]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
rbd: set mapping read-only flag in rbd_add()
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 #define RBD_DRV_NAME "rbd"
59 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
60
61 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
62
63 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
64 #define RBD_MAX_SNAP_NAME_LEN \
65 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
66
67 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
68
69 #define RBD_SNAP_HEAD_NAME "-"
70
71 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX 64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX 64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING (1<<0)
82 #define RBD_FEATURE_STRIPINGV2 (1<<1)
83 #define RBD_FEATURES_ALL \
84 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
85
86 /* Features supported by this (client software) implementation. */
87
88 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
89
90 /*
91 * An RBD device name will be "rbd#", where the "rbd" comes from
92 * RBD_DRV_NAME above, and # is a unique integer identifier.
93 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
94 * enough to hold all possible device names.
95 */
96 #define DEV_NAME_LEN 32
97 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
98
99 /*
100 * block device image metadata (in-memory version)
101 */
102 struct rbd_image_header {
103 /* These six fields never change for a given rbd image */
104 char *object_prefix;
105 __u8 obj_order;
106 __u8 crypt_type;
107 __u8 comp_type;
108 u64 stripe_unit;
109 u64 stripe_count;
110 u64 features; /* Might be changeable someday? */
111
112 /* The remaining fields need to be updated occasionally */
113 u64 image_size;
114 struct ceph_snap_context *snapc;
115 char *snap_names; /* format 1 only */
116 u64 *snap_sizes; /* format 1 only */
117 };
118
119 /*
120 * An rbd image specification.
121 *
122 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
123 * identify an image. Each rbd_dev structure includes a pointer to
124 * an rbd_spec structure that encapsulates this identity.
125 *
126 * Each of the id's in an rbd_spec has an associated name. For a
127 * user-mapped image, the names are supplied and the id's associated
128 * with them are looked up. For a layered image, a parent image is
129 * defined by the tuple, and the names are looked up.
130 *
131 * An rbd_dev structure contains a parent_spec pointer which is
132 * non-null if the image it represents is a child in a layered
133 * image. This pointer will refer to the rbd_spec structure used
134 * by the parent rbd_dev for its own identity (i.e., the structure
135 * is shared between the parent and child).
136 *
137 * Since these structures are populated once, during the discovery
138 * phase of image construction, they are effectively immutable so
139 * we make no effort to synchronize access to them.
140 *
141 * Note that code herein does not assume the image name is known (it
142 * could be a null pointer).
143 */
144 struct rbd_spec {
145 u64 pool_id;
146 const char *pool_name;
147
148 const char *image_id;
149 const char *image_name;
150
151 u64 snap_id;
152 const char *snap_name;
153
154 struct kref kref;
155 };
156
157 /*
158 * an instance of the client. multiple devices may share an rbd client.
159 */
160 struct rbd_client {
161 struct ceph_client *client;
162 struct kref kref;
163 struct list_head node;
164 };
165
166 struct rbd_img_request;
167 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
168
169 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
170
171 struct rbd_obj_request;
172 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
173
174 enum obj_request_type {
175 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
176 };
177
178 enum obj_req_flags {
179 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
180 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
181 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
182 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
183 };
184
185 struct rbd_obj_request {
186 const char *object_name;
187 u64 offset; /* object start byte */
188 u64 length; /* bytes from offset */
189 unsigned long flags;
190
191 /*
192 * An object request associated with an image will have its
193 * img_data flag set; a standalone object request will not.
194 *
195 * A standalone object request will have which == BAD_WHICH
196 * and a null obj_request pointer.
197 *
198 * An object request initiated in support of a layered image
199 * object (to check for its existence before a write) will
200 * have which == BAD_WHICH and a non-null obj_request pointer.
201 *
202 * Finally, an object request for rbd image data will have
203 * which != BAD_WHICH, and will have a non-null img_request
204 * pointer. The value of which will be in the range
205 * 0..(img_request->obj_request_count-1).
206 */
207 union {
208 struct rbd_obj_request *obj_request; /* STAT op */
209 struct {
210 struct rbd_img_request *img_request;
211 u64 img_offset;
212 /* links for img_request->obj_requests list */
213 struct list_head links;
214 };
215 };
216 u32 which; /* posn image request list */
217
218 enum obj_request_type type;
219 union {
220 struct bio *bio_list;
221 struct {
222 struct page **pages;
223 u32 page_count;
224 };
225 };
226 struct page **copyup_pages;
227
228 struct ceph_osd_request *osd_req;
229
230 u64 xferred; /* bytes transferred */
231 int result;
232
233 rbd_obj_callback_t callback;
234 struct completion completion;
235
236 struct kref kref;
237 };
238
239 enum img_req_flags {
240 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
241 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
242 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
243 };
244
245 struct rbd_img_request {
246 struct rbd_device *rbd_dev;
247 u64 offset; /* starting image byte offset */
248 u64 length; /* byte count from offset */
249 unsigned long flags;
250 union {
251 u64 snap_id; /* for reads */
252 struct ceph_snap_context *snapc; /* for writes */
253 };
254 union {
255 struct request *rq; /* block request */
256 struct rbd_obj_request *obj_request; /* obj req initiator */
257 };
258 struct page **copyup_pages;
259 spinlock_t completion_lock;/* protects next_completion */
260 u32 next_completion;
261 rbd_img_callback_t callback;
262 u64 xferred;/* aggregate bytes transferred */
263 int result; /* first nonzero obj_request result */
264
265 u32 obj_request_count;
266 struct list_head obj_requests; /* rbd_obj_request structs */
267
268 struct kref kref;
269 };
270
271 #define for_each_obj_request(ireq, oreq) \
272 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
273 #define for_each_obj_request_from(ireq, oreq) \
274 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
275 #define for_each_obj_request_safe(ireq, oreq, n) \
276 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
277
278 struct rbd_mapping {
279 u64 size;
280 u64 features;
281 bool read_only;
282 };
283
284 /*
285 * a single device
286 */
287 struct rbd_device {
288 int dev_id; /* blkdev unique id */
289
290 int major; /* blkdev assigned major */
291 struct gendisk *disk; /* blkdev's gendisk and rq */
292
293 u32 image_format; /* Either 1 or 2 */
294 struct rbd_client *rbd_client;
295
296 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
297
298 spinlock_t lock; /* queue, flags, open_count */
299
300 struct rbd_image_header header;
301 unsigned long flags; /* possibly lock protected */
302 struct rbd_spec *spec;
303
304 char *header_name;
305
306 struct ceph_file_layout layout;
307
308 struct ceph_osd_event *watch_event;
309 struct rbd_obj_request *watch_request;
310
311 struct rbd_spec *parent_spec;
312 u64 parent_overlap;
313 struct rbd_device *parent;
314
315 /* protects updating the header */
316 struct rw_semaphore header_rwsem;
317
318 struct rbd_mapping mapping;
319
320 struct list_head node;
321
322 /* sysfs related */
323 struct device dev;
324 unsigned long open_count; /* protected by lock */
325 };
326
327 /*
328 * Flag bits for rbd_dev->flags. If atomicity is required,
329 * rbd_dev->lock is used to protect access.
330 *
331 * Currently, only the "removing" flag (which is coupled with the
332 * "open_count" field) requires atomic access.
333 */
334 enum rbd_dev_flags {
335 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
336 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
337 };
338
339 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
340
341 static LIST_HEAD(rbd_dev_list); /* devices */
342 static DEFINE_SPINLOCK(rbd_dev_list_lock);
343
344 static LIST_HEAD(rbd_client_list); /* clients */
345 static DEFINE_SPINLOCK(rbd_client_list_lock);
346
347 /* Slab caches for frequently-allocated structures */
348
349 static struct kmem_cache *rbd_img_request_cache;
350 static struct kmem_cache *rbd_obj_request_cache;
351 static struct kmem_cache *rbd_segment_name_cache;
352
353 static int rbd_img_request_submit(struct rbd_img_request *img_request);
354
355 static void rbd_dev_device_release(struct device *dev);
356
357 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
358 size_t count);
359 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
360 size_t count);
361 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
362
363 static struct bus_attribute rbd_bus_attrs[] = {
364 __ATTR(add, S_IWUSR, NULL, rbd_add),
365 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
366 __ATTR_NULL
367 };
368
369 static struct bus_type rbd_bus_type = {
370 .name = "rbd",
371 .bus_attrs = rbd_bus_attrs,
372 };
373
374 static void rbd_root_dev_release(struct device *dev)
375 {
376 }
377
378 static struct device rbd_root_dev = {
379 .init_name = "rbd",
380 .release = rbd_root_dev_release,
381 };
382
383 static __printf(2, 3)
384 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
385 {
386 struct va_format vaf;
387 va_list args;
388
389 va_start(args, fmt);
390 vaf.fmt = fmt;
391 vaf.va = &args;
392
393 if (!rbd_dev)
394 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
395 else if (rbd_dev->disk)
396 printk(KERN_WARNING "%s: %s: %pV\n",
397 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
398 else if (rbd_dev->spec && rbd_dev->spec->image_name)
399 printk(KERN_WARNING "%s: image %s: %pV\n",
400 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
401 else if (rbd_dev->spec && rbd_dev->spec->image_id)
402 printk(KERN_WARNING "%s: id %s: %pV\n",
403 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
404 else /* punt */
405 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
406 RBD_DRV_NAME, rbd_dev, &vaf);
407 va_end(args);
408 }
409
410 #ifdef RBD_DEBUG
411 #define rbd_assert(expr) \
412 if (unlikely(!(expr))) { \
413 printk(KERN_ERR "\nAssertion failure in %s() " \
414 "at line %d:\n\n" \
415 "\trbd_assert(%s);\n\n", \
416 __func__, __LINE__, #expr); \
417 BUG(); \
418 }
419 #else /* !RBD_DEBUG */
420 # define rbd_assert(expr) ((void) 0)
421 #endif /* !RBD_DEBUG */
422
423 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
424 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
425 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
426
427 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
428 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
429 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
431 u64 snap_id);
432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
433 u8 *order, u64 *snap_size);
434 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
435 u64 *snap_features);
436 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
437
438 static int rbd_open(struct block_device *bdev, fmode_t mode)
439 {
440 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
441 bool removing = false;
442
443 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
444 return -EROFS;
445
446 spin_lock_irq(&rbd_dev->lock);
447 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
448 removing = true;
449 else
450 rbd_dev->open_count++;
451 spin_unlock_irq(&rbd_dev->lock);
452 if (removing)
453 return -ENOENT;
454
455 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
456 (void) get_device(&rbd_dev->dev);
457 set_device_ro(bdev, rbd_dev->mapping.read_only);
458 mutex_unlock(&ctl_mutex);
459
460 return 0;
461 }
462
463 static int rbd_release(struct gendisk *disk, fmode_t mode)
464 {
465 struct rbd_device *rbd_dev = disk->private_data;
466 unsigned long open_count_before;
467
468 spin_lock_irq(&rbd_dev->lock);
469 open_count_before = rbd_dev->open_count--;
470 spin_unlock_irq(&rbd_dev->lock);
471 rbd_assert(open_count_before > 0);
472
473 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
474 put_device(&rbd_dev->dev);
475 mutex_unlock(&ctl_mutex);
476
477 return 0;
478 }
479
480 static const struct block_device_operations rbd_bd_ops = {
481 .owner = THIS_MODULE,
482 .open = rbd_open,
483 .release = rbd_release,
484 };
485
486 /*
487 * Initialize an rbd client instance.
488 * We own *ceph_opts.
489 */
490 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
491 {
492 struct rbd_client *rbdc;
493 int ret = -ENOMEM;
494
495 dout("%s:\n", __func__);
496 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
497 if (!rbdc)
498 goto out_opt;
499
500 kref_init(&rbdc->kref);
501 INIT_LIST_HEAD(&rbdc->node);
502
503 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
504
505 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
506 if (IS_ERR(rbdc->client))
507 goto out_mutex;
508 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
509
510 ret = ceph_open_session(rbdc->client);
511 if (ret < 0)
512 goto out_err;
513
514 spin_lock(&rbd_client_list_lock);
515 list_add_tail(&rbdc->node, &rbd_client_list);
516 spin_unlock(&rbd_client_list_lock);
517
518 mutex_unlock(&ctl_mutex);
519 dout("%s: rbdc %p\n", __func__, rbdc);
520
521 return rbdc;
522
523 out_err:
524 ceph_destroy_client(rbdc->client);
525 out_mutex:
526 mutex_unlock(&ctl_mutex);
527 kfree(rbdc);
528 out_opt:
529 if (ceph_opts)
530 ceph_destroy_options(ceph_opts);
531 dout("%s: error %d\n", __func__, ret);
532
533 return ERR_PTR(ret);
534 }
535
536 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
537 {
538 kref_get(&rbdc->kref);
539
540 return rbdc;
541 }
542
543 /*
544 * Find a ceph client with specific addr and configuration. If
545 * found, bump its reference count.
546 */
547 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
548 {
549 struct rbd_client *client_node;
550 bool found = false;
551
552 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
553 return NULL;
554
555 spin_lock(&rbd_client_list_lock);
556 list_for_each_entry(client_node, &rbd_client_list, node) {
557 if (!ceph_compare_options(ceph_opts, client_node->client)) {
558 __rbd_get_client(client_node);
559
560 found = true;
561 break;
562 }
563 }
564 spin_unlock(&rbd_client_list_lock);
565
566 return found ? client_node : NULL;
567 }
568
569 /*
570 * mount options
571 */
572 enum {
573 Opt_last_int,
574 /* int args above */
575 Opt_last_string,
576 /* string args above */
577 Opt_read_only,
578 Opt_read_write,
579 /* Boolean args above */
580 Opt_last_bool,
581 };
582
583 static match_table_t rbd_opts_tokens = {
584 /* int args above */
585 /* string args above */
586 {Opt_read_only, "read_only"},
587 {Opt_read_only, "ro"}, /* Alternate spelling */
588 {Opt_read_write, "read_write"},
589 {Opt_read_write, "rw"}, /* Alternate spelling */
590 /* Boolean args above */
591 {-1, NULL}
592 };
593
594 struct rbd_options {
595 bool read_only;
596 };
597
598 #define RBD_READ_ONLY_DEFAULT false
599
600 static int parse_rbd_opts_token(char *c, void *private)
601 {
602 struct rbd_options *rbd_opts = private;
603 substring_t argstr[MAX_OPT_ARGS];
604 int token, intval, ret;
605
606 token = match_token(c, rbd_opts_tokens, argstr);
607 if (token < 0)
608 return -EINVAL;
609
610 if (token < Opt_last_int) {
611 ret = match_int(&argstr[0], &intval);
612 if (ret < 0) {
613 pr_err("bad mount option arg (not int) "
614 "at '%s'\n", c);
615 return ret;
616 }
617 dout("got int token %d val %d\n", token, intval);
618 } else if (token > Opt_last_int && token < Opt_last_string) {
619 dout("got string token %d val %s\n", token,
620 argstr[0].from);
621 } else if (token > Opt_last_string && token < Opt_last_bool) {
622 dout("got Boolean token %d\n", token);
623 } else {
624 dout("got token %d\n", token);
625 }
626
627 switch (token) {
628 case Opt_read_only:
629 rbd_opts->read_only = true;
630 break;
631 case Opt_read_write:
632 rbd_opts->read_only = false;
633 break;
634 default:
635 rbd_assert(false);
636 break;
637 }
638 return 0;
639 }
640
641 /*
642 * Get a ceph client with specific addr and configuration, if one does
643 * not exist create it.
644 */
645 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
646 {
647 struct rbd_client *rbdc;
648
649 rbdc = rbd_client_find(ceph_opts);
650 if (rbdc) /* using an existing client */
651 ceph_destroy_options(ceph_opts);
652 else
653 rbdc = rbd_client_create(ceph_opts);
654
655 return rbdc;
656 }
657
658 /*
659 * Destroy ceph client
660 *
661 * Caller must hold rbd_client_list_lock.
662 */
663 static void rbd_client_release(struct kref *kref)
664 {
665 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
666
667 dout("%s: rbdc %p\n", __func__, rbdc);
668 spin_lock(&rbd_client_list_lock);
669 list_del(&rbdc->node);
670 spin_unlock(&rbd_client_list_lock);
671
672 ceph_destroy_client(rbdc->client);
673 kfree(rbdc);
674 }
675
676 /*
677 * Drop reference to ceph client node. If it's not referenced anymore, release
678 * it.
679 */
680 static void rbd_put_client(struct rbd_client *rbdc)
681 {
682 if (rbdc)
683 kref_put(&rbdc->kref, rbd_client_release);
684 }
685
686 static bool rbd_image_format_valid(u32 image_format)
687 {
688 return image_format == 1 || image_format == 2;
689 }
690
691 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
692 {
693 size_t size;
694 u32 snap_count;
695
696 /* The header has to start with the magic rbd header text */
697 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
698 return false;
699
700 /* The bio layer requires at least sector-sized I/O */
701
702 if (ondisk->options.order < SECTOR_SHIFT)
703 return false;
704
705 /* If we use u64 in a few spots we may be able to loosen this */
706
707 if (ondisk->options.order > 8 * sizeof (int) - 1)
708 return false;
709
710 /*
711 * The size of a snapshot header has to fit in a size_t, and
712 * that limits the number of snapshots.
713 */
714 snap_count = le32_to_cpu(ondisk->snap_count);
715 size = SIZE_MAX - sizeof (struct ceph_snap_context);
716 if (snap_count > size / sizeof (__le64))
717 return false;
718
719 /*
720 * Not only that, but the size of the entire the snapshot
721 * header must also be representable in a size_t.
722 */
723 size -= snap_count * sizeof (__le64);
724 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
725 return false;
726
727 return true;
728 }
729
730 /*
731 * Fill an rbd image header with information from the given format 1
732 * on-disk header.
