]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/skd_main.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / block / skd_main.c
1 /* Copyright 2012 STEC, Inc.
2 *
3 * This file is licensed under the terms of the 3-clause
4 * BSD License (http://opensource.org/licenses/BSD-3-Clause)
5 * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
6 * at your option. Both licenses are also available in the LICENSE file
7 * distributed with this project. This file may not be copied, modified,
8 * or distributed except in accordance with those terms.
9 * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
10 * Initial Driver Design!
11 * Thomas Swann <tswann@stec-inc.com>
12 * Interrupt handling.
13 * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
14 * biomode implementation.
15 * Akhil Bhansali <abhansali@stec-inc.com>
16 * Added support for DISCARD / FLUSH and FUA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/pci.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/blkdev.h>
26 #include <linux/sched.h>
27 #include <linux/interrupt.h>
28 #include <linux/compiler.h>
29 #include <linux/workqueue.h>
30 #include <linux/bitops.h>
31 #include <linux/delay.h>
32 #include <linux/time.h>
33 #include <linux/hdreg.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/completion.h>
36 #include <linux/scatterlist.h>
37 #include <linux/version.h>
38 #include <linux/err.h>
39 #include <linux/aer.h>
40 #include <linux/ctype.h>
41 #include <linux/wait.h>
42 #include <linux/uio.h>
43 #include <scsi/scsi.h>
44 #include <scsi/sg.h>
45 #include <linux/io.h>
46 #include <linux/uaccess.h>
47 #include <asm/unaligned.h>
48
49 #include "skd_s1120.h"
50
51 static int skd_dbg_level;
52 static int skd_isr_comp_limit = 4;
53
54 enum {
55 STEC_LINK_2_5GTS = 0,
56 STEC_LINK_5GTS = 1,
57 STEC_LINK_8GTS = 2,
58 STEC_LINK_UNKNOWN = 0xFF
59 };
60
61 enum {
62 SKD_FLUSH_INITIALIZER,
63 SKD_FLUSH_ZERO_SIZE_FIRST,
64 SKD_FLUSH_DATA_SECOND,
65 };
66
67 #define SKD_ASSERT(expr) \
68 do { \
69 if (unlikely(!(expr))) { \
70 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
71 # expr, __FILE__, __func__, __LINE__); \
72 } \
73 } while (0)
74
75 #define DRV_NAME "skd"
76 #define DRV_VERSION "2.2.1"
77 #define DRV_BUILD_ID "0260"
78 #define PFX DRV_NAME ": "
79 #define DRV_BIN_VERSION 0x100
80 #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
81
82 MODULE_AUTHOR("bug-reports: support@stec-inc.com");
83 MODULE_LICENSE("Dual BSD/GPL");
84
85 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
86 MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
87
88 #define PCI_VENDOR_ID_STEC 0x1B39
89 #define PCI_DEVICE_ID_S1120 0x0001
90
91 #define SKD_FUA_NV (1 << 1)
92 #define SKD_MINORS_PER_DEVICE 16
93
94 #define SKD_MAX_QUEUE_DEPTH 200u
95
96 #define SKD_PAUSE_TIMEOUT (5 * 1000)
97
98 #define SKD_N_FITMSG_BYTES (512u)
99
100 #define SKD_N_SPECIAL_CONTEXT 32u
101 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
102
103 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
104 * 128KB limit. That allows 4096*4K = 16M xfer size
105 */
106 #define SKD_N_SG_PER_REQ_DEFAULT 256u
107 #define SKD_N_SG_PER_SPECIAL 256u
108
109 #define SKD_N_COMPLETION_ENTRY 256u
110 #define SKD_N_READ_CAP_BYTES (8u)
111
112 #define SKD_N_INTERNAL_BYTES (512u)
113
114 /* 5 bits of uniqifier, 0xF800 */
115 #define SKD_ID_INCR (0x400)
116 #define SKD_ID_TABLE_MASK (3u << 8u)
117 #define SKD_ID_RW_REQUEST (0u << 8u)
118 #define SKD_ID_INTERNAL (1u << 8u)
119 #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
120 #define SKD_ID_FIT_MSG (3u << 8u)
121 #define SKD_ID_SLOT_MASK 0x00FFu
122 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
123
124 #define SKD_N_TIMEOUT_SLOT 4u
125 #define SKD_TIMEOUT_SLOT_MASK 3u
126
127 #define SKD_N_MAX_SECTORS 2048u
128
129 #define SKD_MAX_RETRIES 2u
130
131 #define SKD_TIMER_SECONDS(seconds) (seconds)
132 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
133
134 #define INQ_STD_NBYTES 36
135
136 enum skd_drvr_state {
137 SKD_DRVR_STATE_LOAD,
138 SKD_DRVR_STATE_IDLE,
139 SKD_DRVR_STATE_BUSY,
140 SKD_DRVR_STATE_STARTING,
141 SKD_DRVR_STATE_ONLINE,
142 SKD_DRVR_STATE_PAUSING,
143 SKD_DRVR_STATE_PAUSED,
144 SKD_DRVR_STATE_DRAINING_TIMEOUT,
145 SKD_DRVR_STATE_RESTARTING,
146 SKD_DRVR_STATE_RESUMING,
147 SKD_DRVR_STATE_STOPPING,
148 SKD_DRVR_STATE_FAULT,
149 SKD_DRVR_STATE_DISAPPEARED,
150 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
151 SKD_DRVR_STATE_BUSY_ERASE,
152 SKD_DRVR_STATE_BUSY_SANITIZE,
153 SKD_DRVR_STATE_BUSY_IMMINENT,
154 SKD_DRVR_STATE_WAIT_BOOT,
155 SKD_DRVR_STATE_SYNCING,
156 };
157
158 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
159 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
160 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
161 #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
162 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
163 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
164 #define SKD_START_WAIT_SECONDS 90u
165
166 enum skd_req_state {
167 SKD_REQ_STATE_IDLE,
168 SKD_REQ_STATE_SETUP,
169 SKD_REQ_STATE_BUSY,
170 SKD_REQ_STATE_COMPLETED,
171 SKD_REQ_STATE_TIMEOUT,
172 SKD_REQ_STATE_ABORTED,
173 };
174
175 enum skd_fit_msg_state {
176 SKD_MSG_STATE_IDLE,
177 SKD_MSG_STATE_BUSY,
178 };
179
180 enum skd_check_status_action {
181 SKD_CHECK_STATUS_REPORT_GOOD,
182 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
183 SKD_CHECK_STATUS_REQUEUE_REQUEST,
184 SKD_CHECK_STATUS_REPORT_ERROR,
185 SKD_CHECK_STATUS_BUSY_IMMINENT,
186 };
187
188 struct skd_fitmsg_context {
189 enum skd_fit_msg_state state;
190
191 struct skd_fitmsg_context *next;
192
193 u32 id;
194 u16 outstanding;
195
196 u32 length;
197 u32 offset;
198
199 u8 *msg_buf;
200 dma_addr_t mb_dma_address;
201 };
202
203 struct skd_request_context {
204 enum skd_req_state state;
205
206 struct skd_request_context *next;
207
208 u16 id;
209 u32 fitmsg_id;
210
211 struct request *req;
212 u8 flush_cmd;
213
214 u32 timeout_stamp;
215 u8 sg_data_dir;
216 struct scatterlist *sg;
217 u32 n_sg;
218 u32 sg_byte_count;
219
220 struct fit_sg_descriptor *sksg_list;
221 dma_addr_t sksg_dma_address;
222
223 struct fit_completion_entry_v1 completion;
224
225 struct fit_comp_error_info err_info;
226
227 };
228 #define SKD_DATA_DIR_HOST_TO_CARD 1
229 #define SKD_DATA_DIR_CARD_TO_HOST 2
230
231 struct skd_special_context {
232 struct skd_request_context req;
233
234 u8 orphaned;
235
236 void *data_buf;
237 dma_addr_t db_dma_address;
238
239 u8 *msg_buf;
240 dma_addr_t mb_dma_address;
241 };
242
243 struct skd_sg_io {
244 fmode_t mode;
245 void __user *argp;
246
247 struct sg_io_hdr sg;
248
249 u8 cdb[16];
250
251 u32 dxfer_len;
252 u32 iovcnt;
253 struct sg_iovec *iov;
254 struct sg_iovec no_iov_iov;
255
256 struct skd_special_context *skspcl;
257 };
258
259 typedef enum skd_irq_type {
260 SKD_IRQ_LEGACY,
261 SKD_IRQ_MSI,
262 SKD_IRQ_MSIX
263 } skd_irq_type_t;
264
265 #define SKD_MAX_BARS 2
266
267 struct skd_device {
268 volatile void __iomem *mem_map[SKD_MAX_BARS];
269 resource_size_t mem_phys[SKD_MAX_BARS];
270 u32 mem_size[SKD_MAX_BARS];
271
272 struct skd_msix_entry *msix_entries;
273
274 struct pci_dev *pdev;
275 int pcie_error_reporting_is_enabled;
276
277 spinlock_t lock;
278 struct gendisk *disk;
279 struct request_queue *queue;
280 struct device *class_dev;
281 int gendisk_on;
282 int sync_done;
283
284 atomic_t device_count;
285 u32 devno;
286 u32 major;
287 char name[32];
288 char isr_name[30];
289
290 enum skd_drvr_state state;
291 u32 drive_state;
292
293 u32 in_flight;
294 u32 cur_max_queue_depth;
295 u32 queue_low_water_mark;
296 u32 dev_max_queue_depth;
297
298 u32 num_fitmsg_context;
299 u32 num_req_context;
300
301 u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
302 u32 timeout_stamp;
303 struct skd_fitmsg_context *skmsg_free_list;
304 struct skd_fitmsg_context *skmsg_table;
305
306 struct skd_request_context *skreq_free_list;
307 struct skd_request_context *skreq_table;
308
309 struct skd_special_context *skspcl_free_list;
310 struct skd_special_context *skspcl_table;
311
312 struct skd_special_context internal_skspcl;
313 u32 read_cap_blocksize;
314 u32 read_cap_last_lba;
315 int read_cap_is_valid;
316 int inquiry_is_valid;
317 u8 inq_serial_num[13]; /*12 chars plus null term */
318 u8 id_str[80]; /* holds a composite name (pci + sernum) */
319
320 u8 skcomp_cycle;
321 u32 skcomp_ix;
322 struct fit_completion_entry_v1 *skcomp_table;
323 struct fit_comp_error_info *skerr_table;
324 dma_addr_t cq_dma_address;
325
326 wait_queue_head_t waitq;
327
328 struct timer_list timer;
329 u32 timer_countdown;
330 u32 timer_substate;
331
332 int n_special;
333 int sgs_per_request;
334 u32 last_mtd;
335
336 u32 proto_ver;
337
338 int dbg_level;
339 u32 connect_time_stamp;
340 int connect_retries;
341 #define SKD_MAX_CONNECT_RETRIES 16
342 u32 drive_jiffies;
343
344 u32 timo_slot;
345
346
347 struct work_struct completion_worker;
348 };
349
350 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
351 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
352 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
353
354 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
355 {
356 u32 val;
357
358 if (likely(skdev->dbg_level < 2))
359 return readl(skdev->mem_map[1] + offset);
360 else {
361 barrier();
362 val = readl(skdev->mem_map[1] + offset);
363 barrier();
364 pr_debug("%s:%s:%d offset %x = %x\n",
365 skdev->name, __func__, __LINE__, offset, val);
366 return val;
367 }
368
369 }
370
371 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
372 u32 offset)
373 {
374 if (likely(skdev->dbg_level < 2)) {
375 writel(val, skdev->mem_map[1] + offset);
376 barrier();
377 } else {
378 barrier();
379 writel(val, skdev->mem_map[1] + offset);
380 barrier();
381 pr_debug("%s:%s:%d offset %x = %x\n",
382 skdev->name, __func__, __LINE__, offset, val);
383 }
384 }
385
386 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
387 u32 offset)
388 {
389 if (likely(skdev->dbg_level < 2)) {
390 writeq(val, skdev->mem_map[1] + offset);
391 barrier();
392 } else {
393 barrier();
394 writeq(val, skdev->mem_map[1] + offset);
395 barrier();
396 pr_debug("%s:%s:%d offset %x = %016llx\n",
397 skdev->name, __func__, __LINE__, offset, val);
398 }
399 }
400
401
402 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
403 static int skd_isr_type = SKD_IRQ_DEFAULT;
404
405 module_param(skd_isr_type, int, 0444);
406 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
407 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
408
409 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
410 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
411
412 module_param(skd_max_req_per_msg, int, 0444);
413 MODULE_PARM_DESC(skd_max_req_per_msg,
414 "Maximum SCSI requests packed in a single message."
415 " (1-14, default==1)");
416
417 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
418 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
419 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
420
421 module_param(skd_max_queue_depth, int, 0444);
422 MODULE_PARM_DESC(skd_max_queue_depth,
423 "Maximum SCSI requests issued to s1120."
424 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
425
426 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
427 module_param(skd_sgs_per_request, int, 0444);
428 MODULE_PARM_DESC(skd_sgs_per_request,
429 "Maximum SG elements per block request."
430 " (1-4096, default==256)");
431
432 static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
433 module_param(skd_max_pass_thru, int, 0444);
434 MODULE_PARM_DESC(skd_max_pass_thru,
435 "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
436
437 module_param(skd_dbg_level, int, 0444);
438 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
439
440 module_param(skd_isr_comp_limit, int, 0444);
441 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
442
443 /* Major device number dynamically assigned. */
444 static u32 skd_major;
445
446 static void skd_destruct(struct skd_device *skdev);
447 static const struct block_device_operations skd_blockdev_ops;
448 static void skd_send_fitmsg(struct skd_device *skdev,
449 struct skd_fitmsg_context *skmsg);
450 static void skd_send_special_fitmsg(struct skd_device *skdev,
451 struct skd_special_context *skspcl);
452 static void skd_request_fn(struct request_queue *rq);
453 static void skd_end_request(struct skd_device *skdev,
454 struct skd_request_context *skreq, int error);
455 static int skd_preop_sg_list(struct skd_device *skdev,
456 struct skd_request_context *skreq);
457 static void skd_postop_sg_list(struct skd_device *skdev,
458 struct skd_request_context *skreq);
459
460 static void skd_restart_device(struct skd_device *skdev);
461 static int skd_quiesce_dev(struct skd_device *skdev);
462 static int skd_unquiesce_dev(struct skd_device *skdev);
463 static void skd_release_special(struct skd_device *skdev,
464 struct skd_special_context *skspcl);
465 static void skd_disable_interrupts(struct skd_device *skdev);
466 static void skd_isr_fwstate(struct skd_device *skdev);
467 static void skd_recover_requests(struct skd_device *skdev, int requeue);
468 static void skd_soft_reset(struct skd_device *skdev);
469
470 static const char *skd_name(struct skd_device *skdev);
471 const char *skd_drive_state_to_str(int state);
472 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
473 static void skd_log_skdev(struct skd_device *skdev, const char *event);
474 static void skd_log_skmsg(struct skd_device *skdev,
475 struct skd_fitmsg_context *skmsg, const char *event);
476 static void skd_log_skreq(struct skd_device *skdev,
477 struct skd_request_context *skreq, const char *event);
478
479 /*
480 *****************************************************************************
481 * READ/WRITE REQUESTS
482 *****************************************************************************
483 */
484 static void skd_fail_all_pending(struct skd_device *skdev)
485 {
486 struct request_queue *q = skdev->queue;
487 struct request *req;
488
489 for (;; ) {
490 req = blk_peek_request(q);
491 if (req == NULL)
492 break;
493 blk_start_request(req);
494 __blk_end_request_all(req, -EIO);
495 }
496 }
497
498 static void
499 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
500 int data_dir, unsigned lba,
501 unsigned count)
502 {
503 if (data_dir == READ)
504 scsi_req->cdb[0] = 0x28;
505 else
506 scsi_req->cdb[0] = 0x2a;
507
508 scsi_req->cdb[1] = 0;
509 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
510 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
511 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
512 scsi_req->cdb[5] = (lba & 0xff);
513 scsi_req->cdb[6] = 0;
514 scsi_req->cdb[7] = (count & 0xff00) >> 8;
515 scsi_req->cdb[8] = count & 0xff;
516 scsi_req->cdb[9] = 0;
517 }
518
519 static void
520 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
521 struct skd_request_context *skreq)
522 {
523 skreq->flush_cmd = 1;
524
525 scsi_req->cdb[0] = 0x35;
526 scsi_req->cdb[1] = 0;
527 scsi_req->cdb[2] = 0;
528 scsi_req->cdb[3] = 0;
529 scsi_req->cdb[4] = 0;
530 scsi_req->cdb[5] = 0;
531 scsi_req->cdb[6] = 0;
532 scsi_req->cdb[7] = 0;
533 scsi_req->cdb[8] = 0;
534 scsi_req->cdb[9] = 0;
535 }
536
537 static void skd_request_fn_not_online(struct request_queue *q);
538
539 static void skd_request_fn(struct request_queue *q)
540 {
541 struct skd_device *skdev = q->queuedata;
542 struct skd_fitmsg_context *skmsg = NULL;
543 struct fit_msg_hdr *fmh = NULL;
544 struct skd_request_context *skreq;
545 struct request *req = NULL;
546 struct skd_scsi_request *scsi_req;
547 unsigned long io_flags;
548 int error;
549 u32 lba;
550 u32 count;
551 int data_dir;
552 u32 be_lba;
553 u32 be_count;
554 u64 be_dmaa;
555 u64 cmdctxt;
556 u32 timo_slot;
557 void *cmd_ptr;
558 int flush, fua;
559
560 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
561 skd_request_fn_not_online(q);
562 return;
563 }
564
565 if (blk_queue_stopped(skdev->queue)) {
566 if (skdev->skmsg_free_list == NULL ||
567 skdev->skreq_free_list == NULL ||
568 skdev->in_flight >= skdev->queue_low_water_mark)
569 /* There is still some kind of shortage */
570 return;
571
572 queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
573 }
574
575 /*
576 * Stop conditions:
577 * - There are no more native requests
578 * - There are already the maximum number of requests in progress
579 * - There are no more skd_request_context entries
580 * - There are no more FIT msg buffers
581 */
582 for (;; ) {
583
584 flush = fua = 0;
585
586 req = blk_peek_request(q);
587
588 /* Are there any native requests to start? */
589 if (req == NULL)
590 break;
591
592 lba = (u32)blk_rq_pos(req);
593 count = blk_rq_sectors(req);
594 data_dir = rq_data_dir(req);
595 io_flags = req->cmd_flags;
596
597 if (req_op(req) == REQ_OP_FLUSH)
598 flush++;
599
600 if (io_flags & REQ_FUA)
601 fua++;
602
603 pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
604 "count=%u(0x%x) dir=%d\n",
605 skdev->name, __func__, __LINE__,
606 req, lba, lba, count, count, data_dir);
607
608 /* At this point we know there is a request */
609
610 /* Are too many requets already in progress? */
611 if (skdev->in_flight >= skdev->cur_max_queue_depth) {
612 pr_debug("%s:%s:%d qdepth %d, limit %d\n",
613 skdev->name, __func__, __LINE__,
614 skdev->in_flight, skdev->cur_max_queue_depth);
615 break;
616 }
617
618 /* Is a skd_request_context available? */
619 skreq = skdev->skreq_free_list;
620 if (skreq == NULL) {
621 pr_debug("%s:%s:%d Out of req=%p\n",
622 skdev->name, __func__, __LINE__, q);
623 break;
624 }
625 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
626 SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
627
628 /* Now we check to see if we can get a fit msg */
629 if (skmsg == NULL) {
630 if (skdev->skmsg_free_list == NULL) {
631 pr_debug("%s:%s:%d Out of msg\n",
632 skdev->name, __func__, __LINE__);
633 break;
634 }
635 }
636
637 skreq->flush_cmd = 0;
638 skreq->n_sg = 0;
639 skreq->sg_byte_count = 0;
640
641 /*
642 * OK to now dequeue request from q.
643 *
644 * At this point we are comitted to either start or reject
645 * the native request. Note that skd_request_context is
646 * available but is still at the head of the free list.
647 */
648 blk_start_request(req);
649 skreq->req = req;
650 skreq->fitmsg_id = 0;
651
652 /* Either a FIT msg is in progress or we have to start one. */
653 if (skmsg == NULL) {
654 /* Are there any FIT msg buffers available? */
655 skmsg = skdev->skmsg_free_list;
656 if (skmsg == NULL) {
657 pr_debug("%s:%s:%d Out of msg skdev=%p\n",
658 skdev->name, __func__, __LINE__,
659 skdev);
660 break;
661 }
662 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
663 SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
664
665 skdev->skmsg_free_list = skmsg->next;
666
667 skmsg->state = SKD_MSG_STATE_BUSY;
668 skmsg->id += SKD_ID_INCR;
669
670 /* Initialize the FIT msg header */
671 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
672 memset(fmh, 0, sizeof(*fmh));
673 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
674 skmsg->length = sizeof(*fmh);
675 }
676
677 skreq->fitmsg_id = skmsg->id;
678
679 /*
680 * Note that a FIT msg may have just been started
681 * but contains no SoFIT requests yet.
