]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/skd_main.c
scsi: cxlflash: Create character device to provide host management interface
[mirror_ubuntu-zesty-kernel.git] / drivers / block / skd_main.c
1 /* Copyright 2012 STEC, Inc.
2 *
3 * This file is licensed under the terms of the 3-clause
4 * BSD License (http://opensource.org/licenses/BSD-3-Clause)
5 * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
6 * at your option. Both licenses are also available in the LICENSE file
7 * distributed with this project. This file may not be copied, modified,
8 * or distributed except in accordance with those terms.
9 * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
10 * Initial Driver Design!
11 * Thomas Swann <tswann@stec-inc.com>
12 * Interrupt handling.
13 * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
14 * biomode implementation.
15 * Akhil Bhansali <abhansali@stec-inc.com>
16 * Added support for DISCARD / FLUSH and FUA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/pci.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/blkdev.h>
26 #include <linux/sched.h>
27 #include <linux/interrupt.h>
28 #include <linux/compiler.h>
29 #include <linux/workqueue.h>
30 #include <linux/bitops.h>
31 #include <linux/delay.h>
32 #include <linux/time.h>
33 #include <linux/hdreg.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/completion.h>
36 #include <linux/scatterlist.h>
37 #include <linux/version.h>
38 #include <linux/err.h>
39 #include <linux/aer.h>
40 #include <linux/ctype.h>
41 #include <linux/wait.h>
42 #include <linux/uio.h>
43 #include <scsi/scsi.h>
44 #include <scsi/sg.h>
45 #include <linux/io.h>
46 #include <linux/uaccess.h>
47 #include <asm/unaligned.h>
48
49 #include "skd_s1120.h"
50
51 static int skd_dbg_level;
52 static int skd_isr_comp_limit = 4;
53
54 enum {
55 STEC_LINK_2_5GTS = 0,
56 STEC_LINK_5GTS = 1,
57 STEC_LINK_8GTS = 2,
58 STEC_LINK_UNKNOWN = 0xFF
59 };
60
61 enum {
62 SKD_FLUSH_INITIALIZER,
63 SKD_FLUSH_ZERO_SIZE_FIRST,
64 SKD_FLUSH_DATA_SECOND,
65 };
66
67 #define SKD_ASSERT(expr) \
68 do { \
69 if (unlikely(!(expr))) { \
70 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
71 # expr, __FILE__, __func__, __LINE__); \
72 } \
73 } while (0)
74
75 #define DRV_NAME "skd"
76 #define DRV_VERSION "2.2.1"
77 #define DRV_BUILD_ID "0260"
78 #define PFX DRV_NAME ": "
79 #define DRV_BIN_VERSION 0x100
80 #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
81
82 MODULE_AUTHOR("bug-reports: support@stec-inc.com");
83 MODULE_LICENSE("Dual BSD/GPL");
84
85 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
86 MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
87
88 #define PCI_VENDOR_ID_STEC 0x1B39
89 #define PCI_DEVICE_ID_S1120 0x0001
90
91 #define SKD_FUA_NV (1 << 1)
92 #define SKD_MINORS_PER_DEVICE 16
93
94 #define SKD_MAX_QUEUE_DEPTH 200u
95
96 #define SKD_PAUSE_TIMEOUT (5 * 1000)
97
98 #define SKD_N_FITMSG_BYTES (512u)
99
100 #define SKD_N_SPECIAL_CONTEXT 32u
101 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
102
103 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
104 * 128KB limit. That allows 4096*4K = 16M xfer size
105 */
106 #define SKD_N_SG_PER_REQ_DEFAULT 256u
107 #define SKD_N_SG_PER_SPECIAL 256u
108
109 #define SKD_N_COMPLETION_ENTRY 256u
110 #define SKD_N_READ_CAP_BYTES (8u)
111
112 #define SKD_N_INTERNAL_BYTES (512u)
113
114 /* 5 bits of uniqifier, 0xF800 */
115 #define SKD_ID_INCR (0x400)
116 #define SKD_ID_TABLE_MASK (3u << 8u)
117 #define SKD_ID_RW_REQUEST (0u << 8u)
118 #define SKD_ID_INTERNAL (1u << 8u)
119 #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
120 #define SKD_ID_FIT_MSG (3u << 8u)
121 #define SKD_ID_SLOT_MASK 0x00FFu
122 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
123
124 #define SKD_N_TIMEOUT_SLOT 4u
125 #define SKD_TIMEOUT_SLOT_MASK 3u
126
127 #define SKD_N_MAX_SECTORS 2048u
128
129 #define SKD_MAX_RETRIES 2u
130
131 #define SKD_TIMER_SECONDS(seconds) (seconds)
132 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
133
134 #define INQ_STD_NBYTES 36
135
136 enum skd_drvr_state {
137 SKD_DRVR_STATE_LOAD,
138 SKD_DRVR_STATE_IDLE,
139 SKD_DRVR_STATE_BUSY,
140 SKD_DRVR_STATE_STARTING,
141 SKD_DRVR_STATE_ONLINE,
142 SKD_DRVR_STATE_PAUSING,
143 SKD_DRVR_STATE_PAUSED,
144 SKD_DRVR_STATE_DRAINING_TIMEOUT,
145 SKD_DRVR_STATE_RESTARTING,
146 SKD_DRVR_STATE_RESUMING,
147 SKD_DRVR_STATE_STOPPING,
148 SKD_DRVR_STATE_FAULT,
149 SKD_DRVR_STATE_DISAPPEARED,
150 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
151 SKD_DRVR_STATE_BUSY_ERASE,
152 SKD_DRVR_STATE_BUSY_SANITIZE,
153 SKD_DRVR_STATE_BUSY_IMMINENT,
154 SKD_DRVR_STATE_WAIT_BOOT,
155 SKD_DRVR_STATE_SYNCING,
156 };
157
158 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
159 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
160 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
161 #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
162 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
163 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
164 #define SKD_START_WAIT_SECONDS 90u
165
166 enum skd_req_state {
167 SKD_REQ_STATE_IDLE,
168 SKD_REQ_STATE_SETUP,
169 SKD_REQ_STATE_BUSY,
170 SKD_REQ_STATE_COMPLETED,
171 SKD_REQ_STATE_TIMEOUT,
172 SKD_REQ_STATE_ABORTED,
173 };
174
175 enum skd_fit_msg_state {
176 SKD_MSG_STATE_IDLE,
177 SKD_MSG_STATE_BUSY,
178 };
179
180 enum skd_check_status_action {
181 SKD_CHECK_STATUS_REPORT_GOOD,
182 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
