]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/skd_main.c
skd: more removal of bio-based code
[mirror_ubuntu-artful-kernel.git] / drivers / block / skd_main.c
1 /* Copyright 2012 STEC, Inc.
2 *
3 * This file is licensed under the terms of the 3-clause
4 * BSD License (http://opensource.org/licenses/BSD-3-Clause)
5 * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
6 * at your option. Both licenses are also available in the LICENSE file
7 * distributed with this project. This file may not be copied, modified,
8 * or distributed except in accordance with those terms.
9 * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
10 * Initial Driver Design!
11 * Thomas Swann <tswann@stec-inc.com>
12 * Interrupt handling.
13 * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
14 * biomode implementation.
15 * Akhil Bhansali <abhansali@stec-inc.com>
16 * Added support for DISCARD / FLUSH and FUA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/pci.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/blkdev.h>
26 #include <linux/sched.h>
27 #include <linux/interrupt.h>
28 #include <linux/compiler.h>
29 #include <linux/workqueue.h>
30 #include <linux/bitops.h>
31 #include <linux/delay.h>
32 #include <linux/time.h>
33 #include <linux/hdreg.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/completion.h>
36 #include <linux/scatterlist.h>
37 #include <linux/version.h>
38 #include <linux/err.h>
39 #include <linux/scatterlist.h>
40 #include <linux/aer.h>
41 #include <linux/ctype.h>
42 #include <linux/wait.h>
43 #include <linux/uio.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/sg.h>
49 #include <linux/io.h>
50 #include <linux/uaccess.h>
51 #include <asm-generic/unaligned.h>
52
53 #include "skd_s1120.h"
54
55 static int skd_dbg_level;
56 static int skd_isr_comp_limit = 4;
57
58 enum {
59 STEC_LINK_2_5GTS = 0,
60 STEC_LINK_5GTS = 1,
61 STEC_LINK_8GTS = 2,
62 STEC_LINK_UNKNOWN = 0xFF
63 };
64
65 enum {
66 SKD_FLUSH_INITIALIZER,
67 SKD_FLUSH_ZERO_SIZE_FIRST,
68 SKD_FLUSH_DATA_SECOND,
69 };
70
71 #define SKD_ASSERT(expr) \
72 do { \
73 if (unlikely(!(expr))) { \
74 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
75 # expr, __FILE__, __func__, __LINE__); \
76 } \
77 } while (0)
78
79 #define DRV_NAME "skd"
80 #define DRV_VERSION "2.2.1"
81 #define DRV_BUILD_ID "0260"
82 #define PFX DRV_NAME ": "
83 #define DRV_BIN_VERSION 0x100
84 #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
85
86 MODULE_AUTHOR("bug-reports: support@stec-inc.com");
87 MODULE_LICENSE("Dual BSD/GPL");
88
89 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
90 MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
91
92 #define PCI_VENDOR_ID_STEC 0x1B39
93 #define PCI_DEVICE_ID_S1120 0x0001
94
95 #define SKD_FUA_NV (1 << 1)
96 #define SKD_MINORS_PER_DEVICE 16
97
98 #define SKD_MAX_QUEUE_DEPTH 200u
99
100 #define SKD_PAUSE_TIMEOUT (5 * 1000)
101
102 #define SKD_N_FITMSG_BYTES (512u)
103
104 #define SKD_N_SPECIAL_CONTEXT 32u
105 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
106
107 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
108 * 128KB limit. That allows 4096*4K = 16M xfer size
109 */
110 #define SKD_N_SG_PER_REQ_DEFAULT 256u
111 #define SKD_N_SG_PER_SPECIAL 256u
112
113 #define SKD_N_COMPLETION_ENTRY 256u
114 #define SKD_N_READ_CAP_BYTES (8u)
115
116 #define SKD_N_INTERNAL_BYTES (512u)
117
118 /* 5 bits of uniqifier, 0xF800 */
119 #define SKD_ID_INCR (0x400)
120 #define SKD_ID_TABLE_MASK (3u << 8u)
121 #define SKD_ID_RW_REQUEST (0u << 8u)
122 #define SKD_ID_INTERNAL (1u << 8u)
123 #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
124 #define SKD_ID_FIT_MSG (3u << 8u)
125 #define SKD_ID_SLOT_MASK 0x00FFu
126 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
127
128 #define SKD_N_TIMEOUT_SLOT 4u
129 #define SKD_TIMEOUT_SLOT_MASK 3u
130
131 #define SKD_N_MAX_SECTORS 2048u
132
133 #define SKD_MAX_RETRIES 2u
134
135 #define SKD_TIMER_SECONDS(seconds) (seconds)
136 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
137
138 #define INQ_STD_NBYTES 36
139 #define SKD_DISCARD_CDB_LENGTH 24
140
141 enum skd_drvr_state {
142 SKD_DRVR_STATE_LOAD,
143 SKD_DRVR_STATE_IDLE,
144 SKD_DRVR_STATE_BUSY,
145 SKD_DRVR_STATE_STARTING,
146 SKD_DRVR_STATE_ONLINE,
147 SKD_DRVR_STATE_PAUSING,
148 SKD_DRVR_STATE_PAUSED,
149 SKD_DRVR_STATE_DRAINING_TIMEOUT,
150 SKD_DRVR_STATE_RESTARTING,
151 SKD_DRVR_STATE_RESUMING,
152 SKD_DRVR_STATE_STOPPING,
153 SKD_DRVR_STATE_FAULT,
154 SKD_DRVR_STATE_DISAPPEARED,
155 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
156 SKD_DRVR_STATE_BUSY_ERASE,
157 SKD_DRVR_STATE_BUSY_SANITIZE,
158 SKD_DRVR_STATE_BUSY_IMMINENT,
159 SKD_DRVR_STATE_WAIT_BOOT,
160 SKD_DRVR_STATE_SYNCING,
161 };
162
163 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
164 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
165 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
166 #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
167 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
168 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
169 #define SKD_START_WAIT_SECONDS 90u
170
171 enum skd_req_state {
172 SKD_REQ_STATE_IDLE,
173 SKD_REQ_STATE_SETUP,
174 SKD_REQ_STATE_BUSY,
175 SKD_REQ_STATE_COMPLETED,
176 SKD_REQ_STATE_TIMEOUT,
177 SKD_REQ_STATE_ABORTED,
178 };
179
180 enum skd_fit_msg_state {
181 SKD_MSG_STATE_IDLE,
182 SKD_MSG_STATE_BUSY,
183 };
184
185 enum skd_check_status_action {
186 SKD_CHECK_STATUS_REPORT_GOOD,
187 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
188 SKD_CHECK_STATUS_REQUEUE_REQUEST,
189 SKD_CHECK_STATUS_REPORT_ERROR,
190 SKD_CHECK_STATUS_BUSY_IMMINENT,
191 };
192
193 struct skd_fitmsg_context {
194 enum skd_fit_msg_state state;
195
196 struct skd_fitmsg_context *next;
197
198 u32 id;
199 u16 outstanding;
200
201 u32 length;
202 u32 offset;
203
204 u8 *msg_buf;
205 dma_addr_t mb_dma_address;
206 };
207
208 struct skd_request_context {
209 enum skd_req_state state;
210
211 struct skd_request_context *next;
212
213 u16 id;
214 u32 fitmsg_id;
215
216 struct request *req;
217 u8 flush_cmd;
218 u8 discard_page;
219
220 u32 timeout_stamp;
221 u8 sg_data_dir;
222 struct scatterlist *sg;
223 u32 n_sg;
224 u32 sg_byte_count;
225
226 struct fit_sg_descriptor *sksg_list;
227 dma_addr_t sksg_dma_address;
228
229 struct fit_completion_entry_v1 completion;
230
231 struct fit_comp_error_info err_info;
232
233 };
234 #define SKD_DATA_DIR_HOST_TO_CARD 1
235 #define SKD_DATA_DIR_CARD_TO_HOST 2
236 #define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */
237
238 struct skd_special_context {
239 struct skd_request_context req;
240
241 u8 orphaned;
242
243 void *data_buf;
244 dma_addr_t db_dma_address;
245
246 u8 *msg_buf;
247 dma_addr_t mb_dma_address;
248 };
249
250 struct skd_sg_io {
251 fmode_t mode;
252 void __user *argp;
253
254 struct sg_io_hdr sg;
255
256 u8 cdb[16];
257
258 u32 dxfer_len;
259 u32 iovcnt;
260 struct sg_iovec *iov;
261 struct sg_iovec no_iov_iov;
262
263 struct skd_special_context *skspcl;
264 };
265
266 typedef enum skd_irq_type {
267 SKD_IRQ_LEGACY,
268 SKD_IRQ_MSI,
269 SKD_IRQ_MSIX
270 } skd_irq_type_t;
271
272 #define SKD_MAX_BARS 2
273
274 struct skd_device {
275 volatile void __iomem *mem_map[SKD_MAX_BARS];
276 resource_size_t mem_phys[SKD_MAX_BARS];
277 u32 mem_size[SKD_MAX_BARS];
278
279 skd_irq_type_t irq_type;
280 u32 msix_count;
281 struct skd_msix_entry *msix_entries;
282
283 struct pci_dev *pdev;
284 int pcie_error_reporting_is_enabled;
285
286 spinlock_t lock;
287 struct gendisk *disk;
288 struct request_queue *queue;
289 struct device *class_dev;
290 int gendisk_on;
291 int sync_done;
292
293 atomic_t device_count;
294 u32 devno;
295 u32 major;
296 char name[32];
297 char isr_name[30];
298
299 enum skd_drvr_state state;
300 u32 drive_state;
301
302 u32 in_flight;
303 u32 cur_max_queue_depth;
304 u32 queue_low_water_mark;
305 u32 dev_max_queue_depth;
306
307 u32 num_fitmsg_context;
308 u32 num_req_context;
309
310 u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
311 u32 timeout_stamp;
312 struct skd_fitmsg_context *skmsg_free_list;
313 struct skd_fitmsg_context *skmsg_table;
314
315 struct skd_request_context *skreq_free_list;
316 struct skd_request_context *skreq_table;
317
318 struct skd_special_context *skspcl_free_list;
319 struct skd_special_context *skspcl_table;
320
321 struct skd_special_context internal_skspcl;
322 u32 read_cap_blocksize;
323 u32 read_cap_last_lba;
324 int read_cap_is_valid;
325 int inquiry_is_valid;
326 u8 inq_serial_num[13]; /*12 chars plus null term */
327 u8 id_str[80]; /* holds a composite name (pci + sernum) */
328
329 u8 skcomp_cycle;
330 u32 skcomp_ix;
331 struct fit_completion_entry_v1 *skcomp_table;
332 struct fit_comp_error_info *skerr_table;
333 dma_addr_t cq_dma_address;
334
335 wait_queue_head_t waitq;
336
337 struct timer_list timer;
338 u32 timer_countdown;
339 u32 timer_substate;
340
341 int n_special;
342 int sgs_per_request;
343 u32 last_mtd;
344
345 u32 proto_ver;
346
347 int dbg_level;
348 u32 connect_time_stamp;
349 int connect_retries;
350 #define SKD_MAX_CONNECT_RETRIES 16
351 u32 drive_jiffies;
352
353 u32 timo_slot;
354
355
356 struct work_struct completion_worker;
357 };
358
359 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
360 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
361 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
362
363 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
364 {
365 u32 val;
366
367 if (likely(skdev->dbg_level < 2))
368 return readl(skdev->mem_map[1] + offset);
369 else {
370 barrier();
371 val = readl(skdev->mem_map[1] + offset);
372 barrier();
373 pr_debug("%s:%s:%d offset %x = %x\n",
374 skdev->name, __func__, __LINE__, offset, val);
375 return val;
376 }
377
378 }
379
380 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
381 u32 offset)
382 {
383 if (likely(skdev->dbg_level < 2)) {
384 writel(val, skdev->mem_map[1] + offset);
385 barrier();
386 } else {
387 barrier();
388 writel(val, skdev->mem_map[1] + offset);
389 barrier();
390 pr_debug("%s:%s:%d offset %x = %x\n",
391 skdev->name, __func__, __LINE__, offset, val);
392 }
393 }
394
395 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
396 u32 offset)
397 {
398 if (likely(skdev->dbg_level < 2)) {
399 writeq(val, skdev->mem_map[1] + offset);
400 barrier();
401 } else {
402 barrier();
403 writeq(val, skdev->mem_map[1] + offset);
404 barrier();
405 pr_debug("%s:%s:%d offset %x = %016llx\n",
406 skdev->name, __func__, __LINE__, offset, val);
407 }
408 }
409
410
411 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
412 static int skd_isr_type = SKD_IRQ_DEFAULT;
413
414 module_param(skd_isr_type, int, 0444);
415 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
416 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
417
418 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
419 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
420
421 module_param(skd_max_req_per_msg, int, 0444);
422 MODULE_PARM_DESC(skd_max_req_per_msg,
423 "Maximum SCSI requests packed in a single message."
424 " (1-14, default==1)");
425
426 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
427 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
428 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
429
430 module_param(skd_max_queue_depth, int, 0444);
431 MODULE_PARM_DESC(skd_max_queue_depth,
432 "Maximum SCSI requests issued to s1120."
433 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
434
435 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
436 module_param(skd_sgs_per_request, int, 0444);
437 MODULE_PARM_DESC(skd_sgs_per_request,
438 "Maximum SG elements per block request."
439 " (1-4096, default==256)");
440
441 static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
442 module_param(skd_max_pass_thru, int, 0444);
443 MODULE_PARM_DESC(skd_max_pass_thru,
444 "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
445
446 module_param(skd_dbg_level, int, 0444);
447 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
448
449 module_param(skd_isr_comp_limit, int, 0444);
450 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
451
452 /* Major device number dynamically assigned. */
453 static u32 skd_major;
454
455 static struct skd_device *skd_construct(struct pci_dev *pdev);
456 static void skd_destruct(struct skd_device *skdev);
457 static const struct block_device_operations skd_blockdev_ops;
458 static void skd_send_fitmsg(struct skd_device *skdev,
459 struct skd_fitmsg_context *skmsg);
460 static void skd_send_special_fitmsg(struct skd_device *skdev,
461 struct skd_special_context *skspcl);
462 static void skd_request_fn(struct request_queue *rq);
463 static void skd_end_request(struct skd_device *skdev,
464 struct skd_request_context *skreq, int error);
465 static int skd_preop_sg_list(struct skd_device *skdev,
466 struct skd_request_context *skreq);
467 static void skd_postop_sg_list(struct skd_device *skdev,
468 struct skd_request_context *skreq);
469
470 static void skd_restart_device(struct skd_device *skdev);
471 static int skd_quiesce_dev(struct skd_device *skdev);
472 static int skd_unquiesce_dev(struct skd_device *skdev);
473 static void skd_release_special(struct skd_device *skdev,
474 struct skd_special_context *skspcl);
475 static void skd_disable_interrupts(struct skd_device *skdev);
476 static void skd_isr_fwstate(struct skd_device *skdev);
477 static void skd_recover_requests(struct skd_device *skdev, int requeue);
478 static void skd_soft_reset(struct skd_device *skdev);
479
480 static const char *skd_name(struct skd_device *skdev);
481 const char *skd_drive_state_to_str(int state);
482 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
483 static void skd_log_skdev(struct skd_device *skdev, const char *event);
484 static void skd_log_skmsg(struct skd_device *skdev,
485 struct skd_fitmsg_context *skmsg, const char *event);
486 static void skd_log_skreq(struct skd_device *skdev,
487 struct skd_request_context *skreq, const char *event);
488
489 /*
490 *****************************************************************************
491 * READ/WRITE REQUESTS
492 *****************************************************************************
493 */
494 static void skd_fail_all_pending(struct skd_device *skdev)
495 {
496 struct request_queue *q = skdev->queue;
497 struct request *req;
498
499 for (;; ) {
500 req = blk_peek_request(q);
501 if (req == NULL)
502 break;
503 blk_start_request(req);
504 __blk_end_request_all(req, -EIO);
505 }
506 }
507
508 static void
509 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
510 int data_dir, unsigned lba,
511 unsigned count)
512 {
513 if (data_dir == READ)
514 scsi_req->cdb[0] = 0x28;
515 else
516 scsi_req->cdb[0] = 0x2a;
517
518 scsi_req->cdb[1] = 0;
519 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
520 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
521 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
522 scsi_req->cdb[5] = (lba & 0xff);
523 scsi_req->cdb[6] = 0;
524 scsi_req->cdb[7] = (count & 0xff00) >> 8;
525 scsi_req->cdb[8] = count & 0xff;
526 scsi_req->cdb[9] = 0;
527 }
528
529 static void
530 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
531 struct skd_request_context *skreq)
532 {
533 skreq->flush_cmd = 1;
534
535 scsi_req->cdb[0] = 0x35;
536 scsi_req->cdb[1] = 0;
537 scsi_req->cdb[2] = 0;
538 scsi_req->cdb[3] = 0;
539 scsi_req->cdb[4] = 0;
540 scsi_req->cdb[5] = 0;
541 scsi_req->cdb[6] = 0;
542 scsi_req->cdb[7] = 0;
543 scsi_req->cdb[8] = 0;
544 scsi_req->cdb[9] = 0;
545 }
546
547 static void
548 skd_prep_discard_cdb(struct skd_scsi_request *scsi_req,
549 struct skd_request_context *skreq,
550 struct page *page,
551 u32 lba, u32 count)
552 {
553 char *buf;
554 unsigned long len;
555 struct request *req;
556
557 buf = page_address(page);
558 len = SKD_DISCARD_CDB_LENGTH;
559
560 scsi_req->cdb[0] = UNMAP;
561 scsi_req->cdb[8] = len;
562
563 put_unaligned_be16(6 + 16, &buf[0]);
564 put_unaligned_be16(16, &buf[2]);
565 put_unaligned_be64(lba, &buf[8]);
566 put_unaligned_be32(count, &buf[16]);
567
568 req = skreq->req;
569 blk_add_request_payload(req, page, len);
570 req->buffer = buf;
571 }
572
573 static void skd_request_fn_not_online(struct request_queue *q);
574
575 static void skd_request_fn(struct request_queue *q)
576 {
577 struct skd_device *skdev = q->queuedata;
578 struct skd_fitmsg_context *skmsg = NULL;
579 struct fit_msg_hdr *fmh = NULL;
580 struct skd_request_context *skreq;
581 struct request *req = NULL;
582 struct skd_scsi_request *scsi_req;
583 struct page *page;
584 unsigned long io_flags;
585 int error;
586 u32 lba;
587 u32 count;
588 int data_dir;
589 u32 be_lba;
590 u32 be_count;
591 u64 be_dmaa;
592 u64 cmdctxt;
593 u32 timo_slot;
594 void *cmd_ptr;
595 int flush, fua;
596
597 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
598 skd_request_fn_not_online(q);
599 return;
600 }
601
602 if (blk_queue_stopped(skdev->queue)) {
603 if (skdev->skmsg_free_list == NULL ||
604 skdev->skreq_free_list == NULL ||
605 skdev->in_flight >= skdev->queue_low_water_mark)
606 /* There is still some kind of shortage */
607 return;
608
609 queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
610 }
611
612 /*
613 * Stop conditions:
614 * - There are no more native requests
615 * - There are already the maximum number of requests in progress
616 * - There are no more skd_request_context entries
617 * - There are no more FIT msg buffers
618 */
619 for (;; ) {
620
621 flush = fua = 0;
622
623 req = blk_peek_request(q);
624
625 /* Are there any native requests to start? */
626 if (req == NULL)
627 break;
628
629 lba = (u32)blk_rq_pos(req);
630 count = blk_rq_sectors(req);
631 data_dir = rq_data_dir(req);
632 io_flags = req->cmd_flags;
633
634 if (io_flags & REQ_FLUSH)
635 flush++;
636
637 if (io_flags & REQ_FUA)
638 fua++;
639
640 pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
641 "count=%u(0x%x) dir=%d\n",
642 skdev->name, __func__, __LINE__,
643 req, lba, lba, count, count, data_dir);
644
645 /* At this point we know there is a request */
646
647 /* Are too many requets already in progress? */
648 if (skdev->in_flight >= skdev->cur_max_queue_depth) {
649 pr_debug("%s:%s:%d qdepth %d, limit %d\n",
650 skdev->name, __func__, __LINE__,
651 skdev->in_flight, skdev->cur_max_queue_depth);
652 break;
653 }
654
655 /* Is a skd_request_context available? */
656 skreq = skdev->skreq_free_list;
657 if (skreq == NULL) {
658 pr_debug("%s:%s:%d Out of req=%p\n",
659 skdev->name, __func__, __LINE__, q);
660 break;
661 }
662 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
663 SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
664
665 /* Now we check to see if we can get a fit msg */
666 if (skmsg == NULL) {
667 if (skdev->skmsg_free_list == NULL) {
668 pr_debug("%s:%s:%d Out of msg\n",
669 skdev->name, __func__, __LINE__);
670 break;
671 }
672 }
673
674 skreq->flush_cmd = 0;
675 skreq->n_sg = 0;
676 skreq->sg_byte_count = 0;
677 skreq->discard_page = 0;
678
679 /*
680 * OK to now dequeue request from q.
681 *
682 * At this point we are comitted to either start or reject
683 * the native request. Note that skd_request_context is
684 * available but is still at the head of the free list.
685 */
686 blk_start_request(req);
687 skreq->req = req;
688 skreq->fitmsg_id = 0;
689
690 /* Either a FIT msg is in progress or we have to start one. */
691 if (skmsg == NULL) {
692 /* Are there any FIT msg buffers available? */
693 skmsg = skdev->skmsg_free_list;
694 if (skmsg == NULL) {
695 pr_debug("%s:%s:%d Out of msg skdev=%p\n",
696 skdev->name, __func__, __LINE__,
697 skdev);
698 break;
699 }
700 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
701 SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
702
703 skdev->skmsg_free_list = skmsg->next;
704
705 skmsg->state = SKD_MSG_STATE_BUSY;
706 skmsg->id += SKD_ID_INCR;
707
708 /* Initialize the FIT msg header */
709 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
710 memset(fmh, 0, sizeof(*fmh));
711 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
712 skmsg->length = sizeof(*fmh);
713 }
714
715 skreq->fitmsg_id = skmsg->id;
716
717 /*
718 * Note that a FIT msg may have just been started
719 * but contains no SoFIT requests yet.
