]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/skd_main.c
Merge remote-tracking branches 'asoc/topic/dwc', 'asoc/topic/fallthrough', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / block / skd_main.c
1 /*
2 * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3 * was acquired by Western Digital in 2012.
4 *
5 * Copyright 2012 sTec, Inc.
6 * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7 *
8 * This file is part of the Linux kernel, and is made available under
9 * the terms of the GNU General Public License version 2.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <linux/slab_def.h>
36 #include <scsi/scsi.h>
37 #include <scsi/sg.h>
38 #include <linux/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/unaligned.h>
41
42 #include "skd_s1120.h"
43
44 static int skd_dbg_level;
45 static int skd_isr_comp_limit = 4;
46
47 #define SKD_ASSERT(expr) \
48 do { \
49 if (unlikely(!(expr))) { \
50 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
51 # expr, __FILE__, __func__, __LINE__); \
52 } \
53 } while (0)
54
55 #define DRV_NAME "skd"
56 #define PFX DRV_NAME ": "
57
58 MODULE_LICENSE("GPL");
59
60 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
61
62 #define PCI_VENDOR_ID_STEC 0x1B39
63 #define PCI_DEVICE_ID_S1120 0x0001
64
65 #define SKD_FUA_NV (1 << 1)
66 #define SKD_MINORS_PER_DEVICE 16
67
68 #define SKD_MAX_QUEUE_DEPTH 200u
69
70 #define SKD_PAUSE_TIMEOUT (5 * 1000)
71
72 #define SKD_N_FITMSG_BYTES (512u)
73 #define SKD_MAX_REQ_PER_MSG 14
74
75 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
76
77 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
78 * 128KB limit. That allows 4096*4K = 16M xfer size
79 */
80 #define SKD_N_SG_PER_REQ_DEFAULT 256u
81
82 #define SKD_N_COMPLETION_ENTRY 256u
83 #define SKD_N_READ_CAP_BYTES (8u)
84
85 #define SKD_N_INTERNAL_BYTES (512u)
86
87 #define SKD_SKCOMP_SIZE \
88 ((sizeof(struct fit_completion_entry_v1) + \
89 sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
90
91 /* 5 bits of uniqifier, 0xF800 */
92 #define SKD_ID_TABLE_MASK (3u << 8u)
93 #define SKD_ID_RW_REQUEST (0u << 8u)
94 #define SKD_ID_INTERNAL (1u << 8u)
95 #define SKD_ID_FIT_MSG (3u << 8u)
96 #define SKD_ID_SLOT_MASK 0x00FFu
97 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
98
99 #define SKD_N_MAX_SECTORS 2048u
100
101 #define SKD_MAX_RETRIES 2u
102
103 #define SKD_TIMER_SECONDS(seconds) (seconds)
104 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
105
106 #define INQ_STD_NBYTES 36
107
108 enum skd_drvr_state {
109 SKD_DRVR_STATE_LOAD,
110 SKD_DRVR_STATE_IDLE,
111 SKD_DRVR_STATE_BUSY,
112 SKD_DRVR_STATE_STARTING,
113 SKD_DRVR_STATE_ONLINE,
114 SKD_DRVR_STATE_PAUSING,
115 SKD_DRVR_STATE_PAUSED,
116 SKD_DRVR_STATE_RESTARTING,
117 SKD_DRVR_STATE_RESUMING,
118 SKD_DRVR_STATE_STOPPING,
119 SKD_DRVR_STATE_FAULT,
120 SKD_DRVR_STATE_DISAPPEARED,
121 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
122 SKD_DRVR_STATE_BUSY_ERASE,
123 SKD_DRVR_STATE_BUSY_SANITIZE,
124 SKD_DRVR_STATE_BUSY_IMMINENT,
125 SKD_DRVR_STATE_WAIT_BOOT,
126 SKD_DRVR_STATE_SYNCING,
127 };
128
129 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
130 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
131 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
132 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
133 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
134 #define SKD_START_WAIT_SECONDS 90u
135
136 enum skd_req_state {
137 SKD_REQ_STATE_IDLE,
138 SKD_REQ_STATE_SETUP,
139 SKD_REQ_STATE_BUSY,
140 SKD_REQ_STATE_COMPLETED,
141 SKD_REQ_STATE_TIMEOUT,
142 };
143
144 enum skd_check_status_action {
145 SKD_CHECK_STATUS_REPORT_GOOD,
146 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
147 SKD_CHECK_STATUS_REQUEUE_REQUEST,
148 SKD_CHECK_STATUS_REPORT_ERROR,
149 SKD_CHECK_STATUS_BUSY_IMMINENT,
150 };
151
152 struct skd_msg_buf {
153 struct fit_msg_hdr fmh;
154 struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
155 };
156
157 struct skd_fitmsg_context {
158 u32 id;
159
160 u32 length;
161
162 struct skd_msg_buf *msg_buf;
163 dma_addr_t mb_dma_address;
164 };
165
166 struct skd_request_context {
167 enum skd_req_state state;
168
169 u16 id;
170 u32 fitmsg_id;
171
172 u8 flush_cmd;
173
174 enum dma_data_direction data_dir;
175 struct scatterlist *sg;
176 u32 n_sg;
177 u32 sg_byte_count;
178
179 struct fit_sg_descriptor *sksg_list;
180 dma_addr_t sksg_dma_address;
181
182 struct fit_completion_entry_v1 completion;
183
184 struct fit_comp_error_info err_info;
185
186 blk_status_t status;
187 };
188
189 struct skd_special_context {
190 struct skd_request_context req;
191
192 void *data_buf;
193 dma_addr_t db_dma_address;
194
195 struct skd_msg_buf *msg_buf;
196 dma_addr_t mb_dma_address;
197 };
198
199 typedef enum skd_irq_type {
200 SKD_IRQ_LEGACY,
201 SKD_IRQ_MSI,
202 SKD_IRQ_MSIX
203 } skd_irq_type_t;
204
205 #define SKD_MAX_BARS 2
206
207 struct skd_device {
208 void __iomem *mem_map[SKD_MAX_BARS];
209 resource_size_t mem_phys[SKD_MAX_BARS];
210 u32 mem_size[SKD_MAX_BARS];
211
212 struct skd_msix_entry *msix_entries;
213
214 struct pci_dev *pdev;
215 int pcie_error_reporting_is_enabled;
216
217 spinlock_t lock;
218 struct gendisk *disk;
219 struct blk_mq_tag_set tag_set;
220 struct request_queue *queue;
221 struct skd_fitmsg_context *skmsg;
222 struct device *class_dev;
223 int gendisk_on;
224 int sync_done;
225
226 u32 devno;
227 u32 major;
228 char isr_name[30];
229
230 enum skd_drvr_state state;
231 u32 drive_state;
232
233 u32 cur_max_queue_depth;
234 u32 queue_low_water_mark;
235 u32 dev_max_queue_depth;
236
237 u32 num_fitmsg_context;
238 u32 num_req_context;
239
240 struct skd_fitmsg_context *skmsg_table;
241
242 struct skd_special_context internal_skspcl;
243 u32 read_cap_blocksize;
244 u32 read_cap_last_lba;
245 int read_cap_is_valid;
246 int inquiry_is_valid;
247 u8 inq_serial_num[13]; /*12 chars plus null term */
248
249 u8 skcomp_cycle;
250 u32 skcomp_ix;
251 struct kmem_cache *msgbuf_cache;
252 struct kmem_cache *sglist_cache;
253 struct kmem_cache *databuf_cache;
254 struct fit_completion_entry_v1 *skcomp_table;
255 struct fit_comp_error_info *skerr_table;
256 dma_addr_t cq_dma_address;
257
258 wait_queue_head_t waitq;
259
260 struct timer_list timer;
261 u32 timer_countdown;
262 u32 timer_substate;
263
264 int sgs_per_request;
265 u32 last_mtd;
266
267 u32 proto_ver;
268
269 int dbg_level;
270 u32 connect_time_stamp;
271 int connect_retries;
272 #define SKD_MAX_CONNECT_RETRIES 16
273 u32 drive_jiffies;
274
275 u32 timo_slot;
276
277 struct work_struct start_queue;
278 struct work_struct completion_worker;
279 };
280
281 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
282 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
283 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
284
285 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
286 {
287 u32 val = readl(skdev->mem_map[1] + offset);
288
289 if (unlikely(skdev->dbg_level >= 2))
290 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
291 return val;
292 }
293
294 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
295 u32 offset)
296 {
297 writel(val, skdev->mem_map[1] + offset);
298 if (unlikely(skdev->dbg_level >= 2))
299 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
300 }
301
302 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
303 u32 offset)
304 {
305 writeq(val, skdev->mem_map[1] + offset);
306 if (unlikely(skdev->dbg_level >= 2))
307 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
308 val);
309 }
310
311
312 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
313 static int skd_isr_type = SKD_IRQ_DEFAULT;
314
315 module_param(skd_isr_type, int, 0444);
316 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
317 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
318
319 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
320 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
321
322 module_param(skd_max_req_per_msg, int, 0444);
323 MODULE_PARM_DESC(skd_max_req_per_msg,
324 "Maximum SCSI requests packed in a single message."
325 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
326
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
328 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
329 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
330
331 module_param(skd_max_queue_depth, int, 0444);
332 MODULE_PARM_DESC(skd_max_queue_depth,
333 "Maximum SCSI requests issued to s1120."
334 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
335
336 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
337 module_param(skd_sgs_per_request, int, 0444);
338 MODULE_PARM_DESC(skd_sgs_per_request,
339 "Maximum SG elements per block request."
340 " (1-4096, default==256)");
341
342 static int skd_max_pass_thru = 1;
343 module_param(skd_max_pass_thru, int, 0444);
344 MODULE_PARM_DESC(skd_max_pass_thru,
345 "Maximum SCSI pass-thru at a time. IGNORED");
346
347 module_param(skd_dbg_level, int, 0444);
348 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
349
350 module_param(skd_isr_comp_limit, int, 0444);
351 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
352
353 /* Major device number dynamically assigned. */
354 static u32 skd_major;
355
356 static void skd_destruct(struct skd_device *skdev);
357 static const struct block_device_operations skd_blockdev_ops;
358 static void skd_send_fitmsg(struct skd_device *skdev,
359 struct skd_fitmsg_context *skmsg);
360 static void skd_send_special_fitmsg(struct skd_device *skdev,
361 struct skd_special_context *skspcl);
362 static bool skd_preop_sg_list(struct skd_device *skdev,
363 struct skd_request_context *skreq);
364 static void skd_postop_sg_list(struct skd_device *skdev,
365 struct skd_request_context *skreq);
366
367 static void skd_restart_device(struct skd_device *skdev);
368 static int skd_quiesce_dev(struct skd_device *skdev);
369 static int skd_unquiesce_dev(struct skd_device *skdev);
370 static void skd_disable_interrupts(struct skd_device *skdev);
371 static void skd_isr_fwstate(struct skd_device *skdev);
372 static void skd_recover_requests(struct skd_device *skdev);
373 static void skd_soft_reset(struct skd_device *skdev);
374
375 const char *skd_drive_state_to_str(int state);
376 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
377 static void skd_log_skdev(struct skd_device *skdev, const char *event);
378 static void skd_log_skreq(struct skd_device *skdev,
379 struct skd_request_context *skreq, const char *event);
380
381 /*
382 *****************************************************************************
383 * READ/WRITE REQUESTS
384 *****************************************************************************
385 */
386 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
387 {
388 int *count = data;
389
390 count++;
391 }
392
393 static int skd_in_flight(struct skd_device *skdev)
394 {
395 int count = 0;
396
397 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
398
399 return count;
400 }
401
402 static void
403 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
404 int data_dir, unsigned lba,
405 unsigned count)
406 {
407 if (data_dir == READ)
408 scsi_req->cdb[0] = READ_10;
409 else
410 scsi_req->cdb[0] = WRITE_10;
411
412 scsi_req->cdb[1] = 0;
413 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
414 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
415 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
416 scsi_req->cdb[5] = (lba & 0xff);
417 scsi_req->cdb[6] = 0;
418 scsi_req->cdb[7] = (count & 0xff00) >> 8;
419 scsi_req->cdb[8] = count & 0xff;
420 scsi_req->cdb[9] = 0;
421 }
422
423 static void
424 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
425 struct skd_request_context *skreq)
426 {
427 skreq->flush_cmd = 1;
428
429 scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
430 scsi_req->cdb[1] = 0;
431 scsi_req->cdb[2] = 0;
432 scsi_req->cdb[3] = 0;
433 scsi_req->cdb[4] = 0;
434 scsi_req->cdb[5] = 0;
435 scsi_req->cdb[6] = 0;
436 scsi_req->cdb[7] = 0;
437 scsi_req->cdb[8] = 0;
438 scsi_req->cdb[9] = 0;
439 }
440
441 /*
442 * Return true if and only if all pending requests should be failed.
443 */
444 static bool skd_fail_all(struct request_queue *q)
445 {
446 struct skd_device *skdev = q->queuedata;
447
448 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
449
450 skd_log_skdev(skdev, "req_not_online");
451 switch (skdev->state) {
452 case SKD_DRVR_STATE_PAUSING:
453 case SKD_DRVR_STATE_PAUSED:
454 case SKD_DRVR_STATE_STARTING:
455 case SKD_DRVR_STATE_RESTARTING:
456 case SKD_DRVR_STATE_WAIT_BOOT:
457 /* In case of starting, we haven't started the queue,
458 * so we can't get here... but requests are
459 * possibly hanging out waiting for us because we
460 * reported the dev/skd0 already. They'll wait
461 * forever if connect doesn't complete.
462 * What to do??? delay dev/skd0 ??