183 SKD_CHECK_STATUS_REQUEUE_REQUEST,
184 SKD_CHECK_STATUS_REPORT_ERROR,
185 SKD_CHECK_STATUS_BUSY_IMMINENT,
186 };
187
188 struct skd_fitmsg_context {
189 enum skd_fit_msg_state state;
190
191 struct skd_fitmsg_context *next;
192
193 u32 id;
194 u16 outstanding;
195
196 u32 length;
197 u32 offset;
198
199 u8 *msg_buf;
200 dma_addr_t mb_dma_address;
201 };
202
203 struct skd_request_context {
204 enum skd_req_state state;
205
206 struct skd_request_context *next;
207
208 u16 id;
209 u32 fitmsg_id;
210
211 struct request *req;
212 u8 flush_cmd;
213
214 u32 timeout_stamp;
215 u8 sg_data_dir;
216 struct scatterlist *sg;
217 u32 n_sg;
218 u32 sg_byte_count;
219
220 struct fit_sg_descriptor *sksg_list;
221 dma_addr_t sksg_dma_address;
222
223 struct fit_completion_entry_v1 completion;
224
225 struct fit_comp_error_info err_info;
226
227 };
228 #define SKD_DATA_DIR_HOST_TO_CARD 1
229 #define SKD_DATA_DIR_CARD_TO_HOST 2
230
231 struct skd_special_context {
232 struct skd_request_context req;
233
234 u8 orphaned;
235
236 void *data_buf;
237 dma_addr_t db_dma_address;
238
239 u8 *msg_buf;
240 dma_addr_t mb_dma_address;
241 };
242
243 struct skd_sg_io {
244 fmode_t mode;
245 void __user *argp;
246
247 struct sg_io_hdr sg;
248
249 u8 cdb[16];
250
251 u32 dxfer_len;
252 u32 iovcnt;
253 struct sg_iovec *iov;
254 struct sg_iovec no_iov_iov;
255
256 struct skd_special_context *skspcl;
257 };
258
259 typedef enum skd_irq_type {
260 SKD_IRQ_LEGACY,
261 SKD_IRQ_MSI,
262 SKD_IRQ_MSIX
263 } skd_irq_type_t;
264
265 #define SKD_MAX_BARS 2
266
267 struct skd_device {
268 volatile void __iomem *mem_map[SKD_MAX_BARS];
269 resource_size_t mem_phys[SKD_MAX_BARS];
270 u32 mem_size[SKD_MAX_BARS];
271
272 struct skd_msix_entry *msix_entries;
273
274 struct pci_dev *pdev;
275 int pcie_error_reporting_is_enabled;
276
277 spinlock_t lock;
278 struct gendisk *disk;
279 struct request_queue *queue;
280 struct device *class_dev;
281 int gendisk_on;
282 int sync_done;
283
284 atomic_t device_count;
285 u32 devno;
286 u32 major;
287 char name[32];
288 char isr_name[30];
289
290 enum skd_drvr_state state;
291 u32 drive_state;
292
293 u32 in_flight;
294 u32 cur_max_queue_depth;
295 u32 queue_low_water_mark;
296 u32 dev_max_queue_depth;
297
298 u32 num_fitmsg_context;
299 u32 num_req_context;
300
301 u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
302 u32 timeout_stamp;
303 struct skd_fitmsg_context *skmsg_free_list;
304 struct skd_fitmsg_context *skmsg_table;
305
306 struct skd_request_context *skreq_free_list;
307 struct skd_request_context *skreq_table;
308
309 struct skd_special_context *skspcl_free_list;
310 struct skd_special_context *skspcl_table;
311
312 struct skd_special_context internal_skspcl;
313 u32 read_cap_blocksize;
314 u32 read_cap_last_lba;
315 int read_cap_is_valid;
316 int inquiry_is_valid;
317 u8 inq_serial_num[13]; /*12 chars plus null term */
318 u8 id_str[80]; /* holds a composite name (pci + sernum) */
319
320 u8 skcomp_cycle;
321 u32 skcomp_ix;
322 struct fit_completion_entry_v1 *skcomp_table;
323 struct fit_comp_error_info *skerr_table;
324 dma_addr_t cq_dma_address;
325
326 wait_queue_head_t waitq;
327
328 struct timer_list timer;
329 u32 timer_countdown;
330 u32 timer_substate;
331
332 int n_special;
333 int sgs_per_request;
334 u32 last_mtd;
335
336 u32 proto_ver;
337
338 int dbg_level;
339 u32 connect_time_stamp;
340 int connect_retries;
341 #define SKD_MAX_CONNECT_RETRIES 16
342 u32 drive_jiffies;
343
344 u32 timo_slot;
345
346
347 struct work_struct completion_worker;
348 };
349
350 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
351 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
352 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
353
354 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
355 {
356 u32 val;
357
358 if (likely(skdev->dbg_level < 2))
359 return readl(skdev->mem_map[1] + offset);
360 else {
361 barrier();
362 val = readl(skdev->mem_map[1] + offset);
363 barrier();
364 pr_debug("%s:%s:%d offset %x = %x\n",
365 skdev->name, __func__, __LINE__, offset, val);
366 return val;
367 }
368
369 }
370
371 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
372 u32 offset)
373 {
374 if (likely(skdev->dbg_level < 2)) {
375 writel(val, skdev->mem_map[1] + offset);
376 barrier();
377 } else {
378 barrier();
379 writel(val, skdev->mem_map[1] + offset);
380 barrier();
381 pr_debug("%s:%s:%d offset %x = %x\n",
382 skdev->name, __func__, __LINE__, offset, val);
383 }
384 }
385
386 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
387 u32 offset)
388 {
389 if (likely(skdev->dbg_level < 2)) {
390 writeq(val, skdev->mem_map[1] + offset);
391 barrier();
392 } else {
393 barrier();
394 writeq(val, skdev->mem_map[1] + offset);
395 barrier();
396 pr_debug("%s:%s:%d offset %x = %016llx\n",
397 skdev->name, __func__, __LINE__, offset, val);
398 }
399 }
400
401
402 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
403 static int skd_isr_type = SKD_IRQ_DEFAULT;
404
405 module_param(skd_isr_type, int, 0444);
406 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
407 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
408
409 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
410 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
411
412 module_param(skd_max_req_per_msg, int, 0444);
413 MODULE_PARM_DESC(skd_max_req_per_msg,
414 "Maximum SCSI requests packed in a single message."
