context);
708 if (snap_count > size / sizeof (__le64))
709 return false;
710
711 /*
712 * Not only that, but the size of the entire the snapshot
713 * header must also be representable in a size_t.
714 */
715 size -= snap_count * sizeof (__le64);
716 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
717 return false;
718
719 return true;
720 }
721
722 /*
723 * Create a new header structure, translate header format from the on-disk
724 * header.
725 */
726 static int rbd_header_from_disk(struct rbd_image_header *header,
727 struct rbd_image_header_ondisk *ondisk)
728 {
729 u32 snap_count;
730 size_t len;
731 size_t size;
732 u32 i;
733
734 memset(header, 0, sizeof (*header));
735
736 snap_count = le32_to_cpu(ondisk->snap_count);
737
738 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
739 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
740 if (!header->object_prefix)
741 return -ENOMEM;
742 memcpy(header->object_prefix, ondisk->object_prefix, len);
743 header->object_prefix[len] = '\0';
744
745 if (snap_count) {
746 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
747
748 /* Save a copy of the snapshot names */
749
750 if (snap_names_len > (u64) SIZE_MAX)
751 return -EIO;
752 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
753 if (!header->snap_names)
754 goto out_err;
755 /*
756 * Note that rbd_dev_v1_header_read() guarantees
757 * the ondisk buffer we're working with has
758 * snap_names_len bytes beyond the end of the
759 * snapshot id array, this memcpy() is safe.
760 */
761 memcpy(header->snap_names, &ondisk->snaps[snap_count],
762 snap_names_len);
763
764 /* Record each snapshot's size */
765
766 size = snap_count * sizeof (*header->snap_sizes);
767 header->snap_sizes = kmalloc(size, GFP_KERNEL);
768 if (!header->snap_sizes)
769 goto out_err;
770 for (i = 0; i < snap_count; i++)
771 header->snap_sizes[i] =
772 le64_to_cpu(ondisk->snaps[i].image_size);
773 } else {
774 header->snap_names = NULL;
775 header->snap_sizes = NULL;
776 }
777
778 header->features = 0; /* No features support in v1 images */
779 header->obj_order = ondisk->options.order;
780 header->crypt_type = ondisk->options.crypt_type;
781 header->comp_type = ondisk->options.comp_type;
782
783 /* Allocate and fill in the snapshot context */
784
785 header->image_size = le64_to_cpu(ondisk->image_size);
786
787 header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
788 if (!header->snapc)
789 goto out_err;
790 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
791 for (i = 0; i < snap_count; i++)
792 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
793
794 return 0;
795
796 out_err:
797 kfree(header->snap_sizes);
798 header->snap_sizes = NULL;
799 kfree(header->snap_names);
800 header->snap_names = NULL;
801 kfree(header->object_prefix);
802 header->object_prefix = NULL;
803
804 return -ENOMEM;
805 }
806
807 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
808 {
809 const char *snap_name;
810
811 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
812
813 /* Skip over names until we find the one we are looking for */
814
815 snap_name = rbd_dev->header.snap_names;
816 while (which--)
817 snap_name += strlen(snap_name) + 1;
818
819 return kstrdup(snap_name, GFP_KERNEL);
820 }
821
822 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
823 {
824 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
825 u32 which;
826
827 for (which = 0; which < snapc->num_snaps; which++)
828 if (snapc->snaps[which] == snap_id)
829 return which;
830
831 return BAD_SNAP_INDEX;
832 }
833
834 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
835 u64 snap_id)
836 {
837 u32 which;
838
839 which = rbd_dev_snap_index(rbd_dev, snap_id);
840 if (which == BAD_SNAP_INDEX)
841 return NULL;
842
843 return _rbd_dev_v1_snap_name(rbd_dev, which);
844 }
845
846 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
847 {
848 if (snap_id == CEPH_NOSNAP)
849 return RBD_SNAP_HEAD_NAME;
850
851 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
852 if (rbd_dev->image_format == 1)
853 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
854
855 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
856 }
857
858 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
859 u64 *snap_size)
860 {
861 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
862 if (snap_id == CEPH_NOSNAP) {
863 *snap_size = rbd_dev->header.image_size;
864 } else if (rbd_dev->image_format == 1) {
865 u32 which;
866
867 which = rbd_dev_snap_index(rbd_dev, snap_id);
868 if (which == BAD_SNAP_INDEX)
869 return -ENOENT;
870
871 *snap_size = rbd_dev->header.snap_sizes[which];
872 } else {
873 u64 size = 0;
874 int ret;
875
876 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
877 if (ret)
878 return ret;
879
880 *snap_size = size;
881 }
882 return 0;
883 }
884
885 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
886 u64 *snap_features)
887 {
888 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
889 if (snap_id == CEPH_NOSNAP) {
890 *snap_features = rbd_dev->header.features;
891 } else if (rbd_dev->image_format == 1) {
892 *snap_features = 0; /* No features for format 1 */
893 } else {
894 u64 features = 0;
895 int ret;
896
897 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
898 if (ret)
899 return ret;
900
901 *snap_features = features;
902 }
903 return 0;
904 }
905
906 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
907 {
908 const char *snap_name = rbd_dev->spec->snap_name;
909 u64 snap_id;
910 u64 size = 0;
911 u64 features = 0;
912 int ret;
913
914 if (strcmp(snap_name, RBD_SNAP_HEAD_NAME)) {
915 snap_id = rbd_snap_id_by_name(rbd_dev, snap_name);
916 if (snap_id == CEPH_NOSNAP)
917 return -ENOENT;
918 } else {
919 snap_id = CEPH_NOSNAP;
920 }
921
922 ret = rbd_snap_size(rbd_dev, snap_id, &size);
923 if (ret)
924 return ret;
925 ret = rbd_snap_features(rbd_dev, snap_id, &features);
926 if (ret)
927 return ret;
928
929 rbd_dev->mapping.size = size;
930 rbd_dev->mapping.features = features;
931
932 /* If we are mapping a snapshot it must be marked read-only */
933
934 if (snap_id != CEPH_NOSNAP)
935 rbd_dev->mapping.read_only = true;
936
937 return 0;
938 }
939
940 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
941 {
942 rbd_dev->mapping.size = 0;
943 rbd_dev->mapping.features = 0;
944 rbd_dev->mapping.read_only = true;
945 }
946
947 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
948 {
949 rbd_dev->mapping.size = 0;
950 rbd_dev->mapping.features = 0;
951 rbd_dev->mapping.read_only = true;
952 }
953
954 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
955 {
956 char *name;
957 u64 segment;
958 int ret;
959
960 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
961 if (!name)
962 return NULL;
963 segment = offset >> rbd_dev->header.obj_order;
964 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
965 rbd_dev->header.object_prefix, segment);
966 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
967 pr_err("error formatting segment name for #%llu (%d)\n",
968 segment, ret);
969 kfree(name);
970 name = NULL;
971 }
972
973 return name;
974 }
975
976 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
977 {
978 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
979
980 return offset & (segment_size - 1);
981 }
982
983 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
984 u64 offset, u64 length)
985 {
986 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
987
988 offset &= segment_size - 1;
989
990 rbd_assert(length <= U64_MAX - offset);
991 if (offset + length > segment_size)
992 length = segment_size - offset;
993
994 return length;
995 }
996
997 /*
998 * returns the size of an object in the image
999 */
1000 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1001 {
1002 return 1 << header->obj_order;
1003 }
1004
1005 /*
1006 * bio helpers
1007 */
1008
1009 static void bio_chain_put(struct bio *chain)
1010 {
1011 struct bio *tmp;
1012
1013 while (chain) {
1014 tmp = chain;
1015 chain = chain->bi_next;
1016 bio_put(tmp);
1017 }
1018 }
1019
1020 /*
1021 * zeros a bio chain, starting at specific offset
1022 */
1023 static void zero_bio_chain(struct bio *chain, int start_ofs)
1024 {
1025 struct bio_vec *bv;
1026 unsigned long flags;
1027 void *buf;
1028 int i;
1029 int pos = 0;
1030
1031 while (chain) {
1032 bio_for_each_segment(bv, chain, i) {
1033 if (pos + bv->bv_len > start_ofs) {
1034 int remainder = max(start_ofs - pos, 0);
1035 buf = bvec_kmap_irq(bv, &flags);
1036 memset(buf + remainder, 0,
1037 bv->bv_len - remainder);
1038 bvec_kunmap_irq(buf, &flags);
1039 }
1040 pos += bv->bv_len;
1041 }
1042
1043 chain = chain->bi_next;
1044 }
1045 }
1046
1047 /*
1048 * similar to zero_bio_chain(), zeros data defined by a page array,
1049 * starting at the given byte offset from the start of the array and
1050 * continuing up to the given end offset. The pages array is
1051 * assumed to be big enough to hold all bytes up to the end.
1052 */
1053 static void zero_pages(struct page **pages, u64 offset, u64 end)
1054 {
1055 struct page **page = &pages[offset >> PAGE_SHIFT];
1056
1057 rbd_assert(end > offset);
1058 rbd_assert(end - offset <= (u64)SIZE_MAX);
1059 while (offset < end) {
1060 size_t page_offset;
1061 size_t length;
1062 unsigned long flags;
1063 void *kaddr;
1064
1065 page_offset = (size_t)(offset & ~PAGE_MASK);
1066 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1067 local_irq_save(flags);
1068 kaddr = kmap_atomic(*page);
1069 memset(kaddr + page_offset, 0, length);
1070 kunmap_atomic(kaddr);
1071 local_irq_restore(flags);
1072
1073 offset += length;
1074 page++;
1075 }
1076 }
1077
1078 /*
1079 * Clone a portion of a bio, starting at the given byte offset
1080 * and continuing for the number of bytes indicated.
1081 */
1082 static struct bio *bio_clone_range(struct bio *bio_src,
1083 unsigned int offset,
1084 unsigned int len,
1085 gfp_t gfpmask)
1086 {
1087 struct bio_vec *bv;
1088 unsigned int resid;
1089 unsigned short idx;
1090 unsigned int voff;
1091 unsigned short end_idx;
1092 unsigned short vcnt;
1093 struct bio *bio;
1094
1095 /* Handle the easy case for the caller */
1096
1097 if (!offset && len == bio_src->bi_size)
1098 return bio_clone(bio_src, gfpmask);
1099
1100 if (WARN_ON_ONCE(!len))
1101 return NULL;
1102 if (WARN_ON_ONCE(len > bio_src->bi_size))
1103 return NULL;
1104 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1105 return NULL;
1106
1107 /* Find first affected segment... */
1108
1109 resid = offset;
1110 __bio_for_each_segment(bv, bio_src, idx, 0) {
1111 if (resid < bv->bv_len)
1112 break;
1113 resid -= bv->bv_len;
1114 }
1115 voff = resid;
1116
1117 /* ...and the last affected segment */
1118
1119 resid += len;
1120 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1121 if (resid <= bv->bv_len)
1122 break;
1123 resid -= bv->bv_len;
1124 }
1125 vcnt = end_idx - idx + 1;
1126
1127 /* Build the clone */
1128
1129 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1130 if (!bio)
1131 return NULL; /* ENOMEM */
1132
1133 bio->bi_bdev = bio_src->bi_bdev;
1134 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1135 bio->bi_rw = bio_src->bi_rw;
1136 bio->bi_flags |= 1 << BIO_CLONED;
1137
1138 /*
1139 * Copy over our part of the bio_vec, then update the first
1140 * and last (or only) entries.
1141 */
1142 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1143 vcnt * sizeof (struct bio_vec));
1144 bio->bi_io_vec[0].bv_offset += voff;
1145 if (vcnt > 1) {
1146 bio->bi_io_vec[0].bv_len -= voff;
1147 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1148 } else {
1149 bio->bi_io_vec[0].bv_len = len;
1150 }
1151
1152 bio->bi_vcnt = vcnt;
1153 bio->bi_size = len;
1154 bio->bi_idx = 0;
1155
1156 return bio;
1157 }
1158
1159 /*
1160 * Clone a portion of a bio chain, starting at the given byte offset
1161 * into the first bio in the source chain and continuing for the
1162 * number of bytes indicated. The result is another bio chain of
1163 * exactly the given length, or a null pointer on error.
1164 *
1165 * The bio_src and offset parameters are both in-out. On entry they
1166 * refer to the first source bio and the offset into that bio where
1167 * the start of data to be cloned is located.
1168 *
1169 * On return, bio_src is updated to refer to the bio in the source
1170 * chain that contains first un-cloned byte, and *offset will
1171 * contain the offset of that byte within that bio.
1172 */
1173 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1174 unsigned int *offset,
1175 unsigned int len,
1176 gfp_t gfpmask)
1177 {
1178 struct bio *bi = *bio_src;
1179 unsigned int off = *offset;
1180 struct bio *chain = NULL;
1181 struct bio **end;
1182
1183 /* Build up a chain of clone bios up to the limit */
1184
1185 if (!bi || off >= bi->bi_size || !len)
1186 return NULL; /* Nothing to clone */
1187
1188 end = &chain;
1189 while (len) {
1190 unsigned int bi_size;
1191 struct bio *bio;
1192
1193 if (!bi) {
1194 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1195 goto out_err; /* EINVAL; ran out of bio's */
1196 }
1197 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1198 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1199 if (!bio)
1200 goto out_err; /* ENOMEM */
1201
1202 *end = bio;
1203 end = &bio->bi_next;
1204
1205 off += bi_size;
1206 if (off == bi->bi_size) {
1207 bi = bi->bi_next;
1208 off = 0;
1209 }
1210 len -= bi_size;
1211 }
1212 *bio_src = bi;
1213 *offset = off;
1214
1215 return chain;
1216 out_err:
1217 bio_chain_put(chain);
1218
1219 return NULL;
1220 }
1221
1222 /*
1223 * The default/initial value for all object request flags is 0. For
1224 * each flag, once its value is set to 1 it is never reset to 0
1225 * again.
1226 */
1227 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1228 {
1229 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1230 struct rbd_device *rbd_dev;
1231
1232 rbd_dev = obj_request->img_request->rbd_dev;
1233 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1234 obj_request);
1235 }
1236 }
1237
1238 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1239 {
1240 smp_mb();
1241 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1242 }
1243
1244 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1245 {
1246 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1247 struct rbd_device *rbd_dev = NULL;
1248
1249 if (obj_request_img_data_test(obj_request))
1250 rbd_dev = obj_request->img_request->rbd_dev;
1251 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1252 obj_request);
1253 }
1254 }
1255
1256 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1257 {
1258 smp_mb();
1259 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1260 }
1261
1262 /*
1263 * This sets the KNOWN flag after (possibly) setting the EXISTS
1264 * flag. The latter is set based on the "exists" value provided.
1265 *
1266 * Note that for our purposes once an object exists it never goes
1267 * away again. It's possible that the response from two existence
1268 * checks are separated by the creation of the target object, and
1269 * the first ("doesn't exist") response arrives *after* the second
1270 * ("does exist"). In that case we ignore the second one.