682 */
683
684 /*
685 * Transcode the request, checking as we go. The outcome of
686 * the transcoding is represented by the error variable.
687 */
688 cmd_ptr = &skmsg->msg_buf[skmsg->length];
689 memset(cmd_ptr, 0, 32);
690
691 be_lba = cpu_to_be32(lba);
692 be_count = cpu_to_be32(count);
693 be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
694 cmdctxt = skreq->id + SKD_ID_INCR;
695
696 scsi_req = cmd_ptr;
697 scsi_req->hdr.tag = cmdctxt;
698 scsi_req->hdr.sg_list_dma_address = be_dmaa;
699
700 if (data_dir == READ)
701 skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
702 else
703 skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
704
705 if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
706 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
707 SKD_ASSERT(skreq->flush_cmd == 1);
708
709 } else {
710 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
711 }
712
713 if (fua)
714 scsi_req->cdb[1] |= SKD_FUA_NV;
715
716 if (!req->bio)
717 goto skip_sg;
718
719 error = skd_preop_sg_list(skdev, skreq);
720
721 if (error != 0) {
722 /*
723 * Complete the native request with error.
724 * Note that the request context is still at the
725 * head of the free list, and that the SoFIT request
726 * was encoded into the FIT msg buffer but the FIT
727 * msg length has not been updated. In short, the
728 * only resource that has been allocated but might
729 * not be used is that the FIT msg could be empty.
730 */
731 pr_debug("%s:%s:%d error Out\n",
732 skdev->name, __func__, __LINE__);
733 skd_end_request(skdev, skreq, error);
734 continue;
735 }
736
737 skip_sg:
738 scsi_req->hdr.sg_list_len_bytes =
739 cpu_to_be32(skreq->sg_byte_count);
740
741 /* Complete resource allocations. */
742 skdev->skreq_free_list = skreq->next;
743 skreq->state = SKD_REQ_STATE_BUSY;
744 skreq->id += SKD_ID_INCR;
745
746 skmsg->length += sizeof(struct skd_scsi_request);
747 fmh->num_protocol_cmds_coalesced++;
748
749 /*
750 * Update the active request counts.
751 * Capture the timeout timestamp.
752 */
753 skreq->timeout_stamp = skdev->timeout_stamp;
754 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
755 skdev->timeout_slot[timo_slot]++;
756 skdev->in_flight++;
757 pr_debug("%s:%s:%d req=0x%x busy=%d\n",
758 skdev->name, __func__, __LINE__,
759 skreq->id, skdev->in_flight);
760
761 /*
762 * If the FIT msg buffer is full send it.
763 */
764 if (skmsg->length >= SKD_N_FITMSG_BYTES ||
765 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
766 skd_send_fitmsg(skdev, skmsg);
767 skmsg = NULL;
768 fmh = NULL;
769 }
770 }
771
772 /*
773 * Is a FIT msg in progress? If it is empty put the buffer back
774 * on the free list. If it is non-empty send what we got.
775 * This minimizes latency when there are fewer requests than
776 * what fits in a FIT msg.
777 */
778 if (skmsg != NULL) {
779 /* Bigger than just a FIT msg header? */
780 if (skmsg->length > sizeof(struct fit_msg_hdr)) {
781 pr_debug("%s:%s:%d sending msg=%p, len %d\n",
782 skdev->name, __func__, __LINE__,
783 skmsg, skmsg->length);
784 skd_send_fitmsg(skdev, skmsg);
785 } else {
786 /*
787 * The FIT msg is empty. It means we got started
788 * on the msg, but the requests were rejected.
789 */
790 skmsg->state = SKD_MSG_STATE_IDLE;
791 skmsg->id += SKD_ID_INCR;
792 skmsg->next = skdev->skmsg_free_list;
793 skdev->skmsg_free_list = skmsg;
794 }
795 skmsg = NULL;
796 fmh = NULL;
797 }
798
799 /*
800 * If req is non-NULL it means there is something to do but
801 * we are out of a resource.
802 */
803 if (req)
804 blk_stop_queue(skdev->queue);
805 }
806
807 static void skd_end_request(struct skd_device *skdev,
808 struct skd_request_context *skreq, int error)
809 {
810 if (unlikely(error)) {
811 struct request *req = skreq->req;
812 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
813 u32 lba = (u32)blk_rq_pos(req);
814 u32 count = blk_rq_sectors(req);
815
816 pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
817 skd_name(skdev), cmd, lba, count, skreq->id);
818 } else
819 pr_debug("%s:%s:%d id=0x%x error=%d\n",
820 skdev->name, __func__, __LINE__, skreq->id, error);
821
822 __blk_end_request_all(skreq->req, error);
823 }
824
825 static int skd_preop_sg_list(struct skd_device *skdev,
826 struct skd_request_context *skreq)
827 {
828 struct request *req = skreq->req;
829 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
830 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
831 struct scatterlist *sg = &skreq->sg[0];
832 int n_sg;
833 int i;
834
835 skreq->sg_byte_count = 0;
836
837 /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
838 skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
839
840 n_sg = blk_rq_map_sg(skdev->queue, req, sg);
841 if (n_sg <= 0)
842 return -EINVAL;
843
844 /*
845 * Map scatterlist to PCI bus addresses.
846 * Note PCI might change the number of entries.
847 */
848 n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
849 if (n_sg <= 0)
850 return -EINVAL;
851
852 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
853
854 skreq->n_sg = n_sg;
855
856 for (i = 0; i < n_sg; i++) {
857 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
858 u32 cnt = sg_dma_len(&sg[i]);
859 uint64_t dma_addr = sg_dma_address(&sg[i]);
860
861 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
862 sgd->byte_count = cnt;
863 skreq->sg_byte_count += cnt;
864 sgd->host_side_addr = dma_addr;
865 sgd->dev_side_addr = 0;
866 }
867
868 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
869 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
870
871 if (unlikely(skdev->dbg_level > 1)) {
872 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
873 skdev->name, __func__, __LINE__,
874 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
875 for (i = 0; i < n_sg; i++) {
876 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
877 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
878 "addr=0x%llx next=0x%llx\n",
879 skdev->name, __func__, __LINE__,
880 i, sgd->byte_count, sgd->control,
881 sgd->host_side_addr, sgd->next_desc_ptr);
882 }
883 }
884
885 return 0;
886 }
887
888 static void skd_postop_sg_list(struct skd_device *skdev,
889 struct skd_request_context *skreq)
890 {
891 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
892 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
893
894 /*
895 * restore the next ptr for next IO request so we
896 * don't have to set it every time.
897 */
898 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
899 skreq->sksg_dma_address +
900 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
901 pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
902 }
903
904 static void skd_request_fn_not_online(struct request_queue *q)
905 {
906 struct skd_device *skdev = q->queuedata;
907 int error;
908
909 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
910
911 skd_log_skdev(skdev, "req_not_online");
912 switch (skdev->state) {
913 case SKD_DRVR_STATE_PAUSING:
914 case SKD_DRVR_STATE_PAUSED:
915 case SKD_DRVR_STATE_STARTING:
916 case SKD_DRVR_STATE_RESTARTING:
917 case SKD_DRVR_STATE_WAIT_BOOT:
918 /* In case of starting, we haven't started the queue,
919 * so we can't get here... but requests are
920 * possibly hanging out waiting for us because we
921 * reported the dev/skd0 already. They'll wait
922 * forever if connect doesn't complete.
923 * What to do??? delay dev/skd0 ??
924 */
925 case SKD_DRVR_STATE_BUSY:
926 case SKD_DRVR_STATE_BUSY_IMMINENT:
927 case SKD_DRVR_STATE_BUSY_ERASE:
928 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
929 return;
930
931 case SKD_DRVR_STATE_BUSY_SANITIZE:
932 case SKD_DRVR_STATE_STOPPING:
933 case SKD_DRVR_STATE_SYNCING:
934 case SKD_DRVR_STATE_FAULT:
935 case SKD_DRVR_STATE_DISAPPEARED:
936 default:
937 error = -EIO;
938 break;
939 }
940
941 /* If we get here, terminate all pending block requeusts
942 * with EIO and any scsi pass thru with appropriate sense
943 */
944
945 skd_fail_all_pending(skdev);
946 }
947
948 /*
949 *****************************************************************************
950 * TIMER
951 *****************************************************************************
952 */
953
954 static void skd_timer_tick_not_online(struct skd_device *skdev);
955
956 static void skd_timer_tick(ulong arg)
957 {
958 struct skd_device *skdev = (struct skd_device *)arg;
959
960 u32 timo_slot;
961 u32 overdue_timestamp;
962 unsigned long reqflags;
963 u32 state;
964
965 if (skdev->state == SKD_DRVR_STATE_FAULT)
966 /* The driver has declared fault, and we want it to
967 * stay that way until driver is reloaded.
968 */
969 return;
970
971 spin_lock_irqsave(&skdev->lock, reqflags);
972
973 state = SKD_READL(skdev, FIT_STATUS);
974 state &= FIT_SR_DRIVE_STATE_MASK;
975 if (state != skdev->drive_state)
976 skd_isr_fwstate(skdev);
977
978 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
979 skd_timer_tick_not_online(skdev);
980 goto timer_func_out;
981 }
982 skdev->timeout_stamp++;
983 timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
984
985 /*
986 * All requests that happened during the previous use of
987 * this slot should be done by now. The previous use was
988 * over 7 seconds ago.
989 */
990 if (skdev->timeout_slot[timo_slot] == 0)
991 goto timer_func_out;
992
993 /* Something is overdue */
994 overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
995
996 pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
997 skdev->name, __func__, __LINE__,
998 skdev->timeout_slot[timo_slot], skdev->in_flight);
999 pr_err("(%s): Overdue IOs (%d), busy %d\n",
1000 skd_name(skdev), skdev->timeout_slot[timo_slot],
1001 skdev->in_flight);
1002
1003 skdev->timer_countdown = SKD_DRAINING_TIMO;
1004 skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
1005 skdev->timo_slot = timo_slot;
1006 blk_stop_queue(skdev->queue);
1007
1008 timer_func_out:
1009 mod_timer(&skdev->timer, (jiffies + HZ));
1010
1011 spin_unlock_irqrestore(&skdev->lock, reqflags);
1012 }
1013
1014 static void skd_timer_tick_not_online(struct skd_device *skdev)
1015 {
1016 switch (skdev->state) {
1017 case SKD_DRVR_STATE_IDLE:
1018 case SKD_DRVR_STATE_LOAD:
1019 break;
1020 case SKD_DRVR_STATE_BUSY_SANITIZE:
1021 pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
1022 skdev->name, __func__, __LINE__,
1023 skdev->drive_state, skdev->state);
1024 /* If we've been in sanitize for 3 seconds, we figure we're not
1025 * going to get anymore completions, so recover requests now
1026 */
1027 if (skdev->timer_countdown > 0) {
1028 skdev->timer_countdown--;
1029 return;
1030 }
1031 skd_recover_requests(skdev, 0);
1032 break;
1033
1034 case SKD_DRVR_STATE_BUSY:
1035 case SKD_DRVR_STATE_BUSY_IMMINENT:
1036 case SKD_DRVR_STATE_BUSY_ERASE:
1037 pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
1038 skdev->name, __func__, __LINE__,
1039 skdev->state, skdev->timer_countdown);
1040 if (skdev->timer_countdown > 0) {
1041 skdev->timer_countdown--;
1042 return;
1043 }
1044 pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
1045 skdev->name, __func__, __LINE__,
1046 skdev->state, skdev->timer_countdown);
1047 skd_restart_device(skdev);
1048 break;
1049
1050 case SKD_DRVR_STATE_WAIT_BOOT:
1051 case SKD_DRVR_STATE_STARTING:
1052 if (skdev->timer_countdown > 0) {
1053 skdev->timer_countdown--;
1054 return;
1055 }
1056 /* For now, we fault the drive. Could attempt resets to
1057 * revcover at some point. */
1058 skdev->state = SKD_DRVR_STATE_FAULT;
1059
1060 pr_err("(%s): DriveFault Connect Timeout (%x)\n",
1061 skd_name(skdev), skdev->drive_state);
1062
1063 /*start the queue so we can respond with error to requests */
1064 /* wakeup anyone waiting for startup complete */
1065 blk_start_queue(skdev->queue);
1066 skdev->gendisk_on = -1;
1067 wake_up_interruptible(&skdev->waitq);
1068 break;
1069
1070 case SKD_DRVR_STATE_ONLINE:
1071 /* shouldn't get here. */
1072 break;
1073
1074 case SKD_DRVR_STATE_PAUSING:
1075 case SKD_DRVR_STATE_PAUSED:
1076 break;
1077
1078 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
1079 pr_debug("%s:%s:%d "
1080 "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
1081 skdev->name, __func__, __LINE__,
1082 skdev->timo_slot,
1083 skdev->timer_countdown,
1084 skdev->in_flight,
1085 skdev->timeout_slot[skdev->timo_slot]);
1086 /* if the slot has cleared we can let the I/O continue */
1087 if (skdev->timeout_slot[skdev->timo_slot] == 0) {
1088 pr_debug("%s:%s:%d Slot drained, starting queue.\n",
1089 skdev->name, __func__, __LINE__);
1090 skdev->state = SKD_DRVR_STATE_ONLINE;
1091 blk_start_queue(skdev->queue);
1092 return;
1093 }
1094 if (skdev->timer_countdown > 0) {
1095 skdev->timer_countdown--;
1096 return;
1097 }
1098 skd_restart_device(skdev);
1099 break;
1100
1101 case SKD_DRVR_STATE_RESTARTING:
1102 if (skdev->timer_countdown > 0) {
1103 skdev->timer_countdown--;
1104 return;
1105 }
1106 /* For now, we fault the drive. Could attempt resets to
1107 * revcover at some point. */
1108 skdev->state = SKD_DRVR_STATE_FAULT;
1109 pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
1110 skd_name(skdev), skdev->drive_state);
1111
1112 /*
1113 * Recovering does two things:
1114 * 1. completes IO with error
1115 * 2. reclaims dma resources
1116 * When is it safe to recover requests?
1117 * - if the drive state is faulted
1118 * - if the state is still soft reset after out timeout
1119 * - if the drive registers are dead (state = FF)
1120 * If it is "unsafe", we still need to recover, so we will
1121 * disable pci bus mastering and disable our interrupts.