733 */
734 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
735 struct rbd_image_header_ondisk *ondisk)
736 {
737 struct rbd_image_header *header = &rbd_dev->header;
738 bool first_time = header->object_prefix == NULL;
739 struct ceph_snap_context *snapc;
740 char *object_prefix = NULL;
741 char *snap_names = NULL;
742 u64 *snap_sizes = NULL;
743 u32 snap_count;
744 size_t size;
745 int ret = -ENOMEM;
746 u32 i;
747
748 /* Allocate this now to avoid having to handle failure below */
749
750 if (first_time) {
751 size_t len;
752
753 len = strnlen(ondisk->object_prefix,
754 sizeof (ondisk->object_prefix));
755 object_prefix = kmalloc(len + 1, GFP_KERNEL);
756 if (!object_prefix)
757 return -ENOMEM;
758 memcpy(object_prefix, ondisk->object_prefix, len);
759 object_prefix[len] = '\0';
760 }
761
762 /* Allocate the snapshot context and fill it in */
763
764 snap_count = le32_to_cpu(ondisk->snap_count);
765 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
766 if (!snapc)
767 goto out_err;
768 snapc->seq = le64_to_cpu(ondisk->snap_seq);
769 if (snap_count) {
770 struct rbd_image_snap_ondisk *snaps;
771 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
772
773 /* We'll keep a copy of the snapshot names... */
774
775 if (snap_names_len > (u64)SIZE_MAX)
776 goto out_2big;
777 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
778 if (!snap_names)
779 goto out_err;
780
781 /* ...as well as the array of their sizes. */
782
783 size = snap_count * sizeof (*header->snap_sizes);
784 snap_sizes = kmalloc(size, GFP_KERNEL);
785 if (!snap_sizes)
786 goto out_err;
787
788 /*
789 * Copy the names, and fill in each snapshot's id
790 * and size.
791 *
792 * Note that rbd_dev_v1_header_info() guarantees the
793 * ondisk buffer we're working with has
794 * snap_names_len bytes beyond the end of the
795 * snapshot id array, this memcpy() is safe.
796 */
797 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
798 snaps = ondisk->snaps;
799 for (i = 0; i < snap_count; i++) {
800 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
801 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
802 }
803 }
804
805 /* We won't fail any more, fill in the header */
806
807 down_write(&rbd_dev->header_rwsem);
808 if (first_time) {
809 header->object_prefix = object_prefix;
810 header->obj_order = ondisk->options.order;
811 header->crypt_type = ondisk->options.crypt_type;
812 header->comp_type = ondisk->options.comp_type;
813 /* The rest aren't used for format 1 images */
814 header->stripe_unit = 0;
815 header->stripe_count = 0;
816 header->features = 0;
817 } else {
818 ceph_put_snap_context(header->snapc);
819 kfree(header->snap_names);
820 kfree(header->snap_sizes);
821 }
822
823 /* The remaining fields always get updated (when we refresh) */
824
825 header->image_size = le64_to_cpu(ondisk->image_size);
826 header->snapc = snapc;
827 header->snap_names = snap_names;
828 header->snap_sizes = snap_sizes;
829
830 /* Make sure mapping size is consistent with header info */
831
832 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
833 if (rbd_dev->mapping.size != header->image_size)
834 rbd_dev->mapping.size = header->image_size;
835
836 up_write(&rbd_dev->header_rwsem);
837
838 return 0;
839 out_2big:
840 ret = -EIO;
841 out_err:
842 kfree(snap_sizes);
843 kfree(snap_names);
844 ceph_put_snap_context(snapc);
845 kfree(object_prefix);
846
847 return ret;
848 }
849
850 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
851 {
852 const char *snap_name;
853
854 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
855
856 /* Skip over names until we find the one we are looking for */
857
858 snap_name = rbd_dev->header.snap_names;
859 while (which--)
860 snap_name += strlen(snap_name) + 1;
861
862 return kstrdup(snap_name, GFP_KERNEL);
863 }
864
865 /*
866 * Snapshot id comparison function for use with qsort()/bsearch().
867 * Note that result is for snapshots in *descending* order.
868 */
869 static int snapid_compare_reverse(const void *s1, const void *s2)
870 {
871 u64 snap_id1 = *(u64 *)s1;
872 u64 snap_id2 = *(u64 *)s2;
873
874 if (snap_id1 < snap_id2)
875 return 1;
876 return snap_id1 == snap_id2 ? 0 : -1;
877 }
878
879 /*
880 * Search a snapshot context to see if the given snapshot id is
881 * present.
882 *
883 * Returns the position of the snapshot id in the array if it's found,
884 * or BAD_SNAP_INDEX otherwise.
885 *
886 * Note: The snapshot array is in kept sorted (by the osd) in
887 * reverse order, highest snapshot id first.
888 */
889 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
890 {
891 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
892 u64 *found;
893
894 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
895 sizeof (snap_id), snapid_compare_reverse);
896
897 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
898 }
899
900 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
901 u64 snap_id)
902 {
903 u32 which;
904
905 which = rbd_dev_snap_index(rbd_dev, snap_id);
906 if (which == BAD_SNAP_INDEX)
907 return NULL;
908
909 return _rbd_dev_v1_snap_name(rbd_dev, which);
910 }
911
912 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
913 {
914 if (snap_id == CEPH_NOSNAP)
915 return RBD_SNAP_HEAD_NAME;
916
917 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
918 if (rbd_dev->image_format == 1)
919 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
920
921 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
922 }
923
924 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
925 u64 *snap_size)
926 {
927 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
928 if (snap_id == CEPH_NOSNAP) {
929 *snap_size = rbd_dev->header.image_size;
930 } else if (rbd_dev->image_format == 1) {
931 u32 which;
932
933 which = rbd_dev_snap_index(rbd_dev, snap_id);
934 if (which == BAD_SNAP_INDEX)
935 return -ENOENT;
936
937 *snap_size = rbd_dev->header.snap_sizes[which];
938 } else {
939 u64 size = 0;
940 int ret;
941
942 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
943 if (ret)
944 return ret;
945
946 *snap_size = size;
947 }
948 return 0;
949 }
950
951 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
952 u64 *snap_features)
953 {
954 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
955 if (snap_id == CEPH_NOSNAP) {
956 *snap_features = rbd_dev->header.features;
957 } else if (rbd_dev->image_format == 1) {
958 *snap_features = 0; /* No features for format 1 */
959 } else {
960 u64 features = 0;
961 int ret;
962
963 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
964 if (ret)
965 return ret;
966
967 *snap_features = features;
968 }
969 return 0;
970 }
971
972 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
973 {
974 u64 snap_id = rbd_dev->spec->snap_id;
975 u64 size = 0;
976 u64 features = 0;
977 int ret;
978
979 ret = rbd_snap_size(rbd_dev, snap_id, &size);
980 if (ret)
981 return ret;
982 ret = rbd_snap_features(rbd_dev, snap_id, &features);
983 if (ret)
984 return ret;
985
986 rbd_dev->mapping.size = size;
987 rbd_dev->mapping.features = features;
988
989 return 0;
990 }
991
992 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
993 {
994 rbd_dev->mapping.size = 0;
995 rbd_dev->mapping.features = 0;
996 }
997
998 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
999 {
1000 char *name;
1001 u64 segment;
1002 int ret;
1003
1004 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1005 if (!name)
1006 return NULL;
1007 segment = offset >> rbd_dev->header.obj_order;
1008 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1009 rbd_dev->header.object_prefix, segment);
1010 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1011 pr_err("error formatting segment name for #%llu (%d)\n",
1012 segment, ret);
1013 kfree(name);
1014 name = NULL;
1015 }
1016
1017 return name;
1018 }
1019
1020 static void rbd_segment_name_free(const char *name)
1021 {
1022 /* The explicit cast here is needed to drop the const qualifier */
1023
1024 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1025 }
1026
1027 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1028 {
1029 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1030
1031 return offset & (segment_size - 1);
1032 }
1033
1034 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1035 u64 offset, u64 length)
1036 {
1037 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1038
1039 offset &= segment_size - 1;
1040
1041 rbd_assert(length <= U64_MAX - offset);
1042 if (offset + length > segment_size)
1043 length = segment_size - offset;
1044
1045 return length;
1046 }
1047
1048 /*
1049 * returns the size of an object in the image
1050 */
1051 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1052 {
1053 return 1 << header->obj_order;
1054 }
1055
1056 /*
1057 * bio helpers
1058 */
1059
1060 static void bio_chain_put(struct bio *chain)
1061 {
1062 struct bio *tmp;
1063
1064 while (chain) {
1065 tmp = chain;
1066 chain = chain->bi_next;
1067 bio_put(tmp);
1068 }
1069 }
1070
1071 /*
1072 * zeros a bio chain, starting at specific offset
1073 */
1074 static void zero_bio_chain(struct bio *chain, int start_ofs)
1075 {
1076 struct bio_vec *bv;
1077 unsigned long flags;
1078 void *buf;
1079 int i;
1080 int pos = 0;
1081
1082 while (chain) {
1083 bio_for_each_segment(bv, chain, i) {
1084 if (pos + bv->bv_len > start_ofs) {
1085 int remainder = max(start_ofs - pos, 0);
1086 buf = bvec_kmap_irq(bv, &flags);
1087 memset(buf + remainder, 0,
1088 bv->bv_len - remainder);
1089 bvec_kunmap_irq(buf, &flags);
1090 }
1091 pos += bv->bv_len;
1092 }
1093
1094 chain = chain->bi_next;
1095 }
1096 }
1097
1098 /*
1099 * similar to zero_bio_chain(), zeros data defined by a page array,
1100 * starting at the given byte offset from the start of the array and
1101 * continuing up to the given end offset. The pages array is
1102 * assumed to be big enough to hold all bytes up to the end.
1103 */
1104 static void zero_pages(struct page **pages, u64 offset, u64 end)
1105 {
1106 struct page **page = &pages[offset >> PAGE_SHIFT];
1107
1108 rbd_assert(end > offset);
1109 rbd_assert(end - offset <= (u64)SIZE_MAX);
1110 while (offset < end) {
1111 size_t page_offset;
1112 size_t length;
1113 unsigned long flags;
1114 void *kaddr;
1115
1116 page_offset = (size_t)(offset & ~PAGE_MASK);
1117 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1118 local_irq_save(flags);
1119 kaddr = kmap_atomic(*page);
1120 memset(kaddr + page_offset, 0, length);
1121 kunmap_atomic(kaddr);
1122 local_irq_restore(flags);
1123
1124 offset += length;
1125 page++;
1126 }
1127 }
1128
1129 /*
1130 * Clone a portion of a bio, starting at the given byte offset
1131 * and continuing for the number of bytes indicated.
1132 */
1133 static struct bio *bio_clone_range(struct bio *bio_src,
1134 unsigned int offset,
1135 unsigned int len,
1136 gfp_t gfpmask)
1137 {
1138 struct bio_vec *bv;
1139 unsigned int resid;
1140 unsigned short idx;
1141 unsigned int voff;
1142 unsigned short end_idx;
1143 unsigned short vcnt;
1144 struct bio *bio;
1145
1146 /* Handle the easy case for the caller */
1147
1148 if (!offset && len == bio_src->bi_size)
1149 return bio_clone(bio_src, gfpmask);
1150
1151 if (WARN_ON_ONCE(!len))
1152 return NULL;
1153 if (WARN_ON_ONCE(len > bio_src->bi_size))
1154 return NULL;
1155 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1156 return NULL;
1157
1158 /* Find first affected segment... */
1159
1160 resid = offset;
1161 __bio_for_each_segment(bv, bio_src, idx, 0) {
1162 if (resid < bv->bv_len)
1163 break;
1164 resid -= bv->bv_len;
1165 }
1166 voff = resid;
1167
1168 /* ...and the last affected segment */
1169
1170 resid += len;
1171 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1172 if (resid <= bv->bv_len)
1173 break;
1174 resid -= bv->bv_len;
1175 }
1176 vcnt = end_idx - idx + 1;
1177
1178 /* Build the clone */
1179
1180 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1181 if (!bio)
1182 return NULL; /* ENOMEM */
1183
1184 bio->bi_bdev = bio_src->bi_bdev;
1185 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1186 bio->bi_rw = bio_src->bi_rw;
1187 bio->bi_flags |= 1 << BIO_CLONED;
1188
1189 /*
1190 * Copy over our part of the bio_vec, then update the first
1191 * and last (or only) entries.
1192 */
1193 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1194 vcnt * sizeof (struct bio_vec));
1195 bio->bi_io_vec[0].bv_offset += voff;
1196 if (vcnt > 1) {
1197 bio->bi_io_vec[0].bv_len -= voff;
1198 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1199 } else {
1200 bio->bi_io_vec[0].bv_len = len;
1201 }
1202
1203 bio->bi_vcnt = vcnt;
1204 bio->bi_size = len;
1205 bio->bi_idx = 0;
1206
1207 return bio;
1208 }
1209
1210 /*
1211 * Clone a portion of a bio chain, starting at the given byte offset
1212 * into the first bio in the source chain and continuing for the
1213 * number of bytes indicated. The result is another bio chain of
1214 * exactly the given length, or a null pointer on error.
1215 *
1216 * The bio_src and offset parameters are both in-out. On entry they
1217 * refer to the first source bio and the offset into that bio where
1218 * the start of data to be cloned is located.
1219 *
1220 * On return, bio_src is updated to refer to the bio in the source
1221 * chain that contains first un-cloned byte, and *offset will
1222 * contain the offset of that byte within that bio.
1223 */
1224 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1225 unsigned int *offset,
1226 unsigned int len,
1227 gfp_t gfpmask)
1228 {
1229 struct bio *bi = *bio_src;
1230 unsigned int off = *offset;
1231 struct bio *chain = NULL;
1232 struct bio **end;
1233
1234 /* Build up a chain of clone bios up to the limit */
1235
1236 if (!bi || off >= bi->bi_size || !len)
1237 return NULL; /* Nothing to clone */
1238
1239 end = &chain;
1240 while (len) {
1241 unsigned int bi_size;
1242 struct bio *bio;
1243
1244 if (!bi) {
1245 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1246 goto out_err; /* EINVAL; ran out of bio's */
1247 }
1248 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1249 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1250 if (!bio)
1251 goto out_err; /* ENOMEM */
1252
1253 *end = bio;
1254 end = &bio->bi_next;
1255
1256 off += bi_size;
1257 if (off == bi->bi_size) {
1258 bi = bi->bi_next;
1259 off = 0;
1260 }
1261 len -= bi_size;
1262 }
1263 *bio_src = bi;
1264 *offset = off;
1265
1266 return chain;
1267 out_err:
1268 bio_chain_put(chain);
1269
1270 return NULL;
1271 }
1272
1273 /*
1274 * The default/initial value for all object request flags is 0. For
1275 * each flag, once its value is set to 1 it is never reset to 0
1276 * again.
1277 */
1278 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1279 {
1280 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1281 struct rbd_device *rbd_dev;
1282
1283 rbd_dev = obj_request->img_request->rbd_dev;
1284 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1285 obj_request);
1286 }
1287 }
1288
1289 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1290 {
1291 smp_mb();
1292 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1293 }
1294
1295 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1296 {
1297 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1298 struct rbd_device *rbd_dev = NULL;
1299
1300 if (obj_request_img_data_test(obj_request))
1301 rbd_dev = obj_request->img_request->rbd_dev;
1302 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1303 obj_request);
1304 }
1305 }
1306
1307 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1308 {
1309 smp_mb();
1310 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1311 }
1312
1313 /*
1314 * This sets the KNOWN flag after (possibly) setting the EXISTS
1315 * flag. The latter is set based on the "exists" value provided.
1316 *
1317 * Note that for our purposes once an object exists it never goes
1318 * away again. It's possible that the response from two existence
1319 * checks are separated by the creation of the target object, and
1320 * the first ("doesn't exist") response arrives *after* the second
1321 * ("does exist"). In that case we ignore the second one.
1322 */
1323 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1324 bool exists)
1325 {
1326 if (exists)
1327 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1328 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1329 smp_mb();
1330 }
1331
1332 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1333 {
1334 smp_mb();
1335 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1336 }
1337
1338 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1339 {
1340 smp_mb();
1341 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1342 }
1343
1344 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1345 {
1346 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1347 atomic_read(&obj_request->kref.refcount));
1348 kref_get(&obj_request->kref);
1349 }
1350
1351 static void rbd_obj_request_destroy(struct kref *kref);
1352 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1353 {
1354 rbd_assert(obj_request != NULL);
1355 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1356 atomic_read(&obj_request->kref.refcount));
1357 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1358 }
1359
1360 static void rbd_img_request_get(struct rbd_img_request *img_request)
1361 {
1362 dout("%s: img %p (was %d)\n", __func__, img_request,
1363 atomic_read(&img_request->kref.refcount));
1364 kref_get(&img_request->kref);
1365 }
1366
1367 static void rbd_img_request_destroy(struct kref *kref);
1368 static void rbd_img_request_put(struct rbd_img_request *img_request)
1369 {
1370 rbd_assert(img_request != NULL);
1371 dout("%s: img %p (was %d)\n", __func__, img_request,
1372 atomic_read(&img_request->kref.refcount));
1373 kref_put(&img_request->kref, rbd_img_request_destroy);
1374 }
1375
1376 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1377 struct rbd_obj_request *obj_request)
1378 {
1379 rbd_assert(obj_request->img_request == NULL);
1380
1381 /* Image request now owns object's original reference */
1382 obj_request->img_request = img_request;
1383 obj_request->which = img_request->obj_request_count;
1384 rbd_assert(!obj_request_img_data_test(obj_request));
1385 obj_request_img_data_set(obj_request);
1386 rbd_assert(obj_request->which != BAD_WHICH);
1387 img_request->obj_request_count++;
1388 list_add_tail(&obj_request->links, &img_request->obj_requests);
1389 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1390 obj_request->which);
1391 }
1392
1393 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1394 struct rbd_obj_request *obj_request)
1395 {
1396 rbd_assert(obj_request->which != BAD_WHICH);
1397
1398 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1399 obj_request->which);
1400 list_del(&obj_request->links);
1401 rbd_assert(img_request->obj_request_count > 0);
1402 img_request->obj_request_count--;
1403 rbd_assert(obj_request->which == img_request->obj_request_count);
1404 obj_request->which = BAD_WHICH;
1405 rbd_assert(obj_request_img_data_test(obj_request));
1406 rbd_assert(obj_request->img_request == img_request);
1407 obj_request->img_request = NULL;
1408 obj_request->callback = NULL;
1409 rbd_obj_request_put(obj_request);
1410 }
1411
1412 static bool obj_request_type_valid(enum obj_request_type type)
1413 {
1414 switch (type) {
1415 case OBJ_REQUEST_NODATA:
1416 case OBJ_REQUEST_BIO:
1417 case OBJ_REQUEST_PAGES:
1418 return true;
1419 default:
1420 return false;
1421 }
1422 }
1423
1424 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1425 struct rbd_obj_request *obj_request)
1426 {
1427 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1428
1429 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1430 }
1431
1432 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1433 {
1434
1435 dout("%s: img %p\n", __func__, img_request);
1436
1437 /*
1438 * If no error occurred, compute the aggregate transfer
1439 * count for the image request. We could instead use
1440 * atomic64_cmpxchg() to update it as each object request
1441 * completes; not clear which way is better off hand.