1271 */
1272 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1273 bool exists)
1274 {
1275 if (exists)
1276 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1277 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1278 smp_mb();
1279 }
1280
1281 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1282 {
1283 smp_mb();
1284 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1285 }
1286
1287 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1288 {
1289 smp_mb();
1290 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1291 }
1292
1293 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1294 {
1295 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1296 atomic_read(&obj_request->kref.refcount));
1297 kref_get(&obj_request->kref);
1298 }
1299
1300 static void rbd_obj_request_destroy(struct kref *kref);
1301 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1302 {
1303 rbd_assert(obj_request != NULL);
1304 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1305 atomic_read(&obj_request->kref.refcount));
1306 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1307 }
1308
1309 static void rbd_img_request_get(struct rbd_img_request *img_request)
1310 {
1311 dout("%s: img %p (was %d)\n", __func__, img_request,
1312 atomic_read(&img_request->kref.refcount));
1313 kref_get(&img_request->kref);
1314 }
1315
1316 static void rbd_img_request_destroy(struct kref *kref);
1317 static void rbd_img_request_put(struct rbd_img_request *img_request)
1318 {
1319 rbd_assert(img_request != NULL);
1320 dout("%s: img %p (was %d)\n", __func__, img_request,
1321 atomic_read(&img_request->kref.refcount));
1322 kref_put(&img_request->kref, rbd_img_request_destroy);
1323 }
1324
1325 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1326 struct rbd_obj_request *obj_request)
1327 {
1328 rbd_assert(obj_request->img_request == NULL);
1329
1330 /* Image request now owns object's original reference */
1331 obj_request->img_request = img_request;
1332 obj_request->which = img_request->obj_request_count;
1333 rbd_assert(!obj_request_img_data_test(obj_request));
1334 obj_request_img_data_set(obj_request);
1335 rbd_assert(obj_request->which != BAD_WHICH);
1336 img_request->obj_request_count++;
1337 list_add_tail(&obj_request->links, &img_request->obj_requests);
1338 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1339 obj_request->which);
1340 }
1341
1342 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1343 struct rbd_obj_request *obj_request)
1344 {
1345 rbd_assert(obj_request->which != BAD_WHICH);
1346
1347 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1348 obj_request->which);
1349 list_del(&obj_request->links);
1350 rbd_assert(img_request->obj_request_count > 0);
1351 img_request->obj_request_count--;
1352 rbd_assert(obj_request->which == img_request->obj_request_count);
1353 obj_request->which = BAD_WHICH;
1354 rbd_assert(obj_request_img_data_test(obj_request));
1355 rbd_assert(obj_request->img_request == img_request);
1356 obj_request->img_request = NULL;
1357 obj_request->callback = NULL;
1358 rbd_obj_request_put(obj_request);
1359 }
1360
1361 static bool obj_request_type_valid(enum obj_request_type type)
1362 {
1363 switch (type) {
1364 case OBJ_REQUEST_NODATA:
1365 case OBJ_REQUEST_BIO:
1366 case OBJ_REQUEST_PAGES:
1367 return true;
1368 default:
1369 return false;
1370 }
1371 }
1372
1373 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1374 struct rbd_obj_request *obj_request)
1375 {
1376 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1377
1378 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1379 }
1380
1381 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1382 {
1383
1384 dout("%s: img %p\n", __func__, img_request);
1385
1386 /*
1387 * If no error occurred, compute the aggregate transfer
1388 * count for the image request. We could instead use
1389 * atomic64_cmpxchg() to update it as each object request
1390 * completes; not clear which way is better off hand.
1391 */
1392 if (!img_request->result) {
1393 struct rbd_obj_request *obj_request;
1394 u64 xferred = 0;
1395
1396 for_each_obj_request(img_request, obj_request)
1397 xferred += obj_request->xferred;
1398 img_request->xferred = xferred;
1399 }
1400
1401 if (img_request->callback)
1402 img_request->callback(img_request);
1403 else
1404 rbd_img_request_put(img_request);
1405 }
1406
1407 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1408
1409 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1410 {
1411 dout("%s: obj %p\n", __func__, obj_request);
1412
1413 return wait_for_completion_interruptible(&obj_request->completion);
1414 }
1415
1416 /*
1417 * The default/initial value for all image request flags is 0. Each
1418 * is conditionally set to 1 at image request initialization time
1419 * and currently never change thereafter.
1420 */
1421 static void img_request_write_set(struct rbd_img_request *img_request)
1422 {
1423 set_bit(IMG_REQ_WRITE, &img_request->flags);
1424 smp_mb();
1425 }
1426
1427 static bool img_request_write_test(struct rbd_img_request *img_request)
1428 {
1429 smp_mb();
1430 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1431 }
1432
1433 static void img_request_child_set(struct rbd_img_request *img_request)
1434 {
1435 set_bit(IMG_REQ_CHILD, &img_request->flags);
1436 smp_mb();
1437 }
1438
1439 static bool img_request_child_test(struct rbd_img_request *img_request)
1440 {
1441 smp_mb();
1442 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1443 }
1444
1445 static void img_request_layered_set(struct rbd_img_request *img_request)
1446 {
1447 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1448 smp_mb();
1449 }
1450
1451 static bool img_request_layered_test(struct rbd_img_request *img_request)
1452 {
1453 smp_mb();
1454 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1455 }
1456
1457 static void
1458 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1459 {
1460 u64 xferred = obj_request->xferred;
1461 u64 length = obj_request->length;
1462
1463 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1464 obj_request, obj_request->img_request, obj_request->result,
1465 xferred, length);
1466 /*
1467 * ENOENT means a hole in the image. We zero-fill the
1468 * entire length of the request. A short read also implies
1469 * zero-fill to the end of the request. Either way we
1470 * update the xferred count to indicate the whole request
1471 * was satisfied.
1472 */
1473 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1474 if (obj_request->result == -ENOENT) {
1475 if (obj_request->type == OBJ_REQUEST_BIO)
1476 zero_bio_chain(obj_request->bio_list, 0);
1477 else
1478 zero_pages(obj_request->pages, 0, length);
1479 obj_request->result = 0;
1480 obj_request->xferred = length;
1481 } else if (xferred < length && !obj_request->result) {
1482 if (obj_request->type == OBJ_REQUEST_BIO)
1483 zero_bio_chain(obj_request->bio_list, xferred);
1484 else
1485 zero_pages(obj_request->pages, xferred, length);
1486 obj_request->xferred = length;
1487 }
1488 obj_request_done_set(obj_request);
1489 }
1490
1491 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1492 {
1493 dout("%s: obj %p cb %p\n", __func__, obj_request,
1494 obj_request->callback);
1495 if (obj_request->callback)
1496 obj_request->callback(obj_request);
1497 else
1498 complete_all(&obj_request->completion);
1499 }
1500
1501 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1502 {
1503 dout("%s: obj %p\n", __func__, obj_request);
1504 obj_request_done_set(obj_request);
1505 }
1506
1507 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1508 {
1509 struct rbd_img_request *img_request = NULL;
1510 struct rbd_device *rbd_dev = NULL;
1511 bool layered = false;
1512
1513 if (obj_request_img_data_test(obj_request)) {
1514 img_request = obj_request->img_request;
1515 layered = img_request && img_request_layered_test(img_request);
1516 rbd_dev = img_request->rbd_dev;
1517 }
1518
1519 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1520 obj_request, img_request, obj_request->result,
1521 obj_request->xferred, obj_request->length);
1522 if (layered && obj_request->result == -ENOENT &&
1523 obj_request->img_offset < rbd_dev->parent_overlap)
1524 rbd_img_parent_read(obj_request);
1525 else if (img_request)
1526 rbd_img_obj_request_read_callback(obj_request);
1527 else
1528 obj_request_done_set(obj_request);
1529 }
1530
1531 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1532 {
1533 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1534 obj_request->result, obj_request->length);
1535 /*
1536 * There is no such thing as a successful short write. Set
1537 * it to our originally-requested length.
1538 */
1539 obj_request->xferred = obj_request->length;
1540 obj_request_done_set(obj_request);
1541 }
1542
1543 /*
1544 * For a simple stat call there's nothing to do. We'll do more if
1545 * this is part of a write sequence for a layered image.
1546 */
1547 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1548 {
1549 dout("%s: obj %p\n", __func__, obj_request);
1550 obj_request_done_set(obj_request);
1551 }
1552
1553 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1554 struct ceph_msg *msg)
1555 {
1556 struct rbd_obj_request *obj_request = osd_req->r_priv;
1557 u16 opcode;
1558
1559 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1560 rbd_assert(osd_req == obj_request->osd_req);
1561 if (obj_request_img_data_test(obj_request)) {
1562 rbd_assert(obj_request->img_request);
1563 rbd_assert(obj_request->which != BAD_WHICH);
1564 } else {
1565 rbd_assert(obj_request->which == BAD_WHICH);
1566 }
1567
1568 if (osd_req->r_result < 0)
1569 obj_request->result = osd_req->r_result;
1570
1571 BUG_ON(osd_req->r_num_ops > 2);
1572
1573 /*
1574 * We support a 64-bit length, but ultimately it has to be
1575 * passed to blk_end_request(), which takes an unsigned int.
1576 */
1577 obj_request->xferred = osd_req->r_reply_op_len[0];
1578 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1579 opcode = osd_req->r_ops[0].op;
1580 switch (opcode) {
1581 case CEPH_OSD_OP_READ:
1582 rbd_osd_read_callback(obj_request);
1583 break;
1584 case CEPH_OSD_OP_WRITE:
1585 rbd_osd_write_callback(obj_request);
1586 break;
1587 case CEPH_OSD_OP_STAT:
1588 rbd_osd_stat_callback(obj_request);
1589 break;
1590 case CEPH_OSD_OP_CALL:
1591 case CEPH_OSD_OP_NOTIFY_ACK:
1592 case CEPH_OSD_OP_WATCH:
1593 rbd_osd_trivial_callback(obj_request);
1594 break;
1595 default:
1596 rbd_warn(NULL, "%s: unsupported op %hu\n",
1597 obj_request->object_name, (unsigned short) opcode);
1598 break;
1599 }
1600
1601 if (obj_request_done_test(obj_request))
1602 rbd_obj_request_complete(obj_request);
1603 }
1604
1605 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1606 {
1607 struct rbd_img_request *img_request = obj_request->img_request;
1608 struct ceph_osd_request *osd_req = obj_request->osd_req;
1609 u64 snap_id;
1610
1611 rbd_assert(osd_req != NULL);
1612
1613 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1614 ceph_osdc_build_request(osd_req, obj_request->offset,
1615 NULL, snap_id, NULL);
1616 }
1617
1618 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1619 {
1620 struct rbd_img_request *img_request = obj_request->img_request;
1621 struct ceph_osd_request *osd_req = obj_request->osd_req;
1622 struct ceph_snap_context *snapc;
1623 struct timespec mtime = CURRENT_TIME;
1624
1625 rbd_assert(osd_req != NULL);
1626
1627 snapc = img_request ? img_request->snapc : NULL;
1628 ceph_osdc_build_request(osd_req, obj_request->offset,
1629 snapc, CEPH_NOSNAP, &mtime);
1630 }
1631
1632 static struct ceph_osd_request *rbd_osd_req_create(
1633 struct rbd_device *rbd_dev,
1634 bool write_request,
1635 struct rbd_obj_request *obj_request)
1636 {
1637 struct ceph_snap_context *snapc = NULL;
1638 struct ceph_osd_client *osdc;
1639 struct ceph_osd_request *osd_req;
1640
1641 if (obj_request_img_data_test(obj_request)) {
1642 struct rbd_img_request *img_request = obj_request->img_request;
1643
1644 rbd_assert(write_request ==
1645 img_request_write_test(img_request));
1646 if (write_request)
1647 snapc = img_request->snapc;
1648 }
1649
1650 /* Allocate and initialize the request, for the single op */
1651
1652 osdc = &rbd_dev->rbd_client->client->osdc;
1653 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1654 if (!osd_req)
1655 return NULL; /* ENOMEM */
1656
1657 if (write_request)
1658 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1659 else
1660 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1661
1662 osd_req->r_callback = rbd_osd_req_callback;
1663 osd_req->r_priv = obj_request;
1664
1665 osd_req->r_oid_len = strlen(obj_request->object_name);
1666 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1667 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1668
1669 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1670
1671 return osd_req;
1672 }
1673
1674 /*
1675 * Create a copyup osd request based on the information in the
1676 * object request supplied. A copyup request has two osd ops,
1677 * a copyup method call, and a "normal" write request.
1678 */
1679 static struct ceph_osd_request *
1680 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1681 {
1682 struct rbd_img_request *img_request;
1683 struct ceph_snap_context *snapc;
1684 struct rbd_device *rbd_dev;
1685 struct ceph_osd_client *osdc;
1686 struct ceph_osd_request *osd_req;
1687
1688 rbd_assert(obj_request_img_data_test(obj_request));
1689 img_request = obj_request->img_request;
1690 rbd_assert(img_request);
1691 rbd_assert(img_request_write_test(img_request));
1692
1693 /* Allocate and initialize the request, for the two ops */
1694
1695 snapc = img_request->snapc;
1696 rbd_dev = img_request->rbd_dev;
1697 osdc = &rbd_dev->rbd_client->client->osdc;
1698 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1699 if (!osd_req)
1700 return NULL; /* ENOMEM */
1701
1702 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1703 osd_req->r_callback = rbd_osd_req_callback;
1704 osd_req->r_priv = obj_request;
1705
1706 osd_req->r_oid_len = strlen(obj_request->object_name);
1707 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1708 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1709
1710 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1711
1712 return osd_req;
1713 }
1714
1715
1716 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1717 {
1718 ceph_osdc_put_request(osd_req);
1719 }
1720
1721 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1722
1723 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1724 u64 offset, u64 length,
1725 enum obj_request_type type)
1726 {
1727 struct rbd_obj_request *obj_request;
1728 size_t size;
1729 char *name;
1730
1731 rbd_assert(obj_request_type_valid(type));
1732
1733 size = strlen(object_name) + 1;
1734 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1735 if (!obj_request)
1736 return NULL;
1737
1738 name = (char *)(obj_request + 1);
1739 obj_request->object_name = memcpy(name, object_name, size);
1740 obj_request->offset = offset;
1741 obj_request->length = length;
1742 obj_request->flags = 0;
1743 obj_request->which = BAD_WHICH;
1744 obj_request->type = type;
1745 INIT_LIST_HEAD(&obj_request->links);
1746 init_completion(&obj_request->completion);
1747 kref_init(&obj_request->kref);
1748
1749 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1750 offset, length, (int)type, obj_request);
1751
1752 return obj_request;
1753 }
1754
1755 static void rbd_obj_request_destroy(struct kref *kref)
1756 {
1757 struct rbd_obj_request *obj_request;
1758
1759 obj_request = container_of(kref, struct rbd_obj_request, kref);
1760
1761 dout("%s: obj %p\n", __func__, obj_request);
1762
1763 rbd_assert(obj_request->img_request == NULL);
1764 rbd_assert(obj_request->which == BAD_WHICH);
1765
1766 if (obj_request->osd_req)
1767 rbd_osd_req_destroy(obj_request->osd_req);
1768
1769 rbd_assert(obj_request_type_valid(obj_request->type));
1770 switch (obj_request->type) {
1771 case OBJ_REQUEST_NODATA:
1772 break; /* Nothing to do */
1773 case OBJ_REQUEST_BIO:
1774 if (obj_request->bio_list)
1775 bio_chain_put(obj_request->bio_list);
1776 break;
1777 case OBJ_REQUEST_PAGES:
1778 if (obj_request->pages)
1779 ceph_release_page_vector(obj_request->pages,
1780 obj_request->page_count);
1781 break;
1782 }
1783
1784 kfree(obj_request);
1785 }
1786
1787 /*
1788 * Caller is responsible for filling in the list of object requests
1789 * that comprises the image request, and the Linux request pointer
1790 * (if there is one).