1122 */
1123
1124 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
1125 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
1126 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
1127 /* It never came out of soft reset. Try to
1128 * recover the requests and then let them
1129 * fail. This is to mitigate hung processes. */
1130 skd_recover_requests(skdev, 0);
1131 else {
1132 pr_err("(%s): Disable BusMaster (%x)\n",
1133 skd_name(skdev), skdev->drive_state);
1134 pci_disable_device(skdev->pdev);
1135 skd_disable_interrupts(skdev);
1136 skd_recover_requests(skdev, 0);
1137 }
1138
1139 /*start the queue so we can respond with error to requests */
1140 /* wakeup anyone waiting for startup complete */
1141 blk_start_queue(skdev->queue);
1142 skdev->gendisk_on = -1;
1143 wake_up_interruptible(&skdev->waitq);
1144 break;
1145
1146 case SKD_DRVR_STATE_RESUMING:
1147 case SKD_DRVR_STATE_STOPPING:
1148 case SKD_DRVR_STATE_SYNCING:
1149 case SKD_DRVR_STATE_FAULT:
1150 case SKD_DRVR_STATE_DISAPPEARED:
1151 default:
1152 break;
1153 }
1154 }
1155
1156 static int skd_start_timer(struct skd_device *skdev)
1157 {
1158 int rc;
1159
1160 init_timer(&skdev->timer);
1161 setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
1162
1163 rc = mod_timer(&skdev->timer, (jiffies + HZ));
1164 if (rc)
1165 pr_err("%s: failed to start timer %d\n",
1166 __func__, rc);
1167 return rc;
1168 }
1169
1170 static void skd_kill_timer(struct skd_device *skdev)
1171 {
1172 del_timer_sync(&skdev->timer);
1173 }
1174
1175 /*
1176 *****************************************************************************
1177 * IOCTL
1178 *****************************************************************************
1179 */
1180 static int skd_ioctl_sg_io(struct skd_device *skdev,
1181 fmode_t mode, void __user *argp);
1182 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1183 struct skd_sg_io *sksgio);
1184 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1185 struct skd_sg_io *sksgio);
1186 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1187 struct skd_sg_io *sksgio);
1188 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1189 struct skd_sg_io *sksgio, int dxfer_dir);
1190 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1191 struct skd_sg_io *sksgio);
1192 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
1193 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1194 struct skd_sg_io *sksgio);
1195 static int skd_sg_io_put_status(struct skd_device *skdev,
1196 struct skd_sg_io *sksgio);
1197
1198 static void skd_complete_special(struct skd_device *skdev,
1199 volatile struct fit_completion_entry_v1
1200 *skcomp,
1201 volatile struct fit_comp_error_info *skerr,
1202 struct skd_special_context *skspcl);
1203
1204 static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
1205 uint cmd_in, ulong arg)
1206 {
1207 static const int sg_version_num = 30527;
1208 int rc = 0, timeout;
1209 struct gendisk *disk = bdev->bd_disk;
1210 struct skd_device *skdev = disk->private_data;
1211 int __user *p = (int __user *)arg;
1212
1213 pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
1214 skdev->name, __func__, __LINE__,
1215 disk->disk_name, current->comm, mode, cmd_in, arg);
1216
1217 if (!capable(CAP_SYS_ADMIN))
1218 return -EPERM;
1219
1220 switch (cmd_in) {
1221 case SG_SET_TIMEOUT:
1222 rc = get_user(timeout, p);
1223 if (!rc)
1224 disk->queue->sg_timeout = clock_t_to_jiffies(timeout);
1225 break;
1226 case SG_GET_TIMEOUT:
1227 rc = jiffies_to_clock_t(disk->queue->sg_timeout);
1228 break;
1229 case SG_GET_VERSION_NUM:
1230 rc = put_user(sg_version_num, p);
1231 break;
1232 case SG_IO:
1233 rc = skd_ioctl_sg_io(skdev, mode, (void __user *)arg);
1234 break;
1235
1236 default:
1237 rc = -ENOTTY;
1238 break;
1239 }
1240
1241 pr_debug("%s:%s:%d %s: completion rc %d\n",
1242 skdev->name, __func__, __LINE__, disk->disk_name, rc);
1243 return rc;
1244 }
1245
1246 static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
1247 void __user *argp)
1248 {
1249 int rc;
1250 struct skd_sg_io sksgio;
1251
1252 memset(&sksgio, 0, sizeof(sksgio));
1253 sksgio.mode = mode;
1254 sksgio.argp = argp;
1255 sksgio.iov = &sksgio.no_iov_iov;
1256
1257 switch (skdev->state) {
1258 case SKD_DRVR_STATE_ONLINE:
1259 case SKD_DRVR_STATE_BUSY_IMMINENT:
1260 break;
1261
1262 default:
1263 pr_debug("%s:%s:%d drive not online\n",
1264 skdev->name, __func__, __LINE__);
1265 rc = -ENXIO;
1266 goto out;
1267 }
1268
1269 rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
1270 if (rc)
1271 goto out;
1272
1273 rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
1274 if (rc)
1275 goto out;
1276
1277 rc = skd_sg_io_prep_buffering(skdev, &sksgio);
1278 if (rc)
1279 goto out;
1280
1281 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
1282 if (rc)
1283 goto out;
1284
1285 rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
1286 if (rc)
1287 goto out;
1288
1289 rc = skd_sg_io_await(skdev, &sksgio);
1290 if (rc)
1291 goto out;
1292
1293 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
1294 if (rc)
1295 goto out;
1296
1297 rc = skd_sg_io_put_status(skdev, &sksgio);
1298 if (rc)
1299 goto out;
1300
1301 rc = 0;
1302
1303 out:
1304 skd_sg_io_release_skspcl(skdev, &sksgio);
1305
1306 if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
1307 kfree(sksgio.iov);
1308 return rc;
1309 }
1310
1311 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1312 struct skd_sg_io *sksgio)
1313 {
1314 struct sg_io_hdr *sgp = &sksgio->sg;
1315 int i, acc;
1316
1317 if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
1318 pr_debug("%s:%s:%d access sg failed %p\n",
1319 skdev->name, __func__, __LINE__, sksgio->argp);
1320 return -EFAULT;
1321 }
1322
1323 if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
1324 pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
1325 skdev->name, __func__, __LINE__, sksgio->argp);
1326 return -EFAULT;
1327 }
1328
1329 if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
1330 pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
1331 skdev->name, __func__, __LINE__, sgp->interface_id);
1332 return -EINVAL;
1333 }
1334
1335 if (sgp->cmd_len > sizeof(sksgio->cdb)) {
1336 pr_debug("%s:%s:%d cmd_len invalid %d\n",
1337 skdev->name, __func__, __LINE__, sgp->cmd_len);
1338 return -EINVAL;
1339 }
1340
1341 if (sgp->iovec_count > 256) {
1342 pr_debug("%s:%s:%d iovec_count invalid %d\n",
1343 skdev->name, __func__, __LINE__, sgp->iovec_count);
1344 return -EINVAL;
1345 }
1346
1347 if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
1348 pr_debug("%s:%s:%d dxfer_len invalid %d\n",
1349 skdev->name, __func__, __LINE__, sgp->dxfer_len);
1350 return -EINVAL;
1351 }
1352
1353 switch (sgp->dxfer_direction) {
1354 case SG_DXFER_NONE:
1355 acc = -1;
1356 break;
1357
1358 case SG_DXFER_TO_DEV:
1359 acc = VERIFY_READ;
1360 break;
1361
1362 case SG_DXFER_FROM_DEV:
1363 case SG_DXFER_TO_FROM_DEV:
1364 acc = VERIFY_WRITE;
1365 break;
1366
1367 default:
1368 pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
1369 skdev->name, __func__, __LINE__, sgp->dxfer_direction);
1370 return -EINVAL;
1371 }
1372
1373 if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
1374 pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
1375 skdev->name, __func__, __LINE__, sgp->cmdp);
1376 return -EFAULT;
1377 }
1378
1379 if (sgp->mx_sb_len != 0) {
1380 if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
1381 pr_debug("%s:%s:%d access sbp failed %p\n",
1382 skdev->name, __func__, __LINE__, sgp->sbp);
1383 return -EFAULT;
1384 }
1385 }
1386
1387 if (sgp->iovec_count == 0) {
1388 sksgio->iov[0].iov_base = sgp->dxferp;
1389 sksgio->iov[0].iov_len = sgp->dxfer_len;
1390 sksgio->iovcnt = 1;
1391 sksgio->dxfer_len = sgp->dxfer_len;
1392 } else {
1393 struct sg_iovec *iov;
1394 uint nbytes = sizeof(*iov) * sgp->iovec_count;
1395 size_t iov_data_len;
1396
1397 iov = kmalloc(nbytes, GFP_KERNEL);
1398 if (iov == NULL) {
1399 pr_debug("%s:%s:%d alloc iovec failed %d\n",
1400 skdev->name, __func__, __LINE__,
1401 sgp->iovec_count);
1402 return -ENOMEM;
1403 }
1404 sksgio->iov = iov;
1405 sksgio->iovcnt = sgp->iovec_count;
1406
1407 if (copy_from_user(iov, sgp->dxferp, nbytes)) {
1408 pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
1409 skdev->name, __func__, __LINE__, sgp->dxferp);
1410 return -EFAULT;
1411 }
1412
1413 /*
1414 * Sum up the vecs, making sure they don't overflow
1415 */
1416 iov_data_len = 0;
1417 for (i = 0; i < sgp->iovec_count; i++) {
1418 if (iov_data_len + iov[i].iov_len < iov_data_len)
1419 return -EINVAL;
1420 iov_data_len += iov[i].iov_len;
1421 }
1422
1423 /* SG_IO howto says that the shorter of the two wins */
1424 if (sgp->dxfer_len < iov_data_len) {
1425 sksgio->iovcnt = iov_shorten((struct iovec *)iov,
1426 sgp->iovec_count,
1427 sgp->dxfer_len);
1428 sksgio->dxfer_len = sgp->dxfer_len;
1429 } else
1430 sksgio->dxfer_len = iov_data_len;
1431 }
1432
1433 if (sgp->dxfer_direction != SG_DXFER_NONE) {
1434 struct sg_iovec *iov = sksgio->iov;
1435 for (i = 0; i < sksgio->iovcnt; i++, iov++) {
1436 if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
1437 pr_debug("%s:%s:%d access data failed %p/%d\n",
1438 skdev->name, __func__, __LINE__,
1439 iov->iov_base, (int)iov->iov_len);
1440 return -EFAULT;
1441 }
1442 }
1443 }
1444
1445 return 0;
1446 }
1447
1448 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1449 struct skd_sg_io *sksgio)
1450 {
1451 struct skd_special_context *skspcl = NULL;
1452 int rc;
1453
1454 for (;;) {
1455 ulong flags;
1456
1457 spin_lock_irqsave(&skdev->lock, flags);
1458 skspcl = skdev->skspcl_free_list;
1459 if (skspcl != NULL) {
1460 skdev->skspcl_free_list =
1461 (struct skd_special_context *)skspcl->req.next;
1462 skspcl->req.id += SKD_ID_INCR;
1463 skspcl->req.state = SKD_REQ_STATE_SETUP;
1464 skspcl->orphaned = 0;
1465 skspcl->req.n_sg = 0;
1466 }
1467 spin_unlock_irqrestore(&skdev->lock, flags);
1468
1469 if (skspcl != NULL) {
1470 rc = 0;
1471 break;
1472 }
1473
1474 pr_debug("%s:%s:%d blocking\n",
1475 skdev->name, __func__, __LINE__);
1476
1477 rc = wait_event_interruptible_timeout(
1478 skdev->waitq,
1479 (skdev->skspcl_free_list != NULL),
1480 msecs_to_jiffies(sksgio->sg.timeout));
1481
1482 pr_debug("%s:%s:%d unblocking, rc=%d\n",
1483 skdev->name, __func__, __LINE__, rc);
1484
1485 if (rc <= 0) {
1486 if (rc == 0)
1487 rc = -ETIMEDOUT;
1488 else
1489 rc = -EINTR;
1490 break;
1491 }
1492 /*
1493 * If we get here rc > 0 meaning the timeout to
1494 * wait_event_interruptible_timeout() had time left, hence the
1495 * sought event -- non-empty free list -- happened.
1496 * Retry the allocation.
1497 */
1498 }
1499 sksgio->skspcl = skspcl;
1500
1501 return rc;
1502 }
1503
1504 static int skd_skreq_prep_buffering(struct skd_device *skdev,
1505 struct skd_request_context *skreq,
1506 u32 dxfer_len)
1507 {
1508 u32 resid = dxfer_len;
1509
1510 /*
1511 * The DMA engine must have aligned addresses and byte counts.
1512 */
1513 resid += (-resid) & 3;
1514 skreq->sg_byte_count = resid;
1515
1516 skreq->n_sg = 0;
1517
1518 while (resid > 0) {
1519 u32 nbytes = PAGE_SIZE;
1520 u32 ix = skreq->n_sg;
1521 struct scatterlist *sg = &skreq->sg[ix];
1522 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1523 struct page *page;
1524
1525 if (nbytes > resid)
1526 nbytes = resid;
1527
1528 page = alloc_page(GFP_KERNEL);
1529 if (page == NULL)
1530 return -ENOMEM;
1531
1532 sg_set_page(sg, page, nbytes, 0);
1533
1534 /* TODO: This should be going through a pci_???()
1535 * routine to do proper mapping. */
1536 sksg->control = FIT_SGD_CONTROL_NOT_LAST;
1537 sksg->byte_count = nbytes;
1538
1539 sksg->host_side_addr = sg_phys(sg);
1540
1541 sksg->dev_side_addr = 0;
1542 sksg->next_desc_ptr = skreq->sksg_dma_address +
1543 (ix + 1) * sizeof(*sksg);
1544
1545 skreq->n_sg++;
1546 resid -= nbytes;
1547 }
1548
1549 if (skreq->n_sg > 0) {
1550 u32 ix = skreq->n_sg - 1;
1551 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1552
1553 sksg->control = FIT_SGD_CONTROL_LAST;
1554 sksg->next_desc_ptr = 0;
1555 }
1556
1557 if (unlikely(skdev->dbg_level > 1)) {
1558 u32 i;
1559
1560 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
1561 skdev->name, __func__, __LINE__,
1562 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
1563 for (i = 0; i < skreq->n_sg; i++) {
1564 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
1565
1566 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
1567 "addr=0x%llx next=0x%llx\n",
1568 skdev->name, __func__, __LINE__,
1569 i, sgd->byte_count, sgd->control,
1570 sgd->host_side_addr, sgd->next_desc_ptr);
1571 }
1572 }
1573
1574 return 0;
1575 }
1576
1577 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1578 struct skd_sg_io *sksgio)
1579 {
1580 struct skd_special_context *skspcl = sksgio->skspcl;
1581 struct skd_request_context *skreq = &skspcl->req;
1582 u32 dxfer_len = sksgio->dxfer_len;
1583 int rc;
1584
1585 rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
1586 /*
1587 * Eventually, errors or not, skd_release_special() is called
1588 * to recover allocations including partial allocations.
1589 */
1590 return rc;
1591 }
1592
1593 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1594 struct skd_sg_io *sksgio, int dxfer_dir)
1595 {
1596 struct skd_special_context *skspcl = sksgio->skspcl;
1597 u32 iov_ix = 0;
1598 struct sg_iovec curiov;
1599 u32 sksg_ix = 0;
1600 u8 *bufp = NULL;
1601 u32 buf_len = 0;
1602 u32 resid = sksgio->dxfer_len;
1603 int rc;
1604
1605 curiov.iov_len = 0;
1606 curiov.iov_base = NULL;
1607
1608 if (dxfer_dir != sksgio->sg.dxfer_direction) {
1609 if (dxfer_dir != SG_DXFER_TO_DEV ||
1610 sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
1611 return 0;
1612 }
1613
1614 while (resid > 0) {
1615 u32 nbytes = PAGE_SIZE;
1616
1617 if (curiov.iov_len == 0) {
1618 curiov = sksgio->iov[iov_ix++];
1619 continue;
1620 }
1621
1622 if (buf_len == 0) {
1623 struct page *page;
1624 page = sg_page(&skspcl->req.sg[sksg_ix++]);
1625 bufp = page_address(page);
1626 buf_len = PAGE_SIZE;
1627 }
1628
1629 nbytes = min_t(u32, nbytes, resid);
1630 nbytes = min_t(u32, nbytes, curiov.iov_len);
1631 nbytes = min_t(u32, nbytes, buf_len);
1632
1633 if (dxfer_dir == SG_DXFER_TO_DEV)
1634 rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
1635 else
1636 rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
1637
1638 if (rc)
1639 return -EFAULT;
1640
1641 resid -= nbytes;
1642 curiov.iov_len -= nbytes;
1643 curiov.iov_base += nbytes;
1644 buf_len -= nbytes;
1645 }
1646
1647 return 0;
1648 }
1649
1650 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1651 struct skd_sg_io *sksgio)
1652 {
1653 struct skd_special_context *skspcl = sksgio->skspcl;
1654 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
1655 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
1656
1657 memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
1658
1659 /* Initialize the FIT msg header */
1660 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1661 fmh->num_protocol_cmds_coalesced = 1;
1662
1663 /* Initialize the SCSI request */
1664 if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
1665 scsi_req->hdr.sg_list_dma_address =
1666 cpu_to_be64(skspcl->req.sksg_dma_address);
1667 scsi_req->hdr.tag = skspcl->req.id;
1668 scsi_req->hdr.sg_list_len_bytes =
1669 cpu_to_be32(skspcl->req.sg_byte_count);
1670 memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
1671
1672 skspcl->req.state = SKD_REQ_STATE_BUSY;
1673 skd_send_special_fitmsg(skdev, skspcl);
1674
1675 return 0;
1676 }
1677
1678 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
1679 {
1680 unsigned long flags;
1681 int rc;
1682
1683 rc = wait_event_interruptible_timeout(skdev->waitq,
1684 (sksgio->skspcl->req.state !=
1685 SKD_REQ_STATE_BUSY),
1686 msecs_to_jiffies(sksgio->sg.
1687 timeout));
1688
1689 spin_lock_irqsave(&skdev->lock, flags);
1690
1691 if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
1692 pr_debug("%s:%s:%d skspcl %p aborted\n",
1693 skdev->name, __func__, __LINE__, sksgio->skspcl);
1694
1695 /* Build check cond, sense and let command finish. */
1696 /* For a timeout, we must fabricate completion and sense
1697 * data to complete the command */
1698 sksgio->skspcl->req.completion.status =
1699 SAM_STAT_CHECK_CONDITION;
1700
1701 memset(&sksgio->skspcl->req.err_info, 0,
1702 sizeof(sksgio->skspcl->req.err_info));
1703 sksgio->skspcl->req.err_info.type = 0x70;
1704 sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
1705 sksgio->skspcl->req.err_info.code = 0x44;
1706 sksgio->skspcl->req.err_info.qual = 0;
1707 rc = 0;
1708 } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
1709 /* No longer on the adapter. We finish. */
1710 rc = 0;
1711 else {
1712 /* Something's gone wrong. Still busy. Timeout or
1713 * user interrupted (control-C). Mark as an orphan
1714 * so it will be disposed when completed. */
1715 sksgio->skspcl->orphaned = 1;
1716 sksgio->skspcl = NULL;
1717 if (rc == 0) {
1718 pr_debug("%s:%s:%d timed out %p (%u ms)\n",
1719 skdev->name, __func__, __LINE__,
1720 sksgio, sksgio->sg.timeout);
1721 rc = -ETIMEDOUT;
1722 } else {
1723 pr_debug("%s:%s:%d cntlc %p\n",
1724 skdev->name, __func__, __LINE__, sksgio);
1725 rc = -EINTR;
1726 }
1727 }
1728
1729 spin_unlock_irqrestore(&skdev->lock, flags);
1730
1731 return rc;
1732 }
1733
1734 static int skd_sg_io_put_status(struct skd_device *skdev,
1735 struct skd_sg_io *sksgio)
1736 {
1737 struct sg_io_hdr *sgp = &sksgio->sg;
1738 struct skd_special_context *skspcl = sksgio->skspcl;
1739 int resid = 0;
1740
1741 u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
1742
1743 sgp->status = skspcl->req.completion.status;
1744 resid = sksgio->dxfer_len - nb;
1745
1746 sgp->masked_status = sgp->status & STATUS_MASK;
1747 sgp->msg_status = 0;
1748 sgp->host_status = 0;
1749 sgp->driver_status = 0;
1750 sgp->resid = resid;
1751 if (sgp->masked_status || sgp->host_status || sgp->driver_status)
1752 sgp->info |= SG_INFO_CHECK;
1753
1754 pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
1755 skdev->name, __func__, __LINE__,
1756 sgp->status, sgp->masked_status, sgp->resid);
1757
1758 if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
1759 if (sgp->mx_sb_len > 0) {
1760 struct fit_comp_error_info *ei = &skspcl->req.err_info;
1761 u32 nbytes = sizeof(*ei);
1762
1763 nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
1764
1765 sgp->sb_len_wr = nbytes;
1766
1767 if (__copy_to_user(sgp->sbp, ei, nbytes)) {
1768 pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
1769 skdev->name, __func__, __LINE__,
1770 sgp->sbp);
1771 return -EFAULT;
1772 }
1773 }
1774 }
1775
1776 if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
1777 pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
1778 skdev->name, __func__, __LINE__, sksgio->argp);
1779 return -EFAULT;
1780 }
1781
1782 return 0;
1783 }
1784
1785 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1786 struct skd_sg_io *sksgio)
1787 {
1788 struct skd_special_context *skspcl = sksgio->skspcl;
1789
1790 if (skspcl != NULL) {
1791 ulong flags;
1792
1793 sksgio->skspcl = NULL;
1794
1795 spin_lock_irqsave(&skdev->lock, flags);
1796 skd_release_special(skdev, skspcl);
1797 spin_unlock_irqrestore(&skdev->lock, flags);
1798 }
1799
1800 return 0;
1801 }
1802
1803 /*
1804 *****************************************************************************
1805 * INTERNAL REQUESTS -- generated by driver itself
1806 *****************************************************************************
1807 */
1808
1809 static int skd_format_internal_skspcl(struct skd_device *skdev)
1810 {
1811 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1812 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1813 struct fit_msg_hdr *fmh;
1814 uint64_t dma_address;
1815 struct skd_scsi_request *scsi;
1816
1817 fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
1818 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1819 fmh->num_protocol_cmds_coalesced = 1;
1820
1821 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1822 memset(scsi, 0, sizeof(*scsi));
1823 dma_address = skspcl->req.sksg_dma_address;
1824 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
1825 sgd->control = FIT_SGD_CONTROL_LAST;
1826 sgd->byte_count = 0;
1827 sgd->host_side_addr = skspcl->db_dma_address;
1828 sgd->dev_side_addr = 0;
1829 sgd->next_desc_ptr = 0LL;
1830
1831 return 1;
1832 }
1833
1834 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
1835
1836 static void skd_send_internal_skspcl(struct skd_device *skdev,
1837 struct skd_special_context *skspcl,
1838 u8 opcode)
1839 {
1840 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1841 struct skd_scsi_request *scsi;
1842 unsigned char *buf = skspcl->data_buf;
1843 int i;
1844
1845 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
1846 /*
1847 * A refresh is already in progress.
1848 * Just wait for it to finish.
