]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
rbd: issue stat request before layered write
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN \
62 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX 64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX 64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING (1<<0)
77 #define RBD_FEATURE_STRIPINGV2 (1<<1)
78 #define RBD_FEATURES_ALL \
79 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
80
81 /* Features supported by this (client software) implementation. */
82
83 #define RBD_FEATURES_SUPPORTED (0)
84
85 /*
86 * An RBD device name will be "rbd#", where the "rbd" comes from
87 * RBD_DRV_NAME above, and # is a unique integer identifier.
88 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
89 * enough to hold all possible device names.
90 */
91 #define DEV_NAME_LEN 32
92 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
93
94 /*
95 * block device image metadata (in-memory version)
96 */
97 struct rbd_image_header {
98 /* These four fields never change for a given rbd image */
99 char *object_prefix;
100 u64 features;
101 __u8 obj_order;
102 __u8 crypt_type;
103 __u8 comp_type;
104
105 /* The remaining fields need to be updated occasionally */
106 u64 image_size;
107 struct ceph_snap_context *snapc;
108 char *snap_names;
109 u64 *snap_sizes;
110
111 u64 obj_version;
112 };
113
114 /*
115 * An rbd image specification.
116 *
117 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
118 * identify an image. Each rbd_dev structure includes a pointer to
119 * an rbd_spec structure that encapsulates this identity.
120 *
121 * Each of the id's in an rbd_spec has an associated name. For a
122 * user-mapped image, the names are supplied and the id's associated
123 * with them are looked up. For a layered image, a parent image is
124 * defined by the tuple, and the names are looked up.
125 *
126 * An rbd_dev structure contains a parent_spec pointer which is
127 * non-null if the image it represents is a child in a layered
128 * image. This pointer will refer to the rbd_spec structure used
129 * by the parent rbd_dev for its own identity (i.e., the structure
130 * is shared between the parent and child).
131 *
132 * Since these structures are populated once, during the discovery
133 * phase of image construction, they are effectively immutable so
134 * we make no effort to synchronize access to them.
135 *
136 * Note that code herein does not assume the image name is known (it
137 * could be a null pointer).
138 */
139 struct rbd_spec {
140 u64 pool_id;
141 char *pool_name;
142
143 char *image_id;
144 char *image_name;
145
146 u64 snap_id;
147 char *snap_name;
148
149 struct kref kref;
150 };
151
152 /*
153 * an instance of the client. multiple devices may share an rbd client.
154 */
155 struct rbd_client {
156 struct ceph_client *client;
157 struct kref kref;
158 struct list_head node;
159 };
160
161 struct rbd_img_request;
162 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
163
164 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
165
166 struct rbd_obj_request;
167 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
168
169 enum obj_request_type {
170 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
171 };
172
173 enum obj_req_flags {
174 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
175 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
176 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
177 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
178 };
179
180 struct rbd_obj_request {
181 const char *object_name;
182 u64 offset; /* object start byte */
183 u64 length; /* bytes from offset */
184 unsigned long flags;
185
186 /*
187 * An object request associated with an image will have its
188 * img_data flag set; a standalone object request will not.
189 *
190 * A standalone object request will have which == BAD_WHICH
191 * and a null obj_request pointer.
192 *
193 * An object request initiated in support of a layered image
194 * object (to check for its existence before a write) will
195 * have which == BAD_WHICH and a non-null obj_request pointer.
196 *
197 * Finally, an object request for rbd image data will have
198 * which != BAD_WHICH, and will have a non-null img_request
199 * pointer. The value of which will be in the range
200 * 0..(img_request->obj_request_count-1).
201 */
202 union {
203 struct rbd_obj_request *obj_request; /* STAT op */
204 struct {
205 struct rbd_img_request *img_request;
206 u64 img_offset;
207 /* links for img_request->obj_requests list */
208 struct list_head links;
209 };
210 };
211 u32 which; /* posn image request list */
212
213 enum obj_request_type type;
214 union {
215 struct bio *bio_list;
216 struct {
217 struct page **pages;
218 u32 page_count;
219 };
220 };
221
222 struct ceph_osd_request *osd_req;
223
224 u64 xferred; /* bytes transferred */
225 u64 version;
226 int result;
227
228 rbd_obj_callback_t callback;
229 struct completion completion;
230
231 struct kref kref;
232 };
233
234 enum img_req_flags {
235 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
236 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
237 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
238 };
239
240 struct rbd_img_request {
241 struct rbd_device *rbd_dev;
242 u64 offset; /* starting image byte offset */
243 u64 length; /* byte count from offset */
244 unsigned long flags;
245 union {
246 u64 snap_id; /* for reads */
247 struct ceph_snap_context *snapc; /* for writes */
248 };
249 union {
250 struct request *rq; /* block request */
251 struct rbd_obj_request *obj_request; /* obj req initiator */
252 };
253 spinlock_t completion_lock;/* protects next_completion */
254 u32 next_completion;
255 rbd_img_callback_t callback;
256 u64 xferred;/* aggregate bytes transferred */
257 int result; /* first nonzero obj_request result */
258
259 u32 obj_request_count;
260 struct list_head obj_requests; /* rbd_obj_request structs */
261
262 struct kref kref;
263 };
264
265 #define for_each_obj_request(ireq, oreq) \
266 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
267 #define for_each_obj_request_from(ireq, oreq) \
268 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
269 #define for_each_obj_request_safe(ireq, oreq, n) \
270 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
271
272 struct rbd_snap {
273 struct device dev;
274 const char *name;
275 u64 size;
276 struct list_head node;
277 u64 id;
278 u64 features;
279 };
280
281 struct rbd_mapping {
282 u64 size;
283 u64 features;
284 bool read_only;
285 };
286
287 /*
288 * a single device
289 */
290 struct rbd_device {
291 int dev_id; /* blkdev unique id */
292
293 int major; /* blkdev assigned major */
294 struct gendisk *disk; /* blkdev's gendisk and rq */
295
296 u32 image_format; /* Either 1 or 2 */
297 struct rbd_client *rbd_client;
298
299 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
300
301 spinlock_t lock; /* queue, flags, open_count */
302
303 struct rbd_image_header header;
304 unsigned long flags; /* possibly lock protected */
305 struct rbd_spec *spec;
306
307 char *header_name;
308
309 struct ceph_file_layout layout;
310
311 struct ceph_osd_event *watch_event;
312 struct rbd_obj_request *watch_request;
313
314 struct rbd_spec *parent_spec;
315 u64 parent_overlap;
316 struct rbd_device *parent;
317
318 /* protects updating the header */
319 struct rw_semaphore header_rwsem;
320
321 struct rbd_mapping mapping;
322
323 struct list_head node;
324
325 /* list of snapshots */
326 struct list_head snaps;
327
328 /* sysfs related */
329 struct device dev;
330 unsigned long open_count; /* protected by lock */
331 };
332
333 /*
334 * Flag bits for rbd_dev->flags. If atomicity is required,
335 * rbd_dev->lock is used to protect access.
336 *
337 * Currently, only the "removing" flag (which is coupled with the
338 * "open_count" field) requires atomic access.
339 */
340 enum rbd_dev_flags {
341 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
342 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
343 };
344
345 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
346
347 static LIST_HEAD(rbd_dev_list); /* devices */
348 static DEFINE_SPINLOCK(rbd_dev_list_lock);
349
350 static LIST_HEAD(rbd_client_list); /* clients */
351 static DEFINE_SPINLOCK(rbd_client_list_lock);
352
353 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
354 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
355
356 static void rbd_dev_release(struct device *dev);
357 static void rbd_remove_snap_dev(struct rbd_snap *snap);
358
359 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
360 size_t count);
361 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
362 size_t count);
363 static int rbd_dev_probe(struct rbd_device *rbd_dev);
364
365 static struct bus_attribute rbd_bus_attrs[] = {
366 __ATTR(add, S_IWUSR, NULL, rbd_add),
367 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
368 __ATTR_NULL
369 };
370
371 static struct bus_type rbd_bus_type = {
372 .name = "rbd",
373 .bus_attrs = rbd_bus_attrs,
374 };
375
376 static void rbd_root_dev_release(struct device *dev)
377 {
378 }
379
380 static struct device rbd_root_dev = {
381 .init_name = "rbd",
382 .release = rbd_root_dev_release,
383 };
384
385 static __printf(2, 3)
386 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
387 {
388 struct va_format vaf;
389 va_list args;
390
391 va_start(args, fmt);
392 vaf.fmt = fmt;
393 vaf.va = &args;
394
395 if (!rbd_dev)
396 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
397 else if (rbd_dev->disk)
398 printk(KERN_WARNING "%s: %s: %pV\n",
399 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
400 else if (rbd_dev->spec && rbd_dev->spec->image_name)
401 printk(KERN_WARNING "%s: image %s: %pV\n",
402 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
403 else if (rbd_dev->spec && rbd_dev->spec->image_id)
404 printk(KERN_WARNING "%s: id %s: %pV\n",
405 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
406 else /* punt */
407 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
408 RBD_DRV_NAME, rbd_dev, &vaf);
409 va_end(args);
410 }
411
412 #ifdef RBD_DEBUG
413 #define rbd_assert(expr) \
414 if (unlikely(!(expr))) { \
415 printk(KERN_ERR "\nAssertion failure in %s() " \
416 "at line %d:\n\n" \
417 "\trbd_assert(%s);\n\n", \
418 __func__, __LINE__, #expr); \
419 BUG(); \
420 }
421 #else /* !RBD_DEBUG */
422 # define rbd_assert(expr) ((void) 0)
423 #endif /* !RBD_DEBUG */
424
425 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
426
427 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
428 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
429
430 static int rbd_open(struct block_device *bdev, fmode_t mode)
431 {
432 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
433 bool removing = false;
434
435 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
436 return -EROFS;
437
438 spin_lock_irq(&rbd_dev->lock);
439 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
440 removing = true;
441 else
442 rbd_dev->open_count++;
443 spin_unlock_irq(&rbd_dev->lock);
444 if (removing)
445 return -ENOENT;
446
447 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
448 (void) get_device(&rbd_dev->dev);
449 set_device_ro(bdev, rbd_dev->mapping.read_only);
450 mutex_unlock(&ctl_mutex);
451
452 return 0;
453 }
454
455 static int rbd_release(struct gendisk *disk, fmode_t mode)
456 {
457 struct rbd_device *rbd_dev = disk->private_data;
458 unsigned long open_count_before;
459
460 spin_lock_irq(&rbd_dev->lock);
461 open_count_before = rbd_dev->open_count--;
462 spin_unlock_irq(&rbd_dev->lock);
463 rbd_assert(open_count_before > 0);
464
465 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
466 put_device(&rbd_dev->dev);
467 mutex_unlock(&ctl_mutex);
468
469 return 0;
470 }
471
472 static const struct block_device_operations rbd_bd_ops = {
473 .owner = THIS_MODULE,
474 .open = rbd_open,
475 .release = rbd_release,
476 };
477
478 /*
479 * Initialize an rbd client instance.
480 * We own *ceph_opts.
481 */
482 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
483 {
484 struct rbd_client *rbdc;
485 int ret = -ENOMEM;
486
487 dout("%s:\n", __func__);
488 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
489 if (!rbdc)
490 goto out_opt;
491
492 kref_init(&rbdc->kref);
493 INIT_LIST_HEAD(&rbdc->node);
494
495 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
496
497 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
498 if (IS_ERR(rbdc->client))
499 goto out_mutex;
500 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
501
502 ret = ceph_open_session(rbdc->client);
503 if (ret < 0)
504 goto out_err;
505
506 spin_lock(&rbd_client_list_lock);
507 list_add_tail(&rbdc->node, &rbd_client_list);
508 spin_unlock(&rbd_client_list_lock);
509
510 mutex_unlock(&ctl_mutex);
511 dout("%s: rbdc %p\n", __func__, rbdc);
512
513 return rbdc;
514
515 out_err:
516 ceph_destroy_client(rbdc->client);
517 out_mutex:
518 mutex_unlock(&ctl_mutex);
519 kfree(rbdc);
520 out_opt:
521 if (ceph_opts)
522 ceph_destroy_options(ceph_opts);
523 dout("%s: error %d\n", __func__, ret);
524
525 return ERR_PTR(ret);
526 }
527
528 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
529 {
530 kref_get(&rbdc->kref);
531
532 return rbdc;
533 }
534
535 /*
536 * Find a ceph client with specific addr and configuration. If
537 * found, bump its reference count.
538 */
539 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
540 {
541 struct rbd_client *client_node;
542 bool found = false;
543
544 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
545 return NULL;
546
547 spin_lock(&rbd_client_list_lock);
548 list_for_each_entry(client_node, &rbd_client_list, node) {
549 if (!ceph_compare_options(ceph_opts, client_node->client)) {
550 __rbd_get_client(client_node);
551
552 found = true;
553 break;
554 }
555 }
556 spin_unlock(&rbd_client_list_lock);
557
558 return found ? client_node : NULL;
559 }
560
561 /*
562 * mount options
563 */
564 enum {
565 Opt_last_int,
566 /* int args above */
567 Opt_last_string,
568 /* string args above */
569 Opt_read_only,
570 Opt_read_write,
571 /* Boolean args above */
572 Opt_last_bool,
573 };
574
575 static match_table_t rbd_opts_tokens = {
576 /* int args above */
577 /* string args above */
578 {Opt_read_only, "read_only"},
579 {Opt_read_only, "ro"}, /* Alternate spelling */
580 {Opt_read_write, "read_write"},
581 {Opt_read_write, "rw"}, /* Alternate spelling */
582 /* Boolean args above */
583 {-1, NULL}
584 };
585
586 struct rbd_options {
587 bool read_only;
588 };
589
590 #define RBD_READ_ONLY_DEFAULT false
591
592 static int parse_rbd_opts_token(char *c, void *private)
593 {
594 struct rbd_options *rbd_opts = private;
595 substring_t argstr[MAX_OPT_ARGS];
596 int token, intval, ret;
597
598 token = match_token(c, rbd_opts_tokens, argstr);
599 if (token < 0)
600 return -EINVAL;
601
602 if (token < Opt_last_int) {
603 ret = match_int(&argstr[0], &intval);
604 if (ret < 0) {
605 pr_err("bad mount option arg (not int) "
606 "at '%s'\n", c);
607 return ret;
608 }
609 dout("got int token %d val %d\n", token, intval);
610 } else if (token > Opt_last_int && token < Opt_last_string) {
611 dout("got string token %d val %s\n", token,
612 argstr[0].from);
613 } else if (token > Opt_last_string && token < Opt_last_bool) {
614 dout("got Boolean token %d\n", token);
615 } else {
616 dout("got token %d\n", token);
617 }
618
619 switch (token) {
620 case Opt_read_only:
621 rbd_opts->read_only = true;
622 break;
623 case Opt_read_write:
624 rbd_opts->read_only = false;
625 break;
626 default:
627 rbd_assert(false);
628 break;
629 }
630 return 0;
631 }
632
633 /*
634 * Get a ceph client with specific addr and configuration, if one does
635 * not exist create it.
636 */
637 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
638 {
639 struct rbd_client *rbdc;
640
641 rbdc = rbd_client_find(ceph_opts);
642 if (rbdc) /* using an existing client */
643 ceph_destroy_options(ceph_opts);
644 else
645 rbdc = rbd_client_create(ceph_opts);
646
647 return rbdc;
648 }
649
650 /*
651 * Destroy ceph client
652 *
653 * Caller must hold rbd_client_list_lock.
654 */
655 static void rbd_client_release(struct kref *kref)
656 {
657 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
658
659 dout("%s: rbdc %p\n", __func__, rbdc);
660 spin_lock(&rbd_client_list_lock);
661 list_del(&rbdc->node);
662 spin_unlock(&rbd_client_list_lock);
663
664 ceph_destroy_client(rbdc->client);
665 kfree(rbdc);
666 }
667
668 /*
669 * Drop reference to ceph client node. If it's not referenced anymore, release
670 * it.
671 */
672 static void rbd_put_client(struct rbd_client *rbdc)
673 {
674 if (rbdc)
675 kref_put(&rbdc->kref, rbd_client_release);
676 }
677
678 static bool rbd_image_format_valid(u32 image_format)
679 {
680 return image_format == 1 || image_format == 2;
681 }
682
683 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
684 {
685 size_t size;
686 u32 snap_count;
687
688 /* The header has to start with the magic rbd header text */
689 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
690 return false;
691
692 /* The bio layer requires at least sector-sized I/O */
693
694 if (ondisk->options.order < SECTOR_SHIFT)
695 return false;
696
697 /* If we use u64 in a few spots we may be able to loosen this */
698
699 if (ondisk->options.order > 8 * sizeof (int) - 1)
700 return false;
701
702 /*
703 * The size of a snapshot header has to fit in a size_t, and
704 * that limits the number of snapshots.