1791 */
1792 static struct rbd_img_request *rbd_img_request_create(
1793 struct rbd_device *rbd_dev,
1794 u64 offset, u64 length,
1795 bool write_request,
1796 bool child_request)
1797 {
1798 struct rbd_img_request *img_request;
1799
1800 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1801 if (!img_request)
1802 return NULL;
1803
1804 if (write_request) {
1805 down_read(&rbd_dev->header_rwsem);
1806 ceph_get_snap_context(rbd_dev->header.snapc);
1807 up_read(&rbd_dev->header_rwsem);
1808 }
1809
1810 img_request->rq = NULL;
1811 img_request->rbd_dev = rbd_dev;
1812 img_request->offset = offset;
1813 img_request->length = length;
1814 img_request->flags = 0;
1815 if (write_request) {
1816 img_request_write_set(img_request);
1817 img_request->snapc = rbd_dev->header.snapc;
1818 } else {
1819 img_request->snap_id = rbd_dev->spec->snap_id;
1820 }
1821 if (child_request)
1822 img_request_child_set(img_request);
1823 if (rbd_dev->parent_spec)
1824 img_request_layered_set(img_request);
1825 spin_lock_init(&img_request->completion_lock);
1826 img_request->next_completion = 0;
1827 img_request->callback = NULL;
1828 img_request->result = 0;
1829 img_request->obj_request_count = 0;
1830 INIT_LIST_HEAD(&img_request->obj_requests);
1831 kref_init(&img_request->kref);
1832
1833 rbd_img_request_get(img_request); /* Avoid a warning */
1834 rbd_img_request_put(img_request); /* TEMPORARY */
1835
1836 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1837 write_request ? "write" : "read", offset, length,
1838 img_request);
1839
1840 return img_request;
1841 }
1842
1843 static void rbd_img_request_destroy(struct kref *kref)
1844 {
1845 struct rbd_img_request *img_request;
1846 struct rbd_obj_request *obj_request;
1847 struct rbd_obj_request *next_obj_request;
1848
1849 img_request = container_of(kref, struct rbd_img_request, kref);
1850
1851 dout("%s: img %p\n", __func__, img_request);
1852
1853 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1854 rbd_img_obj_request_del(img_request, obj_request);
1855 rbd_assert(img_request->obj_request_count == 0);
1856
1857 if (img_request_write_test(img_request))
1858 ceph_put_snap_context(img_request->snapc);
1859
1860 if (img_request_child_test(img_request))
1861 rbd_obj_request_put(img_request->obj_request);
1862
1863 kfree(img_request);
1864 }
1865
1866 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1867 {
1868 struct rbd_img_request *img_request;
1869 unsigned int xferred;
1870 int result;
1871 bool more;
1872
1873 rbd_assert(obj_request_img_data_test(obj_request));
1874 img_request = obj_request->img_request;
1875
1876 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1877 xferred = (unsigned int)obj_request->xferred;
1878 result = obj_request->result;
1879 if (result) {
1880 struct rbd_device *rbd_dev = img_request->rbd_dev;
1881
1882 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1883 img_request_write_test(img_request) ? "write" : "read",
1884 obj_request->length, obj_request->img_offset,
1885 obj_request->offset);
1886 rbd_warn(rbd_dev, " result %d xferred %x\n",
1887 result, xferred);
1888 if (!img_request->result)
1889 img_request->result = result;
1890 }
1891
1892 /* Image object requests don't own their page array */
1893
1894 if (obj_request->type == OBJ_REQUEST_PAGES) {
1895 obj_request->pages = NULL;
1896 obj_request->page_count = 0;
1897 }
1898
1899 if (img_request_child_test(img_request)) {
1900 rbd_assert(img_request->obj_request != NULL);
1901 more = obj_request->which < img_request->obj_request_count - 1;
1902 } else {
1903 rbd_assert(img_request->rq != NULL);
1904 more = blk_end_request(img_request->rq, result, xferred);
1905 }
1906
1907 return more;
1908 }
1909
1910 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1911 {
1912 struct rbd_img_request *img_request;
1913 u32 which = obj_request->which;
1914 bool more = true;
1915
1916 rbd_assert(obj_request_img_data_test(obj_request));
1917 img_request = obj_request->img_request;
1918
1919 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1920 rbd_assert(img_request != NULL);
1921 rbd_assert(img_request->obj_request_count > 0);
1922 rbd_assert(which != BAD_WHICH);
1923 rbd_assert(which < img_request->obj_request_count);
1924 rbd_assert(which >= img_request->next_completion);
1925
1926 spin_lock_irq(&img_request->completion_lock);
1927 if (which != img_request->next_completion)
1928 goto out;
1929
1930 for_each_obj_request_from(img_request, obj_request) {
1931 rbd_assert(more);
1932 rbd_assert(which < img_request->obj_request_count);
1933
1934 if (!obj_request_done_test(obj_request))
1935 break;
1936 more = rbd_img_obj_end_request(obj_request);
1937 which++;
1938 }
1939
1940 rbd_assert(more ^ (which == img_request->obj_request_count));
1941 img_request->next_completion = which;
1942 out:
1943 spin_unlock_irq(&img_request->completion_lock);
1944
1945 if (!more)
1946 rbd_img_request_complete(img_request);
1947 }
1948
1949 /*
1950 * Split up an image request into one or more object requests, each
1951 * to a different object. The "type" parameter indicates whether
1952 * "data_desc" is the pointer to the head of a list of bio
1953 * structures, or the base of a page array. In either case this
1954 * function assumes data_desc describes memory sufficient to hold
1955 * all data described by the image request.
1956 */
1957 static int rbd_img_request_fill(struct rbd_img_request *img_request,
1958 enum obj_request_type type,
1959 void *data_desc)
1960 {
1961 struct rbd_device *rbd_dev = img_request->rbd_dev;
1962 struct rbd_obj_request *obj_request = NULL;
1963 struct rbd_obj_request *next_obj_request;
1964 bool write_request = img_request_write_test(img_request);
1965 struct bio *bio_list;
1966 unsigned int bio_offset = 0;
1967 struct page **pages;
1968 u64 img_offset;
1969 u64 resid;
1970 u16 opcode;
1971
1972 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
1973 (int)type, data_desc);
1974
1975 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1976 img_offset = img_request->offset;
1977 resid = img_request->length;
1978 rbd_assert(resid > 0);
1979
1980 if (type == OBJ_REQUEST_BIO) {
1981 bio_list = data_desc;
1982 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
1983 } else {
1984 rbd_assert(type == OBJ_REQUEST_PAGES);
1985 pages = data_desc;
1986 }
1987
1988 while (resid) {
1989 struct ceph_osd_request *osd_req;
1990 const char *object_name;
1991 u64 offset;
1992 u64 length;
1993
1994 object_name = rbd_segment_name(rbd_dev, img_offset);
1995 if (!object_name)
1996 goto out_unwind;
1997 offset = rbd_segment_offset(rbd_dev, img_offset);
1998 length = rbd_segment_length(rbd_dev, img_offset, resid);
1999 obj_request = rbd_obj_request_create(object_name,
2000 offset, length, type);
2001 kfree(object_name); /* object request has its own copy */
2002 if (!obj_request)
2003 goto out_unwind;
2004
2005 if (type == OBJ_REQUEST_BIO) {
2006 unsigned int clone_size;
2007
2008 rbd_assert(length <= (u64)UINT_MAX);
2009 clone_size = (unsigned int)length;
2010 obj_request->bio_list =
2011 bio_chain_clone_range(&bio_list,
2012 &bio_offset,
2013 clone_size,
2014 GFP_ATOMIC);
2015 if (!obj_request->bio_list)
2016 goto out_partial;
2017 } else {
2018 unsigned int page_count;
2019
2020 obj_request->pages = pages;
2021 page_count = (u32)calc_pages_for(offset, length);
2022 obj_request->page_count = page_count;
2023 if ((offset + length) & ~PAGE_MASK)
2024 page_count--; /* more on last page */
2025 pages += page_count;
2026 }
2027
2028 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2029 obj_request);
2030 if (!osd_req)
2031 goto out_partial;
2032 obj_request->osd_req = osd_req;
2033 obj_request->callback = rbd_img_obj_callback;
2034
2035 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2036 0, 0);
2037 if (type == OBJ_REQUEST_BIO)
2038 osd_req_op_extent_osd_data_bio(osd_req, 0,
2039 obj_request->bio_list, length);
2040 else
2041 osd_req_op_extent_osd_data_pages(osd_req, 0,
2042 obj_request->pages, length,
2043 offset & ~PAGE_MASK, false, false);
2044
2045 if (write_request)
2046 rbd_osd_req_format_write(obj_request);
2047 else
2048 rbd_osd_req_format_read(obj_request);
2049
2050 obj_request->img_offset = img_offset;
2051 rbd_img_obj_request_add(img_request, obj_request);
2052
2053 img_offset += length;
2054 resid -= length;
2055 }
2056
2057 return 0;
2058
2059 out_partial:
2060 rbd_obj_request_put(obj_request);
2061 out_unwind:
2062 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2063 rbd_obj_request_put(obj_request);
2064
2065 return -ENOMEM;
2066 }
2067
2068 static void
2069 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2070 {
2071 struct rbd_img_request *img_request;
2072 struct rbd_device *rbd_dev;
2073 u64 length;
2074 u32 page_count;
2075
2076 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2077 rbd_assert(obj_request_img_data_test(obj_request));
2078 img_request = obj_request->img_request;
2079 rbd_assert(img_request);
2080
2081 rbd_dev = img_request->rbd_dev;
2082 rbd_assert(rbd_dev);
2083 length = (u64)1 << rbd_dev->header.obj_order;
2084 page_count = (u32)calc_pages_for(0, length);
2085
2086 rbd_assert(obj_request->copyup_pages);
2087 ceph_release_page_vector(obj_request->copyup_pages, page_count);
2088 obj_request->copyup_pages = NULL;
2089
2090 /*
2091 * We want the transfer count to reflect the size of the
2092 * original write request. There is no such thing as a
2093 * successful short write, so if the request was successful
2094 * we can just set it to the originally-requested length.
2095 */
2096 if (!obj_request->result)
2097 obj_request->xferred = obj_request->length;
2098
2099 /* Finish up with the normal image object callback */
2100
2101 rbd_img_obj_callback(obj_request);
2102 }
2103
2104 static void
2105 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2106 {
2107 struct rbd_obj_request *orig_request;
2108 struct ceph_osd_request *osd_req;
2109 struct ceph_osd_client *osdc;
2110 struct rbd_device *rbd_dev;
2111 struct page **pages;
2112 int result;
2113 u64 obj_size;
2114 u64 xferred;
2115
2116 rbd_assert(img_request_child_test(img_request));
2117
2118 /* First get what we need from the image request */
2119
2120 pages = img_request->copyup_pages;
2121 rbd_assert(pages != NULL);
2122 img_request->copyup_pages = NULL;
2123
2124 orig_request = img_request->obj_request;
2125 rbd_assert(orig_request != NULL);
2126 rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2127 result = img_request->result;
2128 obj_size = img_request->length;
2129 xferred = img_request->xferred;
2130
2131 rbd_dev = img_request->rbd_dev;
2132 rbd_assert(rbd_dev);
2133 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2134
2135 rbd_img_request_put(img_request);
2136
2137 if (result)
2138 goto out_err;
2139
2140 /* Allocate the new copyup osd request for the original request */
2141
2142 result = -ENOMEM;
2143 rbd_assert(!orig_request->osd_req);
2144 osd_req = rbd_osd_req_create_copyup(orig_request);
2145 if (!osd_req)
2146 goto out_err;
2147 orig_request->osd_req = osd_req;
2148 orig_request->copyup_pages = pages;
2149
2150 /* Initialize the copyup op */
2151
2152 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2153 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2154 false, false);
2155
2156 /* Then the original write request op */
2157
2158 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2159 orig_request->offset,
2160 orig_request->length, 0, 0);
2161 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2162 orig_request->length);
2163
2164 rbd_osd_req_format_write(orig_request);
2165
2166 /* All set, send it off. */
2167
2168 orig_request->callback = rbd_img_obj_copyup_callback;
2169 osdc = &rbd_dev->rbd_client->client->osdc;
2170 result = rbd_obj_request_submit(osdc, orig_request);
2171 if (!result)
2172 return;
2173 out_err:
2174 /* Record the error code and complete the request */
2175
2176 orig_request->result = result;
2177 orig_request->xferred = 0;
2178 obj_request_done_set(orig_request);
2179 rbd_obj_request_complete(orig_request);
2180 }
2181
2182 /*
2183 * Read from the parent image the range of data that covers the
2184 * entire target of the given object request. This is used for
2185 * satisfying a layered image write request when the target of an
2186 * object request from the image request does not exist.
2187 *
2188 * A page array big enough to hold the returned data is allocated
2189 * and supplied to rbd_img_request_fill() as the "data descriptor."
2190 * When the read completes, this page array will be transferred to
2191 * the original object request for the copyup operation.
2192 *
2193 * If an error occurs, record it as the result of the original
2194 * object request and mark it done so it gets completed.
2195 */
2196 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2197 {
2198 struct rbd_img_request *img_request = NULL;
2199 struct rbd_img_request *parent_request = NULL;
2200 struct rbd_device *rbd_dev;
2201 u64 img_offset;
2202 u64 length;
2203 struct page **pages = NULL;
2204 u32 page_count;
2205 int result;
2206
2207 rbd_assert(obj_request_img_data_test(obj_request));
2208 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2209
2210 img_request = obj_request->img_request;
2211 rbd_assert(img_request != NULL);
2212 rbd_dev = img_request->rbd_dev;
2213 rbd_assert(rbd_dev->parent != NULL);
2214
2215 /*
2216 * First things first. The original osd request is of no
2217 * use to use any more, we'll need a new one that can hold
2218 * the two ops in a copyup request. We'll get that later,
2219 * but for now we can release the old one.
2220 */
2221 rbd_osd_req_destroy(obj_request->osd_req);
2222 obj_request->osd_req = NULL;
2223
2224 /*
2225 * Determine the byte range covered by the object in the
2226 * child image to which the original request was to be sent.
2227 */
2228 img_offset = obj_request->img_offset - obj_request->offset;
2229 length = (u64)1 << rbd_dev->header.obj_order;
2230
2231 /*
2232 * There is no defined parent data beyond the parent
2233 * overlap, so limit what we read at that boundary if
2234 * necessary.
2235 */
2236 if (img_offset + length > rbd_dev->parent_overlap) {
2237 rbd_assert(img_offset < rbd_dev->parent_overlap);
2238 length = rbd_dev->parent_overlap - img_offset;
2239 }
2240
2241 /*
2242 * Allocate a page array big enough to receive the data read
2243 * from the parent.
2244 */
2245 page_count = (u32)calc_pages_for(0, length);
2246 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2247 if (IS_ERR(pages)) {
2248 result = PTR_ERR(pages);
2249 pages = NULL;
2250 goto out_err;
2251 }
2252
2253 result = -ENOMEM;
2254 parent_request = rbd_img_request_create(rbd_dev->parent,
2255 img_offset, length,
2256 false, true);
2257 if (!parent_request)
2258 goto out_err;
2259 rbd_obj_request_get(obj_request);
2260 parent_request->obj_request = obj_request;
2261
2262 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2263 if (result)
2264 goto out_err;
2265 parent_request->copyup_pages = pages;
2266
2267 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2268 result = rbd_img_request_submit(parent_request);
2269 if (!result)
2270 return 0;
2271
2272 parent_request->copyup_pages = NULL;
2273 parent_request->obj_request = NULL;
2274 rbd_obj_request_put(obj_request);
2275 out_err:
2276 if (pages)
2277 ceph_release_page_vector(pages, page_count);
2278 if (parent_request)
2279 rbd_img_request_put(parent_request);
2280 obj_request->result = result;
2281 obj_request->xferred = 0;
2282 obj_request_done_set(obj_request);
2283
2284 return result;
2285 }
2286
2287 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2288 {
2289 struct rbd_obj_request *orig_request;
2290 int result;
2291
2292 rbd_assert(!obj_request_img_data_test(obj_request));
2293
2294 /*
2295 * All we need from the object request is the original
2296 * request and the result of the STAT op. Grab those, then
2297 * we're done with the request.