1849 */
1850 return;
1851
1852 SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
1853 skspcl->req.state = SKD_REQ_STATE_BUSY;
1854 skspcl->req.id += SKD_ID_INCR;
1855
1856 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1857 scsi->hdr.tag = skspcl->req.id;
1858
1859 memset(scsi->cdb, 0, sizeof(scsi->cdb));
1860
1861 switch (opcode) {
1862 case TEST_UNIT_READY:
1863 scsi->cdb[0] = TEST_UNIT_READY;
1864 sgd->byte_count = 0;
1865 scsi->hdr.sg_list_len_bytes = 0;
1866 break;
1867
1868 case READ_CAPACITY:
1869 scsi->cdb[0] = READ_CAPACITY;
1870 sgd->byte_count = SKD_N_READ_CAP_BYTES;
1871 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1872 break;
1873
1874 case INQUIRY:
1875 scsi->cdb[0] = INQUIRY;
1876 scsi->cdb[1] = 0x01; /* evpd */
1877 scsi->cdb[2] = 0x80; /* serial number page */
1878 scsi->cdb[4] = 0x10;
1879 sgd->byte_count = 16;
1880 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1881 break;
1882
1883 case SYNCHRONIZE_CACHE:
1884 scsi->cdb[0] = SYNCHRONIZE_CACHE;
1885 sgd->byte_count = 0;
1886 scsi->hdr.sg_list_len_bytes = 0;
1887 break;
1888
1889 case WRITE_BUFFER:
1890 scsi->cdb[0] = WRITE_BUFFER;
1891 scsi->cdb[1] = 0x02;
1892 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1893 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1894 sgd->byte_count = WR_BUF_SIZE;
1895 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1896 /* fill incrementing byte pattern */
1897 for (i = 0; i < sgd->byte_count; i++)
1898 buf[i] = i & 0xFF;
1899 break;
1900
1901 case READ_BUFFER:
1902 scsi->cdb[0] = READ_BUFFER;
1903 scsi->cdb[1] = 0x02;
1904 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1905 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1906 sgd->byte_count = WR_BUF_SIZE;
1907 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1908 memset(skspcl->data_buf, 0, sgd->byte_count);
1909 break;
1910
1911 default:
1912 SKD_ASSERT("Don't know what to send");
1913 return;
1914
1915 }
1916 skd_send_special_fitmsg(skdev, skspcl);
1917 }
1918
1919 static void skd_refresh_device_data(struct skd_device *skdev)
1920 {
1921 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1922
1923 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1924 }
1925
1926 static int skd_chk_read_buf(struct skd_device *skdev,
1927 struct skd_special_context *skspcl)
1928 {
1929 unsigned char *buf = skspcl->data_buf;
1930 int i;
1931
1932 /* check for incrementing byte pattern */
1933 for (i = 0; i < WR_BUF_SIZE; i++)
1934 if (buf[i] != (i & 0xFF))
1935 return 1;
1936
1937 return 0;
1938 }
1939
1940 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1941 u8 code, u8 qual, u8 fruc)
1942 {
1943 /* If the check condition is of special interest, log a message */
1944 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1945 && (code == 0x04) && (qual == 0x06)) {
1946 pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
1947 "ascq/fruc %02x/%02x/%02x/%02x\n",
1948 skd_name(skdev), key, code, qual, fruc);
1949 }
1950 }
1951
1952 static void skd_complete_internal(struct skd_device *skdev,
1953 volatile struct fit_completion_entry_v1
1954 *skcomp,
1955 volatile struct fit_comp_error_info *skerr,
1956 struct skd_special_context *skspcl)
1957 {
1958 u8 *buf = skspcl->data_buf;
1959 u8 status;
1960 int i;
1961 struct skd_scsi_request *scsi =
1962 (struct skd_scsi_request *)&skspcl->msg_buf[64];
1963
1964 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1965
1966 pr_debug("%s:%s:%d complete internal %x\n",
1967 skdev->name, __func__, __LINE__, scsi->cdb[0]);
1968
1969 skspcl->req.completion = *skcomp;
1970 skspcl->req.state = SKD_REQ_STATE_IDLE;
1971 skspcl->req.id += SKD_ID_INCR;
1972
1973 status = skspcl->req.completion.status;
1974
1975 skd_log_check_status(skdev, status, skerr->key, skerr->code,
1976 skerr->qual, skerr->fruc);
1977
1978 switch (scsi->cdb[0]) {
1979 case TEST_UNIT_READY:
1980 if (status == SAM_STAT_GOOD)
1981 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1982 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1983 (skerr->key == MEDIUM_ERROR))
1984 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1985 else {
1986 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1987 pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
1988 skdev->name, __func__, __LINE__,
1989 skdev->state);
1990 return;
1991 }
1992 pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
1993 skdev->name, __func__, __LINE__);
1994 skd_send_internal_skspcl(skdev, skspcl, 0x00);
1995 }
1996 break;
1997
1998 case WRITE_BUFFER:
1999 if (status == SAM_STAT_GOOD)
2000 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
2001 else {
2002 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2003 pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
2004 skdev->name, __func__, __LINE__,
2005 skdev->state);
2006 return;
2007 }
2008 pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
2009 skdev->name, __func__, __LINE__);
2010 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2011 }
2012 break;
2013
2014 case READ_BUFFER:
2015 if (status == SAM_STAT_GOOD) {
2016 if (skd_chk_read_buf(skdev, skspcl) == 0)
2017 skd_send_internal_skspcl(skdev, skspcl,
2018 READ_CAPACITY);
2019 else {
2020 pr_err(
2021 "(%s):*** W/R Buffer mismatch %d ***\n",
2022 skd_name(skdev), skdev->connect_retries);
2023 if (skdev->connect_retries <
2024 SKD_MAX_CONNECT_RETRIES) {
2025 skdev->connect_retries++;
2026 skd_soft_reset(skdev);
2027 } else {
2028 pr_err(
2029 "(%s): W/R Buffer Connect Error\n",
2030 skd_name(skdev));
2031 return;
2032 }
2033 }
2034
2035 } else {
2036 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2037 pr_debug("%s:%s:%d "
2038 "read buffer failed, don't send anymore state 0x%x\n",
2039 skdev->name, __func__, __LINE__,
2040 skdev->state);
2041 return;
2042 }
2043 pr_debug("%s:%s:%d "
2044 "**** read buffer failed, retry skerr\n",
2045 skdev->name, __func__, __LINE__);
2046 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2047 }
2048 break;
2049
2050 case READ_CAPACITY:
2051 skdev->read_cap_is_valid = 0;
2052 if (status == SAM_STAT_GOOD) {
2053 skdev->read_cap_last_lba =
2054 (buf[0] << 24) | (buf[1] << 16) |
2055 (buf[2] << 8) | buf[3];
2056 skdev->read_cap_blocksize =
2057 (buf[4] << 24) | (buf[5] << 16) |
2058 (buf[6] << 8) | buf[7];
2059
2060 pr_debug("%s:%s:%d last lba %d, bs %d\n",
2061 skdev->name, __func__, __LINE__,
2062 skdev->read_cap_last_lba,
2063 skdev->read_cap_blocksize);
2064
2065 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2066
2067 skdev->read_cap_is_valid = 1;
2068
2069 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2070 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
2071 (skerr->key == MEDIUM_ERROR)) {
2072 skdev->read_cap_last_lba = ~0;
2073 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2074 pr_debug("%s:%s:%d "
2075 "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
2076 skdev->name, __func__, __LINE__);
2077 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2078 } else {
2079 pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
2080 skdev->name, __func__, __LINE__);
2081 skd_send_internal_skspcl(skdev, skspcl,
2082 TEST_UNIT_READY);
2083 }
2084 break;
2085
2086 case INQUIRY:
2087 skdev->inquiry_is_valid = 0;
2088 if (status == SAM_STAT_GOOD) {
2089 skdev->inquiry_is_valid = 1;
2090
2091 for (i = 0; i < 12; i++)
2092 skdev->inq_serial_num[i] = buf[i + 4];
2093 skdev->inq_serial_num[12] = 0;
2094 }
2095
2096 if (skd_unquiesce_dev(skdev) < 0)
2097 pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
2098 skdev->name, __func__, __LINE__);
2099 /* connection is complete */
2100 skdev->connect_retries = 0;
2101 break;
2102
2103 case SYNCHRONIZE_CACHE:
2104 if (status == SAM_STAT_GOOD)
2105 skdev->sync_done = 1;
2106 else
2107 skdev->sync_done = -1;
2108 wake_up_interruptible(&skdev->waitq);
2109 break;
2110
2111 default:
2112 SKD_ASSERT("we didn't send this");
2113 }
2114 }
2115
2116 /*
2117 *****************************************************************************
2118 * FIT MESSAGES
2119 *****************************************************************************
2120 */
2121
2122 static void skd_send_fitmsg(struct skd_device *skdev,
2123 struct skd_fitmsg_context *skmsg)
2124 {
2125 u64 qcmd;
2126 struct fit_msg_hdr *fmh;
2127
2128 pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
2129 skdev->name, __func__, __LINE__,
2130 skmsg->mb_dma_address, skdev->in_flight);
2131 pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
2132 skdev->name, __func__, __LINE__,
2133 skmsg->msg_buf, skmsg->offset);
2134
2135 qcmd = skmsg->mb_dma_address;
2136 qcmd |= FIT_QCMD_QID_NORMAL;
2137
2138 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
2139 skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
2140
2141 if (unlikely(skdev->dbg_level > 1)) {
2142 u8 *bp = (u8 *)skmsg->msg_buf;
2143 int i;
2144 for (i = 0; i < skmsg->length; i += 8) {
2145 pr_debug("%s:%s:%d msg[%2d] %8ph\n",
2146 skdev->name, __func__, __LINE__, i, &bp[i]);
2147 if (i == 0)
2148 i = 64 - 8;
2149 }
2150 }
2151
2152 if (skmsg->length > 256)
2153 qcmd |= FIT_QCMD_MSGSIZE_512;
2154 else if (skmsg->length > 128)
2155 qcmd |= FIT_QCMD_MSGSIZE_256;
2156 else if (skmsg->length > 64)
2157 qcmd |= FIT_QCMD_MSGSIZE_128;
2158 else
2159 /*
2160 * This makes no sense because the FIT msg header is
2161 * 64 bytes. If the msg is only 64 bytes long it has
2162 * no payload.
2163 */
2164 qcmd |= FIT_QCMD_MSGSIZE_64;
2165
2166 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2167 }
2168
2169 static void skd_send_special_fitmsg(struct skd_device *skdev,
2170 struct skd_special_context *skspcl)
2171 {
2172 u64 qcmd;
2173
2174 if (unlikely(skdev->dbg_level > 1)) {
2175 u8 *bp = (u8 *)skspcl->msg_buf;
2176 int i;
2177
2178 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
2179 pr_debug("%s:%s:%d spcl[%2d] %8ph\n",
2180 skdev->name, __func__, __LINE__, i, &bp[i]);
2181 if (i == 0)
2182 i = 64 - 8;
2183 }
2184
2185 pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
2186 skdev->name, __func__, __LINE__,
2187 skspcl, skspcl->req.id, skspcl->req.sksg_list,
2188 skspcl->req.sksg_dma_address);
2189 for (i = 0; i < skspcl->req.n_sg; i++) {
2190 struct fit_sg_descriptor *sgd =
2191 &skspcl->req.sksg_list[i];
2192
2193 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
2194 "addr=0x%llx next=0x%llx\n",
2195 skdev->name, __func__, __LINE__,
2196 i, sgd->byte_count, sgd->control,
2197 sgd->host_side_addr, sgd->next_desc_ptr);
2198 }
2199 }
2200
2201 /*
2202 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
2203 * and one 64-byte SSDI command.
2204 */
2205 qcmd = skspcl->mb_dma_address;
2206 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
2207
2208 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2209 }
2210
2211 /*
2212 *****************************************************************************
2213 * COMPLETION QUEUE
2214 *****************************************************************************
2215 */
2216
2217 static void skd_complete_other(struct skd_device *skdev,
2218 volatile struct fit_completion_entry_v1 *skcomp,
2219 volatile struct fit_comp_error_info *skerr);
2220
2221 struct sns_info {
2222 u8 type;
2223 u8 stat;
2224 u8 key;
2225 u8 asc;
2226 u8 ascq;
2227 u8 mask;
2228 enum skd_check_status_action action;
2229 };
2230
2231 static struct sns_info skd_chkstat_table[] = {
2232 /* Good */
2233 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
2234 SKD_CHECK_STATUS_REPORT_GOOD },
2235
2236 /* Smart alerts */
2237 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
2238 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2239 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
2240 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2241 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
2242 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2243
2244 /* Retry (with limits) */
2245 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
2246 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2247 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
2248 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2249 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
2250 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2251 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
2252 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2253
2254 /* Busy (or about to be) */
2255 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
2256 SKD_CHECK_STATUS_BUSY_IMMINENT },
2257 };
2258
2259 /*
2260 * Look up status and sense data to decide how to handle the error
2261 * from the device.
2262 * mask says which fields must match e.g., mask=0x18 means check
2263 * type and stat, ignore key, asc, ascq.
2264 */
2265
2266 static enum skd_check_status_action
2267 skd_check_status(struct skd_device *skdev,
2268 u8 cmp_status, volatile struct fit_comp_error_info *skerr)
2269 {
2270 int i, n;
2271
2272 pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
2273 skd_name(skdev), skerr->key, skerr->code, skerr->qual,
2274 skerr->fruc);
2275
2276 pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
2277 skdev->name, __func__, __LINE__, skerr->type, cmp_status,
2278 skerr->key, skerr->code, skerr->qual, skerr->fruc);
2279
2280 /* Does the info match an entry in the good category? */
2281 n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
2282 for (i = 0; i < n; i++) {
2283 struct sns_info *sns = &skd_chkstat_table[i];
2284
2285 if (sns->mask & 0x10)
2286 if (skerr->type != sns->type)
2287 continue;
2288
2289 if (sns->mask & 0x08)
2290 if (cmp_status != sns->stat)
2291 continue;
2292
2293 if (sns->mask & 0x04)
2294 if (skerr->key != sns->key)
2295 continue;
2296
2297 if (sns->mask & 0x02)
2298 if (skerr->code != sns->asc)
2299 continue;
2300
2301 if (sns->mask & 0x01)
2302 if (skerr->qual != sns->ascq)
2303 continue;
2304
2305 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
2306 pr_err("(%s): SMART Alert: sense key/asc/ascq "
2307 "%02x/%02x/%02x\n",
2308 skd_name(skdev), skerr->key,
2309 skerr->code, skerr->qual);
2310 }
2311 return sns->action;
2312 }
2313
2314 /* No other match, so nonzero status means error,
2315 * zero status means good
2316 */
2317 if (cmp_status) {
2318 pr_debug("%s:%s:%d status check: error\n",
2319 skdev->name, __func__, __LINE__);
2320 return SKD_CHECK_STATUS_REPORT_ERROR;
2321 }
2322
2323 pr_debug("%s:%s:%d status check good default\n",
2324 skdev->name, __func__, __LINE__);
2325 return SKD_CHECK_STATUS_REPORT_GOOD;
2326 }
2327
2328 static void skd_resolve_req_exception(struct skd_device *skdev,
2329 struct skd_request_context *skreq)
2330 {
2331 u8 cmp_status = skreq->completion.status;
2332
2333 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
2334 case SKD_CHECK_STATUS_REPORT_GOOD:
2335 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
2336 skd_end_request(skdev, skreq, 0);
2337 break;
2338
2339 case SKD_CHECK_STATUS_BUSY_IMMINENT:
2340 skd_log_skreq(skdev, skreq, "retry(busy)");
2341 blk_requeue_request(skdev->queue, skreq->req);
2342 pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
2343 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
2344 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2345 skd_quiesce_dev(skdev);
2346 break;
2347
2348 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
2349 if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
2350 skd_log_skreq(skdev, skreq, "retry");
2351 blk_requeue_request(skdev->queue, skreq->req);
2352 break;
2353 }
2354 /* fall through to report error */
2355
2356 case SKD_CHECK_STATUS_REPORT_ERROR:
2357 default:
2358 skd_end_request(skdev, skreq, -EIO);
2359 break;
2360 }
2361 }
2362
2363 /* assume spinlock is already held */
2364 static void skd_release_skreq(struct skd_device *skdev,
2365 struct skd_request_context *skreq)
2366 {
2367 u32 msg_slot;
2368 struct skd_fitmsg_context *skmsg;
2369
2370 u32 timo_slot;
2371
2372 /*
2373 * Reclaim the FIT msg buffer if this is
2374 * the first of the requests it carried to
2375 * be completed. The FIT msg buffer used to
2376 * send this request cannot be reused until
2377 * we are sure the s1120 card has copied
2378 * it to its memory. The FIT msg might have
2379 * contained several requests. As soon as
2380 * any of them are completed we know that
2381 * the entire FIT msg was transferred.
2382 * Only the first completed request will
2383 * match the FIT msg buffer id. The FIT
2384 * msg buffer id is immediately updated.
2385 * When subsequent requests complete the FIT
2386 * msg buffer id won't match, so we know
2387 * quite cheaply that it is already done.
2388 */
2389 msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
2390 SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
2391
2392 skmsg = &skdev->skmsg_table[msg_slot];
2393 if (skmsg->id == skreq->fitmsg_id) {
2394 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
2395 SKD_ASSERT(skmsg->outstanding > 0);
2396 skmsg->outstanding--;
2397 if (skmsg->outstanding == 0) {
2398 skmsg->state = SKD_MSG_STATE_IDLE;
2399 skmsg->id += SKD_ID_INCR;
2400 skmsg->next = skdev->skmsg_free_list;
2401 skdev->skmsg_free_list = skmsg;
2402 }
2403 }
2404
2405 /*
2406 * Decrease the number of active requests.
2407 * Also decrements the count in the timeout slot.
2408 */
2409 SKD_ASSERT(skdev->in_flight > 0);
2410 skdev->in_flight -= 1;
2411
2412 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
2413 SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
2414 skdev->timeout_slot[timo_slot] -= 1;
2415
2416 /*
2417 * Reset backpointer
2418 */
2419 skreq->req = NULL;
2420
2421 /*
2422 * Reclaim the skd_request_context
2423 */
2424 skreq->state = SKD_REQ_STATE_IDLE;
2425 skreq->id += SKD_ID_INCR;
2426 skreq->next = skdev->skreq_free_list;
2427 skdev->skreq_free_list = skreq;
2428 }
2429
2430 #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
2431
2432 static void skd_do_inq_page_00(struct skd_device *skdev,
2433 volatile struct fit_completion_entry_v1 *skcomp,
2434 volatile struct fit_comp_error_info *skerr,
2435 uint8_t *cdb, uint8_t *buf)
2436 {
2437 uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
2438
2439 /* Caller requested "supported pages". The driver needs to insert
2440 * its page.
2441 */
2442 pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
2443 skdev->name, __func__, __LINE__);
2444
2445 /* If the device rejected the request because the CDB was
2446 * improperly formed, then just leave.
2447 */
2448 if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
2449 skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
2450 return;
2451
2452 /* Get the amount of space the caller allocated */
2453 max_bytes = (cdb[3] << 8) | cdb[4];
2454
2455 /* Get the number of pages actually returned by the device */
2456 drive_pages = (buf[2] << 8) | buf[3];
2457 drive_bytes = drive_pages + 4;
2458 new_size = drive_pages + 1;
2459
2460 /* Supported pages must be in numerical order, so find where
2461 * the driver page needs to be inserted into the list of
2462 * pages returned by the device.
2463 */
2464 for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
2465 if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
2466 return; /* Device using this page code. abort */
2467 else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
2468 break;
2469 }
2470
2471 if (insert_pt < max_bytes) {
2472 uint16_t u;
2473
2474 /* Shift everything up one byte to make room. */
2475 for (u = new_size + 3; u > insert_pt; u--)
2476 buf[u] = buf[u - 1];
2477 buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
2478
2479 /* SCSI byte order increment of num_returned_bytes by 1 */
2480 skcomp->num_returned_bytes =
2481 be32_to_cpu(skcomp->num_returned_bytes) + 1;
2482 skcomp->num_returned_bytes =
2483 be32_to_cpu(skcomp->num_returned_bytes);
2484 }
2485
2486 /* update page length field to reflect the driver's page too */
2487 buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
2488 buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
2489 }
2490
2491 static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
2492 {
2493 int pcie_reg;
2494 u16 pci_bus_speed;
2495 u8 pci_lanes;
2496
2497 pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2498 if (pcie_reg) {
2499 u16 linksta;
2500 pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
2501
2502 pci_bus_speed = linksta & 0xF;
2503 pci_lanes = (linksta & 0x3F0) >> 4;
2504 } else {
2505 *speed = STEC_LINK_UNKNOWN;
2506 *width = 0xFF;
2507 return;
2508 }
2509
2510 switch (pci_bus_speed) {
2511 case 1:
2512 *speed = STEC_LINK_2_5GTS;
2513 break;
2514 case 2:
2515 *speed = STEC_LINK_5GTS;
2516 break;
2517 case 3:
2518 *speed = STEC_LINK_8GTS;
2519 break;
2520 default:
2521 *speed = STEC_LINK_UNKNOWN;
2522 break;
2523 }
2524
2525 if (pci_lanes <= 0x20)
2526 *width = pci_lanes;
2527 else
2528 *width = 0xFF;
2529 }
2530
2531 static void skd_do_inq_page_da(struct skd_device *skdev,
2532 volatile struct fit_completion_entry_v1 *skcomp,
2533 volatile struct fit_comp_error_info *skerr,
2534 uint8_t *cdb, uint8_t *buf)
2535 {
2536 struct pci_dev *pdev = skdev->pdev;
2537 unsigned max_bytes;
2538 struct driver_inquiry_data inq;
2539 u16 val;
2540
2541 pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
2542 skdev->name, __func__, __LINE__);
2543
2544 memset(&inq, 0, sizeof(inq));
2545
2546 inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
2547
2548 skd_get_link_info(pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes);
2549 inq.pcie_bus_number = cpu_to_be16(pdev->bus->number);
2550 inq.pcie_device_number = PCI_SLOT(pdev->devfn);
2551 inq.pcie_function_number = PCI_FUNC(pdev->devfn);
2552
2553 pci_read_config_word(pdev, PCI_VENDOR_ID, &val);
2554 inq.pcie_vendor_id = cpu_to_be16(val);
2555
2556 pci_read_config_word(pdev, PCI_DEVICE_ID, &val);
2557 inq.pcie_device_id = cpu_to_be16(val);
2558
2559 pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &val);
2560 inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
2561
2562 pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &val);
2563 inq.pcie_subsystem_device_id = cpu_to_be16(val);
2564
2565 /* Driver version, fixed lenth, padded with spaces on the right */
2566 inq.driver_version_length = sizeof(inq.driver_version);
2567 memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
2568 memcpy(inq.driver_version, DRV_VER_COMPL,
2569 min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
2570
2571 inq.page_length = cpu_to_be16((sizeof(inq) - 4));
2572
2573 /* Clear the error set by the device */
2574 skcomp->status = SAM_STAT_GOOD;
2575 memset((void *)skerr, 0, sizeof(*skerr));
2576
2577 /* copy response into output buffer */
2578 max_bytes = (cdb[3] << 8) | cdb[4];
2579 memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
2580
2581 skcomp->num_returned_bytes =
2582 be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
2583 }
2584
2585 static void skd_do_driver_inq(struct skd_device *skdev,
2586 volatile struct fit_completion_entry_v1 *skcomp,
2587 volatile struct fit_comp_error_info *skerr,
2588 uint8_t *cdb, uint8_t *buf)
2589 {
2590 if (!buf)
2591 return;
2592 else if (cdb[0] != INQUIRY)
2593 return; /* Not an INQUIRY */
2594 else if ((cdb[1] & 1) == 0)
2595 return; /* EVPD not set */
2596 else if (cdb[2] == 0)
2597 /* Need to add driver's page to supported pages list */
2598 skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
2599 else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
2600 /* Caller requested driver's page */
2601 skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
2602 }
2603
2604 static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
2605 {
2606 if (!sg)
2607 return NULL;
2608 if (!sg_page(sg))
2609 return NULL;
2610 return sg_virt(sg);
2611 }
2612
2613 static void skd_process_scsi_inq(struct skd_device *skdev,
2614 volatile struct fit_completion_entry_v1
2615 *skcomp,
2616 volatile struct fit_comp_error_info *skerr,
2617 struct skd_special_context *skspcl)
2618 {
2619 uint8_t *buf;
2620 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
2621 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
2622
2623 dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
2624 skspcl->req.sg_data_dir);
2625 buf = skd_sg_1st_page_ptr(skspcl->req.sg);
2626
2627 if (buf)
2628 skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
2629 }
2630
2631
2632 static int skd_isr_completion_posted(struct skd_device *skdev,
2633 int limit, int *enqueued)
2634 {
2635 volatile struct fit_completion_entry_v1 *skcmp = NULL;
2636 volatile struct fit_comp_error_info *skerr;
2637 u16 req_id;
2638 u32 req_slot;
2639 struct skd_request_context *skreq;
2640 u16 cmp_cntxt = 0;
2641 u8 cmp_status = 0;
2642 u8 cmp_cycle = 0;
2643 u32 cmp_bytes = 0;
2644 int rc = 0;
2645 int processed = 0;
2646
2647 for (;; ) {
2648 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
2649
2650 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
2651 cmp_cycle = skcmp->cycle;
2652 cmp_cntxt = skcmp->tag;
2653 cmp_status = skcmp->status;
2654 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
2655
2656 skerr = &skdev->skerr_table[skdev->skcomp_ix];
2657
2658 pr_debug("%s:%s:%d "
2659 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
2660 "busy=%d rbytes=0x%x proto=%d\n",
2661 skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
2662 skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
2663 skdev->in_flight, cmp_bytes, skdev->proto_ver);
2664
2665 if (cmp_cycle != skdev->skcomp_cycle) {
2666 pr_debug("%s:%s:%d end of completions\n",
2667 skdev->name, __func__, __LINE__);
2668 break;
2669 }
2670 /*
2671 * Update the completion queue head index and possibly
2672 * the completion cycle count. 8-bit wrap-around.