705 */
706 snap_count = le32_to_cpu(ondisk->snap_count);
707 size = SIZE_MAX - sizeof (struct ceph_snap_context);
708 if (snap_count > size / sizeof (__le64))
709 return false;
710
711 /*
712 * Not only that, but the size of the entire the snapshot
713 * header must also be representable in a size_t.
714 */
715 size -= snap_count * sizeof (__le64);
716 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
717 return false;
718
719 return true;
720 }
721
722 /*
723 * Create a new header structure, translate header format from the on-disk
724 * header.
725 */
726 static int rbd_header_from_disk(struct rbd_image_header *header,
727 struct rbd_image_header_ondisk *ondisk)
728 {
729 u32 snap_count;
730 size_t len;
731 size_t size;
732 u32 i;
733
734 memset(header, 0, sizeof (*header));
735
736 snap_count = le32_to_cpu(ondisk->snap_count);
737
738 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
739 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
740 if (!header->object_prefix)
741 return -ENOMEM;
742 memcpy(header->object_prefix, ondisk->object_prefix, len);
743 header->object_prefix[len] = '\0';
744
745 if (snap_count) {
746 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
747
748 /* Save a copy of the snapshot names */
749
750 if (snap_names_len > (u64) SIZE_MAX)
751 return -EIO;
752 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
753 if (!header->snap_names)
754 goto out_err;
755 /*
756 * Note that rbd_dev_v1_header_read() guarantees
757 * the ondisk buffer we're working with has
758 * snap_names_len bytes beyond the end of the
759 * snapshot id array, this memcpy() is safe.
760 */
761 memcpy(header->snap_names, &ondisk->snaps[snap_count],
762 snap_names_len);
763
764 /* Record each snapshot's size */
765
766 size = snap_count * sizeof (*header->snap_sizes);
767 header->snap_sizes = kmalloc(size, GFP_KERNEL);
768 if (!header->snap_sizes)
769 goto out_err;
770 for (i = 0; i < snap_count; i++)
771 header->snap_sizes[i] =
772 le64_to_cpu(ondisk->snaps[i].image_size);
773 } else {
774 WARN_ON(ondisk->snap_names_len);
775 header->snap_names = NULL;
776 header->snap_sizes = NULL;
777 }
778
779 header->features = 0; /* No features support in v1 images */
780 header->obj_order = ondisk->options.order;
781 header->crypt_type = ondisk->options.crypt_type;
782 header->comp_type = ondisk->options.comp_type;
783
784 /* Allocate and fill in the snapshot context */
785
786 header->image_size = le64_to_cpu(ondisk->image_size);
787 size = sizeof (struct ceph_snap_context);
788 size += snap_count * sizeof (header->snapc->snaps[0]);
789 header->snapc = kzalloc(size, GFP_KERNEL);
790 if (!header->snapc)
791 goto out_err;
792
793 atomic_set(&header->snapc->nref, 1);
794 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
795 header->snapc->num_snaps = snap_count;
796 for (i = 0; i < snap_count; i++)
797 header->snapc->snaps[i] =
798 le64_to_cpu(ondisk->snaps[i].id);
799
800 return 0;
801
802 out_err:
803 kfree(header->snap_sizes);
804 header->snap_sizes = NULL;
805 kfree(header->snap_names);
806 header->snap_names = NULL;
807 kfree(header->object_prefix);
808 header->object_prefix = NULL;
809
810 return -ENOMEM;
811 }
812
813 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
814 {
815 struct rbd_snap *snap;
816
817 if (snap_id == CEPH_NOSNAP)
818 return RBD_SNAP_HEAD_NAME;
819
820 list_for_each_entry(snap, &rbd_dev->snaps, node)
821 if (snap_id == snap->id)
822 return snap->name;
823
824 return NULL;
825 }
826
827 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
828 {
829
830 struct rbd_snap *snap;
831
832 list_for_each_entry(snap, &rbd_dev->snaps, node) {
833 if (!strcmp(snap_name, snap->name)) {
834 rbd_dev->spec->snap_id = snap->id;
835 rbd_dev->mapping.size = snap->size;
836 rbd_dev->mapping.features = snap->features;
837
838 return 0;
839 }
840 }
841
842 return -ENOENT;
843 }
844
845 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
846 {
847 int ret;
848
849 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
850 sizeof (RBD_SNAP_HEAD_NAME))) {
851 rbd_dev->spec->snap_id = CEPH_NOSNAP;
852 rbd_dev->mapping.size = rbd_dev->header.image_size;
853 rbd_dev->mapping.features = rbd_dev->header.features;
854 ret = 0;
855 } else {
856 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
857 if (ret < 0)
858 goto done;
859 rbd_dev->mapping.read_only = true;
860 }
861 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
862
863 done:
864 return ret;
865 }
866
867 static void rbd_header_free(struct rbd_image_header *header)
868 {
869 kfree(header->object_prefix);
870 header->object_prefix = NULL;
871 kfree(header->snap_sizes);
872 header->snap_sizes = NULL;
873 kfree(header->snap_names);
874 header->snap_names = NULL;
875 ceph_put_snap_context(header->snapc);
876 header->snapc = NULL;
877 }
878
879 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
880 {
881 char *name;
882 u64 segment;
883 int ret;
884
885 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
886 if (!name)
887 return NULL;
888 segment = offset >> rbd_dev->header.obj_order;
889 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
890 rbd_dev->header.object_prefix, segment);
891 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
892 pr_err("error formatting segment name for #%llu (%d)\n",
893 segment, ret);
894 kfree(name);
895 name = NULL;
896 }
897
898 return name;
899 }
900
901 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
902 {
903 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
904
905 return offset & (segment_size - 1);
906 }
907
908 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
909 u64 offset, u64 length)
910 {
911 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
912
913 offset &= segment_size - 1;
914
915 rbd_assert(length <= U64_MAX - offset);
916 if (offset + length > segment_size)
917 length = segment_size - offset;
918
919 return length;
920 }
921
922 /*
923 * returns the size of an object in the image
924 */
925 static u64 rbd_obj_bytes(struct rbd_image_header *header)
926 {
927 return 1 << header->obj_order;
928 }
929
930 /*
931 * bio helpers
932 */
933
934 static void bio_chain_put(struct bio *chain)
935 {
936 struct bio *tmp;
937
938 while (chain) {
939 tmp = chain;
940 chain = chain->bi_next;
941 bio_put(tmp);
942 }
943 }
944
945 /*
946 * zeros a bio chain, starting at specific offset
947 */
948 static void zero_bio_chain(struct bio *chain, int start_ofs)
949 {
950 struct bio_vec *bv;
951 unsigned long flags;
952 void *buf;
953 int i;
954 int pos = 0;
955
956 while (chain) {
957 bio_for_each_segment(bv, chain, i) {
958 if (pos + bv->bv_len > start_ofs) {
959 int remainder = max(start_ofs - pos, 0);
960 buf = bvec_kmap_irq(bv, &flags);
961 memset(buf + remainder, 0,
962 bv->bv_len - remainder);
963 bvec_kunmap_irq(buf, &flags);
964 }
965 pos += bv->bv_len;
966 }
967
968 chain = chain->bi_next;
969 }
970 }
971
972 /*
973 * Clone a portion of a bio, starting at the given byte offset
974 * and continuing for the number of bytes indicated.
975 */
976 static struct bio *bio_clone_range(struct bio *bio_src,
977 unsigned int offset,
978 unsigned int len,
979 gfp_t gfpmask)
980 {
981 struct bio_vec *bv;
982 unsigned int resid;
983 unsigned short idx;
984 unsigned int voff;
985 unsigned short end_idx;
986 unsigned short vcnt;
987 struct bio *bio;
988
989 /* Handle the easy case for the caller */
990
991 if (!offset && len == bio_src->bi_size)
992 return bio_clone(bio_src, gfpmask);
993
994 if (WARN_ON_ONCE(!len))
995 return NULL;
996 if (WARN_ON_ONCE(len > bio_src->bi_size))
997 return NULL;
998 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
999 return NULL;
1000
1001 /* Find first affected segment... */
1002
1003 resid = offset;
1004 __bio_for_each_segment(bv, bio_src, idx, 0) {
1005 if (resid < bv->bv_len)
1006 break;
1007 resid -= bv->bv_len;
1008 }
1009 voff = resid;
1010
1011 /* ...and the last affected segment */
1012
1013 resid += len;
1014 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1015 if (resid <= bv->bv_len)
1016 break;
1017 resid -= bv->bv_len;
1018 }
1019 vcnt = end_idx - idx + 1;
1020
1021 /* Build the clone */
1022
1023 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1024 if (!bio)
1025 return NULL; /* ENOMEM */
1026
1027 bio->bi_bdev = bio_src->bi_bdev;
1028 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1029 bio->bi_rw = bio_src->bi_rw;
1030 bio->bi_flags |= 1 << BIO_CLONED;
1031
1032 /*
1033 * Copy over our part of the bio_vec, then update the first
1034 * and last (or only) entries.
1035 */
1036 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1037 vcnt * sizeof (struct bio_vec));
1038 bio->bi_io_vec[0].bv_offset += voff;
1039 if (vcnt > 1) {
1040 bio->bi_io_vec[0].bv_len -= voff;
1041 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1042 } else {
1043 bio->bi_io_vec[0].bv_len = len;
1044 }
1045
1046 bio->bi_vcnt = vcnt;
1047 bio->bi_size = len;
1048 bio->bi_idx = 0;
1049
1050 return bio;
1051 }
1052
1053 /*
1054 * Clone a portion of a bio chain, starting at the given byte offset
1055 * into the first bio in the source chain and continuing for the
1056 * number of bytes indicated. The result is another bio chain of
1057 * exactly the given length, or a null pointer on error.
1058 *
1059 * The bio_src and offset parameters are both in-out. On entry they
1060 * refer to the first source bio and the offset into that bio where
1061 * the start of data to be cloned is located.
1062 *
1063 * On return, bio_src is updated to refer to the bio in the source
1064 * chain that contains first un-cloned byte, and *offset will
1065 * contain the offset of that byte within that bio.
1066 */
1067 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1068 unsigned int *offset,
1069 unsigned int len,
1070 gfp_t gfpmask)
1071 {
1072 struct bio *bi = *bio_src;
1073 unsigned int off = *offset;
1074 struct bio *chain = NULL;
1075 struct bio **end;
1076
1077 /* Build up a chain of clone bios up to the limit */
1078
1079 if (!bi || off >= bi->bi_size || !len)
1080 return NULL; /* Nothing to clone */
1081
1082 end = &chain;
1083 while (len) {
1084 unsigned int bi_size;
1085 struct bio *bio;
1086
1087 if (!bi) {
1088 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1089 goto out_err; /* EINVAL; ran out of bio's */
1090 }
1091 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1092 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1093 if (!bio)
1094 goto out_err; /* ENOMEM */
1095
1096 *end = bio;
1097 end = &bio->bi_next;
1098
1099 off += bi_size;
1100 if (off == bi->bi_size) {
1101 bi = bi->bi_next;
1102 off = 0;
1103 }
1104 len -= bi_size;
1105 }
1106 *bio_src = bi;
1107 *offset = off;
1108
1109 return chain;
1110 out_err:
1111 bio_chain_put(chain);
1112
1113 return NULL;
1114 }
1115
1116 /*
1117 * The default/initial value for all object request flags is 0. For
1118 * each flag, once its value is set to 1 it is never reset to 0
1119 * again.
1120 */
1121 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1122 {
1123 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1124 struct rbd_device *rbd_dev;
1125
1126 rbd_dev = obj_request->img_request->rbd_dev;
1127 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1128 obj_request);
1129 }
1130 }
1131
1132 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1133 {
1134 smp_mb();
1135 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1136 }
1137
1138 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1139 {
1140 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1141 struct rbd_device *rbd_dev = NULL;
1142
1143 if (obj_request_img_data_test(obj_request))
1144 rbd_dev = obj_request->img_request->rbd_dev;
1145 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1146 obj_request);
1147 }
1148 }
1149
1150 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1151 {
1152 smp_mb();
1153 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1154 }
1155
1156 /*
1157 * This sets the KNOWN flag after (possibly) setting the EXISTS
1158 * flag. The latter is set based on the "exists" value provided.
1159 *
1160 * Note that for our purposes once an object exists it never goes
1161 * away again. It's possible that the response from two existence
1162 * checks are separated by the creation of the target object, and
1163 * the first ("doesn't exist") response arrives *after* the second
1164 * ("does exist"). In that case we ignore the second one.
1165 */
1166 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1167 bool exists)
1168 {
1169 if (exists)
1170 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1171 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1172 smp_mb();
1173 }
1174
1175 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1176 {
1177 smp_mb();
1178 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1179 }
1180
1181 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1182 {
1183 smp_mb();
1184 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1185 }
1186
1187 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1188 {
1189 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1190 atomic_read(&obj_request->kref.refcount));
1191 kref_get(&obj_request->kref);
1192 }
1193
1194 static void rbd_obj_request_destroy(struct kref *kref);
1195 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1196 {
1197 rbd_assert(obj_request != NULL);
1198 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1199 atomic_read(&obj_request->kref.refcount));
1200 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1201 }
1202
1203 static void rbd_img_request_get(struct rbd_img_request *img_request)
1204 {
1205 dout("%s: img %p (was %d)\n", __func__, img_request,
1206 atomic_read(&img_request->kref.refcount));
1207 kref_get(&img_request->kref);
1208 }
1209
1210 static void rbd_img_request_destroy(struct kref *kref);
1211 static void rbd_img_request_put(struct rbd_img_request *img_request)
1212 {
1213 rbd_assert(img_request != NULL);
1214 dout("%s: img %p (was %d)\n", __func__, img_request,
1215 atomic_read(&img_request->kref.refcount));
1216 kref_put(&img_request->kref, rbd_img_request_destroy);
1217 }
1218
1219 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1220 struct rbd_obj_request *obj_request)
1221 {
1222 rbd_assert(obj_request->img_request == NULL);
1223
1224 /* Image request now owns object's original reference */
1225 obj_request->img_request = img_request;
1226 obj_request->which = img_request->obj_request_count;
1227 rbd_assert(!obj_request_img_data_test(obj_request));
1228 obj_request_img_data_set(obj_request);
1229 rbd_assert(obj_request->which != BAD_WHICH);
1230 img_request->obj_request_count++;
1231 list_add_tail(&obj_request->links, &img_request->obj_requests);
1232 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1233 obj_request->which);
1234 }
1235
1236 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1237 struct rbd_obj_request *obj_request)
1238 {
1239 rbd_assert(obj_request->which != BAD_WHICH);
1240
1241 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1242 obj_request->which);
1243 list_del(&obj_request->links);
1244 rbd_assert(img_request->obj_request_count > 0);
1245 img_request->obj_request_count--;
1246 rbd_assert(obj_request->which == img_request->obj_request_count);
1247 obj_request->which = BAD_WHICH;
1248 rbd_assert(obj_request_img_data_test(obj_request));
1249 rbd_assert(obj_request->img_request == img_request);
1250 obj_request->img_request = NULL;
1251 obj_request->callback = NULL;
1252 rbd_obj_request_put(obj_request);
1253 }
1254
1255 static bool obj_request_type_valid(enum obj_request_type type)
1256 {
1257 switch (type) {
1258 case OBJ_REQUEST_NODATA:
1259 case OBJ_REQUEST_BIO:
1260 case OBJ_REQUEST_PAGES:
1261 return true;
1262 default:
1263 return false;
1264 }
1265 }
1266
1267 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1268 struct rbd_obj_request *obj_request)
1269 {
1270 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1271
1272 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1273 }
1274
1275 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1276 {
1277
1278 dout("%s: img %p\n", __func__, img_request);
1279
1280 /*
1281 * If no error occurred, compute the aggregate transfer
1282 * count for the image request. We could instead use
1283 * atomic64_cmpxchg() to update it as each object request
1284 * completes; not clear which way is better off hand.
1285 */
1286 if (!img_request->result) {
1287 struct rbd_obj_request *obj_request;
1288 u64 xferred = 0;
1289
1290 for_each_obj_request(img_request, obj_request)
1291 xferred += obj_request->xferred;
1292 img_request->xferred = xferred;
1293 }
1294
1295 if (img_request->callback)
1296 img_request->callback(img_request);
1297 else
1298 rbd_img_request_put(img_request);
1299 }
1300
1301 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1302
1303 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1304 {
1305 dout("%s: obj %p\n", __func__, obj_request);
1306
1307 return wait_for_completion_interruptible(&obj_request->completion);
1308 }
1309
1310 /*
1311 * The default/initial value for all image request flags is 0. Each
1312 * is conditionally set to 1 at image request initialization time
1313 * and currently never change thereafter.