415 " (1-14, default==1)");
416
417 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
418 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
419 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
420
421 module_param(skd_max_queue_depth, int, 0444);
422 MODULE_PARM_DESC(skd_max_queue_depth,
423 "Maximum SCSI requests issued to s1120."
424 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
425
426 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
427 module_param(skd_sgs_per_request, int, 0444);
428 MODULE_PARM_DESC(skd_sgs_per_request,
429 "Maximum SG elements per block request."
430 " (1-4096, default==256)");
431
432 static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
433 module_param(skd_max_pass_thru, int, 0444);
434 MODULE_PARM_DESC(skd_max_pass_thru,
435 "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
436
437 module_param(skd_dbg_level, int, 0444);
438 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
439
440 module_param(skd_isr_comp_limit, int, 0444);
441 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
442
443 /* Major device number dynamically assigned. */
444 static u32 skd_major;
445
446 static void skd_destruct(struct skd_device *skdev);
447 static const struct block_device_operations skd_blockdev_ops;
448 static void skd_send_fitmsg(struct skd_device *skdev,
449 struct skd_fitmsg_context *skmsg);
450 static void skd_send_special_fitmsg(struct skd_device *skdev,
451 struct skd_special_context *skspcl);
452 static void skd_request_fn(struct request_queue *rq);
453 static void skd_end_request(struct skd_device *skdev,
454 struct skd_request_context *skreq, int error);
455 static int skd_preop_sg_list(struct skd_device *skdev,
456 struct skd_request_context *skreq);
457 static void skd_postop_sg_list(struct skd_device *skdev,
458 struct skd_request_context *skreq);
459
460 static void skd_restart_device(struct skd_device *skdev);
461 static int skd_quiesce_dev(struct skd_device *skdev);
462 static int skd_unquiesce_dev(struct skd_device *skdev);
463 static void skd_release_special(struct skd_device *skdev,
464 struct skd_special_context *skspcl);
465 static void skd_disable_interrupts(struct skd_device *skdev);
466 static void skd_isr_fwstate(struct skd_device *skdev);
467 static void skd_recover_requests(struct skd_device *skdev, int requeue);
468 static void skd_soft_reset(struct skd_device *skdev);
469
470 static const char *skd_name(struct skd_device *skdev);
471 const char *skd_drive_state_to_str(int state);
472 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
473 static void skd_log_skdev(struct skd_device *skdev, const char *event);
474 static void skd_log_skmsg(struct skd_device *skdev,
475 struct skd_fitmsg_context *skmsg, const char *event);
476 static void skd_log_skreq(struct skd_device *skdev,
477 struct skd_request_context *skreq, const char *event);
478
479 /*
480 *****************************************************************************
481 * READ/WRITE REQUESTS
482 *****************************************************************************
483 */
484 static void skd_fail_all_pending(struct skd_device *skdev)
485 {
486 struct request_queue *q = skdev->queue;
487 struct request *req;
488
489 for (;; ) {
490 req = blk_peek_request(q);
491 if (req == NULL)
492 break;
493 blk_start_request(req);
494 __blk_end_request_all(req, -EIO);
495 }
496 }
497
498 static void
499 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
500 int data_dir, unsigned lba,
501 unsigned count)
502 {
503 if (data_dir == READ)
504 scsi_req->cdb[0] = 0x28;
505 else
506 scsi_req->cdb[0] = 0x2a;
507
508 scsi_req->cdb[1] = 0;
509 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
510 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
511 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
512 scsi_req->cdb[5] = (lba & 0xff);
513 scsi_req->cdb[6] = 0;
514 scsi_req->cdb[7] = (count & 0xff00) >> 8;
515 scsi_req->cdb[8] = count & 0xff;
516 scsi_req->cdb[9] = 0;
517 }
518
519 static void
520 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
521 struct skd_request_context *skreq)
522 {
523 skreq->flush_cmd = 1;
524
525 scsi_req->cdb[0] = 0x35;
526 scsi_req->cdb[1] = 0;
527 scsi_req->cdb[2] = 0;
528 scsi_req->cdb[3] = 0;
529 scsi_req->cdb[4] = 0;
530 scsi_req->cdb[5] = 0;
531 scsi_req->cdb[6] = 0;
532 scsi_req->cdb[7] = 0;
533 scsi_req->cdb[8] = 0;
534 scsi_req->cdb[9] = 0;
535 }
536
537 static void skd_request_fn_not_online(struct request_queue *q);
538
539 static void skd_request_fn(struct request_queue *q)
540 {
541 struct skd_device *skdev = q->queuedata;
542 struct skd_fitmsg_context *skmsg = NULL;
543 struct fit_msg_hdr *fmh = NULL;
544 struct skd_request_context *skreq;
545 struct request *req = NULL;
546 struct skd_scsi_request *scsi_req;
547 unsigned long io_flags;
548 int error;
549 u32 lba;
550 u32 count;
551 int data_dir;
552 u32 be_lba;
553 u32 be_count;
554 u64 be_dmaa;
555 u64 cmdctxt;
556 u32 timo_slot;
557 void *cmd_ptr;
558 int flush, fua;
559
560 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
561 skd_request_fn_not_online(q);
562 return;
563 }
564
565 if (blk_queue_stopped(skdev->queue)) {
566 if (skdev->skmsg_free_list == NULL ||
567 skdev->skreq_free_list == NULL ||
568 skdev->in_flight >= skdev->queue_low_water_mark)
569 /* There is still some kind of shortage */
570 return;
571
572 queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
573 }
574
575 /*
576 * Stop conditions:
577 * - There are no more native requests
578 * - There are already the maximum number of requests in progress
579 * - There are no more skd_request_context entries
580 * - There are no more FIT msg buffers
581 */
582 for (;; ) {
583
584 flush = fua = 0;
585
586 req = blk_peek_request(q);
587
588 /* Are there any native requests to start? */
589 if (req == NULL)
590 break;
591
592 lba = (u32)blk_rq_pos(req);
593 count = blk_rq_sectors(req);
594 data_dir = rq_data_dir(req);
595 io_flags = req->cmd_flags;
596
597 if (req_op(req) == REQ_OP_FLUSH)
598 flush++;
599
600 if (io_flags & REQ_FUA)
601 fua++;
602
603 pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
604 "count=%u(0x%x) dir=%d\n",
605 skdev->name, __func__, __LINE__,
606 req, lba, lba, count, count, data_dir);
607
608 /* At this point we know there is a request */
609
610 /* Are too many requets already in progress? */
611 if (skdev->in_flight >= skdev->cur_max_queue_depth) {
612 pr_debug("%s:%s:%d qdepth %d, limit %d\n",
613 skdev->name, __func__, __LINE__,
614 skdev->in_flight, skdev->cur_max_queue_depth);
615 break;
616 }
617
618 /* Is a skd_request_context available? */
619 skreq = skdev->skreq_free_list;
620 if (skreq == NULL) {
621 pr_debug("%s:%s:%d Out of req=%p\n",
622 skdev->name, __func__, __LINE__, q);
623 break;
624 }
625 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
626 SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
627
628 /* Now we check to see if we can get a fit msg */
629 if (skmsg == NULL) {
630 if (skdev->skmsg_free_list == NULL) {
631 pr_debug("%s:%s:%d Out of msg\n",
632 skdev->name, __func__, __LINE__);
633 break;
634 }
635 }
636
637 skreq->flush_cmd = 0;
638 skreq->n_sg = 0;
639 skreq->sg_byte_count = 0;
640
641 /*
642 * OK to now dequeue request from q.