2298 */
2299 orig_request = obj_request->obj_request;
2300 obj_request->obj_request = NULL;
2301 rbd_assert(orig_request);
2302 rbd_assert(orig_request->img_request);
2303
2304 result = obj_request->result;
2305 obj_request->result = 0;
2306
2307 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2308 obj_request, orig_request, result,
2309 obj_request->xferred, obj_request->length);
2310 rbd_obj_request_put(obj_request);
2311
2312 rbd_assert(orig_request);
2313 rbd_assert(orig_request->img_request);
2314
2315 /*
2316 * Our only purpose here is to determine whether the object
2317 * exists, and we don't want to treat the non-existence as
2318 * an error. If something else comes back, transfer the
2319 * error to the original request and complete it now.
2320 */
2321 if (!result) {
2322 obj_request_existence_set(orig_request, true);
2323 } else if (result == -ENOENT) {
2324 obj_request_existence_set(orig_request, false);
2325 } else if (result) {
2326 orig_request->result = result;
2327 goto out;
2328 }
2329
2330 /*
2331 * Resubmit the original request now that we have recorded
2332 * whether the target object exists.
2333 */
2334 orig_request->result = rbd_img_obj_request_submit(orig_request);
2335 out:
2336 if (orig_request->result)
2337 rbd_obj_request_complete(orig_request);
2338 rbd_obj_request_put(orig_request);
2339 }
2340
2341 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2342 {
2343 struct rbd_obj_request *stat_request;
2344 struct rbd_device *rbd_dev;
2345 struct ceph_osd_client *osdc;
2346 struct page **pages = NULL;
2347 u32 page_count;
2348 size_t size;
2349 int ret;
2350
2351 /*
2352 * The response data for a STAT call consists of:
2353 * le64 length;
2354 * struct {
2355 * le32 tv_sec;
2356 * le32 tv_nsec;
2357 * } mtime;
2358 */
2359 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2360 page_count = (u32)calc_pages_for(0, size);
2361 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2362 if (IS_ERR(pages))
2363 return PTR_ERR(pages);
2364
2365 ret = -ENOMEM;
2366 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2367 OBJ_REQUEST_PAGES);
2368 if (!stat_request)
2369 goto out;
2370
2371 rbd_obj_request_get(obj_request);
2372 stat_request->obj_request = obj_request;
2373 stat_request->pages = pages;
2374 stat_request->page_count = page_count;
2375
2376 rbd_assert(obj_request->img_request);
2377 rbd_dev = obj_request->img_request->rbd_dev;
2378 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2379 stat_request);
2380 if (!stat_request->osd_req)
2381 goto out;
2382 stat_request->callback = rbd_img_obj_exists_callback;
2383
2384 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2385 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2386 false, false);
2387 rbd_osd_req_format_read(stat_request);
2388
2389 osdc = &rbd_dev->rbd_client->client->osdc;
2390 ret = rbd_obj_request_submit(osdc, stat_request);
2391 out:
2392 if (ret)
2393 rbd_obj_request_put(obj_request);
2394
2395 return ret;
2396 }
2397
2398 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2399 {
2400 struct rbd_img_request *img_request;
2401 struct rbd_device *rbd_dev;
2402 bool known;
2403
2404 rbd_assert(obj_request_img_data_test(obj_request));
2405
2406 img_request = obj_request->img_request;
2407 rbd_assert(img_request);
2408 rbd_dev = img_request->rbd_dev;
2409
2410 /*
2411 * Only writes to layered images need special handling.
2412 * Reads and non-layered writes are simple object requests.
2413 * Layered writes that start beyond the end of the overlap
2414 * with the parent have no parent data, so they too are
2415 * simple object requests. Finally, if the target object is
2416 * known to already exist, its parent data has already been
2417 * copied, so a write to the object can also be handled as a
2418 * simple object request.
2419 */
2420 if (!img_request_write_test(img_request) ||
2421 !img_request_layered_test(img_request) ||
2422 rbd_dev->parent_overlap <= obj_request->img_offset ||
2423 ((known = obj_request_known_test(obj_request)) &&
2424 obj_request_exists_test(obj_request))) {
2425
2426 struct rbd_device *rbd_dev;
2427 struct ceph_osd_client *osdc;
2428
2429 rbd_dev = obj_request->img_request->rbd_dev;
2430 osdc = &rbd_dev->rbd_client->client->osdc;
2431
2432 return rbd_obj_request_submit(osdc, obj_request);
2433 }
2434
2435 /*
2436 * It's a layered write. The target object might exist but
2437 * we may not know that yet. If we know it doesn't exist,
2438 * start by reading the data for the full target object from
2439 * the parent so we can use it for a copyup to the target.
2440 */
2441 if (known)
2442 return rbd_img_obj_parent_read_full(obj_request);
2443
2444 /* We don't know whether the target exists. Go find out. */
2445
2446 return rbd_img_obj_exists_submit(obj_request);
2447 }
2448
2449 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2450 {
2451 struct rbd_obj_request *obj_request;
2452 struct rbd_obj_request *next_obj_request;
2453
2454 dout("%s: img %p\n", __func__, img_request);
2455 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2456 int ret;
2457
2458 ret = rbd_img_obj_request_submit(obj_request);
2459 if (ret)
2460 return ret;
2461 }
2462
2463 return 0;
2464 }
2465
2466 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2467 {
2468 struct rbd_obj_request *obj_request;
2469 struct rbd_device *rbd_dev;
2470 u64 obj_end;
2471
2472 rbd_assert(img_request_child_test(img_request));
2473
2474 obj_request = img_request->obj_request;
2475 rbd_assert(obj_request);
2476 rbd_assert(obj_request->img_request);
2477
2478 obj_request->result = img_request->result;
2479 if (obj_request->result)
2480 goto out;
2481
2482 /*
2483 * We need to zero anything beyond the parent overlap
2484 * boundary. Since rbd_img_obj_request_read_callback()
2485 * will zero anything beyond the end of a short read, an
2486 * easy way to do this is to pretend the data from the
2487 * parent came up short--ending at the overlap boundary.
2488 */
2489 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2490 obj_end = obj_request->img_offset + obj_request->length;
2491 rbd_dev = obj_request->img_request->rbd_dev;
2492 if (obj_end > rbd_dev->parent_overlap) {
2493 u64 xferred = 0;
2494
2495 if (obj_request->img_offset < rbd_dev->parent_overlap)
2496 xferred = rbd_dev->parent_overlap -
2497 obj_request->img_offset;
2498
2499 obj_request->xferred = min(img_request->xferred, xferred);
2500 } else {
2501 obj_request->xferred = img_request->xferred;
2502 }
2503 out:
2504 rbd_img_obj_request_read_callback(obj_request);
2505 rbd_obj_request_complete(obj_request);
2506 }
2507
2508 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2509 {
2510 struct rbd_device *rbd_dev;
2511 struct rbd_img_request *img_request;
2512 int result;
2513
2514 rbd_assert(obj_request_img_data_test(obj_request));
2515 rbd_assert(obj_request->img_request != NULL);
2516 rbd_assert(obj_request->result == (s32) -ENOENT);
2517 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2518
2519 rbd_dev = obj_request->img_request->rbd_dev;
2520 rbd_assert(rbd_dev->parent != NULL);
2521 /* rbd_read_finish(obj_request, obj_request->length); */
2522 img_request = rbd_img_request_create(rbd_dev->parent,
2523 obj_request->img_offset,
2524 obj_request->length,
2525 false, true);
2526 result = -ENOMEM;
2527 if (!img_request)
2528 goto out_err;
2529
2530 rbd_obj_request_get(obj_request);
2531 img_request->obj_request = obj_request;
2532
2533 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2534 obj_request->bio_list);
2535 if (result)
2536 goto out_err;
2537
2538 img_request->callback = rbd_img_parent_read_callback;
2539 result = rbd_img_request_submit(img_request);
2540 if (result)
2541 goto out_err;
2542
2543 return;
2544 out_err:
2545 if (img_request)
2546 rbd_img_request_put(img_request);
2547 obj_request->result = result;
2548 obj_request->xferred = 0;
2549 obj_request_done_set(obj_request);
2550 }
2551
2552 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2553 {
2554 struct rbd_obj_request *obj_request;
2555 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2556 int ret;
2557
2558 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2559 OBJ_REQUEST_NODATA);
2560 if (!obj_request)
2561 return -ENOMEM;
2562
2563 ret = -ENOMEM;
2564 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2565 if (!obj_request->osd_req)
2566 goto out;
2567 obj_request->callback = rbd_obj_request_put;
2568
2569 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2570 notify_id, 0, 0);
2571 rbd_osd_req_format_read(obj_request);
2572
2573 ret = rbd_obj_request_submit(osdc, obj_request);
2574 out:
2575 if (ret)
2576 rbd_obj_request_put(obj_request);
2577
2578 return ret;
2579 }
2580
2581 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2582 {
2583 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2584
2585 if (!rbd_dev)
2586 return;
2587
2588 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2589 rbd_dev->header_name, (unsigned long long)notify_id,
2590 (unsigned int)opcode);
2591 (void)rbd_dev_refresh(rbd_dev);
2592
2593 rbd_obj_notify_ack(rbd_dev, notify_id);
2594 }
2595
2596 /*
2597 * Request sync osd watch/unwatch. The value of "start" determines
2598 * whether a watch request is being initiated or torn down.
2599 */
2600 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2601 {
2602 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2603 struct rbd_obj_request *obj_request;
2604 int ret;
2605
2606 rbd_assert(start ^ !!rbd_dev->watch_event);
2607 rbd_assert(start ^ !!rbd_dev->watch_request);
2608
2609 if (start) {
2610 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2611 &rbd_dev->watch_event);
2612 if (ret < 0)
2613 return ret;
2614 rbd_assert(rbd_dev->watch_event != NULL);
2615 }
2616
2617 ret = -ENOMEM;
2618 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2619 OBJ_REQUEST_NODATA);
2620 if (!obj_request)
2621 goto out_cancel;
2622
2623 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2624 if (!obj_request->osd_req)
2625 goto out_cancel;
2626
2627 if (start)
2628 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2629 else
2630 ceph_osdc_unregister_linger_request(osdc,
2631 rbd_dev->watch_request->osd_req);
2632
2633 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2634 rbd_dev->watch_event->cookie, 0, start);
2635 rbd_osd_req_format_write(obj_request);
2636
2637 ret = rbd_obj_request_submit(osdc, obj_request);
2638 if (ret)
2639 goto out_cancel;
2640 ret = rbd_obj_request_wait(obj_request);
2641 if (ret)
2642 goto out_cancel;
2643 ret = obj_request->result;
2644 if (ret)
2645 goto out_cancel;
2646
2647 /*
2648 * A watch request is set to linger, so the underlying osd
2649 * request won't go away until we unregister it. We retain
2650 * a pointer to the object request during that time (in
2651 * rbd_dev->watch_request), so we'll keep a reference to
2652 * it. We'll drop that reference (below) after we've
2653 * unregistered it.
2654 */
2655 if (start) {
2656 rbd_dev->watch_request = obj_request;
2657
2658 return 0;
2659 }
2660
2661 /* We have successfully torn down the watch request */
2662
2663 rbd_obj_request_put(rbd_dev->watch_request);
2664 rbd_dev->watch_request = NULL;
2665 out_cancel:
2666 /* Cancel the event if we're tearing down, or on error */
2667 ceph_osdc_cancel_event(rbd_dev->watch_event);
2668 rbd_dev->watch_event = NULL;
2669 if (obj_request)
2670 rbd_obj_request_put(obj_request);
2671
2672 return ret;
2673 }
2674
2675 /*
2676 * Synchronous osd object method call. Returns the number of bytes
2677 * returned in the outbound buffer, or a negative error code.
2678 */
2679 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2680 const char *object_name,
2681 const char *class_name,
2682 const char *method_name,
2683 const void *outbound,
2684 size_t outbound_size,
2685 void *inbound,
2686 size_t inbound_size)
2687 {
2688 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2689 struct rbd_obj_request *obj_request;
2690 struct page **pages;
2691 u32 page_count;
2692 int ret;
2693
2694 /*
2695 * Method calls are ultimately read operations. The result
2696 * should placed into the inbound buffer provided. They
2697 * also supply outbound data--parameters for the object
2698 * method. Currently if this is present it will be a
2699 * snapshot id.
2700 */
2701 page_count = (u32)calc_pages_for(0, inbound_size);
2702 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2703 if (IS_ERR(pages))
2704 return PTR_ERR(pages);
2705
2706 ret = -ENOMEM;
2707 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2708 OBJ_REQUEST_PAGES);
2709 if (!obj_request)
2710 goto out;
2711
2712 obj_request->pages = pages;
2713 obj_request->page_count = page_count;
2714
2715 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2716 if (!obj_request->osd_req)
2717 goto out;
2718
2719 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2720 class_name, method_name);
2721 if (outbound_size) {
2722 struct ceph_pagelist *pagelist;
2723
2724 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2725 if (!pagelist)
2726 goto out;
2727
2728 ceph_pagelist_init(pagelist);
2729 ceph_pagelist_append(pagelist, outbound, outbound_size);
2730 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2731 pagelist);
2732 }
2733 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2734 obj_request->pages, inbound_size,
2735 0, false, false);
2736 rbd_osd_req_format_read(obj_request);
2737
2738 ret = rbd_obj_request_submit(osdc, obj_request);
2739 if (ret)
2740 goto out;
2741 ret = rbd_obj_request_wait(obj_request);
2742 if (ret)
2743 goto out;
2744
2745 ret = obj_request->result;
2746 if (ret < 0)
2747 goto out;
2748
2749 rbd_assert(obj_request->xferred < (u64)INT_MAX);
2750 ret = (int)obj_request->xferred;
2751 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2752 out:
2753 if (obj_request)
2754 rbd_obj_request_put(obj_request);
2755 else
2756 ceph_release_page_vector(pages, page_count);
2757
2758 return ret;
2759 }
2760
2761 static void rbd_request_fn(struct request_queue *q)
2762 __releases(q->queue_lock) __acquires(q->queue_lock)
2763 {
2764 struct rbd_device *rbd_dev = q->queuedata;
2765 bool read_only = rbd_dev->mapping.read_only;
2766 struct request *rq;
2767 int result;
2768
2769 while ((rq = blk_fetch_request(q))) {
2770 bool write_request = rq_data_dir(rq) == WRITE;
2771 struct rbd_img_request *img_request;
2772 u64 offset;
2773 u64 length;
2774
2775 /* Ignore any non-FS requests that filter through. */
2776
2777 if (rq->cmd_type != REQ_TYPE_FS) {
2778 dout("%s: non-fs request type %d\n", __func__,
2779 (int) rq->cmd_type);
2780 __blk_end_request_all(rq, 0);
2781 continue;
2782 }
2783
2784 /* Ignore/skip any zero-length requests */
2785
2786 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2787 length = (u64) blk_rq_bytes(rq);
2788
2789 if (!length) {
2790 dout("%s: zero-length request\n", __func__);
2791 __blk_end_request_all(rq, 0);
2792 continue;
2793 }
2794
2795 spin_unlock_irq(q->queue_lock);
2796
2797 /* Disallow writes to a read-only device */
2798
2799 if (write_request) {
2800 result = -EROFS;
2801 if (read_only)
2802 goto end_request;
2803 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2804 }
2805
2806 /*
2807 * Quit early if the mapped snapshot no longer
2808 * exists. It's still possible the snapshot will
2809 * have disappeared by the time our request arrives
2810 * at the osd, but there's no sense in sending it if
2811 * we already know.