1314 */
1315 static void img_request_write_set(struct rbd_img_request *img_request)
1316 {
1317 set_bit(IMG_REQ_WRITE, &img_request->flags);
1318 smp_mb();
1319 }
1320
1321 static bool img_request_write_test(struct rbd_img_request *img_request)
1322 {
1323 smp_mb();
1324 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1325 }
1326
1327 static void img_request_child_set(struct rbd_img_request *img_request)
1328 {
1329 set_bit(IMG_REQ_CHILD, &img_request->flags);
1330 smp_mb();
1331 }
1332
1333 static bool img_request_child_test(struct rbd_img_request *img_request)
1334 {
1335 smp_mb();
1336 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1337 }
1338
1339 static void img_request_layered_set(struct rbd_img_request *img_request)
1340 {
1341 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1342 smp_mb();
1343 }
1344
1345 static bool img_request_layered_test(struct rbd_img_request *img_request)
1346 {
1347 smp_mb();
1348 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1349 }
1350
1351 static void
1352 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1353 {
1354 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1355 obj_request, obj_request->img_request, obj_request->result,
1356 obj_request->xferred, obj_request->length);
1357 /*
1358 * ENOENT means a hole in the image. We zero-fill the
1359 * entire length of the request. A short read also implies
1360 * zero-fill to the end of the request. Either way we
1361 * update the xferred count to indicate the whole request
1362 * was satisfied.
1363 */
1364 BUG_ON(obj_request->type != OBJ_REQUEST_BIO);
1365 if (obj_request->result == -ENOENT) {
1366 zero_bio_chain(obj_request->bio_list, 0);
1367 obj_request->result = 0;
1368 obj_request->xferred = obj_request->length;
1369 } else if (obj_request->xferred < obj_request->length &&
1370 !obj_request->result) {
1371 zero_bio_chain(obj_request->bio_list, obj_request->xferred);
1372 obj_request->xferred = obj_request->length;
1373 }
1374 obj_request_done_set(obj_request);
1375 }
1376
1377 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1378 {
1379 dout("%s: obj %p cb %p\n", __func__, obj_request,
1380 obj_request->callback);
1381 if (obj_request->callback)
1382 obj_request->callback(obj_request);
1383 else
1384 complete_all(&obj_request->completion);
1385 }
1386
1387 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1388 {
1389 dout("%s: obj %p\n", __func__, obj_request);
1390 obj_request_done_set(obj_request);
1391 }
1392
1393 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1394 {
1395 struct rbd_img_request *img_request = NULL;
1396 bool layered = false;
1397
1398 if (obj_request_img_data_test(obj_request)) {
1399 img_request = obj_request->img_request;
1400 layered = img_request && img_request_layered_test(img_request);
1401 } else {
1402 img_request = NULL;
1403 layered = false;
1404 }
1405
1406 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1407 obj_request, img_request, obj_request->result,
1408 obj_request->xferred, obj_request->length);
1409 if (layered && obj_request->result == -ENOENT)
1410 rbd_img_parent_read(obj_request);
1411 else if (img_request)
1412 rbd_img_obj_request_read_callback(obj_request);
1413 else
1414 obj_request_done_set(obj_request);
1415 }
1416
1417 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1418 {
1419 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1420 obj_request->result, obj_request->length);
1421 /*
1422 * There is no such thing as a successful short write. Set
1423 * it to our originally-requested length.
1424 */
1425 obj_request->xferred = obj_request->length;
1426 obj_request_done_set(obj_request);
1427 }
1428
1429 /*
1430 * For a simple stat call there's nothing to do. We'll do more if
1431 * this is part of a write sequence for a layered image.
1432 */
1433 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1434 {
1435 dout("%s: obj %p\n", __func__, obj_request);
1436 obj_request_done_set(obj_request);
1437 }
1438
1439 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1440 struct ceph_msg *msg)
1441 {
1442 struct rbd_obj_request *obj_request = osd_req->r_priv;
1443 u16 opcode;
1444
1445 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1446 rbd_assert(osd_req == obj_request->osd_req);
1447 if (obj_request_img_data_test(obj_request)) {
1448 rbd_assert(obj_request->img_request);
1449 rbd_assert(obj_request->which != BAD_WHICH);
1450 } else {
1451 rbd_assert(obj_request->which == BAD_WHICH);
1452 }
1453
1454 if (osd_req->r_result < 0)
1455 obj_request->result = osd_req->r_result;
1456 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1457
1458 WARN_ON(osd_req->r_num_ops != 1); /* For now */
1459
1460 /*
1461 * We support a 64-bit length, but ultimately it has to be
1462 * passed to blk_end_request(), which takes an unsigned int.
1463 */
1464 obj_request->xferred = osd_req->r_reply_op_len[0];
1465 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1466 opcode = osd_req->r_ops[0].op;
1467 switch (opcode) {
1468 case CEPH_OSD_OP_READ:
1469 rbd_osd_read_callback(obj_request);
1470 break;
1471 case CEPH_OSD_OP_WRITE:
1472 rbd_osd_write_callback(obj_request);
1473 break;
1474 case CEPH_OSD_OP_STAT:
1475 rbd_osd_stat_callback(obj_request);
1476 break;
1477 case CEPH_OSD_OP_CALL:
1478 case CEPH_OSD_OP_NOTIFY_ACK:
1479 case CEPH_OSD_OP_WATCH:
1480 rbd_osd_trivial_callback(obj_request);
1481 break;
1482 default:
1483 rbd_warn(NULL, "%s: unsupported op %hu\n",
1484 obj_request->object_name, (unsigned short) opcode);
1485 break;
1486 }
1487
1488 if (obj_request_done_test(obj_request))
1489 rbd_obj_request_complete(obj_request);
1490 }
1491
1492 static void rbd_osd_req_format(struct rbd_obj_request *obj_request,
1493 bool write_request)
1494 {
1495 struct rbd_img_request *img_request = obj_request->img_request;
1496 struct ceph_osd_request *osd_req = obj_request->osd_req;
1497 struct ceph_snap_context *snapc = NULL;
1498 u64 snap_id = CEPH_NOSNAP;
1499 struct timespec *mtime = NULL;
1500 struct timespec now;
1501
1502 rbd_assert(osd_req != NULL);
1503
1504 if (write_request) {
1505 now = CURRENT_TIME;
1506 mtime = &now;
1507 if (img_request)
1508 snapc = img_request->snapc;
1509 } else if (img_request) {
1510 snap_id = img_request->snap_id;
1511 }
1512 ceph_osdc_build_request(osd_req, obj_request->offset,
1513 snapc, snap_id, mtime);
1514 }
1515
1516 static struct ceph_osd_request *rbd_osd_req_create(
1517 struct rbd_device *rbd_dev,
1518 bool write_request,
1519 struct rbd_obj_request *obj_request)
1520 {
1521 struct ceph_snap_context *snapc = NULL;
1522 struct ceph_osd_client *osdc;
1523 struct ceph_osd_request *osd_req;
1524
1525 if (obj_request_img_data_test(obj_request)) {
1526 struct rbd_img_request *img_request = obj_request->img_request;
1527
1528 rbd_assert(write_request ==
1529 img_request_write_test(img_request));
1530 if (write_request)
1531 snapc = img_request->snapc;
1532 }
1533
1534 /* Allocate and initialize the request, for the single op */
1535
1536 osdc = &rbd_dev->rbd_client->client->osdc;
1537 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1538 if (!osd_req)
1539 return NULL; /* ENOMEM */
1540
1541 if (write_request)
1542 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1543 else
1544 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1545
1546 osd_req->r_callback = rbd_osd_req_callback;
1547 osd_req->r_priv = obj_request;
1548
1549 osd_req->r_oid_len = strlen(obj_request->object_name);
1550 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1551 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1552
1553 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1554
1555 return osd_req;
1556 }
1557
1558 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1559 {
1560 ceph_osdc_put_request(osd_req);
1561 }
1562
1563 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1564
1565 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1566 u64 offset, u64 length,
1567 enum obj_request_type type)
1568 {
1569 struct rbd_obj_request *obj_request;
1570 size_t size;
1571 char *name;
1572
1573 rbd_assert(obj_request_type_valid(type));
1574
1575 size = strlen(object_name) + 1;
1576 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1577 if (!obj_request)
1578 return NULL;
1579
1580 name = (char *)(obj_request + 1);
1581 obj_request->object_name = memcpy(name, object_name, size);
1582 obj_request->offset = offset;
1583 obj_request->length = length;
1584 obj_request->flags = 0;
1585 obj_request->which = BAD_WHICH;
1586 obj_request->type = type;
1587 INIT_LIST_HEAD(&obj_request->links);
1588 init_completion(&obj_request->completion);
1589 kref_init(&obj_request->kref);
1590
1591 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1592 offset, length, (int)type, obj_request);
1593
1594 return obj_request;
1595 }
1596
1597 static void rbd_obj_request_destroy(struct kref *kref)
1598 {
1599 struct rbd_obj_request *obj_request;
1600
1601 obj_request = container_of(kref, struct rbd_obj_request, kref);
1602
1603 dout("%s: obj %p\n", __func__, obj_request);
1604
1605 rbd_assert(obj_request->img_request == NULL);
1606 rbd_assert(obj_request->which == BAD_WHICH);
1607
1608 if (obj_request->osd_req)
1609 rbd_osd_req_destroy(obj_request->osd_req);
1610
1611 rbd_assert(obj_request_type_valid(obj_request->type));
1612 switch (obj_request->type) {
1613 case OBJ_REQUEST_NODATA:
1614 break; /* Nothing to do */
1615 case OBJ_REQUEST_BIO:
1616 if (obj_request->bio_list)
1617 bio_chain_put(obj_request->bio_list);
1618 break;
1619 case OBJ_REQUEST_PAGES:
1620 if (obj_request->pages)
1621 ceph_release_page_vector(obj_request->pages,
1622 obj_request->page_count);
1623 break;
1624 }
1625
1626 kfree(obj_request);
1627 }
1628
1629 /*
1630 * Caller is responsible for filling in the list of object requests
1631 * that comprises the image request, and the Linux request pointer
1632 * (if there is one).
1633 */
1634 static struct rbd_img_request *rbd_img_request_create(
1635 struct rbd_device *rbd_dev,
1636 u64 offset, u64 length,
1637 bool write_request,
1638 bool child_request)
1639 {
1640 struct rbd_img_request *img_request;
1641 struct ceph_snap_context *snapc = NULL;
1642
1643 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1644 if (!img_request)
1645 return NULL;
1646
1647 if (write_request) {
1648 down_read(&rbd_dev->header_rwsem);
1649 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1650 up_read(&rbd_dev->header_rwsem);
1651 if (WARN_ON(!snapc)) {
1652 kfree(img_request);
1653 return NULL; /* Shouldn't happen */
1654 }
1655
1656 }
1657
1658 img_request->rq = NULL;
1659 img_request->rbd_dev = rbd_dev;
1660 img_request->offset = offset;
1661 img_request->length = length;
1662 img_request->flags = 0;
1663 if (write_request) {
1664 img_request_write_set(img_request);
1665 img_request->snapc = snapc;
1666 } else {
1667 img_request->snap_id = rbd_dev->spec->snap_id;
1668 }
1669 if (child_request)
1670 img_request_child_set(img_request);
1671 if (rbd_dev->parent_spec)
1672 img_request_layered_set(img_request);
1673 spin_lock_init(&img_request->completion_lock);
1674 img_request->next_completion = 0;
1675 img_request->callback = NULL;
1676 img_request->result = 0;
1677 img_request->obj_request_count = 0;
1678 INIT_LIST_HEAD(&img_request->obj_requests);
1679 kref_init(&img_request->kref);
1680
1681 rbd_img_request_get(img_request); /* Avoid a warning */
1682 rbd_img_request_put(img_request); /* TEMPORARY */
1683
1684 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1685 write_request ? "write" : "read", offset, length,
1686 img_request);
1687
1688 return img_request;
1689 }
1690
1691 static void rbd_img_request_destroy(struct kref *kref)
1692 {
1693 struct rbd_img_request *img_request;
1694 struct rbd_obj_request *obj_request;
1695 struct rbd_obj_request *next_obj_request;
1696
1697 img_request = container_of(kref, struct rbd_img_request, kref);
1698
1699 dout("%s: img %p\n", __func__, img_request);
1700
1701 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1702 rbd_img_obj_request_del(img_request, obj_request);
1703 rbd_assert(img_request->obj_request_count == 0);
1704
1705 if (img_request_write_test(img_request))
1706 ceph_put_snap_context(img_request->snapc);
1707
1708 if (img_request_child_test(img_request))
1709 rbd_obj_request_put(img_request->obj_request);
1710
1711 kfree(img_request);
1712 }
1713
1714 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1715 {
1716 struct rbd_img_request *img_request;
1717 unsigned int xferred;
1718 int result;
1719 bool more;
1720
1721 rbd_assert(obj_request_img_data_test(obj_request));
1722 img_request = obj_request->img_request;
1723
1724 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1725 xferred = (unsigned int)obj_request->xferred;
1726 result = obj_request->result;
1727 if (result) {
1728 struct rbd_device *rbd_dev = img_request->rbd_dev;
1729
1730 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1731 img_request_write_test(img_request) ? "write" : "read",
1732 obj_request->length, obj_request->img_offset,
1733 obj_request->offset);
1734 rbd_warn(rbd_dev, " result %d xferred %x\n",
1735 result, xferred);
1736 if (!img_request->result)
1737 img_request->result = result;
1738 }
1739
1740 if (img_request_child_test(img_request)) {
1741 rbd_assert(img_request->obj_request != NULL);
1742 more = obj_request->which < img_request->obj_request_count - 1;
1743 } else {
1744 rbd_assert(img_request->rq != NULL);
1745 more = blk_end_request(img_request->rq, result, xferred);
1746 }
1747
1748 return more;
1749 }
1750
1751 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1752 {
1753 struct rbd_img_request *img_request;
1754 u32 which = obj_request->which;
1755 bool more = true;
1756
1757 rbd_assert(obj_request_img_data_test(obj_request));
1758 img_request = obj_request->img_request;
1759
1760 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1761 rbd_assert(img_request != NULL);
1762 rbd_assert(img_request->obj_request_count > 0);
1763 rbd_assert(which != BAD_WHICH);
1764 rbd_assert(which < img_request->obj_request_count);
1765 rbd_assert(which >= img_request->next_completion);
1766
1767 spin_lock_irq(&img_request->completion_lock);
1768 if (which != img_request->next_completion)
1769 goto out;
1770
1771 for_each_obj_request_from(img_request, obj_request) {
1772 rbd_assert(more);
1773 rbd_assert(which < img_request->obj_request_count);
1774
1775 if (!obj_request_done_test(obj_request))
1776 break;
1777 more = rbd_img_obj_end_request(obj_request);
1778 which++;
1779 }
1780
1781 rbd_assert(more ^ (which == img_request->obj_request_count));
1782 img_request->next_completion = which;
1783 out:
1784 spin_unlock_irq(&img_request->completion_lock);
1785
1786 if (!more)
1787 rbd_img_request_complete(img_request);
1788 }
1789
1790 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1791 struct bio *bio_list)
1792 {
1793 struct rbd_device *rbd_dev = img_request->rbd_dev;
1794 struct rbd_obj_request *obj_request = NULL;
1795 struct rbd_obj_request *next_obj_request;
1796 bool write_request = img_request_write_test(img_request);
1797 unsigned int bio_offset;
1798 u64 img_offset;
1799 u64 resid;
1800 u16 opcode;
1801
1802 dout("%s: img %p bio %p\n", __func__, img_request, bio_list);
1803
1804 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1805 bio_offset = 0;
1806 img_offset = img_request->offset;
1807 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
1808 resid = img_request->length;
1809 rbd_assert(resid > 0);
1810 while (resid) {
1811 struct ceph_osd_request *osd_req;
1812 const char *object_name;
1813 unsigned int clone_size;
1814 u64 offset;
1815 u64 length;
1816
1817 object_name = rbd_segment_name(rbd_dev, img_offset);
1818 if (!object_name)
1819 goto out_unwind;
1820 offset = rbd_segment_offset(rbd_dev, img_offset);
1821 length = rbd_segment_length(rbd_dev, img_offset, resid);
1822 obj_request = rbd_obj_request_create(object_name,
1823 offset, length,
1824 OBJ_REQUEST_BIO);
1825 kfree(object_name); /* object request has its own copy */
1826 if (!obj_request)
1827 goto out_unwind;
1828
1829 rbd_assert(length <= (u64) UINT_MAX);
1830 clone_size = (unsigned int) length;
1831 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1832 &bio_offset, clone_size,
1833 GFP_ATOMIC);
1834 if (!obj_request->bio_list)
1835 goto out_partial;
1836
1837 osd_req = rbd_osd_req_create(rbd_dev, write_request,
1838 obj_request);
1839 if (!osd_req)
1840 goto out_partial;
1841 obj_request->osd_req = osd_req;
1842 obj_request->callback = rbd_img_obj_callback;
1843
1844 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
1845 0, 0);
1846 osd_req_op_extent_osd_data_bio(osd_req, 0,
1847 obj_request->bio_list, obj_request->length);
1848 rbd_osd_req_format(obj_request, write_request);
1849
1850 obj_request->img_offset = img_offset;
1851 rbd_img_obj_request_add(img_request, obj_request);
1852
1853 img_offset += length;
1854 resid -= length;
1855 }
1856
1857 return 0;
1858
1859 out_partial:
1860 rbd_obj_request_put(obj_request);
1861 out_unwind:
1862 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1863 rbd_obj_request_put(obj_request);
1864
1865 return -ENOMEM;
1866 }
1867
1868 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
1869 {
1870 struct rbd_device *rbd_dev;
1871 struct ceph_osd_client *osdc;
1872 struct rbd_obj_request *orig_request;
1873 int result;
1874
1875 rbd_assert(!obj_request_img_data_test(obj_request));
1876
1877 /*
1878 * All we need from the object request is the original
1879 * request and the result of the STAT op. Grab those, then
1880 * we're done with the request.