463 */
464 case SKD_DRVR_STATE_BUSY:
465 case SKD_DRVR_STATE_BUSY_IMMINENT:
466 case SKD_DRVR_STATE_BUSY_ERASE:
467 return false;
468
469 case SKD_DRVR_STATE_BUSY_SANITIZE:
470 case SKD_DRVR_STATE_STOPPING:
471 case SKD_DRVR_STATE_SYNCING:
472 case SKD_DRVR_STATE_FAULT:
473 case SKD_DRVR_STATE_DISAPPEARED:
474 default:
475 return true;
476 }
477 }
478
479 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
480 const struct blk_mq_queue_data *mqd)
481 {
482 struct request *const req = mqd->rq;
483 struct request_queue *const q = req->q;
484 struct skd_device *skdev = q->queuedata;
485 struct skd_fitmsg_context *skmsg;
486 struct fit_msg_hdr *fmh;
487 const u32 tag = blk_mq_unique_tag(req);
488 struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
489 struct skd_scsi_request *scsi_req;
490 unsigned long flags = 0;
491 const u32 lba = blk_rq_pos(req);
492 const u32 count = blk_rq_sectors(req);
493 const int data_dir = rq_data_dir(req);
494
495 if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
496 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
497
498 blk_mq_start_request(req);
499
500 WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
501 tag, skd_max_queue_depth, q->nr_requests);
502
503 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
504
505 dev_dbg(&skdev->pdev->dev,
506 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
507 lba, count, count, data_dir);
508
509 skreq->id = tag + SKD_ID_RW_REQUEST;
510 skreq->flush_cmd = 0;
511 skreq->n_sg = 0;
512 skreq->sg_byte_count = 0;
513
514 skreq->fitmsg_id = 0;
515
516 skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
517
518 if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
519 dev_dbg(&skdev->pdev->dev, "error Out\n");
520 skreq->status = BLK_STS_RESOURCE;
521 blk_mq_complete_request(req);
522 return BLK_STS_OK;
523 }
524
525 dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
526 skreq->n_sg *
527 sizeof(struct fit_sg_descriptor),
528 DMA_TO_DEVICE);
529
530 /* Either a FIT msg is in progress or we have to start one. */
531 if (skd_max_req_per_msg == 1) {
532 skmsg = NULL;
533 } else {
534 spin_lock_irqsave(&skdev->lock, flags);
535 skmsg = skdev->skmsg;
536 }
537 if (!skmsg) {
538 skmsg = &skdev->skmsg_table[tag];
539 skdev->skmsg = skmsg;
540
541 /* Initialize the FIT msg header */
542 fmh = &skmsg->msg_buf->fmh;
543 memset(fmh, 0, sizeof(*fmh));
544 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
545 skmsg->length = sizeof(*fmh);
546 } else {
547 fmh = &skmsg->msg_buf->fmh;
548 }
549
550 skreq->fitmsg_id = skmsg->id;
551
552 scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
553 memset(scsi_req, 0, sizeof(*scsi_req));
554
555 scsi_req->hdr.tag = skreq->id;
556 scsi_req->hdr.sg_list_dma_address =
557 cpu_to_be64(skreq->sksg_dma_address);
558
559 if (req_op(req) == REQ_OP_FLUSH) {
560 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
561 SKD_ASSERT(skreq->flush_cmd == 1);
562 } else {
563 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
564 }
565
566 if (req->cmd_flags & REQ_FUA)
567 scsi_req->cdb[1] |= SKD_FUA_NV;
568
569 scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
570
571 /* Complete resource allocations. */
572 skreq->state = SKD_REQ_STATE_BUSY;
573
574 skmsg->length += sizeof(struct skd_scsi_request);
575 fmh->num_protocol_cmds_coalesced++;
576
577 dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
578 skd_in_flight(skdev));
579
580 /*
581 * If the FIT msg buffer is full send it.
582 */
583 if (skd_max_req_per_msg == 1) {
584 skd_send_fitmsg(skdev, skmsg);
585 } else {
586 if (mqd->last ||
587 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
588 skd_send_fitmsg(skdev, skmsg);
589 skdev->skmsg = NULL;
590 }
591 spin_unlock_irqrestore(&skdev->lock, flags);
592 }
593
594 return BLK_STS_OK;
595 }
596
597 static enum blk_eh_timer_return skd_timed_out(struct request *req,
598 bool reserved)
599 {
600 struct skd_device *skdev = req->q->queuedata;
601
602 dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
603 blk_mq_unique_tag(req));
604
605 return BLK_EH_RESET_TIMER;
606 }
607
608 static void skd_complete_rq(struct request *req)
609 {
610 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
611
612 blk_mq_end_request(req, skreq->status);
613 }
614
615 static bool skd_preop_sg_list(struct skd_device *skdev,
616 struct skd_request_context *skreq)
617 {
618 struct request *req = blk_mq_rq_from_pdu(skreq);
619 struct scatterlist *sgl = &skreq->sg[0], *sg;
620 int n_sg;
621 int i;
622
623 skreq->sg_byte_count = 0;
624
625 WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
626 skreq->data_dir != DMA_FROM_DEVICE);
627
628 n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
629 if (n_sg <= 0)
630 return false;
631
632 /*
633 * Map scatterlist to PCI bus addresses.
634 * Note PCI might change the number of entries.
635 */
636 n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
637 if (n_sg <= 0)
638 return false;
639
640 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
641
642 skreq->n_sg = n_sg;
643
644 for_each_sg(sgl, sg, n_sg, i) {
645 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
646 u32 cnt = sg_dma_len(sg);
647 uint64_t dma_addr = sg_dma_address(sg);
648
649 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
650 sgd->byte_count = cnt;
651 skreq->sg_byte_count += cnt;
652 sgd->host_side_addr = dma_addr;
653 sgd->dev_side_addr = 0;
654 }
655
656 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
657 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
658
659 if (unlikely(skdev->dbg_level > 1)) {
660 dev_dbg(&skdev->pdev->dev,
661 "skreq=%x sksg_list=%p sksg_dma=%llx\n",
662 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
663 for (i = 0; i < n_sg; i++) {
664 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
665
666 dev_dbg(&skdev->pdev->dev,
667 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
668 i, sgd->byte_count, sgd->control,
669 sgd->host_side_addr, sgd->next_desc_ptr);
670 }
671 }
672
673 return true;
674 }
675
676 static void skd_postop_sg_list(struct skd_device *skdev,
677 struct skd_request_context *skreq)
678 {
679 /*
680 * restore the next ptr for next IO request so we
681 * don't have to set it every time.
682 */
683 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
684 skreq->sksg_dma_address +
685 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
686 pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
687 }
688
689 /*
690 *****************************************************************************
691 * TIMER
692 *****************************************************************************
693 */
694
695 static void skd_timer_tick_not_online(struct skd_device *skdev);
696
697 static void skd_start_queue(struct work_struct *work)
698 {
699 struct skd_device *skdev = container_of(work, typeof(*skdev),
700 start_queue);
701
702 /*
703 * Although it is safe to call blk_start_queue() from interrupt
704 * context, blk_mq_start_hw_queues() must not be called from
705 * interrupt context.
706 */
707 blk_mq_start_hw_queues(skdev->queue);
708 }
709
710 static void skd_timer_tick(ulong arg)
711 {
712 struct skd_device *skdev = (struct skd_device *)arg;
713 unsigned long reqflags;
714 u32 state;
715
716 if (skdev->state == SKD_DRVR_STATE_FAULT)
717 /* The driver has declared fault, and we want it to
718 * stay that way until driver is reloaded.
719 */
720 return;
721
722 spin_lock_irqsave(&skdev->lock, reqflags);
723
724 state = SKD_READL(skdev, FIT_STATUS);
725 state &= FIT_SR_DRIVE_STATE_MASK;
726 if (state != skdev->drive_state)
727 skd_isr_fwstate(skdev);
728
729 if (skdev->state != SKD_DRVR_STATE_ONLINE)
730 skd_timer_tick_not_online(skdev);
731
732 mod_timer(&skdev->timer, (jiffies + HZ));
733
734 spin_unlock_irqrestore(&skdev->lock, reqflags);
735 }
736
737 static void skd_timer_tick_not_online(struct skd_device *skdev)
738 {
739 switch (skdev->state) {
740 case SKD_DRVR_STATE_IDLE:
741 case SKD_DRVR_STATE_LOAD:
742 break;
743 case SKD_DRVR_STATE_BUSY_SANITIZE:
744 dev_dbg(&skdev->pdev->dev,
745 "drive busy sanitize[%x], driver[%x]\n",
746 skdev->drive_state, skdev->state);
747 /* If we've been in sanitize for 3 seconds, we figure we're not
748 * going to get anymore completions, so recover requests now
749 */
750 if (skdev->timer_countdown > 0) {
751 skdev->timer_countdown--;
752 return;
753 }
754 skd_recover_requests(skdev);
755 break;
756
757 case SKD_DRVR_STATE_BUSY:
758 case SKD_DRVR_STATE_BUSY_IMMINENT:
759 case SKD_DRVR_STATE_BUSY_ERASE:
760 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
761 skdev->state, skdev->timer_countdown);
762 if (skdev->timer_countdown > 0) {
763 skdev->timer_countdown--;
764 return;
765 }
766 dev_dbg(&skdev->pdev->dev,
767 "busy[%x], timedout=%d, restarting device.",
768 skdev->state, skdev->timer_countdown);
769 skd_restart_device(skdev);
770 break;
771
772 case SKD_DRVR_STATE_WAIT_BOOT:
773 case SKD_DRVR_STATE_STARTING:
774 if (skdev->timer_countdown > 0) {
775 skdev->timer_countdown--;
776 return;
777 }
778 /* For now, we fault the drive. Could attempt resets to
779 * revcover at some point. */
780 skdev->state = SKD_DRVR_STATE_FAULT;
781
782 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
783 skdev->drive_state);
784
785 /*start the queue so we can respond with error to requests */
786 /* wakeup anyone waiting for startup complete */
787 schedule_work(&skdev->start_queue);
788 skdev->gendisk_on = -1;
789 wake_up_interruptible(&skdev->waitq);
790 break;
791
792 case SKD_DRVR_STATE_ONLINE:
793 /* shouldn't get here. */
794 break;
795
796 case SKD_DRVR_STATE_PAUSING:
797 case SKD_DRVR_STATE_PAUSED:
798 break;
799
800 case SKD_DRVR_STATE_RESTARTING:
801 if (skdev->timer_countdown > 0) {
802 skdev->timer_countdown--;
803 return;
804 }
805 /* For now, we fault the drive. Could attempt resets to
806 * revcover at some point. */
807 skdev->state = SKD_DRVR_STATE_FAULT;
808 dev_err(&skdev->pdev->dev,
809 "DriveFault Reconnect Timeout (%x)\n",
810 skdev->drive_state);
811
812 /*
813 * Recovering does two things:
814 * 1. completes IO with error
815 * 2. reclaims dma resources
816 * When is it safe to recover requests?
817 * - if the drive state is faulted
818 * - if the state is still soft reset after out timeout
819 * - if the drive registers are dead (state = FF)
820 * If it is "unsafe", we still need to recover, so we will
821 * disable pci bus mastering and disable our interrupts.
822 */
823
824 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
825 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
826 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
827 /* It never came out of soft reset. Try to
828 * recover the requests and then let them
829 * fail. This is to mitigate hung processes. */
830 skd_recover_requests(skdev);
831 else {
832 dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
833 skdev->drive_state);
834 pci_disable_device(skdev->pdev);
835 skd_disable_interrupts(skdev);
836 skd_recover_requests(skdev);
837 }
838
839 /*start the queue so we can respond with error to requests */
840 /* wakeup anyone waiting for startup complete */
841 schedule_work(&skdev->start_queue);
842 skdev->gendisk_on = -1;
843 wake_up_interruptible(&skdev->waitq);
844 break;
845
846 case SKD_DRVR_STATE_RESUMING:
847 case SKD_DRVR_STATE_STOPPING:
848 case SKD_DRVR_STATE_SYNCING:
849 case SKD_DRVR_STATE_FAULT:
850 case SKD_DRVR_STATE_DISAPPEARED:
851 default:
852 break;
853 }
854 }
855
856 static int skd_start_timer(struct skd_device *skdev)
857 {
858 int rc;
859
860 setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
861
862 rc = mod_timer(&skdev->timer, (jiffies + HZ));
863 if (rc)
864 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
865 return rc;
866 }
867
868 static void skd_kill_timer(struct skd_device *skdev)
869 {
870 del_timer_sync(&skdev->timer);
871 }
872
873 /*
874 *****************************************************************************
875 * INTERNAL REQUESTS -- generated by driver itself
876 *****************************************************************************
877 */
878
879 static int skd_format_internal_skspcl(struct skd_device *skdev)
880 {
881 struct skd_special_context *skspcl = &skdev->internal_skspcl;
882 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
883 struct fit_msg_hdr *fmh;
884 uint64_t dma_address;
885 struct skd_scsi_request *scsi;
886
887 fmh = &skspcl->msg_buf->fmh;
888 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
889 fmh->num_protocol_cmds_coalesced = 1;
890
891 scsi = &skspcl->msg_buf->scsi[0];
892 memset(scsi, 0, sizeof(*scsi));
893 dma_address = skspcl->req.sksg_dma_address;
894 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
895 skspcl->req.n_sg = 1;
896 sgd->control = FIT_SGD_CONTROL_LAST;
897 sgd->byte_count = 0;
898 sgd->host_side_addr = skspcl->db_dma_address;
899 sgd->dev_side_addr = 0;
900 sgd->next_desc_ptr = 0LL;
901
902 return 1;
903 }
904
905 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
906
907 static void skd_send_internal_skspcl(struct skd_device *skdev,
908 struct skd_special_context *skspcl,
909 u8 opcode)
910 {
911 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
912 struct skd_scsi_request *scsi;
913 unsigned char *buf = skspcl->data_buf;
914 int i;
915
916 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
917 /*
918 * A refresh is already in progress.