2812 */
2813 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2814 dout("request for non-existent snapshot");
2815 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2816 result = -ENXIO;
2817 goto end_request;
2818 }
2819
2820 result = -EINVAL;
2821 if (offset && length > U64_MAX - offset + 1) {
2822 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2823 offset, length);
2824 goto end_request; /* Shouldn't happen */
2825 }
2826
2827 result = -ENOMEM;
2828 img_request = rbd_img_request_create(rbd_dev, offset, length,
2829 write_request, false);
2830 if (!img_request)
2831 goto end_request;
2832
2833 img_request->rq = rq;
2834
2835 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2836 rq->bio);
2837 if (!result)
2838 result = rbd_img_request_submit(img_request);
2839 if (result)
2840 rbd_img_request_put(img_request);
2841 end_request:
2842 spin_lock_irq(q->queue_lock);
2843 if (result < 0) {
2844 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2845 write_request ? "write" : "read",
2846 length, offset, result);
2847
2848 __blk_end_request_all(rq, result);
2849 }
2850 }
2851 }
2852
2853 /*
2854 * a queue callback. Makes sure that we don't create a bio that spans across
2855 * multiple osd objects. One exception would be with a single page bios,
2856 * which we handle later at bio_chain_clone_range()
2857 */
2858 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2859 struct bio_vec *bvec)
2860 {
2861 struct rbd_device *rbd_dev = q->queuedata;
2862 sector_t sector_offset;
2863 sector_t sectors_per_obj;
2864 sector_t obj_sector_offset;
2865 int ret;
2866
2867 /*
2868 * Find how far into its rbd object the partition-relative
2869 * bio start sector is to offset relative to the enclosing
2870 * device.
2871 */
2872 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2873 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2874 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2875
2876 /*
2877 * Compute the number of bytes from that offset to the end
2878 * of the object. Account for what's already used by the bio.
2879 */
2880 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2881 if (ret > bmd->bi_size)
2882 ret -= bmd->bi_size;
2883 else
2884 ret = 0;
2885
2886 /*
2887 * Don't send back more than was asked for. And if the bio
2888 * was empty, let the whole thing through because: "Note
2889 * that a block device *must* allow a single page to be
2890 * added to an empty bio."
2891 */
2892 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2893 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2894 ret = (int) bvec->bv_len;
2895
2896 return ret;
2897 }
2898
2899 static void rbd_free_disk(struct rbd_device *rbd_dev)
2900 {
2901 struct gendisk *disk = rbd_dev->disk;
2902
2903 if (!disk)
2904 return;
2905
2906 rbd_dev->disk = NULL;
2907 if (disk->flags & GENHD_FL_UP) {
2908 del_gendisk(disk);
2909 if (disk->queue)
2910 blk_cleanup_queue(disk->queue);
2911 }
2912 put_disk(disk);
2913 }
2914
2915 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2916 const char *object_name,
2917 u64 offset, u64 length, void *buf)
2918
2919 {
2920 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2921 struct rbd_obj_request *obj_request;
2922 struct page **pages = NULL;
2923 u32 page_count;
2924 size_t size;
2925 int ret;
2926
2927 page_count = (u32) calc_pages_for(offset, length);
2928 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2929 if (IS_ERR(pages))
2930 ret = PTR_ERR(pages);
2931
2932 ret = -ENOMEM;
2933 obj_request = rbd_obj_request_create(object_name, offset, length,
2934 OBJ_REQUEST_PAGES);
2935 if (!obj_request)
2936 goto out;
2937
2938 obj_request->pages = pages;
2939 obj_request->page_count = page_count;
2940
2941 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2942 if (!obj_request->osd_req)
2943 goto out;
2944
2945 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2946 offset, length, 0, 0);
2947 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2948 obj_request->pages,
2949 obj_request->length,
2950 obj_request->offset & ~PAGE_MASK,
2951 false, false);
2952 rbd_osd_req_format_read(obj_request);
2953
2954 ret = rbd_obj_request_submit(osdc, obj_request);
2955 if (ret)
2956 goto out;
2957 ret = rbd_obj_request_wait(obj_request);
2958 if (ret)
2959 goto out;
2960
2961 ret = obj_request->result;
2962 if (ret < 0)
2963 goto out;
2964
2965 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2966 size = (size_t) obj_request->xferred;
2967 ceph_copy_from_page_vector(pages, buf, 0, size);
2968 rbd_assert(size <= (size_t)INT_MAX);
2969 ret = (int)size;
2970 out:
2971 if (obj_request)
2972 rbd_obj_request_put(obj_request);
2973 else
2974 ceph_release_page_vector(pages, page_count);
2975
2976 return ret;
2977 }
2978
2979 /*
2980 * Read the complete header for the given rbd device.
2981 *
2982 * Returns a pointer to a dynamically-allocated buffer containing
2983 * the complete and validated header. Caller can pass the address
2984 * of a variable that will be filled in with the version of the
2985 * header object at the time it was read.
2986 *
2987 * Returns a pointer-coded errno if a failure occurs.
2988 */
2989 static struct rbd_image_header_ondisk *
2990 rbd_dev_v1_header_read(struct rbd_device *rbd_dev)
2991 {
2992 struct rbd_image_header_ondisk *ondisk = NULL;
2993 u32 snap_count = 0;
2994 u64 names_size = 0;
2995 u32 want_count;
2996 int ret;
2997
2998 /*
2999 * The complete header will include an array of its 64-bit
3000 * snapshot ids, followed by the names of those snapshots as
3001 * a contiguous block of NUL-terminated strings. Note that
3002 * the number of snapshots could change by the time we read
3003 * it in, in which case we re-read it.
3004 */
3005 do {
3006 size_t size;
3007
3008 kfree(ondisk);
3009
3010 size = sizeof (*ondisk);
3011 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3012 size += names_size;
3013 ondisk = kmalloc(size, GFP_KERNEL);
3014 if (!ondisk)
3015 return ERR_PTR(-ENOMEM);
3016
3017 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3018 0, size, ondisk);
3019 if (ret < 0)
3020 goto out_err;
3021 if ((size_t)ret < size) {
3022 ret = -ENXIO;
3023 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3024 size, ret);
3025 goto out_err;
3026 }
3027 if (!rbd_dev_ondisk_valid(ondisk)) {
3028 ret = -ENXIO;
3029 rbd_warn(rbd_dev, "invalid header");
3030 goto out_err;
3031 }
3032
3033 names_size = le64_to_cpu(ondisk->snap_names_len);
3034 want_count = snap_count;
3035 snap_count = le32_to_cpu(ondisk->snap_count);
3036 } while (snap_count != want_count);
3037
3038 return ondisk;
3039
3040 out_err:
3041 kfree(ondisk);
3042
3043 return ERR_PTR(ret);
3044 }
3045
3046 /*
3047 * reload the ondisk the header
3048 */
3049 static int rbd_read_header(struct rbd_device *rbd_dev,
3050 struct rbd_image_header *header)
3051 {
3052 struct rbd_image_header_ondisk *ondisk;
3053 int ret;
3054
3055 ondisk = rbd_dev_v1_header_read(rbd_dev);
3056 if (IS_ERR(ondisk))
3057 return PTR_ERR(ondisk);
3058 ret = rbd_header_from_disk(header, ondisk);
3059 kfree(ondisk);
3060
3061 return ret;
3062 }
3063
3064 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3065 {
3066 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3067 return;
3068
3069 if (rbd_dev->mapping.size != rbd_dev->header.image_size) {
3070 sector_t size;
3071
3072 rbd_dev->mapping.size = rbd_dev->header.image_size;
3073 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3074 dout("setting size to %llu sectors", (unsigned long long)size);
3075 set_capacity(rbd_dev->disk, size);
3076 }
3077 }
3078
3079 /*
3080 * only read the first part of the ondisk header, without the snaps info
3081 */
3082 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev)
3083 {
3084 int ret;
3085 struct rbd_image_header h;
3086
3087 ret = rbd_read_header(rbd_dev, &h);
3088 if (ret < 0)
3089 return ret;
3090
3091 down_write(&rbd_dev->header_rwsem);
3092
3093 /* Update image size, and check for resize of mapped image */
3094 rbd_dev->header.image_size = h.image_size;
3095 rbd_update_mapping_size(rbd_dev);
3096
3097 /* rbd_dev->header.object_prefix shouldn't change */
3098 kfree(rbd_dev->header.snap_sizes);
3099 kfree(rbd_dev->header.snap_names);
3100 /* osd requests may still refer to snapc */
3101 ceph_put_snap_context(rbd_dev->header.snapc);
3102
3103 rbd_dev->header.image_size = h.image_size;
3104 rbd_dev->header.snapc = h.snapc;
3105 rbd_dev->header.snap_names = h.snap_names;
3106 rbd_dev->header.snap_sizes = h.snap_sizes;
3107 /* Free the extra copy of the object prefix */
3108 if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3109 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3110 kfree(h.object_prefix);
3111
3112 up_write(&rbd_dev->header_rwsem);
3113
3114 return ret;
3115 }
3116
3117 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3118 {
3119 u64 image_size;
3120 int ret;
3121
3122 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3123 image_size = rbd_dev->header.image_size;
3124 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3125 if (rbd_dev->image_format == 1)
3126 ret = rbd_dev_v1_refresh(rbd_dev);
3127 else
3128 ret = rbd_dev_v2_refresh(rbd_dev);
3129 mutex_unlock(&ctl_mutex);
3130 if (ret)
3131 rbd_warn(rbd_dev, "got notification but failed to "
3132 " update snaps: %d\n", ret);
3133 if (image_size != rbd_dev->header.image_size)
3134 revalidate_disk(rbd_dev->disk);
3135
3136 return ret;
3137 }
3138
3139 static int rbd_init_disk(struct rbd_device *rbd_dev)
3140 {
3141 struct gendisk *disk;
3142 struct request_queue *q;
3143 u64 segment_size;
3144
3145 /* create gendisk info */
3146 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3147 if (!disk)
3148 return -ENOMEM;
3149
3150 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3151 rbd_dev->dev_id);
3152 disk->major = rbd_dev->major;
3153 disk->first_minor = 0;
3154 disk->fops = &rbd_bd_ops;
3155 disk->private_data = rbd_dev;
3156
3157 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3158 if (!q)
3159 goto out_disk;
3160
3161 /* We use the default size, but let's be explicit about it. */
3162 blk_queue_physical_block_size(q, SECTOR_SIZE);
3163
3164 /* set io sizes to object size */
3165 segment_size = rbd_obj_bytes(&rbd_dev->header);
3166 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3167 blk_queue_max_segment_size(q, segment_size);
3168 blk_queue_io_min(q, segment_size);
3169 blk_queue_io_opt(q, segment_size);
3170
3171 blk_queue_merge_bvec(q, rbd_merge_bvec);
3172 disk->queue = q;
3173
3174 q->queuedata = rbd_dev;
3175
3176 rbd_dev->disk = disk;
3177
3178 return 0;
3179 out_disk:
3180 put_disk(disk);
3181
3182 return -ENOMEM;
3183 }
3184
3185 /*
3186 sysfs
3187 */
3188
3189 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3190 {
3191 return container_of(dev, struct rbd_device, dev);
3192 }
3193
3194 static ssize_t rbd_size_show(struct device *dev,
3195 struct device_attribute *attr, char *buf)
3196 {
3197 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3198
3199 return sprintf(buf, "%llu\n",
3200 (unsigned long long)rbd_dev->mapping.size);
3201 }
3202
3203 /*
3204 * Note this shows the features for whatever's mapped, which is not
3205 * necessarily the base image.
3206 */
3207 static ssize_t rbd_features_show(struct device *dev,
3208 struct device_attribute *attr, char *buf)
3209 {
3210 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3211
3212 return sprintf(buf, "0x%016llx\n",
3213 (unsigned long long)rbd_dev->mapping.features);
3214 }
3215
3216 static ssize_t rbd_major_show(struct device *dev,
3217 struct device_attribute *attr, char *buf)
3218 {
3219 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3220
3221 if (rbd_dev->major)
3222 return sprintf(buf, "%d\n", rbd_dev->major);
3223
3224 return sprintf(buf, "(none)\n");
3225
3226 }
3227
3228 static ssize_t rbd_client_id_show(struct device *dev,
3229 struct device_attribute *attr, char *buf)
3230 {
3231 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3232
3233 return sprintf(buf, "client%lld\n",
3234 ceph_client_id(rbd_dev->rbd_client->client));
3235 }
3236
3237 static ssize_t rbd_pool_show(struct device *dev,
3238 struct device_attribute *attr, char *buf)
3239 {
3240 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3241
3242 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3243 }
3244
3245 static ssize_t rbd_pool_id_show(struct device *dev,
3246 struct device_attribute *attr, char *buf)
3247 {
3248 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3249
3250 return sprintf(buf, "%llu\n",
3251 (unsigned long long) rbd_dev->spec->pool_id);
3252 }
3253
3254 static ssize_t rbd_name_show(struct device *dev,
3255 struct device_attribute *attr, char *buf)
3256 {
3257 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3258
3259 if (rbd_dev->spec->image_name)
3260 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3261
3262 return sprintf(buf, "(unknown)\n");
3263 }
3264
3265 static ssize_t rbd_image_id_show(struct device *dev,
3266 struct device_attribute *attr, char *buf)
3267 {
3268 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3269
3270 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3271 }
3272
3273 /*
3274 * Shows the name of the currently-mapped snapshot (or
3275 * RBD_SNAP_HEAD_NAME for the base image).
3276 */
3277 static ssize_t rbd_snap_show(struct device *dev,
3278 struct device_attribute *attr,
3279 char *buf)
3280 {
3281 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3282
3283 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3284 }
3285
3286 /*
3287 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3288 * for the parent image. If there is no parent, simply shows
3289 * "(no parent image)".