720 */
721
722 /*
723 * Transcode the request, checking as we go. The outcome of
724 * the transcoding is represented by the error variable.
725 */
726 cmd_ptr = &skmsg->msg_buf[skmsg->length];
727 memset(cmd_ptr, 0, 32);
728
729 be_lba = cpu_to_be32(lba);
730 be_count = cpu_to_be32(count);
731 be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
732 cmdctxt = skreq->id + SKD_ID_INCR;
733
734 scsi_req = cmd_ptr;
735 scsi_req->hdr.tag = cmdctxt;
736 scsi_req->hdr.sg_list_dma_address = be_dmaa;
737
738 if (data_dir == READ)
739 skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
740 else
741 skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
742
743 if (io_flags & REQ_DISCARD) {
744 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
745 if (!page) {
746 pr_err("request_fn:Page allocation failed.\n");
747 skd_end_request(skdev, skreq, -ENOMEM);
748 break;
749 }
750 skreq->discard_page = 1;
751 skd_prep_discard_cdb(scsi_req, skreq, page, lba, count);
752
753 } else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
754 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
755 SKD_ASSERT(skreq->flush_cmd == 1);
756
757 } else {
758 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
759 }
760
761 if (fua)
762 scsi_req->cdb[1] |= SKD_FUA_NV;
763
764 if (!req->bio)
765 goto skip_sg;
766
767 error = skd_preop_sg_list(skdev, skreq);
768
769 if (error != 0) {
770 /*
771 * Complete the native request with error.
772 * Note that the request context is still at the
773 * head of the free list, and that the SoFIT request
774 * was encoded into the FIT msg buffer but the FIT
775 * msg length has not been updated. In short, the
776 * only resource that has been allocated but might
777 * not be used is that the FIT msg could be empty.
778 */
779 pr_debug("%s:%s:%d error Out\n",
780 skdev->name, __func__, __LINE__);
781 skd_end_request(skdev, skreq, error);
782 continue;
783 }
784
785 skip_sg:
786 scsi_req->hdr.sg_list_len_bytes =
787 cpu_to_be32(skreq->sg_byte_count);
788
789 /* Complete resource allocations. */
790 skdev->skreq_free_list = skreq->next;
791 skreq->state = SKD_REQ_STATE_BUSY;
792 skreq->id += SKD_ID_INCR;
793
794 skmsg->length += sizeof(struct skd_scsi_request);
795 fmh->num_protocol_cmds_coalesced++;
796
797 /*
798 * Update the active request counts.
799 * Capture the timeout timestamp.
800 */
801 skreq->timeout_stamp = skdev->timeout_stamp;
802 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
803 skdev->timeout_slot[timo_slot]++;
804 skdev->in_flight++;
805 pr_debug("%s:%s:%d req=0x%x busy=%d\n",
806 skdev->name, __func__, __LINE__,
807 skreq->id, skdev->in_flight);
808
809 /*
810 * If the FIT msg buffer is full send it.
811 */
812 if (skmsg->length >= SKD_N_FITMSG_BYTES ||
813 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
814 skd_send_fitmsg(skdev, skmsg);
815 skmsg = NULL;
816 fmh = NULL;
817 }
818 }
819
820 /*
821 * Is a FIT msg in progress? If it is empty put the buffer back
822 * on the free list. If it is non-empty send what we got.
823 * This minimizes latency when there are fewer requests than
824 * what fits in a FIT msg.
825 */
826 if (skmsg != NULL) {
827 /* Bigger than just a FIT msg header? */
828 if (skmsg->length > sizeof(struct fit_msg_hdr)) {
829 pr_debug("%s:%s:%d sending msg=%p, len %d\n",
830 skdev->name, __func__, __LINE__,
831 skmsg, skmsg->length);
832 skd_send_fitmsg(skdev, skmsg);
833 } else {
834 /*
835 * The FIT msg is empty. It means we got started
836 * on the msg, but the requests were rejected.
837 */
838 skmsg->state = SKD_MSG_STATE_IDLE;
839 skmsg->id += SKD_ID_INCR;
840 skmsg->next = skdev->skmsg_free_list;
841 skdev->skmsg_free_list = skmsg;
842 }
843 skmsg = NULL;
844 fmh = NULL;
845 }
846
847 /*
848 * If req is non-NULL it means there is something to do but
849 * we are out of a resource.
850 */
851 if (req)
852 blk_stop_queue(skdev->queue);
853 }
854
855 static void skd_end_request(struct skd_device *skdev,
856 struct skd_request_context *skreq, int error)
857 {
858 struct request *req = skreq->req;
859 unsigned int io_flags = req->cmd_flags;
860
861 if ((io_flags & REQ_DISCARD) &&
862 (skreq->discard_page == 1)) {
863 pr_debug("%s:%s:%d, free the page!",
864 skdev->name, __func__, __LINE__);
865 free_page((unsigned long)req->buffer);
866 req->buffer = NULL;
867 }
868
869 if (unlikely(error)) {
870 struct request *req = skreq->req;
871 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
872 u32 lba = (u32)blk_rq_pos(req);
873 u32 count = blk_rq_sectors(req);
874
875 pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
876 skd_name(skdev), cmd, lba, count, skreq->id);
877 } else
878 pr_debug("%s:%s:%d id=0x%x error=%d\n",
879 skdev->name, __func__, __LINE__, skreq->id, error);
880
881 __blk_end_request_all(skreq->req, error);
882 }
883
884 static int skd_preop_sg_list(struct skd_device *skdev,
885 struct skd_request_context *skreq)
886 {
887 struct request *req = skreq->req;
888 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
889 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
890 struct scatterlist *sg = &skreq->sg[0];
891 int n_sg;
892 int i;
893
894 skreq->sg_byte_count = 0;
895
896 /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
897 skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
898
899 n_sg = blk_rq_map_sg(skdev->queue, req, sg);
900 if (n_sg <= 0)
901 return -EINVAL;
902
903 /*
904 * Map scatterlist to PCI bus addresses.
905 * Note PCI might change the number of entries.
906 */
907 n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
908 if (n_sg <= 0)
909 return -EINVAL;
910
911 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
912
913 skreq->n_sg = n_sg;
914
915 for (i = 0; i < n_sg; i++) {
916 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
917 u32 cnt = sg_dma_len(&sg[i]);
918 uint64_t dma_addr = sg_dma_address(&sg[i]);
919
920 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
921 sgd->byte_count = cnt;
922 skreq->sg_byte_count += cnt;
923 sgd->host_side_addr = dma_addr;
924 sgd->dev_side_addr = 0;
925 }
926
927 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
928 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
929
930 if (unlikely(skdev->dbg_level > 1)) {
931 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
932 skdev->name, __func__, __LINE__,
933 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
934 for (i = 0; i < n_sg; i++) {
935 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
936 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
937 "addr=0x%llx next=0x%llx\n",
938 skdev->name, __func__, __LINE__,
939 i, sgd->byte_count, sgd->control,
940 sgd->host_side_addr, sgd->next_desc_ptr);
941 }
942 }
943
944 return 0;
945 }
946
947 static void skd_postop_sg_list(struct skd_device *skdev,
948 struct skd_request_context *skreq)
949 {
950 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
951 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
952
953 /*
954 * restore the next ptr for next IO request so we
955 * don't have to set it every time.
956 */
957 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
958 skreq->sksg_dma_address +
959 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
960 pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
961 }
962
963 static void skd_request_fn_not_online(struct request_queue *q)
964 {
965 struct skd_device *skdev = q->queuedata;
966 int error;
967
968 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
969
970 skd_log_skdev(skdev, "req_not_online");
971 switch (skdev->state) {
972 case SKD_DRVR_STATE_PAUSING:
973 case SKD_DRVR_STATE_PAUSED:
974 case SKD_DRVR_STATE_STARTING:
975 case SKD_DRVR_STATE_RESTARTING:
976 case SKD_DRVR_STATE_WAIT_BOOT:
977 /* In case of starting, we haven't started the queue,
978 * so we can't get here... but requests are
979 * possibly hanging out waiting for us because we
980 * reported the dev/skd0 already. They'll wait
981 * forever if connect doesn't complete.
982 * What to do??? delay dev/skd0 ??
983 */
984 case SKD_DRVR_STATE_BUSY:
985 case SKD_DRVR_STATE_BUSY_IMMINENT:
986 case SKD_DRVR_STATE_BUSY_ERASE:
987 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
988 return;
989
990 case SKD_DRVR_STATE_BUSY_SANITIZE:
991 case SKD_DRVR_STATE_STOPPING:
992 case SKD_DRVR_STATE_SYNCING:
993 case SKD_DRVR_STATE_FAULT:
994 case SKD_DRVR_STATE_DISAPPEARED:
995 default:
996 error = -EIO;
997 break;
998 }
999
1000 /* If we get here, terminate all pending block requeusts
1001 * with EIO and any scsi pass thru with appropriate sense
1002 */
1003
1004 skd_fail_all_pending(skdev);
1005 }
1006
1007 /*
1008 *****************************************************************************
1009 * TIMER
1010 *****************************************************************************
1011 */
1012
1013 static void skd_timer_tick_not_online(struct skd_device *skdev);
1014
1015 static void skd_timer_tick(ulong arg)
1016 {
1017 struct skd_device *skdev = (struct skd_device *)arg;
1018
1019 u32 timo_slot;
1020 u32 overdue_timestamp;
1021 unsigned long reqflags;
1022 u32 state;
1023
1024 if (skdev->state == SKD_DRVR_STATE_FAULT)
1025 /* The driver has declared fault, and we want it to
1026 * stay that way until driver is reloaded.
1027 */
1028 return;
1029
1030 spin_lock_irqsave(&skdev->lock, reqflags);
1031
1032 state = SKD_READL(skdev, FIT_STATUS);
1033 state &= FIT_SR_DRIVE_STATE_MASK;
1034 if (state != skdev->drive_state)
1035 skd_isr_fwstate(skdev);
1036
1037 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
1038 skd_timer_tick_not_online(skdev);
1039 goto timer_func_out;
1040 }
1041 skdev->timeout_stamp++;
1042 timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
1043
1044 /*
1045 * All requests that happened during the previous use of
1046 * this slot should be done by now. The previous use was
1047 * over 7 seconds ago.
1048 */
1049 if (skdev->timeout_slot[timo_slot] == 0)
1050 goto timer_func_out;
1051
1052 /* Something is overdue */
1053 overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
1054
1055 pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
1056 skdev->name, __func__, __LINE__,
1057 skdev->timeout_slot[timo_slot], skdev->in_flight);
1058 pr_err("(%s): Overdue IOs (%d), busy %d\n",
1059 skd_name(skdev), skdev->timeout_slot[timo_slot],
1060 skdev->in_flight);
1061
1062 skdev->timer_countdown = SKD_DRAINING_TIMO;
1063 skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
1064 skdev->timo_slot = timo_slot;
1065 blk_stop_queue(skdev->queue);
1066
1067 timer_func_out:
1068 mod_timer(&skdev->timer, (jiffies + HZ));
1069
1070 spin_unlock_irqrestore(&skdev->lock, reqflags);
1071 }
1072
1073 static void skd_timer_tick_not_online(struct skd_device *skdev)
1074 {
1075 switch (skdev->state) {
1076 case SKD_DRVR_STATE_IDLE:
1077 case SKD_DRVR_STATE_LOAD:
1078 break;
1079 case SKD_DRVR_STATE_BUSY_SANITIZE:
1080 pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
1081 skdev->name, __func__, __LINE__,
1082 skdev->drive_state, skdev->state);
1083 /* If we've been in sanitize for 3 seconds, we figure we're not
1084 * going to get anymore completions, so recover requests now
1085 */
1086 if (skdev->timer_countdown > 0) {
1087 skdev->timer_countdown--;
1088 return;
1089 }
1090 skd_recover_requests(skdev, 0);
1091 break;
1092
1093 case SKD_DRVR_STATE_BUSY:
1094 case SKD_DRVR_STATE_BUSY_IMMINENT:
1095 case SKD_DRVR_STATE_BUSY_ERASE:
1096 pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
1097 skdev->name, __func__, __LINE__,
1098 skdev->state, skdev->timer_countdown);
1099 if (skdev->timer_countdown > 0) {
1100 skdev->timer_countdown--;
1101 return;
1102 }
1103 pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
1104 skdev->name, __func__, __LINE__,
1105 skdev->state, skdev->timer_countdown);
1106 skd_restart_device(skdev);
1107 break;
1108
1109 case SKD_DRVR_STATE_WAIT_BOOT:
1110 case SKD_DRVR_STATE_STARTING:
1111 if (skdev->timer_countdown > 0) {
1112 skdev->timer_countdown--;
1113 return;
1114 }
1115 /* For now, we fault the drive. Could attempt resets to
1116 * revcover at some point. */
1117 skdev->state = SKD_DRVR_STATE_FAULT;
1118
1119 pr_err("(%s): DriveFault Connect Timeout (%x)\n",
1120 skd_name(skdev), skdev->drive_state);
1121
1122 /*start the queue so we can respond with error to requests */
1123 /* wakeup anyone waiting for startup complete */
1124 blk_start_queue(skdev->queue);
1125 skdev->gendisk_on = -1;
1126 wake_up_interruptible(&skdev->waitq);
1127 break;
1128
1129 case SKD_DRVR_STATE_ONLINE:
1130 /* shouldn't get here. */
1131 break;
1132
1133 case SKD_DRVR_STATE_PAUSING:
1134 case SKD_DRVR_STATE_PAUSED:
1135 break;
1136
1137 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
1138 pr_debug("%s:%s:%d "
1139 "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
1140 skdev->name, __func__, __LINE__,
1141 skdev->timo_slot,
1142 skdev->timer_countdown,
1143 skdev->in_flight,
1144 skdev->timeout_slot[skdev->timo_slot]);
1145 /* if the slot has cleared we can let the I/O continue */
1146 if (skdev->timeout_slot[skdev->timo_slot] == 0) {
1147 pr_debug("%s:%s:%d Slot drained, starting queue.\n",
1148 skdev->name, __func__, __LINE__);
1149 skdev->state = SKD_DRVR_STATE_ONLINE;
1150 blk_start_queue(skdev->queue);
1151 return;
1152 }
1153 if (skdev->timer_countdown > 0) {
1154 skdev->timer_countdown--;
1155 return;
1156 }
1157 skd_restart_device(skdev);
1158 break;
1159
1160 case SKD_DRVR_STATE_RESTARTING:
1161 if (skdev->timer_countdown > 0) {
1162 skdev->timer_countdown--;
1163 return;
1164 }
1165 /* For now, we fault the drive. Could attempt resets to
1166 * revcover at some point. */
1167 skdev->state = SKD_DRVR_STATE_FAULT;
1168 pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
1169 skd_name(skdev), skdev->drive_state);
1170
1171 /*
1172 * Recovering does two things:
1173 * 1. completes IO with error
1174 * 2. reclaims dma resources
1175 * When is it safe to recover requests?
1176 * - if the drive state is faulted
1177 * - if the state is still soft reset after out timeout
1178 * - if the drive registers are dead (state = FF)
1179 * If it is "unsafe", we still need to recover, so we will
1180 * disable pci bus mastering and disable our interrupts.
1181 */
1182
1183 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
1184 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
1185 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
1186 /* It never came out of soft reset. Try to
1187 * recover the requests and then let them
1188 * fail. This is to mitigate hung processes. */
1189 skd_recover_requests(skdev, 0);
1190 else {
1191 pr_err("(%s): Disable BusMaster (%x)\n",
1192 skd_name(skdev), skdev->drive_state);
1193 pci_disable_device(skdev->pdev);
1194 skd_disable_interrupts(skdev);
1195 skd_recover_requests(skdev, 0);
1196 }
1197
1198 /*start the queue so we can respond with error to requests */
1199 /* wakeup anyone waiting for startup complete */
1200 blk_start_queue(skdev->queue);
1201 skdev->gendisk_on = -1;
1202 wake_up_interruptible(&skdev->waitq);
1203 break;
1204
1205 case SKD_DRVR_STATE_RESUMING:
1206 case SKD_DRVR_STATE_STOPPING:
1207 case SKD_DRVR_STATE_SYNCING:
1208 case SKD_DRVR_STATE_FAULT:
1209 case SKD_DRVR_STATE_DISAPPEARED:
1210 default:
1211 break;
1212 }
1213 }
1214
1215 static int skd_start_timer(struct skd_device *skdev)
1216 {
1217 int rc;
1218
1219 init_timer(&skdev->timer);
1220 setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
1221
1222 rc = mod_timer(&skdev->timer, (jiffies + HZ));
1223 if (rc)
1224 pr_err("%s: failed to start timer %d\n",
1225 __func__, rc);
1226 return rc;
1227 }
1228
1229 static void skd_kill_timer(struct skd_device *skdev)
1230 {
1231 del_timer_sync(&skdev->timer);
1232 }
1233
1234 /*
1235 *****************************************************************************
1236 * IOCTL
1237 *****************************************************************************
1238 */
1239 static int skd_ioctl_sg_io(struct skd_device *skdev,
1240 fmode_t mode, void __user *argp);
1241 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1242 struct skd_sg_io *sksgio);
1243 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1244 struct skd_sg_io *sksgio);
1245 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1246 struct skd_sg_io *sksgio);
1247 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1248 struct skd_sg_io *sksgio, int dxfer_dir);
1249 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1250 struct skd_sg_io *sksgio);
1251 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
1252 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1253 struct skd_sg_io *sksgio);
1254 static int skd_sg_io_put_status(struct skd_device *skdev,
1255 struct skd_sg_io *sksgio);
1256
1257 static void skd_complete_special(struct skd_device *skdev,
1258 volatile struct fit_completion_entry_v1
1259 *skcomp,
1260 volatile struct fit_comp_error_info *skerr,
1261 struct skd_special_context *skspcl);
1262
1263 static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
1264 uint cmd_in, ulong arg)
1265 {
1266 int rc = 0;
1267 struct gendisk *disk = bdev->bd_disk;
1268 struct skd_device *skdev = disk->private_data;
1269 void __user *p = (void *)arg;
1270
1271 pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
1272 skdev->name, __func__, __LINE__,
1273 disk->disk_name, current->comm, mode, cmd_in, arg);
1274
1275 if (!capable(CAP_SYS_ADMIN))
1276 return -EPERM;
1277
1278 switch (cmd_in) {
1279 case SG_SET_TIMEOUT:
1280 case SG_GET_TIMEOUT:
1281 case SG_GET_VERSION_NUM:
1282 rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
1283 break;
1284 case SG_IO:
1285 rc = skd_ioctl_sg_io(skdev, mode, p);
1286 break;
1287
1288 default:
1289 rc = -ENOTTY;
1290 break;
1291 }
1292
1293 pr_debug("%s:%s:%d %s: completion rc %d\n",
1294 skdev->name, __func__, __LINE__, disk->disk_name, rc);
1295 return rc;
1296 }
1297
1298 static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
1299 void __user *argp)
1300 {
1301 int rc;
1302 struct skd_sg_io sksgio;
1303
1304 memset(&sksgio, 0, sizeof(sksgio));
1305 sksgio.mode = mode;
1306 sksgio.argp = argp;
1307 sksgio.iov = &sksgio.no_iov_iov;
1308
1309 switch (skdev->state) {
1310 case SKD_DRVR_STATE_ONLINE:
1311 case SKD_DRVR_STATE_BUSY_IMMINENT:
1312 break;
1313
1314 default:
1315 pr_debug("%s:%s:%d drive not online\n",
1316 skdev->name, __func__, __LINE__);
1317 rc = -ENXIO;
1318 goto out;
1319 }
1320
1321 rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
1322 if (rc)
1323 goto out;
1324
1325 rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
1326 if (rc)
1327 goto out;
1328
1329 rc = skd_sg_io_prep_buffering(skdev, &sksgio);
1330 if (rc)
1331 goto out;
1332
1333 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
1334 if (rc)
1335 goto out;
1336
1337 rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
1338 if (rc)
1339 goto out;
1340
1341 rc = skd_sg_io_await(skdev, &sksgio);
1342 if (rc)
1343 goto out;
1344
1345 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
1346 if (rc)
1347 goto out;
1348
1349 rc = skd_sg_io_put_status(skdev, &sksgio);
1350 if (rc)
1351 goto out;
1352
1353 rc = 0;
1354
1355 out:
1356 skd_sg_io_release_skspcl(skdev, &sksgio);
1357
1358 if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
1359 kfree(sksgio.iov);
1360 return rc;
1361 }
1362
1363 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1364 struct skd_sg_io *sksgio)
1365 {
1366 struct sg_io_hdr *sgp = &sksgio->sg;
1367 int i, acc;
1368
1369 if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
1370 pr_debug("%s:%s:%d access sg failed %p\n",
1371 skdev->name, __func__, __LINE__, sksgio->argp);
1372 return -EFAULT;
1373 }
1374
1375 if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
1376 pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
1377 skdev->name, __func__, __LINE__, sksgio->argp);
1378 return -EFAULT;
1379 }
1380
1381 if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
1382 pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
1383 skdev->name, __func__, __LINE__, sgp->interface_id);
1384 return -EINVAL;
1385 }
1386
1387 if (sgp->cmd_len > sizeof(sksgio->cdb)) {
1388 pr_debug("%s:%s:%d cmd_len invalid %d\n",
1389 skdev->name, __func__, __LINE__, sgp->cmd_len);
1390 return -EINVAL;
1391 }
1392
1393 if (sgp->iovec_count > 256) {
1394 pr_debug("%s:%s:%d iovec_count invalid %d\n",
1395 skdev->name, __func__, __LINE__, sgp->iovec_count);
1396 return -EINVAL;
1397 }
1398
1399 if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
1400 pr_debug("%s:%s:%d dxfer_len invalid %d\n",
1401 skdev->name, __func__, __LINE__, sgp->dxfer_len);
1402 return -EINVAL;
1403 }
1404
1405 switch (sgp->dxfer_direction) {
1406 case SG_DXFER_NONE:
1407 acc = -1;
1408 break;
1409
1410 case SG_DXFER_TO_DEV:
1411 acc = VERIFY_READ;
1412 break;
1413
1414 case SG_DXFER_FROM_DEV:
1415 case SG_DXFER_TO_FROM_DEV:
1416 acc = VERIFY_WRITE;
1417 break;
1418
1419 default:
1420 pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
1421 skdev->name, __func__, __LINE__, sgp->dxfer_direction);
1422 return -EINVAL;
1423 }
1424
1425 if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
1426 pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
1427 skdev->name, __func__, __LINE__, sgp->cmdp);
1428 return -EFAULT;
1429 }
1430
1431 if (sgp->mx_sb_len != 0) {
1432 if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
1433 pr_debug("%s:%s:%d access sbp failed %p\n",
1434 skdev->name, __func__, __LINE__, sgp->sbp);
1435 return -EFAULT;
1436 }
1437 }
1438
1439 if (sgp->iovec_count == 0) {
1440 sksgio->iov[0].iov_base = sgp->dxferp;
1441 sksgio->iov[0].iov_len = sgp->dxfer_len;
1442 sksgio->iovcnt = 1;
1443 sksgio->dxfer_len = sgp->dxfer_len;
1444 } else {
1445 struct sg_iovec *iov;
1446 uint nbytes = sizeof(*iov) * sgp->iovec_count;
1447 size_t iov_data_len;
1448
1449 iov = kmalloc(nbytes, GFP_KERNEL);
1450 if (iov == NULL) {
1451 pr_debug("%s:%s:%d alloc iovec failed %d\n",
1452 skdev->name, __func__, __LINE__,
1453 sgp->iovec_count);
1454 return -ENOMEM;
1455 }
1456 sksgio->iov = iov;
1457 sksgio->iovcnt = sgp->iovec_count;
1458
1459 if (copy_from_user(iov, sgp->dxferp, nbytes)) {
1460 pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
1461 skdev->name, __func__, __LINE__, sgp->dxferp);
1462 return -EFAULT;
1463 }
1464
1465 /*
1466 * Sum up the vecs, making sure they don't overflow
1467 */
1468 iov_data_len = 0;
1469 for (i = 0; i < sgp->iovec_count; i++) {
1470 if (iov_data_len + iov[i].iov_len < iov_data_len)
1471 return -EINVAL;
1472 iov_data_len += iov[i].iov_len;
1473 }
1474
1475 /* SG_IO howto says that the shorter of the two wins */
1476 if (sgp->dxfer_len < iov_data_len) {
1477 sksgio->iovcnt = iov_shorten((struct iovec *)iov,
1478 sgp->iovec_count,
1479 sgp->dxfer_len);
1480 sksgio->dxfer_len = sgp->dxfer_len;
1481 } else
1482 sksgio->dxfer_len = iov_data_len;
1483 }
1484
1485 if (sgp->dxfer_direction != SG_DXFER_NONE) {
1486 struct sg_iovec *iov = sksgio->iov;
1487 for (i = 0; i < sksgio->iovcnt; i++, iov++) {
1488 if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
1489 pr_debug("%s:%s:%d access data failed %p/%d\n",
1490 skdev->name, __func__, __LINE__,
1491 iov->iov_base, (int)iov->iov_len);
1492 return -EFAULT;
1493 }
1494 }
1495 }
1496
1497 return 0;
1498 }
1499
1500 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1501 struct skd_sg_io *sksgio)
1502 {
1503 struct skd_special_context *skspcl = NULL;
1504 int rc;
1505
1506 for (;;) {
1507 ulong flags;
1508
1509 spin_lock_irqsave(&skdev->lock, flags);
1510 skspcl = skdev->skspcl_free_list;
1511 if (skspcl != NULL) {
1512 skdev->skspcl_free_list =
1513 (struct skd_special_context *)skspcl->req.next;
1514 skspcl->req.id += SKD_ID_INCR;
1515 skspcl->req.state = SKD_REQ_STATE_SETUP;
1516 skspcl->orphaned = 0;
1517 skspcl->req.n_sg = 0;
1518 }
1519 spin_unlock_irqrestore(&skdev->lock, flags);
1520
1521 if (skspcl != NULL) {
1522 rc = 0;
1523 break;
1524 }
1525
1526 pr_debug("%s:%s:%d blocking\n",
1527 skdev->name, __func__, __LINE__);
1528
1529 rc = wait_event_interruptible_timeout(
1530 skdev->waitq,
1531 (skdev->skspcl_free_list != NULL),
1532 msecs_to_jiffies(sksgio->sg.timeout));
1533
1534 pr_debug("%s:%s:%d unblocking, rc=%d\n",
1535 skdev->name, __func__, __LINE__, rc);
1536
1537 if (rc <= 0) {
1538 if (rc == 0)
1539 rc = -ETIMEDOUT;
1540 else
1541 rc = -EINTR;
1542 break;
1543 }
1544 /*
1545 * If we get here rc > 0 meaning the timeout to
1546 * wait_event_interruptible_timeout() had time left, hence the
1547 * sought event -- non-empty free list -- happened.