1881 */
1882 orig_request = obj_request->obj_request;
1883 obj_request->obj_request = NULL;
1884 rbd_assert(orig_request);
1885 rbd_assert(orig_request->img_request);
1886
1887 result = obj_request->result;
1888 obj_request->result = 0;
1889
1890 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
1891 obj_request, orig_request, result,
1892 obj_request->xferred, obj_request->length);
1893 rbd_obj_request_put(obj_request);
1894
1895 rbd_assert(orig_request);
1896 rbd_assert(orig_request->img_request);
1897 rbd_dev = orig_request->img_request->rbd_dev;
1898 osdc = &rbd_dev->rbd_client->client->osdc;
1899
1900 /*
1901 * Our only purpose here is to determine whether the object
1902 * exists, and we don't want to treat the non-existence as
1903 * an error. If something else comes back, transfer the
1904 * error to the original request and complete it now.
1905 */
1906 if (!result) {
1907 obj_request_existence_set(orig_request, true);
1908 } else if (result == -ENOENT) {
1909 obj_request_existence_set(orig_request, false);
1910 } else if (result) {
1911 orig_request->result = result;
1912 goto out_err;
1913 }
1914
1915 /*
1916 * Resubmit the original request now that we have recorded
1917 * whether the target object exists.
1918 */
1919 orig_request->result = rbd_obj_request_submit(osdc, orig_request);
1920 out_err:
1921 if (orig_request->result)
1922 rbd_obj_request_complete(orig_request);
1923 rbd_obj_request_put(orig_request);
1924 }
1925
1926 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
1927 {
1928 struct rbd_obj_request *stat_request;
1929 struct rbd_device *rbd_dev;
1930 struct ceph_osd_client *osdc;
1931 struct page **pages = NULL;
1932 u32 page_count;
1933 size_t size;
1934 int ret;
1935
1936 /*
1937 * The response data for a STAT call consists of:
1938 * le64 length;
1939 * struct {
1940 * le32 tv_sec;
1941 * le32 tv_nsec;
1942 * } mtime;
1943 */
1944 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
1945 page_count = (u32)calc_pages_for(0, size);
1946 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1947 if (IS_ERR(pages))
1948 return PTR_ERR(pages);
1949
1950 ret = -ENOMEM;
1951 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
1952 OBJ_REQUEST_PAGES);
1953 if (!stat_request)
1954 goto out;
1955
1956 rbd_obj_request_get(obj_request);
1957 stat_request->obj_request = obj_request;
1958 stat_request->pages = pages;
1959 stat_request->page_count = page_count;
1960
1961 rbd_assert(obj_request->img_request);
1962 rbd_dev = obj_request->img_request->rbd_dev;
1963 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1964 stat_request);
1965 if (!stat_request->osd_req)
1966 goto out;
1967 stat_request->callback = rbd_img_obj_exists_callback;
1968
1969 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
1970 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
1971 false, false);
1972 rbd_osd_req_format(stat_request, false);
1973
1974 osdc = &rbd_dev->rbd_client->client->osdc;
1975 ret = rbd_obj_request_submit(osdc, stat_request);
1976 out:
1977 if (ret)
1978 rbd_obj_request_put(obj_request);
1979
1980 return ret;
1981 }
1982
1983 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1984 {
1985 struct rbd_device *rbd_dev = img_request->rbd_dev;
1986 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1987 struct rbd_obj_request *obj_request;
1988 struct rbd_obj_request *next_obj_request;
1989 bool write_request = img_request_write_test(img_request);
1990 bool layered = img_request_layered_test(img_request);
1991
1992 dout("%s: img %p\n", __func__, img_request);
1993 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
1994 bool known;
1995 bool object_exists;
1996 int ret;
1997
1998 /*
1999 * We need to know whether the target object exists
2000 * for a layered write. Issue an existence check
2001 * first if we need to.
2002 */
2003 known = obj_request_known_test(obj_request);
2004 object_exists = known && obj_request_exists_test(obj_request);
2005 if (!write_request || !layered || object_exists)
2006 ret = rbd_obj_request_submit(osdc, obj_request);
2007 else
2008 ret = rbd_img_obj_exists_submit(obj_request);
2009 if (ret)
2010 return ret;
2011 }
2012
2013 return 0;
2014 }
2015
2016 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2017 {
2018 struct rbd_obj_request *obj_request;
2019
2020 rbd_assert(img_request_child_test(img_request));
2021
2022 obj_request = img_request->obj_request;
2023 rbd_assert(obj_request != NULL);
2024 obj_request->result = img_request->result;
2025 obj_request->xferred = img_request->xferred;
2026
2027 rbd_img_obj_request_read_callback(obj_request);
2028 rbd_obj_request_complete(obj_request);
2029 }
2030
2031 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2032 {
2033 struct rbd_device *rbd_dev;
2034 struct rbd_img_request *img_request;
2035 int result;
2036
2037 rbd_assert(obj_request_img_data_test(obj_request));
2038 rbd_assert(obj_request->img_request != NULL);
2039 rbd_assert(obj_request->result == (s32) -ENOENT);
2040 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2041
2042 rbd_dev = obj_request->img_request->rbd_dev;
2043 rbd_assert(rbd_dev->parent != NULL);
2044 /* rbd_read_finish(obj_request, obj_request->length); */
2045 img_request = rbd_img_request_create(rbd_dev->parent,
2046 obj_request->img_offset,
2047 obj_request->length,
2048 false, true);
2049 result = -ENOMEM;
2050 if (!img_request)
2051 goto out_err;
2052
2053 rbd_obj_request_get(obj_request);
2054 img_request->obj_request = obj_request;
2055
2056 result = rbd_img_request_fill_bio(img_request, obj_request->bio_list);
2057 if (result)
2058 goto out_err;
2059
2060 img_request->callback = rbd_img_parent_read_callback;
2061 result = rbd_img_request_submit(img_request);
2062 if (result)
2063 goto out_err;
2064
2065 return;
2066 out_err:
2067 if (img_request)
2068 rbd_img_request_put(img_request);
2069 obj_request->result = result;
2070 obj_request->xferred = 0;
2071 obj_request_done_set(obj_request);
2072 }
2073
2074 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
2075 u64 ver, u64 notify_id)
2076 {
2077 struct rbd_obj_request *obj_request;
2078 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2079 int ret;
2080
2081 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2082 OBJ_REQUEST_NODATA);
2083 if (!obj_request)
2084 return -ENOMEM;
2085
2086 ret = -ENOMEM;
2087 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2088 if (!obj_request->osd_req)
2089 goto out;
2090 obj_request->callback = rbd_obj_request_put;
2091
2092 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2093 notify_id, ver, 0);
2094 rbd_osd_req_format(obj_request, false);
2095
2096 ret = rbd_obj_request_submit(osdc, obj_request);
2097 out:
2098 if (ret)
2099 rbd_obj_request_put(obj_request);
2100
2101 return ret;
2102 }
2103
2104 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2105 {
2106 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2107 u64 hver;
2108 int rc;
2109
2110 if (!rbd_dev)
2111 return;
2112
2113 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2114 rbd_dev->header_name, (unsigned long long) notify_id,
2115 (unsigned int) opcode);
2116 rc = rbd_dev_refresh(rbd_dev, &hver);
2117 if (rc)
2118 rbd_warn(rbd_dev, "got notification but failed to "
2119 " update snaps: %d\n", rc);
2120
2121 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
2122 }
2123
2124 /*
2125 * Request sync osd watch/unwatch. The value of "start" determines
2126 * whether a watch request is being initiated or torn down.
2127 */
2128 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2129 {
2130 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2131 struct rbd_obj_request *obj_request;
2132 int ret;
2133
2134 rbd_assert(start ^ !!rbd_dev->watch_event);
2135 rbd_assert(start ^ !!rbd_dev->watch_request);
2136
2137 if (start) {
2138 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2139 &rbd_dev->watch_event);
2140 if (ret < 0)
2141 return ret;
2142 rbd_assert(rbd_dev->watch_event != NULL);
2143 }
2144
2145 ret = -ENOMEM;
2146 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2147 OBJ_REQUEST_NODATA);
2148 if (!obj_request)
2149 goto out_cancel;
2150
2151 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2152 if (!obj_request->osd_req)
2153 goto out_cancel;
2154
2155 if (start)
2156 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2157 else
2158 ceph_osdc_unregister_linger_request(osdc,
2159 rbd_dev->watch_request->osd_req);
2160
2161 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2162 rbd_dev->watch_event->cookie,
2163 rbd_dev->header.obj_version, start);
2164 rbd_osd_req_format(obj_request, true);
2165
2166 ret = rbd_obj_request_submit(osdc, obj_request);
2167 if (ret)
2168 goto out_cancel;
2169 ret = rbd_obj_request_wait(obj_request);
2170 if (ret)
2171 goto out_cancel;
2172 ret = obj_request->result;
2173 if (ret)
2174 goto out_cancel;
2175
2176 /*
2177 * A watch request is set to linger, so the underlying osd
2178 * request won't go away until we unregister it. We retain
2179 * a pointer to the object request during that time (in
2180 * rbd_dev->watch_request), so we'll keep a reference to
2181 * it. We'll drop that reference (below) after we've
2182 * unregistered it.
2183 */
2184 if (start) {
2185 rbd_dev->watch_request = obj_request;
2186
2187 return 0;
2188 }
2189
2190 /* We have successfully torn down the watch request */
2191
2192 rbd_obj_request_put(rbd_dev->watch_request);
2193 rbd_dev->watch_request = NULL;
2194 out_cancel:
2195 /* Cancel the event if we're tearing down, or on error */
2196 ceph_osdc_cancel_event(rbd_dev->watch_event);
2197 rbd_dev->watch_event = NULL;
2198 if (obj_request)
2199 rbd_obj_request_put(obj_request);
2200
2201 return ret;
2202 }
2203
2204 /*
2205 * Synchronous osd object method call
2206 */
2207 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2208 const char *object_name,
2209 const char *class_name,
2210 const char *method_name,
2211 const char *outbound,
2212 size_t outbound_size,
2213 char *inbound,
2214 size_t inbound_size,
2215 u64 *version)
2216 {
2217 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2218 struct rbd_obj_request *obj_request;
2219 struct page **pages;
2220 u32 page_count;
2221 int ret;
2222
2223 /*
2224 * Method calls are ultimately read operations. The result
2225 * should placed into the inbound buffer provided. They
2226 * also supply outbound data--parameters for the object
2227 * method. Currently if this is present it will be a
2228 * snapshot id.
2229 */
2230 page_count = (u32) calc_pages_for(0, inbound_size);
2231 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2232 if (IS_ERR(pages))
2233 return PTR_ERR(pages);
2234
2235 ret = -ENOMEM;
2236 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2237 OBJ_REQUEST_PAGES);
2238 if (!obj_request)
2239 goto out;
2240
2241 obj_request->pages = pages;
2242 obj_request->page_count = page_count;
2243
2244 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2245 if (!obj_request->osd_req)
2246 goto out;
2247
2248 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2249 class_name, method_name);
2250 if (outbound_size) {
2251 struct ceph_pagelist *pagelist;
2252
2253 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2254 if (!pagelist)
2255 goto out;
2256
2257 ceph_pagelist_init(pagelist);
2258 ceph_pagelist_append(pagelist, outbound, outbound_size);
2259 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2260 pagelist);
2261 }
2262 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2263 obj_request->pages, inbound_size,
2264 0, false, false);
2265 rbd_osd_req_format(obj_request, false);
2266
2267 ret = rbd_obj_request_submit(osdc, obj_request);
2268 if (ret)
2269 goto out;
2270 ret = rbd_obj_request_wait(obj_request);
2271 if (ret)
2272 goto out;
2273
2274 ret = obj_request->result;
2275 if (ret < 0)
2276 goto out;
2277 ret = 0;
2278 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2279 if (version)
2280 *version = obj_request->version;
2281 out:
2282 if (obj_request)
2283 rbd_obj_request_put(obj_request);
2284 else
2285 ceph_release_page_vector(pages, page_count);
2286
2287 return ret;
2288 }
2289
2290 static void rbd_request_fn(struct request_queue *q)
2291 __releases(q->queue_lock) __acquires(q->queue_lock)
2292 {
2293 struct rbd_device *rbd_dev = q->queuedata;
2294 bool read_only = rbd_dev->mapping.read_only;
2295 struct request *rq;
2296 int result;
2297
2298 while ((rq = blk_fetch_request(q))) {
2299 bool write_request = rq_data_dir(rq) == WRITE;
2300 struct rbd_img_request *img_request;
2301 u64 offset;
2302 u64 length;
2303
2304 /* Ignore any non-FS requests that filter through. */
2305
2306 if (rq->cmd_type != REQ_TYPE_FS) {
2307 dout("%s: non-fs request type %d\n", __func__,
2308 (int) rq->cmd_type);
2309 __blk_end_request_all(rq, 0);
2310 continue;
2311 }
2312
2313 /* Ignore/skip any zero-length requests */
2314
2315 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2316 length = (u64) blk_rq_bytes(rq);
2317
2318 if (!length) {
2319 dout("%s: zero-length request\n", __func__);
2320 __blk_end_request_all(rq, 0);
2321 continue;
2322 }
2323
2324 spin_unlock_irq(q->queue_lock);
2325
2326 /* Disallow writes to a read-only device */
2327
2328 if (write_request) {
2329 result = -EROFS;
2330 if (read_only)
2331 goto end_request;
2332 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2333 }
2334
2335 /*
2336 * Quit early if the mapped snapshot no longer
2337 * exists. It's still possible the snapshot will
2338 * have disappeared by the time our request arrives
2339 * at the osd, but there's no sense in sending it if
2340 * we already know.
2341 */
2342 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2343 dout("request for non-existent snapshot");
2344 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2345 result = -ENXIO;
2346 goto end_request;
2347 }
2348
2349 result = -EINVAL;
2350 if (WARN_ON(offset && length > U64_MAX - offset + 1))
2351 goto end_request; /* Shouldn't happen */
2352
2353 result = -ENOMEM;
2354 img_request = rbd_img_request_create(rbd_dev, offset, length,
2355 write_request, false);
2356 if (!img_request)
2357 goto end_request;
2358
2359 img_request->rq = rq;
2360
2361 result = rbd_img_request_fill_bio(img_request, rq->bio);
2362 if (!result)
2363 result = rbd_img_request_submit(img_request);
2364 if (result)
2365 rbd_img_request_put(img_request);
2366 end_request:
2367 spin_lock_irq(q->queue_lock);
2368 if (result < 0) {
2369 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2370 write_request ? "write" : "read",
2371 length, offset, result);
2372
2373 __blk_end_request_all(rq, result);
2374 }
2375 }
2376 }
2377
2378 /*
2379 * a queue callback. Makes sure that we don't create a bio that spans across
2380 * multiple osd objects. One exception would be with a single page bios,
2381 * which we handle later at bio_chain_clone_range()
2382 */
2383 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2384 struct bio_vec *bvec)
2385 {
2386 struct rbd_device *rbd_dev = q->queuedata;
2387 sector_t sector_offset;
2388 sector_t sectors_per_obj;
2389 sector_t obj_sector_offset;
2390 int ret;
2391
2392 /*
2393 * Find how far into its rbd object the partition-relative
2394 * bio start sector is to offset relative to the enclosing
2395 * device.