3290 */
3291 static ssize_t rbd_parent_show(struct device *dev,
3292 struct device_attribute *attr,
3293 char *buf)
3294 {
3295 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3296 struct rbd_spec *spec = rbd_dev->parent_spec;
3297 int count;
3298 char *bufp = buf;
3299
3300 if (!spec)
3301 return sprintf(buf, "(no parent image)\n");
3302
3303 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3304 (unsigned long long) spec->pool_id, spec->pool_name);
3305 if (count < 0)
3306 return count;
3307 bufp += count;
3308
3309 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3310 spec->image_name ? spec->image_name : "(unknown)");
3311 if (count < 0)
3312 return count;
3313 bufp += count;
3314
3315 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3316 (unsigned long long) spec->snap_id, spec->snap_name);
3317 if (count < 0)
3318 return count;
3319 bufp += count;
3320
3321 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3322 if (count < 0)
3323 return count;
3324 bufp += count;
3325
3326 return (ssize_t) (bufp - buf);
3327 }
3328
3329 static ssize_t rbd_image_refresh(struct device *dev,
3330 struct device_attribute *attr,
3331 const char *buf,
3332 size_t size)
3333 {
3334 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3335 int ret;
3336
3337 ret = rbd_dev_refresh(rbd_dev);
3338
3339 return ret < 0 ? ret : size;
3340 }
3341
3342 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3343 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3344 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3345 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3346 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3347 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3348 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3349 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3350 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3351 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3352 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3353
3354 static struct attribute *rbd_attrs[] = {
3355 &dev_attr_size.attr,
3356 &dev_attr_features.attr,
3357 &dev_attr_major.attr,
3358 &dev_attr_client_id.attr,
3359 &dev_attr_pool.attr,
3360 &dev_attr_pool_id.attr,
3361 &dev_attr_name.attr,
3362 &dev_attr_image_id.attr,
3363 &dev_attr_current_snap.attr,
3364 &dev_attr_parent.attr,
3365 &dev_attr_refresh.attr,
3366 NULL
3367 };
3368
3369 static struct attribute_group rbd_attr_group = {
3370 .attrs = rbd_attrs,
3371 };
3372
3373 static const struct attribute_group *rbd_attr_groups[] = {
3374 &rbd_attr_group,
3375 NULL
3376 };
3377
3378 static void rbd_sysfs_dev_release(struct device *dev)
3379 {
3380 }
3381
3382 static struct device_type rbd_device_type = {
3383 .name = "rbd",
3384 .groups = rbd_attr_groups,
3385 .release = rbd_sysfs_dev_release,
3386 };
3387
3388 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3389 {
3390 kref_get(&spec->kref);
3391
3392 return spec;
3393 }
3394
3395 static void rbd_spec_free(struct kref *kref);
3396 static void rbd_spec_put(struct rbd_spec *spec)
3397 {
3398 if (spec)
3399 kref_put(&spec->kref, rbd_spec_free);
3400 }
3401
3402 static struct rbd_spec *rbd_spec_alloc(void)
3403 {
3404 struct rbd_spec *spec;
3405
3406 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3407 if (!spec)
3408 return NULL;
3409 kref_init(&spec->kref);
3410
3411 return spec;
3412 }
3413
3414 static void rbd_spec_free(struct kref *kref)
3415 {
3416 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3417
3418 kfree(spec->pool_name);
3419 kfree(spec->image_id);
3420 kfree(spec->image_name);
3421 kfree(spec->snap_name);
3422 kfree(spec);
3423 }
3424
3425 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3426 struct rbd_spec *spec)
3427 {
3428 struct rbd_device *rbd_dev;
3429
3430 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3431 if (!rbd_dev)
3432 return NULL;
3433
3434 spin_lock_init(&rbd_dev->lock);
3435 rbd_dev->flags = 0;
3436 INIT_LIST_HEAD(&rbd_dev->node);
3437 init_rwsem(&rbd_dev->header_rwsem);
3438
3439 rbd_dev->spec = spec;
3440 rbd_dev->rbd_client = rbdc;
3441
3442 /* Initialize the layout used for all rbd requests */
3443
3444 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3445 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3446 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3447 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3448
3449 return rbd_dev;
3450 }
3451
3452 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3453 {
3454 rbd_put_client(rbd_dev->rbd_client);
3455 rbd_spec_put(rbd_dev->spec);
3456 kfree(rbd_dev);
3457 }
3458
3459 /*
3460 * Get the size and object order for an image snapshot, or if
3461 * snap_id is CEPH_NOSNAP, gets this information for the base
3462 * image.
3463 */
3464 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3465 u8 *order, u64 *snap_size)
3466 {
3467 __le64 snapid = cpu_to_le64(snap_id);
3468 int ret;
3469 struct {
3470 u8 order;
3471 __le64 size;
3472 } __attribute__ ((packed)) size_buf = { 0 };
3473
3474 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3475 "rbd", "get_size",
3476 &snapid, sizeof (snapid),
3477 &size_buf, sizeof (size_buf));
3478 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3479 if (ret < 0)
3480 return ret;
3481 if (ret < sizeof (size_buf))
3482 return -ERANGE;
3483
3484 if (order)
3485 *order = size_buf.order;
3486 *snap_size = le64_to_cpu(size_buf.size);
3487
3488 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3489 (unsigned long long)snap_id, (unsigned int)*order,
3490 (unsigned long long)*snap_size);
3491
3492 return 0;
3493 }
3494
3495 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3496 {
3497 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3498 &rbd_dev->header.obj_order,
3499 &rbd_dev->header.image_size);
3500 }
3501
3502 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3503 {
3504 void *reply_buf;
3505 int ret;
3506 void *p;
3507
3508 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3509 if (!reply_buf)
3510 return -ENOMEM;
3511
3512 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3513 "rbd", "get_object_prefix", NULL, 0,
3514 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3515 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3516 if (ret < 0)
3517 goto out;
3518
3519 p = reply_buf;
3520 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3521 p + ret, NULL, GFP_NOIO);
3522 ret = 0;
3523
3524 if (IS_ERR(rbd_dev->header.object_prefix)) {
3525 ret = PTR_ERR(rbd_dev->header.object_prefix);
3526 rbd_dev->header.object_prefix = NULL;
3527 } else {
3528 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3529 }
3530 out:
3531 kfree(reply_buf);
3532
3533 return ret;
3534 }
3535
3536 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3537 u64 *snap_features)
3538 {
3539 __le64 snapid = cpu_to_le64(snap_id);
3540 struct {
3541 __le64 features;
3542 __le64 incompat;
3543 } __attribute__ ((packed)) features_buf = { 0 };
3544 u64 incompat;
3545 int ret;
3546
3547 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3548 "rbd", "get_features",
3549 &snapid, sizeof (snapid),
3550 &features_buf, sizeof (features_buf));
3551 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3552 if (ret < 0)
3553 return ret;
3554 if (ret < sizeof (features_buf))
3555 return -ERANGE;
3556
3557 incompat = le64_to_cpu(features_buf.incompat);
3558 if (incompat & ~RBD_FEATURES_SUPPORTED)
3559 return -ENXIO;
3560
3561 *snap_features = le64_to_cpu(features_buf.features);
3562
3563 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3564 (unsigned long long)snap_id,
3565 (unsigned long long)*snap_features,
3566 (unsigned long long)le64_to_cpu(features_buf.incompat));
3567
3568 return 0;
3569 }
3570
3571 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3572 {
3573 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3574 &rbd_dev->header.features);
3575 }
3576
3577 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3578 {
3579 struct rbd_spec *parent_spec;
3580 size_t size;
3581 void *reply_buf = NULL;
3582 __le64 snapid;
3583 void *p;
3584 void *end;
3585 char *image_id;
3586 u64 overlap;
3587 int ret;
3588
3589 parent_spec = rbd_spec_alloc();
3590 if (!parent_spec)
3591 return -ENOMEM;
3592
3593 size = sizeof (__le64) + /* pool_id */
3594 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3595 sizeof (__le64) + /* snap_id */
3596 sizeof (__le64); /* overlap */
3597 reply_buf = kmalloc(size, GFP_KERNEL);
3598 if (!reply_buf) {
3599 ret = -ENOMEM;
3600 goto out_err;
3601 }
3602
3603 snapid = cpu_to_le64(CEPH_NOSNAP);
3604 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3605 "rbd", "get_parent",
3606 &snapid, sizeof (snapid),
3607 reply_buf, size);
3608 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3609 if (ret < 0)
3610 goto out_err;
3611
3612 p = reply_buf;
3613 end = reply_buf + ret;
3614 ret = -ERANGE;
3615 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3616 if (parent_spec->pool_id == CEPH_NOPOOL)
3617 goto out; /* No parent? No problem. */
3618
3619 /* The ceph file layout needs to fit pool id in 32 bits */
3620
3621 ret = -EIO;
3622 if (parent_spec->pool_id > (u64)U32_MAX) {
3623 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3624 (unsigned long long)parent_spec->pool_id, U32_MAX);
3625 goto out_err;
3626 }
3627
3628 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3629 if (IS_ERR(image_id)) {
3630 ret = PTR_ERR(image_id);
3631 goto out_err;
3632 }
3633 parent_spec->image_id = image_id;
3634 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3635 ceph_decode_64_safe(&p, end, overlap, out_err);
3636
3637 rbd_dev->parent_overlap = overlap;
3638 rbd_dev->parent_spec = parent_spec;
3639 parent_spec = NULL; /* rbd_dev now owns this */
3640 out:
3641 ret = 0;
3642 out_err:
3643 kfree(reply_buf);
3644 rbd_spec_put(parent_spec);
3645
3646 return ret;
3647 }
3648
3649 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3650 {
3651 struct {
3652 __le64 stripe_unit;
3653 __le64 stripe_count;
3654 } __attribute__ ((packed)) striping_info_buf = { 0 };
3655 size_t size = sizeof (striping_info_buf);
3656 void *p;
3657 u64 obj_size;
3658 u64 stripe_unit;
3659 u64 stripe_count;
3660 int ret;
3661
3662 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3663 "rbd", "get_stripe_unit_count", NULL, 0,
3664 (char *)&striping_info_buf, size);
3665 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3666 if (ret < 0)
3667 return ret;
3668 if (ret < size)
3669 return -ERANGE;
3670
3671 /*
3672 * We don't actually support the "fancy striping" feature
3673 * (STRIPINGV2) yet, but if the striping sizes are the
3674 * defaults the behavior is the same as before. So find
3675 * out, and only fail if the image has non-default values.
3676 */
3677 ret = -EINVAL;
3678 obj_size = (u64)1 << rbd_dev->header.obj_order;
3679 p = &striping_info_buf;
3680 stripe_unit = ceph_decode_64(&p);
3681 if (stripe_unit != obj_size) {
3682 rbd_warn(rbd_dev, "unsupported stripe unit "
3683 "(got %llu want %llu)",
3684 stripe_unit, obj_size);
3685 return -EINVAL;
3686 }
3687 stripe_count = ceph_decode_64(&p);
3688 if (stripe_count != 1) {
3689 rbd_warn(rbd_dev, "unsupported stripe count "
3690 "(got %llu want 1)", stripe_count);
3691 return -EINVAL;
3692 }
3693 rbd_dev->header.stripe_unit = stripe_unit;
3694 rbd_dev->header.stripe_count = stripe_count;
3695
3696 return 0;
3697 }
3698
3699 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3700 {
3701 size_t image_id_size;
3702 char *image_id;
3703 void *p;
3704 void *end;
3705 size_t size;
3706 void *reply_buf = NULL;
3707 size_t len = 0;
3708 char *image_name = NULL;
3709 int ret;
3710
3711 rbd_assert(!rbd_dev->spec->image_name);
3712
3713 len = strlen(rbd_dev->spec->image_id);
3714 image_id_size = sizeof (__le32) + len;
3715 image_id = kmalloc(image_id_size, GFP_KERNEL);
3716 if (!image_id)
3717 return NULL;
3718
3719 p = image_id;
3720 end = image_id + image_id_size;
3721 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3722
3723 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3724 reply_buf = kmalloc(size, GFP_KERNEL);
3725 if (!reply_buf)
3726 goto out;
3727
3728 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3729 "rbd", "dir_get_name",
3730 image_id, image_id_size,
3731 reply_buf, size);
3732 if (ret < 0)
3733 goto out;
3734 p = reply_buf;
3735 end = reply_buf + ret;
3736
3737 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3738 if (IS_ERR(image_name))
3739 image_name = NULL;
3740 else
3741 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3742 out:
3743 kfree(reply_buf);
3744 kfree(image_id);
3745
3746 return image_name;
3747 }
3748
3749 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3750 {
3751 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3752 const char *snap_name;
3753 u32 which = 0;
3754
3755 /* Skip over names until we find the one we are looking for */
3756
3757 snap_name = rbd_dev->header.snap_names;
3758 while (which < snapc->num_snaps) {
3759 if (!strcmp(name, snap_name))
3760 return snapc->snaps[which];
3761 snap_name += strlen(snap_name) + 1;
3762 which++;
3763 }
3764 return CEPH_NOSNAP;
3765 }
3766
3767 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3768 {
3769 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3770 u32 which;
3771 bool found = false;
3772 u64 snap_id;
3773
3774 for (which = 0; !found && which < snapc->num_snaps; which++) {
3775 const char *snap_name;
3776
3777 snap_id = snapc->snaps[which];
3778 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3779 if (IS_ERR(snap_name))
3780 break;
3781 found = !strcmp(name, snap_name);
3782 kfree(snap_name);
3783 }
3784 return found ? snap_id : CEPH_NOSNAP;
3785 }
3786
3787 /*
3788 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3789 * no snapshot by that name is found, or if an error occurs.
3790 */
3791 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3792 {
3793 if (rbd_dev->image_format == 1)
3794 return rbd_v1_snap_id_by_name(rbd_dev, name);
3795
3796 return rbd_v2_snap_id_by_name(rbd_dev, name);
3797 }
3798
3799 /*
3800 * When an rbd image has a parent image, it is identified by the
3801 * pool, image, and snapshot ids (not names). This function fills
3802 * in the names for those ids. (It's OK if we can't figure out the
3803 * name for an image id, but the pool and snapshot ids should always
3804 * exist and have names.) All names in an rbd spec are dynamically
3805 * allocated.
3806 *
3807 * When an image being mapped (not a parent) is probed, we have the
3808 * pool name and pool id, image name and image id, and the snapshot
3809 * name. The only thing we're missing is the snapshot id.
3810 */
3811 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3812 {
3813 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3814 struct rbd_spec *spec = rbd_dev->spec;
3815 const char *pool_name;
3816 const char *image_name;
3817 const char *snap_name;
3818 int ret;
3819
3820 /*
3821 * An image being mapped will have the pool name (etc.), but
3822 * we need to look up the snapshot id.
3823 */
3824 if (spec->pool_name) {
3825 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3826 u64 snap_id;
3827
3828 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3829 if (snap_id == CEPH_NOSNAP)
3830 return -ENOENT;
3831 spec->snap_id = snap_id;
3832 } else {
3833 spec->snap_id = CEPH_NOSNAP;
3834 }
3835
3836 return 0;
3837 }
3838
3839 /* Get the pool name; we have to make our own copy of this */
3840
3841 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3842 if (!pool_name) {
3843 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3844 return -EIO;
3845 }
3846 pool_name = kstrdup(pool_name, GFP_KERNEL);
3847 if (!pool_name)
3848 return -ENOMEM;
3849
3850 /* Fetch the image name; tolerate failure here */
3851
3852 image_name = rbd_dev_image_name(rbd_dev);
3853 if (!image_name)
3854 rbd_warn(rbd_dev, "unable to get image name");
3855
3856 /* Look up the snapshot name, and make a copy */
3857
3858 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3859 if (!snap_name) {
3860 ret = -ENOMEM;
3861 goto out_err;
3862 }
3863
3864 spec->pool_name = pool_name;
3865 spec->image_name = image_name;
3866 spec->snap_name = snap_name;
3867
3868 return 0;
3869 out_err:
3870 kfree(image_name);
3871 kfree(pool_name);
3872
3873 return ret;
3874 }
3875
3876 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3877 {
3878 size_t size;
3879 int ret;
3880 void *reply_buf;
3881 void *p;
3882 void *end;
3883 u64 seq;
3884 u32 snap_count;
3885 struct ceph_snap_context *snapc;
3886 u32 i;
3887
3888 /*
3889 * We'll need room for the seq value (maximum snapshot id),
3890 * snapshot count, and array of that many snapshot ids.
3891 * For now we have a fixed upper limit on the number we're
3892 * prepared to receive.
3893 */
3894 size = sizeof (__le64) + sizeof (__le32) +
3895 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3896 reply_buf = kzalloc(size, GFP_KERNEL);
3897 if (!reply_buf)
3898 return -ENOMEM;
3899
3900 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3901 "rbd", "get_snapcontext", NULL, 0,
3902 reply_buf, size);
3903 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3904 if (ret < 0)
3905 goto out;
3906
3907 p = reply_buf;
3908 end = reply_buf + ret;
3909 ret = -ERANGE;
3910 ceph_decode_64_safe(&p, end, seq, out);
3911 ceph_decode_32_safe(&p, end, snap_count, out);
3912
3913 /*
3914 * Make sure the reported number of snapshot ids wouldn't go
3915 * beyond the end of our buffer. But before checking that,
3916 * make sure the computed size of the snapshot context we
3917 * allocate is representable in a size_t.