1548 * Retry the allocation.
1549 */
1550 }
1551 sksgio->skspcl = skspcl;
1552
1553 return rc;
1554 }
1555
1556 static int skd_skreq_prep_buffering(struct skd_device *skdev,
1557 struct skd_request_context *skreq,
1558 u32 dxfer_len)
1559 {
1560 u32 resid = dxfer_len;
1561
1562 /*
1563 * The DMA engine must have aligned addresses and byte counts.
1564 */
1565 resid += (-resid) & 3;
1566 skreq->sg_byte_count = resid;
1567
1568 skreq->n_sg = 0;
1569
1570 while (resid > 0) {
1571 u32 nbytes = PAGE_SIZE;
1572 u32 ix = skreq->n_sg;
1573 struct scatterlist *sg = &skreq->sg[ix];
1574 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1575 struct page *page;
1576
1577 if (nbytes > resid)
1578 nbytes = resid;
1579
1580 page = alloc_page(GFP_KERNEL);
1581 if (page == NULL)
1582 return -ENOMEM;
1583
1584 sg_set_page(sg, page, nbytes, 0);
1585
1586 /* TODO: This should be going through a pci_???()
1587 * routine to do proper mapping. */
1588 sksg->control = FIT_SGD_CONTROL_NOT_LAST;
1589 sksg->byte_count = nbytes;
1590
1591 sksg->host_side_addr = sg_phys(sg);
1592
1593 sksg->dev_side_addr = 0;
1594 sksg->next_desc_ptr = skreq->sksg_dma_address +
1595 (ix + 1) * sizeof(*sksg);
1596
1597 skreq->n_sg++;
1598 resid -= nbytes;
1599 }
1600
1601 if (skreq->n_sg > 0) {
1602 u32 ix = skreq->n_sg - 1;
1603 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1604
1605 sksg->control = FIT_SGD_CONTROL_LAST;
1606 sksg->next_desc_ptr = 0;
1607 }
1608
1609 if (unlikely(skdev->dbg_level > 1)) {
1610 u32 i;
1611
1612 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
1613 skdev->name, __func__, __LINE__,
1614 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
1615 for (i = 0; i < skreq->n_sg; i++) {
1616 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
1617
1618 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
1619 "addr=0x%llx next=0x%llx\n",
1620 skdev->name, __func__, __LINE__,
1621 i, sgd->byte_count, sgd->control,
1622 sgd->host_side_addr, sgd->next_desc_ptr);
1623 }
1624 }
1625
1626 return 0;
1627 }
1628
1629 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1630 struct skd_sg_io *sksgio)
1631 {
1632 struct skd_special_context *skspcl = sksgio->skspcl;
1633 struct skd_request_context *skreq = &skspcl->req;
1634 u32 dxfer_len = sksgio->dxfer_len;
1635 int rc;
1636
1637 rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
1638 /*
1639 * Eventually, errors or not, skd_release_special() is called
1640 * to recover allocations including partial allocations.
1641 */
1642 return rc;
1643 }
1644
1645 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1646 struct skd_sg_io *sksgio, int dxfer_dir)
1647 {
1648 struct skd_special_context *skspcl = sksgio->skspcl;
1649 u32 iov_ix = 0;
1650 struct sg_iovec curiov;
1651 u32 sksg_ix = 0;
1652 u8 *bufp = NULL;
1653 u32 buf_len = 0;
1654 u32 resid = sksgio->dxfer_len;
1655 int rc;
1656
1657 curiov.iov_len = 0;
1658 curiov.iov_base = NULL;
1659
1660 if (dxfer_dir != sksgio->sg.dxfer_direction) {
1661 if (dxfer_dir != SG_DXFER_TO_DEV ||
1662 sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
1663 return 0;
1664 }
1665
1666 while (resid > 0) {
1667 u32 nbytes = PAGE_SIZE;
1668
1669 if (curiov.iov_len == 0) {
1670 curiov = sksgio->iov[iov_ix++];
1671 continue;
1672 }
1673
1674 if (buf_len == 0) {
1675 struct page *page;
1676 page = sg_page(&skspcl->req.sg[sksg_ix++]);
1677 bufp = page_address(page);
1678 buf_len = PAGE_SIZE;
1679 }
1680
1681 nbytes = min_t(u32, nbytes, resid);
1682 nbytes = min_t(u32, nbytes, curiov.iov_len);
1683 nbytes = min_t(u32, nbytes, buf_len);
1684
1685 if (dxfer_dir == SG_DXFER_TO_DEV)
1686 rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
1687 else
1688 rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
1689
1690 if (rc)
1691 return -EFAULT;
1692
1693 resid -= nbytes;
1694 curiov.iov_len -= nbytes;
1695 curiov.iov_base += nbytes;
1696 buf_len -= nbytes;
1697 }
1698
1699 return 0;
1700 }
1701
1702 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1703 struct skd_sg_io *sksgio)
1704 {
1705 struct skd_special_context *skspcl = sksgio->skspcl;
1706 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
1707 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
1708
1709 memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
1710
1711 /* Initialize the FIT msg header */
1712 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1713 fmh->num_protocol_cmds_coalesced = 1;
1714
1715 /* Initialize the SCSI request */
1716 if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
1717 scsi_req->hdr.sg_list_dma_address =
1718 cpu_to_be64(skspcl->req.sksg_dma_address);
1719 scsi_req->hdr.tag = skspcl->req.id;
1720 scsi_req->hdr.sg_list_len_bytes =
1721 cpu_to_be32(skspcl->req.sg_byte_count);
1722 memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
1723
1724 skspcl->req.state = SKD_REQ_STATE_BUSY;
1725 skd_send_special_fitmsg(skdev, skspcl);
1726
1727 return 0;
1728 }
1729
1730 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
1731 {
1732 unsigned long flags;
1733 int rc;
1734
1735 rc = wait_event_interruptible_timeout(skdev->waitq,
1736 (sksgio->skspcl->req.state !=
1737 SKD_REQ_STATE_BUSY),
1738 msecs_to_jiffies(sksgio->sg.
1739 timeout));
1740
1741 spin_lock_irqsave(&skdev->lock, flags);
1742
1743 if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
1744 pr_debug("%s:%s:%d skspcl %p aborted\n",
1745 skdev->name, __func__, __LINE__, sksgio->skspcl);
1746
1747 /* Build check cond, sense and let command finish. */
1748 /* For a timeout, we must fabricate completion and sense
1749 * data to complete the command */
1750 sksgio->skspcl->req.completion.status =
1751 SAM_STAT_CHECK_CONDITION;
1752
1753 memset(&sksgio->skspcl->req.err_info, 0,
1754 sizeof(sksgio->skspcl->req.err_info));
1755 sksgio->skspcl->req.err_info.type = 0x70;
1756 sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
1757 sksgio->skspcl->req.err_info.code = 0x44;
1758 sksgio->skspcl->req.err_info.qual = 0;
1759 rc = 0;
1760 } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
1761 /* No longer on the adapter. We finish. */
1762 rc = 0;
1763 else {
1764 /* Something's gone wrong. Still busy. Timeout or
1765 * user interrupted (control-C). Mark as an orphan
1766 * so it will be disposed when completed. */
1767 sksgio->skspcl->orphaned = 1;
1768 sksgio->skspcl = NULL;
1769 if (rc == 0) {
1770 pr_debug("%s:%s:%d timed out %p (%u ms)\n",
1771 skdev->name, __func__, __LINE__,
1772 sksgio, sksgio->sg.timeout);
1773 rc = -ETIMEDOUT;
1774 } else {
1775 pr_debug("%s:%s:%d cntlc %p\n",
1776 skdev->name, __func__, __LINE__, sksgio);
1777 rc = -EINTR;
1778 }
1779 }
1780
1781 spin_unlock_irqrestore(&skdev->lock, flags);
1782
1783 return rc;
1784 }
1785
1786 static int skd_sg_io_put_status(struct skd_device *skdev,
1787 struct skd_sg_io *sksgio)
1788 {
1789 struct sg_io_hdr *sgp = &sksgio->sg;
1790 struct skd_special_context *skspcl = sksgio->skspcl;
1791 int resid = 0;
1792
1793 u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
1794
1795 sgp->status = skspcl->req.completion.status;
1796 resid = sksgio->dxfer_len - nb;
1797
1798 sgp->masked_status = sgp->status & STATUS_MASK;
1799 sgp->msg_status = 0;
1800 sgp->host_status = 0;
1801 sgp->driver_status = 0;
1802 sgp->resid = resid;
1803 if (sgp->masked_status || sgp->host_status || sgp->driver_status)
1804 sgp->info |= SG_INFO_CHECK;
1805
1806 pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
1807 skdev->name, __func__, __LINE__,
1808 sgp->status, sgp->masked_status, sgp->resid);
1809
1810 if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
1811 if (sgp->mx_sb_len > 0) {
1812 struct fit_comp_error_info *ei = &skspcl->req.err_info;
1813 u32 nbytes = sizeof(*ei);
1814
1815 nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
1816
1817 sgp->sb_len_wr = nbytes;
1818
1819 if (__copy_to_user(sgp->sbp, ei, nbytes)) {
1820 pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
1821 skdev->name, __func__, __LINE__,
1822 sgp->sbp);
1823 return -EFAULT;
1824 }
1825 }
1826 }
1827
1828 if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
1829 pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
1830 skdev->name, __func__, __LINE__, sksgio->argp);
1831 return -EFAULT;
1832 }
1833
1834 return 0;
1835 }
1836
1837 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1838 struct skd_sg_io *sksgio)
1839 {
1840 struct skd_special_context *skspcl = sksgio->skspcl;
1841
1842 if (skspcl != NULL) {
1843 ulong flags;
1844
1845 sksgio->skspcl = NULL;
1846
1847 spin_lock_irqsave(&skdev->lock, flags);
1848 skd_release_special(skdev, skspcl);
1849 spin_unlock_irqrestore(&skdev->lock, flags);
1850 }
1851
1852 return 0;
1853 }
1854
1855 /*
1856 *****************************************************************************
1857 * INTERNAL REQUESTS -- generated by driver itself
1858 *****************************************************************************
1859 */
1860
1861 static int skd_format_internal_skspcl(struct skd_device *skdev)
1862 {
1863 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1864 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1865 struct fit_msg_hdr *fmh;
1866 uint64_t dma_address;
1867 struct skd_scsi_request *scsi;
1868
1869 fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
1870 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1871 fmh->num_protocol_cmds_coalesced = 1;
1872
1873 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1874 memset(scsi, 0, sizeof(*scsi));
1875 dma_address = skspcl->req.sksg_dma_address;
1876 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
1877 sgd->control = FIT_SGD_CONTROL_LAST;
1878 sgd->byte_count = 0;
1879 sgd->host_side_addr = skspcl->db_dma_address;
1880 sgd->dev_side_addr = 0;
1881 sgd->next_desc_ptr = 0LL;
1882
1883 return 1;
1884 }
1885
1886 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
1887
1888 static void skd_send_internal_skspcl(struct skd_device *skdev,
1889 struct skd_special_context *skspcl,
1890 u8 opcode)
1891 {
1892 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1893 struct skd_scsi_request *scsi;
1894 unsigned char *buf = skspcl->data_buf;
1895 int i;
1896
1897 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
1898 /*
1899 * A refresh is already in progress.
1900 * Just wait for it to finish.