919 * Just wait for it to finish.
920 */
921 return;
922
923 skspcl->req.state = SKD_REQ_STATE_BUSY;
924
925 scsi = &skspcl->msg_buf->scsi[0];
926 scsi->hdr.tag = skspcl->req.id;
927
928 memset(scsi->cdb, 0, sizeof(scsi->cdb));
929
930 switch (opcode) {
931 case TEST_UNIT_READY:
932 scsi->cdb[0] = TEST_UNIT_READY;
933 sgd->byte_count = 0;
934 scsi->hdr.sg_list_len_bytes = 0;
935 break;
936
937 case READ_CAPACITY:
938 scsi->cdb[0] = READ_CAPACITY;
939 sgd->byte_count = SKD_N_READ_CAP_BYTES;
940 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
941 break;
942
943 case INQUIRY:
944 scsi->cdb[0] = INQUIRY;
945 scsi->cdb[1] = 0x01; /* evpd */
946 scsi->cdb[2] = 0x80; /* serial number page */
947 scsi->cdb[4] = 0x10;
948 sgd->byte_count = 16;
949 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
950 break;
951
952 case SYNCHRONIZE_CACHE:
953 scsi->cdb[0] = SYNCHRONIZE_CACHE;
954 sgd->byte_count = 0;
955 scsi->hdr.sg_list_len_bytes = 0;
956 break;
957
958 case WRITE_BUFFER:
959 scsi->cdb[0] = WRITE_BUFFER;
960 scsi->cdb[1] = 0x02;
961 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
962 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
963 sgd->byte_count = WR_BUF_SIZE;
964 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
965 /* fill incrementing byte pattern */
966 for (i = 0; i < sgd->byte_count; i++)
967 buf[i] = i & 0xFF;
968 break;
969
970 case READ_BUFFER:
971 scsi->cdb[0] = READ_BUFFER;
972 scsi->cdb[1] = 0x02;
973 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
974 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
975 sgd->byte_count = WR_BUF_SIZE;
976 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
977 memset(skspcl->data_buf, 0, sgd->byte_count);
978 break;
979
980 default:
981 SKD_ASSERT("Don't know what to send");
982 return;
983
984 }
985 skd_send_special_fitmsg(skdev, skspcl);
986 }
987
988 static void skd_refresh_device_data(struct skd_device *skdev)
989 {
990 struct skd_special_context *skspcl = &skdev->internal_skspcl;
991
992 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
993 }
994
995 static int skd_chk_read_buf(struct skd_device *skdev,
996 struct skd_special_context *skspcl)
997 {
998 unsigned char *buf = skspcl->data_buf;
999 int i;
1000
1001 /* check for incrementing byte pattern */
1002 for (i = 0; i < WR_BUF_SIZE; i++)
1003 if (buf[i] != (i & 0xFF))
1004 return 1;
1005
1006 return 0;
1007 }
1008
1009 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1010 u8 code, u8 qual, u8 fruc)
1011 {
1012 /* If the check condition is of special interest, log a message */
1013 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1014 && (code == 0x04) && (qual == 0x06)) {
1015 dev_err(&skdev->pdev->dev,
1016 "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1017 key, code, qual, fruc);
1018 }
1019 }
1020
1021 static void skd_complete_internal(struct skd_device *skdev,
1022 struct fit_completion_entry_v1 *skcomp,
1023 struct fit_comp_error_info *skerr,
1024 struct skd_special_context *skspcl)
1025 {
1026 u8 *buf = skspcl->data_buf;
1027 u8 status;
1028 int i;
1029 struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1030
1031 lockdep_assert_held(&skdev->lock);
1032
1033 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1034
1035 dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1036
1037 dma_sync_single_for_cpu(&skdev->pdev->dev,
1038 skspcl->db_dma_address,
1039 skspcl->req.sksg_list[0].byte_count,
1040 DMA_BIDIRECTIONAL);
1041
1042 skspcl->req.completion = *skcomp;
1043 skspcl->req.state = SKD_REQ_STATE_IDLE;
1044
1045 status = skspcl->req.completion.status;
1046
1047 skd_log_check_status(skdev, status, skerr->key, skerr->code,
1048 skerr->qual, skerr->fruc);
1049
1050 switch (scsi->cdb[0]) {
1051 case TEST_UNIT_READY:
1052 if (status == SAM_STAT_GOOD)
1053 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1054 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1055 (skerr->key == MEDIUM_ERROR))
1056 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1057 else {
1058 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1059 dev_dbg(&skdev->pdev->dev,
1060 "TUR failed, don't send anymore state 0x%x\n",
1061 skdev->state);
1062 return;
1063 }
1064 dev_dbg(&skdev->pdev->dev,
1065 "**** TUR failed, retry skerr\n");
1066 skd_send_internal_skspcl(skdev, skspcl,
1067 TEST_UNIT_READY);
1068 }
1069 break;
1070
1071 case WRITE_BUFFER:
1072 if (status == SAM_STAT_GOOD)
1073 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1074 else {
1075 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1076 dev_dbg(&skdev->pdev->dev,
1077 "write buffer failed, don't send anymore state 0x%x\n",
1078 skdev->state);
1079 return;
1080 }
1081 dev_dbg(&skdev->pdev->dev,
1082 "**** write buffer failed, retry skerr\n");
1083 skd_send_internal_skspcl(skdev, skspcl,
1084 TEST_UNIT_READY);
1085 }
1086 break;
1087
1088 case READ_BUFFER:
1089 if (status == SAM_STAT_GOOD) {
1090 if (skd_chk_read_buf(skdev, skspcl) == 0)
1091 skd_send_internal_skspcl(skdev, skspcl,
1092 READ_CAPACITY);
1093 else {
1094 dev_err(&skdev->pdev->dev,
1095 "*** W/R Buffer mismatch %d ***\n",
1096 skdev->connect_retries);
1097 if (skdev->connect_retries <
1098 SKD_MAX_CONNECT_RETRIES) {
1099 skdev->connect_retries++;
1100 skd_soft_reset(skdev);
1101 } else {
1102 dev_err(&skdev->pdev->dev,
1103 "W/R Buffer Connect Error\n");
1104 return;
1105 }
1106 }
1107
1108 } else {
1109 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1110 dev_dbg(&skdev->pdev->dev,
1111 "read buffer failed, don't send anymore state 0x%x\n",
1112 skdev->state);
1113 return;
1114 }
1115 dev_dbg(&skdev->pdev->dev,
1116 "**** read buffer failed, retry skerr\n");
1117 skd_send_internal_skspcl(skdev, skspcl,
1118 TEST_UNIT_READY);
1119 }
1120 break;
1121
1122 case READ_CAPACITY:
1123 skdev->read_cap_is_valid = 0;
1124 if (status == SAM_STAT_GOOD) {
1125 skdev->read_cap_last_lba =
1126 (buf[0] << 24) | (buf[1] << 16) |
1127 (buf[2] << 8) | buf[3];
1128 skdev->read_cap_blocksize =
1129 (buf[4] << 24) | (buf[5] << 16) |
1130 (buf[6] << 8) | buf[7];
1131
1132 dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1133 skdev->read_cap_last_lba,
1134 skdev->read_cap_blocksize);
1135
1136 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1137
1138 skdev->read_cap_is_valid = 1;
1139
1140 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1141 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1142 (skerr->key == MEDIUM_ERROR)) {
1143 skdev->read_cap_last_lba = ~0;
1144 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1145 dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1146 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1147 } else {
1148 dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1149 skd_send_internal_skspcl(skdev, skspcl,
1150 TEST_UNIT_READY);
1151 }
1152 break;
1153
1154 case INQUIRY:
1155 skdev->inquiry_is_valid = 0;
1156 if (status == SAM_STAT_GOOD) {
1157 skdev->inquiry_is_valid = 1;
1158
1159 for (i = 0; i < 12; i++)
1160 skdev->inq_serial_num[i] = buf[i + 4];
1161 skdev->inq_serial_num[12] = 0;
1162 }
1163
1164 if (skd_unquiesce_dev(skdev) < 0)
1165 dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1166 /* connection is complete */
1167 skdev->connect_retries = 0;
1168 break;
1169
1170 case SYNCHRONIZE_CACHE:
1171 if (status == SAM_STAT_GOOD)
1172 skdev->sync_done = 1;
1173 else
1174 skdev->sync_done = -1;
1175 wake_up_interruptible(&skdev->waitq);
1176 break;
1177
1178 default:
1179 SKD_ASSERT("we didn't send this");
1180 }
1181 }
1182
1183 /*
1184 *****************************************************************************
1185 * FIT MESSAGES
1186 *****************************************************************************
1187 */
1188
1189 static void skd_send_fitmsg(struct skd_device *skdev,
1190 struct skd_fitmsg_context *skmsg)
1191 {
1192 u64 qcmd;
1193
1194 dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1195 skmsg->mb_dma_address, skd_in_flight(skdev));
1196 dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1197
1198 qcmd = skmsg->mb_dma_address;
1199 qcmd |= FIT_QCMD_QID_NORMAL;
1200
1201 if (unlikely(skdev->dbg_level > 1)) {
1202 u8 *bp = (u8 *)skmsg->msg_buf;
1203 int i;
1204 for (i = 0; i < skmsg->length; i += 8) {
1205 dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1206 &bp[i]);
1207 if (i == 0)
1208 i = 64 - 8;
1209 }
1210 }
1211
1212 if (skmsg->length > 256)
1213 qcmd |= FIT_QCMD_MSGSIZE_512;
1214 else if (skmsg->length > 128)
1215 qcmd |= FIT_QCMD_MSGSIZE_256;
1216 else if (skmsg->length > 64)
1217 qcmd |= FIT_QCMD_MSGSIZE_128;
1218 else
1219 /*
1220 * This makes no sense because the FIT msg header is
1221 * 64 bytes. If the msg is only 64 bytes long it has
1222 * no payload.
1223 */
1224 qcmd |= FIT_QCMD_MSGSIZE_64;
1225
1226 dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1227 skmsg->length, DMA_TO_DEVICE);
1228
1229 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1230 smp_wmb();
1231
1232 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1233 }
1234
1235 static void skd_send_special_fitmsg(struct skd_device *skdev,
1236 struct skd_special_context *skspcl)
1237 {
1238 u64 qcmd;
1239
1240 WARN_ON_ONCE(skspcl->req.n_sg != 1);
1241
1242 if (unlikely(skdev->dbg_level > 1)) {
1243 u8 *bp = (u8 *)skspcl->msg_buf;
1244 int i;
1245
1246 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1247 dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1248 &bp[i]);
1249 if (i == 0)
1250 i = 64 - 8;
1251 }
1252
1253 dev_dbg(&skdev->pdev->dev,
1254 "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1255 skspcl, skspcl->req.id, skspcl->req.sksg_list,
1256 skspcl->req.sksg_dma_address);
1257 for (i = 0; i < skspcl->req.n_sg; i++) {
1258 struct fit_sg_descriptor *sgd =
1259 &skspcl->req.sksg_list[i];
1260
1261 dev_dbg(&skdev->pdev->dev,
1262 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1263 i, sgd->byte_count, sgd->control,
1264 sgd->host_side_addr, sgd->next_desc_ptr);
1265 }
1266 }
1267
1268 /*
1269 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1270 * and one 64-byte SSDI command.
1271 */
1272 qcmd = skspcl->mb_dma_address;
1273 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1274
1275 dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1276 SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1277 dma_sync_single_for_device(&skdev->pdev->dev,
1278 skspcl->req.sksg_dma_address,
1279 1 * sizeof(struct fit_sg_descriptor),
1280 DMA_TO_DEVICE);
1281 dma_sync_single_for_device(&skdev->pdev->dev,
1282 skspcl->db_dma_address,
1283 skspcl->req.sksg_list[0].byte_count,
1284 DMA_BIDIRECTIONAL);
1285
1286 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1287 smp_wmb();
1288
1289 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1290 }
1291
1292 /*
1293 *****************************************************************************
1294 * COMPLETION QUEUE
1295 *****************************************************************************
1296 */
1297
1298 static void skd_complete_other(struct skd_device *skdev,
1299 struct fit_completion_entry_v1 *skcomp,
1300 struct fit_comp_error_info *skerr);
1301
1302 struct sns_info {
1303 u8 type;
1304 u8 stat;
1305 u8 key;
1306 u8 asc;
1307 u8 ascq;
1308 u8 mask;
1309 enum skd_check_status_action action;
1310 };
1311
1312 static struct sns_info skd_chkstat_table[] = {
1313 /* Good */
1314 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
1315 SKD_CHECK_STATUS_REPORT_GOOD },
1316
1317 /* Smart alerts */
1318 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
1319 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1320 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
1321 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1322 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
1323 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1324
1325 /* Retry (with limits) */
1326 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
1327 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1328 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
1329 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1330 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
1331 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
1333 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1334
1335 /* Busy (or about to be) */
1336 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
1337 SKD_CHECK_STATUS_BUSY_IMMINENT },
1338 };
1339
1340 /*
1341 * Look up status and sense data to decide how to handle the error
1342 * from the device.
1343 * mask says which fields must match e.g., mask=0x18 means check
1344 * type and stat, ignore key, asc, ascq.