2673 */
2674 skdev->skcomp_ix++;
2675 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
2676 skdev->skcomp_ix = 0;
2677 skdev->skcomp_cycle++;
2678 }
2679
2680 /*
2681 * The command context is a unique 32-bit ID. The low order
2682 * bits help locate the request. The request is usually a
2683 * r/w request (see skd_start() above) or a special request.
2684 */
2685 req_id = cmp_cntxt;
2686 req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
2687
2688 /* Is this other than a r/w request? */
2689 if (req_slot >= skdev->num_req_context) {
2690 /*
2691 * This is not a completion for a r/w request.
2692 */
2693 skd_complete_other(skdev, skcmp, skerr);
2694 continue;
2695 }
2696
2697 skreq = &skdev->skreq_table[req_slot];
2698
2699 /*
2700 * Make sure the request ID for the slot matches.
2701 */
2702 if (skreq->id != req_id) {
2703 pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
2704 skdev->name, __func__, __LINE__,
2705 req_id, skreq->id);
2706 {
2707 u16 new_id = cmp_cntxt;
2708 pr_err("(%s): Completion mismatch "
2709 "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
2710 skd_name(skdev), req_id,
2711 skreq->id, new_id);
2712
2713 continue;
2714 }
2715 }
2716
2717 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
2718
2719 if (skreq->state == SKD_REQ_STATE_ABORTED) {
2720 pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
2721 skdev->name, __func__, __LINE__,
2722 skreq, skreq->id);
2723 /* a previously timed out command can
2724 * now be cleaned up */
2725 skd_release_skreq(skdev, skreq);
2726 continue;
2727 }
2728
2729 skreq->completion = *skcmp;
2730 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
2731 skreq->err_info = *skerr;
2732 skd_log_check_status(skdev, cmp_status, skerr->key,
2733 skerr->code, skerr->qual,
2734 skerr->fruc);
2735 }
2736 /* Release DMA resources for the request. */
2737 if (skreq->n_sg > 0)
2738 skd_postop_sg_list(skdev, skreq);
2739
2740 if (!skreq->req) {
2741 pr_debug("%s:%s:%d NULL backptr skdreq %p, "
2742 "req=0x%x req_id=0x%x\n",
2743 skdev->name, __func__, __LINE__,
2744 skreq, skreq->id, req_id);
2745 } else {
2746 /*
2747 * Capture the outcome and post it back to the
2748 * native request.
2749 */
2750 if (likely(cmp_status == SAM_STAT_GOOD))
2751 skd_end_request(skdev, skreq, 0);
2752 else
2753 skd_resolve_req_exception(skdev, skreq);
2754 }
2755
2756 /*
2757 * Release the skreq, its FIT msg (if one), timeout slot,
2758 * and queue depth.
2759 */
2760 skd_release_skreq(skdev, skreq);
2761
2762 /* skd_isr_comp_limit equal zero means no limit */
2763 if (limit) {
2764 if (++processed >= limit) {
2765 rc = 1;
2766 break;
2767 }
2768 }
2769 }
2770
2771 if ((skdev->state == SKD_DRVR_STATE_PAUSING)
2772 && (skdev->in_flight) == 0) {
2773 skdev->state = SKD_DRVR_STATE_PAUSED;
2774 wake_up_interruptible(&skdev->waitq);
2775 }
2776
2777 return rc;
2778 }
2779
2780 static void skd_complete_other(struct skd_device *skdev,
2781 volatile struct fit_completion_entry_v1 *skcomp,
2782 volatile struct fit_comp_error_info *skerr)
2783 {
2784 u32 req_id = 0;
2785 u32 req_table;
2786 u32 req_slot;
2787 struct skd_special_context *skspcl;
2788
2789 req_id = skcomp->tag;
2790 req_table = req_id & SKD_ID_TABLE_MASK;
2791 req_slot = req_id & SKD_ID_SLOT_MASK;
2792
2793 pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
2794 skdev->name, __func__, __LINE__,
2795 req_table, req_id, req_slot);
2796
2797 /*
2798 * Based on the request id, determine how to dispatch this completion.
2799 * This swich/case is finding the good cases and forwarding the
2800 * completion entry. Errors are reported below the switch.
2801 */
2802 switch (req_table) {
2803 case SKD_ID_RW_REQUEST:
2804 /*
2805 * The caller, skd_completion_posted_isr() above,
2806 * handles r/w requests. The only way we get here
2807 * is if the req_slot is out of bounds.
2808 */
2809 break;
2810
2811 case SKD_ID_SPECIAL_REQUEST:
2812 /*
2813 * Make sure the req_slot is in bounds and that the id
2814 * matches.
2815 */
2816 if (req_slot < skdev->n_special) {
2817 skspcl = &skdev->skspcl_table[req_slot];
2818 if (skspcl->req.id == req_id &&
2819 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2820 skd_complete_special(skdev,
2821 skcomp, skerr, skspcl);
2822 return;
2823 }
2824 }
2825 break;
2826
2827 case SKD_ID_INTERNAL:
2828 if (req_slot == 0) {
2829 skspcl = &skdev->internal_skspcl;
2830 if (skspcl->req.id == req_id &&
2831 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2832 skd_complete_internal(skdev,
2833 skcomp, skerr, skspcl);
2834 return;
2835 }
2836 }
2837 break;
2838
2839 case SKD_ID_FIT_MSG:
2840 /*
2841 * These id's should never appear in a completion record.
2842 */
2843 break;
2844
2845 default:
2846 /*
2847 * These id's should never appear anywhere;
2848 */
2849 break;
2850 }
2851
2852 /*
2853 * If we get here it is a bad or stale id.
2854 */
2855 }
2856
2857 static void skd_complete_special(struct skd_device *skdev,
2858 volatile struct fit_completion_entry_v1
2859 *skcomp,
2860 volatile struct fit_comp_error_info *skerr,
2861 struct skd_special_context *skspcl)
2862 {
2863 pr_debug("%s:%s:%d completing special request %p\n",
2864 skdev->name, __func__, __LINE__, skspcl);
2865 if (skspcl->orphaned) {
2866 /* Discard orphaned request */
2867 /* ?: Can this release directly or does it need
2868 * to use a worker? */
2869 pr_debug("%s:%s:%d release orphaned %p\n",
2870 skdev->name, __func__, __LINE__, skspcl);
2871 skd_release_special(skdev, skspcl);
2872 return;
2873 }
2874
2875 skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
2876
2877 skspcl->req.state = SKD_REQ_STATE_COMPLETED;
2878 skspcl->req.completion = *skcomp;
2879 skspcl->req.err_info = *skerr;
2880
2881 skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
2882 skerr->code, skerr->qual, skerr->fruc);
2883
2884 wake_up_interruptible(&skdev->waitq);
2885 }
2886
2887 /* assume spinlock is already held */
2888 static void skd_release_special(struct skd_device *skdev,
2889 struct skd_special_context *skspcl)
2890 {
2891 int i, was_depleted;
2892
2893 for (i = 0; i < skspcl->req.n_sg; i++) {
2894 struct page *page = sg_page(&skspcl->req.sg[i]);
2895 __free_page(page);
2896 }
2897
2898 was_depleted = (skdev->skspcl_free_list == NULL);
2899
2900 skspcl->req.state = SKD_REQ_STATE_IDLE;
2901 skspcl->req.id += SKD_ID_INCR;
2902 skspcl->req.next =
2903 (struct skd_request_context *)skdev->skspcl_free_list;
2904 skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
2905
2906 if (was_depleted) {
2907 pr_debug("%s:%s:%d skspcl was depleted\n",
2908 skdev->name, __func__, __LINE__);
2909 /* Free list was depleted. Their might be waiters. */
2910 wake_up_interruptible(&skdev->waitq);
2911 }
2912 }
2913
2914 static void skd_reset_skcomp(struct skd_device *skdev)
2915 {
2916 u32 nbytes;
2917 struct fit_completion_entry_v1 *skcomp;
2918
2919 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
2920 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
2921
2922 memset(skdev->skcomp_table, 0, nbytes);
2923
2924 skdev->skcomp_ix = 0;
2925 skdev->skcomp_cycle = 1;
2926 }
2927
2928 /*
2929 *****************************************************************************
2930 * INTERRUPTS
2931 *****************************************************************************
2932 */
2933 static void skd_completion_worker(struct work_struct *work)
2934 {
2935 struct skd_device *skdev =
2936 container_of(work, struct skd_device, completion_worker);
2937 unsigned long flags;
2938 int flush_enqueued = 0;
2939
2940 spin_lock_irqsave(&skdev->lock, flags);
2941
2942 /*
2943 * pass in limit=0, which means no limit..
2944 * process everything in compq
2945 */
2946 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
2947 skd_request_fn(skdev->queue);
2948
2949 spin_unlock_irqrestore(&skdev->lock, flags);
2950 }
2951
2952 static void skd_isr_msg_from_dev(struct skd_device *skdev);
2953
2954 static irqreturn_t
2955 skd_isr(int irq, void *ptr)
2956 {
2957 struct skd_device *skdev;
2958 u32 intstat;
2959 u32 ack;
2960 int rc = 0;
2961 int deferred = 0;
2962 int flush_enqueued = 0;
2963
2964 skdev = (struct skd_device *)ptr;
2965 spin_lock(&skdev->lock);
2966
2967 for (;; ) {
2968 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2969
2970 ack = FIT_INT_DEF_MASK;
2971 ack &= intstat;
2972
2973 pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
2974 skdev->name, __func__, __LINE__, intstat, ack);
2975
2976 /* As long as there is an int pending on device, keep
2977 * running loop. When none, get out, but if we've never
2978 * done any processing, call completion handler?
2979 */
2980 if (ack == 0) {
2981 /* No interrupts on device, but run the completion
2982 * processor anyway?
2983 */
2984 if (rc == 0)
2985 if (likely (skdev->state
2986 == SKD_DRVR_STATE_ONLINE))
2987 deferred = 1;
2988 break;
2989 }
2990
2991 rc = IRQ_HANDLED;
2992
2993 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
2994
2995 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
2996 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
2997 if (intstat & FIT_ISH_COMPLETION_POSTED) {
2998 /*
2999 * If we have already deferred completion
3000 * processing, don't bother running it again
3001 */
3002 if (deferred == 0)
3003 deferred =
3004 skd_isr_completion_posted(skdev,
3005 skd_isr_comp_limit, &flush_enqueued);
3006 }
3007
3008 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
3009 skd_isr_fwstate(skdev);
3010 if (skdev->state == SKD_DRVR_STATE_FAULT ||
3011 skdev->state ==
3012 SKD_DRVR_STATE_DISAPPEARED) {
3013 spin_unlock(&skdev->lock);
3014 return rc;
3015 }
3016 }
3017
3018 if (intstat & FIT_ISH_MSG_FROM_DEV)
3019 skd_isr_msg_from_dev(skdev);
3020 }
3021 }
3022
3023 if (unlikely(flush_enqueued))
3024 skd_request_fn(skdev->queue);
3025
3026 if (deferred)
3027 schedule_work(&skdev->completion_worker);
3028 else if (!flush_enqueued)
3029 skd_request_fn(skdev->queue);
3030
3031 spin_unlock(&skdev->lock);
3032
3033 return rc;
3034 }
3035
3036 static void skd_drive_fault(struct skd_device *skdev)
3037 {
3038 skdev->state = SKD_DRVR_STATE_FAULT;
3039 pr_err("(%s): Drive FAULT\n", skd_name(skdev));
3040 }
3041
3042 static void skd_drive_disappeared(struct skd_device *skdev)
3043 {
3044 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
3045 pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
3046 }
3047
3048 static void skd_isr_fwstate(struct skd_device *skdev)
3049 {
3050 u32 sense;
3051 u32 state;
3052 u32 mtd;
3053 int prev_driver_state = skdev->state;
3054
3055 sense = SKD_READL(skdev, FIT_STATUS);
3056 state = sense & FIT_SR_DRIVE_STATE_MASK;
3057
3058 pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
3059 skd_name(skdev),
3060 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3061 skd_drive_state_to_str(state), state);
3062
3063 skdev->drive_state = state;
3064
3065 switch (skdev->drive_state) {
3066 case FIT_SR_DRIVE_INIT:
3067 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
3068 skd_disable_interrupts(skdev);
3069 break;
3070 }
3071 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
3072 skd_recover_requests(skdev, 0);
3073 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
3074 skdev->timer_countdown = SKD_STARTING_TIMO;
3075 skdev->state = SKD_DRVR_STATE_STARTING;
3076 skd_soft_reset(skdev);
3077 break;
3078 }
3079 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
3080 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3081 skdev->last_mtd = mtd;
3082 break;
3083
3084 case FIT_SR_DRIVE_ONLINE:
3085 skdev->cur_max_queue_depth = skd_max_queue_depth;
3086 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
3087 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
3088
3089 skdev->queue_low_water_mark =
3090 skdev->cur_max_queue_depth * 2 / 3 + 1;
3091 if (skdev->queue_low_water_mark < 1)
3092 skdev->queue_low_water_mark = 1;
3093 pr_info(
3094 "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
3095 skd_name(skdev),
3096 skdev->cur_max_queue_depth,
3097 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3098
3099 skd_refresh_device_data(skdev);
3100 break;
3101
3102 case FIT_SR_DRIVE_BUSY:
3103 skdev->state = SKD_DRVR_STATE_BUSY;
3104 skdev->timer_countdown = SKD_BUSY_TIMO;
3105 skd_quiesce_dev(skdev);
3106 break;
3107 case FIT_SR_DRIVE_BUSY_SANITIZE:
3108 /* set timer for 3 seconds, we'll abort any unfinished
3109 * commands after that expires
3110 */
3111 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3112 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
3113 blk_start_queue(skdev->queue);
3114 break;
3115 case FIT_SR_DRIVE_BUSY_ERASE:
3116 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3117 skdev->timer_countdown = SKD_BUSY_TIMO;
3118 break;
3119 case FIT_SR_DRIVE_OFFLINE:
3120 skdev->state = SKD_DRVR_STATE_IDLE;
3121 break;
3122 case FIT_SR_DRIVE_SOFT_RESET:
3123 switch (skdev->state) {
3124 case SKD_DRVR_STATE_STARTING:
3125 case SKD_DRVR_STATE_RESTARTING:
3126 /* Expected by a caller of skd_soft_reset() */
3127 break;
3128 default:
3129 skdev->state = SKD_DRVR_STATE_RESTARTING;
3130 break;
3131 }
3132 break;
3133 case FIT_SR_DRIVE_FW_BOOTING:
3134 pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
3135 skdev->name, __func__, __LINE__, skdev->name);
3136 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3137 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3138 break;
3139
3140 case FIT_SR_DRIVE_DEGRADED:
3141 case FIT_SR_PCIE_LINK_DOWN:
3142 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3143 break;
3144
3145 case FIT_SR_DRIVE_FAULT:
3146 skd_drive_fault(skdev);
3147 skd_recover_requests(skdev, 0);
3148 blk_start_queue(skdev->queue);
3149 break;
3150
3151 /* PCIe bus returned all Fs? */
3152 case 0xFF:
3153 pr_info("(%s): state=0x%x sense=0x%x\n",
3154 skd_name(skdev), state, sense);
3155 skd_drive_disappeared(skdev);
3156 skd_recover_requests(skdev, 0);
3157 blk_start_queue(skdev->queue);
3158 break;
3159 default:
3160 /*
3161 * Uknown FW State. Wait for a state we recognize.
3162 */
3163 break;
3164 }
3165 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3166 skd_name(skdev),
3167 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
3168 skd_skdev_state_to_str(skdev->state), skdev->state);
3169 }
3170
3171 static void skd_recover_requests(struct skd_device *skdev, int requeue)
3172 {
3173 int i;
3174
3175 for (i = 0; i < skdev->num_req_context; i++) {
3176 struct skd_request_context *skreq = &skdev->skreq_table[i];
3177
3178 if (skreq->state == SKD_REQ_STATE_BUSY) {
3179 skd_log_skreq(skdev, skreq, "recover");
3180
3181 SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
3182 SKD_ASSERT(skreq->req != NULL);
3183
3184 /* Release DMA resources for the request. */
3185 if (skreq->n_sg > 0)
3186 skd_postop_sg_list(skdev, skreq);
3187
3188 if (requeue &&
3189 (unsigned long) ++skreq->req->special <
3190 SKD_MAX_RETRIES)
3191 blk_requeue_request(skdev->queue, skreq->req);
3192 else
3193 skd_end_request(skdev, skreq, -EIO);
3194
3195 skreq->req = NULL;
3196
3197 skreq->state = SKD_REQ_STATE_IDLE;
3198 skreq->id += SKD_ID_INCR;
3199 }
3200 if (i > 0)
3201 skreq[-1].next = skreq;
3202 skreq->next = NULL;
3203 }
3204 skdev->skreq_free_list = skdev->skreq_table;
3205
3206 for (i = 0; i < skdev->num_fitmsg_context; i++) {
3207 struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
3208
3209 if (skmsg->state == SKD_MSG_STATE_BUSY) {
3210 skd_log_skmsg(skdev, skmsg, "salvaged");
3211 SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
3212 skmsg->state = SKD_MSG_STATE_IDLE;
3213 skmsg->id += SKD_ID_INCR;
3214 }
3215 if (i > 0)
3216 skmsg[-1].next = skmsg;
3217 skmsg->next = NULL;
3218 }
3219 skdev->skmsg_free_list = skdev->skmsg_table;
3220
3221 for (i = 0; i < skdev->n_special; i++) {
3222 struct skd_special_context *skspcl = &skdev->skspcl_table[i];
3223
3224 /* If orphaned, reclaim it because it has already been reported
3225 * to the process as an error (it was just waiting for
3226 * a completion that didn't come, and now it will never come)
3227 * If busy, change to a state that will cause it to error
3228 * out in the wait routine and let it do the normal
3229 * reporting and reclaiming
3230 */
3231 if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
3232 if (skspcl->orphaned) {
3233 pr_debug("%s:%s:%d orphaned %p\n",
3234 skdev->name, __func__, __LINE__,
3235 skspcl);
3236 skd_release_special(skdev, skspcl);
3237 } else {
3238 pr_debug("%s:%s:%d not orphaned %p\n",
3239 skdev->name, __func__, __LINE__,
3240 skspcl);
3241 skspcl->req.state = SKD_REQ_STATE_ABORTED;
3242 }
3243 }
3244 }
3245 skdev->skspcl_free_list = skdev->skspcl_table;
3246
3247 for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
3248 skdev->timeout_slot[i] = 0;
3249
3250 skdev->in_flight = 0;
3251 }
3252
3253 static void skd_isr_msg_from_dev(struct skd_device *skdev)
3254 {
3255 u32 mfd;
3256 u32 mtd;
3257 u32 data;
3258
3259 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3260
3261 pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
3262 skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
3263
3264 /* ignore any mtd that is an ack for something we didn't send */
3265 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
3266 return;
3267
3268 switch (FIT_MXD_TYPE(mfd)) {
3269 case FIT_MTD_FITFW_INIT:
3270 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
3271
3272 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
3273 pr_err("(%s): protocol mismatch\n",
3274 skdev->name);
3275 pr_err("(%s): got=%d support=%d\n",
3276 skdev->name, skdev->proto_ver,
3277 FIT_PROTOCOL_VERSION_1);
3278 pr_err("(%s): please upgrade driver\n",
3279 skdev->name);
3280 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
3281 skd_soft_reset(skdev);
3282 break;
3283 }
3284 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
3285 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3286 skdev->last_mtd = mtd;
3287 break;
3288
3289 case FIT_MTD_GET_CMDQ_DEPTH:
3290 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
3291 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
3292 SKD_N_COMPLETION_ENTRY);
3293 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3294 skdev->last_mtd = mtd;
3295 break;
3296
3297 case FIT_MTD_SET_COMPQ_DEPTH:
3298 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
3299 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
3300 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3301 skdev->last_mtd = mtd;
3302 break;
3303
3304 case FIT_MTD_SET_COMPQ_ADDR:
3305 skd_reset_skcomp(skdev);
3306 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
3307 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3308 skdev->last_mtd = mtd;
3309 break;
3310
3311 case FIT_MTD_CMD_LOG_HOST_ID:
3312 skdev->connect_time_stamp = get_seconds();
3313 data = skdev->connect_time_stamp & 0xFFFF;
3314 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
3315 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3316 skdev->last_mtd = mtd;
3317 break;
3318
3319 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
3320 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
3321 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
3322 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
3323 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3324 skdev->last_mtd = mtd;
3325 break;
3326
3327 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
3328 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
3329 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
3330 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3331 skdev->last_mtd = mtd;
3332
3333 pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
3334 skd_name(skdev),
3335 skdev->connect_time_stamp, skdev->drive_jiffies);
3336 break;
3337
3338 case FIT_MTD_ARM_QUEUE:
3339 skdev->last_mtd = 0;
3340 /*
3341 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
3342 */
3343 break;
3344
3345 default:
3346 break;
3347 }
3348 }
3349
3350 static void skd_disable_interrupts(struct skd_device *skdev)
3351 {
3352 u32 sense;
3353
3354 sense = SKD_READL(skdev, FIT_CONTROL);
3355 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
3356 SKD_WRITEL(skdev, sense, FIT_CONTROL);
3357 pr_debug("%s:%s:%d sense 0x%x\n",
3358 skdev->name, __func__, __LINE__, sense);
3359
3360 /* Note that the 1s is written. A 1-bit means
3361 * disable, a 0 means enable.