1901 */
1902 return;
1903
1904 SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
1905 skspcl->req.state = SKD_REQ_STATE_BUSY;
1906 skspcl->req.id += SKD_ID_INCR;
1907
1908 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1909 scsi->hdr.tag = skspcl->req.id;
1910
1911 memset(scsi->cdb, 0, sizeof(scsi->cdb));
1912
1913 switch (opcode) {
1914 case TEST_UNIT_READY:
1915 scsi->cdb[0] = TEST_UNIT_READY;
1916 sgd->byte_count = 0;
1917 scsi->hdr.sg_list_len_bytes = 0;
1918 break;
1919
1920 case READ_CAPACITY:
1921 scsi->cdb[0] = READ_CAPACITY;
1922 sgd->byte_count = SKD_N_READ_CAP_BYTES;
1923 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1924 break;
1925
1926 case INQUIRY:
1927 scsi->cdb[0] = INQUIRY;
1928 scsi->cdb[1] = 0x01; /* evpd */
1929 scsi->cdb[2] = 0x80; /* serial number page */
1930 scsi->cdb[4] = 0x10;
1931 sgd->byte_count = 16;
1932 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1933 break;
1934
1935 case SYNCHRONIZE_CACHE:
1936 scsi->cdb[0] = SYNCHRONIZE_CACHE;
1937 sgd->byte_count = 0;
1938 scsi->hdr.sg_list_len_bytes = 0;
1939 break;
1940
1941 case WRITE_BUFFER:
1942 scsi->cdb[0] = WRITE_BUFFER;
1943 scsi->cdb[1] = 0x02;
1944 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1945 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1946 sgd->byte_count = WR_BUF_SIZE;
1947 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1948 /* fill incrementing byte pattern */
1949 for (i = 0; i < sgd->byte_count; i++)
1950 buf[i] = i & 0xFF;
1951 break;
1952
1953 case READ_BUFFER:
1954 scsi->cdb[0] = READ_BUFFER;
1955 scsi->cdb[1] = 0x02;
1956 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1957 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1958 sgd->byte_count = WR_BUF_SIZE;
1959 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1960 memset(skspcl->data_buf, 0, sgd->byte_count);
1961 break;
1962
1963 default:
1964 SKD_ASSERT("Don't know what to send");
1965 return;
1966
1967 }
1968 skd_send_special_fitmsg(skdev, skspcl);
1969 }
1970
1971 static void skd_refresh_device_data(struct skd_device *skdev)
1972 {
1973 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1974
1975 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1976 }
1977
1978 static int skd_chk_read_buf(struct skd_device *skdev,
1979 struct skd_special_context *skspcl)
1980 {
1981 unsigned char *buf = skspcl->data_buf;
1982 int i;
1983
1984 /* check for incrementing byte pattern */
1985 for (i = 0; i < WR_BUF_SIZE; i++)
1986 if (buf[i] != (i & 0xFF))
1987 return 1;
1988
1989 return 0;
1990 }
1991
1992 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1993 u8 code, u8 qual, u8 fruc)
1994 {
1995 /* If the check condition is of special interest, log a message */
1996 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1997 && (code == 0x04) && (qual == 0x06)) {
1998 pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
1999 "ascq/fruc %02x/%02x/%02x/%02x\n",
2000 skd_name(skdev), key, code, qual, fruc);
2001 }
2002 }
2003
2004 static void skd_complete_internal(struct skd_device *skdev,
2005 volatile struct fit_completion_entry_v1
2006 *skcomp,
2007 volatile struct fit_comp_error_info *skerr,
2008 struct skd_special_context *skspcl)
2009 {
2010 u8 *buf = skspcl->data_buf;
2011 u8 status;
2012 int i;
2013 struct skd_scsi_request *scsi =
2014 (struct skd_scsi_request *)&skspcl->msg_buf[64];
2015
2016 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
2017
2018 pr_debug("%s:%s:%d complete internal %x\n",
2019 skdev->name, __func__, __LINE__, scsi->cdb[0]);
2020
2021 skspcl->req.completion = *skcomp;
2022 skspcl->req.state = SKD_REQ_STATE_IDLE;
2023 skspcl->req.id += SKD_ID_INCR;
2024
2025 status = skspcl->req.completion.status;
2026
2027 skd_log_check_status(skdev, status, skerr->key, skerr->code,
2028 skerr->qual, skerr->fruc);
2029
2030 switch (scsi->cdb[0]) {
2031 case TEST_UNIT_READY:
2032 if (status == SAM_STAT_GOOD)
2033 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
2034 else if ((status == SAM_STAT_CHECK_CONDITION) &&
2035 (skerr->key == MEDIUM_ERROR))
2036 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
2037 else {
2038 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2039 pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
2040 skdev->name, __func__, __LINE__,
2041 skdev->state);
2042 return;
2043 }
2044 pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
2045 skdev->name, __func__, __LINE__);
2046 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2047 }
2048 break;
2049
2050 case WRITE_BUFFER:
2051 if (status == SAM_STAT_GOOD)
2052 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
2053 else {
2054 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2055 pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
2056 skdev->name, __func__, __LINE__,
2057 skdev->state);
2058 return;
2059 }
2060 pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
2061 skdev->name, __func__, __LINE__);
2062 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2063 }
2064 break;
2065
2066 case READ_BUFFER:
2067 if (status == SAM_STAT_GOOD) {
2068 if (skd_chk_read_buf(skdev, skspcl) == 0)
2069 skd_send_internal_skspcl(skdev, skspcl,
2070 READ_CAPACITY);
2071 else {
2072 pr_err(
2073 "(%s):*** W/R Buffer mismatch %d ***\n",
2074 skd_name(skdev), skdev->connect_retries);
2075 if (skdev->connect_retries <
2076 SKD_MAX_CONNECT_RETRIES) {
2077 skdev->connect_retries++;
2078 skd_soft_reset(skdev);
2079 } else {
2080 pr_err(
2081 "(%s): W/R Buffer Connect Error\n",
2082 skd_name(skdev));
2083 return;
2084 }
2085 }
2086
2087 } else {
2088 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2089 pr_debug("%s:%s:%d "
2090 "read buffer failed, don't send anymore state 0x%x\n",
2091 skdev->name, __func__, __LINE__,
2092 skdev->state);
2093 return;
2094 }
2095 pr_debug("%s:%s:%d "
2096 "**** read buffer failed, retry skerr\n",
2097 skdev->name, __func__, __LINE__);
2098 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2099 }
2100 break;
2101
2102 case READ_CAPACITY:
2103 skdev->read_cap_is_valid = 0;
2104 if (status == SAM_STAT_GOOD) {
2105 skdev->read_cap_last_lba =
2106 (buf[0] << 24) | (buf[1] << 16) |
2107 (buf[2] << 8) | buf[3];
2108 skdev->read_cap_blocksize =
2109 (buf[4] << 24) | (buf[5] << 16) |
2110 (buf[6] << 8) | buf[7];
2111
2112 pr_debug("%s:%s:%d last lba %d, bs %d\n",
2113 skdev->name, __func__, __LINE__,
2114 skdev->read_cap_last_lba,
2115 skdev->read_cap_blocksize);
2116
2117 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2118
2119 skdev->read_cap_is_valid = 1;
2120
2121 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2122 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
2123 (skerr->key == MEDIUM_ERROR)) {
2124 skdev->read_cap_last_lba = ~0;
2125 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2126 pr_debug("%s:%s:%d "
2127 "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
2128 skdev->name, __func__, __LINE__);
2129 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2130 } else {
2131 pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
2132 skdev->name, __func__, __LINE__);
2133 skd_send_internal_skspcl(skdev, skspcl,
2134 TEST_UNIT_READY);
2135 }
2136 break;
2137
2138 case INQUIRY:
2139 skdev->inquiry_is_valid = 0;
2140 if (status == SAM_STAT_GOOD) {
2141 skdev->inquiry_is_valid = 1;
2142
2143 for (i = 0; i < 12; i++)
2144 skdev->inq_serial_num[i] = buf[i + 4];
2145 skdev->inq_serial_num[12] = 0;
2146 }
2147
2148 if (skd_unquiesce_dev(skdev) < 0)
2149 pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
2150 skdev->name, __func__, __LINE__);
2151 /* connection is complete */
2152 skdev->connect_retries = 0;
2153 break;
2154
2155 case SYNCHRONIZE_CACHE:
2156 if (status == SAM_STAT_GOOD)
2157 skdev->sync_done = 1;
2158 else
2159 skdev->sync_done = -1;
2160 wake_up_interruptible(&skdev->waitq);
2161 break;
2162
2163 default:
2164 SKD_ASSERT("we didn't send this");
2165 }
2166 }
2167
2168 /*
2169 *****************************************************************************
2170 * FIT MESSAGES
2171 *****************************************************************************
2172 */
2173
2174 static void skd_send_fitmsg(struct skd_device *skdev,
2175 struct skd_fitmsg_context *skmsg)
2176 {
2177 u64 qcmd;
2178 struct fit_msg_hdr *fmh;
2179
2180 pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
2181 skdev->name, __func__, __LINE__,
2182 skmsg->mb_dma_address, skdev->in_flight);
2183 pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
2184 skdev->name, __func__, __LINE__,
2185 skmsg->msg_buf, skmsg->offset);
2186
2187 qcmd = skmsg->mb_dma_address;
2188 qcmd |= FIT_QCMD_QID_NORMAL;
2189
2190 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
2191 skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
2192
2193 if (unlikely(skdev->dbg_level > 1)) {
2194 u8 *bp = (u8 *)skmsg->msg_buf;
2195 int i;
2196 for (i = 0; i < skmsg->length; i += 8) {
2197 pr_debug("%s:%s:%d msg[%2d] %02x %02x %02x %02x "
2198 "%02x %02x %02x %02x\n",
2199 skdev->name, __func__, __LINE__,
2200 i, bp[i + 0], bp[i + 1], bp[i + 2],
2201 bp[i + 3], bp[i + 4], bp[i + 5],
2202 bp[i + 6], bp[i + 7]);
2203 if (i == 0)
2204 i = 64 - 8;
2205 }
2206 }
2207
2208 if (skmsg->length > 256)
2209 qcmd |= FIT_QCMD_MSGSIZE_512;
2210 else if (skmsg->length > 128)
2211 qcmd |= FIT_QCMD_MSGSIZE_256;
2212 else if (skmsg->length > 64)
2213 qcmd |= FIT_QCMD_MSGSIZE_128;
2214 else
2215 /*
2216 * This makes no sense because the FIT msg header is
2217 * 64 bytes. If the msg is only 64 bytes long it has
2218 * no payload.
2219 */
2220 qcmd |= FIT_QCMD_MSGSIZE_64;
2221
2222 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2223
2224 }
2225
2226 static void skd_send_special_fitmsg(struct skd_device *skdev,
2227 struct skd_special_context *skspcl)
2228 {
2229 u64 qcmd;
2230
2231 if (unlikely(skdev->dbg_level > 1)) {
2232 u8 *bp = (u8 *)skspcl->msg_buf;
2233 int i;
2234
2235 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
2236 pr_debug("%s:%s:%d spcl[%2d] %02x %02x %02x %02x "
2237 "%02x %02x %02x %02x\n",
2238 skdev->name, __func__, __LINE__, i,
2239 bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
2240 bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
2241 if (i == 0)
2242 i = 64 - 8;
2243 }
2244
2245 pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
2246 skdev->name, __func__, __LINE__,
2247 skspcl, skspcl->req.id, skspcl->req.sksg_list,
2248 skspcl->req.sksg_dma_address);
2249 for (i = 0; i < skspcl->req.n_sg; i++) {
2250 struct fit_sg_descriptor *sgd =
2251 &skspcl->req.sksg_list[i];
2252
2253 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
2254 "addr=0x%llx next=0x%llx\n",
2255 skdev->name, __func__, __LINE__,
2256 i, sgd->byte_count, sgd->control,
2257 sgd->host_side_addr, sgd->next_desc_ptr);
2258 }
2259 }
2260
2261 /*
2262 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
2263 * and one 64-byte SSDI command.
2264 */
2265 qcmd = skspcl->mb_dma_address;
2266 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
2267
2268 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2269 }
2270
2271 /*
2272 *****************************************************************************
2273 * COMPLETION QUEUE
2274 *****************************************************************************
2275 */
2276
2277 static void skd_complete_other(struct skd_device *skdev,
2278 volatile struct fit_completion_entry_v1 *skcomp,
2279 volatile struct fit_comp_error_info *skerr);
2280
2281 struct sns_info {
2282 u8 type;
2283 u8 stat;
2284 u8 key;
2285 u8 asc;
2286 u8 ascq;
2287 u8 mask;
2288 enum skd_check_status_action action;
2289 };
2290
2291 static struct sns_info skd_chkstat_table[] = {
2292 /* Good */
2293 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
2294 SKD_CHECK_STATUS_REPORT_GOOD },
2295
2296 /* Smart alerts */
2297 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
2298 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2299 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
2300 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2301 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
2302 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2303
2304 /* Retry (with limits) */
2305 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
2306 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2307 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
2308 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2309 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
2310 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2311 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
2312 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2313
2314 /* Busy (or about to be) */
2315 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
2316 SKD_CHECK_STATUS_BUSY_IMMINENT },
2317 };
2318
2319 /*
2320 * Look up status and sense data to decide how to handle the error
2321 * from the device.
2322 * mask says which fields must match e.g., mask=0x18 means check
2323 * type and stat, ignore key, asc, ascq.
2324 */
2325
2326 static enum skd_check_status_action
2327 skd_check_status(struct skd_device *skdev,
2328 u8 cmp_status, volatile struct fit_comp_error_info *skerr)
2329 {
2330 int i, n;
2331
2332 pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
2333 skd_name(skdev), skerr->key, skerr->code, skerr->qual,
2334 skerr->fruc);
2335
2336 pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
2337 skdev->name, __func__, __LINE__, skerr->type, cmp_status,
2338 skerr->key, skerr->code, skerr->qual, skerr->fruc);
2339
2340 /* Does the info match an entry in the good category? */
2341 n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
2342 for (i = 0; i < n; i++) {
2343 struct sns_info *sns = &skd_chkstat_table[i];
2344
2345 if (sns->mask & 0x10)
2346 if (skerr->type != sns->type)
2347 continue;
2348
2349 if (sns->mask & 0x08)
2350 if (cmp_status != sns->stat)
2351 continue;
2352
2353 if (sns->mask & 0x04)
2354 if (skerr->key != sns->key)
2355 continue;
2356
2357 if (sns->mask & 0x02)
2358 if (skerr->code != sns->asc)
2359 continue;
2360
2361 if (sns->mask & 0x01)
2362 if (skerr->qual != sns->ascq)
2363 continue;
2364
2365 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
2366 pr_err("(%s): SMART Alert: sense key/asc/ascq "
2367 "%02x/%02x/%02x\n",
2368 skd_name(skdev), skerr->key,
2369 skerr->code, skerr->qual);
2370 }
2371 return sns->action;
2372 }
2373
2374 /* No other match, so nonzero status means error,
2375 * zero status means good
2376 */
2377 if (cmp_status) {
2378 pr_debug("%s:%s:%d status check: error\n",
2379 skdev->name, __func__, __LINE__);
2380 return SKD_CHECK_STATUS_REPORT_ERROR;
2381 }
2382
2383 pr_debug("%s:%s:%d status check good default\n",
2384 skdev->name, __func__, __LINE__);
2385 return SKD_CHECK_STATUS_REPORT_GOOD;
2386 }
2387
2388 static void skd_resolve_req_exception(struct skd_device *skdev,
2389 struct skd_request_context *skreq)
2390 {
2391 u8 cmp_status = skreq->completion.status;
2392
2393 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
2394 case SKD_CHECK_STATUS_REPORT_GOOD:
2395 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
2396 skd_end_request(skdev, skreq, 0);
2397 break;
2398
2399 case SKD_CHECK_STATUS_BUSY_IMMINENT:
2400 skd_log_skreq(skdev, skreq, "retry(busy)");
2401 blk_requeue_request(skdev->queue, skreq->req);
2402 pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
2403 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
2404 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2405 skd_quiesce_dev(skdev);
2406 break;
2407
2408 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
2409 if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
2410 skd_log_skreq(skdev, skreq, "retry");
2411 blk_requeue_request(skdev->queue, skreq->req);
2412 break;
2413 }
2414 /* fall through to report error */
2415
2416 case SKD_CHECK_STATUS_REPORT_ERROR:
2417 default:
2418 skd_end_request(skdev, skreq, -EIO);
2419 break;
2420 }
2421 }
2422
2423 /* assume spinlock is already held */
2424 static void skd_release_skreq(struct skd_device *skdev,
2425 struct skd_request_context *skreq)
2426 {
2427 u32 msg_slot;
2428 struct skd_fitmsg_context *skmsg;
2429
2430 u32 timo_slot;
2431
2432 /*
2433 * Reclaim the FIT msg buffer if this is
2434 * the first of the requests it carried to
2435 * be completed. The FIT msg buffer used to
2436 * send this request cannot be reused until
2437 * we are sure the s1120 card has copied
2438 * it to its memory. The FIT msg might have
2439 * contained several requests. As soon as
2440 * any of them are completed we know that
2441 * the entire FIT msg was transferred.
2442 * Only the first completed request will
2443 * match the FIT msg buffer id. The FIT
2444 * msg buffer id is immediately updated.
2445 * When subsequent requests complete the FIT
2446 * msg buffer id won't match, so we know
2447 * quite cheaply that it is already done.
2448 */
2449 msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
2450 SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
2451
2452 skmsg = &skdev->skmsg_table[msg_slot];
2453 if (skmsg->id == skreq->fitmsg_id) {
2454 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
2455 SKD_ASSERT(skmsg->outstanding > 0);
2456 skmsg->outstanding--;
2457 if (skmsg->outstanding == 0) {
2458 skmsg->state = SKD_MSG_STATE_IDLE;
2459 skmsg->id += SKD_ID_INCR;
2460 skmsg->next = skdev->skmsg_free_list;
2461 skdev->skmsg_free_list = skmsg;
2462 }
2463 }
2464
2465 /*
2466 * Decrease the number of active requests.
2467 * Also decrements the count in the timeout slot.
2468 */
2469 SKD_ASSERT(skdev->in_flight > 0);
2470 skdev->in_flight -= 1;
2471
2472 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
2473 SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
2474 skdev->timeout_slot[timo_slot] -= 1;
2475
2476 /*
2477 * Reset backpointer
2478 */
2479 skreq->req = NULL;
2480
2481 /*
2482 * Reclaim the skd_request_context
2483 */
2484 skreq->state = SKD_REQ_STATE_IDLE;
2485 skreq->id += SKD_ID_INCR;
2486 skreq->next = skdev->skreq_free_list;
2487 skdev->skreq_free_list = skreq;
2488 }
2489
2490 #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
2491
2492 static void skd_do_inq_page_00(struct skd_device *skdev,
2493 volatile struct fit_completion_entry_v1 *skcomp,
2494 volatile struct fit_comp_error_info *skerr,
2495 uint8_t *cdb, uint8_t *buf)
2496 {
2497 uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
2498
2499 /* Caller requested "supported pages". The driver needs to insert
2500 * its page.
2501 */
2502 pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
2503 skdev->name, __func__, __LINE__);
2504
2505 /* If the device rejected the request because the CDB was
2506 * improperly formed, then just leave.
2507 */
2508 if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
2509 skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
2510 return;
2511
2512 /* Get the amount of space the caller allocated */
2513 max_bytes = (cdb[3] << 8) | cdb[4];
2514
2515 /* Get the number of pages actually returned by the device */
2516 drive_pages = (buf[2] << 8) | buf[3];
2517 drive_bytes = drive_pages + 4;
2518 new_size = drive_pages + 1;
2519
2520 /* Supported pages must be in numerical order, so find where
2521 * the driver page needs to be inserted into the list of
2522 * pages returned by the device.
2523 */
2524 for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
2525 if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
2526 return; /* Device using this page code. abort */
2527 else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
2528 break;
2529 }
2530
2531 if (insert_pt < max_bytes) {
2532 uint16_t u;
2533
2534 /* Shift everything up one byte to make room. */
2535 for (u = new_size + 3; u > insert_pt; u--)
2536 buf[u] = buf[u - 1];
2537 buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
2538
2539 /* SCSI byte order increment of num_returned_bytes by 1 */
2540 skcomp->num_returned_bytes =
2541 be32_to_cpu(skcomp->num_returned_bytes) + 1;
2542 skcomp->num_returned_bytes =
2543 be32_to_cpu(skcomp->num_returned_bytes);
2544 }
2545
2546 /* update page length field to reflect the driver's page too */
2547 buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
2548 buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
2549 }
2550
2551 static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
2552 {
2553 int pcie_reg;
2554 u16 pci_bus_speed;
2555 u8 pci_lanes;
2556
2557 pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2558 if (pcie_reg) {
2559 u16 linksta;
2560 pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
2561
2562 pci_bus_speed = linksta & 0xF;
2563 pci_lanes = (linksta & 0x3F0) >> 4;
2564 } else {
2565 *speed = STEC_LINK_UNKNOWN;
2566 *width = 0xFF;
2567 return;
2568 }
2569
2570 switch (pci_bus_speed) {
2571 case 1:
2572 *speed = STEC_LINK_2_5GTS;
2573 break;
2574 case 2:
2575 *speed = STEC_LINK_5GTS;
2576 break;
2577 case 3:
2578 *speed = STEC_LINK_8GTS;
2579 break;
2580 default:
2581 *speed = STEC_LINK_UNKNOWN;
2582 break;
2583 }
2584
2585 if (pci_lanes <= 0x20)
2586 *width = pci_lanes;
2587 else
2588 *width = 0xFF;
2589 }
2590
2591 static void skd_do_inq_page_da(struct skd_device *skdev,
2592 volatile struct fit_completion_entry_v1 *skcomp,
2593 volatile struct fit_comp_error_info *skerr,
2594 uint8_t *cdb, uint8_t *buf)
2595 {
2596 unsigned max_bytes;
2597 struct driver_inquiry_data inq;
2598 u16 val;
2599
2600 pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
2601 skdev->name, __func__, __LINE__);
2602
2603 memset(&inq, 0, sizeof(inq));
2604
2605 inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
2606
2607 if (skdev->pdev && skdev->pdev->bus) {
2608 skd_get_link_info(skdev->pdev,
2609 &inq.pcie_link_speed, &inq.pcie_link_lanes);
2610 inq.pcie_bus_number = cpu_to_be16(skdev->pdev->bus->number);
2611 inq.pcie_device_number = PCI_SLOT(skdev->pdev->devfn);
2612 inq.pcie_function_number = PCI_FUNC(skdev->pdev->devfn);
2613
2614 pci_read_config_word(skdev->pdev, PCI_VENDOR_ID, &val);
2615 inq.pcie_vendor_id = cpu_to_be16(val);
2616
2617 pci_read_config_word(skdev->pdev, PCI_DEVICE_ID, &val);
2618 inq.pcie_device_id = cpu_to_be16(val);
2619
2620 pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2621 &val);
2622 inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
2623
2624 pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_ID, &val);
2625 inq.pcie_subsystem_device_id = cpu_to_be16(val);
2626 } else {
2627 inq.pcie_bus_number = 0xFFFF;
2628 inq.pcie_device_number = 0xFF;
2629 inq.pcie_function_number = 0xFF;
2630 inq.pcie_link_speed = 0xFF;
2631 inq.pcie_link_lanes = 0xFF;
2632 inq.pcie_vendor_id = 0xFFFF;
2633 inq.pcie_device_id = 0xFFFF;
2634 inq.pcie_subsystem_vendor_id = 0xFFFF;
2635 inq.pcie_subsystem_device_id = 0xFFFF;
2636 }
2637
2638 /* Driver version, fixed lenth, padded with spaces on the right */
2639 inq.driver_version_length = sizeof(inq.driver_version);
2640 memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
2641 memcpy(inq.driver_version, DRV_VER_COMPL,
2642 min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
2643
2644 inq.page_length = cpu_to_be16((sizeof(inq) - 4));
2645
2646 /* Clear the error set by the device */
2647 skcomp->status = SAM_STAT_GOOD;
2648 memset((void *)skerr, 0, sizeof(*skerr));
2649
2650 /* copy response into output buffer */
2651 max_bytes = (cdb[3] << 8) | cdb[4];
2652 memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
2653
2654 skcomp->num_returned_bytes =
2655 be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
2656 }
2657
2658 static void skd_do_driver_inq(struct skd_device *skdev,
2659 volatile struct fit_completion_entry_v1 *skcomp,
2660 volatile struct fit_comp_error_info *skerr,
2661 uint8_t *cdb, uint8_t *buf)
2662 {
2663 if (!buf)
2664 return;
2665 else if (cdb[0] != INQUIRY)
2666 return; /* Not an INQUIRY */
2667 else if ((cdb[1] & 1) == 0)
2668 return; /* EVPD not set */
2669 else if (cdb[2] == 0)
2670 /* Need to add driver's page to supported pages list */
2671 skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
2672 else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
2673 /* Caller requested driver's page */
2674 skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
2675 }
2676
2677 static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
2678 {
2679 if (!sg)
2680 return NULL;
2681 if (!sg_page(sg))
2682 return NULL;
2683 return sg_virt(sg);
2684 }
2685
2686 static void skd_process_scsi_inq(struct skd_device *skdev,
2687 volatile struct fit_completion_entry_v1
2688 *skcomp,
2689 volatile struct fit_comp_error_info *skerr,
2690 struct skd_special_context *skspcl)
2691 {
2692 uint8_t *buf;
2693 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
2694 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
2695
2696 dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
2697 skspcl->req.sg_data_dir);
2698 buf = skd_sg_1st_page_ptr(skspcl->req.sg);
2699
2700 if (buf)
2701 skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
2702 }
2703
2704
2705 static int skd_isr_completion_posted(struct skd_device *skdev,
2706 int limit, int *enqueued)
2707 {
2708 volatile struct fit_completion_entry_v1 *skcmp = NULL;
2709 volatile struct fit_comp_error_info *skerr;
2710 u16 req_id;
2711 u32 req_slot;
2712 struct skd_request_context *skreq;
2713 u16 cmp_cntxt = 0;
2714 u8 cmp_status = 0;
2715 u8 cmp_cycle = 0;
2716 u32 cmp_bytes = 0;
2717 int rc = 0;
2718 int processed = 0;
2719
2720 for (;; ) {
2721 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
2722
2723 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
2724 cmp_cycle = skcmp->cycle;
2725 cmp_cntxt = skcmp->tag;
2726 cmp_status = skcmp->status;
2727 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
2728
2729 skerr = &skdev->skerr_table[skdev->skcomp_ix];
2730
2731 pr_debug("%s:%s:%d "
2732 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
2733 "busy=%d rbytes=0x%x proto=%d\n",
2734 skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
2735 skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
2736 skdev->in_flight, cmp_bytes, skdev->proto_ver);
2737
2738 if (cmp_cycle != skdev->skcomp_cycle) {
2739 pr_debug("%s:%s:%d end of completions\n",
2740 skdev->name, __func__, __LINE__);
2741 break;
2742 }
2743 /*
2744 * Update the completion queue head index and possibly
2745 * the completion cycle count. 8-bit wrap-around.