2396 */
2397 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2398 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2399 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2400
2401 /*
2402 * Compute the number of bytes from that offset to the end
2403 * of the object. Account for what's already used by the bio.
2404 */
2405 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2406 if (ret > bmd->bi_size)
2407 ret -= bmd->bi_size;
2408 else
2409 ret = 0;
2410
2411 /*
2412 * Don't send back more than was asked for. And if the bio
2413 * was empty, let the whole thing through because: "Note
2414 * that a block device *must* allow a single page to be
2415 * added to an empty bio."
2416 */
2417 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2418 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2419 ret = (int) bvec->bv_len;
2420
2421 return ret;
2422 }
2423
2424 static void rbd_free_disk(struct rbd_device *rbd_dev)
2425 {
2426 struct gendisk *disk = rbd_dev->disk;
2427
2428 if (!disk)
2429 return;
2430
2431 if (disk->flags & GENHD_FL_UP)
2432 del_gendisk(disk);
2433 if (disk->queue)
2434 blk_cleanup_queue(disk->queue);
2435 put_disk(disk);
2436 }
2437
2438 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2439 const char *object_name,
2440 u64 offset, u64 length,
2441 char *buf, u64 *version)
2442
2443 {
2444 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2445 struct rbd_obj_request *obj_request;
2446 struct page **pages = NULL;
2447 u32 page_count;
2448 size_t size;
2449 int ret;
2450
2451 page_count = (u32) calc_pages_for(offset, length);
2452 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2453 if (IS_ERR(pages))
2454 ret = PTR_ERR(pages);
2455
2456 ret = -ENOMEM;
2457 obj_request = rbd_obj_request_create(object_name, offset, length,
2458 OBJ_REQUEST_PAGES);
2459 if (!obj_request)
2460 goto out;
2461
2462 obj_request->pages = pages;
2463 obj_request->page_count = page_count;
2464
2465 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2466 if (!obj_request->osd_req)
2467 goto out;
2468
2469 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2470 offset, length, 0, 0);
2471 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2472 obj_request->pages,
2473 obj_request->length,
2474 obj_request->offset & ~PAGE_MASK,
2475 false, false);
2476 rbd_osd_req_format(obj_request, false);
2477
2478 ret = rbd_obj_request_submit(osdc, obj_request);
2479 if (ret)
2480 goto out;
2481 ret = rbd_obj_request_wait(obj_request);
2482 if (ret)
2483 goto out;
2484
2485 ret = obj_request->result;
2486 if (ret < 0)
2487 goto out;
2488
2489 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2490 size = (size_t) obj_request->xferred;
2491 ceph_copy_from_page_vector(pages, buf, 0, size);
2492 rbd_assert(size <= (size_t) INT_MAX);
2493 ret = (int) size;
2494 if (version)
2495 *version = obj_request->version;
2496 out:
2497 if (obj_request)
2498 rbd_obj_request_put(obj_request);
2499 else
2500 ceph_release_page_vector(pages, page_count);
2501
2502 return ret;
2503 }
2504
2505 /*
2506 * Read the complete header for the given rbd device.
2507 *
2508 * Returns a pointer to a dynamically-allocated buffer containing
2509 * the complete and validated header. Caller can pass the address
2510 * of a variable that will be filled in with the version of the
2511 * header object at the time it was read.
2512 *
2513 * Returns a pointer-coded errno if a failure occurs.
2514 */
2515 static struct rbd_image_header_ondisk *
2516 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2517 {
2518 struct rbd_image_header_ondisk *ondisk = NULL;
2519 u32 snap_count = 0;
2520 u64 names_size = 0;
2521 u32 want_count;
2522 int ret;
2523
2524 /*
2525 * The complete header will include an array of its 64-bit
2526 * snapshot ids, followed by the names of those snapshots as
2527 * a contiguous block of NUL-terminated strings. Note that
2528 * the number of snapshots could change by the time we read
2529 * it in, in which case we re-read it.
2530 */
2531 do {
2532 size_t size;
2533
2534 kfree(ondisk);
2535
2536 size = sizeof (*ondisk);
2537 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2538 size += names_size;
2539 ondisk = kmalloc(size, GFP_KERNEL);
2540 if (!ondisk)
2541 return ERR_PTR(-ENOMEM);
2542
2543 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2544 0, size,
2545 (char *) ondisk, version);
2546 if (ret < 0)
2547 goto out_err;
2548 if (WARN_ON((size_t) ret < size)) {
2549 ret = -ENXIO;
2550 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2551 size, ret);
2552 goto out_err;
2553 }
2554 if (!rbd_dev_ondisk_valid(ondisk)) {
2555 ret = -ENXIO;
2556 rbd_warn(rbd_dev, "invalid header");
2557 goto out_err;
2558 }
2559
2560 names_size = le64_to_cpu(ondisk->snap_names_len);
2561 want_count = snap_count;
2562 snap_count = le32_to_cpu(ondisk->snap_count);
2563 } while (snap_count != want_count);
2564
2565 return ondisk;
2566
2567 out_err:
2568 kfree(ondisk);
2569
2570 return ERR_PTR(ret);
2571 }
2572
2573 /*
2574 * reload the ondisk the header
2575 */
2576 static int rbd_read_header(struct rbd_device *rbd_dev,
2577 struct rbd_image_header *header)
2578 {
2579 struct rbd_image_header_ondisk *ondisk;
2580 u64 ver = 0;
2581 int ret;
2582
2583 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2584 if (IS_ERR(ondisk))
2585 return PTR_ERR(ondisk);
2586 ret = rbd_header_from_disk(header, ondisk);
2587 if (ret >= 0)
2588 header->obj_version = ver;
2589 kfree(ondisk);
2590
2591 return ret;
2592 }
2593
2594 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2595 {
2596 struct rbd_snap *snap;
2597 struct rbd_snap *next;
2598
2599 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2600 rbd_remove_snap_dev(snap);
2601 }
2602
2603 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2604 {
2605 sector_t size;
2606
2607 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2608 return;
2609
2610 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2611 dout("setting size to %llu sectors", (unsigned long long) size);
2612 rbd_dev->mapping.size = (u64) size;
2613 set_capacity(rbd_dev->disk, size);
2614 }
2615
2616 /*
2617 * only read the first part of the ondisk header, without the snaps info
2618 */
2619 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2620 {
2621 int ret;
2622 struct rbd_image_header h;
2623
2624 ret = rbd_read_header(rbd_dev, &h);
2625 if (ret < 0)
2626 return ret;
2627
2628 down_write(&rbd_dev->header_rwsem);
2629
2630 /* Update image size, and check for resize of mapped image */
2631 rbd_dev->header.image_size = h.image_size;
2632 rbd_update_mapping_size(rbd_dev);
2633
2634 /* rbd_dev->header.object_prefix shouldn't change */
2635 kfree(rbd_dev->header.snap_sizes);
2636 kfree(rbd_dev->header.snap_names);
2637 /* osd requests may still refer to snapc */
2638 ceph_put_snap_context(rbd_dev->header.snapc);
2639
2640 if (hver)
2641 *hver = h.obj_version;
2642 rbd_dev->header.obj_version = h.obj_version;
2643 rbd_dev->header.image_size = h.image_size;
2644 rbd_dev->header.snapc = h.snapc;
2645 rbd_dev->header.snap_names = h.snap_names;
2646 rbd_dev->header.snap_sizes = h.snap_sizes;
2647 /* Free the extra copy of the object prefix */
2648 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2649 kfree(h.object_prefix);
2650
2651 ret = rbd_dev_snaps_update(rbd_dev);
2652 if (!ret)
2653 ret = rbd_dev_snaps_register(rbd_dev);
2654
2655 up_write(&rbd_dev->header_rwsem);
2656
2657 return ret;
2658 }
2659
2660 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2661 {
2662 int ret;
2663
2664 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2665 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2666 if (rbd_dev->image_format == 1)
2667 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2668 else
2669 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2670 mutex_unlock(&ctl_mutex);
2671
2672 return ret;
2673 }
2674
2675 static int rbd_init_disk(struct rbd_device *rbd_dev)
2676 {
2677 struct gendisk *disk;
2678 struct request_queue *q;
2679 u64 segment_size;
2680
2681 /* create gendisk info */
2682 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2683 if (!disk)
2684 return -ENOMEM;
2685
2686 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2687 rbd_dev->dev_id);
2688 disk->major = rbd_dev->major;
2689 disk->first_minor = 0;
2690 disk->fops = &rbd_bd_ops;
2691 disk->private_data = rbd_dev;
2692
2693 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2694 if (!q)
2695 goto out_disk;
2696
2697 /* We use the default size, but let's be explicit about it. */
2698 blk_queue_physical_block_size(q, SECTOR_SIZE);
2699
2700 /* set io sizes to object size */
2701 segment_size = rbd_obj_bytes(&rbd_dev->header);
2702 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2703 blk_queue_max_segment_size(q, segment_size);
2704 blk_queue_io_min(q, segment_size);
2705 blk_queue_io_opt(q, segment_size);
2706
2707 blk_queue_merge_bvec(q, rbd_merge_bvec);
2708 disk->queue = q;
2709
2710 q->queuedata = rbd_dev;
2711
2712 rbd_dev->disk = disk;
2713
2714 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2715
2716 return 0;
2717 out_disk:
2718 put_disk(disk);
2719
2720 return -ENOMEM;
2721 }
2722
2723 /*
2724 sysfs
2725 */
2726
2727 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2728 {
2729 return container_of(dev, struct rbd_device, dev);
2730 }
2731
2732 static ssize_t rbd_size_show(struct device *dev,
2733 struct device_attribute *attr, char *buf)
2734 {
2735 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2736 sector_t size;
2737
2738 down_read(&rbd_dev->header_rwsem);
2739 size = get_capacity(rbd_dev->disk);
2740 up_read(&rbd_dev->header_rwsem);
2741
2742 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2743 }
2744
2745 /*
2746 * Note this shows the features for whatever's mapped, which is not
2747 * necessarily the base image.
2748 */
2749 static ssize_t rbd_features_show(struct device *dev,
2750 struct device_attribute *attr, char *buf)
2751 {
2752 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2753
2754 return sprintf(buf, "0x%016llx\n",
2755 (unsigned long long) rbd_dev->mapping.features);
2756 }
2757
2758 static ssize_t rbd_major_show(struct device *dev,
2759 struct device_attribute *attr, char *buf)
2760 {
2761 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2762
2763 return sprintf(buf, "%d\n", rbd_dev->major);
2764 }
2765
2766 static ssize_t rbd_client_id_show(struct device *dev,
2767 struct device_attribute *attr, char *buf)
2768 {
2769 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2770
2771 return sprintf(buf, "client%lld\n",
2772 ceph_client_id(rbd_dev->rbd_client->client));
2773 }
2774
2775 static ssize_t rbd_pool_show(struct device *dev,
2776 struct device_attribute *attr, char *buf)
2777 {
2778 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2779
2780 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2781 }
2782
2783 static ssize_t rbd_pool_id_show(struct device *dev,
2784 struct device_attribute *attr, char *buf)
2785 {
2786 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2787
2788 return sprintf(buf, "%llu\n",
2789 (unsigned long long) rbd_dev->spec->pool_id);
2790 }
2791
2792 static ssize_t rbd_name_show(struct device *dev,
2793 struct device_attribute *attr, char *buf)
2794 {
2795 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2796
2797 if (rbd_dev->spec->image_name)
2798 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2799
2800 return sprintf(buf, "(unknown)\n");
2801 }
2802
2803 static ssize_t rbd_image_id_show(struct device *dev,
2804 struct device_attribute *attr, char *buf)
2805 {
2806 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2807
2808 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2809 }
2810
2811 /*
2812 * Shows the name of the currently-mapped snapshot (or
2813 * RBD_SNAP_HEAD_NAME for the base image).
2814 */
2815 static ssize_t rbd_snap_show(struct device *dev,
2816 struct device_attribute *attr,
2817 char *buf)
2818 {
2819 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2820
2821 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2822 }
2823
2824 /*
2825 * For an rbd v2 image, shows the pool id, image id, and snapshot id
2826 * for the parent image. If there is no parent, simply shows
2827 * "(no parent image)".