3362 */
3363 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
3364 }
3365
3366 static void skd_enable_interrupts(struct skd_device *skdev)
3367 {
3368 u32 val;
3369
3370 /* unmask interrupts first */
3371 val = FIT_ISH_FW_STATE_CHANGE +
3372 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
3373
3374 /* Note that the compliment of mask is written. A 1-bit means
3375 * disable, a 0 means enable. */
3376 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
3377 pr_debug("%s:%s:%d interrupt mask=0x%x\n",
3378 skdev->name, __func__, __LINE__, ~val);
3379
3380 val = SKD_READL(skdev, FIT_CONTROL);
3381 val |= FIT_CR_ENABLE_INTERRUPTS;
3382 pr_debug("%s:%s:%d control=0x%x\n",
3383 skdev->name, __func__, __LINE__, val);
3384 SKD_WRITEL(skdev, val, FIT_CONTROL);
3385 }
3386
3387 /*
3388 *****************************************************************************
3389 * START, STOP, RESTART, QUIESCE, UNQUIESCE
3390 *****************************************************************************
3391 */
3392
3393 static void skd_soft_reset(struct skd_device *skdev)
3394 {
3395 u32 val;
3396
3397 val = SKD_READL(skdev, FIT_CONTROL);
3398 val |= (FIT_CR_SOFT_RESET);
3399 pr_debug("%s:%s:%d control=0x%x\n",
3400 skdev->name, __func__, __LINE__, val);
3401 SKD_WRITEL(skdev, val, FIT_CONTROL);
3402 }
3403
3404 static void skd_start_device(struct skd_device *skdev)
3405 {
3406 unsigned long flags;
3407 u32 sense;
3408 u32 state;
3409
3410 spin_lock_irqsave(&skdev->lock, flags);
3411
3412 /* ack all ghost interrupts */
3413 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3414
3415 sense = SKD_READL(skdev, FIT_STATUS);
3416
3417 pr_debug("%s:%s:%d initial status=0x%x\n",
3418 skdev->name, __func__, __LINE__, sense);
3419
3420 state = sense & FIT_SR_DRIVE_STATE_MASK;
3421 skdev->drive_state = state;
3422 skdev->last_mtd = 0;
3423
3424 skdev->state = SKD_DRVR_STATE_STARTING;
3425 skdev->timer_countdown = SKD_STARTING_TIMO;
3426
3427 skd_enable_interrupts(skdev);
3428
3429 switch (skdev->drive_state) {
3430 case FIT_SR_DRIVE_OFFLINE:
3431 pr_err("(%s): Drive offline...\n", skd_name(skdev));
3432 break;
3433
3434 case FIT_SR_DRIVE_FW_BOOTING:
3435 pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
3436 skdev->name, __func__, __LINE__, skdev->name);
3437 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3438 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3439 break;
3440
3441 case FIT_SR_DRIVE_BUSY_SANITIZE:
3442 pr_info("(%s): Start: BUSY_SANITIZE\n",
3443 skd_name(skdev));
3444 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3445 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3446 break;
3447
3448 case FIT_SR_DRIVE_BUSY_ERASE:
3449 pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
3450 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3451 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3452 break;
3453
3454 case FIT_SR_DRIVE_INIT:
3455 case FIT_SR_DRIVE_ONLINE:
3456 skd_soft_reset(skdev);
3457 break;
3458
3459 case FIT_SR_DRIVE_BUSY:
3460 pr_err("(%s): Drive Busy...\n", skd_name(skdev));
3461 skdev->state = SKD_DRVR_STATE_BUSY;
3462 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3463 break;
3464
3465 case FIT_SR_DRIVE_SOFT_RESET:
3466 pr_err("(%s) drive soft reset in prog\n",
3467 skd_name(skdev));
3468 break;
3469
3470 case FIT_SR_DRIVE_FAULT:
3471 /* Fault state is bad...soft reset won't do it...
3472 * Hard reset, maybe, but does it work on device?
3473 * For now, just fault so the system doesn't hang.
3474 */
3475 skd_drive_fault(skdev);
3476 /*start the queue so we can respond with error to requests */
3477 pr_debug("%s:%s:%d starting %s queue\n",
3478 skdev->name, __func__, __LINE__, skdev->name);
3479 blk_start_queue(skdev->queue);
3480 skdev->gendisk_on = -1;
3481 wake_up_interruptible(&skdev->waitq);
3482 break;
3483
3484 case 0xFF:
3485 /* Most likely the device isn't there or isn't responding
3486 * to the BAR1 addresses. */
3487 skd_drive_disappeared(skdev);
3488 /*start the queue so we can respond with error to requests */
3489 pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
3490 skdev->name, __func__, __LINE__, skdev->name);
3491 blk_start_queue(skdev->queue);
3492 skdev->gendisk_on = -1;
3493 wake_up_interruptible(&skdev->waitq);
3494 break;
3495
3496 default:
3497 pr_err("(%s) Start: unknown state %x\n",
3498 skd_name(skdev), skdev->drive_state);
3499 break;
3500 }
3501
3502 state = SKD_READL(skdev, FIT_CONTROL);
3503 pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
3504 skdev->name, __func__, __LINE__, state);
3505
3506 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
3507 pr_debug("%s:%s:%d Intr Status=0x%x\n",
3508 skdev->name, __func__, __LINE__, state);
3509
3510 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
3511 pr_debug("%s:%s:%d Intr Mask=0x%x\n",
3512 skdev->name, __func__, __LINE__, state);
3513
3514 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3515 pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
3516 skdev->name, __func__, __LINE__, state);
3517
3518 state = SKD_READL(skdev, FIT_HW_VERSION);
3519 pr_debug("%s:%s:%d HW version=0x%x\n",
3520 skdev->name, __func__, __LINE__, state);
3521
3522 spin_unlock_irqrestore(&skdev->lock, flags);
3523 }
3524
3525 static void skd_stop_device(struct skd_device *skdev)
3526 {
3527 unsigned long flags;
3528 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3529 u32 dev_state;
3530 int i;
3531
3532 spin_lock_irqsave(&skdev->lock, flags);
3533
3534 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
3535 pr_err("(%s): skd_stop_device not online no sync\n",
3536 skd_name(skdev));
3537 goto stop_out;
3538 }
3539
3540 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
3541 pr_err("(%s): skd_stop_device no special\n",
3542 skd_name(skdev));
3543 goto stop_out;
3544 }
3545
3546 skdev->state = SKD_DRVR_STATE_SYNCING;
3547 skdev->sync_done = 0;
3548
3549 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
3550
3551 spin_unlock_irqrestore(&skdev->lock, flags);
3552
3553 wait_event_interruptible_timeout(skdev->waitq,
3554 (skdev->sync_done), (10 * HZ));
3555
3556 spin_lock_irqsave(&skdev->lock, flags);
3557
3558 switch (skdev->sync_done) {
3559 case 0:
3560 pr_err("(%s): skd_stop_device no sync\n",
3561 skd_name(skdev));
3562 break;
3563 case 1:
3564 pr_err("(%s): skd_stop_device sync done\n",
3565 skd_name(skdev));
3566 break;
3567 default:
3568 pr_err("(%s): skd_stop_device sync error\n",
3569 skd_name(skdev));
3570 }
3571
3572 stop_out:
3573 skdev->state = SKD_DRVR_STATE_STOPPING;
3574 spin_unlock_irqrestore(&skdev->lock, flags);
3575
3576 skd_kill_timer(skdev);
3577
3578 spin_lock_irqsave(&skdev->lock, flags);
3579 skd_disable_interrupts(skdev);
3580
3581 /* ensure all ints on device are cleared */
3582 /* soft reset the device to unload with a clean slate */
3583 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3584 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
3585
3586 spin_unlock_irqrestore(&skdev->lock, flags);
3587
3588 /* poll every 100ms, 1 second timeout */
3589 for (i = 0; i < 10; i++) {
3590 dev_state =
3591 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
3592 if (dev_state == FIT_SR_DRIVE_INIT)
3593 break;
3594 set_current_state(TASK_INTERRUPTIBLE);
3595 schedule_timeout(msecs_to_jiffies(100));
3596 }
3597
3598 if (dev_state != FIT_SR_DRIVE_INIT)
3599 pr_err("(%s): skd_stop_device state error 0x%02x\n",
3600 skd_name(skdev), dev_state);
3601 }
3602
3603 /* assume spinlock is held */
3604 static void skd_restart_device(struct skd_device *skdev)
3605 {
3606 u32 state;
3607
3608 /* ack all ghost interrupts */
3609 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3610
3611 state = SKD_READL(skdev, FIT_STATUS);
3612
3613 pr_debug("%s:%s:%d drive status=0x%x\n",
3614 skdev->name, __func__, __LINE__, state);
3615
3616 state &= FIT_SR_DRIVE_STATE_MASK;
3617 skdev->drive_state = state;
3618 skdev->last_mtd = 0;
3619
3620 skdev->state = SKD_DRVR_STATE_RESTARTING;
3621 skdev->timer_countdown = SKD_RESTARTING_TIMO;
3622
3623 skd_soft_reset(skdev);
3624 }
3625
3626 /* assume spinlock is held */
3627 static int skd_quiesce_dev(struct skd_device *skdev)
3628 {
3629 int rc = 0;
3630
3631 switch (skdev->state) {
3632 case SKD_DRVR_STATE_BUSY:
3633 case SKD_DRVR_STATE_BUSY_IMMINENT:
3634 pr_debug("%s:%s:%d stopping %s queue\n",
3635 skdev->name, __func__, __LINE__, skdev->name);
3636 blk_stop_queue(skdev->queue);
3637 break;
3638 case SKD_DRVR_STATE_ONLINE:
3639 case SKD_DRVR_STATE_STOPPING:
3640 case SKD_DRVR_STATE_SYNCING:
3641 case SKD_DRVR_STATE_PAUSING:
3642 case SKD_DRVR_STATE_PAUSED:
3643 case SKD_DRVR_STATE_STARTING:
3644 case SKD_DRVR_STATE_RESTARTING:
3645 case SKD_DRVR_STATE_RESUMING:
3646 default:
3647 rc = -EINVAL;
3648 pr_debug("%s:%s:%d state [%d] not implemented\n",
3649 skdev->name, __func__, __LINE__, skdev->state);
3650 }
3651 return rc;
3652 }
3653
3654 /* assume spinlock is held */
3655 static int skd_unquiesce_dev(struct skd_device *skdev)
3656 {
3657 int prev_driver_state = skdev->state;
3658
3659 skd_log_skdev(skdev, "unquiesce");
3660 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
3661 pr_debug("%s:%s:%d **** device already ONLINE\n",
3662 skdev->name, __func__, __LINE__);
3663 return 0;
3664 }
3665 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
3666 /*
3667 * If there has been an state change to other than
3668 * ONLINE, we will rely on controller state change
3669 * to come back online and restart the queue.
3670 * The BUSY state means that driver is ready to
3671 * continue normal processing but waiting for controller
3672 * to become available.
3673 */
3674 skdev->state = SKD_DRVR_STATE_BUSY;
3675 pr_debug("%s:%s:%d drive BUSY state\n",
3676 skdev->name, __func__, __LINE__);
3677 return 0;
3678 }
3679
3680 /*
3681 * Drive has just come online, driver is either in startup,
3682 * paused performing a task, or bust waiting for hardware.
3683 */
3684 switch (skdev->state) {
3685 case SKD_DRVR_STATE_PAUSED:
3686 case SKD_DRVR_STATE_BUSY:
3687 case SKD_DRVR_STATE_BUSY_IMMINENT:
3688 case SKD_DRVR_STATE_BUSY_ERASE:
3689 case SKD_DRVR_STATE_STARTING:
3690 case SKD_DRVR_STATE_RESTARTING:
3691 case SKD_DRVR_STATE_FAULT:
3692 case SKD_DRVR_STATE_IDLE:
3693 case SKD_DRVR_STATE_LOAD:
3694 skdev->state = SKD_DRVR_STATE_ONLINE;
3695 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3696 skd_name(skdev),
3697 skd_skdev_state_to_str(prev_driver_state),
3698 prev_driver_state, skd_skdev_state_to_str(skdev->state),
3699 skdev->state);
3700 pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
3701 skdev->name, __func__, __LINE__);
3702 pr_debug("%s:%s:%d starting %s queue\n",
3703 skdev->name, __func__, __LINE__, skdev->name);
3704 pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
3705 blk_start_queue(skdev->queue);
3706 skdev->gendisk_on = 1;
3707 wake_up_interruptible(&skdev->waitq);
3708 break;
3709
3710 case SKD_DRVR_STATE_DISAPPEARED:
3711 default:
3712 pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
3713 skdev->name, __func__, __LINE__,
3714 skdev->state);
3715 return -EBUSY;
3716 }
3717 return 0;
3718 }
3719
3720 /*
3721 *****************************************************************************
3722 * PCIe MSI/MSI-X INTERRUPT HANDLERS
3723 *****************************************************************************
3724 */
3725
3726 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
3727 {
3728 struct skd_device *skdev = skd_host_data;
3729 unsigned long flags;
3730
3731 spin_lock_irqsave(&skdev->lock, flags);
3732 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3733 skdev->name, __func__, __LINE__,
3734 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3735 pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
3736 irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
3737 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
3738 spin_unlock_irqrestore(&skdev->lock, flags);
3739 return IRQ_HANDLED;
3740 }
3741
3742 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
3743 {
3744 struct skd_device *skdev = skd_host_data;
3745 unsigned long flags;
3746
3747 spin_lock_irqsave(&skdev->lock, flags);
3748 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3749 skdev->name, __func__, __LINE__,
3750 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3751 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
3752 skd_isr_fwstate(skdev);
3753 spin_unlock_irqrestore(&skdev->lock, flags);
3754 return IRQ_HANDLED;
3755 }
3756
3757 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
3758 {
3759 struct skd_device *skdev = skd_host_data;
3760 unsigned long flags;
3761 int flush_enqueued = 0;
3762 int deferred;
3763
3764 spin_lock_irqsave(&skdev->lock, flags);
3765 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3766 skdev->name, __func__, __LINE__,
3767 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3768 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
3769 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
3770 &flush_enqueued);
3771 if (flush_enqueued)
3772 skd_request_fn(skdev->queue);
3773
3774 if (deferred)
3775 schedule_work(&skdev->completion_worker);
3776 else if (!flush_enqueued)
3777 skd_request_fn(skdev->queue);
3778
3779 spin_unlock_irqrestore(&skdev->lock, flags);
3780
3781 return IRQ_HANDLED;
3782 }
3783
3784 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
3785 {
3786 struct skd_device *skdev = skd_host_data;
3787 unsigned long flags;
3788
3789 spin_lock_irqsave(&skdev->lock, flags);
3790 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3791 skdev->name, __func__, __LINE__,
3792 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3793 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
3794 skd_isr_msg_from_dev(skdev);
3795 spin_unlock_irqrestore(&skdev->lock, flags);
3796 return IRQ_HANDLED;
3797 }
3798
3799 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
3800 {
3801 struct skd_device *skdev = skd_host_data;
3802 unsigned long flags;
3803
3804 spin_lock_irqsave(&skdev->lock, flags);
3805 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3806 skdev->name, __func__, __LINE__,
3807 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3808 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
3809 spin_unlock_irqrestore(&skdev->lock, flags);
3810 return IRQ_HANDLED;
3811 }
3812
3813 /*
3814 *****************************************************************************
3815 * PCIe MSI/MSI-X SETUP
3816 *****************************************************************************
3817 */
3818
3819 struct skd_msix_entry {
3820 char isr_name[30];
3821 };
3822
3823 struct skd_init_msix_entry {
3824 const char *name;
3825 irq_handler_t handler;
3826 };
3827
3828 #define SKD_MAX_MSIX_COUNT 13
3829 #define SKD_MIN_MSIX_COUNT 7
3830 #define SKD_BASE_MSIX_IRQ 4
3831
3832 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
3833 { "(DMA 0)", skd_reserved_isr },
3834 { "(DMA 1)", skd_reserved_isr },
3835 { "(DMA 2)", skd_reserved_isr },
3836 { "(DMA 3)", skd_reserved_isr },
3837 { "(State Change)", skd_statec_isr },
3838 { "(COMPL_Q)", skd_comp_q },
3839 { "(MSG)", skd_msg_isr },
3840 { "(Reserved)", skd_reserved_isr },
3841 { "(Reserved)", skd_reserved_isr },
3842 { "(Queue Full 0)", skd_qfull_isr },
3843 { "(Queue Full 1)", skd_qfull_isr },
3844 { "(Queue Full 2)", skd_qfull_isr },
3845 { "(Queue Full 3)", skd_qfull_isr },
3846 };
3847
3848 static int skd_acquire_msix(struct skd_device *skdev)
3849 {
3850 int i, rc;
3851 struct pci_dev *pdev = skdev->pdev;
3852
3853 rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
3854 PCI_IRQ_MSIX);
3855 if (rc < 0) {
3856 pr_err("(%s): failed to enable MSI-X %d\n",
3857 skd_name(skdev), rc);
3858 goto out;
3859 }
3860
3861 skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
3862 sizeof(struct skd_msix_entry), GFP_KERNEL);
3863 if (!skdev->msix_entries) {
3864 rc = -ENOMEM;
3865 pr_err("(%s): msix table allocation error\n",
3866 skd_name(skdev));
3867 goto out;
3868 }
3869
3870 /* Enable MSI-X vectors for the base queue */
3871 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
3872 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
3873
3874 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
3875 "%s%d-msix %s", DRV_NAME, skdev->devno,
3876 msix_entries[i].name);
3877
3878 rc = devm_request_irq(&skdev->pdev->dev,
3879 pci_irq_vector(skdev->pdev, i),
3880 msix_entries[i].handler, 0,
3881 qentry->isr_name, skdev);
3882 if (rc) {
3883 pr_err("(%s): Unable to register(%d) MSI-X "
3884 "handler %d: %s\n",
3885 skd_name(skdev), rc, i, qentry->isr_name);
3886 goto msix_out;
3887 }
3888 }
3889
3890 pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
3891 skdev->name, __func__, __LINE__,
3892 pci_name(pdev), skdev->name, SKD_MAX_MSIX_COUNT);
3893 return 0;
3894
3895 msix_out:
3896 while (--i >= 0)
3897 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
3898 out:
3899 kfree(skdev->msix_entries);
3900 skdev->msix_entries = NULL;
3901 return rc;
3902 }
3903
3904 static int skd_acquire_irq(struct skd_device *skdev)
3905 {
3906 struct pci_dev *pdev = skdev->pdev;
3907 unsigned int irq_flag = PCI_IRQ_LEGACY;
3908 int rc;
3909
3910 if (skd_isr_type == SKD_IRQ_MSIX) {
3911 rc = skd_acquire_msix(skdev);
3912 if (!rc)
3913 return 0;
3914
3915 pr_err("(%s): failed to enable MSI-X, re-trying with MSI %d\n",
3916 skd_name(skdev), rc);
3917 }
3918
3919 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
3920 skdev->devno);
3921
3922 if (skd_isr_type != SKD_IRQ_LEGACY)
3923 irq_flag |= PCI_IRQ_MSI;
3924 rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
3925 if (rc < 0) {
3926 pr_err("(%s): failed to allocate the MSI interrupt %d\n",
3927 skd_name(skdev), rc);
3928 return rc;
3929 }
3930
3931 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
3932 pdev->msi_enabled ? 0 : IRQF_SHARED,
3933 skdev->isr_name, skdev);
3934 if (rc) {
3935 pci_free_irq_vectors(pdev);
3936 pr_err("(%s): failed to allocate interrupt %d\n",
3937 skd_name(skdev), rc);
3938 return rc;
3939 }
3940
3941 return 0;
3942 }