1442 */
1443 if (!img_request->result) {
1444 struct rbd_obj_request *obj_request;
1445 u64 xferred = 0;
1446
1447 for_each_obj_request(img_request, obj_request)
1448 xferred += obj_request->xferred;
1449 img_request->xferred = xferred;
1450 }
1451
1452 if (img_request->callback)
1453 img_request->callback(img_request);
1454 else
1455 rbd_img_request_put(img_request);
1456 }
1457
1458 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1459
1460 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1461 {
1462 dout("%s: obj %p\n", __func__, obj_request);
1463
1464 return wait_for_completion_interruptible(&obj_request->completion);
1465 }
1466
1467 /*
1468 * The default/initial value for all image request flags is 0. Each
1469 * is conditionally set to 1 at image request initialization time
1470 * and currently never change thereafter.
1471 */
1472 static void img_request_write_set(struct rbd_img_request *img_request)
1473 {
1474 set_bit(IMG_REQ_WRITE, &img_request->flags);
1475 smp_mb();
1476 }
1477
1478 static bool img_request_write_test(struct rbd_img_request *img_request)
1479 {
1480 smp_mb();
1481 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1482 }
1483
1484 static void img_request_child_set(struct rbd_img_request *img_request)
1485 {
1486 set_bit(IMG_REQ_CHILD, &img_request->flags);
1487 smp_mb();
1488 }
1489
1490 static bool img_request_child_test(struct rbd_img_request *img_request)
1491 {
1492 smp_mb();
1493 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1494 }
1495
1496 static void img_request_layered_set(struct rbd_img_request *img_request)
1497 {
1498 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1499 smp_mb();
1500 }
1501
1502 static bool img_request_layered_test(struct rbd_img_request *img_request)
1503 {
1504 smp_mb();
1505 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1506 }
1507
1508 static void
1509 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1510 {
1511 u64 xferred = obj_request->xferred;
1512 u64 length = obj_request->length;
1513
1514 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1515 obj_request, obj_request->img_request, obj_request->result,
1516 xferred, length);
1517 /*
1518 * ENOENT means a hole in the image. We zero-fill the
1519 * entire length of the request. A short read also implies
1520 * zero-fill to the end of the request. Either way we
1521 * update the xferred count to indicate the whole request
1522 * was satisfied.
1523 */
1524 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1525 if (obj_request->result == -ENOENT) {
1526 if (obj_request->type == OBJ_REQUEST_BIO)
1527 zero_bio_chain(obj_request->bio_list, 0);
1528 else
1529 zero_pages(obj_request->pages, 0, length);
1530 obj_request->result = 0;
1531 obj_request->xferred = length;
1532 } else if (xferred < length && !obj_request->result) {
1533 if (obj_request->type == OBJ_REQUEST_BIO)
1534 zero_bio_chain(obj_request->bio_list, xferred);
1535 else
1536 zero_pages(obj_request->pages, xferred, length);
1537 obj_request->xferred = length;
1538 }
1539 obj_request_done_set(obj_request);
1540 }
1541
1542 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1543 {
1544 dout("%s: obj %p cb %p\n", __func__, obj_request,
1545 obj_request->callback);
1546 if (obj_request->callback)
1547 obj_request->callback(obj_request);
1548 else
1549 complete_all(&obj_request->completion);
1550 }
1551
1552 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1553 {
1554 dout("%s: obj %p\n", __func__, obj_request);
1555 obj_request_done_set(obj_request);
1556 }
1557
1558 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1559 {
1560 struct rbd_img_request *img_request = NULL;
1561 struct rbd_device *rbd_dev = NULL;
1562 bool layered = false;
1563
1564 if (obj_request_img_data_test(obj_request)) {
1565 img_request = obj_request->img_request;
1566 layered = img_request && img_request_layered_test(img_request);
1567 rbd_dev = img_request->rbd_dev;
1568 }
1569
1570 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1571 obj_request, img_request, obj_request->result,
1572 obj_request->xferred, obj_request->length);
1573 if (layered && obj_request->result == -ENOENT &&
1574 obj_request->img_offset < rbd_dev->parent_overlap)
1575 rbd_img_parent_read(obj_request);
1576 else if (img_request)
1577 rbd_img_obj_request_read_callback(obj_request);
1578 else
1579 obj_request_done_set(obj_request);
1580 }
1581
1582 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1583 {
1584 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1585 obj_request->result, obj_request->length);
1586 /*
1587 * There is no such thing as a successful short write. Set
1588 * it to our originally-requested length.
1589 */
1590 obj_request->xferred = obj_request->length;
1591 obj_request_done_set(obj_request);
1592 }
1593
1594 /*
1595 * For a simple stat call there's nothing to do. We'll do more if
1596 * this is part of a write sequence for a layered image.
1597 */
1598 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1599 {
1600 dout("%s: obj %p\n", __func__, obj_request);
1601 obj_request_done_set(obj_request);
1602 }
1603
1604 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1605 struct ceph_msg *msg)
1606 {
1607 struct rbd_obj_request *obj_request = osd_req->r_priv;
1608 u16 opcode;
1609
1610 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1611 rbd_assert(osd_req == obj_request->osd_req);
1612 if (obj_request_img_data_test(obj_request)) {
1613 rbd_assert(obj_request->img_request);
1614 rbd_assert(obj_request->which != BAD_WHICH);
1615 } else {
1616 rbd_assert(obj_request->which == BAD_WHICH);
1617 }
1618
1619 if (osd_req->r_result < 0)
1620 obj_request->result = osd_req->r_result;
1621
1622 BUG_ON(osd_req->r_num_ops > 2);
1623
1624 /*
1625 * We support a 64-bit length, but ultimately it has to be
1626 * passed to blk_end_request(), which takes an unsigned int.
1627 */
1628 obj_request->xferred = osd_req->r_reply_op_len[0];
1629 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1630 opcode = osd_req->r_ops[0].op;
1631 switch (opcode) {
1632 case CEPH_OSD_OP_READ:
1633 rbd_osd_read_callback(obj_request);
1634 break;
1635 case CEPH_OSD_OP_WRITE:
1636 rbd_osd_write_callback(obj_request);
1637 break;
1638 case CEPH_OSD_OP_STAT:
1639 rbd_osd_stat_callback(obj_request);
1640 break;
1641 case CEPH_OSD_OP_CALL:
1642 case CEPH_OSD_OP_NOTIFY_ACK:
1643 case CEPH_OSD_OP_WATCH:
1644 rbd_osd_trivial_callback(obj_request);
1645 break;
1646 default:
1647 rbd_warn(NULL, "%s: unsupported op %hu\n",
1648 obj_request->object_name, (unsigned short) opcode);
1649 break;
1650 }
1651
1652 if (obj_request_done_test(obj_request))
1653 rbd_obj_request_complete(obj_request);
1654 }
1655
1656 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1657 {
1658 struct rbd_img_request *img_request = obj_request->img_request;
1659 struct ceph_osd_request *osd_req = obj_request->osd_req;
1660 u64 snap_id;
1661
1662 rbd_assert(osd_req != NULL);
1663
1664 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1665 ceph_osdc_build_request(osd_req, obj_request->offset,
1666 NULL, snap_id, NULL);
1667 }
1668
1669 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1670 {
1671 struct rbd_img_request *img_request = obj_request->img_request;
1672 struct ceph_osd_request *osd_req = obj_request->osd_req;
1673 struct ceph_snap_context *snapc;
1674 struct timespec mtime = CURRENT_TIME;
1675
1676 rbd_assert(osd_req != NULL);
1677
1678 snapc = img_request ? img_request->snapc : NULL;
1679 ceph_osdc_build_request(osd_req, obj_request->offset,
1680 snapc, CEPH_NOSNAP, &mtime);
1681 }
1682
1683 static struct ceph_osd_request *rbd_osd_req_create(
1684 struct rbd_device *rbd_dev,
1685 bool write_request,
1686 struct rbd_obj_request *obj_request)
1687 {
1688 struct ceph_snap_context *snapc = NULL;
1689 struct ceph_osd_client *osdc;
1690 struct ceph_osd_request *osd_req;
1691
1692 if (obj_request_img_data_test(obj_request)) {
1693 struct rbd_img_request *img_request = obj_request->img_request;
1694
1695 rbd_assert(write_request ==
1696 img_request_write_test(img_request));
1697 if (write_request)
1698 snapc = img_request->snapc;
1699 }
1700
1701 /* Allocate and initialize the request, for the single op */
1702
1703 osdc = &rbd_dev->rbd_client->client->osdc;
1704 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1705 if (!osd_req)
1706 return NULL; /* ENOMEM */
1707
1708 if (write_request)
1709 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1710 else
1711 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1712
1713 osd_req->r_callback = rbd_osd_req_callback;
1714 osd_req->r_priv = obj_request;
1715
1716 osd_req->r_oid_len = strlen(obj_request->object_name);
1717 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1718 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1719
1720 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1721
1722 return osd_req;
1723 }
1724
1725 /*
1726 * Create a copyup osd request based on the information in the
1727 * object request supplied. A copyup request has two osd ops,
1728 * a copyup method call, and a "normal" write request.
1729 */
1730 static struct ceph_osd_request *
1731 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1732 {
1733 struct rbd_img_request *img_request;
1734 struct ceph_snap_context *snapc;
1735 struct rbd_device *rbd_dev;
1736 struct ceph_osd_client *osdc;
1737 struct ceph_osd_request *osd_req;
1738
1739 rbd_assert(obj_request_img_data_test(obj_request));
1740 img_request = obj_request->img_request;
1741 rbd_assert(img_request);
1742 rbd_assert(img_request_write_test(img_request));
1743
1744 /* Allocate and initialize the request, for the two ops */
1745
1746 snapc = img_request->snapc;
1747 rbd_dev = img_request->rbd_dev;
1748 osdc = &rbd_dev->rbd_client->client->osdc;
1749 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1750 if (!osd_req)
1751 return NULL; /* ENOMEM */
1752
1753 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1754 osd_req->r_callback = rbd_osd_req_callback;
1755 osd_req->r_priv = obj_request;
1756
1757 osd_req->r_oid_len = strlen(obj_request->object_name);
1758 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1759 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1760
1761 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1762
1763 return osd_req;
1764 }
1765
1766
1767 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1768 {
1769 ceph_osdc_put_request(osd_req);
1770 }
1771
1772 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1773
1774 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1775 u64 offset, u64 length,
1776 enum obj_request_type type)
1777 {
1778 struct rbd_obj_request *obj_request;
1779 size_t size;
1780 char *name;
1781
1782 rbd_assert(obj_request_type_valid(type));
1783
1784 size = strlen(object_name) + 1;
1785 name = kmalloc(size, GFP_KERNEL);
1786 if (!name)
1787 return NULL;
1788
1789 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1790 if (!obj_request) {
1791 kfree(name);
1792 return NULL;
1793 }
1794
1795 obj_request->object_name = memcpy(name, object_name, size);
1796 obj_request->offset = offset;
1797 obj_request->length = length;
1798 obj_request->flags = 0;
1799 obj_request->which = BAD_WHICH;
1800 obj_request->type = type;
1801 INIT_LIST_HEAD(&obj_request->links);
1802 init_completion(&obj_request->completion);
1803 kref_init(&obj_request->kref);
1804
1805 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1806 offset, length, (int)type, obj_request);
1807
1808 return obj_request;
1809 }
1810
1811 static void rbd_obj_request_destroy(struct kref *kref)
1812 {
1813 struct rbd_obj_request *obj_request;
1814
1815 obj_request = container_of(kref, struct rbd_obj_request, kref);
1816
1817 dout("%s: obj %p\n", __func__, obj_request);
1818
1819 rbd_assert(obj_request->img_request == NULL);
1820 rbd_assert(obj_request->which == BAD_WHICH);
1821
1822 if (obj_request->osd_req)
1823 rbd_osd_req_destroy(obj_request->osd_req);
1824
1825 rbd_assert(obj_request_type_valid(obj_request->type));
1826 switch (obj_request->type) {
1827 case OBJ_REQUEST_NODATA:
1828 break; /* Nothing to do */
1829 case OBJ_REQUEST_BIO:
1830 if (obj_request->bio_list)
1831 bio_chain_put(obj_request->bio_list);
1832 break;
1833 case OBJ_REQUEST_PAGES:
1834 if (obj_request->pages)
1835 ceph_release_page_vector(obj_request->pages,
1836 obj_request->page_count);
1837 break;
1838 }
1839
1840 kfree(obj_request->object_name);
1841 obj_request->object_name = NULL;
1842 kmem_cache_free(rbd_obj_request_cache, obj_request);
1843 }
1844
1845 /*
1846 * Caller is responsible for filling in the list of object requests
1847 * that comprises the image request, and the Linux request pointer
1848 * (if there is one).
1849 */
1850 static struct rbd_img_request *rbd_img_request_create(
1851 struct rbd_device *rbd_dev,
1852 u64 offset, u64 length,
1853 bool write_request,
1854 bool child_request)
1855 {
1856 struct rbd_img_request *img_request;
1857
1858 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1859 if (!img_request)
1860 return NULL;
1861
1862 if (write_request) {
1863 down_read(&rbd_dev->header_rwsem);
1864 ceph_get_snap_context(rbd_dev->header.snapc);
1865 up_read(&rbd_dev->header_rwsem);
1866 }
1867
1868 img_request->rq = NULL;
1869 img_request->rbd_dev = rbd_dev;
1870 img_request->offset = offset;
1871 img_request->length = length;
1872 img_request->flags = 0;
1873 if (write_request) {
1874 img_request_write_set(img_request);
1875 img_request->snapc = rbd_dev->header.snapc;
1876 } else {
1877 img_request->snap_id = rbd_dev->spec->snap_id;
1878 }
1879 if (child_request)
1880 img_request_child_set(img_request);
1881 if (rbd_dev->parent_spec)
1882 img_request_layered_set(img_request);
1883 spin_lock_init(&img_request->completion_lock);
1884 img_request->next_completion = 0;
1885 img_request->callback = NULL;
1886 img_request->result = 0;
1887 img_request->obj_request_count = 0;
1888 INIT_LIST_HEAD(&img_request->obj_requests);
1889 kref_init(&img_request->kref);
1890
1891 rbd_img_request_get(img_request); /* Avoid a warning */
1892 rbd_img_request_put(img_request); /* TEMPORARY */
1893
1894 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1895 write_request ? "write" : "read", offset, length,
1896 img_request);
1897
1898 return img_request;
1899 }
1900
1901 static void rbd_img_request_destroy(struct kref *kref)
1902 {
1903 struct rbd_img_request *img_request;
1904 struct rbd_obj_request *obj_request;
1905 struct rbd_obj_request *next_obj_request;
1906
1907 img_request = container_of(kref, struct rbd_img_request, kref);
1908
1909 dout("%s: img %p\n", __func__, img_request);
1910
1911 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1912 rbd_img_obj_request_del(img_request, obj_request);
1913 rbd_assert(img_request->obj_request_count == 0);
1914
1915 if (img_request_write_test(img_request))
1916 ceph_put_snap_context(img_request->snapc);
1917
1918 if (img_request_child_test(img_request))
1919 rbd_obj_request_put(img_request->obj_request);
1920
1921 kmem_cache_free(rbd_img_request_cache, img_request);
1922 }
1923
1924 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1925 {
1926 struct rbd_img_request *img_request;
1927 unsigned int xferred;
1928 int result;
1929 bool more;
1930
1931 rbd_assert(obj_request_img_data_test(obj_request));
1932 img_request = obj_request->img_request;
1933
1934 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1935 xferred = (unsigned int)obj_request->xferred;
1936 result = obj_request->result;
1937 if (result) {
1938 struct rbd_device *rbd_dev = img_request->rbd_dev;
1939
1940 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1941 img_request_write_test(img_request) ? "write" : "read",
1942 obj_request->length, obj_request->img_offset,
1943 obj_request->offset);
1944 rbd_warn(rbd_dev, " result %d xferred %x\n",
1945 result, xferred);
1946 if (!img_request->result)
1947 img_request->result = result;
1948 }
1949
1950 /* Image object requests don't own their page array */
1951
1952 if (obj_request->type == OBJ_REQUEST_PAGES) {
1953 obj_request->pages = NULL;
1954 obj_request->page_count = 0;
1955 }
1956
1957 if (img_request_child_test(img_request)) {
1958 rbd_assert(img_request->obj_request != NULL);
1959 more = obj_request->which < img_request->obj_request_count - 1;
1960 } else {
1961 rbd_assert(img_request->rq != NULL);
1962 more = blk_end_request(img_request->rq, result, xferred);
1963 }
1964
1965 return more;
1966 }
1967
1968 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1969 {
1970 struct rbd_img_request *img_request;
1971 u32 which = obj_request->which;
1972 bool more = true;
1973
1974 rbd_assert(obj_request_img_data_test(obj_request));
1975 img_request = obj_request->img_request;
1976
1977 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1978 rbd_assert(img_request != NULL);
1979 rbd_assert(img_request->obj_request_count > 0);
1980 rbd_assert(which != BAD_WHICH);
1981 rbd_assert(which < img_request->obj_request_count);
1982 rbd_assert(which >= img_request->next_completion);
1983
1984 spin_lock_irq(&img_request->completion_lock);
1985 if (which != img_request->next_completion)
1986 goto out;
1987
1988 for_each_obj_request_from(img_request, obj_request) {
1989 rbd_assert(more);
1990 rbd_assert(which < img_request->obj_request_count);
1991
1992 if (!obj_request_done_test(obj_request))
1993 break;
1994 more = rbd_img_obj_end_request(obj_request);
1995 which++;
1996 }
1997
1998 rbd_assert(more ^ (which == img_request->obj_request_count));
1999 img_request->next_completion = which;
2000 out:
2001 spin_unlock_irq(&img_request->completion_lock);
2002
2003 if (!more)
2004 rbd_img_request_complete(img_request);
2005 }
2006
2007 /*
2008 * Split up an image request into one or more object requests, each
2009 * to a different object. The "type" parameter indicates whether
2010 * "data_desc" is the pointer to the head of a list of bio
2011 * structures, or the base of a page array. In either case this
2012 * function assumes data_desc describes memory sufficient to hold
2013 * all data described by the image request.