1345 */
1346
1347 static enum skd_check_status_action
1348 skd_check_status(struct skd_device *skdev,
1349 u8 cmp_status, struct fit_comp_error_info *skerr)
1350 {
1351 int i;
1352
1353 dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1354 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1355
1356 dev_dbg(&skdev->pdev->dev,
1357 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1358 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1359 skerr->fruc);
1360
1361 /* Does the info match an entry in the good category? */
1362 for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1363 struct sns_info *sns = &skd_chkstat_table[i];
1364
1365 if (sns->mask & 0x10)
1366 if (skerr->type != sns->type)
1367 continue;
1368
1369 if (sns->mask & 0x08)
1370 if (cmp_status != sns->stat)
1371 continue;
1372
1373 if (sns->mask & 0x04)
1374 if (skerr->key != sns->key)
1375 continue;
1376
1377 if (sns->mask & 0x02)
1378 if (skerr->code != sns->asc)
1379 continue;
1380
1381 if (sns->mask & 0x01)
1382 if (skerr->qual != sns->ascq)
1383 continue;
1384
1385 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1386 dev_err(&skdev->pdev->dev,
1387 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1388 skerr->key, skerr->code, skerr->qual);
1389 }
1390 return sns->action;
1391 }
1392
1393 /* No other match, so nonzero status means error,
1394 * zero status means good
1395 */
1396 if (cmp_status) {
1397 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1398 return SKD_CHECK_STATUS_REPORT_ERROR;
1399 }
1400
1401 dev_dbg(&skdev->pdev->dev, "status check good default\n");
1402 return SKD_CHECK_STATUS_REPORT_GOOD;
1403 }
1404
1405 static void skd_resolve_req_exception(struct skd_device *skdev,
1406 struct skd_request_context *skreq,
1407 struct request *req)
1408 {
1409 u8 cmp_status = skreq->completion.status;
1410
1411 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1412 case SKD_CHECK_STATUS_REPORT_GOOD:
1413 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1414 skreq->status = BLK_STS_OK;
1415 blk_mq_complete_request(req);
1416 break;
1417
1418 case SKD_CHECK_STATUS_BUSY_IMMINENT:
1419 skd_log_skreq(skdev, skreq, "retry(busy)");
1420 blk_requeue_request(skdev->queue, req);
1421 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1422 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1423 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1424 skd_quiesce_dev(skdev);
1425 break;
1426
1427 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1428 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1429 skd_log_skreq(skdev, skreq, "retry");
1430 blk_requeue_request(skdev->queue, req);
1431 break;
1432 }
1433 /* fall through */
1434
1435 case SKD_CHECK_STATUS_REPORT_ERROR:
1436 default:
1437 skreq->status = BLK_STS_IOERR;
1438 blk_mq_complete_request(req);
1439 break;
1440 }
1441 }
1442
1443 static void skd_release_skreq(struct skd_device *skdev,
1444 struct skd_request_context *skreq)
1445 {
1446 /*
1447 * Reclaim the skd_request_context
1448 */
1449 skreq->state = SKD_REQ_STATE_IDLE;
1450 }
1451
1452 static int skd_isr_completion_posted(struct skd_device *skdev,
1453 int limit, int *enqueued)
1454 {
1455 struct fit_completion_entry_v1 *skcmp;
1456 struct fit_comp_error_info *skerr;
1457 u16 req_id;
1458 u32 tag;
1459 u16 hwq = 0;
1460 struct request *rq;
1461 struct skd_request_context *skreq;
1462 u16 cmp_cntxt;
1463 u8 cmp_status;
1464 u8 cmp_cycle;
1465 u32 cmp_bytes;
1466 int rc = 0;
1467 int processed = 0;
1468
1469 lockdep_assert_held(&skdev->lock);
1470
1471 for (;; ) {
1472 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1473
1474 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1475 cmp_cycle = skcmp->cycle;
1476 cmp_cntxt = skcmp->tag;
1477 cmp_status = skcmp->status;
1478 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1479
1480 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1481
1482 dev_dbg(&skdev->pdev->dev,
1483 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1484 skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1485 cmp_cntxt, cmp_status, skd_in_flight(skdev),
1486 cmp_bytes, skdev->proto_ver);
1487
1488 if (cmp_cycle != skdev->skcomp_cycle) {
1489 dev_dbg(&skdev->pdev->dev, "end of completions\n");
1490 break;
1491 }
1492 /*
1493 * Update the completion queue head index and possibly
1494 * the completion cycle count. 8-bit wrap-around.
1495 */
1496 skdev->skcomp_ix++;
1497 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1498 skdev->skcomp_ix = 0;
1499 skdev->skcomp_cycle++;
1500 }
1501
1502 /*
1503 * The command context is a unique 32-bit ID. The low order
1504 * bits help locate the request. The request is usually a
1505 * r/w request (see skd_start() above) or a special request.
1506 */
1507 req_id = cmp_cntxt;
1508 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1509
1510 /* Is this other than a r/w request? */
1511 if (tag >= skdev->num_req_context) {
1512 /*
1513 * This is not a completion for a r/w request.
1514 */
1515 WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1516 tag));
1517 skd_complete_other(skdev, skcmp, skerr);
1518 continue;
1519 }
1520
1521 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1522 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1523 tag))
1524 continue;
1525 skreq = blk_mq_rq_to_pdu(rq);
1526
1527 /*
1528 * Make sure the request ID for the slot matches.
1529 */
1530 if (skreq->id != req_id) {
1531 dev_err(&skdev->pdev->dev,
1532 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1533 req_id, skreq->id, cmp_cntxt);
1534
1535 continue;
1536 }
1537
1538 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1539
1540 skreq->completion = *skcmp;
1541 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1542 skreq->err_info = *skerr;
1543 skd_log_check_status(skdev, cmp_status, skerr->key,
1544 skerr->code, skerr->qual,
1545 skerr->fruc);
1546 }
1547 /* Release DMA resources for the request. */
1548 if (skreq->n_sg > 0)
1549 skd_postop_sg_list(skdev, skreq);
1550
1551 skd_release_skreq(skdev, skreq);
1552
1553 /*
1554 * Capture the outcome and post it back to the native request.
1555 */
1556 if (likely(cmp_status == SAM_STAT_GOOD)) {
1557 skreq->status = BLK_STS_OK;
1558 blk_mq_complete_request(rq);
1559 } else {
1560 skd_resolve_req_exception(skdev, skreq, rq);
1561 }
1562
1563 /* skd_isr_comp_limit equal zero means no limit */
1564 if (limit) {
1565 if (++processed >= limit) {
1566 rc = 1;
1567 break;
1568 }
1569 }
1570 }
1571
1572 if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1573 skd_in_flight(skdev) == 0) {
1574 skdev->state = SKD_DRVR_STATE_PAUSED;
1575 wake_up_interruptible(&skdev->waitq);
1576 }
1577
1578 return rc;
1579 }
1580
1581 static void skd_complete_other(struct skd_device *skdev,
1582 struct fit_completion_entry_v1 *skcomp,
1583 struct fit_comp_error_info *skerr)
1584 {
1585 u32 req_id = 0;
1586 u32 req_table;
1587 u32 req_slot;
1588 struct skd_special_context *skspcl;
1589
1590 lockdep_assert_held(&skdev->lock);
1591
1592 req_id = skcomp->tag;
1593 req_table = req_id & SKD_ID_TABLE_MASK;
1594 req_slot = req_id & SKD_ID_SLOT_MASK;
1595
1596 dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1597 req_id, req_slot);
1598
1599 /*
1600 * Based on the request id, determine how to dispatch this completion.
1601 * This swich/case is finding the good cases and forwarding the
1602 * completion entry. Errors are reported below the switch.
1603 */
1604 switch (req_table) {
1605 case SKD_ID_RW_REQUEST:
1606 /*
1607 * The caller, skd_isr_completion_posted() above,
1608 * handles r/w requests. The only way we get here
1609 * is if the req_slot is out of bounds.
1610 */
1611 break;
1612
1613 case SKD_ID_INTERNAL:
1614 if (req_slot == 0) {
1615 skspcl = &skdev->internal_skspcl;
1616 if (skspcl->req.id == req_id &&
1617 skspcl->req.state == SKD_REQ_STATE_BUSY) {
1618 skd_complete_internal(skdev,
1619 skcomp, skerr, skspcl);
1620 return;
1621 }
1622 }
1623 break;
1624
1625 case SKD_ID_FIT_MSG:
1626 /*
1627 * These id's should never appear in a completion record.
1628 */
1629 break;
1630
1631 default:
1632 /*
1633 * These id's should never appear anywhere;
1634 */
1635 break;
1636 }
1637
1638 /*
1639 * If we get here it is a bad or stale id.
1640 */
1641 }
1642
1643 static void skd_reset_skcomp(struct skd_device *skdev)
1644 {
1645 memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1646
1647 skdev->skcomp_ix = 0;
1648 skdev->skcomp_cycle = 1;
1649 }
1650
1651 /*
1652 *****************************************************************************
1653 * INTERRUPTS
1654 *****************************************************************************
1655 */
1656 static void skd_completion_worker(struct work_struct *work)
1657 {
1658 struct skd_device *skdev =
1659 container_of(work, struct skd_device, completion_worker);
1660 unsigned long flags;
1661 int flush_enqueued = 0;
1662
1663 spin_lock_irqsave(&skdev->lock, flags);
1664
1665 /*
1666 * pass in limit=0, which means no limit..
1667 * process everything in compq
1668 */
1669 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1670 schedule_work(&skdev->start_queue);
1671
1672 spin_unlock_irqrestore(&skdev->lock, flags);
1673 }
1674
1675 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1676
1677 static irqreturn_t
1678 skd_isr(int irq, void *ptr)
1679 {
1680 struct skd_device *skdev = ptr;
1681 u32 intstat;
1682 u32 ack;
1683 int rc = 0;
1684 int deferred = 0;
1685 int flush_enqueued = 0;
1686
1687 spin_lock(&skdev->lock);
1688
1689 for (;; ) {
1690 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1691
1692 ack = FIT_INT_DEF_MASK;
1693 ack &= intstat;
1694
1695 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1696 ack);
1697
1698 /* As long as there is an int pending on device, keep
1699 * running loop. When none, get out, but if we've never
1700 * done any processing, call completion handler?
1701 */
1702 if (ack == 0) {
1703 /* No interrupts on device, but run the completion
1704 * processor anyway?
1705 */
1706 if (rc == 0)
1707 if (likely (skdev->state
1708 == SKD_DRVR_STATE_ONLINE))
1709 deferred = 1;
1710 break;
1711 }
1712
1713 rc = IRQ_HANDLED;
1714
1715 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1716
1717 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1718 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1719 if (intstat & FIT_ISH_COMPLETION_POSTED) {
1720 /*
1721 * If we have already deferred completion
1722 * processing, don't bother running it again
1723 */
1724 if (deferred == 0)
1725 deferred =
1726 skd_isr_completion_posted(skdev,
1727 skd_isr_comp_limit, &flush_enqueued);
1728 }
1729
1730 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1731 skd_isr_fwstate(skdev);
1732 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1733 skdev->state ==
1734 SKD_DRVR_STATE_DISAPPEARED) {
1735 spin_unlock(&skdev->lock);
1736 return rc;
1737 }
1738 }
1739
1740 if (intstat & FIT_ISH_MSG_FROM_DEV)
1741 skd_isr_msg_from_dev(skdev);
1742 }
1743 }
1744
1745 if (unlikely(flush_enqueued))
1746 schedule_work(&skdev->start_queue);
1747
1748 if (deferred)
1749 schedule_work(&skdev->completion_worker);
1750 else if (!flush_enqueued)
1751 schedule_work(&skdev->start_queue);
1752
1753 spin_unlock(&skdev->lock);
1754
1755 return rc;
1756 }
1757
1758 static void skd_drive_fault(struct skd_device *skdev)
1759 {
1760 skdev->state = SKD_DRVR_STATE_FAULT;
1761 dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1762 }
1763
1764 static void skd_drive_disappeared(struct skd_device *skdev)
1765 {
1766 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1767 dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1768 }
1769
1770 static void skd_isr_fwstate(struct skd_device *skdev)
1771 {
1772 u32 sense;
1773 u32 state;
1774 u32 mtd;
1775 int prev_driver_state = skdev->state;
1776
1777 sense = SKD_READL(skdev, FIT_STATUS);
1778 state = sense & FIT_SR_DRIVE_STATE_MASK;
1779
1780 dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1781 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1782 skd_drive_state_to_str(state), state);
1783
1784 skdev->drive_state = state;
1785
1786 switch (skdev->drive_state) {
1787 case FIT_SR_DRIVE_INIT:
1788 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1789 skd_disable_interrupts(skdev);
1790 break;
1791 }
1792 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1793 skd_recover_requests(skdev);
1794 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1795 skdev->timer_countdown = SKD_STARTING_TIMO;
1796 skdev->state = SKD_DRVR_STATE_STARTING;
1797 skd_soft_reset(skdev);
1798 break;
1799 }
1800 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1801 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1802 skdev->last_mtd = mtd;
1803 break;
1804
1805 case FIT_SR_DRIVE_ONLINE:
1806 skdev->cur_max_queue_depth = skd_max_queue_depth;
1807 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1808 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1809
1810 skdev->queue_low_water_mark =
1811 skdev->cur_max_queue_depth * 2 / 3 + 1;
1812 if (skdev->queue_low_water_mark < 1)
1813 skdev->queue_low_water_mark = 1;
1814 dev_info(&skdev->pdev->dev,
1815 "Queue depth limit=%d dev=%d lowat=%d\n",
1816 skdev->cur_max_queue_depth,
1817 skdev->dev_max_queue_depth,
1818 skdev->queue_low_water_mark);
1819
1820 skd_refresh_device_data(skdev);
1821 break;
1822
1823 case FIT_SR_DRIVE_BUSY:
1824 skdev->state = SKD_DRVR_STATE_BUSY;
1825 skdev->timer_countdown = SKD_BUSY_TIMO;
1826 skd_quiesce_dev(skdev);
1827 break;
1828 case FIT_SR_DRIVE_BUSY_SANITIZE:
1829 /* set timer for 3 seconds, we'll abort any unfinished
1830 * commands after that expires
1831 */
1832 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1833 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1834 schedule_work(&skdev->start_queue);
1835 break;
1836 case FIT_SR_DRIVE_BUSY_ERASE:
1837 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1838 skdev->timer_countdown = SKD_BUSY_TIMO;
1839 break;
1840 case FIT_SR_DRIVE_OFFLINE:
1841 skdev->state = SKD_DRVR_STATE_IDLE;
1842 break;
1843 case FIT_SR_DRIVE_SOFT_RESET:
1844 switch (skdev->state) {
1845 case SKD_DRVR_STATE_STARTING:
1846 case SKD_DRVR_STATE_RESTARTING:
1847 /* Expected by a caller of skd_soft_reset() */
1848 break;
1849 default:
1850 skdev->state = SKD_DRVR_STATE_RESTARTING;
1851 break;
1852 }
1853 break;
1854 case FIT_SR_DRIVE_FW_BOOTING:
1855 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1856 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1857 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1858 break;
1859
1860 case FIT_SR_DRIVE_DEGRADED:
1861 case FIT_SR_PCIE_LINK_DOWN:
1862 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1863 break;
1864
1865 case FIT_SR_DRIVE_FAULT:
1866 skd_drive_fault(skdev);
1867 skd_recover_requests(skdev);
1868 schedule_work(&skdev->start_queue);
1869 break;
1870
1871 /* PCIe bus returned all Fs? */
1872 case 0xFF:
1873 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1874 sense);
1875 skd_drive_disappeared(skdev);
1876 skd_recover_requests(skdev);
1877 schedule_work(&skdev->start_queue);
1878 break;
1879 default:
1880 /*
1881 * Uknown FW State. Wait for a state we recognize.