3943
3944 static void skd_release_irq(struct skd_device *skdev)
3945 {
3946 struct pci_dev *pdev = skdev->pdev;
3947
3948 if (skdev->msix_entries) {
3949 int i;
3950
3951 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
3952 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
3953 skdev);
3954 }
3955
3956 kfree(skdev->msix_entries);
3957 skdev->msix_entries = NULL;
3958 } else {
3959 devm_free_irq(&pdev->dev, pdev->irq, skdev);
3960 }
3961
3962 pci_free_irq_vectors(pdev);
3963 }
3964
3965 /*
3966 *****************************************************************************
3967 * CONSTRUCT
3968 *****************************************************************************
3969 */
3970
3971 static int skd_cons_skcomp(struct skd_device *skdev)
3972 {
3973 int rc = 0;
3974 struct fit_completion_entry_v1 *skcomp;
3975 u32 nbytes;
3976
3977 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
3978 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
3979
3980 pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
3981 skdev->name, __func__, __LINE__,
3982 nbytes, SKD_N_COMPLETION_ENTRY);
3983
3984 skcomp = pci_zalloc_consistent(skdev->pdev, nbytes,
3985 &skdev->cq_dma_address);
3986
3987 if (skcomp == NULL) {
3988 rc = -ENOMEM;
3989 goto err_out;
3990 }
3991
3992 skdev->skcomp_table = skcomp;
3993 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
3994 sizeof(*skcomp) *
3995 SKD_N_COMPLETION_ENTRY);
3996
3997 err_out:
3998 return rc;
3999 }
4000
4001 static int skd_cons_skmsg(struct skd_device *skdev)
4002 {
4003 int rc = 0;
4004 u32 i;
4005
4006 pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
4007 skdev->name, __func__, __LINE__,
4008 sizeof(struct skd_fitmsg_context),
4009 skdev->num_fitmsg_context,
4010 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
4011
4012 skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
4013 *skdev->num_fitmsg_context, GFP_KERNEL);
4014 if (skdev->skmsg_table == NULL) {
4015 rc = -ENOMEM;
4016 goto err_out;
4017 }
4018
4019 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4020 struct skd_fitmsg_context *skmsg;
4021
4022 skmsg = &skdev->skmsg_table[i];
4023
4024 skmsg->id = i + SKD_ID_FIT_MSG;
4025
4026 skmsg->state = SKD_MSG_STATE_IDLE;
4027 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
4028 SKD_N_FITMSG_BYTES + 64,
4029 &skmsg->mb_dma_address);
4030
4031 if (skmsg->msg_buf == NULL) {
4032 rc = -ENOMEM;
4033 goto err_out;
4034 }
4035
4036 skmsg->offset = (u32)((u64)skmsg->msg_buf &
4037 (~FIT_QCMD_BASE_ADDRESS_MASK));
4038 skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
4039 skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
4040 FIT_QCMD_BASE_ADDRESS_MASK);
4041 skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
4042 skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
4043 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
4044
4045 skmsg->next = &skmsg[1];
4046 }
4047
4048 /* Free list is in order starting with the 0th entry. */
4049 skdev->skmsg_table[i - 1].next = NULL;
4050 skdev->skmsg_free_list = skdev->skmsg_table;
4051
4052 err_out:
4053 return rc;
4054 }
4055
4056 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
4057 u32 n_sg,
4058 dma_addr_t *ret_dma_addr)
4059 {
4060 struct fit_sg_descriptor *sg_list;
4061 u32 nbytes;
4062
4063 nbytes = sizeof(*sg_list) * n_sg;
4064
4065 sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
4066
4067 if (sg_list != NULL) {
4068 uint64_t dma_address = *ret_dma_addr;
4069 u32 i;
4070
4071 memset(sg_list, 0, nbytes);
4072
4073 for (i = 0; i < n_sg - 1; i++) {
4074 uint64_t ndp_off;
4075 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
4076
4077 sg_list[i].next_desc_ptr = dma_address + ndp_off;
4078 }
4079 sg_list[i].next_desc_ptr = 0LL;
4080 }
4081
4082 return sg_list;
4083 }
4084
4085 static int skd_cons_skreq(struct skd_device *skdev)
4086 {
4087 int rc = 0;
4088 u32 i;
4089
4090 pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
4091 skdev->name, __func__, __LINE__,
4092 sizeof(struct skd_request_context),
4093 skdev->num_req_context,
4094 sizeof(struct skd_request_context) * skdev->num_req_context);
4095
4096 skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
4097 * skdev->num_req_context, GFP_KERNEL);
4098 if (skdev->skreq_table == NULL) {
4099 rc = -ENOMEM;
4100 goto err_out;
4101 }
4102
4103 pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
4104 skdev->name, __func__, __LINE__,
4105 skdev->sgs_per_request, sizeof(struct scatterlist),
4106 skdev->sgs_per_request * sizeof(struct scatterlist));
4107
4108 for (i = 0; i < skdev->num_req_context; i++) {
4109 struct skd_request_context *skreq;
4110
4111 skreq = &skdev->skreq_table[i];
4112
4113 skreq->id = i + SKD_ID_RW_REQUEST;
4114 skreq->state = SKD_REQ_STATE_IDLE;
4115
4116 skreq->sg = kzalloc(sizeof(struct scatterlist) *
4117 skdev->sgs_per_request, GFP_KERNEL);
4118 if (skreq->sg == NULL) {
4119 rc = -ENOMEM;
4120 goto err_out;
4121 }
4122 sg_init_table(skreq->sg, skdev->sgs_per_request);
4123
4124 skreq->sksg_list = skd_cons_sg_list(skdev,
4125 skdev->sgs_per_request,
4126 &skreq->sksg_dma_address);
4127
4128 if (skreq->sksg_list == NULL) {
4129 rc = -ENOMEM;
4130 goto err_out;
4131 }
4132
4133 skreq->next = &skreq[1];
4134 }
4135
4136 /* Free list is in order starting with the 0th entry. */
4137 skdev->skreq_table[i - 1].next = NULL;
4138 skdev->skreq_free_list = skdev->skreq_table;
4139
4140 err_out:
4141 return rc;
4142 }
4143
4144 static int skd_cons_skspcl(struct skd_device *skdev)
4145 {
4146 int rc = 0;
4147 u32 i, nbytes;
4148
4149 pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
4150 skdev->name, __func__, __LINE__,
4151 sizeof(struct skd_special_context),
4152 skdev->n_special,
4153 sizeof(struct skd_special_context) * skdev->n_special);
4154
4155 skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
4156 * skdev->n_special, GFP_KERNEL);
4157 if (skdev->skspcl_table == NULL) {
4158 rc = -ENOMEM;
4159 goto err_out;
4160 }
4161
4162 for (i = 0; i < skdev->n_special; i++) {
4163 struct skd_special_context *skspcl;
4164
4165 skspcl = &skdev->skspcl_table[i];
4166
4167 skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
4168 skspcl->req.state = SKD_REQ_STATE_IDLE;
4169
4170 skspcl->req.next = &skspcl[1].req;
4171
4172 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4173
4174 skspcl->msg_buf =
4175 pci_zalloc_consistent(skdev->pdev, nbytes,
4176 &skspcl->mb_dma_address);
4177 if (skspcl->msg_buf == NULL) {
4178 rc = -ENOMEM;
4179 goto err_out;
4180 }
4181
4182 skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
4183 SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
4184 if (skspcl->req.sg == NULL) {
4185 rc = -ENOMEM;
4186 goto err_out;
4187 }
4188
4189 skspcl->req.sksg_list = skd_cons_sg_list(skdev,
4190 SKD_N_SG_PER_SPECIAL,
4191 &skspcl->req.
4192 sksg_dma_address);
4193 if (skspcl->req.sksg_list == NULL) {
4194 rc = -ENOMEM;
4195 goto err_out;
4196 }
4197 }
4198
4199 /* Free list is in order starting with the 0th entry. */
4200 skdev->skspcl_table[i - 1].req.next = NULL;
4201 skdev->skspcl_free_list = skdev->skspcl_table;
4202
4203 return rc;
4204
4205 err_out:
4206 return rc;
4207 }
4208
4209 static int skd_cons_sksb(struct skd_device *skdev)
4210 {
4211 int rc = 0;
4212 struct skd_special_context *skspcl;
4213 u32 nbytes;
4214
4215 skspcl = &skdev->internal_skspcl;
4216
4217 skspcl->req.id = 0 + SKD_ID_INTERNAL;
4218 skspcl->req.state = SKD_REQ_STATE_IDLE;
4219
4220 nbytes = SKD_N_INTERNAL_BYTES;
4221
4222 skspcl->data_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
4223 &skspcl->db_dma_address);
4224 if (skspcl->data_buf == NULL) {
4225 rc = -ENOMEM;
4226 goto err_out;
4227 }
4228
4229 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4230 skspcl->msg_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
4231 &skspcl->mb_dma_address);
4232 if (skspcl->msg_buf == NULL) {
4233 rc = -ENOMEM;
4234 goto err_out;
4235 }
4236
4237 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
4238 &skspcl->req.sksg_dma_address);
4239 if (skspcl->req.sksg_list == NULL) {
4240 rc = -ENOMEM;
4241 goto err_out;
4242 }
4243
4244 if (!skd_format_internal_skspcl(skdev)) {
4245 rc = -EINVAL;
4246 goto err_out;
4247 }
4248
4249 err_out:
4250 return rc;
4251 }
4252
4253 static int skd_cons_disk(struct skd_device *skdev)
4254 {
4255 int rc = 0;
4256 struct gendisk *disk;
4257 struct request_queue *q;
4258 unsigned long flags;
4259
4260 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
4261 if (!disk) {
4262 rc = -ENOMEM;
4263 goto err_out;
4264 }
4265
4266 skdev->disk = disk;
4267 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
4268
4269 disk->major = skdev->major;
4270 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
4271 disk->fops = &skd_blockdev_ops;
4272 disk->private_data = skdev;
4273
4274 q = blk_init_queue(skd_request_fn, &skdev->lock);
4275 if (!q) {
4276 rc = -ENOMEM;
4277 goto err_out;
4278 }
4279
4280 skdev->queue = q;
4281 disk->queue = q;
4282 q->queuedata = skdev;
4283
4284 blk_queue_write_cache(q, true, true);
4285 blk_queue_max_segments(q, skdev->sgs_per_request);
4286 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
4287
4288 /* set sysfs ptimal_io_size to 8K */
4289 blk_queue_io_opt(q, 8192);
4290
4291 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4292 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
4293
4294 spin_lock_irqsave(&skdev->lock, flags);
4295 pr_debug("%s:%s:%d stopping %s queue\n",
4296 skdev->name, __func__, __LINE__, skdev->name);
4297 blk_stop_queue(skdev->queue);
4298 spin_unlock_irqrestore(&skdev->lock, flags);
4299
4300 err_out:
4301 return rc;
4302 }
4303
4304 #define SKD_N_DEV_TABLE 16u
4305 static u32 skd_next_devno;
4306
4307 static struct skd_device *skd_construct(struct pci_dev *pdev)
4308 {
4309 struct skd_device *skdev;
4310 int blk_major = skd_major;
4311 int rc;
4312
4313 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
4314
4315 if (!skdev) {
4316 pr_err(PFX "(%s): memory alloc failure\n",
4317 pci_name(pdev));
4318 return NULL;
4319 }
4320
4321 skdev->state = SKD_DRVR_STATE_LOAD;
4322 skdev->pdev = pdev;
4323 skdev->devno = skd_next_devno++;
4324 skdev->major = blk_major;
4325 sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
4326 skdev->dev_max_queue_depth = 0;
4327
4328 skdev->num_req_context = skd_max_queue_depth;
4329 skdev->num_fitmsg_context = skd_max_queue_depth;
4330 skdev->n_special = skd_max_pass_thru;
4331 skdev->cur_max_queue_depth = 1;
4332 skdev->queue_low_water_mark = 1;
4333 skdev->proto_ver = 99;
4334 skdev->sgs_per_request = skd_sgs_per_request;
4335 skdev->dbg_level = skd_dbg_level;
4336
4337 atomic_set(&skdev->device_count, 0);
4338
4339 spin_lock_init(&skdev->lock);
4340
4341 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
4342
4343 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4344 rc = skd_cons_skcomp(skdev);
4345 if (rc < 0)
4346 goto err_out;
4347
4348 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4349 rc = skd_cons_skmsg(skdev);
4350 if (rc < 0)
4351 goto err_out;
4352
4353 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4354 rc = skd_cons_skreq(skdev);
4355 if (rc < 0)
4356 goto err_out;
4357
4358 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4359 rc = skd_cons_skspcl(skdev);
4360 if (rc < 0)
4361 goto err_out;
4362
4363 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4364 rc = skd_cons_sksb(skdev);
4365 if (rc < 0)
4366 goto err_out;
4367
4368 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4369 rc = skd_cons_disk(skdev);
4370 if (rc < 0)
4371 goto err_out;
4372
4373 pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
4374 return skdev;
4375
4376 err_out:
4377 pr_debug("%s:%s:%d construct failed\n",
4378 skdev->name, __func__, __LINE__);
4379 skd_destruct(skdev);
4380 return NULL;
4381 }
4382
4383 /*
4384 *****************************************************************************
4385 * DESTRUCT (FREE)
4386 *****************************************************************************
4387 */
4388
4389 static void skd_free_skcomp(struct skd_device *skdev)
4390 {
4391 if (skdev->skcomp_table != NULL) {
4392 u32 nbytes;
4393
4394 nbytes = sizeof(skdev->skcomp_table[0]) *
4395 SKD_N_COMPLETION_ENTRY;
4396 pci_free_consistent(skdev->pdev, nbytes,
4397 skdev->skcomp_table, skdev->cq_dma_address);
4398 }
4399
4400 skdev->skcomp_table = NULL;
4401 skdev->cq_dma_address = 0;
4402 }
4403
4404 static void skd_free_skmsg(struct skd_device *skdev)
4405 {
4406 u32 i;
4407
4408 if (skdev->skmsg_table == NULL)
4409 return;
4410
4411 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4412 struct skd_fitmsg_context *skmsg;
4413
4414 skmsg = &skdev->skmsg_table[i];
4415
4416 if (skmsg->msg_buf != NULL) {
4417 skmsg->msg_buf += skmsg->offset;
4418 skmsg->mb_dma_address += skmsg->offset;
4419 pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
4420 skmsg->msg_buf,
4421 skmsg->mb_dma_address);
4422 }
4423 skmsg->msg_buf = NULL;
4424 skmsg->mb_dma_address = 0;
4425 }
4426
4427 kfree(skdev->skmsg_table);
4428 skdev->skmsg_table = NULL;
4429 }
4430
4431 static void skd_free_sg_list(struct skd_device *skdev,
4432 struct fit_sg_descriptor *sg_list,
4433 u32 n_sg, dma_addr_t dma_addr)
4434 {
4435 if (sg_list != NULL) {
4436 u32 nbytes;
4437
4438 nbytes = sizeof(*sg_list) * n_sg;
4439
4440 pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
4441 }
4442 }
4443
4444 static void skd_free_skreq(struct skd_device *skdev)
4445 {
4446 u32 i;
4447
4448 if (skdev->skreq_table == NULL)
4449 return;
4450
4451 for (i = 0; i < skdev->num_req_context; i++) {
4452 struct skd_request_context *skreq;
4453
4454 skreq = &skdev->skreq_table[i];
4455
4456 skd_free_sg_list(skdev, skreq->sksg_list,
4457 skdev->sgs_per_request,
4458 skreq->sksg_dma_address);
4459
4460 skreq->sksg_list = NULL;
4461 skreq->sksg_dma_address = 0;
4462
4463 kfree(skreq->sg);
4464 }
4465
4466 kfree(skdev->skreq_table);
4467 skdev->skreq_table = NULL;
4468 }
4469
4470 static void skd_free_skspcl(struct skd_device *skdev)
4471 {
4472 u32 i;
4473 u32 nbytes;
4474
4475 if (skdev->skspcl_table == NULL)
4476 return;
4477
4478 for (i = 0; i < skdev->n_special; i++) {
4479 struct skd_special_context *skspcl;
4480
4481 skspcl = &skdev->skspcl_table[i];
4482
4483 if (skspcl->msg_buf != NULL) {
4484 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4485 pci_free_consistent(skdev->pdev, nbytes,
4486 skspcl->msg_buf,
4487 skspcl->mb_dma_address);
4488 }
4489
4490 skspcl->msg_buf = NULL;
4491 skspcl->mb_dma_address = 0;
4492
4493 skd_free_sg_list(skdev, skspcl->req.sksg_list,
4494 SKD_N_SG_PER_SPECIAL,
4495 skspcl->req.sksg_dma_address);
4496
4497 skspcl->req.sksg_list = NULL;
4498 skspcl->req.sksg_dma_address = 0;
4499
4500 kfree(skspcl->req.sg);
4501 }
4502
4503 kfree(skdev->skspcl_table);
4504 skdev->skspcl_table = NULL;
4505 }
4506
4507 static void skd_free_sksb(struct skd_device *skdev)
4508 {
4509 struct skd_special_context *skspcl;
4510 u32 nbytes;
4511
4512 skspcl = &skdev->internal_skspcl;
4513
4514 if (skspcl->data_buf != NULL) {
4515 nbytes = SKD_N_INTERNAL_BYTES;
4516
4517 pci_free_consistent(skdev->pdev, nbytes,
4518 skspcl->data_buf, skspcl->db_dma_address);
4519 }
4520
4521 skspcl->data_buf = NULL;
4522 skspcl->db_dma_address = 0;
4523
4524 if (skspcl->msg_buf != NULL) {
4525 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4526 pci_free_consistent(skdev->pdev, nbytes,
4527 skspcl->msg_buf, skspcl->mb_dma_address);
4528 }
4529
4530 skspcl->msg_buf = NULL;
4531 skspcl->mb_dma_address = 0;
4532
4533 skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
4534 skspcl->req.sksg_dma_address);
4535
4536 skspcl->req.sksg_list = NULL;
4537 skspcl->req.sksg_dma_address = 0;
4538 }
4539
4540 static void skd_free_disk(struct skd_device *skdev)
4541 {
4542 struct gendisk *disk = skdev->disk;
4543
4544 if (disk != NULL) {
4545 struct request_queue *q = disk->queue;
4546
4547 if (disk->flags & GENHD_FL_UP)
4548 del_gendisk(disk);
4549 if (q)
4550 blk_cleanup_queue(q);
4551 put_disk(disk);
4552 }
4553 skdev->disk = NULL;
4554 }
4555
4556 static void skd_destruct(struct skd_device *skdev)
4557 {
4558 if (skdev == NULL)
4559 return;
4560
4561
4562 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4563 skd_free_disk(skdev);
4564
4565 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4566 skd_free_sksb(skdev);
4567
4568 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4569 skd_free_skspcl(skdev);
4570
4571 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4572 skd_free_skreq(skdev);
4573
4574 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4575 skd_free_skmsg(skdev);
4576
4577 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4578 skd_free_skcomp(skdev);
4579
4580 pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
4581 kfree(skdev);
4582 }
4583
4584 /*
4585 *****************************************************************************
4586 * BLOCK DEVICE (BDEV) GLUE
4587 *****************************************************************************
4588 */
4589
4590 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4591 {
4592 struct skd_device *skdev;
4593 u64 capacity;
4594
4595 skdev = bdev->bd_disk->private_data;
4596
4597 pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
4598 skdev->name, __func__, __LINE__,
4599 bdev->bd_disk->disk_name, current->comm);
4600
4601 if (skdev->read_cap_is_valid) {
4602 capacity = get_capacity(skdev->disk);
4603 geo->heads = 64;
4604 geo->sectors = 255;
4605 geo->cylinders = (capacity) / (255 * 64);
4606
4607 return 0;
4608 }
4609 return -EIO;
4610 }
4611
4612 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
4613 {
4614 pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
4615 device_add_disk(parent, skdev->disk);
4616 return 0;
4617 }
4618
4619 static const struct block_device_operations skd_blockdev_ops = {
4620 .owner = THIS_MODULE,
4621 .ioctl = skd_bdev_ioctl,
4622 .getgeo = skd_bdev_getgeo,
4623 };
4624
4625
4626 /*
4627 *****************************************************************************