2828 */
2829 static ssize_t rbd_parent_show(struct device *dev,
2830 struct device_attribute *attr,
2831 char *buf)
2832 {
2833 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2834 struct rbd_spec *spec = rbd_dev->parent_spec;
2835 int count;
2836 char *bufp = buf;
2837
2838 if (!spec)
2839 return sprintf(buf, "(no parent image)\n");
2840
2841 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2842 (unsigned long long) spec->pool_id, spec->pool_name);
2843 if (count < 0)
2844 return count;
2845 bufp += count;
2846
2847 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2848 spec->image_name ? spec->image_name : "(unknown)");
2849 if (count < 0)
2850 return count;
2851 bufp += count;
2852
2853 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2854 (unsigned long long) spec->snap_id, spec->snap_name);
2855 if (count < 0)
2856 return count;
2857 bufp += count;
2858
2859 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2860 if (count < 0)
2861 return count;
2862 bufp += count;
2863
2864 return (ssize_t) (bufp - buf);
2865 }
2866
2867 static ssize_t rbd_image_refresh(struct device *dev,
2868 struct device_attribute *attr,
2869 const char *buf,
2870 size_t size)
2871 {
2872 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2873 int ret;
2874
2875 ret = rbd_dev_refresh(rbd_dev, NULL);
2876
2877 return ret < 0 ? ret : size;
2878 }
2879
2880 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2881 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2882 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2883 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2884 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2885 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2886 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2887 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2888 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2889 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2890 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2891
2892 static struct attribute *rbd_attrs[] = {
2893 &dev_attr_size.attr,
2894 &dev_attr_features.attr,
2895 &dev_attr_major.attr,
2896 &dev_attr_client_id.attr,
2897 &dev_attr_pool.attr,
2898 &dev_attr_pool_id.attr,
2899 &dev_attr_name.attr,
2900 &dev_attr_image_id.attr,
2901 &dev_attr_current_snap.attr,
2902 &dev_attr_parent.attr,
2903 &dev_attr_refresh.attr,
2904 NULL
2905 };
2906
2907 static struct attribute_group rbd_attr_group = {
2908 .attrs = rbd_attrs,
2909 };
2910
2911 static const struct attribute_group *rbd_attr_groups[] = {
2912 &rbd_attr_group,
2913 NULL
2914 };
2915
2916 static void rbd_sysfs_dev_release(struct device *dev)
2917 {
2918 }
2919
2920 static struct device_type rbd_device_type = {
2921 .name = "rbd",
2922 .groups = rbd_attr_groups,
2923 .release = rbd_sysfs_dev_release,
2924 };
2925
2926
2927 /*
2928 sysfs - snapshots
2929 */
2930
2931 static ssize_t rbd_snap_size_show(struct device *dev,
2932 struct device_attribute *attr,
2933 char *buf)
2934 {
2935 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2936
2937 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2938 }
2939
2940 static ssize_t rbd_snap_id_show(struct device *dev,
2941 struct device_attribute *attr,
2942 char *buf)
2943 {
2944 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2945
2946 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2947 }
2948
2949 static ssize_t rbd_snap_features_show(struct device *dev,
2950 struct device_attribute *attr,
2951 char *buf)
2952 {
2953 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2954
2955 return sprintf(buf, "0x%016llx\n",
2956 (unsigned long long) snap->features);
2957 }
2958
2959 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2960 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2961 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2962
2963 static struct attribute *rbd_snap_attrs[] = {
2964 &dev_attr_snap_size.attr,
2965 &dev_attr_snap_id.attr,
2966 &dev_attr_snap_features.attr,
2967 NULL,
2968 };
2969
2970 static struct attribute_group rbd_snap_attr_group = {
2971 .attrs = rbd_snap_attrs,
2972 };
2973
2974 static void rbd_snap_dev_release(struct device *dev)
2975 {
2976 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2977 kfree(snap->name);
2978 kfree(snap);
2979 }
2980
2981 static const struct attribute_group *rbd_snap_attr_groups[] = {
2982 &rbd_snap_attr_group,
2983 NULL
2984 };
2985
2986 static struct device_type rbd_snap_device_type = {
2987 .groups = rbd_snap_attr_groups,
2988 .release = rbd_snap_dev_release,
2989 };
2990
2991 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2992 {
2993 kref_get(&spec->kref);
2994
2995 return spec;
2996 }
2997
2998 static void rbd_spec_free(struct kref *kref);
2999 static void rbd_spec_put(struct rbd_spec *spec)
3000 {
3001 if (spec)
3002 kref_put(&spec->kref, rbd_spec_free);
3003 }
3004
3005 static struct rbd_spec *rbd_spec_alloc(void)
3006 {
3007 struct rbd_spec *spec;
3008
3009 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3010 if (!spec)
3011 return NULL;
3012 kref_init(&spec->kref);
3013
3014 return spec;
3015 }
3016
3017 static void rbd_spec_free(struct kref *kref)
3018 {
3019 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3020
3021 kfree(spec->pool_name);
3022 kfree(spec->image_id);
3023 kfree(spec->image_name);
3024 kfree(spec->snap_name);
3025 kfree(spec);
3026 }
3027
3028 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3029 struct rbd_spec *spec)
3030 {
3031 struct rbd_device *rbd_dev;
3032
3033 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3034 if (!rbd_dev)
3035 return NULL;
3036
3037 spin_lock_init(&rbd_dev->lock);
3038 rbd_dev->flags = 0;
3039 INIT_LIST_HEAD(&rbd_dev->node);
3040 INIT_LIST_HEAD(&rbd_dev->snaps);
3041 init_rwsem(&rbd_dev->header_rwsem);
3042
3043 rbd_dev->spec = spec;
3044 rbd_dev->rbd_client = rbdc;
3045
3046 /* Initialize the layout used for all rbd requests */
3047
3048 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3049 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3050 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3051 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3052
3053 return rbd_dev;
3054 }
3055
3056 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3057 {
3058 rbd_spec_put(rbd_dev->parent_spec);
3059 kfree(rbd_dev->header_name);
3060 rbd_put_client(rbd_dev->rbd_client);
3061 rbd_spec_put(rbd_dev->spec);
3062 kfree(rbd_dev);
3063 }
3064
3065 static bool rbd_snap_registered(struct rbd_snap *snap)
3066 {
3067 bool ret = snap->dev.type == &rbd_snap_device_type;
3068 bool reg = device_is_registered(&snap->dev);
3069
3070 rbd_assert(!ret ^ reg);
3071
3072 return ret;
3073 }
3074
3075 static void rbd_remove_snap_dev(struct rbd_snap *snap)
3076 {
3077 list_del(&snap->node);
3078 if (device_is_registered(&snap->dev))
3079 device_unregister(&snap->dev);
3080 }
3081
3082 static int rbd_register_snap_dev(struct rbd_snap *snap,
3083 struct device *parent)
3084 {
3085 struct device *dev = &snap->dev;
3086 int ret;
3087
3088 dev->type = &rbd_snap_device_type;
3089 dev->parent = parent;
3090 dev->release = rbd_snap_dev_release;
3091 dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
3092 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
3093
3094 ret = device_register(dev);
3095
3096 return ret;
3097 }
3098
3099 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
3100 const char *snap_name,
3101 u64 snap_id, u64 snap_size,
3102 u64 snap_features)
3103 {
3104 struct rbd_snap *snap;
3105 int ret;
3106
3107 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
3108 if (!snap)
3109 return ERR_PTR(-ENOMEM);
3110
3111 ret = -ENOMEM;
3112 snap->name = kstrdup(snap_name, GFP_KERNEL);
3113 if (!snap->name)
3114 goto err;
3115
3116 snap->id = snap_id;
3117 snap->size = snap_size;
3118 snap->features = snap_features;
3119
3120 return snap;
3121
3122 err:
3123 kfree(snap->name);
3124 kfree(snap);
3125
3126 return ERR_PTR(ret);
3127 }
3128
3129 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
3130 u64 *snap_size, u64 *snap_features)
3131 {
3132 char *snap_name;
3133
3134 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3135
3136 *snap_size = rbd_dev->header.snap_sizes[which];
3137 *snap_features = 0; /* No features for v1 */
3138
3139 /* Skip over names until we find the one we are looking for */
3140
3141 snap_name = rbd_dev->header.snap_names;
3142 while (which--)
3143 snap_name += strlen(snap_name) + 1;
3144
3145 return snap_name;
3146 }
3147
3148 /*
3149 * Get the size and object order for an image snapshot, or if
3150 * snap_id is CEPH_NOSNAP, gets this information for the base
3151 * image.
3152 */
3153 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3154 u8 *order, u64 *snap_size)
3155 {
3156 __le64 snapid = cpu_to_le64(snap_id);
3157 int ret;
3158 struct {
3159 u8 order;
3160 __le64 size;
3161 } __attribute__ ((packed)) size_buf = { 0 };
3162
3163 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3164 "rbd", "get_size",
3165 (char *) &snapid, sizeof (snapid),
3166 (char *) &size_buf, sizeof (size_buf), NULL);
3167 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3168 if (ret < 0)
3169 return ret;
3170
3171 *order = size_buf.order;
3172 *snap_size = le64_to_cpu(size_buf.size);
3173
3174 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3175 (unsigned long long) snap_id, (unsigned int) *order,
3176 (unsigned long long) *snap_size);
3177
3178 return 0;
3179 }
3180
3181 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3182 {
3183 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3184 &rbd_dev->header.obj_order,
3185 &rbd_dev->header.image_size);
3186 }
3187
3188 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3189 {
3190 void *reply_buf;
3191 int ret;
3192 void *p;
3193
3194 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3195 if (!reply_buf)
3196 return -ENOMEM;
3197
3198 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3199 "rbd", "get_object_prefix",
3200 NULL, 0,
3201 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
3202 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3203 if (ret < 0)
3204 goto out;
3205
3206 p = reply_buf;
3207 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3208 p + RBD_OBJ_PREFIX_LEN_MAX,
3209 NULL, GFP_NOIO);
3210
3211 if (IS_ERR(rbd_dev->header.object_prefix)) {
3212 ret = PTR_ERR(rbd_dev->header.object_prefix);
3213 rbd_dev->header.object_prefix = NULL;
3214 } else {
3215 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3216 }
3217
3218 out:
3219 kfree(reply_buf);
3220
3221 return ret;
3222 }
3223
3224 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3225 u64 *snap_features)
3226 {
3227 __le64 snapid = cpu_to_le64(snap_id);
3228 struct {
3229 __le64 features;
3230 __le64 incompat;
3231 } features_buf = { 0 };
3232 u64 incompat;
3233 int ret;
3234
3235 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3236 "rbd", "get_features",
3237 (char *) &snapid, sizeof (snapid),
3238 (char *) &features_buf, sizeof (features_buf),
3239 NULL);
3240 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3241 if (ret < 0)
3242 return ret;
3243
3244 incompat = le64_to_cpu(features_buf.incompat);
3245 if (incompat & ~RBD_FEATURES_SUPPORTED)
3246 return -ENXIO;
3247
3248 *snap_features = le64_to_cpu(features_buf.features);
3249
3250 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3251 (unsigned long long) snap_id,
3252 (unsigned long long) *snap_features,
3253 (unsigned long long) le64_to_cpu(features_buf.incompat));
3254
3255 return 0;
3256 }
3257
3258 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3259 {
3260 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3261 &rbd_dev->header.features);
3262 }
3263
3264 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3265 {
3266 struct rbd_spec *parent_spec;
3267 size_t size;
3268 void *reply_buf = NULL;
3269 __le64 snapid;
3270 void *p;
3271 void *end;
3272 char *image_id;
3273 u64 overlap;
3274 int ret;
3275
3276 parent_spec = rbd_spec_alloc();
3277 if (!parent_spec)
3278 return -ENOMEM;
3279
3280 size = sizeof (__le64) + /* pool_id */
3281 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3282 sizeof (__le64) + /* snap_id */
3283 sizeof (__le64); /* overlap */
3284 reply_buf = kmalloc(size, GFP_KERNEL);
3285 if (!reply_buf) {
3286 ret = -ENOMEM;
3287 goto out_err;
3288 }
3289
3290 snapid = cpu_to_le64(CEPH_NOSNAP);
3291 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3292 "rbd", "get_parent",
3293 (char *) &snapid, sizeof (snapid),
3294 (char *) reply_buf, size, NULL);
3295 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3296 if (ret < 0)
3297 goto out_err;
3298
3299 ret = -ERANGE;
3300 p = reply_buf;
3301 end = (char *) reply_buf + size;
3302 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3303 if (parent_spec->pool_id == CEPH_NOPOOL)
3304 goto out; /* No parent? No problem. */
3305
3306 /* The ceph file layout needs to fit pool id in 32 bits */
3307
3308 ret = -EIO;
3309 if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
3310 goto out;
3311
3312 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3313 if (IS_ERR(image_id)) {
3314 ret = PTR_ERR(image_id);
3315 goto out_err;
3316 }
3317 parent_spec->image_id = image_id;
3318 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3319 ceph_decode_64_safe(&p, end, overlap, out_err);
3320
3321 rbd_dev->parent_overlap = overlap;
3322 rbd_dev->parent_spec = parent_spec;
3323 parent_spec = NULL; /* rbd_dev now owns this */
3324 out:
3325 ret = 0;
3326 out_err:
3327 kfree(reply_buf);
3328 rbd_spec_put(parent_spec);
3329
3330 return ret;
3331 }
3332
3333 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3334 {
3335 size_t image_id_size;
3336 char *image_id;
3337 void *p;
3338 void *end;
3339 size_t size;
3340 void *reply_buf = NULL;
3341 size_t len = 0;
3342 char *image_name = NULL;
3343 int ret;
3344
3345 rbd_assert(!rbd_dev->spec->image_name);
3346
3347 len = strlen(rbd_dev->spec->image_id);
3348 image_id_size = sizeof (__le32) + len;
3349 image_id = kmalloc(image_id_size, GFP_KERNEL);
3350 if (!image_id)
3351 return NULL;
3352
3353 p = image_id;
3354 end = (char *) image_id + image_id_size;
3355 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
3356
3357 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3358 reply_buf = kmalloc(size, GFP_KERNEL);
3359 if (!reply_buf)
3360 goto out;
3361
3362 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3363 "rbd", "dir_get_name",
3364 image_id, image_id_size,
3365 (char *) reply_buf, size, NULL);
3366 if (ret < 0)
3367 goto out;
3368 p = reply_buf;
3369 end = (char *) reply_buf + size;
3370 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3371 if (IS_ERR(image_name))
3372 image_name = NULL;
3373 else
3374 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3375 out:
3376 kfree(reply_buf);
3377 kfree(image_id);
3378
3379 return image_name;
3380 }
3381
3382 /*
3383 * When a parent image gets probed, we only have the pool, image,
3384 * and snapshot ids but not the names of any of them. This call
3385 * is made later to fill in those names. It has to be done after
3386 * rbd_dev_snaps_update() has completed because some of the
3387 * information (in particular, snapshot name) is not available
3388 * until then.
3389 */
3390 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
3391 {
3392 struct ceph_osd_client *osdc;
3393 const char *name;
3394 void *reply_buf = NULL;
3395 int ret;
3396
3397 if (rbd_dev->spec->pool_name)
3398 return 0; /* Already have the names */
3399
3400 /* Look up the pool name */
3401
3402 osdc = &rbd_dev->rbd_client->client->osdc;
3403 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3404 if (!name) {
3405 rbd_warn(rbd_dev, "there is no pool with id %llu",
3406 rbd_dev->spec->pool_id); /* Really a BUG() */
3407 return -EIO;
3408 }
3409
3410 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3411 if (!rbd_dev->spec->pool_name)
3412 return -ENOMEM;
3413
3414 /* Fetch the image name; tolerate failure here */
3415
3416 name = rbd_dev_image_name(rbd_dev);
3417 if (name)
3418 rbd_dev->spec->image_name = (char *) name;
3419 else
3420 rbd_warn(rbd_dev, "unable to get image name");
3421
3422 /* Look up the snapshot name. */
3423
3424 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3425 if (!name) {
3426 rbd_warn(rbd_dev, "no snapshot with id %llu",
3427 rbd_dev->spec->snap_id); /* Really a BUG() */
3428 ret = -EIO;
3429 goto out_err;
3430 }
3431 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3432 if(!rbd_dev->spec->snap_name)
3433 goto out_err;
3434
3435 return 0;
3436 out_err:
3437 kfree(reply_buf);
3438 kfree(rbd_dev->spec->pool_name);
3439 rbd_dev->spec->pool_name = NULL;
3440
3441 return ret;
3442 }
3443
3444 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3445 {
3446 size_t size;
3447 int ret;
3448 void *reply_buf;
3449 void *p;
3450 void *end;
3451 u64 seq;
3452 u32 snap_count;
3453 struct ceph_snap_context *snapc;
3454 u32 i;
3455
3456 /*
3457 * We'll need room for the seq value (maximum snapshot id),
3458 * snapshot count, and array of that many snapshot ids.
3459 * For now we have a fixed upper limit on the number we're
3460 * prepared to receive.
3461 */
3462 size = sizeof (__le64) + sizeof (__le32) +
3463 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3464 reply_buf = kzalloc(size, GFP_KERNEL);
3465 if (!reply_buf)
3466 return -ENOMEM;
3467
3468 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3469 "rbd", "get_snapcontext",
3470 NULL, 0,
3471 reply_buf, size, ver);
3472 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3473 if (ret < 0)
3474 goto out;
3475
3476 ret = -ERANGE;
3477 p = reply_buf;
3478 end = (char *) reply_buf + size;
3479 ceph_decode_64_safe(&p, end, seq, out);
3480 ceph_decode_32_safe(&p, end, snap_count, out);
3481
3482 /*
3483 * Make sure the reported number of snapshot ids wouldn't go
3484 * beyond the end of our buffer. But before checking that,
3485 * make sure the computed size of the snapshot context we
3486 * allocate is representable in a size_t.
3487 */
3488 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3489 / sizeof (u64)) {
3490 ret = -EINVAL;
3491 goto out;
3492 }
3493 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3494 goto out;
3495
3496 size = sizeof (struct ceph_snap_context) +
3497 snap_count * sizeof (snapc->snaps[0]);
3498 snapc = kmalloc(size, GFP_KERNEL);
3499 if (!snapc) {
3500 ret = -ENOMEM;
3501 goto out;
3502 }
3503
3504 atomic_set(&snapc->nref, 1);
3505 snapc->seq = seq;
3506 snapc->num_snaps = snap_count;
3507 for (i = 0; i < snap_count; i++)
3508 snapc->snaps[i] = ceph_decode_64(&p);
3509
3510 rbd_dev->header.snapc = snapc;
3511
3512 dout(" snap context seq = %llu, snap_count = %u\n",
3513 (unsigned long long) seq, (unsigned int) snap_count);
3514
3515 out:
3516 kfree(reply_buf);
3517
3518 return 0;
3519 }
3520
3521 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3522 {
3523 size_t size;
3524 void *reply_buf;
3525 __le64 snap_id;
3526 int ret;
3527 void *p;
3528 void *end;
3529 char *snap_name;
3530
3531 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3532 reply_buf = kmalloc(size, GFP_KERNEL);
3533 if (!reply_buf)
3534 return ERR_PTR(-ENOMEM);
3535
3536 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3537 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3538 "rbd", "get_snapshot_name",
3539 (char *) &snap_id, sizeof (snap_id),
3540 reply_buf, size, NULL);
3541 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3542 if (ret < 0)
3543 goto out;
3544
3545 p = reply_buf;
3546 end = (char *) reply_buf + size;
3547 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3548 if (IS_ERR(snap_name)) {
3549 ret = PTR_ERR(snap_name);
3550 goto out;
3551 } else {
3552 dout(" snap_id 0x%016llx snap_name = %s\n",
3553 (unsigned long long) le64_to_cpu(snap_id), snap_name);
3554 }
3555 kfree(reply_buf);
3556
3557 return snap_name;
3558 out:
3559 kfree(reply_buf);
3560
3561 return ERR_PTR(ret);
3562 }
3563
3564 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3565 u64 *snap_size, u64 *snap_features)
3566 {
3567 u64 snap_id;
3568 u8 order;
3569 int ret;
3570
3571 snap_id = rbd_dev->header.snapc->snaps[which];
3572 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3573 if (ret)
3574 return ERR_PTR(ret);
3575 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3576 if (ret)
3577 return ERR_PTR(ret);
3578
3579 return rbd_dev_v2_snap_name(rbd_dev, which);
3580 }
3581
3582 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3583 u64 *snap_size, u64 *snap_features)
3584 {
3585 if (rbd_dev->image_format == 1)
3586 return rbd_dev_v1_snap_info(rbd_dev, which,
3587 snap_size, snap_features);
3588 if (rbd_dev->image_format == 2)
3589 return rbd_dev_v2_snap_info(rbd_dev, which,
3590 snap_size, snap_features);
3591 return ERR_PTR(-EINVAL);
3592 }
3593
3594 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3595 {
3596 int ret;
3597 __u8 obj_order;
3598
3599 down_write(&rbd_dev->header_rwsem);
3600
3601 /* Grab old order first, to see if it changes */
3602
3603 obj_order = rbd_dev->header.obj_order,
3604 ret = rbd_dev_v2_image_size(rbd_dev);
3605 if (ret)
3606 goto out;
3607 if (rbd_dev->header.obj_order != obj_order) {
3608 ret = -EIO;
3609 goto out;
3610 }
3611 rbd_update_mapping_size(rbd_dev);
3612
3613 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3614 dout("rbd_dev_v2_snap_context returned %d\n", ret);
3615 if (ret)
3616 goto out;
3617 ret = rbd_dev_snaps_update(rbd_dev);
3618 dout("rbd_dev_snaps_update returned %d\n", ret);
3619 if (ret)
3620 goto out;
3621 ret = rbd_dev_snaps_register(rbd_dev);
3622 dout("rbd_dev_snaps_register returned %d\n", ret);
3623 out:
3624 up_write(&rbd_dev->header_rwsem);
3625
3626 return ret;
3627 }
3628
3629 /*
3630 * Scan the rbd device's current snapshot list and compare it to the
3631 * newly-received snapshot context. Remove any existing snapshots
3632 * not present in the new snapshot context. Add a new snapshot for
3633 * any snaphots in the snapshot context not in the current list.