643 *
644 * At this point we are comitted to either start or reject
645 * the native request. Note that skd_request_context is
646 * available but is still at the head of the free list.
647 */
648 blk_start_request(req);
649 skreq->req = req;
650 skreq->fitmsg_id = 0;
651
652 /* Either a FIT msg is in progress or we have to start one. */
653 if (skmsg == NULL) {
654 /* Are there any FIT msg buffers available? */
655 skmsg = skdev->skmsg_free_list;
656 if (skmsg == NULL) {
657 pr_debug("%s:%s:%d Out of msg skdev=%p\n",
658 skdev->name, __func__, __LINE__,
659 skdev);
660 break;
661 }
662 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
663 SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
664
665 skdev->skmsg_free_list = skmsg->next;
666
667 skmsg->state = SKD_MSG_STATE_BUSY;
668 skmsg->id += SKD_ID_INCR;
669
670 /* Initialize the FIT msg header */
671 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
672 memset(fmh, 0, sizeof(*fmh));
673 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
674 skmsg->length = sizeof(*fmh);
675 }
676
677 skreq->fitmsg_id = skmsg->id;
678
679 /*
680 * Note that a FIT msg may have just been started
681 * but contains no SoFIT requests yet.
682 */
683
684 /*
685 * Transcode the request, checking as we go. The outcome of
686 * the transcoding is represented by the error variable.
687 */
688 cmd_ptr = &skmsg->msg_buf[skmsg->length];
689 memset(cmd_ptr, 0, 32);
690
691 be_lba = cpu_to_be32(lba);
692 be_count = cpu_to_be32(count);
693 be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
694 cmdctxt = skreq->id + SKD_ID_INCR;
695
696 scsi_req = cmd_ptr;
697 scsi_req->hdr.tag = cmdctxt;
698 scsi_req->hdr.sg_list_dma_address = be_dmaa;
699
700 if (data_dir == READ)
701 skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
702 else
703 skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
704
705 if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
706 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
707 SKD_ASSERT(skreq->flush_cmd == 1);
708
709 } else {
710 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
711 }
712
713 if (fua)
714 scsi_req->cdb[1] |= SKD_FUA_NV;
715
716 if (!req->bio)
717 goto skip_sg;
718
719 error = skd_preop_sg_list(skdev, skreq);
720
721 if (error != 0) {
722 /*
723 * Complete the native request with error.
724 * Note that the request context is still at the
725 * head of the free list, and that the SoFIT request
726 * was encoded into the FIT msg buffer but the FIT
727 * msg length has not been updated. In short, the
728 * only resource that has been allocated but might
729 * not be used is that the FIT msg could be empty.
730 */
731 pr_debug("%s:%s:%d error Out\n",
732 skdev->name, __func__, __LINE__);
733 skd_end_request(skdev, skreq, error);
734 continue;
735 }
736
737 skip_sg:
738 scsi_req->hdr.sg_list_len_bytes =
739 cpu_to_be32(skreq->sg_byte_count);
740
741 /* Complete resource allocations. */
742 skdev->skreq_free_list = skreq->next;
743 skreq->state = SKD_REQ_STATE_BUSY;
744 skreq->id += SKD_ID_INCR;
745
746 skmsg->length += sizeof(struct skd_scsi_request);
747 fmh->num_protocol_cmds_coalesced++;
748
749 /*
750 * Update the active request counts.
751 * Capture the timeout timestamp.
752 */
753 skreq->timeout_stamp = skdev->timeout_stamp;
754 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
755 skdev->timeout_slot[timo_slot]++;
756 skdev->in_flight++;
757 pr_debug("%s:%s:%d req=0x%x busy=%d\n",
758 skdev->name, __func__, __LINE__,
759 skreq->id, skdev->in_flight);
760
761 /*
762 * If the FIT msg buffer is full send it.
763 */
764 if (skmsg->length >= SKD_N_FITMSG_BYTES ||
765 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
766 skd_send_fitmsg(skdev, skmsg);
767 skmsg = NULL;
768 fmh = NULL;
769 }
770 }
771
772 /*
773 * Is a FIT msg in progress? If it is empty put the buffer back
774 * on the free list. If it is non-empty send what we got.
775 * This minimizes latency when there are fewer requests than
776 * what fits in a FIT msg.
777 */
778 if (skmsg != NULL) {
779 /* Bigger than just a FIT msg header? */
780 if (skmsg->length > sizeof(struct fit_msg_hdr)) {
781 pr_debug("%s:%s:%d sending msg=%p, len %d\n",
782 skdev->name, __func__, __LINE__,
783 skmsg, skmsg->length);
784 skd_send_fitmsg(skdev, skmsg);
785 } else {
786 /*
787 * The FIT msg is empty. It means we got started
788 * on the msg, but the requests were rejected.