1882 */
1883 break;
1884 }
1885 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1886 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1887 skd_skdev_state_to_str(skdev->state), skdev->state);
1888 }
1889
1890 static void skd_recover_request(struct request *req, void *data, bool reserved)
1891 {
1892 struct skd_device *const skdev = data;
1893 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1894
1895 if (skreq->state != SKD_REQ_STATE_BUSY)
1896 return;
1897
1898 skd_log_skreq(skdev, skreq, "recover");
1899
1900 /* Release DMA resources for the request. */
1901 if (skreq->n_sg > 0)
1902 skd_postop_sg_list(skdev, skreq);
1903
1904 skreq->state = SKD_REQ_STATE_IDLE;
1905 skreq->status = BLK_STS_IOERR;
1906 blk_mq_complete_request(req);
1907 }
1908
1909 static void skd_recover_requests(struct skd_device *skdev)
1910 {
1911 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1912 }
1913
1914 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1915 {
1916 u32 mfd;
1917 u32 mtd;
1918 u32 data;
1919
1920 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1921
1922 dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1923 skdev->last_mtd);
1924
1925 /* ignore any mtd that is an ack for something we didn't send */
1926 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1927 return;
1928
1929 switch (FIT_MXD_TYPE(mfd)) {
1930 case FIT_MTD_FITFW_INIT:
1931 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1932
1933 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1934 dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1935 dev_err(&skdev->pdev->dev, " got=%d support=%d\n",
1936 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1937 dev_err(&skdev->pdev->dev, " please upgrade driver\n");
1938 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1939 skd_soft_reset(skdev);
1940 break;
1941 }
1942 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1943 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1944 skdev->last_mtd = mtd;
1945 break;
1946
1947 case FIT_MTD_GET_CMDQ_DEPTH:
1948 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1949 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1950 SKD_N_COMPLETION_ENTRY);
1951 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952 skdev->last_mtd = mtd;
1953 break;
1954
1955 case FIT_MTD_SET_COMPQ_DEPTH:
1956 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1957 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1958 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1959 skdev->last_mtd = mtd;
1960 break;
1961
1962 case FIT_MTD_SET_COMPQ_ADDR:
1963 skd_reset_skcomp(skdev);
1964 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1965 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1966 skdev->last_mtd = mtd;
1967 break;
1968
1969 case FIT_MTD_CMD_LOG_HOST_ID:
1970 skdev->connect_time_stamp = get_seconds();
1971 data = skdev->connect_time_stamp & 0xFFFF;
1972 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1973 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974 skdev->last_mtd = mtd;
1975 break;
1976
1977 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1978 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1979 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1980 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1981 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1982 skdev->last_mtd = mtd;
1983 break;
1984
1985 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1986 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1987 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1988 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989 skdev->last_mtd = mtd;
1990
1991 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1992 skdev->connect_time_stamp, skdev->drive_jiffies);
1993 break;
1994
1995 case FIT_MTD_ARM_QUEUE:
1996 skdev->last_mtd = 0;
1997 /*
1998 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
1999 */
2000 break;
2001
2002 default:
2003 break;
2004 }
2005 }
2006
2007 static void skd_disable_interrupts(struct skd_device *skdev)
2008 {
2009 u32 sense;
2010
2011 sense = SKD_READL(skdev, FIT_CONTROL);
2012 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2013 SKD_WRITEL(skdev, sense, FIT_CONTROL);
2014 dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2015
2016 /* Note that the 1s is written. A 1-bit means
2017 * disable, a 0 means enable.
2018 */
2019 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2020 }
2021
2022 static void skd_enable_interrupts(struct skd_device *skdev)
2023 {
2024 u32 val;
2025
2026 /* unmask interrupts first */
2027 val = FIT_ISH_FW_STATE_CHANGE +
2028 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2029
2030 /* Note that the compliment of mask is written. A 1-bit means
2031 * disable, a 0 means enable. */
2032 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2033 dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2034
2035 val = SKD_READL(skdev, FIT_CONTROL);
2036 val |= FIT_CR_ENABLE_INTERRUPTS;
2037 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2038 SKD_WRITEL(skdev, val, FIT_CONTROL);
2039 }
2040
2041 /*
2042 *****************************************************************************
2043 * START, STOP, RESTART, QUIESCE, UNQUIESCE
2044 *****************************************************************************
2045 */
2046
2047 static void skd_soft_reset(struct skd_device *skdev)
2048 {
2049 u32 val;
2050
2051 val = SKD_READL(skdev, FIT_CONTROL);
2052 val |= (FIT_CR_SOFT_RESET);
2053 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2054 SKD_WRITEL(skdev, val, FIT_CONTROL);
2055 }
2056
2057 static void skd_start_device(struct skd_device *skdev)
2058 {
2059 unsigned long flags;
2060 u32 sense;
2061 u32 state;
2062
2063 spin_lock_irqsave(&skdev->lock, flags);
2064
2065 /* ack all ghost interrupts */
2066 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2067
2068 sense = SKD_READL(skdev, FIT_STATUS);
2069
2070 dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2071
2072 state = sense & FIT_SR_DRIVE_STATE_MASK;
2073 skdev->drive_state = state;
2074 skdev->last_mtd = 0;
2075
2076 skdev->state = SKD_DRVR_STATE_STARTING;
2077 skdev->timer_countdown = SKD_STARTING_TIMO;
2078
2079 skd_enable_interrupts(skdev);
2080
2081 switch (skdev->drive_state) {
2082 case FIT_SR_DRIVE_OFFLINE:
2083 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2084 break;
2085
2086 case FIT_SR_DRIVE_FW_BOOTING:
2087 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2088 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2089 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2090 break;
2091
2092 case FIT_SR_DRIVE_BUSY_SANITIZE:
2093 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2094 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2095 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2096 break;
2097
2098 case FIT_SR_DRIVE_BUSY_ERASE:
2099 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2100 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2101 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2102 break;
2103
2104 case FIT_SR_DRIVE_INIT:
2105 case FIT_SR_DRIVE_ONLINE:
2106 skd_soft_reset(skdev);
2107 break;
2108
2109 case FIT_SR_DRIVE_BUSY:
2110 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2111 skdev->state = SKD_DRVR_STATE_BUSY;
2112 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2113 break;
2114
2115 case FIT_SR_DRIVE_SOFT_RESET:
2116 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2117 break;
2118
2119 case FIT_SR_DRIVE_FAULT:
2120 /* Fault state is bad...soft reset won't do it...
2121 * Hard reset, maybe, but does it work on device?
2122 * For now, just fault so the system doesn't hang.
2123 */
2124 skd_drive_fault(skdev);
2125 /*start the queue so we can respond with error to requests */
2126 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2127 schedule_work(&skdev->start_queue);
2128 skdev->gendisk_on = -1;
2129 wake_up_interruptible(&skdev->waitq);
2130 break;
2131
2132 case 0xFF:
2133 /* Most likely the device isn't there or isn't responding
2134 * to the BAR1 addresses. */
2135 skd_drive_disappeared(skdev);
2136 /*start the queue so we can respond with error to requests */
2137 dev_dbg(&skdev->pdev->dev,
2138 "starting queue to error-out reqs\n");
2139 schedule_work(&skdev->start_queue);
2140 skdev->gendisk_on = -1;
2141 wake_up_interruptible(&skdev->waitq);
2142 break;
2143
2144 default:
2145 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2146 skdev->drive_state);
2147 break;
2148 }
2149
2150 state = SKD_READL(skdev, FIT_CONTROL);
2151 dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2152
2153 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2154 dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2155
2156 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2157 dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2158
2159 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2160 dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2161
2162 state = SKD_READL(skdev, FIT_HW_VERSION);
2163 dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2164
2165 spin_unlock_irqrestore(&skdev->lock, flags);
2166 }
2167
2168 static void skd_stop_device(struct skd_device *skdev)
2169 {
2170 unsigned long flags;
2171 struct skd_special_context *skspcl = &skdev->internal_skspcl;
2172 u32 dev_state;
2173 int i;
2174
2175 spin_lock_irqsave(&skdev->lock, flags);
2176
2177 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2178 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2179 goto stop_out;
2180 }
2181
2182 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2183 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2184 goto stop_out;
2185 }
2186
2187 skdev->state = SKD_DRVR_STATE_SYNCING;
2188 skdev->sync_done = 0;
2189
2190 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2191
2192 spin_unlock_irqrestore(&skdev->lock, flags);
2193
2194 wait_event_interruptible_timeout(skdev->waitq,
2195 (skdev->sync_done), (10 * HZ));
2196
2197 spin_lock_irqsave(&skdev->lock, flags);
2198
2199 switch (skdev->sync_done) {
2200 case 0:
2201 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2202 break;
2203 case 1:
2204 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2205 break;
2206 default:
2207 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2208 }
2209
2210 stop_out:
2211 skdev->state = SKD_DRVR_STATE_STOPPING;
2212 spin_unlock_irqrestore(&skdev->lock, flags);
2213
2214 skd_kill_timer(skdev);
2215
2216 spin_lock_irqsave(&skdev->lock, flags);
2217 skd_disable_interrupts(skdev);
2218
2219 /* ensure all ints on device are cleared */
2220 /* soft reset the device to unload with a clean slate */
2221 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2222 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2223
2224 spin_unlock_irqrestore(&skdev->lock, flags);
2225
2226 /* poll every 100ms, 1 second timeout */
2227 for (i = 0; i < 10; i++) {
2228 dev_state =
2229 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2230 if (dev_state == FIT_SR_DRIVE_INIT)
2231 break;
2232 set_current_state(TASK_INTERRUPTIBLE);
2233 schedule_timeout(msecs_to_jiffies(100));
2234 }
2235
2236 if (dev_state != FIT_SR_DRIVE_INIT)
2237 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2238 dev_state);
2239 }
2240
2241 /* assume spinlock is held */
2242 static void skd_restart_device(struct skd_device *skdev)
2243 {
2244 u32 state;
2245
2246 /* ack all ghost interrupts */
2247 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2248
2249 state = SKD_READL(skdev, FIT_STATUS);
2250
2251 dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2252
2253 state &= FIT_SR_DRIVE_STATE_MASK;
2254 skdev->drive_state = state;
2255 skdev->last_mtd = 0;
2256
2257 skdev->state = SKD_DRVR_STATE_RESTARTING;
2258 skdev->timer_countdown = SKD_RESTARTING_TIMO;
2259
2260 skd_soft_reset(skdev);
2261 }
2262
2263 /* assume spinlock is held */
2264 static int skd_quiesce_dev(struct skd_device *skdev)
2265 {
2266 int rc = 0;
2267
2268 switch (skdev->state) {
2269 case SKD_DRVR_STATE_BUSY:
2270 case SKD_DRVR_STATE_BUSY_IMMINENT:
2271 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2272 blk_mq_stop_hw_queues(skdev->queue);
2273 break;
2274 case SKD_DRVR_STATE_ONLINE:
2275 case SKD_DRVR_STATE_STOPPING:
2276 case SKD_DRVR_STATE_SYNCING:
2277 case SKD_DRVR_STATE_PAUSING:
2278 case SKD_DRVR_STATE_PAUSED:
2279 case SKD_DRVR_STATE_STARTING:
2280 case SKD_DRVR_STATE_RESTARTING:
2281 case SKD_DRVR_STATE_RESUMING:
2282 default:
2283 rc = -EINVAL;
2284 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2285 skdev->state);
2286 }
2287 return rc;
2288 }
2289
2290 /* assume spinlock is held */
2291 static int skd_unquiesce_dev(struct skd_device *skdev)
2292 {
2293 int prev_driver_state = skdev->state;
2294
2295 skd_log_skdev(skdev, "unquiesce");
2296 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2297 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2298 return 0;
2299 }
2300 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2301 /*
2302 * If there has been an state change to other than
2303 * ONLINE, we will rely on controller state change
2304 * to come back online and restart the queue.
2305 * The BUSY state means that driver is ready to
2306 * continue normal processing but waiting for controller
2307 * to become available.