3634 * And verify there are no changes to snapshots we already know
3635 * about.
3636 *
3637 * Assumes the snapshots in the snapshot context are sorted by
3638 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
3639 * are also maintained in that order.)
3640 */
3641 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3642 {
3643 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3644 const u32 snap_count = snapc->num_snaps;
3645 struct list_head *head = &rbd_dev->snaps;
3646 struct list_head *links = head->next;
3647 u32 index = 0;
3648
3649 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3650 while (index < snap_count || links != head) {
3651 u64 snap_id;
3652 struct rbd_snap *snap;
3653 char *snap_name;
3654 u64 snap_size = 0;
3655 u64 snap_features = 0;
3656
3657 snap_id = index < snap_count ? snapc->snaps[index]
3658 : CEPH_NOSNAP;
3659 snap = links != head ? list_entry(links, struct rbd_snap, node)
3660 : NULL;
3661 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3662
3663 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3664 struct list_head *next = links->next;
3665
3666 /*
3667 * A previously-existing snapshot is not in
3668 * the new snap context.
3669 *
3670 * If the now missing snapshot is the one the
3671 * image is mapped to, clear its exists flag
3672 * so we can avoid sending any more requests
3673 * to it.
3674 */
3675 if (rbd_dev->spec->snap_id == snap->id)
3676 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3677 rbd_remove_snap_dev(snap);
3678 dout("%ssnap id %llu has been removed\n",
3679 rbd_dev->spec->snap_id == snap->id ?
3680 "mapped " : "",
3681 (unsigned long long) snap->id);
3682
3683 /* Done with this list entry; advance */
3684
3685 links = next;
3686 continue;
3687 }
3688
3689 snap_name = rbd_dev_snap_info(rbd_dev, index,
3690 &snap_size, &snap_features);
3691 if (IS_ERR(snap_name))
3692 return PTR_ERR(snap_name);
3693
3694 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3695 (unsigned long long) snap_id);
3696 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3697 struct rbd_snap *new_snap;
3698
3699 /* We haven't seen this snapshot before */
3700
3701 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3702 snap_id, snap_size, snap_features);
3703 if (IS_ERR(new_snap)) {
3704 int err = PTR_ERR(new_snap);
3705
3706 dout(" failed to add dev, error %d\n", err);
3707
3708 return err;
3709 }
3710
3711 /* New goes before existing, or at end of list */
3712
3713 dout(" added dev%s\n", snap ? "" : " at end\n");
3714 if (snap)
3715 list_add_tail(&new_snap->node, &snap->node);
3716 else
3717 list_add_tail(&new_snap->node, head);
3718 } else {
3719 /* Already have this one */
3720
3721 dout(" already present\n");
3722
3723 rbd_assert(snap->size == snap_size);
3724 rbd_assert(!strcmp(snap->name, snap_name));
3725 rbd_assert(snap->features == snap_features);
3726
3727 /* Done with this list entry; advance */
3728
3729 links = links->next;
3730 }
3731
3732 /* Advance to the next entry in the snapshot context */
3733
3734 index++;
3735 }
3736 dout("%s: done\n", __func__);
3737
3738 return 0;
3739 }
3740
3741 /*
3742 * Scan the list of snapshots and register the devices for any that
3743 * have not already been registered.
3744 */
3745 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3746 {
3747 struct rbd_snap *snap;
3748 int ret = 0;
3749
3750 dout("%s:\n", __func__);
3751 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3752 return -EIO;
3753
3754 list_for_each_entry(snap, &rbd_dev->snaps, node) {
3755 if (!rbd_snap_registered(snap)) {
3756 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3757 if (ret < 0)
3758 break;
3759 }
3760 }
3761 dout("%s: returning %d\n", __func__, ret);
3762
3763 return ret;
3764 }
3765
3766 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3767 {
3768 struct device *dev;
3769 int ret;
3770
3771 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3772
3773 dev = &rbd_dev->dev;
3774 dev->bus = &rbd_bus_type;
3775 dev->type = &rbd_device_type;
3776 dev->parent = &rbd_root_dev;
3777 dev->release = rbd_dev_release;
3778 dev_set_name(dev, "%d", rbd_dev->dev_id);
3779 ret = device_register(dev);
3780
3781 mutex_unlock(&ctl_mutex);
3782
3783 return ret;
3784 }
3785
3786 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3787 {
3788 device_unregister(&rbd_dev->dev);
3789 }
3790
3791 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3792
3793 /*
3794 * Get a unique rbd identifier for the given new rbd_dev, and add
3795 * the rbd_dev to the global list. The minimum rbd id is 1.
3796 */
3797 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3798 {
3799 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3800
3801 spin_lock(&rbd_dev_list_lock);
3802 list_add_tail(&rbd_dev->node, &rbd_dev_list);
3803 spin_unlock(&rbd_dev_list_lock);
3804 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3805 (unsigned long long) rbd_dev->dev_id);
3806 }
3807
3808 /*
3809 * Remove an rbd_dev from the global list, and record that its
3810 * identifier is no longer in use.
3811 */
3812 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3813 {
3814 struct list_head *tmp;
3815 int rbd_id = rbd_dev->dev_id;
3816 int max_id;
3817
3818 rbd_assert(rbd_id > 0);
3819
3820 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3821 (unsigned long long) rbd_dev->dev_id);
3822 spin_lock(&rbd_dev_list_lock);
3823 list_del_init(&rbd_dev->node);
3824
3825 /*
3826 * If the id being "put" is not the current maximum, there
3827 * is nothing special we need to do.
3828 */
3829 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3830 spin_unlock(&rbd_dev_list_lock);
3831 return;
3832 }
3833
3834 /*
3835 * We need to update the current maximum id. Search the
3836 * list to find out what it is. We're more likely to find
3837 * the maximum at the end, so search the list backward.
3838 */
3839 max_id = 0;
3840 list_for_each_prev(tmp, &rbd_dev_list) {
3841 struct rbd_device *rbd_dev;
3842
3843 rbd_dev = list_entry(tmp, struct rbd_device, node);
3844 if (rbd_dev->dev_id > max_id)
3845 max_id = rbd_dev->dev_id;
3846 }
3847 spin_unlock(&rbd_dev_list_lock);
3848
3849 /*
3850 * The max id could have been updated by rbd_dev_id_get(), in
3851 * which case it now accurately reflects the new maximum.
3852 * Be careful not to overwrite the maximum value in that
3853 * case.
3854 */
3855 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3856 dout(" max dev id has been reset\n");
3857 }
3858
3859 /*
3860 * Skips over white space at *buf, and updates *buf to point to the
3861 * first found non-space character (if any). Returns the length of
3862 * the token (string of non-white space characters) found. Note
3863 * that *buf must be terminated with '\0'.
3864 */
3865 static inline size_t next_token(const char **buf)
3866 {
3867 /*
3868 * These are the characters that produce nonzero for
3869 * isspace() in the "C" and "POSIX" locales.
3870 */
3871 const char *spaces = " \f\n\r\t\v";
3872
3873 *buf += strspn(*buf, spaces); /* Find start of token */
3874
3875 return strcspn(*buf, spaces); /* Return token length */
3876 }
3877
3878 /*
3879 * Finds the next token in *buf, and if the provided token buffer is
3880 * big enough, copies the found token into it. The result, if
3881 * copied, is guaranteed to be terminated with '\0'. Note that *buf
3882 * must be terminated with '\0' on entry.
3883 *
3884 * Returns the length of the token found (not including the '\0').
3885 * Return value will be 0 if no token is found, and it will be >=
3886 * token_size if the token would not fit.
3887 *
3888 * The *buf pointer will be updated to point beyond the end of the
3889 * found token. Note that this occurs even if the token buffer is
3890 * too small to hold it.
3891 */
3892 static inline size_t copy_token(const char **buf,
3893 char *token,
3894 size_t token_size)
3895 {
3896 size_t len;
3897
3898 len = next_token(buf);
3899 if (len < token_size) {
3900 memcpy(token, *buf, len);
3901 *(token + len) = '\0';
3902 }
3903 *buf += len;
3904
3905 return len;
3906 }
3907
3908 /*
3909 * Finds the next token in *buf, dynamically allocates a buffer big
3910 * enough to hold a copy of it, and copies the token into the new
3911 * buffer. The copy is guaranteed to be terminated with '\0'. Note
3912 * that a duplicate buffer is created even for a zero-length token.
3913 *
3914 * Returns a pointer to the newly-allocated duplicate, or a null
3915 * pointer if memory for the duplicate was not available. If
3916 * the lenp argument is a non-null pointer, the length of the token
3917 * (not including the '\0') is returned in *lenp.
3918 *
3919 * If successful, the *buf pointer will be updated to point beyond
3920 * the end of the found token.
3921 *
3922 * Note: uses GFP_KERNEL for allocation.
3923 */
3924 static inline char *dup_token(const char **buf, size_t *lenp)
3925 {
3926 char *dup;
3927 size_t len;
3928
3929 len = next_token(buf);
3930 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3931 if (!dup)
3932 return NULL;
3933 *(dup + len) = '\0';
3934 *buf += len;
3935
3936 if (lenp)
3937 *lenp = len;
3938
3939 return dup;
3940 }
3941
3942 /*
3943 * Parse the options provided for an "rbd add" (i.e., rbd image
3944 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
3945 * and the data written is passed here via a NUL-terminated buffer.
3946 * Returns 0 if successful or an error code otherwise.
3947 *
3948 * The information extracted from these options is recorded in
3949 * the other parameters which return dynamically-allocated
3950 * structures:
3951 * ceph_opts
3952 * The address of a pointer that will refer to a ceph options
3953 * structure. Caller must release the returned pointer using
3954 * ceph_destroy_options() when it is no longer needed.
3955 * rbd_opts
3956 * Address of an rbd options pointer. Fully initialized by
3957 * this function; caller must release with kfree().
3958 * spec
3959 * Address of an rbd image specification pointer. Fully
3960 * initialized by this function based on parsed options.
3961 * Caller must release with rbd_spec_put().
3962 *
3963 * The options passed take this form:
3964 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3965 * where:
3966 * <mon_addrs>
3967 * A comma-separated list of one or more monitor addresses.
3968 * A monitor address is an ip address, optionally followed
3969 * by a port number (separated by a colon).
3970 * I.e.: ip1[:port1][,ip2[:port2]...]
3971 * <options>
3972 * A comma-separated list of ceph and/or rbd options.
3973 * <pool_name>
3974 * The name of the rados pool containing the rbd image.
3975 * <image_name>
3976 * The name of the image in that pool to map.
3977 * <snap_id>
3978 * An optional snapshot id. If provided, the mapping will
3979 * present data from the image at the time that snapshot was
3980 * created. The image head is used if no snapshot id is
3981 * provided. Snapshot mappings are always read-only.
3982 */
3983 static int rbd_add_parse_args(const char *buf,
3984 struct ceph_options **ceph_opts,
3985 struct rbd_options **opts,
3986 struct rbd_spec **rbd_spec)
3987 {
3988 size_t len;
3989 char *options;
3990 const char *mon_addrs;
3991 size_t mon_addrs_size;
3992 struct rbd_spec *spec = NULL;
3993 struct rbd_options *rbd_opts = NULL;
3994 struct ceph_options *copts;
3995 int ret;
3996
3997 /* The first four tokens are required */
3998
3999 len = next_token(&buf);
4000 if (!len) {
4001 rbd_warn(NULL, "no monitor address(es) provided");
4002 return -EINVAL;
4003 }
4004 mon_addrs = buf;
4005 mon_addrs_size = len + 1;
4006 buf += len;
4007
4008 ret = -EINVAL;
4009 options = dup_token(&buf, NULL);
4010 if (!options)
4011 return -ENOMEM;
4012 if (!*options) {
4013 rbd_warn(NULL, "no options provided");
4014 goto out_err;
4015 }
4016
4017 spec = rbd_spec_alloc();
4018 if (!spec)
4019 goto out_mem;
4020
4021 spec->pool_name = dup_token(&buf, NULL);
4022 if (!spec->pool_name)
4023 goto out_mem;
4024 if (!*spec->pool_name) {
4025 rbd_warn(NULL, "no pool name provided");
4026 goto out_err;
4027 }
4028
4029 spec->image_name = dup_token(&buf, NULL);
4030 if (!spec->image_name)
4031 goto out_mem;
4032 if (!*spec->image_name) {
4033 rbd_warn(NULL, "no image name provided");
4034 goto out_err;
4035 }
4036
4037 /*
4038 * Snapshot name is optional; default is to use "-"
4039 * (indicating the head/no snapshot).
4040 */
4041 len = next_token(&buf);
4042 if (!len) {
4043 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4044 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4045 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4046 ret = -ENAMETOOLONG;
4047 goto out_err;
4048 }
4049 spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4050 if (!spec->snap_name)
4051 goto out_mem;
4052 *(spec->snap_name + len) = '\0';
4053
4054 /* Initialize all rbd options to the defaults */
4055
4056 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4057 if (!rbd_opts)
4058 goto out_mem;
4059
4060 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4061
4062 copts = ceph_parse_options(options, mon_addrs,
4063 mon_addrs + mon_addrs_size - 1,
4064 parse_rbd_opts_token, rbd_opts);
4065 if (IS_ERR(copts)) {
4066 ret = PTR_ERR(copts);
4067 goto out_err;
4068 }
4069 kfree(options);
4070
4071 *ceph_opts = copts;
4072 *opts = rbd_opts;
4073 *rbd_spec = spec;
4074
4075 return 0;
4076 out_mem:
4077 ret = -ENOMEM;
4078 out_err:
4079 kfree(rbd_opts);
4080 rbd_spec_put(spec);
4081 kfree(options);
4082
4083 return ret;
4084 }
4085
4086 /*
4087 * An rbd format 2 image has a unique identifier, distinct from the
4088 * name given to it by the user. Internally, that identifier is
4089 * what's used to specify the names of objects related to the image.
4090 *
4091 * A special "rbd id" object is used to map an rbd image name to its
4092 * id. If that object doesn't exist, then there is no v2 rbd image
4093 * with the supplied name.
4094 *
4095 * This function will record the given rbd_dev's image_id field if
4096 * it can be determined, and in that case will return 0. If any
4097 * errors occur a negative errno will be returned and the rbd_dev's
4098 * image_id field will be unchanged (and should be NULL).
4099 */
4100 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4101 {
4102 int ret;
4103 size_t size;
4104 char *object_name;
4105 void *response;
4106 void *p;
4107
4108 /* If we already have it we don't need to look it up */
4109
4110 if (rbd_dev->spec->image_id)
4111 return 0;
4112
4113 /*
4114 * When probing a parent image, the image id is already
4115 * known (and the image name likely is not). There's no
4116 * need to fetch the image id again in this case.