789 */
790 skmsg->state = SKD_MSG_STATE_IDLE;
791 skmsg->id += SKD_ID_INCR;
792 skmsg->next = skdev->skmsg_free_list;
793 skdev->skmsg_free_list = skmsg;
794 }
795 skmsg = NULL;
796 fmh = NULL;
797 }
798
799 /*
800 * If req is non-NULL it means there is something to do but
801 * we are out of a resource.
802 */
803 if (req)
804 blk_stop_queue(skdev->queue);
805 }
806
807 static void skd_end_request(struct skd_device *skdev,
808 struct skd_request_context *skreq, int error)
809 {
810 if (unlikely(error)) {
811 struct request *req = skreq->req;
812 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
813 u32 lba = (u32)blk_rq_pos(req);
814 u32 count = blk_rq_sectors(req);
815
816 pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
817 skd_name(skdev), cmd, lba, count, skreq->id);
818 } else
819 pr_debug("%s:%s:%d id=0x%x error=%d\n",
820 skdev->name, __func__, __LINE__, skreq->id, error);
821
822 __blk_end_request_all(skreq->req, error);
823 }
824
825 static int skd_preop_sg_list(struct skd_device *skdev,
826 struct skd_request_context *skreq)
827 {
828 struct request *req = skreq->req;
829 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
830 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
831 struct scatterlist *sg = &skreq->sg[0];
832 int n_sg;
833 int i;
834
835 skreq->sg_byte_count = 0;
836
837 /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
838 skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
839
840 n_sg = blk_rq_map_sg(skdev->queue, req, sg);
841 if (n_sg <= 0)
842 return -EINVAL;
843
844 /*
845 * Map scatterlist to PCI bus addresses.
846 * Note PCI might change the number of entries.
847 */
848 n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
849 if (n_sg <= 0)
850 return -EINVAL;
851
852 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
853
854 skreq->n_sg = n_sg;
855
856 for (i = 0; i < n_sg; i++) {
857 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
858 u32 cnt = sg_dma_len(&sg[i]);
859 uint64_t dma_addr = sg_dma_address(&sg[i]);
860
861 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
862 sgd->byte_count = cnt;
863 skreq->sg_byte_count += cnt;
864 sgd->host_side_addr = dma_addr;
865 sgd->dev_side_addr = 0;
866 }
867
868 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
869 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
870
871 if (unlikely(skdev->dbg_level > 1)) {
872 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
873 skdev->name, __func__, __LINE__,
874 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
875 for (i = 0; i < n_sg; i++) {
876 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
877 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
878 "addr=0x%llx next=0x%llx\n",
879 skdev->name, __func__, __LINE__,
880 i, sgd->byte_count, sgd->control,
881 sgd->host_side_addr, sgd->next_desc_ptr);
882 }
883 }
884
885 return 0;
886 }
887
888 static void skd_postop_sg_list(struct skd_device *skdev,
889 struct skd_request_context *skreq)
890 {
891 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
892 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
893
894 /*
895 * restore the next ptr for next IO request so we
896 * don't have to set it every time.
897 */
898 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
899 skreq->sksg_dma_address +
900 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
901 pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
902 }
903
904 static void skd_request_fn_not_online(struct request_queue *q)
905 {
906 struct skd_device *skdev = q->queuedata;
907 int error;
908
909 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
910
911 skd_log_skdev(skdev, "req_not_online");
912 switch (skdev->state) {
913 case SKD_DRVR_STATE_PAUSING:
914 case SKD_DRVR_STATE_PAUSED:
915 case SKD_DRVR_STATE_STARTING:
916 case SKD_DRVR_STATE_RESTARTING:
917 case SKD_DRVR_STATE_WAIT_BOOT:
918 /* In case of starting, we haven't started the queue,
919 * so we can't get here... but requests are
920 * possibly hanging out waiting for us because we
921 * reported the dev/skd0 already. They'll wait
922 * forever if connect doesn't complete.
923 * What to do??? delay dev/skd0 ??
924 */
925 case SKD_DRVR_STATE_BUSY:
926 case SKD_DRVR_STATE_BUSY_IMMINENT:
927 case SKD_DRVR_STATE_BUSY_ERASE:
928 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
929 return;
930
931 case SKD_DRVR_STATE_BUSY_SANITIZE:
932 case SKD_DRVR_STATE_STOPPING:
933 case SKD_DRVR_STATE_SYNCING:
934 case SKD_DRVR_STATE_FAULT:
935 case SKD_DRVR_STATE_DISAPPEARED:
936 default:
937 error = -EIO;
938 break;
939 }
940
941 /* If we get here, terminate all pending block requeusts
942 * with EIO and any scsi pass thru with appropriate sense
943 */
944
945 skd_fail_all_pending(skdev);
946 }
947
948 /*
949 *****************************************************************************
950 * TIMER
951 *****************************************************************************
952 */
953
954 static void skd_timer_tick_not_online(struct skd_device *skdev);
955
956 static void skd_timer_tick(ulong arg)
957 {
958 struct skd_device *skdev = (struct skd_device *)arg;
959
960 u32 timo_slot;
961 u32 overdue_timestamp;
962 unsigned long reqflags;
963 u32 state;
964
965 if (skdev->state == SKD_DRVR_STATE_FAULT)
966 /* The driver has declared fault, and we want it to
967 * stay that way until driver is reloaded.
968 */
969 return;
970
971 spin_lock_irqsave(&skdev->lock, reqflags);
972
973 state = SKD_READL(skdev, FIT_STATUS);
974 state &= FIT_SR_DRIVE_STATE_MASK;
975 if (state != skdev->drive_state)
976 skd_isr_fwstate(skdev);
977
978 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
979 skd_timer_tick_not_online(skdev);
980 goto timer_func_out;
981 }
982 skdev->timeout_stamp++;
983 timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
984
985 /*
986 * All requests that happened during the previous use of
987 * this slot should be done by now. The previous use was
988 * over 7 seconds ago.