2014 */
2015 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2016 enum obj_request_type type,
2017 void *data_desc)
2018 {
2019 struct rbd_device *rbd_dev = img_request->rbd_dev;
2020 struct rbd_obj_request *obj_request = NULL;
2021 struct rbd_obj_request *next_obj_request;
2022 bool write_request = img_request_write_test(img_request);
2023 struct bio *bio_list;
2024 unsigned int bio_offset = 0;
2025 struct page **pages;
2026 u64 img_offset;
2027 u64 resid;
2028 u16 opcode;
2029
2030 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2031 (int)type, data_desc);
2032
2033 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2034 img_offset = img_request->offset;
2035 resid = img_request->length;
2036 rbd_assert(resid > 0);
2037
2038 if (type == OBJ_REQUEST_BIO) {
2039 bio_list = data_desc;
2040 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2041 } else {
2042 rbd_assert(type == OBJ_REQUEST_PAGES);
2043 pages = data_desc;
2044 }
2045
2046 while (resid) {
2047 struct ceph_osd_request *osd_req;
2048 const char *object_name;
2049 u64 offset;
2050 u64 length;
2051
2052 object_name = rbd_segment_name(rbd_dev, img_offset);
2053 if (!object_name)
2054 goto out_unwind;
2055 offset = rbd_segment_offset(rbd_dev, img_offset);
2056 length = rbd_segment_length(rbd_dev, img_offset, resid);
2057 obj_request = rbd_obj_request_create(object_name,
2058 offset, length, type);
2059 /* object request has its own copy of the object name */
2060 rbd_segment_name_free(object_name);
2061 if (!obj_request)
2062 goto out_unwind;
2063
2064 if (type == OBJ_REQUEST_BIO) {
2065 unsigned int clone_size;
2066
2067 rbd_assert(length <= (u64)UINT_MAX);
2068 clone_size = (unsigned int)length;
2069 obj_request->bio_list =
2070 bio_chain_clone_range(&bio_list,
2071 &bio_offset,
2072 clone_size,
2073 GFP_ATOMIC);
2074 if (!obj_request->bio_list)
2075 goto out_partial;
2076 } else {
2077 unsigned int page_count;
2078
2079 obj_request->pages = pages;
2080 page_count = (u32)calc_pages_for(offset, length);
2081 obj_request->page_count = page_count;
2082 if ((offset + length) & ~PAGE_MASK)
2083 page_count--; /* more on last page */
2084 pages += page_count;
2085 }
2086
2087 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2088 obj_request);
2089 if (!osd_req)
2090 goto out_partial;
2091 obj_request->osd_req = osd_req;
2092 obj_request->callback = rbd_img_obj_callback;
2093
2094 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2095 0, 0);
2096 if (type == OBJ_REQUEST_BIO)
2097 osd_req_op_extent_osd_data_bio(osd_req, 0,
2098 obj_request->bio_list, length);
2099 else
2100 osd_req_op_extent_osd_data_pages(osd_req, 0,
2101 obj_request->pages, length,
2102 offset & ~PAGE_MASK, false, false);
2103
2104 if (write_request)
2105 rbd_osd_req_format_write(obj_request);
2106 else
2107 rbd_osd_req_format_read(obj_request);
2108
2109 obj_request->img_offset = img_offset;
2110 rbd_img_obj_request_add(img_request, obj_request);
2111
2112 img_offset += length;
2113 resid -= length;
2114 }
2115
2116 return 0;
2117
2118 out_partial:
2119 rbd_obj_request_put(obj_request);
2120 out_unwind:
2121 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2122 rbd_obj_request_put(obj_request);
2123
2124 return -ENOMEM;
2125 }
2126
2127 static void
2128 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2129 {
2130 struct rbd_img_request *img_request;
2131 struct rbd_device *rbd_dev;
2132 u64 length;
2133 u32 page_count;
2134
2135 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2136 rbd_assert(obj_request_img_data_test(obj_request));
2137 img_request = obj_request->img_request;
2138 rbd_assert(img_request);
2139
2140 rbd_dev = img_request->rbd_dev;
2141 rbd_assert(rbd_dev);
2142 length = (u64)1 << rbd_dev->header.obj_order;
2143 page_count = (u32)calc_pages_for(0, length);
2144
2145 rbd_assert(obj_request->copyup_pages);
2146 ceph_release_page_vector(obj_request->copyup_pages, page_count);
2147 obj_request->copyup_pages = NULL;
2148
2149 /*
2150 * We want the transfer count to reflect the size of the
2151 * original write request. There is no such thing as a
2152 * successful short write, so if the request was successful
2153 * we can just set it to the originally-requested length.
2154 */
2155 if (!obj_request->result)
2156 obj_request->xferred = obj_request->length;
2157
2158 /* Finish up with the normal image object callback */
2159
2160 rbd_img_obj_callback(obj_request);
2161 }
2162
2163 static void
2164 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2165 {
2166 struct rbd_obj_request *orig_request;
2167 struct ceph_osd_request *osd_req;
2168 struct ceph_osd_client *osdc;
2169 struct rbd_device *rbd_dev;
2170 struct page **pages;
2171 int result;
2172 u64 obj_size;
2173 u64 xferred;
2174
2175 rbd_assert(img_request_child_test(img_request));
2176
2177 /* First get what we need from the image request */
2178
2179 pages = img_request->copyup_pages;
2180 rbd_assert(pages != NULL);
2181 img_request->copyup_pages = NULL;
2182
2183 orig_request = img_request->obj_request;
2184 rbd_assert(orig_request != NULL);
2185 rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2186 result = img_request->result;
2187 obj_size = img_request->length;
2188 xferred = img_request->xferred;
2189 rbd_img_request_put(img_request);
2190
2191 rbd_assert(orig_request->img_request);
2192 rbd_dev = orig_request->img_request->rbd_dev;
2193 rbd_assert(rbd_dev);
2194 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2195
2196 if (result)
2197 goto out_err;
2198
2199 /* Allocate the new copyup osd request for the original request */
2200
2201 result = -ENOMEM;
2202 rbd_assert(!orig_request->osd_req);
2203 osd_req = rbd_osd_req_create_copyup(orig_request);
2204 if (!osd_req)
2205 goto out_err;
2206 orig_request->osd_req = osd_req;
2207 orig_request->copyup_pages = pages;
2208
2209 /* Initialize the copyup op */
2210
2211 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2212 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2213 false, false);
2214
2215 /* Then the original write request op */
2216
2217 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2218 orig_request->offset,
2219 orig_request->length, 0, 0);
2220 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2221 orig_request->length);
2222
2223 rbd_osd_req_format_write(orig_request);
2224
2225 /* All set, send it off. */
2226
2227 orig_request->callback = rbd_img_obj_copyup_callback;
2228 osdc = &rbd_dev->rbd_client->client->osdc;
2229 result = rbd_obj_request_submit(osdc, orig_request);
2230 if (!result)
2231 return;
2232 out_err:
2233 /* Record the error code and complete the request */
2234
2235 orig_request->result = result;
2236 orig_request->xferred = 0;
2237 obj_request_done_set(orig_request);
2238 rbd_obj_request_complete(orig_request);
2239 }
2240
2241 /*
2242 * Read from the parent image the range of data that covers the
2243 * entire target of the given object request. This is used for
2244 * satisfying a layered image write request when the target of an
2245 * object request from the image request does not exist.
2246 *
2247 * A page array big enough to hold the returned data is allocated
2248 * and supplied to rbd_img_request_fill() as the "data descriptor."
2249 * When the read completes, this page array will be transferred to
2250 * the original object request for the copyup operation.
2251 *
2252 * If an error occurs, record it as the result of the original
2253 * object request and mark it done so it gets completed.
2254 */
2255 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2256 {
2257 struct rbd_img_request *img_request = NULL;
2258 struct rbd_img_request *parent_request = NULL;
2259 struct rbd_device *rbd_dev;
2260 u64 img_offset;
2261 u64 length;
2262 struct page **pages = NULL;
2263 u32 page_count;
2264 int result;
2265
2266 rbd_assert(obj_request_img_data_test(obj_request));
2267 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2268
2269 img_request = obj_request->img_request;
2270 rbd_assert(img_request != NULL);
2271 rbd_dev = img_request->rbd_dev;
2272 rbd_assert(rbd_dev->parent != NULL);
2273
2274 /*
2275 * First things first. The original osd request is of no
2276 * use to use any more, we'll need a new one that can hold
2277 * the two ops in a copyup request. We'll get that later,
2278 * but for now we can release the old one.
2279 */
2280 rbd_osd_req_destroy(obj_request->osd_req);
2281 obj_request->osd_req = NULL;
2282
2283 /*
2284 * Determine the byte range covered by the object in the
2285 * child image to which the original request was to be sent.
2286 */
2287 img_offset = obj_request->img_offset - obj_request->offset;
2288 length = (u64)1 << rbd_dev->header.obj_order;
2289
2290 /*
2291 * There is no defined parent data beyond the parent
2292 * overlap, so limit what we read at that boundary if
2293 * necessary.
2294 */
2295 if (img_offset + length > rbd_dev->parent_overlap) {
2296 rbd_assert(img_offset < rbd_dev->parent_overlap);
2297 length = rbd_dev->parent_overlap - img_offset;
2298 }
2299
2300 /*
2301 * Allocate a page array big enough to receive the data read
2302 * from the parent.
2303 */
2304 page_count = (u32)calc_pages_for(0, length);
2305 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2306 if (IS_ERR(pages)) {
2307 result = PTR_ERR(pages);
2308 pages = NULL;
2309 goto out_err;
2310 }
2311
2312 result = -ENOMEM;
2313 parent_request = rbd_img_request_create(rbd_dev->parent,
2314 img_offset, length,
2315 false, true);
2316 if (!parent_request)
2317 goto out_err;
2318 rbd_obj_request_get(obj_request);
2319 parent_request->obj_request = obj_request;
2320
2321 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2322 if (result)
2323 goto out_err;
2324 parent_request->copyup_pages = pages;
2325
2326 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2327 result = rbd_img_request_submit(parent_request);
2328 if (!result)
2329 return 0;
2330
2331 parent_request->copyup_pages = NULL;
2332 parent_request->obj_request = NULL;
2333 rbd_obj_request_put(obj_request);
2334 out_err:
2335 if (pages)
2336 ceph_release_page_vector(pages, page_count);
2337 if (parent_request)
2338 rbd_img_request_put(parent_request);
2339 obj_request->result = result;
2340 obj_request->xferred = 0;
2341 obj_request_done_set(obj_request);
2342
2343 return result;
2344 }
2345
2346 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2347 {
2348 struct rbd_obj_request *orig_request;
2349 int result;
2350
2351 rbd_assert(!obj_request_img_data_test(obj_request));
2352
2353 /*
2354 * All we need from the object request is the original
2355 * request and the result of the STAT op. Grab those, then
2356 * we're done with the request.
2357 */
2358 orig_request = obj_request->obj_request;
2359 obj_request->obj_request = NULL;
2360 rbd_assert(orig_request);
2361 rbd_assert(orig_request->img_request);
2362
2363 result = obj_request->result;
2364 obj_request->result = 0;
2365
2366 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2367 obj_request, orig_request, result,
2368 obj_request->xferred, obj_request->length);
2369 rbd_obj_request_put(obj_request);
2370
2371 rbd_assert(orig_request);
2372 rbd_assert(orig_request->img_request);
2373
2374 /*
2375 * Our only purpose here is to determine whether the object
2376 * exists, and we don't want to treat the non-existence as
2377 * an error. If something else comes back, transfer the
2378 * error to the original request and complete it now.
2379 */
2380 if (!result) {
2381 obj_request_existence_set(orig_request, true);
2382 } else if (result == -ENOENT) {
2383 obj_request_existence_set(orig_request, false);
2384 } else if (result) {
2385 orig_request->result = result;
2386 goto out;
2387 }
2388
2389 /*
2390 * Resubmit the original request now that we have recorded
2391 * whether the target object exists.
2392 */
2393 orig_request->result = rbd_img_obj_request_submit(orig_request);
2394 out:
2395 if (orig_request->result)
2396 rbd_obj_request_complete(orig_request);
2397 rbd_obj_request_put(orig_request);
2398 }
2399
2400 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2401 {
2402 struct rbd_obj_request *stat_request;
2403 struct rbd_device *rbd_dev;
2404 struct ceph_osd_client *osdc;
2405 struct page **pages = NULL;
2406 u32 page_count;
2407 size_t size;
2408 int ret;
2409
2410 /*
2411 * The response data for a STAT call consists of:
2412 * le64 length;
2413 * struct {
2414 * le32 tv_sec;
2415 * le32 tv_nsec;
2416 * } mtime;
2417 */
2418 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2419 page_count = (u32)calc_pages_for(0, size);
2420 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2421 if (IS_ERR(pages))
2422 return PTR_ERR(pages);
2423
2424 ret = -ENOMEM;
2425 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2426 OBJ_REQUEST_PAGES);
2427 if (!stat_request)
2428 goto out;
2429
2430 rbd_obj_request_get(obj_request);
2431 stat_request->obj_request = obj_request;
2432 stat_request->pages = pages;
2433 stat_request->page_count = page_count;
2434
2435 rbd_assert(obj_request->img_request);
2436 rbd_dev = obj_request->img_request->rbd_dev;
2437 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2438 stat_request);
2439 if (!stat_request->osd_req)
2440 goto out;
2441 stat_request->callback = rbd_img_obj_exists_callback;
2442
2443 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2444 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2445 false, false);
2446 rbd_osd_req_format_read(stat_request);
2447
2448 osdc = &rbd_dev->rbd_client->client->osdc;
2449 ret = rbd_obj_request_submit(osdc, stat_request);
2450 out:
2451 if (ret)
2452 rbd_obj_request_put(obj_request);
2453
2454 return ret;
2455 }
2456
2457 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2458 {
2459 struct rbd_img_request *img_request;
2460 struct rbd_device *rbd_dev;
2461 bool known;
2462
2463 rbd_assert(obj_request_img_data_test(obj_request));
2464
2465 img_request = obj_request->img_request;
2466 rbd_assert(img_request);
2467 rbd_dev = img_request->rbd_dev;
2468
2469 /*
2470 * Only writes to layered images need special handling.
2471 * Reads and non-layered writes are simple object requests.
2472 * Layered writes that start beyond the end of the overlap
2473 * with the parent have no parent data, so they too are
2474 * simple object requests. Finally, if the target object is
2475 * known to already exist, its parent data has already been
2476 * copied, so a write to the object can also be handled as a
2477 * simple object request.
2478 */
2479 if (!img_request_write_test(img_request) ||
2480 !img_request_layered_test(img_request) ||
2481 rbd_dev->parent_overlap <= obj_request->img_offset ||
2482 ((known = obj_request_known_test(obj_request)) &&
2483 obj_request_exists_test(obj_request))) {
2484
2485 struct rbd_device *rbd_dev;
2486 struct ceph_osd_client *osdc;
2487
2488 rbd_dev = obj_request->img_request->rbd_dev;
2489 osdc = &rbd_dev->rbd_client->client->osdc;
2490
2491 return rbd_obj_request_submit(osdc, obj_request);
2492 }
2493
2494 /*
2495 * It's a layered write. The target object might exist but
2496 * we may not know that yet. If we know it doesn't exist,
2497 * start by reading the data for the full target object from
2498 * the parent so we can use it for a copyup to the target.
2499 */
2500 if (known)
2501 return rbd_img_obj_parent_read_full(obj_request);
2502
2503 /* We don't know whether the target exists. Go find out. */
2504
2505 return rbd_img_obj_exists_submit(obj_request);
2506 }
2507
2508 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2509 {
2510 struct rbd_obj_request *obj_request;
2511 struct rbd_obj_request *next_obj_request;
2512
2513 dout("%s: img %p\n", __func__, img_request);
2514 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2515 int ret;
2516
2517 ret = rbd_img_obj_request_submit(obj_request);
2518 if (ret)
2519 return ret;
2520 }
2521
2522 return 0;
2523 }
2524
2525 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2526 {
2527 struct rbd_obj_request *obj_request;
2528 struct rbd_device *rbd_dev;
2529 u64 obj_end;
2530
2531 rbd_assert(img_request_child_test(img_request));
2532
2533 obj_request = img_request->obj_request;
2534 rbd_assert(obj_request);
2535 rbd_assert(obj_request->img_request);
2536
2537 obj_request->result = img_request->result;
2538 if (obj_request->result)
2539 goto out;
2540
2541 /*
2542 * We need to zero anything beyond the parent overlap
2543 * boundary. Since rbd_img_obj_request_read_callback()
2544 * will zero anything beyond the end of a short read, an
2545 * easy way to do this is to pretend the data from the
2546 * parent came up short--ending at the overlap boundary.