2746 */
2747 skdev->skcomp_ix++;
2748 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
2749 skdev->skcomp_ix = 0;
2750 skdev->skcomp_cycle++;
2751 }
2752
2753 /*
2754 * The command context is a unique 32-bit ID. The low order
2755 * bits help locate the request. The request is usually a
2756 * r/w request (see skd_start() above) or a special request.
2757 */
2758 req_id = cmp_cntxt;
2759 req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
2760
2761 /* Is this other than a r/w request? */
2762 if (req_slot >= skdev->num_req_context) {
2763 /*
2764 * This is not a completion for a r/w request.
2765 */
2766 skd_complete_other(skdev, skcmp, skerr);
2767 continue;
2768 }
2769
2770 skreq = &skdev->skreq_table[req_slot];
2771
2772 /*
2773 * Make sure the request ID for the slot matches.
2774 */
2775 if (skreq->id != req_id) {
2776 pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
2777 skdev->name, __func__, __LINE__,
2778 req_id, skreq->id);
2779 {
2780 u16 new_id = cmp_cntxt;
2781 pr_err("(%s): Completion mismatch "
2782 "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
2783 skd_name(skdev), req_id,
2784 skreq->id, new_id);
2785
2786 continue;
2787 }
2788 }
2789
2790 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
2791
2792 if (skreq->state == SKD_REQ_STATE_ABORTED) {
2793 pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
2794 skdev->name, __func__, __LINE__,
2795 skreq, skreq->id);
2796 /* a previously timed out command can
2797 * now be cleaned up */
2798 skd_release_skreq(skdev, skreq);
2799 continue;
2800 }
2801
2802 skreq->completion = *skcmp;
2803 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
2804 skreq->err_info = *skerr;
2805 skd_log_check_status(skdev, cmp_status, skerr->key,
2806 skerr->code, skerr->qual,
2807 skerr->fruc);
2808 }
2809 /* Release DMA resources for the request. */
2810 if (skreq->n_sg > 0)
2811 skd_postop_sg_list(skdev, skreq);
2812
2813 if (!skreq->req) {
2814 pr_debug("%s:%s:%d NULL backptr skdreq %p, "
2815 "req=0x%x req_id=0x%x\n",
2816 skdev->name, __func__, __LINE__,
2817 skreq, skreq->id, req_id);
2818 } else {
2819 /*
2820 * Capture the outcome and post it back to the
2821 * native request.
2822 */
2823 if (likely(cmp_status == SAM_STAT_GOOD))
2824 skd_end_request(skdev, skreq, 0);
2825 else
2826 skd_resolve_req_exception(skdev, skreq);
2827 }
2828
2829 /*
2830 * Release the skreq, its FIT msg (if one), timeout slot,
2831 * and queue depth.
2832 */
2833 skd_release_skreq(skdev, skreq);
2834
2835 /* skd_isr_comp_limit equal zero means no limit */
2836 if (limit) {
2837 if (++processed >= limit) {
2838 rc = 1;
2839 break;
2840 }
2841 }
2842 }
2843
2844 if ((skdev->state == SKD_DRVR_STATE_PAUSING)
2845 && (skdev->in_flight) == 0) {
2846 skdev->state = SKD_DRVR_STATE_PAUSED;
2847 wake_up_interruptible(&skdev->waitq);
2848 }
2849
2850 return rc;
2851 }
2852
2853 static void skd_complete_other(struct skd_device *skdev,
2854 volatile struct fit_completion_entry_v1 *skcomp,
2855 volatile struct fit_comp_error_info *skerr)
2856 {
2857 u32 req_id = 0;
2858 u32 req_table;
2859 u32 req_slot;
2860 struct skd_special_context *skspcl;
2861
2862 req_id = skcomp->tag;
2863 req_table = req_id & SKD_ID_TABLE_MASK;
2864 req_slot = req_id & SKD_ID_SLOT_MASK;
2865
2866 pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
2867 skdev->name, __func__, __LINE__,
2868 req_table, req_id, req_slot);
2869
2870 /*
2871 * Based on the request id, determine how to dispatch this completion.
2872 * This swich/case is finding the good cases and forwarding the
2873 * completion entry. Errors are reported below the switch.
2874 */
2875 switch (req_table) {
2876 case SKD_ID_RW_REQUEST:
2877 /*
2878 * The caller, skd_completion_posted_isr() above,
2879 * handles r/w requests. The only way we get here
2880 * is if the req_slot is out of bounds.
2881 */
2882 break;
2883
2884 case SKD_ID_SPECIAL_REQUEST:
2885 /*
2886 * Make sure the req_slot is in bounds and that the id
2887 * matches.
2888 */
2889 if (req_slot < skdev->n_special) {
2890 skspcl = &skdev->skspcl_table[req_slot];
2891 if (skspcl->req.id == req_id &&
2892 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2893 skd_complete_special(skdev,
2894 skcomp, skerr, skspcl);
2895 return;
2896 }
2897 }
2898 break;
2899
2900 case SKD_ID_INTERNAL:
2901 if (req_slot == 0) {
2902 skspcl = &skdev->internal_skspcl;
2903 if (skspcl->req.id == req_id &&
2904 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2905 skd_complete_internal(skdev,
2906 skcomp, skerr, skspcl);
2907 return;
2908 }
2909 }
2910 break;
2911
2912 case SKD_ID_FIT_MSG:
2913 /*
2914 * These id's should never appear in a completion record.
2915 */
2916 break;
2917
2918 default:
2919 /*
2920 * These id's should never appear anywhere;
2921 */
2922 break;
2923 }
2924
2925 /*
2926 * If we get here it is a bad or stale id.
2927 */
2928 }
2929
2930 static void skd_complete_special(struct skd_device *skdev,
2931 volatile struct fit_completion_entry_v1
2932 *skcomp,
2933 volatile struct fit_comp_error_info *skerr,
2934 struct skd_special_context *skspcl)
2935 {
2936 pr_debug("%s:%s:%d completing special request %p\n",
2937 skdev->name, __func__, __LINE__, skspcl);
2938 if (skspcl->orphaned) {
2939 /* Discard orphaned request */
2940 /* ?: Can this release directly or does it need
2941 * to use a worker? */
2942 pr_debug("%s:%s:%d release orphaned %p\n",
2943 skdev->name, __func__, __LINE__, skspcl);
2944 skd_release_special(skdev, skspcl);
2945 return;
2946 }
2947
2948 skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
2949
2950 skspcl->req.state = SKD_REQ_STATE_COMPLETED;
2951 skspcl->req.completion = *skcomp;
2952 skspcl->req.err_info = *skerr;
2953
2954 skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
2955 skerr->code, skerr->qual, skerr->fruc);
2956
2957 wake_up_interruptible(&skdev->waitq);
2958 }
2959
2960 /* assume spinlock is already held */
2961 static void skd_release_special(struct skd_device *skdev,
2962 struct skd_special_context *skspcl)
2963 {
2964 int i, was_depleted;
2965
2966 for (i = 0; i < skspcl->req.n_sg; i++) {
2967 struct page *page = sg_page(&skspcl->req.sg[i]);
2968 __free_page(page);
2969 }
2970
2971 was_depleted = (skdev->skspcl_free_list == NULL);
2972
2973 skspcl->req.state = SKD_REQ_STATE_IDLE;
2974 skspcl->req.id += SKD_ID_INCR;
2975 skspcl->req.next =
2976 (struct skd_request_context *)skdev->skspcl_free_list;
2977 skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
2978
2979 if (was_depleted) {
2980 pr_debug("%s:%s:%d skspcl was depleted\n",
2981 skdev->name, __func__, __LINE__);
2982 /* Free list was depleted. Their might be waiters. */
2983 wake_up_interruptible(&skdev->waitq);
2984 }
2985 }
2986
2987 static void skd_reset_skcomp(struct skd_device *skdev)
2988 {
2989 u32 nbytes;
2990 struct fit_completion_entry_v1 *skcomp;
2991
2992 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
2993 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
2994
2995 memset(skdev->skcomp_table, 0, nbytes);
2996
2997 skdev->skcomp_ix = 0;
2998 skdev->skcomp_cycle = 1;
2999 }
3000
3001 /*
3002 *****************************************************************************
3003 * INTERRUPTS
3004 *****************************************************************************
3005 */
3006 static void skd_completion_worker(struct work_struct *work)
3007 {
3008 struct skd_device *skdev =
3009 container_of(work, struct skd_device, completion_worker);
3010 unsigned long flags;
3011 int flush_enqueued = 0;
3012
3013 spin_lock_irqsave(&skdev->lock, flags);
3014
3015 /*
3016 * pass in limit=0, which means no limit..
3017 * process everything in compq
3018 */
3019 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
3020 skd_request_fn(skdev->queue);
3021
3022 spin_unlock_irqrestore(&skdev->lock, flags);
3023 }
3024
3025 static void skd_isr_msg_from_dev(struct skd_device *skdev);
3026
3027 irqreturn_t
3028 static skd_isr(int irq, void *ptr)
3029 {
3030 struct skd_device *skdev;
3031 u32 intstat;
3032 u32 ack;
3033 int rc = 0;
3034 int deferred = 0;
3035 int flush_enqueued = 0;
3036
3037 skdev = (struct skd_device *)ptr;
3038 spin_lock(&skdev->lock);
3039
3040 for (;; ) {
3041 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
3042
3043 ack = FIT_INT_DEF_MASK;
3044 ack &= intstat;
3045
3046 pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
3047 skdev->name, __func__, __LINE__, intstat, ack);
3048
3049 /* As long as there is an int pending on device, keep
3050 * running loop. When none, get out, but if we've never
3051 * done any processing, call completion handler?
3052 */
3053 if (ack == 0) {
3054 /* No interrupts on device, but run the completion
3055 * processor anyway?
3056 */
3057 if (rc == 0)
3058 if (likely (skdev->state
3059 == SKD_DRVR_STATE_ONLINE))
3060 deferred = 1;
3061 break;
3062 }
3063
3064 rc = IRQ_HANDLED;
3065
3066 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
3067
3068 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
3069 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
3070 if (intstat & FIT_ISH_COMPLETION_POSTED) {
3071 /*
3072 * If we have already deferred completion
3073 * processing, don't bother running it again
3074 */
3075 if (deferred == 0)
3076 deferred =
3077 skd_isr_completion_posted(skdev,
3078 skd_isr_comp_limit, &flush_enqueued);
3079 }
3080
3081 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
3082 skd_isr_fwstate(skdev);
3083 if (skdev->state == SKD_DRVR_STATE_FAULT ||
3084 skdev->state ==
3085 SKD_DRVR_STATE_DISAPPEARED) {
3086 spin_unlock(&skdev->lock);
3087 return rc;
3088 }
3089 }
3090
3091 if (intstat & FIT_ISH_MSG_FROM_DEV)
3092 skd_isr_msg_from_dev(skdev);
3093 }
3094 }
3095
3096 if (unlikely(flush_enqueued))
3097 skd_request_fn(skdev->queue);
3098
3099 if (deferred)
3100 schedule_work(&skdev->completion_worker);
3101 else if (!flush_enqueued)
3102 skd_request_fn(skdev->queue);
3103
3104 spin_unlock(&skdev->lock);
3105
3106 return rc;
3107 }
3108
3109 static void skd_drive_fault(struct skd_device *skdev)
3110 {
3111 skdev->state = SKD_DRVR_STATE_FAULT;
3112 pr_err("(%s): Drive FAULT\n", skd_name(skdev));
3113 }
3114
3115 static void skd_drive_disappeared(struct skd_device *skdev)
3116 {
3117 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
3118 pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
3119 }
3120
3121 static void skd_isr_fwstate(struct skd_device *skdev)
3122 {
3123 u32 sense;
3124 u32 state;
3125 u32 mtd;
3126 int prev_driver_state = skdev->state;
3127
3128 sense = SKD_READL(skdev, FIT_STATUS);
3129 state = sense & FIT_SR_DRIVE_STATE_MASK;
3130
3131 pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
3132 skd_name(skdev),
3133 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3134 skd_drive_state_to_str(state), state);
3135
3136 skdev->drive_state = state;
3137
3138 switch (skdev->drive_state) {
3139 case FIT_SR_DRIVE_INIT:
3140 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
3141 skd_disable_interrupts(skdev);
3142 break;
3143 }
3144 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
3145 skd_recover_requests(skdev, 0);
3146 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
3147 skdev->timer_countdown = SKD_STARTING_TIMO;
3148 skdev->state = SKD_DRVR_STATE_STARTING;
3149 skd_soft_reset(skdev);
3150 break;
3151 }
3152 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
3153 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3154 skdev->last_mtd = mtd;
3155 break;
3156
3157 case FIT_SR_DRIVE_ONLINE:
3158 skdev->cur_max_queue_depth = skd_max_queue_depth;
3159 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
3160 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
3161
3162 skdev->queue_low_water_mark =
3163 skdev->cur_max_queue_depth * 2 / 3 + 1;
3164 if (skdev->queue_low_water_mark < 1)
3165 skdev->queue_low_water_mark = 1;
3166 pr_info(
3167 "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
3168 skd_name(skdev),
3169 skdev->cur_max_queue_depth,
3170 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3171
3172 skd_refresh_device_data(skdev);
3173 break;
3174
3175 case FIT_SR_DRIVE_BUSY:
3176 skdev->state = SKD_DRVR_STATE_BUSY;
3177 skdev->timer_countdown = SKD_BUSY_TIMO;
3178 skd_quiesce_dev(skdev);
3179 break;
3180 case FIT_SR_DRIVE_BUSY_SANITIZE:
3181 /* set timer for 3 seconds, we'll abort any unfinished
3182 * commands after that expires
3183 */
3184 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3185 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
3186 blk_start_queue(skdev->queue);
3187 break;
3188 case FIT_SR_DRIVE_BUSY_ERASE:
3189 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3190 skdev->timer_countdown = SKD_BUSY_TIMO;
3191 break;
3192 case FIT_SR_DRIVE_OFFLINE:
3193 skdev->state = SKD_DRVR_STATE_IDLE;
3194 break;
3195 case FIT_SR_DRIVE_SOFT_RESET:
3196 switch (skdev->state) {
3197 case SKD_DRVR_STATE_STARTING:
3198 case SKD_DRVR_STATE_RESTARTING:
3199 /* Expected by a caller of skd_soft_reset() */
3200 break;
3201 default:
3202 skdev->state = SKD_DRVR_STATE_RESTARTING;
3203 break;
3204 }
3205 break;
3206 case FIT_SR_DRIVE_FW_BOOTING:
3207 pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
3208 skdev->name, __func__, __LINE__, skdev->name);
3209 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3210 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3211 break;
3212
3213 case FIT_SR_DRIVE_DEGRADED:
3214 case FIT_SR_PCIE_LINK_DOWN:
3215 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3216 break;
3217
3218 case FIT_SR_DRIVE_FAULT:
3219 skd_drive_fault(skdev);
3220 skd_recover_requests(skdev, 0);
3221 blk_start_queue(skdev->queue);
3222 break;
3223
3224 /* PCIe bus returned all Fs? */
3225 case 0xFF:
3226 pr_info("(%s): state=0x%x sense=0x%x\n",
3227 skd_name(skdev), state, sense);
3228 skd_drive_disappeared(skdev);
3229 skd_recover_requests(skdev, 0);
3230 blk_start_queue(skdev->queue);
3231 break;
3232 default:
3233 /*
3234 * Uknown FW State. Wait for a state we recognize.
3235 */
3236 break;
3237 }
3238 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3239 skd_name(skdev),
3240 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
3241 skd_skdev_state_to_str(skdev->state), skdev->state);
3242 }
3243
3244 static void skd_recover_requests(struct skd_device *skdev, int requeue)
3245 {
3246 int i;
3247
3248 for (i = 0; i < skdev->num_req_context; i++) {
3249 struct skd_request_context *skreq = &skdev->skreq_table[i];
3250
3251 if (skreq->state == SKD_REQ_STATE_BUSY) {
3252 skd_log_skreq(skdev, skreq, "recover");
3253
3254 SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
3255 SKD_ASSERT(skreq->req != NULL);
3256
3257 /* Release DMA resources for the request. */
3258 if (skreq->n_sg > 0)
3259 skd_postop_sg_list(skdev, skreq);
3260
3261 if (requeue &&
3262 (unsigned long) ++skreq->req->special <
3263 SKD_MAX_RETRIES)
3264 blk_requeue_request(skdev->queue, skreq->req);
3265 else
3266 skd_end_request(skdev, skreq, -EIO);
3267
3268 skreq->req = NULL;
3269
3270 skreq->state = SKD_REQ_STATE_IDLE;
3271 skreq->id += SKD_ID_INCR;
3272 }
3273 if (i > 0)
3274 skreq[-1].next = skreq;
3275 skreq->next = NULL;
3276 }
3277 skdev->skreq_free_list = skdev->skreq_table;
3278
3279 for (i = 0; i < skdev->num_fitmsg_context; i++) {
3280 struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
3281
3282 if (skmsg->state == SKD_MSG_STATE_BUSY) {
3283 skd_log_skmsg(skdev, skmsg, "salvaged");
3284 SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
3285 skmsg->state = SKD_MSG_STATE_IDLE;
3286 skmsg->id += SKD_ID_INCR;
3287 }
3288 if (i > 0)
3289 skmsg[-1].next = skmsg;
3290 skmsg->next = NULL;
3291 }
3292 skdev->skmsg_free_list = skdev->skmsg_table;
3293
3294 for (i = 0; i < skdev->n_special; i++) {
3295 struct skd_special_context *skspcl = &skdev->skspcl_table[i];
3296
3297 /* If orphaned, reclaim it because it has already been reported
3298 * to the process as an error (it was just waiting for
3299 * a completion that didn't come, and now it will never come)
3300 * If busy, change to a state that will cause it to error
3301 * out in the wait routine and let it do the normal
3302 * reporting and reclaiming
3303 */
3304 if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
3305 if (skspcl->orphaned) {
3306 pr_debug("%s:%s:%d orphaned %p\n",
3307 skdev->name, __func__, __LINE__,
3308 skspcl);
3309 skd_release_special(skdev, skspcl);
3310 } else {
3311 pr_debug("%s:%s:%d not orphaned %p\n",
3312 skdev->name, __func__, __LINE__,
3313 skspcl);
3314 skspcl->req.state = SKD_REQ_STATE_ABORTED;
3315 }
3316 }
3317 }
3318 skdev->skspcl_free_list = skdev->skspcl_table;
3319
3320 for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
3321 skdev->timeout_slot[i] = 0;
3322
3323 skdev->in_flight = 0;
3324 }
3325
3326 static void skd_isr_msg_from_dev(struct skd_device *skdev)
3327 {
3328 u32 mfd;
3329 u32 mtd;
3330 u32 data;
3331
3332 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3333
3334 pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
3335 skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
3336
3337 /* ignore any mtd that is an ack for something we didn't send */
3338 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
3339 return;
3340
3341 switch (FIT_MXD_TYPE(mfd)) {
3342 case FIT_MTD_FITFW_INIT:
3343 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
3344
3345 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
3346 pr_err("(%s): protocol mismatch\n",
3347 skdev->name);
3348 pr_err("(%s): got=%d support=%d\n",
3349 skdev->name, skdev->proto_ver,
3350 FIT_PROTOCOL_VERSION_1);
3351 pr_err("(%s): please upgrade driver\n",
3352 skdev->name);
3353 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
3354 skd_soft_reset(skdev);
3355 break;
3356 }
3357 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
3358 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3359 skdev->last_mtd = mtd;
3360 break;
3361
3362 case FIT_MTD_GET_CMDQ_DEPTH:
3363 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
3364 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
3365 SKD_N_COMPLETION_ENTRY);
3366 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3367 skdev->last_mtd = mtd;
3368 break;
3369
3370 case FIT_MTD_SET_COMPQ_DEPTH:
3371 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
3372 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
3373 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3374 skdev->last_mtd = mtd;
3375 break;
3376
3377 case FIT_MTD_SET_COMPQ_ADDR:
3378 skd_reset_skcomp(skdev);
3379 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
3380 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3381 skdev->last_mtd = mtd;
3382 break;
3383
3384 case FIT_MTD_CMD_LOG_HOST_ID:
3385 skdev->connect_time_stamp = get_seconds();
3386 data = skdev->connect_time_stamp & 0xFFFF;
3387 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
3388 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3389 skdev->last_mtd = mtd;
3390 break;
3391
3392 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
3393 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
3394 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
3395 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
3396 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3397 skdev->last_mtd = mtd;
3398 break;
3399
3400 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
3401 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
3402 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
3403 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3404 skdev->last_mtd = mtd;
3405
3406 pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
3407 skd_name(skdev),
3408 skdev->connect_time_stamp, skdev->drive_jiffies);
3409 break;
3410
3411 case FIT_MTD_ARM_QUEUE:
3412 skdev->last_mtd = 0;
3413 /*
3414 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
3415 */
3416 break;
3417
3418 default:
3419 break;
3420 }
3421 }
3422
3423 static void skd_disable_interrupts(struct skd_device *skdev)
3424 {
3425 u32 sense;
3426
3427 sense = SKD_READL(skdev, FIT_CONTROL);
3428 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
3429 SKD_WRITEL(skdev, sense, FIT_CONTROL);
3430 pr_debug("%s:%s:%d sense 0x%x\n",
3431 skdev->name, __func__, __LINE__, sense);
3432
3433 /* Note that the 1s is written. A 1-bit means
3434 * disable, a 0 means enable.