989 */
990 if (skdev->timeout_slot[timo_slot] == 0)
991 goto timer_func_out;
992
993 /* Something is overdue */
994 overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
995
996 pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
997 skdev->name, __func__, __LINE__,
998 skdev->timeout_slot[timo_slot], skdev->in_flight);
999 pr_err("(%s): Overdue IOs (%d), busy %d\n",
1000 skd_name(skdev), skdev->timeout_slot[timo_slot],
1001 skdev->in_flight);
1002
1003 skdev->timer_countdown = SKD_DRAINING_TIMO;
1004 skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
1005 skdev->timo_slot = timo_slot;
1006 blk_stop_queue(skdev->queue);
1007
1008 timer_func_out:
1009 mod_timer(&skdev->timer, (jiffies + HZ));
1010
1011 spin_unlock_irqrestore(&skdev->lock, reqflags);
1012 }
1013
1014 static void skd_timer_tick_not_online(struct skd_device *skdev)
1015 {
1016 switch (skdev->state) {
1017 case SKD_DRVR_STATE_IDLE:
1018 case SKD_DRVR_STATE_LOAD:
1019 break;
1020 case SKD_DRVR_STATE_BUSY_SANITIZE:
1021 pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
1022 skdev->name, __func__, __LINE__,
1023 skdev->drive_state, skdev->state);
1024 /* If we've been in sanitize for 3 seconds, we figure we're not
1025 * going to get anymore completions, so recover requests now
1026 */
1027 if (skdev->timer_countdown > 0) {
1028 skdev->timer_countdown--;
1029 return;
1030 }
1031 skd_recover_requests(skdev, 0);
1032 break;
1033
1034 case SKD_DRVR_STATE_BUSY:
1035 case SKD_DRVR_STATE_BUSY_IMMINENT:
1036 case SKD_DRVR_STATE_BUSY_ERASE:
1037 pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
1038 skdev->name, __func__, __LINE__,
1039 skdev->state, skdev->timer_countdown);
1040 if (skdev->timer_countdown > 0) {
1041 skdev->timer_countdown--;
1042 return;
1043 }
1044 pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
1045 skdev->name, __func__, __LINE__,
1046 skdev->state, skdev->timer_countdown);
1047 skd_restart_device(skdev);
1048 break;
1049
1050 case SKD_DRVR_STATE_WAIT_BOOT:
1051 case SKD_DRVR_STATE_STARTING:
1052 if (skdev->timer_countdown > 0) {
1053 skdev->timer_countdown--;
1054 return;
1055 }
1056 /* For now, we fault the drive. Could attempt resets to
1057 * revcover at some point. */
1058 skdev->state = SKD_DRVR_STATE_FAULT;
1059
1060 pr_err("(%s): DriveFault Connect Timeout (%x)\n",
1061 skd_name(skdev), skdev->drive_state);
1062
1063 /*start the queue so we can respond with error to requests */
1064 /* wakeup anyone waiting for startup complete */
1065 blk_start_queue(skdev->queue);
1066 skdev->gendisk_on = -1;
1067 wake_up_interruptible(&skdev->waitq);
1068 break;
1069
1070 case SKD_DRVR_STATE_ONLINE:
1071 /* shouldn't get here. */
1072 break;
1073
1074 case SKD_DRVR_STATE_PAUSING:
1075 case SKD_DRVR_STATE_PAUSED:
1076 break;
1077
1078 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
1079 pr_debug("%s:%s:%d "
1080 "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
1081 skdev->name, __func__, __LINE__,
1082 skdev->timo_slot,
1083 skdev->timer_countdown,
1084 skdev->in_flight,
1085 skdev->timeout_slot[skdev->timo_slot]);
1086 /* if the slot has cleared we can let the I/O continue */
1087 if (skdev->timeout_slot[skdev->timo_slot] == 0) {
1088 pr_debug("%s:%s:%d Slot drained, starting queue.\n",
1089 skdev->name, __func__, __LINE__);
1090 skdev->state = SKD_DRVR_STATE_ONLINE;
1091 blk_start_queue(skdev->queue);
1092 return;
1093 }
1094 if (skdev->timer_countdown > 0) {
1095 skdev->timer_countdown--;
1096 return;
1097 }
1098 skd_restart_device(skdev);
1099 break;
1100
1101 case SKD_DRVR_STATE_RESTARTING:
1102 if (skdev->timer_countdown > 0) {
1103 skdev->timer_countdown--;
1104 return;
1105 }
1106 /* For now, we fault the drive. Could attempt resets to
1107 * revcover at some point. */
1108 skdev->state = SKD_DRVR_STATE_FAULT;
1109 pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
1110 skd_name(skdev), skdev->drive_state);
1111
1112 /*
1113 * Recovering does two things:
1114 * 1. completes IO with error
1115 * 2. reclaims dma resources
1116 * When is it safe to recover requests?
1117 * - if the drive state is faulted
1118 * - if the state is still soft reset after out timeout
1119 * - if the drive registers are dead (state = FF)
1120 * If it is "unsafe", we still need to recover, so we will
1121 * disable pci bus mastering and disable our interrupts.