4628 * PCIe DRIVER GLUE
4629 *****************************************************************************
4630 */
4631
4632 static const struct pci_device_id skd_pci_tbl[] = {
4633 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
4634 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
4635 { 0 } /* terminate list */
4636 };
4637
4638 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
4639
4640 static char *skd_pci_info(struct skd_device *skdev, char *str)
4641 {
4642 int pcie_reg;
4643
4644 strcpy(str, "PCIe (");
4645 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
4646
4647 if (pcie_reg) {
4648
4649 char lwstr[6];
4650 uint16_t pcie_lstat, lspeed, lwidth;
4651
4652 pcie_reg += 0x12;
4653 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
4654 lspeed = pcie_lstat & (0xF);
4655 lwidth = (pcie_lstat & 0x3F0) >> 4;
4656
4657 if (lspeed == 1)
4658 strcat(str, "2.5GT/s ");
4659 else if (lspeed == 2)
4660 strcat(str, "5.0GT/s ");
4661 else
4662 strcat(str, "<unknown> ");
4663 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
4664 strcat(str, lwstr);
4665 }
4666 return str;
4667 }
4668
4669 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4670 {
4671 int i;
4672 int rc = 0;
4673 char pci_str[32];
4674 struct skd_device *skdev;
4675
4676 pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
4677 DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
4678 pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
4679 pci_name(pdev), pdev->vendor, pdev->device);
4680
4681 rc = pci_enable_device(pdev);
4682 if (rc)
4683 return rc;
4684 rc = pci_request_regions(pdev, DRV_NAME);
4685 if (rc)
4686 goto err_out;
4687 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4688 if (!rc) {
4689 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4690
4691 pr_err("(%s): consistent DMA mask error %d\n",
4692 pci_name(pdev), rc);
4693 }
4694 } else {
4695 (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
4696 if (rc) {
4697
4698 pr_err("(%s): DMA mask error %d\n",
4699 pci_name(pdev), rc);
4700 goto err_out_regions;
4701 }
4702 }
4703
4704 if (!skd_major) {
4705 rc = register_blkdev(0, DRV_NAME);
4706 if (rc < 0)
4707 goto err_out_regions;
4708 BUG_ON(!rc);
4709 skd_major = rc;
4710 }
4711
4712 skdev = skd_construct(pdev);
4713 if (skdev == NULL) {
4714 rc = -ENOMEM;
4715 goto err_out_regions;
4716 }
4717
4718 skd_pci_info(skdev, pci_str);
4719 pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
4720
4721 pci_set_master(pdev);
4722 rc = pci_enable_pcie_error_reporting(pdev);
4723 if (rc) {
4724 pr_err(
4725 "(%s): bad enable of PCIe error reporting rc=%d\n",
4726 skd_name(skdev), rc);
4727 skdev->pcie_error_reporting_is_enabled = 0;
4728 } else
4729 skdev->pcie_error_reporting_is_enabled = 1;
4730
4731
4732 pci_set_drvdata(pdev, skdev);
4733
4734 for (i = 0; i < SKD_MAX_BARS; i++) {
4735 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4736 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4737 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4738 skdev->mem_size[i]);
4739 if (!skdev->mem_map[i]) {
4740 pr_err("(%s): Unable to map adapter memory!\n",
4741 skd_name(skdev));
4742 rc = -ENODEV;
4743 goto err_out_iounmap;
4744 }
4745 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4746 skdev->name, __func__, __LINE__,
4747 skdev->mem_map[i],
4748 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4749 }
4750
4751 rc = skd_acquire_irq(skdev);
4752 if (rc) {
4753 pr_err("(%s): interrupt resource error %d\n",
4754 skd_name(skdev), rc);
4755 goto err_out_iounmap;
4756 }
4757
4758 rc = skd_start_timer(skdev);
4759 if (rc)
4760 goto err_out_timer;
4761
4762 init_waitqueue_head(&skdev->waitq);
4763
4764 skd_start_device(skdev);
4765
4766 rc = wait_event_interruptible_timeout(skdev->waitq,
4767 (skdev->gendisk_on),
4768 (SKD_START_WAIT_SECONDS * HZ));
4769 if (skdev->gendisk_on > 0) {
4770 /* device came on-line after reset */
4771 skd_bdev_attach(&pdev->dev, skdev);
4772 rc = 0;
4773 } else {
4774 /* we timed out, something is wrong with the device,
4775 don't add the disk structure */
4776 pr_err(
4777 "(%s): error: waiting for s1120 timed out %d!\n",
4778 skd_name(skdev), rc);
4779 /* in case of no error; we timeout with ENXIO */
4780 if (!rc)
4781 rc = -ENXIO;
4782 goto err_out_timer;
4783 }
4784
4785
4786 #ifdef SKD_VMK_POLL_HANDLER
4787 if (skdev->irq_type == SKD_IRQ_MSIX) {
4788 /* MSIX completion handler is being used for coredump */
4789 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4790 skdev->msix_entries[5].vector,
4791 skd_comp_q, skdev);
4792 } else {
4793 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4794 skdev->pdev->irq, skd_isr,
4795 skdev);
4796 }
4797 #endif /* SKD_VMK_POLL_HANDLER */
4798
4799 return rc;
4800
4801 err_out_timer:
4802 skd_stop_device(skdev);
4803 skd_release_irq(skdev);
4804
4805 err_out_iounmap:
4806 for (i = 0; i < SKD_MAX_BARS; i++)
4807 if (skdev->mem_map[i])
4808 iounmap(skdev->mem_map[i]);
4809
4810 if (skdev->pcie_error_reporting_is_enabled)
4811 pci_disable_pcie_error_reporting(pdev);
4812
4813 skd_destruct(skdev);
4814
4815 err_out_regions:
4816 pci_release_regions(pdev);
4817
4818 err_out:
4819 pci_disable_device(pdev);
4820 pci_set_drvdata(pdev, NULL);
4821 return rc;
4822 }
4823
4824 static void skd_pci_remove(struct pci_dev *pdev)
4825 {
4826 int i;
4827 struct skd_device *skdev;
4828
4829 skdev = pci_get_drvdata(pdev);
4830 if (!skdev) {
4831 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4832 return;
4833 }
4834 skd_stop_device(skdev);
4835 skd_release_irq(skdev);
4836
4837 for (i = 0; i < SKD_MAX_BARS; i++)
4838 if (skdev->mem_map[i])
4839 iounmap((u32 *)skdev->mem_map[i]);
4840
4841 if (skdev->pcie_error_reporting_is_enabled)
4842 pci_disable_pcie_error_reporting(pdev);
4843
4844 skd_destruct(skdev);
4845
4846 pci_release_regions(pdev);
4847 pci_disable_device(pdev);
4848 pci_set_drvdata(pdev, NULL);
4849
4850 return;
4851 }
4852
4853 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
4854 {
4855 int i;
4856 struct skd_device *skdev;
4857
4858 skdev = pci_get_drvdata(pdev);
4859 if (!skdev) {
4860 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4861 return -EIO;
4862 }
4863
4864 skd_stop_device(skdev);
4865
4866 skd_release_irq(skdev);
4867
4868 for (i = 0; i < SKD_MAX_BARS; i++)
4869 if (skdev->mem_map[i])
4870 iounmap((u32 *)skdev->mem_map[i]);
4871
4872 if (skdev->pcie_error_reporting_is_enabled)
4873 pci_disable_pcie_error_reporting(pdev);
4874
4875 pci_release_regions(pdev);
4876 pci_save_state(pdev);
4877 pci_disable_device(pdev);
4878 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4879 return 0;
4880 }
4881
4882 static int skd_pci_resume(struct pci_dev *pdev)
4883 {
4884 int i;
4885 int rc = 0;
4886 struct skd_device *skdev;
4887
4888 skdev = pci_get_drvdata(pdev);
4889 if (!skdev) {
4890 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4891 return -1;
4892 }
4893
4894 pci_set_power_state(pdev, PCI_D0);
4895 pci_enable_wake(pdev, PCI_D0, 0);
4896 pci_restore_state(pdev);
4897
4898 rc = pci_enable_device(pdev);
4899 if (rc)
4900 return rc;
4901 rc = pci_request_regions(pdev, DRV_NAME);
4902 if (rc)
4903 goto err_out;
4904 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4905 if (!rc) {
4906 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4907
4908 pr_err("(%s): consistent DMA mask error %d\n",
4909 pci_name(pdev), rc);
4910 }
4911 } else {
4912 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4913 if (rc) {
4914
4915 pr_err("(%s): DMA mask error %d\n",
4916 pci_name(pdev), rc);
4917 goto err_out_regions;
4918 }
4919 }
4920
4921 pci_set_master(pdev);
4922 rc = pci_enable_pcie_error_reporting(pdev);
4923 if (rc) {
4924 pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
4925 skdev->name, rc);
4926 skdev->pcie_error_reporting_is_enabled = 0;
4927 } else
4928 skdev->pcie_error_reporting_is_enabled = 1;
4929
4930 for (i = 0; i < SKD_MAX_BARS; i++) {
4931
4932 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4933 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4934 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4935 skdev->mem_size[i]);
4936 if (!skdev->mem_map[i]) {
4937 pr_err("(%s): Unable to map adapter memory!\n",
4938 skd_name(skdev));
4939 rc = -ENODEV;
4940 goto err_out_iounmap;
4941 }
4942 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4943 skdev->name, __func__, __LINE__,
4944 skdev->mem_map[i],
4945 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4946 }
4947 rc = skd_acquire_irq(skdev);
4948 if (rc) {
4949
4950 pr_err("(%s): interrupt resource error %d\n",
4951 pci_name(pdev), rc);
4952 goto err_out_iounmap;
4953 }
4954
4955 rc = skd_start_timer(skdev);
4956 if (rc)
4957 goto err_out_timer;
4958
4959 init_waitqueue_head(&skdev->waitq);
4960
4961 skd_start_device(skdev);
4962
4963 return rc;
4964
4965 err_out_timer:
4966 skd_stop_device(skdev);
4967 skd_release_irq(skdev);
4968
4969 err_out_iounmap:
4970 for (i = 0; i < SKD_MAX_BARS; i++)
4971 if (skdev->mem_map[i])
4972 iounmap(skdev->mem_map[i]);
4973
4974 if (skdev->pcie_error_reporting_is_enabled)
4975 pci_disable_pcie_error_reporting(pdev);
4976
4977 err_out_regions:
4978 pci_release_regions(pdev);
4979
4980 err_out:
4981 pci_disable_device(pdev);
4982 return rc;
4983 }
4984
4985 static void skd_pci_shutdown(struct pci_dev *pdev)
4986 {
4987 struct skd_device *skdev;
4988
4989 pr_err("skd_pci_shutdown called\n");
4990
4991 skdev = pci_get_drvdata(pdev);
4992 if (!skdev) {
4993 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4994 return;
4995 }
4996
4997 pr_err("%s: calling stop\n", skd_name(skdev));
4998 skd_stop_device(skdev);
4999 }
5000
5001 static struct pci_driver skd_driver = {
5002 .name = DRV_NAME,
5003 .id_table = skd_pci_tbl,
5004 .probe = skd_pci_probe,
5005 .remove = skd_pci_remove,
5006 .suspend = skd_pci_suspend,
5007 .resume = skd_pci_resume,
5008 .shutdown = skd_pci_shutdown,
5009 };
5010
5011 /*
5012 *****************************************************************************
5013 * LOGGING SUPPORT
5014 *****************************************************************************
5015 */
5016
5017 static const char *skd_name(struct skd_device *skdev)
5018 {
5019 memset(skdev->id_str, 0, sizeof(skdev->id_str));
5020
5021 if (skdev->inquiry_is_valid)
5022 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
5023 skdev->name, skdev->inq_serial_num,
5024 pci_name(skdev->pdev));
5025 else
5026 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
5027 skdev->name, pci_name(skdev->pdev));
5028
5029 return skdev->id_str;
5030 }
5031
5032 const char *skd_drive_state_to_str(int state)
5033 {
5034 switch (state) {
5035 case FIT_SR_DRIVE_OFFLINE:
5036 return "OFFLINE";
5037 case FIT_SR_DRIVE_INIT:
5038 return "INIT";
5039 case FIT_SR_DRIVE_ONLINE:
5040 return "ONLINE";
5041 case FIT_SR_DRIVE_BUSY:
5042 return "BUSY";
5043 case FIT_SR_DRIVE_FAULT:
5044 return "FAULT";
5045 case FIT_SR_DRIVE_DEGRADED:
5046 return "DEGRADED";
5047 case FIT_SR_PCIE_LINK_DOWN:
5048 return "INK_DOWN";
5049 case FIT_SR_DRIVE_SOFT_RESET:
5050 return "SOFT_RESET";
5051 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
5052 return "NEED_FW";
5053 case FIT_SR_DRIVE_INIT_FAULT:
5054 return "INIT_FAULT";
5055 case FIT_SR_DRIVE_BUSY_SANITIZE:
5056 return "BUSY_SANITIZE";
5057 case FIT_SR_DRIVE_BUSY_ERASE:
5058 return "BUSY_ERASE";
5059 case FIT_SR_DRIVE_FW_BOOTING:
5060 return "FW_BOOTING";
5061 default:
5062 return "???";
5063 }
5064 }
5065
5066 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
5067 {
5068 switch (state) {
5069 case SKD_DRVR_STATE_LOAD:
5070 return "LOAD";
5071 case SKD_DRVR_STATE_IDLE:
5072 return "IDLE";
5073 case SKD_DRVR_STATE_BUSY:
5074 return "BUSY";
5075 case SKD_DRVR_STATE_STARTING:
5076 return "STARTING";
5077 case SKD_DRVR_STATE_ONLINE:
5078 return "ONLINE";
5079 case SKD_DRVR_STATE_PAUSING:
5080 return "PAUSING";
5081 case SKD_DRVR_STATE_PAUSED:
5082 return "PAUSED";
5083 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
5084 return "DRAINING_TIMEOUT";
5085 case SKD_DRVR_STATE_RESTARTING:
5086 return "RESTARTING";
5087 case SKD_DRVR_STATE_RESUMING:
5088 return "RESUMING";
5089 case SKD_DRVR_STATE_STOPPING:
5090 return "STOPPING";
5091 case SKD_DRVR_STATE_SYNCING:
5092 return "SYNCING";
5093 case SKD_DRVR_STATE_FAULT:
5094 return "FAULT";
5095 case SKD_DRVR_STATE_DISAPPEARED:
5096 return "DISAPPEARED";
5097 case SKD_DRVR_STATE_BUSY_ERASE:
5098 return "BUSY_ERASE";
5099 case SKD_DRVR_STATE_BUSY_SANITIZE:
5100 return "BUSY_SANITIZE";
5101 case SKD_DRVR_STATE_BUSY_IMMINENT:
5102 return "BUSY_IMMINENT";
5103 case SKD_DRVR_STATE_WAIT_BOOT:
5104 return "WAIT_BOOT";
5105
5106 default:
5107 return "???";
5108 }
5109 }
5110
5111 static const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
5112 {
5113 switch (state) {
5114 case SKD_MSG_STATE_IDLE:
5115 return "IDLE";
5116 case SKD_MSG_STATE_BUSY:
5117 return "BUSY";
5118 default:
5119 return "???";
5120 }
5121 }
5122
5123 static const char *skd_skreq_state_to_str(enum skd_req_state state)
5124 {
5125 switch (state) {
5126 case SKD_REQ_STATE_IDLE:
5127 return "IDLE";
5128 case SKD_REQ_STATE_SETUP:
5129 return "SETUP";
5130 case SKD_REQ_STATE_BUSY:
5131 return "BUSY";
5132 case SKD_REQ_STATE_COMPLETED:
5133 return "COMPLETED";
5134 case SKD_REQ_STATE_TIMEOUT:
5135 return "TIMEOUT";
5136 case SKD_REQ_STATE_ABORTED:
5137 return "ABORTED";
5138 default:
5139 return "???";
5140 }
5141 }
5142
5143 static void skd_log_skdev(struct skd_device *skdev, const char *event)
5144 {
5145 pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
5146 skdev->name, __func__, __LINE__, skdev->name, skdev, event);
5147 pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
5148 skdev->name, __func__, __LINE__,
5149 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
5150 skd_skdev_state_to_str(skdev->state), skdev->state);
5151 pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
5152 skdev->name, __func__, __LINE__,
5153 skdev->in_flight, skdev->cur_max_queue_depth,
5154 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
5155 pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
5156 skdev->name, __func__, __LINE__,
5157 skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
5158 }
5159
5160 static void skd_log_skmsg(struct skd_device *skdev,
5161 struct skd_fitmsg_context *skmsg, const char *event)
5162 {
5163 pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
5164 skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
5165 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
5166 skdev->name, __func__, __LINE__,
5167 skd_skmsg_state_to_str(skmsg->state), skmsg->state,
5168 skmsg->id, skmsg->length);
5169 }
5170
5171 static void skd_log_skreq(struct skd_device *skdev,
5172 struct skd_request_context *skreq, const char *event)
5173 {
5174 pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
5175 skdev->name, __func__, __LINE__, skdev->name, skreq, event);
5176 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
5177 skdev->name, __func__, __LINE__,
5178 skd_skreq_state_to_str(skreq->state), skreq->state,
5179 skreq->id, skreq->fitmsg_id);
5180 pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
5181 skdev->name, __func__, __LINE__,
5182 skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
5183
5184 if (skreq->req != NULL) {
5185 struct request *req = skreq->req;
5186 u32 lba = (u32)blk_rq_pos(req);
5187 u32 count = blk_rq_sectors(req);
5188
5189 pr_debug("%s:%s:%d "
5190 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
5191 skdev->name, __func__, __LINE__,
5192 req, lba, lba, count, count,
5193 (int)rq_data_dir(req));
5194 } else
5195 pr_debug("%s:%s:%d req=NULL\n",
5196 skdev->name, __func__, __LINE__);
5197 }
5198
5199 /*
5200 *****************************************************************************
5201 * MODULE GLUE
5202 *****************************************************************************
5203 */
5204
5205 static int __init skd_init(void)
5206 {
5207 pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
5208
5209 switch (skd_isr_type) {
5210 case SKD_IRQ_LEGACY:
5211 case SKD_IRQ_MSI:
5212 case SKD_IRQ_MSIX:
5213 break;
5214 default:
5215 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
5216 skd_isr_type, SKD_IRQ_DEFAULT);
5217 skd_isr_type = SKD_IRQ_DEFAULT;
5218 }
5219
5220 if (skd_max_queue_depth < 1 ||
5221 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
5222 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
5223 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
5224 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
5225 }
5226
5227 if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
5228 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
5229 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
5230 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
5231 }
5232
5233 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
5234 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
5235 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
5236 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
5237 }
5238
5239 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
5240 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
5241 skd_dbg_level, 0);
5242 skd_dbg_level = 0;
5243 }
5244
5245 if (skd_isr_comp_limit < 0) {
5246 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
5247 skd_isr_comp_limit, 0);
5248 skd_isr_comp_limit = 0;
5249 }
5250
5251 if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
5252 pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
5253 skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
5254 skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
5255 }
5256
5257 return pci_register_driver(&skd_driver);
5258 }
5259
5260 static void __exit skd_exit(void)
5261 {
5262 pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
5263
5264 pci_unregister_driver(&skd_driver);
5265
5266 if (skd_major)
5267 unregister_blkdev(skd_major, DRV_NAME);
5268 }
5269
5270 module_init(skd_init);
5271 module_exit(skd_exit);