2547 */
2548 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2549 obj_end = obj_request->img_offset + obj_request->length;
2550 rbd_dev = obj_request->img_request->rbd_dev;
2551 if (obj_end > rbd_dev->parent_overlap) {
2552 u64 xferred = 0;
2553
2554 if (obj_request->img_offset < rbd_dev->parent_overlap)
2555 xferred = rbd_dev->parent_overlap -
2556 obj_request->img_offset;
2557
2558 obj_request->xferred = min(img_request->xferred, xferred);
2559 } else {
2560 obj_request->xferred = img_request->xferred;
2561 }
2562 out:
2563 rbd_img_request_put(img_request);
2564 rbd_img_obj_request_read_callback(obj_request);
2565 rbd_obj_request_complete(obj_request);
2566 }
2567
2568 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2569 {
2570 struct rbd_device *rbd_dev;
2571 struct rbd_img_request *img_request;
2572 int result;
2573
2574 rbd_assert(obj_request_img_data_test(obj_request));
2575 rbd_assert(obj_request->img_request != NULL);
2576 rbd_assert(obj_request->result == (s32) -ENOENT);
2577 rbd_assert(obj_request_type_valid(obj_request->type));
2578
2579 rbd_dev = obj_request->img_request->rbd_dev;
2580 rbd_assert(rbd_dev->parent != NULL);
2581 /* rbd_read_finish(obj_request, obj_request->length); */
2582 img_request = rbd_img_request_create(rbd_dev->parent,
2583 obj_request->img_offset,
2584 obj_request->length,
2585 false, true);
2586 result = -ENOMEM;
2587 if (!img_request)
2588 goto out_err;
2589
2590 rbd_obj_request_get(obj_request);
2591 img_request->obj_request = obj_request;
2592
2593 if (obj_request->type == OBJ_REQUEST_BIO)
2594 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2595 obj_request->bio_list);
2596 else
2597 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2598 obj_request->pages);
2599 if (result)
2600 goto out_err;
2601
2602 img_request->callback = rbd_img_parent_read_callback;
2603 result = rbd_img_request_submit(img_request);
2604 if (result)
2605 goto out_err;
2606
2607 return;
2608 out_err:
2609 if (img_request)
2610 rbd_img_request_put(img_request);
2611 obj_request->result = result;
2612 obj_request->xferred = 0;
2613 obj_request_done_set(obj_request);
2614 }
2615
2616 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2617 {
2618 struct rbd_obj_request *obj_request;
2619 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2620 int ret;
2621
2622 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2623 OBJ_REQUEST_NODATA);
2624 if (!obj_request)
2625 return -ENOMEM;
2626
2627 ret = -ENOMEM;
2628 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2629 if (!obj_request->osd_req)
2630 goto out;
2631 obj_request->callback = rbd_obj_request_put;
2632
2633 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2634 notify_id, 0, 0);
2635 rbd_osd_req_format_read(obj_request);
2636
2637 ret = rbd_obj_request_submit(osdc, obj_request);
2638 out:
2639 if (ret)
2640 rbd_obj_request_put(obj_request);
2641
2642 return ret;
2643 }
2644
2645 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2646 {
2647 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2648 int ret;
2649
2650 if (!rbd_dev)
2651 return;
2652
2653 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2654 rbd_dev->header_name, (unsigned long long)notify_id,
2655 (unsigned int)opcode);
2656 ret = rbd_dev_refresh(rbd_dev);
2657 if (ret)
2658 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2659
2660 rbd_obj_notify_ack(rbd_dev, notify_id);
2661 }
2662
2663 /*
2664 * Request sync osd watch/unwatch. The value of "start" determines
2665 * whether a watch request is being initiated or torn down.
2666 */
2667 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2668 {
2669 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2670 struct rbd_obj_request *obj_request;
2671 int ret;
2672
2673 rbd_assert(start ^ !!rbd_dev->watch_event);
2674 rbd_assert(start ^ !!rbd_dev->watch_request);
2675
2676 if (start) {
2677 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2678 &rbd_dev->watch_event);
2679 if (ret < 0)
2680 return ret;
2681 rbd_assert(rbd_dev->watch_event != NULL);
2682 }
2683
2684 ret = -ENOMEM;
2685 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2686 OBJ_REQUEST_NODATA);
2687 if (!obj_request)
2688 goto out_cancel;
2689
2690 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2691 if (!obj_request->osd_req)
2692 goto out_cancel;
2693
2694 if (start)
2695 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2696 else
2697 ceph_osdc_unregister_linger_request(osdc,
2698 rbd_dev->watch_request->osd_req);
2699
2700 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2701 rbd_dev->watch_event->cookie, 0, start);
2702 rbd_osd_req_format_write(obj_request);
2703
2704 ret = rbd_obj_request_submit(osdc, obj_request);
2705 if (ret)
2706 goto out_cancel;
2707 ret = rbd_obj_request_wait(obj_request);
2708 if (ret)
2709 goto out_cancel;
2710 ret = obj_request->result;
2711 if (ret)
2712 goto out_cancel;
2713
2714 /*
2715 * A watch request is set to linger, so the underlying osd
2716 * request won't go away until we unregister it. We retain
2717 * a pointer to the object request during that time (in
2718 * rbd_dev->watch_request), so we'll keep a reference to
2719 * it. We'll drop that reference (below) after we've
2720 * unregistered it.
2721 */
2722 if (start) {
2723 rbd_dev->watch_request = obj_request;
2724
2725 return 0;
2726 }
2727
2728 /* We have successfully torn down the watch request */
2729
2730 rbd_obj_request_put(rbd_dev->watch_request);
2731 rbd_dev->watch_request = NULL;
2732 out_cancel:
2733 /* Cancel the event if we're tearing down, or on error */
2734 ceph_osdc_cancel_event(rbd_dev->watch_event);
2735 rbd_dev->watch_event = NULL;
2736 if (obj_request)
2737 rbd_obj_request_put(obj_request);
2738
2739 return ret;
2740 }
2741
2742 /*
2743 * Synchronous osd object method call. Returns the number of bytes
2744 * returned in the outbound buffer, or a negative error code.
2745 */
2746 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2747 const char *object_name,
2748 const char *class_name,
2749 const char *method_name,
2750 const void *outbound,
2751 size_t outbound_size,
2752 void *inbound,
2753 size_t inbound_size)
2754 {
2755 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2756 struct rbd_obj_request *obj_request;
2757 struct page **pages;
2758 u32 page_count;
2759 int ret;
2760
2761 /*
2762 * Method calls are ultimately read operations. The result
2763 * should placed into the inbound buffer provided. They
2764 * also supply outbound data--parameters for the object
2765 * method. Currently if this is present it will be a
2766 * snapshot id.
2767 */
2768 page_count = (u32)calc_pages_for(0, inbound_size);
2769 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2770 if (IS_ERR(pages))
2771 return PTR_ERR(pages);
2772
2773 ret = -ENOMEM;
2774 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2775 OBJ_REQUEST_PAGES);
2776 if (!obj_request)
2777 goto out;
2778
2779 obj_request->pages = pages;
2780 obj_request->page_count = page_count;
2781
2782 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2783 if (!obj_request->osd_req)
2784 goto out;
2785
2786 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2787 class_name, method_name);
2788 if (outbound_size) {
2789 struct ceph_pagelist *pagelist;
2790
2791 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2792 if (!pagelist)
2793 goto out;
2794
2795 ceph_pagelist_init(pagelist);
2796 ceph_pagelist_append(pagelist, outbound, outbound_size);
2797 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2798 pagelist);
2799 }
2800 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2801 obj_request->pages, inbound_size,
2802 0, false, false);
2803 rbd_osd_req_format_read(obj_request);
2804
2805 ret = rbd_obj_request_submit(osdc, obj_request);
2806 if (ret)
2807 goto out;
2808 ret = rbd_obj_request_wait(obj_request);
2809 if (ret)
2810 goto out;
2811
2812 ret = obj_request->result;
2813 if (ret < 0)
2814 goto out;
2815
2816 rbd_assert(obj_request->xferred < (u64)INT_MAX);
2817 ret = (int)obj_request->xferred;
2818 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2819 out:
2820 if (obj_request)
2821 rbd_obj_request_put(obj_request);
2822 else
2823 ceph_release_page_vector(pages, page_count);
2824
2825 return ret;
2826 }
2827
2828 static void rbd_request_fn(struct request_queue *q)
2829 __releases(q->queue_lock) __acquires(q->queue_lock)
2830 {
2831 struct rbd_device *rbd_dev = q->queuedata;
2832 bool read_only = rbd_dev->mapping.read_only;
2833 struct request *rq;
2834 int result;
2835
2836 while ((rq = blk_fetch_request(q))) {
2837 bool write_request = rq_data_dir(rq) == WRITE;
2838 struct rbd_img_request *img_request;
2839 u64 offset;
2840 u64 length;
2841
2842 /* Ignore any non-FS requests that filter through. */
2843
2844 if (rq->cmd_type != REQ_TYPE_FS) {
2845 dout("%s: non-fs request type %d\n", __func__,
2846 (int) rq->cmd_type);
2847 __blk_end_request_all(rq, 0);
2848 continue;
2849 }
2850
2851 /* Ignore/skip any zero-length requests */
2852
2853 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2854 length = (u64) blk_rq_bytes(rq);
2855
2856 if (!length) {
2857 dout("%s: zero-length request\n", __func__);
2858 __blk_end_request_all(rq, 0);
2859 continue;
2860 }
2861
2862 spin_unlock_irq(q->queue_lock);
2863
2864 /* Disallow writes to a read-only device */
2865
2866 if (write_request) {
2867 result = -EROFS;
2868 if (read_only)
2869 goto end_request;
2870 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2871 }
2872
2873 /*
2874 * Quit early if the mapped snapshot no longer
2875 * exists. It's still possible the snapshot will
2876 * have disappeared by the time our request arrives
2877 * at the osd, but there's no sense in sending it if
2878 * we already know.
2879 */
2880 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2881 dout("request for non-existent snapshot");
2882 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2883 result = -ENXIO;
2884 goto end_request;
2885 }
2886
2887 result = -EINVAL;
2888 if (offset && length > U64_MAX - offset + 1) {
2889 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2890 offset, length);
2891 goto end_request; /* Shouldn't happen */
2892 }
2893
2894 result = -EIO;
2895 if (offset + length > rbd_dev->mapping.size) {
2896 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
2897 offset, length, rbd_dev->mapping.size);
2898 goto end_request;
2899 }
2900
2901 result = -ENOMEM;
2902 img_request = rbd_img_request_create(rbd_dev, offset, length,
2903 write_request, false);
2904 if (!img_request)
2905 goto end_request;
2906
2907 img_request->rq = rq;
2908
2909 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2910 rq->bio);
2911 if (!result)
2912 result = rbd_img_request_submit(img_request);
2913 if (result)
2914 rbd_img_request_put(img_request);
2915 end_request:
2916 spin_lock_irq(q->queue_lock);
2917 if (result < 0) {
2918 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2919 write_request ? "write" : "read",
2920 length, offset, result);
2921
2922 __blk_end_request_all(rq, result);
2923 }
2924 }
2925 }
2926
2927 /*
2928 * a queue callback. Makes sure that we don't create a bio that spans across
2929 * multiple osd objects. One exception would be with a single page bios,
2930 * which we handle later at bio_chain_clone_range()
2931 */
2932 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2933 struct bio_vec *bvec)
2934 {
2935 struct rbd_device *rbd_dev = q->queuedata;
2936 sector_t sector_offset;
2937 sector_t sectors_per_obj;
2938 sector_t obj_sector_offset;
2939 int ret;
2940
2941 /*
2942 * Find how far into its rbd object the partition-relative
2943 * bio start sector is to offset relative to the enclosing
2944 * device.
2945 */
2946 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2947 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2948 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2949
2950 /*
2951 * Compute the number of bytes from that offset to the end
2952 * of the object. Account for what's already used by the bio.
2953 */
2954 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2955 if (ret > bmd->bi_size)
2956 ret -= bmd->bi_size;
2957 else
2958 ret = 0;
2959
2960 /*
2961 * Don't send back more than was asked for. And if the bio
2962 * was empty, let the whole thing through because: "Note
2963 * that a block device *must* allow a single page to be
2964 * added to an empty bio."
2965 */
2966 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2967 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2968 ret = (int) bvec->bv_len;
2969
2970 return ret;
2971 }
2972
2973 static void rbd_free_disk(struct rbd_device *rbd_dev)
2974 {
2975 struct gendisk *disk = rbd_dev->disk;
2976
2977 if (!disk)
2978 return;
2979
2980 rbd_dev->disk = NULL;
2981 if (disk->flags & GENHD_FL_UP) {
2982 del_gendisk(disk);
2983 if (disk->queue)
2984 blk_cleanup_queue(disk->queue);
2985 }
2986 put_disk(disk);
2987 }
2988
2989 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2990 const char *object_name,
2991 u64 offset, u64 length, void *buf)
2992
2993 {
2994 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2995 struct rbd_obj_request *obj_request;
2996 struct page **pages = NULL;
2997 u32 page_count;
2998 size_t size;
2999 int ret;
3000
3001 page_count = (u32) calc_pages_for(offset, length);
3002 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3003 if (IS_ERR(pages))
3004 ret = PTR_ERR(pages);
3005
3006 ret = -ENOMEM;
3007 obj_request = rbd_obj_request_create(object_name, offset, length,
3008 OBJ_REQUEST_PAGES);
3009 if (!obj_request)
3010 goto out;
3011
3012 obj_request->pages = pages;
3013 obj_request->page_count = page_count;
3014
3015 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3016 if (!obj_request->osd_req)
3017 goto out;
3018
3019 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3020 offset, length, 0, 0);
3021 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3022 obj_request->pages,
3023 obj_request->length,
3024 obj_request->offset & ~PAGE_MASK,
3025 false, false);
3026 rbd_osd_req_format_read(obj_request);
3027
3028 ret = rbd_obj_request_submit(osdc, obj_request);
3029 if (ret)
3030 goto out;
3031 ret = rbd_obj_request_wait(obj_request);
3032 if (ret)
3033 goto out;
3034
3035 ret = obj_request->result;
3036 if (ret < 0)
3037 goto out;
3038
3039 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3040 size = (size_t) obj_request->xferred;
3041 ceph_copy_from_page_vector(pages, buf, 0, size);
3042 rbd_assert(size <= (size_t)INT_MAX);
3043 ret = (int)size;
3044 out:
3045 if (obj_request)
3046 rbd_obj_request_put(obj_request);
3047 else
3048 ceph_release_page_vector(pages, page_count);
3049
3050 return ret;
3051 }
3052
3053 /*
3054 * Read the complete header for the given rbd device. On successful
3055 * return, the rbd_dev->header field will contain up-to-date
3056 * information about the image.
3057 */
3058 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3059 {
3060 struct rbd_image_header_ondisk *ondisk = NULL;
3061 u32 snap_count = 0;
3062 u64 names_size = 0;
3063 u32 want_count;
3064 int ret;
3065
3066 /*
3067 * The complete header will include an array of its 64-bit
3068 * snapshot ids, followed by the names of those snapshots as
3069 * a contiguous block of NUL-terminated strings. Note that
3070 * the number of snapshots could change by the time we read
3071 * it in, in which case we re-read it.
3072 */
3073 do {
3074 size_t size;
3075
3076 kfree(ondisk);
3077
3078 size = sizeof (*ondisk);
3079 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3080 size += names_size;
3081 ondisk = kmalloc(size, GFP_KERNEL);
3082 if (!ondisk)
3083 return -ENOMEM;
3084
3085 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3086 0, size, ondisk);
3087 if (ret < 0)
3088 goto out;
3089 if ((size_t)ret < size) {
3090 ret = -ENXIO;
3091 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3092 size, ret);
3093 goto out;
3094 }
3095 if (!rbd_dev_ondisk_valid(ondisk)) {
3096 ret = -ENXIO;
3097 rbd_warn(rbd_dev, "invalid header");
3098 goto out;
3099 }
3100
3101 names_size = le64_to_cpu(ondisk->snap_names_len);
3102 want_count = snap_count;
3103 snap_count = le32_to_cpu(ondisk->snap_count);
3104 } while (snap_count != want_count);
3105
3106 ret = rbd_header_from_disk(rbd_dev, ondisk);
3107 out:
3108 kfree(ondisk);
3109
3110 return ret;
3111 }
3112
3113 /*
3114 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3115 * has disappeared from the (just updated) snapshot context.