3435 */
3436 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
3437 }
3438
3439 static void skd_enable_interrupts(struct skd_device *skdev)
3440 {
3441 u32 val;
3442
3443 /* unmask interrupts first */
3444 val = FIT_ISH_FW_STATE_CHANGE +
3445 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
3446
3447 /* Note that the compliment of mask is written. A 1-bit means
3448 * disable, a 0 means enable. */
3449 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
3450 pr_debug("%s:%s:%d interrupt mask=0x%x\n",
3451 skdev->name, __func__, __LINE__, ~val);
3452
3453 val = SKD_READL(skdev, FIT_CONTROL);
3454 val |= FIT_CR_ENABLE_INTERRUPTS;
3455 pr_debug("%s:%s:%d control=0x%x\n",
3456 skdev->name, __func__, __LINE__, val);
3457 SKD_WRITEL(skdev, val, FIT_CONTROL);
3458 }
3459
3460 /*
3461 *****************************************************************************
3462 * START, STOP, RESTART, QUIESCE, UNQUIESCE
3463 *****************************************************************************
3464 */
3465
3466 static void skd_soft_reset(struct skd_device *skdev)
3467 {
3468 u32 val;
3469
3470 val = SKD_READL(skdev, FIT_CONTROL);
3471 val |= (FIT_CR_SOFT_RESET);
3472 pr_debug("%s:%s:%d control=0x%x\n",
3473 skdev->name, __func__, __LINE__, val);
3474 SKD_WRITEL(skdev, val, FIT_CONTROL);
3475 }
3476
3477 static void skd_start_device(struct skd_device *skdev)
3478 {
3479 unsigned long flags;
3480 u32 sense;
3481 u32 state;
3482
3483 spin_lock_irqsave(&skdev->lock, flags);
3484
3485 /* ack all ghost interrupts */
3486 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3487
3488 sense = SKD_READL(skdev, FIT_STATUS);
3489
3490 pr_debug("%s:%s:%d initial status=0x%x\n",
3491 skdev->name, __func__, __LINE__, sense);
3492
3493 state = sense & FIT_SR_DRIVE_STATE_MASK;
3494 skdev->drive_state = state;
3495 skdev->last_mtd = 0;
3496
3497 skdev->state = SKD_DRVR_STATE_STARTING;
3498 skdev->timer_countdown = SKD_STARTING_TIMO;
3499
3500 skd_enable_interrupts(skdev);
3501
3502 switch (skdev->drive_state) {
3503 case FIT_SR_DRIVE_OFFLINE:
3504 pr_err("(%s): Drive offline...\n", skd_name(skdev));
3505 break;
3506
3507 case FIT_SR_DRIVE_FW_BOOTING:
3508 pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
3509 skdev->name, __func__, __LINE__, skdev->name);
3510 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3511 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3512 break;
3513
3514 case FIT_SR_DRIVE_BUSY_SANITIZE:
3515 pr_info("(%s): Start: BUSY_SANITIZE\n",
3516 skd_name(skdev));
3517 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3518 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3519 break;
3520
3521 case FIT_SR_DRIVE_BUSY_ERASE:
3522 pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
3523 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3524 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3525 break;
3526
3527 case FIT_SR_DRIVE_INIT:
3528 case FIT_SR_DRIVE_ONLINE:
3529 skd_soft_reset(skdev);
3530 break;
3531
3532 case FIT_SR_DRIVE_BUSY:
3533 pr_err("(%s): Drive Busy...\n", skd_name(skdev));
3534 skdev->state = SKD_DRVR_STATE_BUSY;
3535 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3536 break;
3537
3538 case FIT_SR_DRIVE_SOFT_RESET:
3539 pr_err("(%s) drive soft reset in prog\n",
3540 skd_name(skdev));
3541 break;
3542
3543 case FIT_SR_DRIVE_FAULT:
3544 /* Fault state is bad...soft reset won't do it...
3545 * Hard reset, maybe, but does it work on device?
3546 * For now, just fault so the system doesn't hang.
3547 */
3548 skd_drive_fault(skdev);
3549 /*start the queue so we can respond with error to requests */
3550 pr_debug("%s:%s:%d starting %s queue\n",
3551 skdev->name, __func__, __LINE__, skdev->name);
3552 blk_start_queue(skdev->queue);
3553 skdev->gendisk_on = -1;
3554 wake_up_interruptible(&skdev->waitq);
3555 break;
3556
3557 case 0xFF:
3558 /* Most likely the device isn't there or isn't responding
3559 * to the BAR1 addresses. */
3560 skd_drive_disappeared(skdev);
3561 /*start the queue so we can respond with error to requests */
3562 pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
3563 skdev->name, __func__, __LINE__, skdev->name);
3564 blk_start_queue(skdev->queue);
3565 skdev->gendisk_on = -1;
3566 wake_up_interruptible(&skdev->waitq);
3567 break;
3568
3569 default:
3570 pr_err("(%s) Start: unknown state %x\n",
3571 skd_name(skdev), skdev->drive_state);
3572 break;
3573 }
3574
3575 state = SKD_READL(skdev, FIT_CONTROL);
3576 pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
3577 skdev->name, __func__, __LINE__, state);
3578
3579 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
3580 pr_debug("%s:%s:%d Intr Status=0x%x\n",
3581 skdev->name, __func__, __LINE__, state);
3582
3583 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
3584 pr_debug("%s:%s:%d Intr Mask=0x%x\n",
3585 skdev->name, __func__, __LINE__, state);
3586
3587 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3588 pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
3589 skdev->name, __func__, __LINE__, state);
3590
3591 state = SKD_READL(skdev, FIT_HW_VERSION);
3592 pr_debug("%s:%s:%d HW version=0x%x\n",
3593 skdev->name, __func__, __LINE__, state);
3594
3595 spin_unlock_irqrestore(&skdev->lock, flags);
3596 }
3597
3598 static void skd_stop_device(struct skd_device *skdev)
3599 {
3600 unsigned long flags;
3601 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3602 u32 dev_state;
3603 int i;
3604
3605 spin_lock_irqsave(&skdev->lock, flags);
3606
3607 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
3608 pr_err("(%s): skd_stop_device not online no sync\n",
3609 skd_name(skdev));
3610 goto stop_out;
3611 }
3612
3613 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
3614 pr_err("(%s): skd_stop_device no special\n",
3615 skd_name(skdev));
3616 goto stop_out;
3617 }
3618
3619 skdev->state = SKD_DRVR_STATE_SYNCING;
3620 skdev->sync_done = 0;
3621
3622 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
3623
3624 spin_unlock_irqrestore(&skdev->lock, flags);
3625
3626 wait_event_interruptible_timeout(skdev->waitq,
3627 (skdev->sync_done), (10 * HZ));
3628
3629 spin_lock_irqsave(&skdev->lock, flags);
3630
3631 switch (skdev->sync_done) {
3632 case 0:
3633 pr_err("(%s): skd_stop_device no sync\n",
3634 skd_name(skdev));
3635 break;
3636 case 1:
3637 pr_err("(%s): skd_stop_device sync done\n",
3638 skd_name(skdev));
3639 break;
3640 default:
3641 pr_err("(%s): skd_stop_device sync error\n",
3642 skd_name(skdev));
3643 }
3644
3645 stop_out:
3646 skdev->state = SKD_DRVR_STATE_STOPPING;
3647 spin_unlock_irqrestore(&skdev->lock, flags);
3648
3649 skd_kill_timer(skdev);
3650
3651 spin_lock_irqsave(&skdev->lock, flags);
3652 skd_disable_interrupts(skdev);
3653
3654 /* ensure all ints on device are cleared */
3655 /* soft reset the device to unload with a clean slate */
3656 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3657 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
3658
3659 spin_unlock_irqrestore(&skdev->lock, flags);
3660
3661 /* poll every 100ms, 1 second timeout */
3662 for (i = 0; i < 10; i++) {
3663 dev_state =
3664 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
3665 if (dev_state == FIT_SR_DRIVE_INIT)
3666 break;
3667 set_current_state(TASK_INTERRUPTIBLE);
3668 schedule_timeout(msecs_to_jiffies(100));
3669 }
3670
3671 if (dev_state != FIT_SR_DRIVE_INIT)
3672 pr_err("(%s): skd_stop_device state error 0x%02x\n",
3673 skd_name(skdev), dev_state);
3674 }
3675
3676 /* assume spinlock is held */
3677 static void skd_restart_device(struct skd_device *skdev)
3678 {
3679 u32 state;
3680
3681 /* ack all ghost interrupts */
3682 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3683
3684 state = SKD_READL(skdev, FIT_STATUS);
3685
3686 pr_debug("%s:%s:%d drive status=0x%x\n",
3687 skdev->name, __func__, __LINE__, state);
3688
3689 state &= FIT_SR_DRIVE_STATE_MASK;
3690 skdev->drive_state = state;
3691 skdev->last_mtd = 0;
3692
3693 skdev->state = SKD_DRVR_STATE_RESTARTING;
3694 skdev->timer_countdown = SKD_RESTARTING_TIMO;
3695
3696 skd_soft_reset(skdev);
3697 }
3698
3699 /* assume spinlock is held */
3700 static int skd_quiesce_dev(struct skd_device *skdev)
3701 {
3702 int rc = 0;
3703
3704 switch (skdev->state) {
3705 case SKD_DRVR_STATE_BUSY:
3706 case SKD_DRVR_STATE_BUSY_IMMINENT:
3707 pr_debug("%s:%s:%d stopping %s queue\n",
3708 skdev->name, __func__, __LINE__, skdev->name);
3709 blk_stop_queue(skdev->queue);
3710 break;
3711 case SKD_DRVR_STATE_ONLINE:
3712 case SKD_DRVR_STATE_STOPPING:
3713 case SKD_DRVR_STATE_SYNCING:
3714 case SKD_DRVR_STATE_PAUSING:
3715 case SKD_DRVR_STATE_PAUSED:
3716 case SKD_DRVR_STATE_STARTING:
3717 case SKD_DRVR_STATE_RESTARTING:
3718 case SKD_DRVR_STATE_RESUMING:
3719 default:
3720 rc = -EINVAL;
3721 pr_debug("%s:%s:%d state [%d] not implemented\n",
3722 skdev->name, __func__, __LINE__, skdev->state);
3723 }
3724 return rc;
3725 }
3726
3727 /* assume spinlock is held */
3728 static int skd_unquiesce_dev(struct skd_device *skdev)
3729 {
3730 int prev_driver_state = skdev->state;
3731
3732 skd_log_skdev(skdev, "unquiesce");
3733 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
3734 pr_debug("%s:%s:%d **** device already ONLINE\n",
3735 skdev->name, __func__, __LINE__);
3736 return 0;
3737 }
3738 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
3739 /*
3740 * If there has been an state change to other than
3741 * ONLINE, we will rely on controller state change
3742 * to come back online and restart the queue.
3743 * The BUSY state means that driver is ready to
3744 * continue normal processing but waiting for controller
3745 * to become available.
3746 */
3747 skdev->state = SKD_DRVR_STATE_BUSY;
3748 pr_debug("%s:%s:%d drive BUSY state\n",
3749 skdev->name, __func__, __LINE__);
3750 return 0;
3751 }
3752
3753 /*
3754 * Drive has just come online, driver is either in startup,
3755 * paused performing a task, or bust waiting for hardware.
3756 */
3757 switch (skdev->state) {
3758 case SKD_DRVR_STATE_PAUSED:
3759 case SKD_DRVR_STATE_BUSY:
3760 case SKD_DRVR_STATE_BUSY_IMMINENT:
3761 case SKD_DRVR_STATE_BUSY_ERASE:
3762 case SKD_DRVR_STATE_STARTING:
3763 case SKD_DRVR_STATE_RESTARTING:
3764 case SKD_DRVR_STATE_FAULT:
3765 case SKD_DRVR_STATE_IDLE:
3766 case SKD_DRVR_STATE_LOAD:
3767 skdev->state = SKD_DRVR_STATE_ONLINE;
3768 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3769 skd_name(skdev),
3770 skd_skdev_state_to_str(prev_driver_state),
3771 prev_driver_state, skd_skdev_state_to_str(skdev->state),
3772 skdev->state);
3773 pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
3774 skdev->name, __func__, __LINE__);
3775 pr_debug("%s:%s:%d starting %s queue\n",
3776 skdev->name, __func__, __LINE__, skdev->name);
3777 pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
3778 blk_start_queue(skdev->queue);
3779 skdev->gendisk_on = 1;
3780 wake_up_interruptible(&skdev->waitq);
3781 break;
3782
3783 case SKD_DRVR_STATE_DISAPPEARED:
3784 default:
3785 pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
3786 skdev->name, __func__, __LINE__,
3787 skdev->state);
3788 return -EBUSY;
3789 }
3790 return 0;
3791 }
3792
3793 /*
3794 *****************************************************************************
3795 * PCIe MSI/MSI-X INTERRUPT HANDLERS
3796 *****************************************************************************
3797 */
3798
3799 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
3800 {
3801 struct skd_device *skdev = skd_host_data;
3802 unsigned long flags;
3803
3804 spin_lock_irqsave(&skdev->lock, flags);
3805 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3806 skdev->name, __func__, __LINE__,
3807 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3808 pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
3809 irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
3810 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
3811 spin_unlock_irqrestore(&skdev->lock, flags);
3812 return IRQ_HANDLED;
3813 }
3814
3815 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
3816 {
3817 struct skd_device *skdev = skd_host_data;
3818 unsigned long flags;
3819
3820 spin_lock_irqsave(&skdev->lock, flags);
3821 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3822 skdev->name, __func__, __LINE__,
3823 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3824 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
3825 skd_isr_fwstate(skdev);
3826 spin_unlock_irqrestore(&skdev->lock, flags);
3827 return IRQ_HANDLED;
3828 }
3829
3830 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
3831 {
3832 struct skd_device *skdev = skd_host_data;
3833 unsigned long flags;
3834 int flush_enqueued = 0;
3835 int deferred;
3836
3837 spin_lock_irqsave(&skdev->lock, flags);
3838 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3839 skdev->name, __func__, __LINE__,
3840 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3841 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
3842 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
3843 &flush_enqueued);
3844 if (flush_enqueued)
3845 skd_request_fn(skdev->queue);
3846
3847 if (deferred)
3848 schedule_work(&skdev->completion_worker);
3849 else if (!flush_enqueued)
3850 skd_request_fn(skdev->queue);
3851
3852 spin_unlock_irqrestore(&skdev->lock, flags);
3853
3854 return IRQ_HANDLED;
3855 }
3856
3857 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
3858 {
3859 struct skd_device *skdev = skd_host_data;
3860 unsigned long flags;
3861
3862 spin_lock_irqsave(&skdev->lock, flags);
3863 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3864 skdev->name, __func__, __LINE__,
3865 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3866 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
3867 skd_isr_msg_from_dev(skdev);
3868 spin_unlock_irqrestore(&skdev->lock, flags);
3869 return IRQ_HANDLED;
3870 }
3871
3872 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
3873 {
3874 struct skd_device *skdev = skd_host_data;
3875 unsigned long flags;
3876
3877 spin_lock_irqsave(&skdev->lock, flags);
3878 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3879 skdev->name, __func__, __LINE__,
3880 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3881 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
3882 spin_unlock_irqrestore(&skdev->lock, flags);
3883 return IRQ_HANDLED;
3884 }
3885
3886 /*
3887 *****************************************************************************
3888 * PCIe MSI/MSI-X SETUP
3889 *****************************************************************************
3890 */
3891
3892 struct skd_msix_entry {
3893 int have_irq;
3894 u32 vector;
3895 u32 entry;
3896 struct skd_device *rsp;
3897 char isr_name[30];
3898 };
3899
3900 struct skd_init_msix_entry {
3901 const char *name;
3902 irq_handler_t handler;
3903 };
3904
3905 #define SKD_MAX_MSIX_COUNT 13
3906 #define SKD_MIN_MSIX_COUNT 7
3907 #define SKD_BASE_MSIX_IRQ 4
3908
3909 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
3910 { "(DMA 0)", skd_reserved_isr },
3911 { "(DMA 1)", skd_reserved_isr },
3912 { "(DMA 2)", skd_reserved_isr },
3913 { "(DMA 3)", skd_reserved_isr },
3914 { "(State Change)", skd_statec_isr },
3915 { "(COMPL_Q)", skd_comp_q },
3916 { "(MSG)", skd_msg_isr },
3917 { "(Reserved)", skd_reserved_isr },
3918 { "(Reserved)", skd_reserved_isr },
3919 { "(Queue Full 0)", skd_qfull_isr },
3920 { "(Queue Full 1)", skd_qfull_isr },
3921 { "(Queue Full 2)", skd_qfull_isr },
3922 { "(Queue Full 3)", skd_qfull_isr },
3923 };
3924
3925 static void skd_release_msix(struct skd_device *skdev)
3926 {
3927 struct skd_msix_entry *qentry;
3928 int i;
3929
3930 if (skdev->msix_entries == NULL)
3931 return;
3932 for (i = 0; i < skdev->msix_count; i++) {
3933 qentry = &skdev->msix_entries[i];
3934 skdev = qentry->rsp;
3935
3936 if (qentry->have_irq)
3937 devm_free_irq(&skdev->pdev->dev,
3938 qentry->vector, qentry->rsp);
3939 }
3940 pci_disable_msix(skdev->pdev);
3941 kfree(skdev->msix_entries);
3942 skdev->msix_count = 0;
3943 skdev->msix_entries = NULL;
3944 }
3945
3946 static int skd_acquire_msix(struct skd_device *skdev)
3947 {
3948 int i, rc;
3949 struct pci_dev *pdev;
3950 struct msix_entry *entries = NULL;
3951 struct skd_msix_entry *qentry;
3952
3953 pdev = skdev->pdev;
3954 skdev->msix_count = SKD_MAX_MSIX_COUNT;
3955 entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT,
3956 GFP_KERNEL);
3957 if (!entries)
3958 return -ENOMEM;
3959
3960 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++)
3961 entries[i].entry = i;
3962
3963 rc = pci_enable_msix(pdev, entries, SKD_MAX_MSIX_COUNT);
3964 if (rc < 0)
3965 goto msix_out;
3966 if (rc) {
3967 if (rc < SKD_MIN_MSIX_COUNT) {
3968 pr_err("(%s): failed to enable MSI-X %d\n",
3969 skd_name(skdev), rc);
3970 goto msix_out;
3971 }
3972 pr_debug("%s:%s:%d %s: <%s> allocated %d MSI-X vectors\n",
3973 skdev->name, __func__, __LINE__,
3974 pci_name(pdev), skdev->name, rc);
3975
3976 skdev->msix_count = rc;
3977 rc = pci_enable_msix(pdev, entries, skdev->msix_count);
3978 if (rc) {
3979 pr_err("(%s): failed to enable MSI-X "
3980 "support (%d) %d\n",
3981 skd_name(skdev), skdev->msix_count, rc);
3982 goto msix_out;
3983 }
3984 }
3985 skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) *
3986 skdev->msix_count, GFP_KERNEL);
3987 if (!skdev->msix_entries) {
3988 rc = -ENOMEM;
3989 skdev->msix_count = 0;
3990 pr_err("(%s): msix table allocation error\n",
3991 skd_name(skdev));
3992 goto msix_out;
3993 }
3994
3995 qentry = skdev->msix_entries;
3996 for (i = 0; i < skdev->msix_count; i++) {
3997 qentry->vector = entries[i].vector;
3998 qentry->entry = entries[i].entry;
3999 qentry->rsp = NULL;
4000 qentry->have_irq = 0;
4001 pr_debug("%s:%s:%d %s: <%s> msix (%d) vec %d, entry %x\n",
4002 skdev->name, __func__, __LINE__,
4003 pci_name(pdev), skdev->name,
4004 i, qentry->vector, qentry->entry);
4005 qentry++;
4006 }
4007
4008 /* Enable MSI-X vectors for the base queue */
4009 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
4010 qentry = &skdev->msix_entries[i];
4011 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
4012 "%s%d-msix %s", DRV_NAME, skdev->devno,
4013 msix_entries[i].name);
4014 rc = devm_request_irq(&skdev->pdev->dev, qentry->vector,
4015 msix_entries[i].handler, 0,
4016 qentry->isr_name, skdev);
4017 if (rc) {
4018 pr_err("(%s): Unable to register(%d) MSI-X "
4019 "handler %d: %s\n",
4020 skd_name(skdev), rc, i, qentry->isr_name);
4021 goto msix_out;
4022 } else {
4023 qentry->have_irq = 1;
4024 qentry->rsp = skdev;
4025 }
4026 }
4027 pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
4028 skdev->name, __func__, __LINE__,
4029 pci_name(pdev), skdev->name, skdev->msix_count);
4030 return 0;
4031
4032 msix_out:
4033 if (entries)
4034 kfree(entries);
4035 skd_release_msix(skdev);
4036 return rc;
4037 }
4038
4039 static int skd_acquire_irq(struct skd_device *skdev)
4040 {
4041 int rc;
4042 struct pci_dev *pdev;
4043
4044 pdev = skdev->pdev;
4045 skdev->msix_count = 0;
4046
4047 RETRY_IRQ_TYPE:
4048 switch (skdev->irq_type) {
4049 case SKD_IRQ_MSIX:
4050 rc = skd_acquire_msix(skdev);
4051 if (!rc)
4052 pr_info("(%s): MSI-X %d irqs enabled\n",
4053 skd_name(skdev), skdev->msix_count);
4054 else {
4055 pr_err(
4056 "(%s): failed to enable MSI-X, re-trying with MSI %d\n",
4057 skd_name(skdev), rc);
4058 skdev->irq_type = SKD_IRQ_MSI;
4059 goto RETRY_IRQ_TYPE;
4060 }
4061 break;
4062 case SKD_IRQ_MSI:
4063 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi",