4117 */
4118 if (rbd_dev->spec->image_id)
4119 return 0;
4120
4121 /*
4122 * First, see if the format 2 image id file exists, and if
4123 * so, get the image's persistent id from it.
4124 */
4125 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4126 object_name = kmalloc(size, GFP_NOIO);
4127 if (!object_name)
4128 return -ENOMEM;
4129 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4130 dout("rbd id object name is %s\n", object_name);
4131
4132 /* Response will be an encoded string, which includes a length */
4133
4134 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4135 response = kzalloc(size, GFP_NOIO);
4136 if (!response) {
4137 ret = -ENOMEM;
4138 goto out;
4139 }
4140
4141 ret = rbd_obj_method_sync(rbd_dev, object_name,
4142 "rbd", "get_id",
4143 NULL, 0,
4144 response, RBD_IMAGE_ID_LEN_MAX, NULL);
4145 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4146 if (ret < 0)
4147 goto out;
4148
4149 p = response;
4150 rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
4151 p + RBD_IMAGE_ID_LEN_MAX,
4152 NULL, GFP_NOIO);
4153 if (IS_ERR(rbd_dev->spec->image_id)) {
4154 ret = PTR_ERR(rbd_dev->spec->image_id);
4155 rbd_dev->spec->image_id = NULL;
4156 } else {
4157 dout("image_id is %s\n", rbd_dev->spec->image_id);
4158 }
4159 out:
4160 kfree(response);
4161 kfree(object_name);
4162
4163 return ret;
4164 }
4165
4166 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4167 {
4168 int ret;
4169 size_t size;
4170
4171 /* Version 1 images have no id; empty string is used */
4172
4173 rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
4174 if (!rbd_dev->spec->image_id)
4175 return -ENOMEM;
4176
4177 /* Record the header object name for this rbd image. */
4178
4179 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
4180 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4181 if (!rbd_dev->header_name) {
4182 ret = -ENOMEM;
4183 goto out_err;
4184 }
4185 sprintf(rbd_dev->header_name, "%s%s",
4186 rbd_dev->spec->image_name, RBD_SUFFIX);
4187
4188 /* Populate rbd image metadata */
4189
4190 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4191 if (ret < 0)
4192 goto out_err;
4193
4194 /* Version 1 images have no parent (no layering) */
4195
4196 rbd_dev->parent_spec = NULL;
4197 rbd_dev->parent_overlap = 0;
4198
4199 rbd_dev->image_format = 1;
4200
4201 dout("discovered version 1 image, header name is %s\n",
4202 rbd_dev->header_name);
4203
4204 return 0;
4205
4206 out_err:
4207 kfree(rbd_dev->header_name);
4208 rbd_dev->header_name = NULL;
4209 kfree(rbd_dev->spec->image_id);
4210 rbd_dev->spec->image_id = NULL;
4211
4212 return ret;
4213 }
4214
4215 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4216 {
4217 size_t size;
4218 int ret;
4219 u64 ver = 0;
4220
4221 /*
4222 * Image id was filled in by the caller. Record the header
4223 * object name for this rbd image.
4224 */
4225 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
4226 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4227 if (!rbd_dev->header_name)
4228 return -ENOMEM;
4229 sprintf(rbd_dev->header_name, "%s%s",
4230 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
4231
4232 /* Get the size and object order for the image */
4233
4234 ret = rbd_dev_v2_image_size(rbd_dev);
4235 if (ret < 0)
4236 goto out_err;
4237
4238 /* Get the object prefix (a.k.a. block_name) for the image */
4239
4240 ret = rbd_dev_v2_object_prefix(rbd_dev);
4241 if (ret < 0)
4242 goto out_err;
4243
4244 /* Get the and check features for the image */
4245
4246 ret = rbd_dev_v2_features(rbd_dev);
4247 if (ret < 0)
4248 goto out_err;
4249
4250 /* If the image supports layering, get the parent info */
4251
4252 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4253 ret = rbd_dev_v2_parent_info(rbd_dev);
4254 if (ret < 0)
4255 goto out_err;
4256 }
4257
4258 /* crypto and compression type aren't (yet) supported for v2 images */
4259
4260 rbd_dev->header.crypt_type = 0;
4261 rbd_dev->header.comp_type = 0;
4262
4263 /* Get the snapshot context, plus the header version */
4264
4265 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
4266 if (ret)
4267 goto out_err;
4268 rbd_dev->header.obj_version = ver;
4269
4270 rbd_dev->image_format = 2;
4271
4272 dout("discovered version 2 image, header name is %s\n",
4273 rbd_dev->header_name);
4274
4275 return 0;
4276 out_err:
4277 rbd_dev->parent_overlap = 0;
4278 rbd_spec_put(rbd_dev->parent_spec);
4279 rbd_dev->parent_spec = NULL;
4280 kfree(rbd_dev->header_name);
4281 rbd_dev->header_name = NULL;
4282 kfree(rbd_dev->header.object_prefix);
4283 rbd_dev->header.object_prefix = NULL;
4284
4285 return ret;
4286 }
4287
4288 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
4289 {
4290 struct rbd_device *parent = NULL;
4291 struct rbd_spec *parent_spec = NULL;
4292 struct rbd_client *rbdc = NULL;
4293 int ret;
4294
4295 /* no need to lock here, as rbd_dev is not registered yet */
4296 ret = rbd_dev_snaps_update(rbd_dev);
4297 if (ret)
4298 return ret;
4299
4300 ret = rbd_dev_probe_update_spec(rbd_dev);
4301 if (ret)
4302 goto err_out_snaps;
4303
4304 ret = rbd_dev_set_mapping(rbd_dev);
4305 if (ret)
4306 goto err_out_snaps;
4307
4308 /* generate unique id: find highest unique id, add one */
4309 rbd_dev_id_get(rbd_dev);
4310
4311 /* Fill in the device name, now that we have its id. */
4312 BUILD_BUG_ON(DEV_NAME_LEN
4313 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4314 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4315
4316 /* Get our block major device number. */
4317
4318 ret = register_blkdev(0, rbd_dev->name);
4319 if (ret < 0)
4320 goto err_out_id;
4321 rbd_dev->major = ret;
4322
4323 /* Set up the blkdev mapping. */
4324
4325 ret = rbd_init_disk(rbd_dev);
4326 if (ret)
4327 goto err_out_blkdev;
4328
4329 ret = rbd_bus_add_dev(rbd_dev);
4330 if (ret)
4331 goto err_out_disk;
4332
4333 /*
4334 * At this point cleanup in the event of an error is the job
4335 * of the sysfs code (initiated by rbd_bus_del_dev()).
4336 */
4337 /* Probe the parent if there is one */
4338
4339 if (rbd_dev->parent_spec) {
4340 /*
4341 * We need to pass a reference to the client and the
4342 * parent spec when creating the parent rbd_dev.
4343 * Images related by parent/child relationships
4344 * always share both.
4345 */
4346 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4347 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4348
4349 parent = rbd_dev_create(rbdc, parent_spec);
4350 if (!parent) {
4351 ret = -ENOMEM;
4352 goto err_out_spec;
4353 }
4354 rbdc = NULL; /* parent now owns reference */
4355 parent_spec = NULL; /* parent now owns reference */
4356 ret = rbd_dev_probe(parent);
4357 if (ret < 0)
4358 goto err_out_parent;
4359 rbd_dev->parent = parent;
4360 }
4361
4362 down_write(&rbd_dev->header_rwsem);
4363 ret = rbd_dev_snaps_register(rbd_dev);
4364 up_write(&rbd_dev->header_rwsem);
4365 if (ret)
4366 goto err_out_bus;
4367
4368 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4369 if (ret)
4370 goto err_out_bus;
4371
4372 /* Everything's ready. Announce the disk to the world. */
4373
4374 add_disk(rbd_dev->disk);
4375
4376 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4377 (unsigned long long) rbd_dev->mapping.size);
4378
4379 return ret;
4380
4381 err_out_parent:
4382 rbd_dev_destroy(parent);
4383 err_out_spec:
4384 rbd_spec_put(parent_spec);
4385 rbd_put_client(rbdc);
4386 err_out_bus:
4387 /* this will also clean up rest of rbd_dev stuff */
4388
4389 rbd_bus_del_dev(rbd_dev);
4390
4391 return ret;
4392 err_out_disk:
4393 rbd_free_disk(rbd_dev);
4394 err_out_blkdev:
4395 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4396 err_out_id:
4397 rbd_dev_id_put(rbd_dev);
4398 err_out_snaps:
4399 rbd_remove_all_snaps(rbd_dev);
4400
4401 return ret;
4402 }
4403
4404 /*
4405 * Probe for the existence of the header object for the given rbd
4406 * device. For format 2 images this includes determining the image
4407 * id.
4408 */
4409 static int rbd_dev_probe(struct rbd_device *rbd_dev)
4410 {
4411 int ret;
4412
4413 /*
4414 * Get the id from the image id object. If it's not a
4415 * format 2 image, we'll get ENOENT back, and we'll assume
4416 * it's a format 1 image.
4417 */
4418 ret = rbd_dev_image_id(rbd_dev);
4419 if (ret)
4420 ret = rbd_dev_v1_probe(rbd_dev);
4421 else
4422 ret = rbd_dev_v2_probe(rbd_dev);
4423 if (ret) {
4424 dout("probe failed, returning %d\n", ret);
4425
4426 return ret;
4427 }
4428
4429 ret = rbd_dev_probe_finish(rbd_dev);
4430 if (ret)
4431 rbd_header_free(&rbd_dev->header);
4432
4433 return ret;
4434 }
4435
4436 static ssize_t rbd_add(struct bus_type *bus,
4437 const char *buf,
4438 size_t count)
4439 {
4440 struct rbd_device *rbd_dev = NULL;
4441 struct ceph_options *ceph_opts = NULL;
4442 struct rbd_options *rbd_opts = NULL;
4443 struct rbd_spec *spec = NULL;
4444 struct rbd_client *rbdc;
4445 struct ceph_osd_client *osdc;
4446 int rc = -ENOMEM;
4447
4448 if (!try_module_get(THIS_MODULE))
4449 return -ENODEV;
4450
4451 /* parse add command */
4452 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4453 if (rc < 0)
4454 goto err_out_module;
4455
4456 rbdc = rbd_get_client(ceph_opts);
4457 if (IS_ERR(rbdc)) {
4458 rc = PTR_ERR(rbdc);
4459 goto err_out_args;
4460 }
4461 ceph_opts = NULL; /* rbd_dev client now owns this */
4462
4463 /* pick the pool */
4464 osdc = &rbdc->client->osdc;
4465 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4466 if (rc < 0)
4467 goto err_out_client;
4468 spec->pool_id = (u64) rc;
4469
4470 /* The ceph file layout needs to fit pool id in 32 bits */
4471
4472 if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4473 rc = -EIO;
4474 goto err_out_client;
4475 }
4476
4477 rbd_dev = rbd_dev_create(rbdc, spec);
4478 if (!rbd_dev)
4479 goto err_out_client;
4480 rbdc = NULL; /* rbd_dev now owns this */
4481 spec = NULL; /* rbd_dev now owns this */
4482
4483 rbd_dev->mapping.read_only = rbd_opts->read_only;
4484 kfree(rbd_opts);
4485 rbd_opts = NULL; /* done with this */
4486
4487 rc = rbd_dev_probe(rbd_dev);
4488 if (rc < 0)
4489 goto err_out_rbd_dev;
4490
4491 return count;
4492 err_out_rbd_dev:
4493 rbd_dev_destroy(rbd_dev);
4494 err_out_client:
4495 rbd_put_client(rbdc);
4496 err_out_args:
4497 if (ceph_opts)
4498 ceph_destroy_options(ceph_opts);
4499 kfree(rbd_opts);
4500 rbd_spec_put(spec);
4501 err_out_module:
4502 module_put(THIS_MODULE);
4503
4504 dout("Error adding device %s\n", buf);
4505
4506 return (ssize_t) rc;
4507 }
4508
4509 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4510 {
4511 struct list_head *tmp;
4512 struct rbd_device *rbd_dev;
4513
4514 spin_lock(&rbd_dev_list_lock);
4515 list_for_each(tmp, &rbd_dev_list) {
4516 rbd_dev = list_entry(tmp, struct rbd_device, node);
4517 if (rbd_dev->dev_id == dev_id) {
4518 spin_unlock(&rbd_dev_list_lock);
4519 return rbd_dev;
4520 }
4521 }
4522 spin_unlock(&rbd_dev_list_lock);
4523 return NULL;
4524 }
4525
4526 static void rbd_dev_release(struct device *dev)
4527 {
4528 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4529
4530 if (rbd_dev->watch_event)
4531 rbd_dev_header_watch_sync(rbd_dev, 0);
4532
4533 /* clean up and free blkdev */
4534 rbd_free_disk(rbd_dev);
4535 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4536
4537 /* release allocated disk header fields */
4538 rbd_header_free(&rbd_dev->header);
4539
4540 /* done with the id, and with the rbd_dev */
4541 rbd_dev_id_put(rbd_dev);
4542 rbd_assert(rbd_dev->rbd_client != NULL);
4543 rbd_dev_destroy(rbd_dev);
4544
4545 /* release module ref */
4546 module_put(THIS_MODULE);
4547 }
4548
4549 static void __rbd_remove(struct rbd_device *rbd_dev)
4550 {
4551 rbd_remove_all_snaps(rbd_dev);
4552 rbd_bus_del_dev(rbd_dev);
4553 }
4554
4555 static ssize_t rbd_remove(struct bus_type *bus,
4556 const char *buf,
4557 size_t count)
4558 {
4559 struct rbd_device *rbd_dev = NULL;
4560 int target_id, rc;
4561 unsigned long ul;
4562 int ret = count;
4563
4564 rc = strict_strtoul(buf, 10, &ul);
4565 if (rc)
4566 return rc;
4567
4568 /* convert to int; abort if we lost anything in the conversion */
4569 target_id = (int) ul;
4570 if (target_id != ul)
4571 return -EINVAL;
4572
4573 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4574
4575 rbd_dev = __rbd_get_dev(target_id);
4576 if (!rbd_dev) {
4577 ret = -ENOENT;
4578 goto done;
4579 }
4580
4581 spin_lock_irq(&rbd_dev->lock);
4582 if (rbd_dev->open_count)
4583 ret = -EBUSY;
4584 else
4585 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4586 spin_unlock_irq(&rbd_dev->lock);
4587 if (ret < 0)
4588 goto done;
4589
4590 while (rbd_dev->parent_spec) {
4591 struct rbd_device *first = rbd_dev;
4592 struct rbd_device *second = first->parent;
4593 struct rbd_device *third;
4594
4595 /*
4596 * Follow to the parent with no grandparent and
4597 * remove it.
4598 */
4599 while (second && (third = second->parent)) {
4600 first = second;
4601 second = third;
4602 }
4603 __rbd_remove(second);
4604 rbd_spec_put(first->parent_spec);
4605 first->parent_spec = NULL;
4606 first->parent_overlap = 0;
4607 first->parent = NULL;
4608 }
4609 __rbd_remove(rbd_dev);
4610
4611 done:
4612 mutex_unlock(&ctl_mutex);
4613
4614 return ret;
4615 }
4616
4617 /*
4618 * create control files in sysfs
4619 * /sys/bus/rbd/...
4620 */
4621 static int rbd_sysfs_init(void)
4622 {
4623 int ret;
4624
4625 ret = device_register(&rbd_root_dev);
4626 if (ret < 0)
4627 return ret;
4628
4629 ret = bus_register(&rbd_bus_type);
4630 if (ret < 0)
4631 device_unregister(&rbd_root_dev);
4632
4633 return ret;
4634 }
4635
4636 static void rbd_sysfs_cleanup(void)
4637 {
4638 bus_unregister(&rbd_bus_type);
4639 device_unregister(&rbd_root_dev);
4640 }
4641
4642 static int __init rbd_init(void)
4643 {
4644 int rc;
4645
4646 if (!libceph_compatible(NULL)) {
4647 rbd_warn(NULL, "libceph incompatibility (quitting)");
4648
4649 return -EINVAL;
4650 }
4651 rc = rbd_sysfs_init();
4652 if (rc)
4653 return rc;
4654 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4655 return 0;
4656 }
4657
4658 static void __exit rbd_exit(void)
4659 {
4660 rbd_sysfs_cleanup();
4661 }
4662
4663 module_init(rbd_init);
4664 module_exit(rbd_exit);
4665
4666 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4667 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4668 MODULE_DESCRIPTION("rados block device");
4669
4670 /* following authorship retained from original osdblk.c */
4671 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4672
4673 MODULE_LICENSE("GPL");