2308 */
2309 skdev->state = SKD_DRVR_STATE_BUSY;
2310 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2311 return 0;
2312 }
2313
2314 /*
2315 * Drive has just come online, driver is either in startup,
2316 * paused performing a task, or bust waiting for hardware.
2317 */
2318 switch (skdev->state) {
2319 case SKD_DRVR_STATE_PAUSED:
2320 case SKD_DRVR_STATE_BUSY:
2321 case SKD_DRVR_STATE_BUSY_IMMINENT:
2322 case SKD_DRVR_STATE_BUSY_ERASE:
2323 case SKD_DRVR_STATE_STARTING:
2324 case SKD_DRVR_STATE_RESTARTING:
2325 case SKD_DRVR_STATE_FAULT:
2326 case SKD_DRVR_STATE_IDLE:
2327 case SKD_DRVR_STATE_LOAD:
2328 skdev->state = SKD_DRVR_STATE_ONLINE;
2329 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2330 skd_skdev_state_to_str(prev_driver_state),
2331 prev_driver_state, skd_skdev_state_to_str(skdev->state),
2332 skdev->state);
2333 dev_dbg(&skdev->pdev->dev,
2334 "**** device ONLINE...starting block queue\n");
2335 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2336 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2337 schedule_work(&skdev->start_queue);
2338 skdev->gendisk_on = 1;
2339 wake_up_interruptible(&skdev->waitq);
2340 break;
2341
2342 case SKD_DRVR_STATE_DISAPPEARED:
2343 default:
2344 dev_dbg(&skdev->pdev->dev,
2345 "**** driver state %d, not implemented\n",
2346 skdev->state);
2347 return -EBUSY;
2348 }
2349 return 0;
2350 }
2351
2352 /*
2353 *****************************************************************************
2354 * PCIe MSI/MSI-X INTERRUPT HANDLERS
2355 *****************************************************************************
2356 */
2357
2358 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2359 {
2360 struct skd_device *skdev = skd_host_data;
2361 unsigned long flags;
2362
2363 spin_lock_irqsave(&skdev->lock, flags);
2364 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2365 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2366 dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2367 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2368 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2369 spin_unlock_irqrestore(&skdev->lock, flags);
2370 return IRQ_HANDLED;
2371 }
2372
2373 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2374 {
2375 struct skd_device *skdev = skd_host_data;
2376 unsigned long flags;
2377
2378 spin_lock_irqsave(&skdev->lock, flags);
2379 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2380 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2381 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2382 skd_isr_fwstate(skdev);
2383 spin_unlock_irqrestore(&skdev->lock, flags);
2384 return IRQ_HANDLED;
2385 }
2386
2387 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2388 {
2389 struct skd_device *skdev = skd_host_data;
2390 unsigned long flags;
2391 int flush_enqueued = 0;
2392 int deferred;
2393
2394 spin_lock_irqsave(&skdev->lock, flags);
2395 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2396 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2397 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2398 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2399 &flush_enqueued);
2400 if (flush_enqueued)
2401 schedule_work(&skdev->start_queue);
2402
2403 if (deferred)
2404 schedule_work(&skdev->completion_worker);
2405 else if (!flush_enqueued)
2406 schedule_work(&skdev->start_queue);
2407
2408 spin_unlock_irqrestore(&skdev->lock, flags);
2409
2410 return IRQ_HANDLED;
2411 }
2412
2413 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2414 {
2415 struct skd_device *skdev = skd_host_data;
2416 unsigned long flags;
2417
2418 spin_lock_irqsave(&skdev->lock, flags);
2419 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2420 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2421 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2422 skd_isr_msg_from_dev(skdev);
2423 spin_unlock_irqrestore(&skdev->lock, flags);
2424 return IRQ_HANDLED;
2425 }
2426
2427 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2428 {
2429 struct skd_device *skdev = skd_host_data;
2430 unsigned long flags;
2431
2432 spin_lock_irqsave(&skdev->lock, flags);
2433 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2434 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2435 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2436 spin_unlock_irqrestore(&skdev->lock, flags);
2437 return IRQ_HANDLED;
2438 }
2439
2440 /*
2441 *****************************************************************************
2442 * PCIe MSI/MSI-X SETUP
2443 *****************************************************************************
2444 */
2445
2446 struct skd_msix_entry {
2447 char isr_name[30];
2448 };
2449
2450 struct skd_init_msix_entry {
2451 const char *name;
2452 irq_handler_t handler;
2453 };
2454
2455 #define SKD_MAX_MSIX_COUNT 13
2456 #define SKD_MIN_MSIX_COUNT 7
2457 #define SKD_BASE_MSIX_IRQ 4
2458
2459 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2460 { "(DMA 0)", skd_reserved_isr },
2461 { "(DMA 1)", skd_reserved_isr },
2462 { "(DMA 2)", skd_reserved_isr },
2463 { "(DMA 3)", skd_reserved_isr },
2464 { "(State Change)", skd_statec_isr },
2465 { "(COMPL_Q)", skd_comp_q },
2466 { "(MSG)", skd_msg_isr },
2467 { "(Reserved)", skd_reserved_isr },
2468 { "(Reserved)", skd_reserved_isr },
2469 { "(Queue Full 0)", skd_qfull_isr },
2470 { "(Queue Full 1)", skd_qfull_isr },
2471 { "(Queue Full 2)", skd_qfull_isr },
2472 { "(Queue Full 3)", skd_qfull_isr },
2473 };
2474
2475 static int skd_acquire_msix(struct skd_device *skdev)
2476 {
2477 int i, rc;
2478 struct pci_dev *pdev = skdev->pdev;
2479
2480 rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2481 PCI_IRQ_MSIX);
2482 if (rc < 0) {
2483 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2484 goto out;
2485 }
2486
2487 skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2488 sizeof(struct skd_msix_entry), GFP_KERNEL);
2489 if (!skdev->msix_entries) {
2490 rc = -ENOMEM;
2491 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2492 goto out;
2493 }
2494
2495 /* Enable MSI-X vectors for the base queue */
2496 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2497 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2498
2499 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2500 "%s%d-msix %s", DRV_NAME, skdev->devno,
2501 msix_entries[i].name);
2502
2503 rc = devm_request_irq(&skdev->pdev->dev,
2504 pci_irq_vector(skdev->pdev, i),
2505 msix_entries[i].handler, 0,
2506 qentry->isr_name, skdev);
2507 if (rc) {
2508 dev_err(&skdev->pdev->dev,
2509 "Unable to register(%d) MSI-X handler %d: %s\n",
2510 rc, i, qentry->isr_name);
2511 goto msix_out;
2512 }
2513 }
2514
2515 dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2516 SKD_MAX_MSIX_COUNT);
2517 return 0;
2518
2519 msix_out:
2520 while (--i >= 0)
2521 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2522 out:
2523 kfree(skdev->msix_entries);
2524 skdev->msix_entries = NULL;
2525 return rc;
2526 }
2527
2528 static int skd_acquire_irq(struct skd_device *skdev)
2529 {
2530 struct pci_dev *pdev = skdev->pdev;
2531 unsigned int irq_flag = PCI_IRQ_LEGACY;
2532 int rc;
2533
2534 if (skd_isr_type == SKD_IRQ_MSIX) {
2535 rc = skd_acquire_msix(skdev);
2536 if (!rc)
2537 return 0;
2538
2539 dev_err(&skdev->pdev->dev,
2540 "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2541 }
2542
2543 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2544 skdev->devno);
2545
2546 if (skd_isr_type != SKD_IRQ_LEGACY)
2547 irq_flag |= PCI_IRQ_MSI;
2548 rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2549 if (rc < 0) {
2550 dev_err(&skdev->pdev->dev,
2551 "failed to allocate the MSI interrupt %d\n", rc);
2552 return rc;
2553 }
2554
2555 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2556 pdev->msi_enabled ? 0 : IRQF_SHARED,
2557 skdev->isr_name, skdev);
2558 if (rc) {
2559 pci_free_irq_vectors(pdev);
2560 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2561 rc);
2562 return rc;
2563 }
2564
2565 return 0;
2566 }
2567
2568 static void skd_release_irq(struct skd_device *skdev)
2569 {
2570 struct pci_dev *pdev = skdev->pdev;
2571
2572 if (skdev->msix_entries) {
2573 int i;
2574
2575 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2576 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2577 skdev);
2578 }
2579
2580 kfree(skdev->msix_entries);
2581 skdev->msix_entries = NULL;
2582 } else {
2583 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2584 }
2585
2586 pci_free_irq_vectors(pdev);
2587 }
2588
2589 /*
2590 *****************************************************************************
2591 * CONSTRUCT
2592 *****************************************************************************
2593 */
2594
2595 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2596 dma_addr_t *dma_handle, gfp_t gfp,
2597 enum dma_data_direction dir)
2598 {
2599 struct device *dev = &skdev->pdev->dev;
2600 void *buf;
2601
2602 buf = kmem_cache_alloc(s, gfp);
2603 if (!buf)
2604 return NULL;
2605 *dma_handle = dma_map_single(dev, buf, s->size, dir);
2606 if (dma_mapping_error(dev, *dma_handle)) {
2607 kmem_cache_free(s, buf);
2608 buf = NULL;
2609 }
2610 return buf;
2611 }
2612
2613 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2614 void *vaddr, dma_addr_t dma_handle,
2615 enum dma_data_direction dir)
2616 {
2617 if (!vaddr)
2618 return;
2619
2620 dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir);
2621 kmem_cache_free(s, vaddr);
2622 }
2623
2624 static int skd_cons_skcomp(struct skd_device *skdev)
2625 {
2626 int rc = 0;
2627 struct fit_completion_entry_v1 *skcomp;
2628
2629 dev_dbg(&skdev->pdev->dev,
2630 "comp pci_alloc, total bytes %zd entries %d\n",
2631 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2632
2633 skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2634 &skdev->cq_dma_address);
2635
2636 if (skcomp == NULL) {
2637 rc = -ENOMEM;
2638 goto err_out;
2639 }
2640
2641 skdev->skcomp_table = skcomp;
2642 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2643 sizeof(*skcomp) *
2644 SKD_N_COMPLETION_ENTRY);
2645
2646 err_out:
2647 return rc;
2648 }
2649
2650 static int skd_cons_skmsg(struct skd_device *skdev)
2651 {
2652 int rc = 0;
2653 u32 i;
2654
2655 dev_dbg(&skdev->pdev->dev,
2656 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2657 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2658 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2659
2660 skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2661 sizeof(struct skd_fitmsg_context),
2662 GFP_KERNEL);
2663 if (skdev->skmsg_table == NULL) {
2664 rc = -ENOMEM;
2665 goto err_out;
2666 }
2667
2668 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2669 struct skd_fitmsg_context *skmsg;
2670
2671 skmsg = &skdev->skmsg_table[i];
2672
2673 skmsg->id = i + SKD_ID_FIT_MSG;
2674
2675 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2676 SKD_N_FITMSG_BYTES,
2677 &skmsg->mb_dma_address);
2678
2679 if (skmsg->msg_buf == NULL) {
2680 rc = -ENOMEM;
2681 goto err_out;
2682 }
2683
2684 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2685 (FIT_QCMD_ALIGN - 1),
2686 "not aligned: msg_buf %p mb_dma_address %#llx\n",
2687 skmsg->msg_buf, skmsg->mb_dma_address);
2688 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2689 }
2690
2691 err_out:
2692 return rc;
2693 }
2694
2695 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2696 u32 n_sg,
2697 dma_addr_t *ret_dma_addr)
2698 {
2699 struct fit_sg_descriptor *sg_list;
2700
2701 sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2702 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2703
2704 if (sg_list != NULL) {
2705 uint64_t dma_address = *ret_dma_addr;
2706 u32 i;
2707
2708 for (i = 0; i < n_sg - 1; i++) {
2709 uint64_t ndp_off;
2710 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2711
2712 sg_list[i].next_desc_ptr = dma_address + ndp_off;
2713 }
2714 sg_list[i].next_desc_ptr = 0LL;
2715 }
2716
2717 return sg_list;
2718 }
2719
2720 static void skd_free_sg_list(struct skd_device *skdev,
2721 struct fit_sg_descriptor *sg_list,
2722 dma_addr_t dma_addr)
2723 {
2724 if (WARN_ON_ONCE(!sg_list))
2725 return;
2726
2727 skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2728 DMA_TO_DEVICE);
2729 }
2730
2731 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2732 unsigned int hctx_idx, unsigned int numa_node)
2733 {
2734 struct skd_device *skdev = set->driver_data;
2735 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2736
2737 skreq->state = SKD_REQ_STATE_IDLE;
2738 skreq->sg = (void *)(skreq + 1);
2739 sg_init_table(skreq->sg, skd_sgs_per_request);
2740 skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2741 &skreq->sksg_dma_address);
2742
2743 return skreq->sksg_list ? 0 : -ENOMEM;
2744 }
2745
2746 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2747 unsigned int hctx_idx)
2748 {
2749 struct skd_device *skdev = set->driver_data;