4064 DRV_NAME, skdev->devno);
4065 rc = pci_enable_msi(pdev);
4066 if (!rc) {
4067 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0,
4068 skdev->isr_name, skdev);
4069 if (rc) {
4070 pci_disable_msi(pdev);
4071 pr_err(
4072 "(%s): failed to allocate the MSI interrupt %d\n",
4073 skd_name(skdev), rc);
4074 goto RETRY_IRQ_LEGACY;
4075 }
4076 pr_info("(%s): MSI irq %d enabled\n",
4077 skd_name(skdev), pdev->irq);
4078 } else {
4079 RETRY_IRQ_LEGACY:
4080 pr_err(
4081 "(%s): failed to enable MSI, re-trying with LEGACY %d\n",
4082 skd_name(skdev), rc);
4083 skdev->irq_type = SKD_IRQ_LEGACY;
4084 goto RETRY_IRQ_TYPE;
4085 }
4086 break;
4087 case SKD_IRQ_LEGACY:
4088 snprintf(skdev->isr_name, sizeof(skdev->isr_name),
4089 "%s%d-legacy", DRV_NAME, skdev->devno);
4090 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
4091 IRQF_SHARED, skdev->isr_name, skdev);
4092 if (!rc)
4093 pr_info("(%s): LEGACY irq %d enabled\n",
4094 skd_name(skdev), pdev->irq);
4095 else
4096 pr_err("(%s): request LEGACY irq error %d\n",
4097 skd_name(skdev), rc);
4098 break;
4099 default:
4100 pr_info("(%s): irq_type %d invalid, re-set to %d\n",
4101 skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT);
4102 skdev->irq_type = SKD_IRQ_LEGACY;
4103 goto RETRY_IRQ_TYPE;
4104 }
4105 return rc;
4106 }
4107
4108 static void skd_release_irq(struct skd_device *skdev)
4109 {
4110 switch (skdev->irq_type) {
4111 case SKD_IRQ_MSIX:
4112 skd_release_msix(skdev);
4113 break;
4114 case SKD_IRQ_MSI:
4115 devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
4116 pci_disable_msi(skdev->pdev);
4117 break;
4118 case SKD_IRQ_LEGACY:
4119 devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
4120 break;
4121 default:
4122 pr_err("(%s): wrong irq type %d!",
4123 skd_name(skdev), skdev->irq_type);
4124 break;
4125 }
4126 }
4127
4128 /*
4129 *****************************************************************************
4130 * CONSTRUCT
4131 *****************************************************************************
4132 */
4133
4134 static int skd_cons_skcomp(struct skd_device *skdev);
4135 static int skd_cons_skmsg(struct skd_device *skdev);
4136 static int skd_cons_skreq(struct skd_device *skdev);
4137 static int skd_cons_skspcl(struct skd_device *skdev);
4138 static int skd_cons_sksb(struct skd_device *skdev);
4139 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
4140 u32 n_sg,
4141 dma_addr_t *ret_dma_addr);
4142 static int skd_cons_disk(struct skd_device *skdev);
4143
4144 #define SKD_N_DEV_TABLE 16u
4145 static u32 skd_next_devno;
4146
4147 static struct skd_device *skd_construct(struct pci_dev *pdev)
4148 {
4149 struct skd_device *skdev;
4150 int blk_major = skd_major;
4151 int rc;
4152
4153 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
4154
4155 if (!skdev) {
4156 pr_err(PFX "(%s): memory alloc failure\n",
4157 pci_name(pdev));
4158 return NULL;
4159 }
4160
4161 skdev->state = SKD_DRVR_STATE_LOAD;
4162 skdev->pdev = pdev;
4163 skdev->devno = skd_next_devno++;
4164 skdev->major = blk_major;
4165 skdev->irq_type = skd_isr_type;
4166 sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
4167 skdev->dev_max_queue_depth = 0;
4168
4169 skdev->num_req_context = skd_max_queue_depth;
4170 skdev->num_fitmsg_context = skd_max_queue_depth;
4171 skdev->n_special = skd_max_pass_thru;
4172 skdev->cur_max_queue_depth = 1;
4173 skdev->queue_low_water_mark = 1;
4174 skdev->proto_ver = 99;
4175 skdev->sgs_per_request = skd_sgs_per_request;
4176 skdev->dbg_level = skd_dbg_level;
4177
4178 atomic_set(&skdev->device_count, 0);
4179
4180 spin_lock_init(&skdev->lock);
4181
4182 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
4183
4184 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4185 rc = skd_cons_skcomp(skdev);
4186 if (rc < 0)
4187 goto err_out;
4188
4189 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4190 rc = skd_cons_skmsg(skdev);
4191 if (rc < 0)
4192 goto err_out;
4193
4194 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4195 rc = skd_cons_skreq(skdev);
4196 if (rc < 0)
4197 goto err_out;
4198
4199 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4200 rc = skd_cons_skspcl(skdev);
4201 if (rc < 0)
4202 goto err_out;
4203
4204 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4205 rc = skd_cons_sksb(skdev);
4206 if (rc < 0)
4207 goto err_out;
4208
4209 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4210 rc = skd_cons_disk(skdev);
4211 if (rc < 0)
4212 goto err_out;
4213
4214 pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
4215 return skdev;
4216
4217 err_out:
4218 pr_debug("%s:%s:%d construct failed\n",
4219 skdev->name, __func__, __LINE__);
4220 skd_destruct(skdev);
4221 return NULL;
4222 }
4223
4224 static int skd_cons_skcomp(struct skd_device *skdev)
4225 {
4226 int rc = 0;
4227 struct fit_completion_entry_v1 *skcomp;
4228 u32 nbytes;
4229
4230 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
4231 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
4232
4233 pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
4234 skdev->name, __func__, __LINE__,
4235 nbytes, SKD_N_COMPLETION_ENTRY);
4236
4237 skcomp = pci_alloc_consistent(skdev->pdev, nbytes,
4238 &skdev->cq_dma_address);
4239
4240 if (skcomp == NULL) {
4241 rc = -ENOMEM;
4242 goto err_out;
4243 }
4244
4245 memset(skcomp, 0, nbytes);
4246
4247 skdev->skcomp_table = skcomp;
4248 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
4249 sizeof(*skcomp) *
4250 SKD_N_COMPLETION_ENTRY);
4251
4252 err_out:
4253 return rc;
4254 }
4255
4256 static int skd_cons_skmsg(struct skd_device *skdev)
4257 {
4258 int rc = 0;
4259 u32 i;
4260
4261 pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
4262 skdev->name, __func__, __LINE__,
4263 sizeof(struct skd_fitmsg_context),
4264 skdev->num_fitmsg_context,
4265 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
4266
4267 skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
4268 *skdev->num_fitmsg_context, GFP_KERNEL);
4269 if (skdev->skmsg_table == NULL) {
4270 rc = -ENOMEM;
4271 goto err_out;
4272 }
4273
4274 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4275 struct skd_fitmsg_context *skmsg;
4276
4277 skmsg = &skdev->skmsg_table[i];
4278
4279 skmsg->id = i + SKD_ID_FIT_MSG;
4280
4281 skmsg->state = SKD_MSG_STATE_IDLE;
4282 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
4283 SKD_N_FITMSG_BYTES + 64,
4284 &skmsg->mb_dma_address);
4285
4286 if (skmsg->msg_buf == NULL) {
4287 rc = -ENOMEM;
4288 goto err_out;
4289 }
4290
4291 skmsg->offset = (u32)((u64)skmsg->msg_buf &
4292 (~FIT_QCMD_BASE_ADDRESS_MASK));
4293 skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
4294 skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
4295 FIT_QCMD_BASE_ADDRESS_MASK);
4296 skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
4297 skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
4298 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
4299
4300 skmsg->next = &skmsg[1];
4301 }
4302
4303 /* Free list is in order starting with the 0th entry. */
4304 skdev->skmsg_table[i - 1].next = NULL;
4305 skdev->skmsg_free_list = skdev->skmsg_table;
4306
4307 err_out:
4308 return rc;
4309 }
4310
4311 static int skd_cons_skreq(struct skd_device *skdev)
4312 {
4313 int rc = 0;
4314 u32 i;
4315
4316 pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
4317 skdev->name, __func__, __LINE__,
4318 sizeof(struct skd_request_context),
4319 skdev->num_req_context,
4320 sizeof(struct skd_request_context) * skdev->num_req_context);
4321
4322 skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
4323 * skdev->num_req_context, GFP_KERNEL);
4324 if (skdev->skreq_table == NULL) {
4325 rc = -ENOMEM;
4326 goto err_out;
4327 }
4328
4329 pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
4330 skdev->name, __func__, __LINE__,
4331 skdev->sgs_per_request, sizeof(struct scatterlist),
4332 skdev->sgs_per_request * sizeof(struct scatterlist));
4333
4334 for (i = 0; i < skdev->num_req_context; i++) {
4335 struct skd_request_context *skreq;
4336
4337 skreq = &skdev->skreq_table[i];
4338
4339 skreq->id = i + SKD_ID_RW_REQUEST;
4340 skreq->state = SKD_REQ_STATE_IDLE;
4341
4342 skreq->sg = kzalloc(sizeof(struct scatterlist) *
4343 skdev->sgs_per_request, GFP_KERNEL);
4344 if (skreq->sg == NULL) {
4345 rc = -ENOMEM;
4346 goto err_out;
4347 }
4348 sg_init_table(skreq->sg, skdev->sgs_per_request);
4349
4350 skreq->sksg_list = skd_cons_sg_list(skdev,
4351 skdev->sgs_per_request,
4352 &skreq->sksg_dma_address);
4353
4354 if (skreq->sksg_list == NULL) {
4355 rc = -ENOMEM;
4356 goto err_out;
4357 }
4358
4359 skreq->next = &skreq[1];
4360 }
4361
4362 /* Free list is in order starting with the 0th entry. */
4363 skdev->skreq_table[i - 1].next = NULL;
4364 skdev->skreq_free_list = skdev->skreq_table;
4365
4366 err_out:
4367 return rc;
4368 }
4369
4370 static int skd_cons_skspcl(struct skd_device *skdev)
4371 {
4372 int rc = 0;
4373 u32 i, nbytes;
4374
4375 pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
4376 skdev->name, __func__, __LINE__,
4377 sizeof(struct skd_special_context),
4378 skdev->n_special,
4379 sizeof(struct skd_special_context) * skdev->n_special);
4380
4381 skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
4382 * skdev->n_special, GFP_KERNEL);
4383 if (skdev->skspcl_table == NULL) {
4384 rc = -ENOMEM;
4385 goto err_out;
4386 }
4387
4388 for (i = 0; i < skdev->n_special; i++) {
4389 struct skd_special_context *skspcl;
4390
4391 skspcl = &skdev->skspcl_table[i];
4392
4393 skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
4394 skspcl->req.state = SKD_REQ_STATE_IDLE;
4395
4396 skspcl->req.next = &skspcl[1].req;
4397
4398 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4399
4400 skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
4401 &skspcl->mb_dma_address);
4402 if (skspcl->msg_buf == NULL) {
4403 rc = -ENOMEM;
4404 goto err_out;
4405 }
4406
4407 memset(skspcl->msg_buf, 0, nbytes);
4408
4409 skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
4410 SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
4411 if (skspcl->req.sg == NULL) {
4412 rc = -ENOMEM;
4413 goto err_out;
4414 }
4415
4416 skspcl->req.sksg_list = skd_cons_sg_list(skdev,
4417 SKD_N_SG_PER_SPECIAL,
4418 &skspcl->req.
4419 sksg_dma_address);
4420 if (skspcl->req.sksg_list == NULL) {
4421 rc = -ENOMEM;
4422 goto err_out;
4423 }
4424 }
4425
4426 /* Free list is in order starting with the 0th entry. */
4427 skdev->skspcl_table[i - 1].req.next = NULL;
4428 skdev->skspcl_free_list = skdev->skspcl_table;
4429
4430 return rc;
4431
4432 err_out:
4433 return rc;
4434 }
4435
4436 static int skd_cons_sksb(struct skd_device *skdev)
4437 {
4438 int rc = 0;
4439 struct skd_special_context *skspcl;
4440 u32 nbytes;
4441
4442 skspcl = &skdev->internal_skspcl;
4443
4444 skspcl->req.id = 0 + SKD_ID_INTERNAL;
4445 skspcl->req.state = SKD_REQ_STATE_IDLE;
4446
4447 nbytes = SKD_N_INTERNAL_BYTES;
4448
4449 skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes,
4450 &skspcl->db_dma_address);
4451 if (skspcl->data_buf == NULL) {
4452 rc = -ENOMEM;
4453 goto err_out;
4454 }
4455
4456 memset(skspcl->data_buf, 0, nbytes);
4457
4458 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4459 skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
4460 &skspcl->mb_dma_address);
4461 if (skspcl->msg_buf == NULL) {
4462 rc = -ENOMEM;
4463 goto err_out;
4464 }
4465
4466 memset(skspcl->msg_buf, 0, nbytes);
4467
4468 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
4469 &skspcl->req.sksg_dma_address);
4470 if (skspcl->req.sksg_list == NULL) {
4471 rc = -ENOMEM;
4472 goto err_out;
4473 }
4474
4475 if (!skd_format_internal_skspcl(skdev)) {
4476 rc = -EINVAL;
4477 goto err_out;
4478 }
4479
4480 err_out:
4481 return rc;
4482 }
4483
4484 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
4485 u32 n_sg,
4486 dma_addr_t *ret_dma_addr)
4487 {
4488 struct fit_sg_descriptor *sg_list;
4489 u32 nbytes;
4490
4491 nbytes = sizeof(*sg_list) * n_sg;
4492
4493 sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
4494
4495 if (sg_list != NULL) {
4496 uint64_t dma_address = *ret_dma_addr;
4497 u32 i;
4498
4499 memset(sg_list, 0, nbytes);
4500
4501 for (i = 0; i < n_sg - 1; i++) {
4502 uint64_t ndp_off;
4503 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
4504
4505 sg_list[i].next_desc_ptr = dma_address + ndp_off;
4506 }
4507 sg_list[i].next_desc_ptr = 0LL;
4508 }
4509
4510 return sg_list;
4511 }
4512
4513 static int skd_cons_disk(struct skd_device *skdev)
4514 {
4515 int rc = 0;
4516 struct gendisk *disk;
4517 struct request_queue *q;
4518 unsigned long flags;
4519
4520 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
4521 if (!disk) {
4522 rc = -ENOMEM;
4523 goto err_out;
4524 }
4525
4526 skdev->disk = disk;
4527 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
4528
4529 disk->major = skdev->major;
4530 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
4531 disk->fops = &skd_blockdev_ops;
4532 disk->private_data = skdev;
4533
4534 q = blk_init_queue(skd_request_fn, &skdev->lock);
4535 if (!q) {
4536 rc = -ENOMEM;
4537 goto err_out;
4538 }
4539
4540 skdev->queue = q;
4541 disk->queue = q;
4542 q->queuedata = skdev;
4543
4544 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
4545 blk_queue_max_segments(q, skdev->sgs_per_request);
4546 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
4547
4548 /* set sysfs ptimal_io_size to 8K */
4549 blk_queue_io_opt(q, 8192);
4550
4551 /* DISCARD Flag initialization. */
4552 q->limits.discard_granularity = 8192;
4553 q->limits.discard_alignment = 0;
4554 q->limits.max_discard_sectors = UINT_MAX >> 9;
4555 q->limits.discard_zeroes_data = 1;
4556 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4557 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4558
4559 spin_lock_irqsave(&skdev->lock, flags);
4560 pr_debug("%s:%s:%d stopping %s queue\n",
4561 skdev->name, __func__, __LINE__, skdev->name);
4562 blk_stop_queue(skdev->queue);
4563 spin_unlock_irqrestore(&skdev->lock, flags);
4564
4565 err_out:
4566 return rc;
4567 }
4568
4569 /*
4570 *****************************************************************************
4571 * DESTRUCT (FREE)
4572 *****************************************************************************
4573 */
4574
4575 static void skd_free_skcomp(struct skd_device *skdev);
4576 static void skd_free_skmsg(struct skd_device *skdev);
4577 static void skd_free_skreq(struct skd_device *skdev);
4578 static void skd_free_skspcl(struct skd_device *skdev);
4579 static void skd_free_sksb(struct skd_device *skdev);
4580 static void skd_free_sg_list(struct skd_device *skdev,
4581 struct fit_sg_descriptor *sg_list,
4582 u32 n_sg, dma_addr_t dma_addr);
4583 static void skd_free_disk(struct skd_device *skdev);
4584
4585 static void skd_destruct(struct skd_device *skdev)
4586 {
4587 if (skdev == NULL)
4588 return;
4589
4590
4591 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4592 skd_free_disk(skdev);
4593
4594 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4595 skd_free_sksb(skdev);
4596
4597 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4598 skd_free_skspcl(skdev);
4599
4600 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4601 skd_free_skreq(skdev);
4602
4603 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4604 skd_free_skmsg(skdev);
4605
4606 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4607 skd_free_skcomp(skdev);
4608
4609 pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
4610 kfree(skdev);
4611 }
4612
4613 static void skd_free_skcomp(struct skd_device *skdev)
4614 {
4615 if (skdev->skcomp_table != NULL) {
4616 u32 nbytes;
4617
4618 nbytes = sizeof(skdev->skcomp_table[0]) *
4619 SKD_N_COMPLETION_ENTRY;
4620 pci_free_consistent(skdev->pdev, nbytes,
4621 skdev->skcomp_table, skdev->cq_dma_address);
4622 }
4623
4624 skdev->skcomp_table = NULL;
4625 skdev->cq_dma_address = 0;
4626 }
4627
4628 static void skd_free_skmsg(struct skd_device *skdev)
4629 {
4630 u32 i;
4631
4632 if (skdev->skmsg_table == NULL)
4633 return;
4634
4635 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4636 struct skd_fitmsg_context *skmsg;
4637
4638 skmsg = &skdev->skmsg_table[i];
4639
4640 if (skmsg->msg_buf != NULL) {
4641 skmsg->msg_buf += skmsg->offset;
4642 skmsg->mb_dma_address += skmsg->offset;
4643 pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
4644 skmsg->msg_buf,
4645 skmsg->mb_dma_address);
4646 }
4647 skmsg->msg_buf = NULL;
4648 skmsg->mb_dma_address = 0;
4649 }
4650
4651 kfree(skdev->skmsg_table);
4652 skdev->skmsg_table = NULL;
4653 }
4654
4655 static void skd_free_skreq(struct skd_device *skdev)
4656 {
4657 u32 i;
4658
4659 if (skdev->skreq_table == NULL)
4660 return;
4661
4662 for (i = 0; i < skdev->num_req_context; i++) {
4663 struct skd_request_context *skreq;
4664
4665 skreq = &skdev->skreq_table[i];
4666
4667 skd_free_sg_list(skdev, skreq->sksg_list,
4668 skdev->sgs_per_request,
4669 skreq->sksg_dma_address);
4670
4671 skreq->sksg_list = NULL;
4672 skreq->sksg_dma_address = 0;
4673
4674 kfree(skreq->sg);
4675 }
4676
4677 kfree(skdev->skreq_table);
4678 skdev->skreq_table = NULL;
4679 }
4680
4681 static void skd_free_skspcl(struct skd_device *skdev)
4682 {
4683 u32 i;
4684 u32 nbytes;
4685
4686 if (skdev->skspcl_table == NULL)
4687 return;
4688
4689 for (i = 0; i < skdev->n_special; i++) {
4690 struct skd_special_context *skspcl;
4691
4692 skspcl = &skdev->skspcl_table[i];
4693
4694 if (skspcl->msg_buf != NULL) {
4695 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4696 pci_free_consistent(skdev->pdev, nbytes,
4697 skspcl->msg_buf,
4698 skspcl->mb_dma_address);
4699 }
4700
4701 skspcl->msg_buf = NULL;
4702 skspcl->mb_dma_address = 0;
4703
4704 skd_free_sg_list(skdev, skspcl->req.sksg_list,
4705 SKD_N_SG_PER_SPECIAL,
4706 skspcl->req.sksg_dma_address);
4707
4708 skspcl->req.sksg_list = NULL;
4709 skspcl->req.sksg_dma_address = 0;
4710
4711 kfree(skspcl->req.sg);
4712 }
4713
4714 kfree(skdev->skspcl_table);
4715 skdev->skspcl_table = NULL;
4716 }
4717
4718 static void skd_free_sksb(struct skd_device *skdev)
4719 {
4720 struct skd_special_context *skspcl;
4721 u32 nbytes;
4722
4723 skspcl = &skdev->internal_skspcl;
4724
4725 if (skspcl->data_buf != NULL) {
4726 nbytes = SKD_N_INTERNAL_BYTES;
4727
4728 pci_free_consistent(skdev->pdev, nbytes,
4729 skspcl->data_buf, skspcl->db_dma_address);
4730 }
4731
4732 skspcl->data_buf = NULL;
4733 skspcl->db_dma_address = 0;
4734
4735 if (skspcl->msg_buf != NULL) {
4736 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4737 pci_free_consistent(skdev->pdev, nbytes,
4738 skspcl->msg_buf, skspcl->mb_dma_address);
4739 }
4740
4741 skspcl->msg_buf = NULL;
4742 skspcl->mb_dma_address = 0;
4743
4744 skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
4745 skspcl->req.sksg_dma_address);
4746
4747 skspcl->req.sksg_list = NULL;
4748 skspcl->req.sksg_dma_address = 0;
4749 }
4750
4751 static void skd_free_sg_list(struct skd_device *skdev,
4752 struct fit_sg_descriptor *sg_list,
4753 u32 n_sg, dma_addr_t dma_addr)
4754 {
4755 if (sg_list != NULL) {
4756 u32 nbytes;
4757
4758 nbytes = sizeof(*sg_list) * n_sg;
4759
4760 pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
4761 }
4762 }
4763
4764 static void skd_free_disk(struct skd_device *skdev)
4765 {
4766 struct gendisk *disk = skdev->disk;
4767
4768 if (disk != NULL) {
4769 struct request_queue *q = disk->queue;
4770
4771 if (disk->flags & GENHD_FL_UP)
4772 del_gendisk(disk);
4773 if (q)