3116 */
3117 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3118 {
3119 u64 snap_id;
3120
3121 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3122 return;
3123
3124 snap_id = rbd_dev->spec->snap_id;
3125 if (snap_id == CEPH_NOSNAP)
3126 return;
3127
3128 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3129 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3130 }
3131
3132 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3133 {
3134 u64 mapping_size;
3135 int ret;
3136
3137 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3138 mapping_size = rbd_dev->mapping.size;
3139 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3140 if (rbd_dev->image_format == 1)
3141 ret = rbd_dev_v1_header_info(rbd_dev);
3142 else
3143 ret = rbd_dev_v2_header_info(rbd_dev);
3144
3145 /* If it's a mapped snapshot, validate its EXISTS flag */
3146
3147 rbd_exists_validate(rbd_dev);
3148 mutex_unlock(&ctl_mutex);
3149 if (mapping_size != rbd_dev->mapping.size) {
3150 sector_t size;
3151
3152 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3153 dout("setting size to %llu sectors", (unsigned long long)size);
3154 set_capacity(rbd_dev->disk, size);
3155 revalidate_disk(rbd_dev->disk);
3156 }
3157
3158 return ret;
3159 }
3160
3161 static int rbd_init_disk(struct rbd_device *rbd_dev)
3162 {
3163 struct gendisk *disk;
3164 struct request_queue *q;
3165 u64 segment_size;
3166
3167 /* create gendisk info */
3168 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3169 if (!disk)
3170 return -ENOMEM;
3171
3172 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3173 rbd_dev->dev_id);
3174 disk->major = rbd_dev->major;
3175 disk->first_minor = 0;
3176 disk->fops = &rbd_bd_ops;
3177 disk->private_data = rbd_dev;
3178
3179 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3180 if (!q)
3181 goto out_disk;
3182
3183 /* We use the default size, but let's be explicit about it. */
3184 blk_queue_physical_block_size(q, SECTOR_SIZE);
3185
3186 /* set io sizes to object size */
3187 segment_size = rbd_obj_bytes(&rbd_dev->header);
3188 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3189 blk_queue_max_segment_size(q, segment_size);
3190 blk_queue_io_min(q, segment_size);
3191 blk_queue_io_opt(q, segment_size);
3192
3193 blk_queue_merge_bvec(q, rbd_merge_bvec);
3194 disk->queue = q;
3195
3196 q->queuedata = rbd_dev;
3197
3198 rbd_dev->disk = disk;
3199
3200 return 0;
3201 out_disk:
3202 put_disk(disk);
3203
3204 return -ENOMEM;
3205 }
3206
3207 /*
3208 sysfs
3209 */
3210
3211 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3212 {
3213 return container_of(dev, struct rbd_device, dev);
3214 }
3215
3216 static ssize_t rbd_size_show(struct device *dev,
3217 struct device_attribute *attr, char *buf)
3218 {
3219 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3220
3221 return sprintf(buf, "%llu\n",
3222 (unsigned long long)rbd_dev->mapping.size);
3223 }
3224
3225 /*
3226 * Note this shows the features for whatever's mapped, which is not
3227 * necessarily the base image.
3228 */
3229 static ssize_t rbd_features_show(struct device *dev,
3230 struct device_attribute *attr, char *buf)
3231 {
3232 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3233
3234 return sprintf(buf, "0x%016llx\n",
3235 (unsigned long long)rbd_dev->mapping.features);
3236 }
3237
3238 static ssize_t rbd_major_show(struct device *dev,
3239 struct device_attribute *attr, char *buf)
3240 {
3241 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3242
3243 if (rbd_dev->major)
3244 return sprintf(buf, "%d\n", rbd_dev->major);
3245
3246 return sprintf(buf, "(none)\n");
3247
3248 }
3249
3250 static ssize_t rbd_client_id_show(struct device *dev,
3251 struct device_attribute *attr, char *buf)
3252 {
3253 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3254
3255 return sprintf(buf, "client%lld\n",
3256 ceph_client_id(rbd_dev->rbd_client->client));
3257 }
3258
3259 static ssize_t rbd_pool_show(struct device *dev,
3260 struct device_attribute *attr, char *buf)
3261 {
3262 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3263
3264 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3265 }
3266
3267 static ssize_t rbd_pool_id_show(struct device *dev,
3268 struct device_attribute *attr, char *buf)
3269 {
3270 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3271
3272 return sprintf(buf, "%llu\n",
3273 (unsigned long long) rbd_dev->spec->pool_id);
3274 }
3275
3276 static ssize_t rbd_name_show(struct device *dev,
3277 struct device_attribute *attr, char *buf)
3278 {
3279 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3280
3281 if (rbd_dev->spec->image_name)
3282 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3283
3284 return sprintf(buf, "(unknown)\n");
3285 }
3286
3287 static ssize_t rbd_image_id_show(struct device *dev,
3288 struct device_attribute *attr, char *buf)
3289 {
3290 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3291
3292 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3293 }
3294
3295 /*
3296 * Shows the name of the currently-mapped snapshot (or
3297 * RBD_SNAP_HEAD_NAME for the base image).
3298 */
3299 static ssize_t rbd_snap_show(struct device *dev,
3300 struct device_attribute *attr,
3301 char *buf)
3302 {
3303 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3304
3305 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3306 }
3307
3308 /*
3309 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3310 * for the parent image. If there is no parent, simply shows
3311 * "(no parent image)".
3312 */
3313 static ssize_t rbd_parent_show(struct device *dev,
3314 struct device_attribute *attr,
3315 char *buf)
3316 {
3317 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3318 struct rbd_spec *spec = rbd_dev->parent_spec;
3319 int count;
3320 char *bufp = buf;
3321
3322 if (!spec)
3323 return sprintf(buf, "(no parent image)\n");
3324
3325 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3326 (unsigned long long) spec->pool_id, spec->pool_name);
3327 if (count < 0)
3328 return count;
3329 bufp += count;
3330
3331 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3332 spec->image_name ? spec->image_name : "(unknown)");
3333 if (count < 0)
3334 return count;
3335 bufp += count;
3336
3337 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3338 (unsigned long long) spec->snap_id, spec->snap_name);
3339 if (count < 0)
3340 return count;
3341 bufp += count;
3342
3343 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3344 if (count < 0)
3345 return count;
3346 bufp += count;
3347
3348 return (ssize_t) (bufp - buf);
3349 }
3350
3351 static ssize_t rbd_image_refresh(struct device *dev,
3352 struct device_attribute *attr,
3353 const char *buf,
3354 size_t size)
3355 {
3356 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3357 int ret;
3358
3359 ret = rbd_dev_refresh(rbd_dev);
3360 if (ret)
3361 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3362
3363 return ret < 0 ? ret : size;
3364 }
3365
3366 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3367 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3368 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3369 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3370 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3371 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3372 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3373 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3374 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3375 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3376 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3377
3378 static struct attribute *rbd_attrs[] = {
3379 &dev_attr_size.attr,
3380 &dev_attr_features.attr,
3381 &dev_attr_major.attr,
3382 &dev_attr_client_id.attr,
3383 &dev_attr_pool.attr,
3384 &dev_attr_pool_id.attr,
3385 &dev_attr_name.attr,
3386 &dev_attr_image_id.attr,
3387 &dev_attr_current_snap.attr,
3388 &dev_attr_parent.attr,
3389 &dev_attr_refresh.attr,
3390 NULL
3391 };
3392
3393 static struct attribute_group rbd_attr_group = {
3394 .attrs = rbd_attrs,
3395 };
3396
3397 static const struct attribute_group *rbd_attr_groups[] = {
3398 &rbd_attr_group,
3399 NULL
3400 };
3401
3402 static void rbd_sysfs_dev_release(struct device *dev)
3403 {
3404 }
3405
3406 static struct device_type rbd_device_type = {
3407 .name = "rbd",
3408 .groups = rbd_attr_groups,
3409 .release = rbd_sysfs_dev_release,
3410 };
3411
3412 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3413 {
3414 kref_get(&spec->kref);
3415
3416 return spec;
3417 }
3418
3419 static void rbd_spec_free(struct kref *kref);
3420 static void rbd_spec_put(struct rbd_spec *spec)
3421 {
3422 if (spec)
3423 kref_put(&spec->kref, rbd_spec_free);
3424 }
3425
3426 static struct rbd_spec *rbd_spec_alloc(void)
3427 {
3428 struct rbd_spec *spec;
3429
3430 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3431 if (!spec)
3432 return NULL;
3433 kref_init(&spec->kref);
3434
3435 return spec;
3436 }
3437
3438 static void rbd_spec_free(struct kref *kref)
3439 {
3440 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3441
3442 kfree(spec->pool_name);
3443 kfree(spec->image_id);
3444 kfree(spec->image_name);
3445 kfree(spec->snap_name);
3446 kfree(spec);
3447 }
3448
3449 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3450 struct rbd_spec *spec)
3451 {
3452 struct rbd_device *rbd_dev;
3453
3454 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3455 if (!rbd_dev)
3456 return NULL;
3457
3458 spin_lock_init(&rbd_dev->lock);
3459 rbd_dev->flags = 0;
3460 INIT_LIST_HEAD(&rbd_dev->node);
3461 init_rwsem(&rbd_dev->header_rwsem);
3462
3463 rbd_dev->spec = spec;
3464 rbd_dev->rbd_client = rbdc;
3465
3466 /* Initialize the layout used for all rbd requests */
3467
3468 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3469 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3470 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3471 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3472
3473 return rbd_dev;
3474 }
3475
3476 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3477 {
3478 rbd_put_client(rbd_dev->rbd_client);
3479 rbd_spec_put(rbd_dev->spec);
3480 kfree(rbd_dev);
3481 }
3482
3483 /*
3484 * Get the size and object order for an image snapshot, or if
3485 * snap_id is CEPH_NOSNAP, gets this information for the base
3486 * image.
3487 */
3488 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3489 u8 *order, u64 *snap_size)
3490 {
3491 __le64 snapid = cpu_to_le64(snap_id);
3492 int ret;
3493 struct {
3494 u8 order;
3495 __le64 size;
3496 } __attribute__ ((packed)) size_buf = { 0 };
3497
3498 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3499 "rbd", "get_size",
3500 &snapid, sizeof (snapid),
3501 &size_buf, sizeof (size_buf));
3502 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3503 if (ret < 0)
3504 return ret;
3505 if (ret < sizeof (size_buf))
3506 return -ERANGE;
3507
3508 if (order)
3509 *order = size_buf.order;
3510 *snap_size = le64_to_cpu(size_buf.size);
3511
3512 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3513 (unsigned long long)snap_id, (unsigned int)*order,
3514 (unsigned long long)*snap_size);
3515
3516 return 0;
3517 }
3518
3519 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3520 {
3521 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3522 &rbd_dev->header.obj_order,
3523 &rbd_dev->header.image_size);
3524 }
3525
3526 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3527 {
3528 void *reply_buf;
3529 int ret;
3530 void *p;
3531
3532 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3533 if (!reply_buf)
3534 return -ENOMEM;
3535
3536 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3537 "rbd", "get_object_prefix", NULL, 0,
3538 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3539 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3540 if (ret < 0)
3541 goto out;
3542
3543 p = reply_buf;
3544 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3545 p + ret, NULL, GFP_NOIO);
3546 ret = 0;
3547
3548 if (IS_ERR(rbd_dev->header.object_prefix)) {
3549 ret = PTR_ERR(rbd_dev->header.object_prefix);
3550 rbd_dev->header.object_prefix = NULL;
3551 } else {
3552 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3553 }
3554 out:
3555 kfree(reply_buf);
3556
3557 return ret;
3558 }
3559
3560 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3561 u64 *snap_features)
3562 {
3563 __le64 snapid = cpu_to_le64(snap_id);
3564 struct {
3565 __le64 features;
3566 __le64 incompat;
3567 } __attribute__ ((packed)) features_buf = { 0 };
3568 u64 incompat;
3569 int ret;
3570
3571 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3572 "rbd", "get_features",
3573 &snapid, sizeof (snapid),
3574 &features_buf, sizeof (features_buf));
3575 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3576 if (ret < 0)
3577 return ret;
3578 if (ret < sizeof (features_buf))
3579 return -ERANGE;
3580
3581 incompat = le64_to_cpu(features_buf.incompat);
3582 if (incompat & ~RBD_FEATURES_SUPPORTED)
3583 return -ENXIO;
3584
3585 *snap_features = le64_to_cpu(features_buf.features);
3586
3587 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3588 (unsigned long long)snap_id,
3589 (unsigned long long)*snap_features,
3590 (unsigned long long)le64_to_cpu(features_buf.incompat));
3591
3592 return 0;
3593 }
3594
3595 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3596 {
3597 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3598 &rbd_dev->header.features);
3599 }
3600
3601 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3602 {
3603 struct rbd_spec *parent_spec;
3604 size_t size;
3605 void *reply_buf = NULL;
3606 __le64 snapid;
3607 void *p;
3608 void *end;
3609 char *image_id;
3610 u64 overlap;
3611 int ret;
3612
3613 parent_spec = rbd_spec_alloc();
3614 if (!parent_spec)
3615 return -ENOMEM;
3616
3617 size = sizeof (__le64) + /* pool_id */
3618 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3619 sizeof (__le64) + /* snap_id */
3620 sizeof (__le64); /* overlap */
3621 reply_buf = kmalloc(size, GFP_KERNEL);
3622 if (!reply_buf) {
3623 ret = -ENOMEM;
3624 goto out_err;
3625 }
3626
3627 snapid = cpu_to_le64(CEPH_NOSNAP);
3628 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3629 "rbd", "get_parent",
3630 &snapid, sizeof (snapid),
3631 reply_buf, size);
3632 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3633 if (ret < 0)
3634 goto out_err;
3635
3636 p = reply_buf;
3637 end = reply_buf + ret;
3638 ret = -ERANGE;
3639 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3640 if (parent_spec->pool_id == CEPH_NOPOOL)
3641 goto out; /* No parent? No problem. */
3642
3643 /* The ceph file layout needs to fit pool id in 32 bits */
3644
3645 ret = -EIO;
3646 if (parent_spec->pool_id > (u64)U32_MAX) {
3647 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3648 (unsigned long long)parent_spec->pool_id, U32_MAX);
3649 goto out_err;
3650 }
3651
3652 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3653 if (IS_ERR(image_id)) {
3654 ret = PTR_ERR(image_id);
3655 goto out_err;
3656 }
3657 parent_spec->image_id = image_id;
3658 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3659 ceph_decode_64_safe(&p, end, overlap, out_err);
3660
3661 rbd_dev->parent_overlap = overlap;
3662 rbd_dev->parent_spec = parent_spec;
3663 parent_spec = NULL; /* rbd_dev now owns this */
3664 out:
3665 ret = 0;
3666 out_err:
3667 kfree(reply_buf);
3668 rbd_spec_put(parent_spec);
3669
3670 return ret;
3671 }
3672
3673 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3674 {
3675 struct {
3676 __le64 stripe_unit;
3677 __le64 stripe_count;
3678 } __attribute__ ((packed)) striping_info_buf = { 0 };
3679 size_t size = sizeof (striping_info_buf);
3680 void *p;
3681 u64 obj_size;
3682 u64 stripe_unit;
3683 u64 stripe_count;
3684 int ret;
3685
3686 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3687 "rbd", "get_stripe_unit_count", NULL, 0,
3688 (char *)&striping_info_buf, size);
3689 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3690 if (ret < 0)
3691 return ret;
3692 if (ret < size)
3693 return -ERANGE;
3694
3695 /*
3696 * We don't actually support the "fancy striping" feature
3697 * (STRIPINGV2) yet, but if the striping sizes are the
3698 * defaults the behavior is the same as before. So find
3699 * out, and only fail if the image has non-default values.
3700 */
3701 ret = -EINVAL;
3702 obj_size = (u64)1 << rbd_dev->header.obj_order;
3703 p = &striping_info_buf;
3704 stripe_unit = ceph_decode_64(&p);
3705 if (stripe_unit != obj_size) {
3706 rbd_warn(rbd_dev, "unsupported stripe unit "
3707 "(got %llu want %llu)",
3708 stripe_unit, obj_size);
3709 return -EINVAL;
3710 }
3711 stripe_count = ceph_decode_64(&p);
3712 if (stripe_count != 1) {
3713 rbd_warn(rbd_dev, "unsupported stripe count "
3714 "(got %llu want 1)", stripe_count);
3715 return -EINVAL;
3716 }
3717 rbd_dev->header.stripe_unit = stripe_unit;
3718 rbd_dev->header.stripe_count = stripe_count;
3719
3720 return 0;
3721 }
3722
3723 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3724 {
3725 size_t image_id_size;
3726 char *image_id;
3727 void *p;
3728 void *end;
3729 size_t size;
3730 void *reply_buf = NULL;
3731 size_t len = 0;
3732 char *image_name = NULL;
3733 int ret;
3734
3735 rbd_assert(!rbd_dev->spec->image_name);
3736
3737 len = strlen(rbd_dev->spec->image_id);
3738 image_id_size = sizeof (__le32) + len;
3739 image_id = kmalloc(image_id_size, GFP_KERNEL);
3740 if (!image_id)
3741 return NULL;
3742
3743 p = image_id;
3744 end = image_id + image_id_size;
3745 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3746
3747 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3748 reply_buf = kmalloc(size, GFP_KERNEL);
3749 if (!reply_buf)
3750 goto out;
3751
3752 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3753 "rbd", "dir_get_name",
3754 image_id, image_id_size,
3755 reply_buf, size);
3756 if (ret < 0)
3757 goto out;
3758 p = reply_buf;
3759 end = reply_buf + ret;
3760
3761 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3762 if (IS_ERR(image_name))
3763 image_name = NULL;
3764 else
3765 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3766 out:
3767 kfree(reply_buf);
3768 kfree(image_id);
3769
3770 return image_name;
3771 }
3772
3773 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3774 {
3775 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3776 const char *snap_name;
3777 u32 which = 0;
3778
3779 /* Skip over names until we find the one we are looking for */
3780
3781 snap_name = rbd_dev->header.snap_names;
3782 while (which < snapc->num_snaps) {
3783 if (!strcmp(name, snap_name))
3784 return snapc->snaps[which];
3785 snap_name += strlen(snap_name) + 1;
3786 which++;
3787 }
3788 return CEPH_NOSNAP;
3789 }
3790
3791 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3792 {
3793 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3794 u32 which;
3795 bool found = false;
3796 u64 snap_id;
3797
3798 for (which = 0; !found && which < snapc->num_snaps; which++) {
3799 const char *snap_name;
3800
3801 snap_id = snapc->snaps[which];
3802 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3803 if (IS_ERR(snap_name))
3804 break;
3805 found = !strcmp(name, snap_name);
3806 kfree(snap_name);
3807 }
3808 return found ? snap_id : CEPH_NOSNAP;
3809 }
3810
3811 /*
3812 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3813 * no snapshot by that name is found, or if an error occurs.
3814 */
3815 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3816 {
3817 if (rbd_dev->image_format == 1)
3818 return rbd_v1_snap_id_by_name(rbd_dev, name);
3819
3820 return rbd_v2_snap_id_by_name(rbd_dev, name);
3821 }
3822
3823 /*
3824 * When an rbd image has a parent image, it is identified by the
3825 * pool, image, and snapshot ids (not names). This function fills
3826 * in the names for those ids. (It's OK if we can't figure out the
3827 * name for an image id, but the pool and snapshot ids should always
3828 * exist and have names.) All names in an rbd spec are dynamically
3829 * allocated.