2750 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2751
2752 skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2753 }
2754
2755 static int skd_cons_sksb(struct skd_device *skdev)
2756 {
2757 int rc = 0;
2758 struct skd_special_context *skspcl;
2759
2760 skspcl = &skdev->internal_skspcl;
2761
2762 skspcl->req.id = 0 + SKD_ID_INTERNAL;
2763 skspcl->req.state = SKD_REQ_STATE_IDLE;
2764
2765 skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2766 &skspcl->db_dma_address,
2767 GFP_DMA | __GFP_ZERO,
2768 DMA_BIDIRECTIONAL);
2769 if (skspcl->data_buf == NULL) {
2770 rc = -ENOMEM;
2771 goto err_out;
2772 }
2773
2774 skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2775 &skspcl->mb_dma_address,
2776 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2777 if (skspcl->msg_buf == NULL) {
2778 rc = -ENOMEM;
2779 goto err_out;
2780 }
2781
2782 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2783 &skspcl->req.sksg_dma_address);
2784 if (skspcl->req.sksg_list == NULL) {
2785 rc = -ENOMEM;
2786 goto err_out;
2787 }
2788
2789 if (!skd_format_internal_skspcl(skdev)) {
2790 rc = -EINVAL;
2791 goto err_out;
2792 }
2793
2794 err_out:
2795 return rc;
2796 }
2797
2798 static const struct blk_mq_ops skd_mq_ops = {
2799 .queue_rq = skd_mq_queue_rq,
2800 .complete = skd_complete_rq,
2801 .timeout = skd_timed_out,
2802 .init_request = skd_init_request,
2803 .exit_request = skd_exit_request,
2804 };
2805
2806 static int skd_cons_disk(struct skd_device *skdev)
2807 {
2808 int rc = 0;
2809 struct gendisk *disk;
2810 struct request_queue *q;
2811 unsigned long flags;
2812
2813 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2814 if (!disk) {
2815 rc = -ENOMEM;
2816 goto err_out;
2817 }
2818
2819 skdev->disk = disk;
2820 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2821
2822 disk->major = skdev->major;
2823 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2824 disk->fops = &skd_blockdev_ops;
2825 disk->private_data = skdev;
2826
2827 memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2828 skdev->tag_set.ops = &skd_mq_ops;
2829 skdev->tag_set.nr_hw_queues = 1;
2830 skdev->tag_set.queue_depth = skd_max_queue_depth;
2831 skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2832 skdev->sgs_per_request * sizeof(struct scatterlist);
2833 skdev->tag_set.numa_node = NUMA_NO_NODE;
2834 skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2835 BLK_MQ_F_SG_MERGE |
2836 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2837 skdev->tag_set.driver_data = skdev;
2838 rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2839 if (rc)
2840 goto err_out;
2841 q = blk_mq_init_queue(&skdev->tag_set);
2842 if (IS_ERR(q)) {
2843 blk_mq_free_tag_set(&skdev->tag_set);
2844 rc = PTR_ERR(q);
2845 goto err_out;
2846 }
2847 q->queuedata = skdev;
2848
2849 skdev->queue = q;
2850 disk->queue = q;
2851
2852 blk_queue_write_cache(q, true, true);
2853 blk_queue_max_segments(q, skdev->sgs_per_request);
2854 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2855
2856 /* set optimal I/O size to 8KB */
2857 blk_queue_io_opt(q, 8192);
2858
2859 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2860 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2861
2862 blk_queue_rq_timeout(q, 8 * HZ);
2863
2864 spin_lock_irqsave(&skdev->lock, flags);
2865 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2866 blk_mq_stop_hw_queues(skdev->queue);
2867 spin_unlock_irqrestore(&skdev->lock, flags);
2868
2869 err_out:
2870 return rc;
2871 }
2872
2873 #define SKD_N_DEV_TABLE 16u
2874 static u32 skd_next_devno;
2875
2876 static struct skd_device *skd_construct(struct pci_dev *pdev)
2877 {
2878 struct skd_device *skdev;
2879 int blk_major = skd_major;
2880 size_t size;
2881 int rc;
2882
2883 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2884
2885 if (!skdev) {
2886 dev_err(&pdev->dev, "memory alloc failure\n");
2887 return NULL;
2888 }
2889
2890 skdev->state = SKD_DRVR_STATE_LOAD;
2891 skdev->pdev = pdev;
2892 skdev->devno = skd_next_devno++;
2893 skdev->major = blk_major;
2894 skdev->dev_max_queue_depth = 0;
2895
2896 skdev->num_req_context = skd_max_queue_depth;
2897 skdev->num_fitmsg_context = skd_max_queue_depth;
2898 skdev->cur_max_queue_depth = 1;
2899 skdev->queue_low_water_mark = 1;
2900 skdev->proto_ver = 99;
2901 skdev->sgs_per_request = skd_sgs_per_request;
2902 skdev->dbg_level = skd_dbg_level;
2903
2904 spin_lock_init(&skdev->lock);
2905
2906 INIT_WORK(&skdev->start_queue, skd_start_queue);
2907 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2908
2909 size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2910 skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2911 SLAB_HWCACHE_ALIGN, NULL);
2912 if (!skdev->msgbuf_cache)
2913 goto err_out;
2914 WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2915 "skd-msgbuf: %d < %zd\n",
2916 kmem_cache_size(skdev->msgbuf_cache), size);
2917 size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2918 skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2919 SLAB_HWCACHE_ALIGN, NULL);
2920 if (!skdev->sglist_cache)
2921 goto err_out;
2922 WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2923 "skd-sglist: %d < %zd\n",
2924 kmem_cache_size(skdev->sglist_cache), size);
2925 size = SKD_N_INTERNAL_BYTES;
2926 skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2927 SLAB_HWCACHE_ALIGN, NULL);
2928 if (!skdev->databuf_cache)
2929 goto err_out;
2930 WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2931 "skd-databuf: %d < %zd\n",
2932 kmem_cache_size(skdev->databuf_cache), size);
2933
2934 dev_dbg(&skdev->pdev->dev, "skcomp\n");
2935 rc = skd_cons_skcomp(skdev);
2936 if (rc < 0)
2937 goto err_out;
2938
2939 dev_dbg(&skdev->pdev->dev, "skmsg\n");
2940 rc = skd_cons_skmsg(skdev);
2941 if (rc < 0)
2942 goto err_out;
2943
2944 dev_dbg(&skdev->pdev->dev, "sksb\n");
2945 rc = skd_cons_sksb(skdev);
2946 if (rc < 0)
2947 goto err_out;
2948
2949 dev_dbg(&skdev->pdev->dev, "disk\n");
2950 rc = skd_cons_disk(skdev);
2951 if (rc < 0)
2952 goto err_out;
2953
2954 dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2955 return skdev;
2956
2957 err_out:
2958 dev_dbg(&skdev->pdev->dev, "construct failed\n");
2959 skd_destruct(skdev);
2960 return NULL;
2961 }
2962
2963 /*
2964 *****************************************************************************
2965 * DESTRUCT (FREE)
2966 *****************************************************************************
2967 */
2968
2969 static void skd_free_skcomp(struct skd_device *skdev)
2970 {
2971 if (skdev->skcomp_table)
2972 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2973 skdev->skcomp_table, skdev->cq_dma_address);
2974
2975 skdev->skcomp_table = NULL;
2976 skdev->cq_dma_address = 0;
2977 }
2978
2979 static void skd_free_skmsg(struct skd_device *skdev)
2980 {
2981 u32 i;
2982
2983 if (skdev->skmsg_table == NULL)
2984 return;
2985
2986 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2987 struct skd_fitmsg_context *skmsg;
2988
2989 skmsg = &skdev->skmsg_table[i];
2990
2991 if (skmsg->msg_buf != NULL) {
2992 pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
2993 skmsg->msg_buf,
2994 skmsg->mb_dma_address);
2995 }
2996 skmsg->msg_buf = NULL;
2997 skmsg->mb_dma_address = 0;
2998 }
2999
3000 kfree(skdev->skmsg_table);
3001 skdev->skmsg_table = NULL;
3002 }
3003
3004 static void skd_free_sksb(struct skd_device *skdev)
3005 {
3006 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3007
3008 skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3009 skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3010
3011 skspcl->data_buf = NULL;
3012 skspcl->db_dma_address = 0;
3013
3014 skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3015 skspcl->mb_dma_address, DMA_TO_DEVICE);
3016
3017 skspcl->msg_buf = NULL;
3018 skspcl->mb_dma_address = 0;
3019
3020 skd_free_sg_list(skdev, skspcl->req.sksg_list,
3021 skspcl->req.sksg_dma_address);
3022
3023 skspcl->req.sksg_list = NULL;
3024 skspcl->req.sksg_dma_address = 0;
3025 }
3026
3027 static void skd_free_disk(struct skd_device *skdev)
3028 {
3029 struct gendisk *disk = skdev->disk;
3030
3031 if (disk && (disk->flags & GENHD_FL_UP))
3032 del_gendisk(disk);
3033
3034 if (skdev->queue) {
3035 blk_cleanup_queue(skdev->queue);
3036 skdev->queue = NULL;
3037 if (disk)
3038 disk->queue = NULL;
3039 }
3040
3041 if (skdev->tag_set.tags)
3042 blk_mq_free_tag_set(&skdev->tag_set);
3043
3044 put_disk(disk);
3045 skdev->disk = NULL;
3046 }
3047
3048 static void skd_destruct(struct skd_device *skdev)
3049 {
3050 if (skdev == NULL)
3051 return;
3052
3053 cancel_work_sync(&skdev->start_queue);
3054
3055 dev_dbg(&skdev->pdev->dev, "disk\n");
3056 skd_free_disk(skdev);
3057
3058 dev_dbg(&skdev->pdev->dev, "sksb\n");
3059 skd_free_sksb(skdev);
3060
3061 dev_dbg(&skdev->pdev->dev, "skmsg\n");
3062 skd_free_skmsg(skdev);
3063
3064 dev_dbg(&skdev->pdev->dev, "skcomp\n");
3065 skd_free_skcomp(skdev);
3066
3067 kmem_cache_destroy(skdev->databuf_cache);
3068 kmem_cache_destroy(skdev->sglist_cache);
3069 kmem_cache_destroy(skdev->msgbuf_cache);
3070
3071 dev_dbg(&skdev->pdev->dev, "skdev\n");
3072 kfree(skdev);
3073 }
3074
3075 /*
3076 *****************************************************************************
3077 * BLOCK DEVICE (BDEV) GLUE
3078 *****************************************************************************
3079 */
3080
3081 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3082 {
3083 struct skd_device *skdev;
3084 u64 capacity;
3085
3086 skdev = bdev->bd_disk->private_data;
3087
3088 dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3089 bdev->bd_disk->disk_name, current->comm);
3090
3091 if (skdev->read_cap_is_valid) {
3092 capacity = get_capacity(skdev->disk);
3093 geo->heads = 64;
3094 geo->sectors = 255;
3095 geo->cylinders = (capacity) / (255 * 64);
3096
3097 return 0;
3098 }
3099 return -EIO;
3100 }
3101
3102 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3103 {
3104 dev_dbg(&skdev->pdev->dev, "add_disk\n");
3105 device_add_disk(parent, skdev->disk);
3106 return 0;
3107 }
3108
3109 static const struct block_device_operations skd_blockdev_ops = {
3110 .owner = THIS_MODULE,
3111 .getgeo = skd_bdev_getgeo,
3112 };
3113
3114 /*
3115 *****************************************************************************
3116 * PCIe DRIVER GLUE
3117 *****************************************************************************
3118 */
3119
3120 static const struct pci_device_id skd_pci_tbl[] = {
3121 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3122 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3123 { 0 } /* terminate list */
3124 };
3125
3126 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3127
3128 static char *skd_pci_info(struct skd_device *skdev, char *str)
3129 {
3130 int pcie_reg;
3131
3132 strcpy(str, "PCIe (");
3133 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3134
3135 if (pcie_reg) {
3136
3137 char lwstr[6];
3138 uint16_t pcie_lstat, lspeed, lwidth;
3139
3140 pcie_reg += 0x12;
3141 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3142 lspeed = pcie_lstat & (0xF);
3143 lwidth = (pcie_lstat & 0x3F0) >> 4;
3144
3145 if (lspeed == 1)
3146 strcat(str, "2.5GT/s ");
3147 else if (lspeed == 2)
3148 strcat(str, "5.0GT/s ");
3149 else
3150 strcat(str, "<unknown> ");
3151 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3152 strcat(str, lwstr);
3153 }
3154 return str;
3155 }
3156
3157 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3158 {
3159 int i;
3160 int rc = 0;
3161 char pci_str[32];
3162 struct skd_device *skdev;
3163
3164 dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3165 pdev->device);
3166
3167 rc = pci_enable_device(pdev);
3168 if (rc)
3169 return rc;
3170 rc = pci_request_regions(pdev, DRV_NAME);
3171 if (rc)
3172 goto err_out;
3173 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3174 if (!rc) {
3175 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3176 dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3177 rc);
3178 }
3179 } else {
3180 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3181 if (rc) {
3182 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3183 goto err_out_regions;
3184 }
3185 }
3186
3187 if (!skd_major) {
3188 rc = register_blkdev(0, DRV_NAME);
3189 if (rc < 0)
3190 goto err_out_regions;
3191 BUG_ON(!rc);
3192 skd_major = rc;
3193 }
3194
3195 skdev = skd_construct(pdev);
3196 if (skdev == NULL) {
3197 rc = -ENOMEM;
3198 goto err_out_regions;
3199 }
3200
3201 skd_pci_info(skdev, pci_str);
3202 dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3203
3204 pci_set_master(pdev);
3205 rc = pci_enable_pcie_error_reporting(pdev);
3206 if (rc) {
3207 dev_err(&pdev->dev,
3208 "bad enable of PCIe error reporting rc=%d\n", rc);
3209 skdev->pcie_error_reporting_is_enabled = 0;
3210 } else
3211 skdev->pcie_error_reporting_is_enabled = 1;
3212
3213 pci_set_drvdata(pdev, skdev);
3214
3215 for (i = 0; i < SKD_MAX_BARS; i++) {