4774 blk_cleanup_queue(q);
4775 put_disk(disk);
4776 }
4777 skdev->disk = NULL;
4778 }
4779
4780
4781
4782 /*
4783 *****************************************************************************
4784 * BLOCK DEVICE (BDEV) GLUE
4785 *****************************************************************************
4786 */
4787
4788 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4789 {
4790 struct skd_device *skdev;
4791 u64 capacity;
4792
4793 skdev = bdev->bd_disk->private_data;
4794
4795 pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
4796 skdev->name, __func__, __LINE__,
4797 bdev->bd_disk->disk_name, current->comm);
4798
4799 if (skdev->read_cap_is_valid) {
4800 capacity = get_capacity(skdev->disk);
4801 geo->heads = 64;
4802 geo->sectors = 255;
4803 geo->cylinders = (capacity) / (255 * 64);
4804
4805 return 0;
4806 }
4807 return -EIO;
4808 }
4809
4810 static int skd_bdev_attach(struct skd_device *skdev)
4811 {
4812 pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
4813 add_disk(skdev->disk);
4814 return 0;
4815 }
4816
4817 static const struct block_device_operations skd_blockdev_ops = {
4818 .owner = THIS_MODULE,
4819 .ioctl = skd_bdev_ioctl,
4820 .getgeo = skd_bdev_getgeo,
4821 };
4822
4823
4824 /*
4825 *****************************************************************************
4826 * PCIe DRIVER GLUE
4827 *****************************************************************************
4828 */
4829
4830 static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = {
4831 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
4832 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
4833 { 0 } /* terminate list */
4834 };
4835
4836 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
4837
4838 static char *skd_pci_info(struct skd_device *skdev, char *str)
4839 {
4840 int pcie_reg;
4841
4842 strcpy(str, "PCIe (");
4843 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
4844
4845 if (pcie_reg) {
4846
4847 char lwstr[6];
4848 uint16_t pcie_lstat, lspeed, lwidth;
4849
4850 pcie_reg += 0x12;
4851 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
4852 lspeed = pcie_lstat & (0xF);
4853 lwidth = (pcie_lstat & 0x3F0) >> 4;
4854
4855 if (lspeed == 1)
4856 strcat(str, "2.5GT/s ");
4857 else if (lspeed == 2)
4858 strcat(str, "5.0GT/s ");
4859 else
4860 strcat(str, "<unknown> ");
4861 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
4862 strcat(str, lwstr);
4863 }
4864 return str;
4865 }
4866
4867 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4868 {
4869 int i;
4870 int rc = 0;
4871 char pci_str[32];
4872 struct skd_device *skdev;
4873
4874 pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
4875 DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
4876 pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
4877 pci_name(pdev), pdev->vendor, pdev->device);
4878
4879 rc = pci_enable_device(pdev);
4880 if (rc)
4881 return rc;
4882 rc = pci_request_regions(pdev, DRV_NAME);
4883 if (rc)
4884 goto err_out;
4885 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4886 if (!rc) {
4887 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4888
4889 pr_err("(%s): consistent DMA mask error %d\n",
4890 pci_name(pdev), rc);
4891 }
4892 } else {
4893 (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
4894 if (rc) {
4895
4896 pr_err("(%s): DMA mask error %d\n",
4897 pci_name(pdev), rc);
4898 goto err_out_regions;
4899 }
4900 }
4901
4902 skdev = skd_construct(pdev);
4903 if (skdev == NULL) {
4904 rc = -ENOMEM;
4905 goto err_out_regions;
4906 }
4907
4908 skd_pci_info(skdev, pci_str);
4909 pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
4910
4911 pci_set_master(pdev);
4912 rc = pci_enable_pcie_error_reporting(pdev);
4913 if (rc) {
4914 pr_err(
4915 "(%s): bad enable of PCIe error reporting rc=%d\n",
4916 skd_name(skdev), rc);
4917 skdev->pcie_error_reporting_is_enabled = 0;
4918 } else
4919 skdev->pcie_error_reporting_is_enabled = 1;
4920
4921
4922 pci_set_drvdata(pdev, skdev);
4923 skdev->pdev = pdev;
4924 skdev->disk->driverfs_dev = &pdev->dev;
4925
4926 for (i = 0; i < SKD_MAX_BARS; i++) {
4927 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4928 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4929 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4930 skdev->mem_size[i]);
4931 if (!skdev->mem_map[i]) {
4932 pr_err("(%s): Unable to map adapter memory!\n",
4933 skd_name(skdev));
4934 rc = -ENODEV;
4935 goto err_out_iounmap;
4936 }
4937 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4938 skdev->name, __func__, __LINE__,
4939 skdev->mem_map[i],
4940 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4941 }
4942
4943 rc = skd_acquire_irq(skdev);
4944 if (rc) {
4945 pr_err("(%s): interrupt resource error %d\n",
4946 skd_name(skdev), rc);
4947 goto err_out_iounmap;
4948 }
4949
4950 rc = skd_start_timer(skdev);
4951 if (rc)
4952 goto err_out_timer;
4953
4954 init_waitqueue_head(&skdev->waitq);
4955
4956 skd_start_device(skdev);
4957
4958 rc = wait_event_interruptible_timeout(skdev->waitq,
4959 (skdev->gendisk_on),
4960 (SKD_START_WAIT_SECONDS * HZ));
4961 if (skdev->gendisk_on > 0) {
4962 /* device came on-line after reset */
4963 skd_bdev_attach(skdev);
4964 rc = 0;
4965 } else {
4966 /* we timed out, something is wrong with the device,
4967 don't add the disk structure */
4968 pr_err(
4969 "(%s): error: waiting for s1120 timed out %d!\n",
4970 skd_name(skdev), rc);
4971 /* in case of no error; we timeout with ENXIO */
4972 if (!rc)
4973 rc = -ENXIO;
4974 goto err_out_timer;
4975 }
4976
4977
4978 #ifdef SKD_VMK_POLL_HANDLER
4979 if (skdev->irq_type == SKD_IRQ_MSIX) {
4980 /* MSIX completion handler is being used for coredump */
4981 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4982 skdev->msix_entries[5].vector,
4983 skd_comp_q, skdev);
4984 } else {
4985 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4986 skdev->pdev->irq, skd_isr,
4987 skdev);
4988 }
4989 #endif /* SKD_VMK_POLL_HANDLER */
4990
4991 return rc;
4992
4993 err_out_timer:
4994 skd_stop_device(skdev);
4995 skd_release_irq(skdev);
4996
4997 err_out_iounmap:
4998 for (i = 0; i < SKD_MAX_BARS; i++)
4999 if (skdev->mem_map[i])
5000 iounmap(skdev->mem_map[i]);
5001
5002 if (skdev->pcie_error_reporting_is_enabled)
5003 pci_disable_pcie_error_reporting(pdev);
5004
5005 skd_destruct(skdev);
5006
5007 err_out_regions:
5008 pci_release_regions(pdev);
5009
5010 err_out:
5011 pci_disable_device(pdev);
5012 pci_set_drvdata(pdev, NULL);
5013 return rc;
5014 }
5015
5016 static void skd_pci_remove(struct pci_dev *pdev)
5017 {
5018 int i;
5019 struct skd_device *skdev;
5020
5021 skdev = pci_get_drvdata(pdev);
5022 if (!skdev) {
5023 pr_err("%s: no device data for PCI\n", pci_name(pdev));
5024 return;
5025 }
5026 skd_stop_device(skdev);
5027 skd_release_irq(skdev);
5028
5029 for (i = 0; i < SKD_MAX_BARS; i++)
5030 if (skdev->mem_map[i])
5031 iounmap((u32 *)skdev->mem_map[i]);
5032
5033 if (skdev->pcie_error_reporting_is_enabled)
5034 pci_disable_pcie_error_reporting(pdev);
5035
5036 skd_destruct(skdev);
5037
5038 pci_release_regions(pdev);
5039 pci_disable_device(pdev);
5040 pci_set_drvdata(pdev, NULL);
5041
5042 return;
5043 }
5044
5045 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
5046 {
5047 int i;
5048 struct skd_device *skdev;
5049
5050 skdev = pci_get_drvdata(pdev);
5051 if (!skdev) {
5052 pr_err("%s: no device data for PCI\n", pci_name(pdev));
5053 return -EIO;
5054 }
5055
5056 skd_stop_device(skdev);
5057
5058 skd_release_irq(skdev);
5059
5060 for (i = 0; i < SKD_MAX_BARS; i++)
5061 if (skdev->mem_map[i])
5062 iounmap((u32 *)skdev->mem_map[i]);
5063
5064 if (skdev->pcie_error_reporting_is_enabled)
5065 pci_disable_pcie_error_reporting(pdev);
5066
5067 pci_release_regions(pdev);
5068 pci_save_state(pdev);
5069 pci_disable_device(pdev);
5070 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5071 return 0;
5072 }
5073
5074 static int skd_pci_resume(struct pci_dev *pdev)
5075 {
5076 int i;
5077 int rc = 0;
5078 struct skd_device *skdev;
5079
5080 skdev = pci_get_drvdata(pdev);
5081 if (!skdev) {
5082 pr_err("%s: no device data for PCI\n", pci_name(pdev));
5083 return -1;
5084 }
5085
5086 pci_set_power_state(pdev, PCI_D0);
5087 pci_enable_wake(pdev, PCI_D0, 0);
5088 pci_restore_state(pdev);
5089
5090 rc = pci_enable_device(pdev);
5091 if (rc)
5092 return rc;
5093 rc = pci_request_regions(pdev, DRV_NAME);
5094 if (rc)
5095 goto err_out;
5096 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
5097 if (!rc) {
5098 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
5099
5100 pr_err("(%s): consistent DMA mask error %d\n",
5101 pci_name(pdev), rc);
5102 }
5103 } else {
5104 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5105 if (rc) {
5106
5107 pr_err("(%s): DMA mask error %d\n",
5108 pci_name(pdev), rc);
5109 goto err_out_regions;
5110 }
5111 }
5112
5113 pci_set_master(pdev);
5114 rc = pci_enable_pcie_error_reporting(pdev);
5115 if (rc) {
5116 pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
5117 skdev->name, rc);
5118 skdev->pcie_error_reporting_is_enabled = 0;
5119 } else
5120 skdev->pcie_error_reporting_is_enabled = 1;
5121
5122 for (i = 0; i < SKD_MAX_BARS; i++) {
5123
5124 skdev->mem_phys[i] = pci_resource_start(pdev, i);
5125 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
5126 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
5127 skdev->mem_size[i]);
5128 if (!skdev->mem_map[i]) {
5129 pr_err("(%s): Unable to map adapter memory!\n",
5130 skd_name(skdev));
5131 rc = -ENODEV;
5132 goto err_out_iounmap;
5133 }
5134 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
5135 skdev->name, __func__, __LINE__,
5136 skdev->mem_map[i],
5137 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
5138 }
5139 rc = skd_acquire_irq(skdev);
5140 if (rc) {
5141
5142 pr_err("(%s): interrupt resource error %d\n",
5143 pci_name(pdev), rc);
5144 goto err_out_iounmap;
5145 }
5146
5147 rc = skd_start_timer(skdev);
5148 if (rc)
5149 goto err_out_timer;
5150
5151 init_waitqueue_head(&skdev->waitq);
5152
5153 skd_start_device(skdev);
5154
5155 return rc;
5156
5157 err_out_timer:
5158 skd_stop_device(skdev);
5159 skd_release_irq(skdev);
5160
5161 err_out_iounmap:
5162 for (i = 0; i < SKD_MAX_BARS; i++)
5163 if (skdev->mem_map[i])
5164 iounmap(skdev->mem_map[i]);
5165
5166 if (skdev->pcie_error_reporting_is_enabled)
5167 pci_disable_pcie_error_reporting(pdev);
5168
5169 err_out_regions:
5170 pci_release_regions(pdev);
5171
5172 err_out:
5173 pci_disable_device(pdev);
5174 return rc;
5175 }
5176
5177 static void skd_pci_shutdown(struct pci_dev *pdev)
5178 {
5179 struct skd_device *skdev;
5180
5181 pr_err("skd_pci_shutdown called\n");
5182
5183 skdev = pci_get_drvdata(pdev);
5184 if (!skdev) {
5185 pr_err("%s: no device data for PCI\n", pci_name(pdev));
5186 return;
5187 }
5188
5189 pr_err("%s: calling stop\n", skd_name(skdev));
5190 skd_stop_device(skdev);
5191 }
5192
5193 static struct pci_driver skd_driver = {
5194 .name = DRV_NAME,
5195 .id_table = skd_pci_tbl,
5196 .probe = skd_pci_probe,
5197 .remove = skd_pci_remove,
5198 .suspend = skd_pci_suspend,
5199 .resume = skd_pci_resume,
5200 .shutdown = skd_pci_shutdown,
5201 };
5202
5203 /*
5204 *****************************************************************************
5205 * LOGGING SUPPORT
5206 *****************************************************************************
5207 */
5208
5209 static const char *skd_name(struct skd_device *skdev)
5210 {
5211 memset(skdev->id_str, 0, sizeof(skdev->id_str));
5212
5213 if (skdev->inquiry_is_valid)
5214 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
5215 skdev->name, skdev->inq_serial_num,
5216 pci_name(skdev->pdev));
5217 else
5218 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
5219 skdev->name, pci_name(skdev->pdev));
5220
5221 return skdev->id_str;
5222 }
5223
5224 const char *skd_drive_state_to_str(int state)
5225 {
5226 switch (state) {
5227 case FIT_SR_DRIVE_OFFLINE:
5228 return "OFFLINE";
5229 case FIT_SR_DRIVE_INIT:
5230 return "INIT";
5231 case FIT_SR_DRIVE_ONLINE:
5232 return "ONLINE";
5233 case FIT_SR_DRIVE_BUSY:
5234 return "BUSY";
5235 case FIT_SR_DRIVE_FAULT:
5236 return "FAULT";
5237 case FIT_SR_DRIVE_DEGRADED:
5238 return "DEGRADED";
5239 case FIT_SR_PCIE_LINK_DOWN:
5240 return "INK_DOWN";
5241 case FIT_SR_DRIVE_SOFT_RESET:
5242 return "SOFT_RESET";
5243 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
5244 return "NEED_FW";
5245 case FIT_SR_DRIVE_INIT_FAULT:
5246 return "INIT_FAULT";
5247 case FIT_SR_DRIVE_BUSY_SANITIZE:
5248 return "BUSY_SANITIZE";
5249 case FIT_SR_DRIVE_BUSY_ERASE:
5250 return "BUSY_ERASE";
5251 case FIT_SR_DRIVE_FW_BOOTING:
5252 return "FW_BOOTING";
5253 default:
5254 return "???";
5255 }
5256 }
5257
5258 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
5259 {
5260 switch (state) {
5261 case SKD_DRVR_STATE_LOAD:
5262 return "LOAD";
5263 case SKD_DRVR_STATE_IDLE:
5264 return "IDLE";
5265 case SKD_DRVR_STATE_BUSY:
5266 return "BUSY";
5267 case SKD_DRVR_STATE_STARTING:
5268 return "STARTING";
5269 case SKD_DRVR_STATE_ONLINE:
5270 return "ONLINE";
5271 case SKD_DRVR_STATE_PAUSING:
5272 return "PAUSING";
5273 case SKD_DRVR_STATE_PAUSED:
5274 return "PAUSED";
5275 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
5276 return "DRAINING_TIMEOUT";
5277 case SKD_DRVR_STATE_RESTARTING:
5278 return "RESTARTING";
5279 case SKD_DRVR_STATE_RESUMING:
5280 return "RESUMING";
5281 case SKD_DRVR_STATE_STOPPING:
5282 return "STOPPING";
5283 case SKD_DRVR_STATE_SYNCING:
5284 return "SYNCING";
5285 case SKD_DRVR_STATE_FAULT:
5286 return "FAULT";
5287 case SKD_DRVR_STATE_DISAPPEARED:
5288 return "DISAPPEARED";
5289 case SKD_DRVR_STATE_BUSY_ERASE:
5290 return "BUSY_ERASE";
5291 case SKD_DRVR_STATE_BUSY_SANITIZE:
5292 return "BUSY_SANITIZE";
5293 case SKD_DRVR_STATE_BUSY_IMMINENT:
5294 return "BUSY_IMMINENT";
5295 case SKD_DRVR_STATE_WAIT_BOOT:
5296 return "WAIT_BOOT";
5297
5298 default:
5299 return "???";
5300 }
5301 }
5302
5303 const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
5304 {
5305 switch (state) {
5306 case SKD_MSG_STATE_IDLE:
5307 return "IDLE";
5308 case SKD_MSG_STATE_BUSY:
5309 return "BUSY";
5310 default:
5311 return "???";
5312 }
5313 }
5314
5315 const char *skd_skreq_state_to_str(enum skd_req_state state)
5316 {
5317 switch (state) {
5318 case SKD_REQ_STATE_IDLE:
5319 return "IDLE";
5320 case SKD_REQ_STATE_SETUP:
5321 return "SETUP";
5322 case SKD_REQ_STATE_BUSY:
5323 return "BUSY";
5324 case SKD_REQ_STATE_COMPLETED:
5325 return "COMPLETED";
5326 case SKD_REQ_STATE_TIMEOUT:
5327 return "TIMEOUT";
5328 case SKD_REQ_STATE_ABORTED:
5329 return "ABORTED";
5330 default:
5331 return "???";
5332 }
5333 }
5334
5335 static void skd_log_skdev(struct skd_device *skdev, const char *event)
5336 {
5337 pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
5338 skdev->name, __func__, __LINE__, skdev->name, skdev, event);
5339 pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
5340 skdev->name, __func__, __LINE__,
5341 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
5342 skd_skdev_state_to_str(skdev->state), skdev->state);
5343 pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
5344 skdev->name, __func__, __LINE__,
5345 skdev->in_flight, skdev->cur_max_queue_depth,
5346 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
5347 pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
5348 skdev->name, __func__, __LINE__,
5349 skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
5350 }
5351
5352 static void skd_log_skmsg(struct skd_device *skdev,
5353 struct skd_fitmsg_context *skmsg, const char *event)
5354 {
5355 pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
5356 skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
5357 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
5358 skdev->name, __func__, __LINE__,
5359 skd_skmsg_state_to_str(skmsg->state), skmsg->state,
5360 skmsg->id, skmsg->length);
5361 }
5362
5363 static void skd_log_skreq(struct skd_device *skdev,
5364 struct skd_request_context *skreq, const char *event)
5365 {
5366 pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
5367 skdev->name, __func__, __LINE__, skdev->name, skreq, event);
5368 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
5369 skdev->name, __func__, __LINE__,
5370 skd_skreq_state_to_str(skreq->state), skreq->state,
5371 skreq->id, skreq->fitmsg_id);
5372 pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
5373 skdev->name, __func__, __LINE__,
5374 skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
5375
5376 if (skreq->req != NULL) {
5377 struct request *req = skreq->req;
5378 u32 lba = (u32)blk_rq_pos(req);
5379 u32 count = blk_rq_sectors(req);
5380
5381 pr_debug("%s:%s:%d "
5382 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
5383 skdev->name, __func__, __LINE__,
5384 req, lba, lba, count, count,
5385 (int)rq_data_dir(req));
5386 } else
5387 pr_debug("%s:%s:%d req=NULL\n",
5388 skdev->name, __func__, __LINE__);
5389 }
5390
5391 /*
5392 *****************************************************************************
5393 * MODULE GLUE
5394 *****************************************************************************
5395 */
5396
5397 static int __init skd_init(void)
5398 {
5399 int rc = 0;
5400
5401 pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
5402
5403 switch (skd_isr_type) {
5404 case SKD_IRQ_LEGACY:
5405 case SKD_IRQ_MSI:
5406 case SKD_IRQ_MSIX:
5407 break;
5408 default:
5409 pr_info("skd_isr_type %d invalid, re-set to %d\n",
5410 skd_isr_type, SKD_IRQ_DEFAULT);
5411 skd_isr_type = SKD_IRQ_DEFAULT;
5412 }
5413
5414 if (skd_max_queue_depth < 1
5415 || skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
5416 pr_info(
5417 "skd_max_queue_depth %d invalid, re-set to %d\n",
5418 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
5419 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
5420 }
5421
5422 if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
5423 pr_info(
5424 "skd_max_req_per_msg %d invalid, re-set to %d\n",
5425 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
5426 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
5427 }
5428
5429 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
5430 pr_info(
5431 "skd_sg_per_request %d invalid, re-set to %d\n",
5432 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
5433 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
5434 }
5435
5436 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
5437 pr_info("skd_dbg_level %d invalid, re-set to %d\n",
5438 skd_dbg_level, 0);
5439 skd_dbg_level = 0;
5440 }
5441
5442 if (skd_isr_comp_limit < 0) {
5443 pr_info("skd_isr_comp_limit %d invalid, set to %d\n",
5444 skd_isr_comp_limit, 0);
5445 skd_isr_comp_limit = 0;
5446 }
5447
5448 if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
5449 pr_info("skd_max_pass_thru %d invalid, re-set to %d\n",
5450 skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
5451 skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
5452 }
5453
5454 /* Obtain major device number. */
5455 rc = register_blkdev(0, DRV_NAME);
5456 if (rc < 0)
5457 return rc;
5458
5459 skd_major = rc;
5460
5461 return pci_register_driver(&skd_driver);
5462 }
5463
5464 static void __exit skd_exit(void)
5465 {
5466 pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
5467
5468 unregister_blkdev(skd_major, DRV_NAME);
5469 pci_unregister_driver(&skd_driver);
5470 }
5471
5472 module_init(skd_init);
5473 module_exit(skd_exit);