1122 */
1123
1124 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
1125 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
1126 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
1127 /* It never came out of soft reset. Try to
1128 * recover the requests and then let them
1129 * fail. This is to mitigate hung processes. */
1130 skd_recover_requests(skdev, 0);
1131 else {
1132 pr_err("(%s): Disable BusMaster (%x)\n",
1133 skd_name(skdev), skdev->drive_state);
1134 pci_disable_device(skdev->pdev);
1135 skd_disable_interrupts(skdev);
1136 skd_recover_requests(skdev, 0);
1137 }
1138
1139 /*start the queue so we can respond with error to requests */
1140 /* wakeup anyone waiting for startup complete */
1141 blk_start_queue(skdev->queue);
1142 skdev->gendisk_on = -1;
1143 wake_up_interruptible(&skdev->waitq);
1144 break;
1145
1146 case SKD_DRVR_STATE_RESUMING:
1147 case SKD_DRVR_STATE_STOPPING:
1148 case SKD_DRVR_STATE_SYNCING:
1149 case SKD_DRVR_STATE_FAULT:
1150 case SKD_DRVR_STATE_DISAPPEARED:
1151 default:
1152 break;
1153 }
1154 }
1155
1156 static int skd_start_timer(struct skd_device *skdev)
1157 {
1158 int rc;
1159
1160 init_timer(&skdev->timer);
1161 setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
1162
1163 rc = mod_timer(&skdev->timer, (jiffies + HZ));
1164 if (rc)
1165 pr_err("%s: failed to start timer %d\n",
1166 __func__, rc);
1167 return rc;
1168 }
1169
1170 static void skd_kill_timer(struct skd_device *skdev)
1171 {
1172 del_timer_sync(&skdev->timer);
1173 }
1174
1175 /*
1176 *****************************************************************************
1177 * IOCTL
1178 *****************************************************************************
1179 */
1180 static int skd_ioctl_sg_io(struct skd_device *skdev,
1181 fmode_t mode, void __user *argp);
1182 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1183 struct skd_sg_io *sksgio);
1184 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1185 struct skd_sg_io *sksgio);
1186 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1187 struct skd_sg_io *sksgio);
1188 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1189 struct skd_sg_io *sksgio, int dxfer_dir);
1190 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1191 struct skd_sg_io *sksgio);
1192 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
1193 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1194 struct skd_sg_io *sksgio);
1195 static int skd_sg_io_put_status(struct skd_device *skdev,
1196 struct skd_sg_io *sksgio);
1197
1198 static void skd_complete_special(struct skd_device *skdev,
1199 volatile struct fit_completion_entry_v1
1200 *skcomp,
1201 volatile struct fit_comp_error_info *skerr,
1202 struct skd_special_context *skspcl);
1203
1204 static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
1205 uint cmd_in, ulong arg)
1206 {
1207 int rc = 0;
1208 struct gendisk *disk = bdev->bd_disk;
1209 struct skd_device *skdev = disk->private_data;
1210 void __user *p = (void *)arg;
1211
1212 pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
1213 skdev->name, __func__, __LINE__,
1214 disk->disk_name, current->comm, mode, cmd_in, arg);
1215
1216 if (!capable(CAP_SYS_ADMIN))
1217 return -EPERM;
1218
1219 switch (cmd_in) {
1220 case SG_SET_TIMEOUT:
1221 case SG_GET_TIMEOUT:
1222 case SG_GET_VERSION_NUM:
1223 rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
1224 break;
1225 case SG_IO:
1226 rc = skd_ioctl_sg_io(skdev, mode, p);
1227 break;
1228
1229 default:
1230 rc = -ENOTTY;
1231 break;
1232 }
1233
1234 pr_debug("%s:%s:%d %s: completion rc %d\n",
1235 skdev->name, __func__, __LINE__, disk->disk_name, rc);
1236 return rc;
1237 }
1238
1239 static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
1240 void __user *argp)
1241 {
1242 int rc;
1243 struct skd_sg_io sksgio;
1244
1245 memset(&sksgio, 0, sizeof(sksgio));
1246 sksgio.mode = mode;
1247 sksgio.argp = argp;
1248 sksgio.iov = &sksgio.no_iov_iov;
1249
1250 switch (skdev->state) {
1251 case SKD_DRVR_STATE_ONLINE:
1252 case SKD_DRVR_STATE_BUSY_IMMINENT:
1253 break;
1254
1255 default:
1256 pr_debug("%s:%s:%d drive not online\n",
1257 skdev->name, __func__, __LINE__);
1258 rc = -ENXIO;
1259 goto out;
1260 }
1261
1262 rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
1263 if (rc)
1264 goto out;
1265
1266 rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
1267 if (rc)
1268 goto out;
1269
1270 rc = skd_sg_io_prep_buffering(skdev, &sksgio);
1271 if (rc)
1272 goto out;
1273
1274 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
1275 if (rc)
1276 goto out;
1277
1278 rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
1279 if (rc)
1280 goto out;
1281
1282 rc = skd_sg_io_await(skdev, &sksgio);
1283 if (rc)
1284 goto out;
1285
1286 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
1287 if (rc)
1288 goto out;
1289
1290 rc = skd_sg_io_put_status(skdev, &sksgio);
1291 if (rc)
1292 goto out;
1293
1294 rc = 0;
1295
1296 out:
1297 skd_sg_io_release_skspcl(skdev, &sksgio);
1298
1299 if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
1300 kfree(sksgio.iov);
1301 return rc;
1302 }
1303
1304 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1305 struct skd_sg_io *sksgio)
1306 {
1307 struct sg_io_hdr *sgp = &sksgio->sg;
1308 int i, acc;
1309
1310 if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
1311 pr_debug("%s:%s:%d access sg failed %p\n",
1312 skdev->name, __func__, __LINE__, sksgio->argp);
1313 return -EFAULT;
1314 }
1315
1316 if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
1317 pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
1318 skdev->name, __func__, __LINE__, sksgio->argp);
1319 return -EFAULT;
1320 }
1321
1322 if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
1323 pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
1324 skdev->name, __func__, __LINE__, sgp->interface_id);
1325 return -EINVAL;
1326 }
1327
1328 if (sgp->cmd_len > sizeof(sksgio->cdb)) {
1329 pr_debug("%s:%s:%d cmd_len invalid %d\n",
1330 skdev->name, __func__, __LINE__, sgp->cmd_len);
1331 return -EINVAL;
1332 }
1333
1334 if (sgp->iovec_count > 256) {
1335 pr_debug("%s:%s:%d iovec_count invalid %d\n",