3918 */
3919 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3920 / sizeof (u64)) {
3921 ret = -EINVAL;
3922 goto out;
3923 }
3924 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3925 goto out;
3926 ret = 0;
3927
3928 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3929 if (!snapc) {
3930 ret = -ENOMEM;
3931 goto out;
3932 }
3933 snapc->seq = seq;
3934 for (i = 0; i < snap_count; i++)
3935 snapc->snaps[i] = ceph_decode_64(&p);
3936
3937 rbd_dev->header.snapc = snapc;
3938
3939 dout(" snap context seq = %llu, snap_count = %u\n",
3940 (unsigned long long)seq, (unsigned int)snap_count);
3941 out:
3942 kfree(reply_buf);
3943
3944 return ret;
3945 }
3946
3947 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
3948 u64 snap_id)
3949 {
3950 size_t size;
3951 void *reply_buf;
3952 __le64 snapid;
3953 int ret;
3954 void *p;
3955 void *end;
3956 char *snap_name;
3957
3958 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3959 reply_buf = kmalloc(size, GFP_KERNEL);
3960 if (!reply_buf)
3961 return ERR_PTR(-ENOMEM);
3962
3963 snapid = cpu_to_le64(snap_id);
3964 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3965 "rbd", "get_snapshot_name",
3966 &snapid, sizeof (snapid),
3967 reply_buf, size);
3968 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3969 if (ret < 0) {
3970 snap_name = ERR_PTR(ret);
3971 goto out;
3972 }
3973
3974 p = reply_buf;
3975 end = reply_buf + ret;
3976 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3977 if (IS_ERR(snap_name))
3978 goto out;
3979
3980 dout(" snap_id 0x%016llx snap_name = %s\n",
3981 (unsigned long long)snap_id, snap_name);
3982 out:
3983 kfree(reply_buf);
3984
3985 return snap_name;
3986 }
3987
3988 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
3989 {
3990 int ret;
3991
3992 down_write(&rbd_dev->header_rwsem);
3993
3994 ret = rbd_dev_v2_image_size(rbd_dev);
3995 if (ret)
3996 goto out;
3997 rbd_update_mapping_size(rbd_dev);
3998
3999 ret = rbd_dev_v2_snap_context(rbd_dev);
4000 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4001 if (ret)
4002 goto out;
4003 out:
4004 up_write(&rbd_dev->header_rwsem);
4005
4006 return ret;
4007 }
4008
4009 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4010 {
4011 struct device *dev;
4012 int ret;
4013
4014 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4015
4016 dev = &rbd_dev->dev;
4017 dev->bus = &rbd_bus_type;
4018 dev->type = &rbd_device_type;
4019 dev->parent = &rbd_root_dev;
4020 dev->release = rbd_dev_device_release;
4021 dev_set_name(dev, "%d", rbd_dev->dev_id);
4022 ret = device_register(dev);
4023
4024 mutex_unlock(&ctl_mutex);
4025
4026 return ret;
4027 }
4028
4029 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4030 {
4031 device_unregister(&rbd_dev->dev);
4032 }
4033
4034 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4035
4036 /*
4037 * Get a unique rbd identifier for the given new rbd_dev, and add
4038 * the rbd_dev to the global list. The minimum rbd id is 1.
4039 */
4040 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4041 {
4042 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4043
4044 spin_lock(&rbd_dev_list_lock);
4045 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4046 spin_unlock(&rbd_dev_list_lock);
4047 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4048 (unsigned long long) rbd_dev->dev_id);
4049 }
4050
4051 /*
4052 * Remove an rbd_dev from the global list, and record that its
4053 * identifier is no longer in use.
4054 */
4055 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4056 {
4057 struct list_head *tmp;
4058 int rbd_id = rbd_dev->dev_id;
4059 int max_id;
4060
4061 rbd_assert(rbd_id > 0);
4062
4063 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4064 (unsigned long long) rbd_dev->dev_id);
4065 spin_lock(&rbd_dev_list_lock);
4066 list_del_init(&rbd_dev->node);
4067
4068 /*
4069 * If the id being "put" is not the current maximum, there
4070 * is nothing special we need to do.
4071 */
4072 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4073 spin_unlock(&rbd_dev_list_lock);
4074 return;
4075 }
4076
4077 /*
4078 * We need to update the current maximum id. Search the
4079 * list to find out what it is. We're more likely to find
4080 * the maximum at the end, so search the list backward.
4081 */
4082 max_id = 0;
4083 list_for_each_prev(tmp, &rbd_dev_list) {
4084 struct rbd_device *rbd_dev;
4085
4086 rbd_dev = list_entry(tmp, struct rbd_device, node);
4087 if (rbd_dev->dev_id > max_id)
4088 max_id = rbd_dev->dev_id;
4089 }
4090 spin_unlock(&rbd_dev_list_lock);
4091
4092 /*
4093 * The max id could have been updated by rbd_dev_id_get(), in
4094 * which case it now accurately reflects the new maximum.
4095 * Be careful not to overwrite the maximum value in that
4096 * case.
4097 */
4098 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4099 dout(" max dev id has been reset\n");
4100 }
4101
4102 /*
4103 * Skips over white space at *buf, and updates *buf to point to the
4104 * first found non-space character (if any). Returns the length of
4105 * the token (string of non-white space characters) found. Note
4106 * that *buf must be terminated with '\0'.
4107 */
4108 static inline size_t next_token(const char **buf)
4109 {
4110 /*
4111 * These are the characters that produce nonzero for
4112 * isspace() in the "C" and "POSIX" locales.
4113 */
4114 const char *spaces = " \f\n\r\t\v";
4115
4116 *buf += strspn(*buf, spaces); /* Find start of token */
4117
4118 return strcspn(*buf, spaces); /* Return token length */
4119 }
4120
4121 /*
4122 * Finds the next token in *buf, and if the provided token buffer is
4123 * big enough, copies the found token into it. The result, if
4124 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4125 * must be terminated with '\0' on entry.
4126 *
4127 * Returns the length of the token found (not including the '\0').
4128 * Return value will be 0 if no token is found, and it will be >=
4129 * token_size if the token would not fit.
4130 *
4131 * The *buf pointer will be updated to point beyond the end of the
4132 * found token. Note that this occurs even if the token buffer is
4133 * too small to hold it.
4134 */
4135 static inline size_t copy_token(const char **buf,
4136 char *token,
4137 size_t token_size)
4138 {
4139 size_t len;
4140
4141 len = next_token(buf);
4142 if (len < token_size) {
4143 memcpy(token, *buf, len);
4144 *(token + len) = '\0';
4145 }
4146 *buf += len;
4147
4148 return len;
4149 }
4150
4151 /*
4152 * Finds the next token in *buf, dynamically allocates a buffer big
4153 * enough to hold a copy of it, and copies the token into the new
4154 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4155 * that a duplicate buffer is created even for a zero-length token.
4156 *
4157 * Returns a pointer to the newly-allocated duplicate, or a null
4158 * pointer if memory for the duplicate was not available. If
4159 * the lenp argument is a non-null pointer, the length of the token
4160 * (not including the '\0') is returned in *lenp.
4161 *
4162 * If successful, the *buf pointer will be updated to point beyond
4163 * the end of the found token.
4164 *
4165 * Note: uses GFP_KERNEL for allocation.
4166 */
4167 static inline char *dup_token(const char **buf, size_t *lenp)
4168 {
4169 char *dup;
4170 size_t len;
4171
4172 len = next_token(buf);
4173 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4174 if (!dup)
4175 return NULL;
4176 *(dup + len) = '\0';
4177 *buf += len;
4178
4179 if (lenp)
4180 *lenp = len;
4181
4182 return dup;
4183 }
4184
4185 /*
4186 * Parse the options provided for an "rbd add" (i.e., rbd image
4187 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4188 * and the data written is passed here via a NUL-terminated buffer.
4189 * Returns 0 if successful or an error code otherwise.
4190 *
4191 * The information extracted from these options is recorded in
4192 * the other parameters which return dynamically-allocated
4193 * structures:
4194 * ceph_opts
4195 * The address of a pointer that will refer to a ceph options
4196 * structure. Caller must release the returned pointer using
4197 * ceph_destroy_options() when it is no longer needed.
4198 * rbd_opts
4199 * Address of an rbd options pointer. Fully initialized by
4200 * this function; caller must release with kfree().
4201 * spec
4202 * Address of an rbd image specification pointer. Fully
4203 * initialized by this function based on parsed options.
4204 * Caller must release with rbd_spec_put().
4205 *
4206 * The options passed take this form:
4207 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4208 * where:
4209 * <mon_addrs>
4210 * A comma-separated list of one or more monitor addresses.
4211 * A monitor address is an ip address, optionally followed
4212 * by a port number (separated by a colon).
4213 * I.e.: ip1[:port1][,ip2[:port2]...]
4214 * <options>
4215 * A comma-separated list of ceph and/or rbd options.
4216 * <pool_name>
4217 * The name of the rados pool containing the rbd image.
4218 * <image_name>
4219 * The name of the image in that pool to map.
4220 * <snap_id>
4221 * An optional snapshot id. If provided, the mapping will
4222 * present data from the image at the time that snapshot was
4223 * created. The image head is used if no snapshot id is
4224 * provided. Snapshot mappings are always read-only.
4225 */
4226 static int rbd_add_parse_args(const char *buf,
4227 struct ceph_options **ceph_opts,
4228 struct rbd_options **opts,
4229 struct rbd_spec **rbd_spec)
4230 {
4231 size_t len;
4232 char *options;
4233 const char *mon_addrs;
4234 char *snap_name;
4235 size_t mon_addrs_size;
4236 struct rbd_spec *spec = NULL;
4237 struct rbd_options *rbd_opts = NULL;
4238 struct ceph_options *copts;
4239 int ret;
4240
4241 /* The first four tokens are required */
4242
4243 len = next_token(&buf);
4244 if (!len) {
4245 rbd_warn(NULL, "no monitor address(es) provided");
4246 return -EINVAL;
4247 }
4248 mon_addrs = buf;
4249 mon_addrs_size = len + 1;
4250 buf += len;
4251
4252 ret = -EINVAL;
4253 options = dup_token(&buf, NULL);
4254 if (!options)
4255 return -ENOMEM;
4256 if (!*options) {
4257 rbd_warn(NULL, "no options provided");
4258 goto out_err;
4259 }
4260
4261 spec = rbd_spec_alloc();
4262 if (!spec)
4263 goto out_mem;
4264
4265 spec->pool_name = dup_token(&buf, NULL);
4266 if (!spec->pool_name)
4267 goto out_mem;
4268 if (!*spec->pool_name) {
4269 rbd_warn(NULL, "no pool name provided");
4270 goto out_err;
4271 }
4272
4273 spec->image_name = dup_token(&buf, NULL);
4274 if (!spec->image_name)
4275 goto out_mem;
4276 if (!*spec->image_name) {
4277 rbd_warn(NULL, "no image name provided");
4278 goto out_err;
4279 }
4280
4281 /*
4282 * Snapshot name is optional; default is to use "-"
4283 * (indicating the head/no snapshot).
4284 */
4285 len = next_token(&buf);
4286 if (!len) {
4287 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4288 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4289 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4290 ret = -ENAMETOOLONG;
4291 goto out_err;
4292 }
4293 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4294 if (!snap_name)
4295 goto out_mem;
4296 *(snap_name + len) = '\0';
4297 spec->snap_name = snap_name;
4298
4299 /* Initialize all rbd options to the defaults */
4300
4301 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4302 if (!rbd_opts)
4303 goto out_mem;
4304
4305 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4306
4307 copts = ceph_parse_options(options, mon_addrs,
4308 mon_addrs + mon_addrs_size - 1,
4309 parse_rbd_opts_token, rbd_opts);
4310 if (IS_ERR(copts)) {
4311 ret = PTR_ERR(copts);
4312 goto out_err;
4313 }
4314 kfree(options);
4315
4316 *ceph_opts = copts;
4317 *opts = rbd_opts;
4318 *rbd_spec = spec;
4319
4320 return 0;
4321 out_mem:
4322 ret = -ENOMEM;
4323 out_err:
4324 kfree(rbd_opts);
4325 rbd_spec_put(spec);
4326 kfree(options);
4327
4328 return ret;
4329 }
4330
4331 /*
4332 * An rbd format 2 image has a unique identifier, distinct from the
4333 * name given to it by the user. Internally, that identifier is
4334 * what's used to specify the names of objects related to the image.
4335 *
4336 * A special "rbd id" object is used to map an rbd image name to its
4337 * id. If that object doesn't exist, then there is no v2 rbd image
4338 * with the supplied name.
4339 *
4340 * This function will record the given rbd_dev's image_id field if
4341 * it can be determined, and in that case will return 0. If any
4342 * errors occur a negative errno will be returned and the rbd_dev's
4343 * image_id field will be unchanged (and should be NULL).
4344 */
4345 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4346 {
4347 int ret;
4348 size_t size;
4349 char *object_name;
4350 void *response;
4351 char *image_id;
4352
4353 /*
4354 * When probing a parent image, the image id is already
4355 * known (and the image name likely is not). There's no
4356 * need to fetch the image id again in this case. We
4357 * do still need to set the image format though.
4358 */
4359 if (rbd_dev->spec->image_id) {
4360 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4361
4362 return 0;
4363 }
4364
4365 /*
4366 * First, see if the format 2 image id file exists, and if
4367 * so, get the image's persistent id from it.
4368 */
4369 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4370 object_name = kmalloc(size, GFP_NOIO);
4371 if (!object_name)
4372 return -ENOMEM;
4373 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4374 dout("rbd id object name is %s\n", object_name);
4375
4376 /* Response will be an encoded string, which includes a length */
4377
4378 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4379 response = kzalloc(size, GFP_NOIO);
4380 if (!response) {
4381 ret = -ENOMEM;
4382 goto out;
4383 }
4384
4385 /* If it doesn't exist we'll assume it's a format 1 image */
4386
4387 ret = rbd_obj_method_sync(rbd_dev, object_name,
4388 "rbd", "get_id", NULL, 0,
4389 response, RBD_IMAGE_ID_LEN_MAX);
4390 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4391 if (ret == -ENOENT) {
4392 image_id = kstrdup("", GFP_KERNEL);
4393 ret = image_id ? 0 : -ENOMEM;
4394 if (!ret)
4395 rbd_dev->image_format = 1;
4396 } else if (ret > sizeof (__le32)) {
4397 void *p = response;
4398
4399 image_id = ceph_extract_encoded_string(&p, p + ret,
4400 NULL, GFP_NOIO);
4401 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4402 if (!ret)
4403 rbd_dev->image_format = 2;
4404 } else {
4405 ret = -EINVAL;
4406 }
4407
4408 if (!ret) {
4409 rbd_dev->spec->image_id = image_id;
4410 dout("image_id is %s\n", image_id);
4411 }
4412 out:
4413 kfree(response);
4414 kfree(object_name);
4415
4416 return ret;
4417 }
4418
4419 /* Undo whatever state changes are made by v1 or v2 image probe */
4420
4421 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4422 {
4423 struct rbd_image_header *header;
4424
4425 rbd_dev_remove_parent(rbd_dev);
4426 rbd_spec_put(rbd_dev->parent_spec);
4427 rbd_dev->parent_spec = NULL;
4428 rbd_dev->parent_overlap = 0;
4429
4430 /* Free dynamic fields from the header, then zero it out */
4431
4432 header = &rbd_dev->header;
4433 ceph_put_snap_context(header->snapc);
4434 kfree(header->snap_sizes);
4435 kfree(header->snap_names);
4436 kfree(header->object_prefix);
4437 memset(header, 0, sizeof (*header));
4438 }
4439
4440 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4441 {
4442 int ret;
4443
4444 /* Populate rbd image metadata */
4445
4446 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4447 if (ret < 0)
4448 goto out_err;
4449
4450 /* Version 1 images have no parent (no layering) */
4451
4452 rbd_dev->parent_spec = NULL;
4453 rbd_dev->parent_overlap = 0;
4454
4455 dout("discovered version 1 image, header name is %s\n",
4456 rbd_dev->header_name);
4457
4458 return 0;
4459
4460 out_err:
4461 kfree(rbd_dev->header_name);
4462 rbd_dev->header_name = NULL;
4463 kfree(rbd_dev->spec->image_id);
4464 rbd_dev->spec->image_id = NULL;
4465
4466 return ret;
4467 }
4468
4469 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4470 {
4471 int ret;
4472
4473 ret = rbd_dev_v2_image_size(rbd_dev);
4474 if (ret)
4475 goto out_err;
4476
4477 /* Get the object prefix (a.k.a. block_name) for the image */
4478
4479 ret = rbd_dev_v2_object_prefix(rbd_dev);
4480 if (ret)
4481 goto out_err;
4482
4483 /* Get the and check features for the image */
4484
4485 ret = rbd_dev_v2_features(rbd_dev);
4486 if (ret)
4487 goto out_err;
4488
4489 /* If the image supports layering, get the parent info */
4490
4491 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4492 ret = rbd_dev_v2_parent_info(rbd_dev);
4493 if (ret)
4494 goto out_err;
4495
4496 /*
4497 * Don't print a warning for parent images. We can
4498 * tell this point because we won't know its pool
4499 * name yet (just its pool id).