3216 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3217 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3218 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3219 skdev->mem_size[i]);
3220 if (!skdev->mem_map[i]) {
3221 dev_err(&pdev->dev,
3222 "Unable to map adapter memory!\n");
3223 rc = -ENODEV;
3224 goto err_out_iounmap;
3225 }
3226 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3227 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3228 skdev->mem_size[i]);
3229 }
3230
3231 rc = skd_acquire_irq(skdev);
3232 if (rc) {
3233 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3234 goto err_out_iounmap;
3235 }
3236
3237 rc = skd_start_timer(skdev);
3238 if (rc)
3239 goto err_out_timer;
3240
3241 init_waitqueue_head(&skdev->waitq);
3242
3243 skd_start_device(skdev);
3244
3245 rc = wait_event_interruptible_timeout(skdev->waitq,
3246 (skdev->gendisk_on),
3247 (SKD_START_WAIT_SECONDS * HZ));
3248 if (skdev->gendisk_on > 0) {
3249 /* device came on-line after reset */
3250 skd_bdev_attach(&pdev->dev, skdev);
3251 rc = 0;
3252 } else {
3253 /* we timed out, something is wrong with the device,
3254 don't add the disk structure */
3255 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3256 rc);
3257 /* in case of no error; we timeout with ENXIO */
3258 if (!rc)
3259 rc = -ENXIO;
3260 goto err_out_timer;
3261 }
3262
3263 return rc;
3264
3265 err_out_timer:
3266 skd_stop_device(skdev);
3267 skd_release_irq(skdev);
3268
3269 err_out_iounmap:
3270 for (i = 0; i < SKD_MAX_BARS; i++)
3271 if (skdev->mem_map[i])
3272 iounmap(skdev->mem_map[i]);
3273
3274 if (skdev->pcie_error_reporting_is_enabled)
3275 pci_disable_pcie_error_reporting(pdev);
3276
3277 skd_destruct(skdev);
3278
3279 err_out_regions:
3280 pci_release_regions(pdev);
3281
3282 err_out:
3283 pci_disable_device(pdev);
3284 pci_set_drvdata(pdev, NULL);
3285 return rc;
3286 }
3287
3288 static void skd_pci_remove(struct pci_dev *pdev)
3289 {
3290 int i;
3291 struct skd_device *skdev;
3292
3293 skdev = pci_get_drvdata(pdev);
3294 if (!skdev) {
3295 dev_err(&pdev->dev, "no device data for PCI\n");
3296 return;
3297 }
3298 skd_stop_device(skdev);
3299 skd_release_irq(skdev);
3300
3301 for (i = 0; i < SKD_MAX_BARS; i++)
3302 if (skdev->mem_map[i])
3303 iounmap(skdev->mem_map[i]);
3304
3305 if (skdev->pcie_error_reporting_is_enabled)
3306 pci_disable_pcie_error_reporting(pdev);
3307
3308 skd_destruct(skdev);
3309
3310 pci_release_regions(pdev);
3311 pci_disable_device(pdev);
3312 pci_set_drvdata(pdev, NULL);
3313
3314 return;
3315 }
3316
3317 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3318 {
3319 int i;
3320 struct skd_device *skdev;
3321
3322 skdev = pci_get_drvdata(pdev);
3323 if (!skdev) {
3324 dev_err(&pdev->dev, "no device data for PCI\n");
3325 return -EIO;
3326 }
3327
3328 skd_stop_device(skdev);
3329
3330 skd_release_irq(skdev);
3331
3332 for (i = 0; i < SKD_MAX_BARS; i++)
3333 if (skdev->mem_map[i])
3334 iounmap(skdev->mem_map[i]);
3335
3336 if (skdev->pcie_error_reporting_is_enabled)
3337 pci_disable_pcie_error_reporting(pdev);
3338
3339 pci_release_regions(pdev);
3340 pci_save_state(pdev);
3341 pci_disable_device(pdev);
3342 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3343 return 0;
3344 }
3345
3346 static int skd_pci_resume(struct pci_dev *pdev)
3347 {
3348 int i;
3349 int rc = 0;
3350 struct skd_device *skdev;
3351
3352 skdev = pci_get_drvdata(pdev);
3353 if (!skdev) {
3354 dev_err(&pdev->dev, "no device data for PCI\n");
3355 return -1;
3356 }
3357
3358 pci_set_power_state(pdev, PCI_D0);
3359 pci_enable_wake(pdev, PCI_D0, 0);
3360 pci_restore_state(pdev);
3361
3362 rc = pci_enable_device(pdev);
3363 if (rc)
3364 return rc;
3365 rc = pci_request_regions(pdev, DRV_NAME);
3366 if (rc)
3367 goto err_out;
3368 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3369 if (!rc) {
3370 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3371
3372 dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3373 rc);
3374 }
3375 } else {
3376 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3377 if (rc) {
3378
3379 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3380 goto err_out_regions;
3381 }
3382 }
3383
3384 pci_set_master(pdev);
3385 rc = pci_enable_pcie_error_reporting(pdev);
3386 if (rc) {
3387 dev_err(&pdev->dev,
3388 "bad enable of PCIe error reporting rc=%d\n", rc);
3389 skdev->pcie_error_reporting_is_enabled = 0;
3390 } else
3391 skdev->pcie_error_reporting_is_enabled = 1;
3392
3393 for (i = 0; i < SKD_MAX_BARS; i++) {
3394
3395 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3396 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3397 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3398 skdev->mem_size[i]);
3399 if (!skdev->mem_map[i]) {
3400 dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3401 rc = -ENODEV;
3402 goto err_out_iounmap;
3403 }
3404 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3405 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3406 skdev->mem_size[i]);
3407 }
3408 rc = skd_acquire_irq(skdev);
3409 if (rc) {
3410 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3411 goto err_out_iounmap;
3412 }
3413
3414 rc = skd_start_timer(skdev);
3415 if (rc)
3416 goto err_out_timer;
3417
3418 init_waitqueue_head(&skdev->waitq);
3419
3420 skd_start_device(skdev);
3421
3422 return rc;
3423
3424 err_out_timer:
3425 skd_stop_device(skdev);
3426 skd_release_irq(skdev);
3427
3428 err_out_iounmap:
3429 for (i = 0; i < SKD_MAX_BARS; i++)
3430 if (skdev->mem_map[i])
3431 iounmap(skdev->mem_map[i]);
3432
3433 if (skdev->pcie_error_reporting_is_enabled)
3434 pci_disable_pcie_error_reporting(pdev);
3435
3436 err_out_regions:
3437 pci_release_regions(pdev);
3438
3439 err_out:
3440 pci_disable_device(pdev);
3441 return rc;
3442 }
3443
3444 static void skd_pci_shutdown(struct pci_dev *pdev)
3445 {
3446 struct skd_device *skdev;
3447
3448 dev_err(&pdev->dev, "%s called\n", __func__);
3449
3450 skdev = pci_get_drvdata(pdev);
3451 if (!skdev) {
3452 dev_err(&pdev->dev, "no device data for PCI\n");
3453 return;
3454 }
3455
3456 dev_err(&pdev->dev, "calling stop\n");
3457 skd_stop_device(skdev);
3458 }
3459
3460 static struct pci_driver skd_driver = {
3461 .name = DRV_NAME,
3462 .id_table = skd_pci_tbl,
3463 .probe = skd_pci_probe,
3464 .remove = skd_pci_remove,
3465 .suspend = skd_pci_suspend,
3466 .resume = skd_pci_resume,
3467 .shutdown = skd_pci_shutdown,
3468 };
3469
3470 /*
3471 *****************************************************************************
3472 * LOGGING SUPPORT
3473 *****************************************************************************
3474 */
3475
3476 const char *skd_drive_state_to_str(int state)
3477 {
3478 switch (state) {
3479 case FIT_SR_DRIVE_OFFLINE:
3480 return "OFFLINE";
3481 case FIT_SR_DRIVE_INIT:
3482 return "INIT";
3483 case FIT_SR_DRIVE_ONLINE:
3484 return "ONLINE";
3485 case FIT_SR_DRIVE_BUSY:
3486 return "BUSY";
3487 case FIT_SR_DRIVE_FAULT:
3488 return "FAULT";
3489 case FIT_SR_DRIVE_DEGRADED:
3490 return "DEGRADED";
3491 case FIT_SR_PCIE_LINK_DOWN:
3492 return "INK_DOWN";
3493 case FIT_SR_DRIVE_SOFT_RESET:
3494 return "SOFT_RESET";
3495 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3496 return "NEED_FW";
3497 case FIT_SR_DRIVE_INIT_FAULT:
3498 return "INIT_FAULT";
3499 case FIT_SR_DRIVE_BUSY_SANITIZE:
3500 return "BUSY_SANITIZE";
3501 case FIT_SR_DRIVE_BUSY_ERASE:
3502 return "BUSY_ERASE";
3503 case FIT_SR_DRIVE_FW_BOOTING:
3504 return "FW_BOOTING";
3505 default:
3506 return "???";
3507 }
3508 }
3509
3510 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3511 {
3512 switch (state) {
3513 case SKD_DRVR_STATE_LOAD:
3514 return "LOAD";
3515 case SKD_DRVR_STATE_IDLE:
3516 return "IDLE";
3517 case SKD_DRVR_STATE_BUSY:
3518 return "BUSY";
3519 case SKD_DRVR_STATE_STARTING:
3520 return "STARTING";
3521 case SKD_DRVR_STATE_ONLINE:
3522 return "ONLINE";
3523 case SKD_DRVR_STATE_PAUSING:
3524 return "PAUSING";
3525 case SKD_DRVR_STATE_PAUSED:
3526 return "PAUSED";
3527 case SKD_DRVR_STATE_RESTARTING:
3528 return "RESTARTING";
3529 case SKD_DRVR_STATE_RESUMING:
3530 return "RESUMING";
3531 case SKD_DRVR_STATE_STOPPING:
3532 return "STOPPING";
3533 case SKD_DRVR_STATE_SYNCING:
3534 return "SYNCING";
3535 case SKD_DRVR_STATE_FAULT:
3536 return "FAULT";
3537 case SKD_DRVR_STATE_DISAPPEARED:
3538 return "DISAPPEARED";
3539 case SKD_DRVR_STATE_BUSY_ERASE:
3540 return "BUSY_ERASE";
3541 case SKD_DRVR_STATE_BUSY_SANITIZE:
3542 return "BUSY_SANITIZE";
3543 case SKD_DRVR_STATE_BUSY_IMMINENT:
3544 return "BUSY_IMMINENT";
3545 case SKD_DRVR_STATE_WAIT_BOOT:
3546 return "WAIT_BOOT";
3547
3548 default:
3549 return "???";
3550 }
3551 }
3552
3553 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3554 {
3555 switch (state) {
3556 case SKD_REQ_STATE_IDLE:
3557 return "IDLE";
3558 case SKD_REQ_STATE_SETUP:
3559 return "SETUP";
3560 case SKD_REQ_STATE_BUSY:
3561 return "BUSY";
3562 case SKD_REQ_STATE_COMPLETED:
3563 return "COMPLETED";
3564 case SKD_REQ_STATE_TIMEOUT:
3565 return "TIMEOUT";
3566 default:
3567 return "???";
3568 }
3569 }
3570
3571 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3572 {
3573 dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3574 dev_dbg(&skdev->pdev->dev, " drive_state=%s(%d) driver_state=%s(%d)\n",
3575 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3576 skd_skdev_state_to_str(skdev->state), skdev->state);
3577 dev_dbg(&skdev->pdev->dev, " busy=%d limit=%d dev=%d lowat=%d\n",
3578 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3579 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3580 dev_dbg(&skdev->pdev->dev, " cycle=%d cycle_ix=%d\n",
3581 skdev->skcomp_cycle, skdev->skcomp_ix);
3582 }
3583
3584 static void skd_log_skreq(struct skd_device *skdev,
3585 struct skd_request_context *skreq, const char *event)
3586 {
3587 struct request *req = blk_mq_rq_from_pdu(skreq);
3588 u32 lba = blk_rq_pos(req);
3589 u32 count = blk_rq_sectors(req);
3590
3591 dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3592 dev_dbg(&skdev->pdev->dev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3593 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3594 skreq->fitmsg_id);
3595 dev_dbg(&skdev->pdev->dev, " sg_dir=%d n_sg=%d\n",
3596 skreq->data_dir, skreq->n_sg);
3597
3598 dev_dbg(&skdev->pdev->dev,
3599 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3600 count, count, (int)rq_data_dir(req));
3601 }
3602
3603 /*
3604 *****************************************************************************
3605 * MODULE GLUE
3606 *****************************************************************************
3607 */
3608
3609 static int __init skd_init(void)
3610 {
3611 BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3612 BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3613 BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3614 BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3615 BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3616 BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3617 BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3618 BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3619
3620 switch (skd_isr_type) {
3621 case SKD_IRQ_LEGACY:
3622 case SKD_IRQ_MSI:
3623 case SKD_IRQ_MSIX:
3624 break;
3625 default:
3626 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3627 skd_isr_type, SKD_IRQ_DEFAULT);
3628 skd_isr_type = SKD_IRQ_DEFAULT;
3629 }
3630
3631 if (skd_max_queue_depth < 1 ||
3632 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3633 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3634 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3635 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3636 }
3637
3638 if (skd_max_req_per_msg < 1 ||
3639 skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3640 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3641 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3642 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3643 }
3644
3645 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3646 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3647 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3648 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3649 }
3650
3651 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3652 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3653 skd_dbg_level, 0);
3654 skd_dbg_level = 0;
3655 }
3656
3657 if (skd_isr_comp_limit < 0) {
3658 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3659 skd_isr_comp_limit, 0);
3660 skd_isr_comp_limit = 0;
3661 }
3662
3663 return pci_register_driver(&skd_driver);
3664 }
3665
3666 static void __exit skd_exit(void)
3667 {
3668 pci_unregister_driver(&skd_driver);
3669
3670 if (skd_major)
3671 unregister_blkdev(skd_major, DRV_NAME);
3672 }
3673
3674 module_init(skd_init);
3675 module_exit(skd_exit);