3830 *
3831 * When an image being mapped (not a parent) is probed, we have the
3832 * pool name and pool id, image name and image id, and the snapshot
3833 * name. The only thing we're missing is the snapshot id.
3834 */
3835 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3836 {
3837 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3838 struct rbd_spec *spec = rbd_dev->spec;
3839 const char *pool_name;
3840 const char *image_name;
3841 const char *snap_name;
3842 int ret;
3843
3844 /*
3845 * An image being mapped will have the pool name (etc.), but
3846 * we need to look up the snapshot id.
3847 */
3848 if (spec->pool_name) {
3849 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3850 u64 snap_id;
3851
3852 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3853 if (snap_id == CEPH_NOSNAP)
3854 return -ENOENT;
3855 spec->snap_id = snap_id;
3856 } else {
3857 spec->snap_id = CEPH_NOSNAP;
3858 }
3859
3860 return 0;
3861 }
3862
3863 /* Get the pool name; we have to make our own copy of this */
3864
3865 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3866 if (!pool_name) {
3867 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3868 return -EIO;
3869 }
3870 pool_name = kstrdup(pool_name, GFP_KERNEL);
3871 if (!pool_name)
3872 return -ENOMEM;
3873
3874 /* Fetch the image name; tolerate failure here */
3875
3876 image_name = rbd_dev_image_name(rbd_dev);
3877 if (!image_name)
3878 rbd_warn(rbd_dev, "unable to get image name");
3879
3880 /* Look up the snapshot name, and make a copy */
3881
3882 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3883 if (!snap_name) {
3884 ret = -ENOMEM;
3885 goto out_err;
3886 }
3887
3888 spec->pool_name = pool_name;
3889 spec->image_name = image_name;
3890 spec->snap_name = snap_name;
3891
3892 return 0;
3893 out_err:
3894 kfree(image_name);
3895 kfree(pool_name);
3896
3897 return ret;
3898 }
3899
3900 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3901 {
3902 size_t size;
3903 int ret;
3904 void *reply_buf;
3905 void *p;
3906 void *end;
3907 u64 seq;
3908 u32 snap_count;
3909 struct ceph_snap_context *snapc;
3910 u32 i;
3911
3912 /*
3913 * We'll need room for the seq value (maximum snapshot id),
3914 * snapshot count, and array of that many snapshot ids.
3915 * For now we have a fixed upper limit on the number we're
3916 * prepared to receive.
3917 */
3918 size = sizeof (__le64) + sizeof (__le32) +
3919 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3920 reply_buf = kzalloc(size, GFP_KERNEL);
3921 if (!reply_buf)
3922 return -ENOMEM;
3923
3924 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3925 "rbd", "get_snapcontext", NULL, 0,
3926 reply_buf, size);
3927 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3928 if (ret < 0)
3929 goto out;
3930
3931 p = reply_buf;
3932 end = reply_buf + ret;
3933 ret = -ERANGE;
3934 ceph_decode_64_safe(&p, end, seq, out);
3935 ceph_decode_32_safe(&p, end, snap_count, out);
3936
3937 /*
3938 * Make sure the reported number of snapshot ids wouldn't go
3939 * beyond the end of our buffer. But before checking that,
3940 * make sure the computed size of the snapshot context we
3941 * allocate is representable in a size_t.
3942 */
3943 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3944 / sizeof (u64)) {
3945 ret = -EINVAL;
3946 goto out;
3947 }
3948 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3949 goto out;
3950 ret = 0;
3951
3952 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3953 if (!snapc) {
3954 ret = -ENOMEM;
3955 goto out;
3956 }
3957 snapc->seq = seq;
3958 for (i = 0; i < snap_count; i++)
3959 snapc->snaps[i] = ceph_decode_64(&p);
3960
3961 ceph_put_snap_context(rbd_dev->header.snapc);
3962 rbd_dev->header.snapc = snapc;
3963
3964 dout(" snap context seq = %llu, snap_count = %u\n",
3965 (unsigned long long)seq, (unsigned int)snap_count);
3966 out:
3967 kfree(reply_buf);
3968
3969 return ret;
3970 }
3971
3972 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
3973 u64 snap_id)
3974 {
3975 size_t size;
3976 void *reply_buf;
3977 __le64 snapid;
3978 int ret;
3979 void *p;
3980 void *end;
3981 char *snap_name;
3982
3983 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3984 reply_buf = kmalloc(size, GFP_KERNEL);
3985 if (!reply_buf)
3986 return ERR_PTR(-ENOMEM);
3987
3988 snapid = cpu_to_le64(snap_id);
3989 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3990 "rbd", "get_snapshot_name",
3991 &snapid, sizeof (snapid),
3992 reply_buf, size);
3993 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3994 if (ret < 0) {
3995 snap_name = ERR_PTR(ret);
3996 goto out;
3997 }
3998
3999 p = reply_buf;
4000 end = reply_buf + ret;
4001 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4002 if (IS_ERR(snap_name))
4003 goto out;
4004
4005 dout(" snap_id 0x%016llx snap_name = %s\n",
4006 (unsigned long long)snap_id, snap_name);
4007 out:
4008 kfree(reply_buf);
4009
4010 return snap_name;
4011 }
4012
4013 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4014 {
4015 bool first_time = rbd_dev->header.object_prefix == NULL;
4016 int ret;
4017
4018 down_write(&rbd_dev->header_rwsem);
4019
4020 if (first_time) {
4021 ret = rbd_dev_v2_header_onetime(rbd_dev);
4022 if (ret)
4023 goto out;
4024 }
4025
4026 ret = rbd_dev_v2_image_size(rbd_dev);
4027 if (ret)
4028 goto out;
4029 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4030 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4031 rbd_dev->mapping.size = rbd_dev->header.image_size;
4032
4033 ret = rbd_dev_v2_snap_context(rbd_dev);
4034 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4035 if (ret)
4036 goto out;
4037 out:
4038 up_write(&rbd_dev->header_rwsem);
4039
4040 return ret;
4041 }
4042
4043 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4044 {
4045 struct device *dev;
4046 int ret;
4047
4048 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4049
4050 dev = &rbd_dev->dev;
4051 dev->bus = &rbd_bus_type;
4052 dev->type = &rbd_device_type;
4053 dev->parent = &rbd_root_dev;
4054 dev->release = rbd_dev_device_release;
4055 dev_set_name(dev, "%d", rbd_dev->dev_id);
4056 ret = device_register(dev);
4057
4058 mutex_unlock(&ctl_mutex);
4059
4060 return ret;
4061 }
4062
4063 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4064 {
4065 device_unregister(&rbd_dev->dev);
4066 }
4067
4068 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4069
4070 /*
4071 * Get a unique rbd identifier for the given new rbd_dev, and add
4072 * the rbd_dev to the global list. The minimum rbd id is 1.
4073 */
4074 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4075 {
4076 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4077
4078 spin_lock(&rbd_dev_list_lock);
4079 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4080 spin_unlock(&rbd_dev_list_lock);
4081 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4082 (unsigned long long) rbd_dev->dev_id);
4083 }
4084
4085 /*
4086 * Remove an rbd_dev from the global list, and record that its
4087 * identifier is no longer in use.
4088 */
4089 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4090 {
4091 struct list_head *tmp;
4092 int rbd_id = rbd_dev->dev_id;
4093 int max_id;
4094
4095 rbd_assert(rbd_id > 0);
4096
4097 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4098 (unsigned long long) rbd_dev->dev_id);
4099 spin_lock(&rbd_dev_list_lock);
4100 list_del_init(&rbd_dev->node);
4101
4102 /*
4103 * If the id being "put" is not the current maximum, there
4104 * is nothing special we need to do.
4105 */
4106 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4107 spin_unlock(&rbd_dev_list_lock);
4108 return;
4109 }
4110
4111 /*
4112 * We need to update the current maximum id. Search the
4113 * list to find out what it is. We're more likely to find
4114 * the maximum at the end, so search the list backward.
4115 */
4116 max_id = 0;
4117 list_for_each_prev(tmp, &rbd_dev_list) {
4118 struct rbd_device *rbd_dev;
4119
4120 rbd_dev = list_entry(tmp, struct rbd_device, node);
4121 if (rbd_dev->dev_id > max_id)
4122 max_id = rbd_dev->dev_id;
4123 }
4124 spin_unlock(&rbd_dev_list_lock);
4125
4126 /*
4127 * The max id could have been updated by rbd_dev_id_get(), in
4128 * which case it now accurately reflects the new maximum.
4129 * Be careful not to overwrite the maximum value in that
4130 * case.
4131 */
4132 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4133 dout(" max dev id has been reset\n");
4134 }
4135
4136 /*
4137 * Skips over white space at *buf, and updates *buf to point to the
4138 * first found non-space character (if any). Returns the length of
4139 * the token (string of non-white space characters) found. Note
4140 * that *buf must be terminated with '\0'.
4141 */
4142 static inline size_t next_token(const char **buf)
4143 {
4144 /*
4145 * These are the characters that produce nonzero for
4146 * isspace() in the "C" and "POSIX" locales.
4147 */
4148 const char *spaces = " \f\n\r\t\v";
4149
4150 *buf += strspn(*buf, spaces); /* Find start of token */
4151
4152 return strcspn(*buf, spaces); /* Return token length */
4153 }
4154
4155 /*
4156 * Finds the next token in *buf, and if the provided token buffer is
4157 * big enough, copies the found token into it. The result, if
4158 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4159 * must be terminated with '\0' on entry.
4160 *
4161 * Returns the length of the token found (not including the '\0').
4162 * Return value will be 0 if no token is found, and it will be >=
4163 * token_size if the token would not fit.
4164 *
4165 * The *buf pointer will be updated to point beyond the end of the
4166 * found token. Note that this occurs even if the token buffer is
4167 * too small to hold it.
4168 */
4169 static inline size_t copy_token(const char **buf,
4170 char *token,
4171 size_t token_size)
4172 {
4173 size_t len;
4174
4175 len = next_token(buf);
4176 if (len < token_size) {
4177 memcpy(token, *buf, len);
4178 *(token + len) = '\0';
4179 }
4180 *buf += len;
4181
4182 return len;
4183 }
4184
4185 /*
4186 * Finds the next token in *buf, dynamically allocates a buffer big
4187 * enough to hold a copy of it, and copies the token into the new
4188 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4189 * that a duplicate buffer is created even for a zero-length token.
4190 *
4191 * Returns a pointer to the newly-allocated duplicate, or a null
4192 * pointer if memory for the duplicate was not available. If
4193 * the lenp argument is a non-null pointer, the length of the token
4194 * (not including the '\0') is returned in *lenp.
4195 *
4196 * If successful, the *buf pointer will be updated to point beyond
4197 * the end of the found token.
4198 *
4199 * Note: uses GFP_KERNEL for allocation.
4200 */
4201 static inline char *dup_token(const char **buf, size_t *lenp)
4202 {
4203 char *dup;
4204 size_t len;
4205
4206 len = next_token(buf);
4207 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4208 if (!dup)
4209 return NULL;
4210 *(dup + len) = '\0';
4211 *buf += len;
4212
4213 if (lenp)
4214 *lenp = len;
4215
4216 return dup;
4217 }
4218
4219 /*
4220 * Parse the options provided for an "rbd add" (i.e., rbd image
4221 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4222 * and the data written is passed here via a NUL-terminated buffer.
4223 * Returns 0 if successful or an error code otherwise.
4224 *
4225 * The information extracted from these options is recorded in
4226 * the other parameters which return dynamically-allocated
4227 * structures:
4228 * ceph_opts
4229 * The address of a pointer that will refer to a ceph options
4230 * structure. Caller must release the returned pointer using
4231 * ceph_destroy_options() when it is no longer needed.
4232 * rbd_opts
4233 * Address of an rbd options pointer. Fully initialized by
4234 * this function; caller must release with kfree().
4235 * spec
4236 * Address of an rbd image specification pointer. Fully
4237 * initialized by this function based on parsed options.
4238 * Caller must release with rbd_spec_put().
4239 *
4240 * The options passed take this form:
4241 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4242 * where:
4243 * <mon_addrs>
4244 * A comma-separated list of one or more monitor addresses.
4245 * A monitor address is an ip address, optionally followed
4246 * by a port number (separated by a colon).
4247 * I.e.: ip1[:port1][,ip2[:port2]...]
4248 * <options>
4249 * A comma-separated list of ceph and/or rbd options.
4250 * <pool_name>
4251 * The name of the rados pool containing the rbd image.
4252 * <image_name>
4253 * The name of the image in that pool to map.
4254 * <snap_id>
4255 * An optional snapshot id. If provided, the mapping will
4256 * present data from the image at the time that snapshot was
4257 * created. The image head is used if no snapshot id is
4258 * provided. Snapshot mappings are always read-only.
4259 */
4260 static int rbd_add_parse_args(const char *buf,
4261 struct ceph_options **ceph_opts,
4262 struct rbd_options **opts,
4263 struct rbd_spec **rbd_spec)
4264 {
4265 size_t len;
4266 char *options;
4267 const char *mon_addrs;
4268 char *snap_name;
4269 size_t mon_addrs_size;
4270 struct rbd_spec *spec = NULL;
4271 struct rbd_options *rbd_opts = NULL;
4272 struct ceph_options *copts;
4273 int ret;
4274
4275 /* The first four tokens are required */
4276
4277 len = next_token(&buf);
4278 if (!len) {
4279 rbd_warn(NULL, "no monitor address(es) provided");
4280 return -EINVAL;
4281 }
4282 mon_addrs = buf;
4283 mon_addrs_size = len + 1;
4284 buf += len;
4285
4286 ret = -EINVAL;
4287 options = dup_token(&buf, NULL);
4288 if (!options)
4289 return -ENOMEM;
4290 if (!*options) {
4291 rbd_warn(NULL, "no options provided");
4292 goto out_err;
4293 }
4294
4295 spec = rbd_spec_alloc();
4296 if (!spec)
4297 goto out_mem;
4298
4299 spec->pool_name = dup_token(&buf, NULL);
4300 if (!spec->pool_name)
4301 goto out_mem;
4302 if (!*spec->pool_name) {
4303 rbd_warn(NULL, "no pool name provided");
4304 goto out_err;
4305 }
4306
4307 spec->image_name = dup_token(&buf, NULL);
4308 if (!spec->image_name)
4309 goto out_mem;
4310 if (!*spec->image_name) {
4311 rbd_warn(NULL, "no image name provided");
4312 goto out_err;
4313 }
4314
4315 /*
4316 * Snapshot name is optional; default is to use "-"
4317 * (indicating the head/no snapshot).
4318 */
4319 len = next_token(&buf);
4320 if (!len) {
4321 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4322 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4323 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4324 ret = -ENAMETOOLONG;
4325 goto out_err;
4326 }
4327 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4328 if (!snap_name)
4329 goto out_mem;
4330 *(snap_name + len) = '\0';
4331 spec->snap_name = snap_name;
4332
4333 /* Initialize all rbd options to the defaults */
4334
4335 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4336 if (!rbd_opts)
4337 goto out_mem;
4338
4339 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4340
4341 copts = ceph_parse_options(options, mon_addrs,
4342 mon_addrs + mon_addrs_size - 1,
4343 parse_rbd_opts_token, rbd_opts);
4344 if (IS_ERR(copts)) {
4345 ret = PTR_ERR(copts);
4346 goto out_err;
4347 }
4348 kfree(options);
4349
4350 *ceph_opts = copts;
4351 *opts = rbd_opts;
4352 *rbd_spec = spec;
4353
4354 return 0;
4355 out_mem:
4356 ret = -ENOMEM;
4357 out_err:
4358 kfree(rbd_opts);
4359 rbd_spec_put(spec);
4360 kfree(options);
4361
4362 return ret;
4363 }
4364
4365 /*
4366 * An rbd format 2 image has a unique identifier, distinct from the
4367 * name given to it by the user. Internally, that identifier is
4368 * what's used to specify the names of objects related to the image.
4369 *
4370 * A special "rbd id" object is used to map an rbd image name to its
4371 * id. If that object doesn't exist, then there is no v2 rbd image
4372 * with the supplied name.
4373 *
4374 * This function will record the given rbd_dev's image_id field if
4375 * it can be determined, and in that case will return 0. If any
4376 * errors occur a negative errno will be returned and the rbd_dev's
4377 * image_id field will be unchanged (and should be NULL).
4378 */
4379 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4380 {
4381 int ret;
4382 size_t size;
4383 char *object_name;
4384 void *response;
4385 char *image_id;
4386
4387 /*
4388 * When probing a parent image, the image id is already
4389 * known (and the image name likely is not). There's no
4390 * need to fetch the image id again in this case. We
4391 * do still need to set the image format though.
4392 */
4393 if (rbd_dev->spec->image_id) {
4394 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4395
4396 return 0;
4397 }
4398
4399 /*
4400 * First, see if the format 2 image id file exists, and if
4401 * so, get the image's persistent id from it.