4500 */
4501 if (rbd_dev->spec->pool_name)
4502 rbd_warn(rbd_dev, "WARNING: kernel layering "
4503 "is EXPERIMENTAL!");
4504 }
4505
4506 /* If the image supports fancy striping, get its parameters */
4507
4508 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4509 ret = rbd_dev_v2_striping_info(rbd_dev);
4510 if (ret < 0)
4511 goto out_err;
4512 }
4513
4514 /* crypto and compression type aren't (yet) supported for v2 images */
4515
4516 rbd_dev->header.crypt_type = 0;
4517 rbd_dev->header.comp_type = 0;
4518
4519 /* Get the snapshot context, plus the header version */
4520
4521 ret = rbd_dev_v2_snap_context(rbd_dev);
4522 if (ret)
4523 goto out_err;
4524
4525 dout("discovered version 2 image, header name is %s\n",
4526 rbd_dev->header_name);
4527
4528 return 0;
4529 out_err:
4530 rbd_dev->parent_overlap = 0;
4531 rbd_spec_put(rbd_dev->parent_spec);
4532 rbd_dev->parent_spec = NULL;
4533 kfree(rbd_dev->header_name);
4534 rbd_dev->header_name = NULL;
4535 kfree(rbd_dev->header.object_prefix);
4536 rbd_dev->header.object_prefix = NULL;
4537
4538 return ret;
4539 }
4540
4541 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4542 {
4543 struct rbd_device *parent = NULL;
4544 struct rbd_spec *parent_spec;
4545 struct rbd_client *rbdc;
4546 int ret;
4547
4548 if (!rbd_dev->parent_spec)
4549 return 0;
4550 /*
4551 * We need to pass a reference to the client and the parent
4552 * spec when creating the parent rbd_dev. Images related by
4553 * parent/child relationships always share both.
4554 */
4555 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4556 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4557
4558 ret = -ENOMEM;
4559 parent = rbd_dev_create(rbdc, parent_spec);
4560 if (!parent)
4561 goto out_err;
4562
4563 ret = rbd_dev_image_probe(parent);
4564 if (ret < 0)
4565 goto out_err;
4566 rbd_dev->parent = parent;
4567
4568 return 0;
4569 out_err:
4570 if (parent) {
4571 rbd_spec_put(rbd_dev->parent_spec);
4572 kfree(rbd_dev->header_name);
4573 rbd_dev_destroy(parent);
4574 } else {
4575 rbd_put_client(rbdc);
4576 rbd_spec_put(parent_spec);
4577 }
4578
4579 return ret;
4580 }
4581
4582 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4583 {
4584 int ret;
4585
4586 ret = rbd_dev_mapping_set(rbd_dev);
4587 if (ret)
4588 return ret;
4589
4590 /* generate unique id: find highest unique id, add one */
4591 rbd_dev_id_get(rbd_dev);
4592
4593 /* Fill in the device name, now that we have its id. */
4594 BUILD_BUG_ON(DEV_NAME_LEN
4595 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4596 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4597
4598 /* Get our block major device number. */
4599
4600 ret = register_blkdev(0, rbd_dev->name);
4601 if (ret < 0)
4602 goto err_out_id;
4603 rbd_dev->major = ret;
4604
4605 /* Set up the blkdev mapping. */
4606
4607 ret = rbd_init_disk(rbd_dev);
4608 if (ret)
4609 goto err_out_blkdev;
4610
4611 ret = rbd_bus_add_dev(rbd_dev);
4612 if (ret)
4613 goto err_out_disk;
4614
4615 /* Everything's ready. Announce the disk to the world. */
4616
4617 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4618 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4619 add_disk(rbd_dev->disk);
4620
4621 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4622 (unsigned long long) rbd_dev->mapping.size);
4623
4624 return ret;
4625
4626 err_out_disk:
4627 rbd_free_disk(rbd_dev);
4628 err_out_blkdev:
4629 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4630 err_out_id:
4631 rbd_dev_id_put(rbd_dev);
4632 rbd_dev_mapping_clear(rbd_dev);
4633
4634 return ret;
4635 }
4636
4637 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4638 {
4639 struct rbd_spec *spec = rbd_dev->spec;
4640 size_t size;
4641
4642 /* Record the header object name for this rbd image. */
4643
4644 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4645
4646 if (rbd_dev->image_format == 1)
4647 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4648 else
4649 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4650
4651 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4652 if (!rbd_dev->header_name)
4653 return -ENOMEM;
4654
4655 if (rbd_dev->image_format == 1)
4656 sprintf(rbd_dev->header_name, "%s%s",
4657 spec->image_name, RBD_SUFFIX);
4658 else
4659 sprintf(rbd_dev->header_name, "%s%s",
4660 RBD_HEADER_PREFIX, spec->image_id);
4661 return 0;
4662 }
4663
4664 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4665 {
4666 int ret;
4667
4668 rbd_dev_unprobe(rbd_dev);
4669 ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4670 if (ret)
4671 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4672 kfree(rbd_dev->header_name);
4673 rbd_dev->header_name = NULL;
4674 rbd_dev->image_format = 0;
4675 kfree(rbd_dev->spec->image_id);
4676 rbd_dev->spec->image_id = NULL;
4677
4678 rbd_dev_destroy(rbd_dev);
4679 }
4680
4681 /*
4682 * Probe for the existence of the header object for the given rbd
4683 * device. For format 2 images this includes determining the image
4684 * id.
4685 */
4686 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4687 {
4688 int ret;
4689 int tmp;
4690
4691 /*
4692 * Get the id from the image id object. If it's not a
4693 * format 2 image, we'll get ENOENT back, and we'll assume
4694 * it's a format 1 image.
4695 */
4696 ret = rbd_dev_image_id(rbd_dev);
4697 if (ret)
4698 return ret;
4699 rbd_assert(rbd_dev->spec->image_id);
4700 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4701
4702 ret = rbd_dev_header_name(rbd_dev);
4703 if (ret)
4704 goto err_out_format;
4705
4706 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4707 if (ret)
4708 goto out_header_name;
4709
4710 if (rbd_dev->image_format == 1)
4711 ret = rbd_dev_v1_probe(rbd_dev);
4712 else
4713 ret = rbd_dev_v2_probe(rbd_dev);
4714 if (ret)
4715 goto err_out_watch;
4716
4717 ret = rbd_dev_spec_update(rbd_dev);
4718 if (ret)
4719 goto err_out_probe;
4720
4721 ret = rbd_dev_probe_parent(rbd_dev);
4722 if (!ret)
4723 return 0;
4724
4725 err_out_probe:
4726 rbd_dev_unprobe(rbd_dev);
4727 err_out_watch:
4728 tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4729 if (tmp)
4730 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4731 out_header_name:
4732 kfree(rbd_dev->header_name);
4733 rbd_dev->header_name = NULL;
4734 err_out_format:
4735 rbd_dev->image_format = 0;
4736 kfree(rbd_dev->spec->image_id);
4737 rbd_dev->spec->image_id = NULL;
4738
4739 dout("probe failed, returning %d\n", ret);
4740
4741 return ret;
4742 }
4743
4744 static ssize_t rbd_add(struct bus_type *bus,
4745 const char *buf,
4746 size_t count)
4747 {
4748 struct rbd_device *rbd_dev = NULL;
4749 struct ceph_options *ceph_opts = NULL;
4750 struct rbd_options *rbd_opts = NULL;
4751 struct rbd_spec *spec = NULL;
4752 struct rbd_client *rbdc;
4753 struct ceph_osd_client *osdc;
4754 int rc = -ENOMEM;
4755
4756 if (!try_module_get(THIS_MODULE))
4757 return -ENODEV;
4758
4759 /* parse add command */
4760 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4761 if (rc < 0)
4762 goto err_out_module;
4763
4764 rbdc = rbd_get_client(ceph_opts);
4765 if (IS_ERR(rbdc)) {
4766 rc = PTR_ERR(rbdc);
4767 goto err_out_args;
4768 }
4769 ceph_opts = NULL; /* rbd_dev client now owns this */
4770
4771 /* pick the pool */
4772 osdc = &rbdc->client->osdc;
4773 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4774 if (rc < 0)
4775 goto err_out_client;
4776 spec->pool_id = (u64)rc;
4777
4778 /* The ceph file layout needs to fit pool id in 32 bits */
4779
4780 if (spec->pool_id > (u64)U32_MAX) {
4781 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4782 (unsigned long long)spec->pool_id, U32_MAX);
4783 rc = -EIO;
4784 goto err_out_client;
4785 }
4786
4787 rbd_dev = rbd_dev_create(rbdc, spec);
4788 if (!rbd_dev)
4789 goto err_out_client;
4790 rbdc = NULL; /* rbd_dev now owns this */
4791 spec = NULL; /* rbd_dev now owns this */
4792
4793 rbd_dev->mapping.read_only = rbd_opts->read_only;
4794 kfree(rbd_opts);
4795 rbd_opts = NULL; /* done with this */
4796
4797 rc = rbd_dev_image_probe(rbd_dev);
4798 if (rc < 0)
4799 goto err_out_rbd_dev;
4800
4801 rc = rbd_dev_device_setup(rbd_dev);
4802 if (!rc)
4803 return count;
4804
4805 rbd_dev_image_release(rbd_dev);
4806 err_out_rbd_dev:
4807 rbd_dev_destroy(rbd_dev);
4808 err_out_client:
4809 rbd_put_client(rbdc);
4810 err_out_args:
4811 if (ceph_opts)
4812 ceph_destroy_options(ceph_opts);
4813 kfree(rbd_opts);
4814 rbd_spec_put(spec);
4815 err_out_module:
4816 module_put(THIS_MODULE);
4817
4818 dout("Error adding device %s\n", buf);
4819
4820 return (ssize_t)rc;
4821 }
4822
4823 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4824 {
4825 struct list_head *tmp;
4826 struct rbd_device *rbd_dev;
4827
4828 spin_lock(&rbd_dev_list_lock);
4829 list_for_each(tmp, &rbd_dev_list) {
4830 rbd_dev = list_entry(tmp, struct rbd_device, node);
4831 if (rbd_dev->dev_id == dev_id) {
4832 spin_unlock(&rbd_dev_list_lock);
4833 return rbd_dev;
4834 }
4835 }
4836 spin_unlock(&rbd_dev_list_lock);
4837 return NULL;
4838 }
4839
4840 static void rbd_dev_device_release(struct device *dev)
4841 {
4842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4843
4844 rbd_free_disk(rbd_dev);
4845 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4846 rbd_dev_clear_mapping(rbd_dev);
4847 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4848 rbd_dev->major = 0;
4849 rbd_dev_id_put(rbd_dev);
4850 rbd_dev_mapping_clear(rbd_dev);
4851 }
4852
4853 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4854 {
4855 while (rbd_dev->parent) {
4856 struct rbd_device *first = rbd_dev;
4857 struct rbd_device *second = first->parent;
4858 struct rbd_device *third;
4859
4860 /*
4861 * Follow to the parent with no grandparent and
4862 * remove it.
4863 */
4864 while (second && (third = second->parent)) {
4865 first = second;
4866 second = third;
4867 }
4868 rbd_assert(second);
4869 rbd_dev_image_release(second);
4870 first->parent = NULL;
4871 first->parent_overlap = 0;
4872
4873 rbd_assert(first->parent_spec);
4874 rbd_spec_put(first->parent_spec);
4875 first->parent_spec = NULL;
4876 }
4877 }
4878
4879 static ssize_t rbd_remove(struct bus_type *bus,
4880 const char *buf,
4881 size_t count)
4882 {
4883 struct rbd_device *rbd_dev = NULL;
4884 int target_id;
4885 unsigned long ul;
4886 int ret;
4887
4888 ret = strict_strtoul(buf, 10, &ul);
4889 if (ret)
4890 return ret;
4891
4892 /* convert to int; abort if we lost anything in the conversion */
4893 target_id = (int) ul;
4894 if (target_id != ul)
4895 return -EINVAL;
4896
4897 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4898
4899 rbd_dev = __rbd_get_dev(target_id);
4900 if (!rbd_dev) {
4901 ret = -ENOENT;
4902 goto done;
4903 }
4904
4905 spin_lock_irq(&rbd_dev->lock);
4906 if (rbd_dev->open_count)
4907 ret = -EBUSY;
4908 else
4909 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4910 spin_unlock_irq(&rbd_dev->lock);
4911 if (ret < 0)
4912 goto done;
4913 ret = count;
4914 rbd_bus_del_dev(rbd_dev);
4915 rbd_dev_image_release(rbd_dev);
4916 module_put(THIS_MODULE);
4917 done:
4918 mutex_unlock(&ctl_mutex);
4919
4920 return ret;
4921 }
4922
4923 /*
4924 * create control files in sysfs
4925 * /sys/bus/rbd/...
4926 */
4927 static int rbd_sysfs_init(void)
4928 {
4929 int ret;
4930
4931 ret = device_register(&rbd_root_dev);
4932 if (ret < 0)
4933 return ret;
4934
4935 ret = bus_register(&rbd_bus_type);
4936 if (ret < 0)
4937 device_unregister(&rbd_root_dev);
4938
4939 return ret;
4940 }
4941
4942 static void rbd_sysfs_cleanup(void)
4943 {
4944 bus_unregister(&rbd_bus_type);
4945 device_unregister(&rbd_root_dev);
4946 }
4947
4948 static int __init rbd_init(void)
4949 {
4950 int rc;
4951
4952 if (!libceph_compatible(NULL)) {
4953 rbd_warn(NULL, "libceph incompatibility (quitting)");
4954
4955 return -EINVAL;
4956 }
4957 rc = rbd_sysfs_init();
4958 if (rc)
4959 return rc;
4960 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4961 return 0;
4962 }
4963
4964 static void __exit rbd_exit(void)
4965 {
4966 rbd_sysfs_cleanup();
4967 }
4968
4969 module_init(rbd_init);
4970 module_exit(rbd_exit);
4971
4972 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4973 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4974 MODULE_DESCRIPTION("rados block device");
4975
4976 /* following authorship retained from original osdblk.c */
4977 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4978
4979 MODULE_LICENSE("GPL");