4402 */
4403 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4404 object_name = kmalloc(size, GFP_NOIO);
4405 if (!object_name)
4406 return -ENOMEM;
4407 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4408 dout("rbd id object name is %s\n", object_name);
4409
4410 /* Response will be an encoded string, which includes a length */
4411
4412 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4413 response = kzalloc(size, GFP_NOIO);
4414 if (!response) {
4415 ret = -ENOMEM;
4416 goto out;
4417 }
4418
4419 /* If it doesn't exist we'll assume it's a format 1 image */
4420
4421 ret = rbd_obj_method_sync(rbd_dev, object_name,
4422 "rbd", "get_id", NULL, 0,
4423 response, RBD_IMAGE_ID_LEN_MAX);
4424 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4425 if (ret == -ENOENT) {
4426 image_id = kstrdup("", GFP_KERNEL);
4427 ret = image_id ? 0 : -ENOMEM;
4428 if (!ret)
4429 rbd_dev->image_format = 1;
4430 } else if (ret > sizeof (__le32)) {
4431 void *p = response;
4432
4433 image_id = ceph_extract_encoded_string(&p, p + ret,
4434 NULL, GFP_NOIO);
4435 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4436 if (!ret)
4437 rbd_dev->image_format = 2;
4438 } else {
4439 ret = -EINVAL;
4440 }
4441
4442 if (!ret) {
4443 rbd_dev->spec->image_id = image_id;
4444 dout("image_id is %s\n", image_id);
4445 }
4446 out:
4447 kfree(response);
4448 kfree(object_name);
4449
4450 return ret;
4451 }
4452
4453 /* Undo whatever state changes are made by v1 or v2 image probe */
4454
4455 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4456 {
4457 struct rbd_image_header *header;
4458
4459 rbd_dev_remove_parent(rbd_dev);
4460 rbd_spec_put(rbd_dev->parent_spec);
4461 rbd_dev->parent_spec = NULL;
4462 rbd_dev->parent_overlap = 0;
4463
4464 /* Free dynamic fields from the header, then zero it out */
4465
4466 header = &rbd_dev->header;
4467 ceph_put_snap_context(header->snapc);
4468 kfree(header->snap_sizes);
4469 kfree(header->snap_names);
4470 kfree(header->object_prefix);
4471 memset(header, 0, sizeof (*header));
4472 }
4473
4474 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4475 {
4476 int ret;
4477
4478 ret = rbd_dev_v2_object_prefix(rbd_dev);
4479 if (ret)
4480 goto out_err;
4481
4482 /*
4483 * Get the and check features for the image. Currently the
4484 * features are assumed to never change.
4485 */
4486 ret = rbd_dev_v2_features(rbd_dev);
4487 if (ret)
4488 goto out_err;
4489
4490 /* If the image supports layering, get the parent info */
4491
4492 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4493 ret = rbd_dev_v2_parent_info(rbd_dev);
4494 if (ret)
4495 goto out_err;
4496 /*
4497 * Print a warning if this image has a parent.
4498 * Don't print it if the image now being probed
4499 * is itself a parent. We can tell at this point
4500 * because we won't know its pool name yet (just its
4501 * pool id).
4502 */
4503 if (rbd_dev->parent_spec && rbd_dev->spec->pool_name)
4504 rbd_warn(rbd_dev, "WARNING: kernel layering "
4505 "is EXPERIMENTAL!");
4506 }
4507
4508 /* If the image supports fancy striping, get its parameters */
4509
4510 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4511 ret = rbd_dev_v2_striping_info(rbd_dev);
4512 if (ret < 0)
4513 goto out_err;
4514 }
4515 /* No support for crypto and compression type format 2 images */
4516
4517 return 0;
4518 out_err:
4519 rbd_dev->parent_overlap = 0;
4520 rbd_spec_put(rbd_dev->parent_spec);
4521 rbd_dev->parent_spec = NULL;
4522 kfree(rbd_dev->header_name);
4523 rbd_dev->header_name = NULL;
4524 kfree(rbd_dev->header.object_prefix);
4525 rbd_dev->header.object_prefix = NULL;
4526
4527 return ret;
4528 }
4529
4530 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4531 {
4532 struct rbd_device *parent = NULL;
4533 struct rbd_spec *parent_spec;
4534 struct rbd_client *rbdc;
4535 int ret;
4536
4537 if (!rbd_dev->parent_spec)
4538 return 0;
4539 /*
4540 * We need to pass a reference to the client and the parent
4541 * spec when creating the parent rbd_dev. Images related by
4542 * parent/child relationships always share both.
4543 */
4544 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4545 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4546
4547 ret = -ENOMEM;
4548 parent = rbd_dev_create(rbdc, parent_spec);
4549 if (!parent)
4550 goto out_err;
4551
4552 ret = rbd_dev_image_probe(parent);
4553 if (ret < 0)
4554 goto out_err;
4555 rbd_dev->parent = parent;
4556
4557 return 0;
4558 out_err:
4559 if (parent) {
4560 rbd_spec_put(rbd_dev->parent_spec);
4561 kfree(rbd_dev->header_name);
4562 rbd_dev_destroy(parent);
4563 } else {
4564 rbd_put_client(rbdc);
4565 rbd_spec_put(parent_spec);
4566 }
4567
4568 return ret;
4569 }
4570
4571 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4572 {
4573 int ret;
4574
4575 /* generate unique id: find highest unique id, add one */
4576 rbd_dev_id_get(rbd_dev);
4577
4578 /* Fill in the device name, now that we have its id. */
4579 BUILD_BUG_ON(DEV_NAME_LEN
4580 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4581 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4582
4583 /* Get our block major device number. */
4584
4585 ret = register_blkdev(0, rbd_dev->name);
4586 if (ret < 0)
4587 goto err_out_id;
4588 rbd_dev->major = ret;
4589
4590 /* Set up the blkdev mapping. */
4591
4592 ret = rbd_init_disk(rbd_dev);
4593 if (ret)
4594 goto err_out_blkdev;
4595
4596 ret = rbd_dev_mapping_set(rbd_dev);
4597 if (ret)
4598 goto err_out_disk;
4599 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4600
4601 ret = rbd_bus_add_dev(rbd_dev);
4602 if (ret)
4603 goto err_out_mapping;
4604
4605 /* Everything's ready. Announce the disk to the world. */
4606
4607 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4608 add_disk(rbd_dev->disk);
4609
4610 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4611 (unsigned long long) rbd_dev->mapping.size);
4612
4613 return ret;
4614
4615 err_out_mapping:
4616 rbd_dev_mapping_clear(rbd_dev);
4617 err_out_disk:
4618 rbd_free_disk(rbd_dev);
4619 err_out_blkdev:
4620 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4621 err_out_id:
4622 rbd_dev_id_put(rbd_dev);
4623 rbd_dev_mapping_clear(rbd_dev);
4624
4625 return ret;
4626 }
4627
4628 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4629 {
4630 struct rbd_spec *spec = rbd_dev->spec;
4631 size_t size;
4632
4633 /* Record the header object name for this rbd image. */
4634
4635 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4636
4637 if (rbd_dev->image_format == 1)
4638 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4639 else
4640 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4641
4642 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4643 if (!rbd_dev->header_name)
4644 return -ENOMEM;
4645
4646 if (rbd_dev->image_format == 1)
4647 sprintf(rbd_dev->header_name, "%s%s",
4648 spec->image_name, RBD_SUFFIX);
4649 else
4650 sprintf(rbd_dev->header_name, "%s%s",
4651 RBD_HEADER_PREFIX, spec->image_id);
4652 return 0;
4653 }
4654
4655 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4656 {
4657 int ret;
4658
4659 rbd_dev_unprobe(rbd_dev);
4660 ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4661 if (ret)
4662 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4663 kfree(rbd_dev->header_name);
4664 rbd_dev->header_name = NULL;
4665 rbd_dev->image_format = 0;
4666 kfree(rbd_dev->spec->image_id);
4667 rbd_dev->spec->image_id = NULL;
4668
4669 rbd_dev_destroy(rbd_dev);
4670 }
4671
4672 /*
4673 * Probe for the existence of the header object for the given rbd
4674 * device.
4675 */
4676 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4677 {
4678 int ret;
4679 int tmp;
4680
4681 /*
4682 * Get the id from the image id object. If it's not a
4683 * format 2 image, we'll get ENOENT back, and we'll assume
4684 * it's a format 1 image.
4685 */
4686 ret = rbd_dev_image_id(rbd_dev);
4687 if (ret)
4688 return ret;
4689 rbd_assert(rbd_dev->spec->image_id);
4690 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4691
4692 ret = rbd_dev_header_name(rbd_dev);
4693 if (ret)
4694 goto err_out_format;
4695
4696 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4697 if (ret)
4698 goto out_header_name;
4699
4700 if (rbd_dev->image_format == 1)
4701 ret = rbd_dev_v1_header_info(rbd_dev);
4702 else
4703 ret = rbd_dev_v2_header_info(rbd_dev);
4704 if (ret)
4705 goto err_out_watch;
4706
4707 ret = rbd_dev_spec_update(rbd_dev);
4708 if (ret)
4709 goto err_out_probe;
4710
4711 ret = rbd_dev_probe_parent(rbd_dev);
4712 if (ret)
4713 goto err_out_probe;
4714
4715 dout("discovered format %u image, header name is %s\n",
4716 rbd_dev->image_format, rbd_dev->header_name);
4717
4718 return 0;
4719 err_out_probe:
4720 rbd_dev_unprobe(rbd_dev);
4721 err_out_watch:
4722 tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4723 if (tmp)
4724 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4725 out_header_name:
4726 kfree(rbd_dev->header_name);
4727 rbd_dev->header_name = NULL;
4728 err_out_format:
4729 rbd_dev->image_format = 0;
4730 kfree(rbd_dev->spec->image_id);
4731 rbd_dev->spec->image_id = NULL;
4732
4733 dout("probe failed, returning %d\n", ret);
4734
4735 return ret;
4736 }
4737
4738 static ssize_t rbd_add(struct bus_type *bus,
4739 const char *buf,
4740 size_t count)
4741 {
4742 struct rbd_device *rbd_dev = NULL;
4743 struct ceph_options *ceph_opts = NULL;
4744 struct rbd_options *rbd_opts = NULL;
4745 struct rbd_spec *spec = NULL;
4746 struct rbd_client *rbdc;
4747 struct ceph_osd_client *osdc;
4748 bool read_only;
4749 int rc = -ENOMEM;
4750
4751 if (!try_module_get(THIS_MODULE))
4752 return -ENODEV;
4753
4754 /* parse add command */
4755 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4756 if (rc < 0)
4757 goto err_out_module;
4758 read_only = rbd_opts->read_only;
4759 kfree(rbd_opts);
4760 rbd_opts = NULL; /* done with this */
4761
4762 rbdc = rbd_get_client(ceph_opts);
4763 if (IS_ERR(rbdc)) {
4764 rc = PTR_ERR(rbdc);
4765 goto err_out_args;
4766 }
4767 ceph_opts = NULL; /* rbd_dev client now owns this */
4768
4769 /* pick the pool */
4770 osdc = &rbdc->client->osdc;
4771 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4772 if (rc < 0)
4773 goto err_out_client;
4774 spec->pool_id = (u64)rc;
4775
4776 /* The ceph file layout needs to fit pool id in 32 bits */
4777
4778 if (spec->pool_id > (u64)U32_MAX) {
4779 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4780 (unsigned long long)spec->pool_id, U32_MAX);
4781 rc = -EIO;
4782 goto err_out_client;
4783 }
4784
4785 rbd_dev = rbd_dev_create(rbdc, spec);
4786 if (!rbd_dev)
4787 goto err_out_client;
4788 rbdc = NULL; /* rbd_dev now owns this */
4789 spec = NULL; /* rbd_dev now owns this */
4790
4791 rc = rbd_dev_image_probe(rbd_dev);
4792 if (rc < 0)
4793 goto err_out_rbd_dev;
4794
4795 /* If we are mapping a snapshot it must be marked read-only */
4796
4797 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
4798 read_only = true;
4799 rbd_dev->mapping.read_only = read_only;
4800
4801 rc = rbd_dev_device_setup(rbd_dev);
4802 if (!rc)
4803 return count;
4804
4805 rbd_dev_image_release(rbd_dev);
4806 err_out_rbd_dev:
4807 rbd_dev_destroy(rbd_dev);
4808 err_out_client:
4809 rbd_put_client(rbdc);
4810 err_out_args:
4811 if (ceph_opts)
4812 ceph_destroy_options(ceph_opts);
4813 kfree(rbd_opts);
4814 rbd_spec_put(spec);
4815 err_out_module:
4816 module_put(THIS_MODULE);
4817
4818 dout("Error adding device %s\n", buf);
4819
4820 return (ssize_t)rc;
4821 }
4822
4823 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4824 {
4825 struct list_head *tmp;
4826 struct rbd_device *rbd_dev;
4827
4828 spin_lock(&rbd_dev_list_lock);
4829 list_for_each(tmp, &rbd_dev_list) {
4830 rbd_dev = list_entry(tmp, struct rbd_device, node);
4831 if (rbd_dev->dev_id == dev_id) {
4832 spin_unlock(&rbd_dev_list_lock);
4833 return rbd_dev;
4834 }
4835 }
4836 spin_unlock(&rbd_dev_list_lock);
4837 return NULL;
4838 }
4839
4840 static void rbd_dev_device_release(struct device *dev)
4841 {
4842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4843
4844 rbd_free_disk(rbd_dev);
4845 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4846 rbd_dev_mapping_clear(rbd_dev);
4847 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4848 rbd_dev->major = 0;
4849 rbd_dev_id_put(rbd_dev);
4850 rbd_dev_mapping_clear(rbd_dev);
4851 }
4852
4853 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4854 {
4855 while (rbd_dev->parent) {
4856 struct rbd_device *first = rbd_dev;
4857 struct rbd_device *second = first->parent;
4858 struct rbd_device *third;
4859
4860 /*
4861 * Follow to the parent with no grandparent and
4862 * remove it.
4863 */
4864 while (second && (third = second->parent)) {
4865 first = second;
4866 second = third;
4867 }
4868 rbd_assert(second);
4869 rbd_dev_image_release(second);
4870 first->parent = NULL;
4871 first->parent_overlap = 0;
4872
4873 rbd_assert(first->parent_spec);
4874 rbd_spec_put(first->parent_spec);
4875 first->parent_spec = NULL;
4876 }
4877 }
4878
4879 static ssize_t rbd_remove(struct bus_type *bus,
4880 const char *buf,
4881 size_t count)
4882 {
4883 struct rbd_device *rbd_dev = NULL;
4884 int target_id;
4885 unsigned long ul;
4886 int ret;
4887
4888 ret = strict_strtoul(buf, 10, &ul);
4889 if (ret)
4890 return ret;
4891
4892 /* convert to int; abort if we lost anything in the conversion */
4893 target_id = (int) ul;
4894 if (target_id != ul)
4895 return -EINVAL;
4896
4897 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4898
4899 rbd_dev = __rbd_get_dev(target_id);
4900 if (!rbd_dev) {
4901 ret = -ENOENT;
4902 goto done;
4903 }
4904
4905 spin_lock_irq(&rbd_dev->lock);
4906 if (rbd_dev->open_count)
4907 ret = -EBUSY;
4908 else
4909 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4910 spin_unlock_irq(&rbd_dev->lock);
4911 if (ret < 0)
4912 goto done;
4913 ret = count;
4914 rbd_bus_del_dev(rbd_dev);
4915 rbd_dev_image_release(rbd_dev);
4916 module_put(THIS_MODULE);
4917 done:
4918 mutex_unlock(&ctl_mutex);
4919
4920 return ret;
4921 }
4922
4923 /*
4924 * create control files in sysfs
4925 * /sys/bus/rbd/...
4926 */
4927 static int rbd_sysfs_init(void)
4928 {
4929 int ret;
4930
4931 ret = device_register(&rbd_root_dev);
4932 if (ret < 0)
4933 return ret;
4934
4935 ret = bus_register(&rbd_bus_type);
4936 if (ret < 0)
4937 device_unregister(&rbd_root_dev);
4938
4939 return ret;
4940 }
4941
4942 static void rbd_sysfs_cleanup(void)
4943 {
4944 bus_unregister(&rbd_bus_type);
4945 device_unregister(&rbd_root_dev);
4946 }
4947
4948 static int rbd_slab_init(void)
4949 {
4950 rbd_assert(!rbd_img_request_cache);
4951 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
4952 sizeof (struct rbd_img_request),
4953 __alignof__(struct rbd_img_request),
4954 0, NULL);
4955 if (!rbd_img_request_cache)
4956 return -ENOMEM;
4957
4958 rbd_assert(!rbd_obj_request_cache);
4959 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
4960 sizeof (struct rbd_obj_request),
4961 __alignof__(struct rbd_obj_request),
4962 0, NULL);
4963 if (!rbd_obj_request_cache)
4964 goto out_err;
4965
4966 rbd_assert(!rbd_segment_name_cache);
4967 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
4968 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
4969 if (rbd_segment_name_cache)
4970 return 0;
4971 out_err:
4972 if (rbd_obj_request_cache) {
4973 kmem_cache_destroy(rbd_obj_request_cache);
4974 rbd_obj_request_cache = NULL;
4975 }
4976
4977 kmem_cache_destroy(rbd_img_request_cache);
4978 rbd_img_request_cache = NULL;
4979
4980 return -ENOMEM;
4981 }
4982
4983 static void rbd_slab_exit(void)
4984 {
4985 rbd_assert(rbd_segment_name_cache);
4986 kmem_cache_destroy(rbd_segment_name_cache);
4987 rbd_segment_name_cache = NULL;
4988
4989 rbd_assert(rbd_obj_request_cache);
4990 kmem_cache_destroy(rbd_obj_request_cache);
4991 rbd_obj_request_cache = NULL;
4992
4993 rbd_assert(rbd_img_request_cache);
4994 kmem_cache_destroy(rbd_img_request_cache);
4995 rbd_img_request_cache = NULL;
4996 }
4997
4998 static int __init rbd_init(void)
4999 {
5000 int rc;
5001
5002 if (!libceph_compatible(NULL)) {
5003 rbd_warn(NULL, "libceph incompatibility (quitting)");
5004
5005 return -EINVAL;
5006 }
5007 rc = rbd_slab_init();
5008 if (rc)
5009 return rc;
5010 rc = rbd_sysfs_init();
5011 if (rc)
5012 rbd_slab_exit();
5013 else
5014 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5015
5016 return rc;
5017 }
5018
5019 static void __exit rbd_exit(void)
5020 {
5021 rbd_sysfs_cleanup();
5022 rbd_slab_exit();
5023 }
5024
5025 module_init(rbd_init);
5026 module_exit(rbd_exit);
5027
5028 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5029 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5030 MODULE_DESCRIPTION("rados block device");
5031
5032 /* following authorship retained from original osdblk.c */
5033 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5034
5035 MODULE_LICENSE("GPL");