1336 skdev->name, __func__, __LINE__, sgp->iovec_count);
1337 return -EINVAL;
1338 }
1339
1340 if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
1341 pr_debug("%s:%s:%d dxfer_len invalid %d\n",
1342 skdev->name, __func__, __LINE__, sgp->dxfer_len);
1343 return -EINVAL;
1344 }
1345
1346 switch (sgp->dxfer_direction) {
1347 case SG_DXFER_NONE:
1348 acc = -1;
1349 break;
1350
1351 case SG_DXFER_TO_DEV:
1352 acc = VERIFY_READ;
1353 break;
1354
1355 case SG_DXFER_FROM_DEV:
1356 case SG_DXFER_TO_FROM_DEV:
1357 acc = VERIFY_WRITE;
1358 break;
1359
1360 default:
1361 pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
1362 skdev->name, __func__, __LINE__, sgp->dxfer_direction);
1363 return -EINVAL;
1364 }
1365
1366 if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
1367 pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
1368 skdev->name, __func__, __LINE__, sgp->cmdp);
1369 return -EFAULT;
1370 }
1371
1372 if (sgp->mx_sb_len != 0) {
1373 if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
1374 pr_debug("%s:%s:%d access sbp failed %p\n",
1375 skdev->name, __func__, __LINE__, sgp->sbp);
1376 return -EFAULT;
1377 }
1378 }
1379
1380 if (sgp->iovec_count == 0) {
1381 sksgio->iov[0].iov_base = sgp->dxferp;
1382 sksgio->iov[0].iov_len = sgp->dxfer_len;
1383 sksgio->iovcnt = 1;
1384 sksgio->dxfer_len = sgp->dxfer_len;
1385 } else {
1386 struct sg_iovec *iov;
1387 uint nbytes = sizeof(*iov) * sgp->iovec_count;
1388 size_t iov_data_len;
1389
1390 iov = kmalloc(nbytes, GFP_KERNEL);
1391 if (iov == NULL) {
1392 pr_debug("%s:%s:%d alloc iovec failed %d\n",
1393 skdev->name, __func__, __LINE__,
1394 sgp->iovec_count);
1395 return -ENOMEM;
1396 }
1397 sksgio->iov = iov;
1398 sksgio->iovcnt = sgp->iovec_count;
1399
1400 if (copy_from_user(iov, sgp->dxferp, nbytes)) {
1401 pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
1402 skdev->name, __func__, __LINE__, sgp->dxferp);
1403 return -EFAULT;
1404 }
1405
1406 /*
1407 * Sum up the vecs, making sure they don't overflow
1408 */
1409 iov_data_len = 0;
1410 for (i = 0; i < sgp->iovec_count; i++) {
1411 if (iov_data_len + iov[i].iov_len < iov_data_len)
1412 return -EINVAL;
1413 iov_data_len += iov[i].iov_len;
1414 }
1415
1416 /* SG_IO howto says that the shorter of the two wins */
1417 if (sgp->dxfer_len < iov_data_len) {
1418 sksgio->iovcnt = iov_shorten((struct iovec *)iov,
1419 sgp->iovec_count,
1420 sgp->dxfer_len);
1421 sksgio->dxfer_len = sgp->dxfer_len;
1422 } else
1423 sksgio->dxfer_len = iov_data_len;
1424 }
1425
1426 if (sgp->dxfer_direction != SG_DXFER_NONE) {
1427 struct sg_iovec *iov = sksgio->iov;
1428 for (i = 0; i < sksgio->iovcnt; i++, iov++) {
1429 if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
1430 pr_debug("%s:%s:%d access data failed %p/%d\n",
1431 skdev->name, __func__, __LINE__,
1432 iov->iov_base, (int)iov->iov_len);
1433 return -EFAULT;
1434 }
1435 }
1436 }
1437
1438 return 0;
1439 }
1440
1441 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1442 struct skd_sg_io *sksgio)
1443 {
1444 struct skd_special_context *skspcl = NULL;
1445 int rc;
1446
1447 for (;;) {
1448 ulong flags;
1449
1450 spin_lock_irqsave(&skdev->lock, flags);
1451 skspcl = skdev->skspcl_free_list;
1452 if (skspcl != NULL) {
1453 skdev->skspcl_free_list =
1454 (struct skd_special_context *)skspcl->req.next;
1455 skspcl->req.id += SKD_ID_INCR;
1456 skspcl->req.state = SKD_REQ_STATE_SETUP;
1457 skspcl->orphaned = 0;
1458 skspcl->req.n_sg = 0;
1459 }
1460 spin_unlock_irqrestore(&skdev->lock, flags);
1461
1462 if (skspcl != NULL) {
1463 rc = 0;
1464 break;
1465 }
1466
1467 pr_debug("%s:%s:%d blocking\n",
1468 skdev->name, __func__, __LINE__);
1469
1470 rc = wait_event_interruptible_timeout(
1471 skdev->waitq,
1472 (skdev->skspcl_free_list != NULL),
1473 msecs_to_jiffies(sksgio->sg.timeout));
1474
1475 pr_debug("%s:%s:%d unblocking, rc=%d\n",
1476 skdev->name, __func__, __LINE__, rc);
1477
1478 if (rc <= 0) {
1479 if (rc == 0)
1480 rc = -ETIMEDOUT;
1481 else
1482 rc = -EINTR;
1483 break;
1484 }
1485 /*
1486 * If we get here rc > 0 meaning the timeout to
1487 * wait_event_interruptible_timeout() had time left, hence the
1488 * sought event -- non-empty free list -- happened.
1489 * Retry the allocation.
1490 */
1491 }
1492 sksgio->skspcl = skspcl;
1493
1494 return rc;
1495 }
1496
1497 static int skd_skreq_prep_buffering(struct skd_device *skdev,
1498 struct skd_request_context *skreq,
1499 u32 dxfer_len)
1500 {
1501 u32 resid = dxfer_len;
1502
1503 /*
1504 * The DMA engine must have aligned addresses and byte counts.
1505 */
1506 resid += (-resid) & 3;
1507 skreq->sg_byte_count = resid;
1508
1509 skreq->n_sg = 0;
1510
1511 while (resid > 0) {
1512 u32 nbytes = PAGE_SIZE;
1513 u32 ix = skreq->n_sg;
1514 struct scatterlist *sg = &skreq->sg[ix];
1515 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1516 struct page *page;
1517
1518 if (nbytes > resid)
1519 nbytes = resid;
1520
1521 page = alloc_page(GFP_KERNEL);
1522 if (page == NULL)
1523 return -ENOMEM;
1524
1525 sg_set_page(sg, page, nbytes, 0);
1526
1527 /* TODO: This should be going through a pci_???()
1528 * routine to do proper mapping. */
1529 sksg->control = FIT_SGD_CONTROL_NOT_LAST;
1530 sksg->byte_count = nbytes;
1531
1532 sksg->host_side_addr = sg_phys(sg);
1533
1534 sksg->dev_side_addr = 0;
1535 sksg->next_desc_ptr = skreq->sksg_dma_address +
1536 (ix + 1) * sizeof(*sksg);
1537
1538 skreq->n_sg++;
1539 resid -= nbytes;
1540 }
1541
1542 if (skreq->n_sg > 0) {
1543 u32 ix = skreq->n_sg - 1;
1544 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1545
1546 sksg->control = FIT_SGD_CONTROL_LAST;
1547 sksg->next_desc_ptr = 0;
1548 }
1549
1550 if (unlikely(skdev->dbg_level > 1)) {
1551 u32 i;
1552
1553 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
1554 skdev->name, __func__, __LINE__,
1555 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
1556 for (i = 0; i < skreq->n_sg; i++) {
1557 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
1558
1559 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
1560 "addr=0x%llx next=0x%llx\n",
1561 skdev->name, __func__, __LINE__,
1562 i, sgd->byte_count, sgd->control,
1563 sgd->host_side_addr, sgd->next_desc_ptr);
1564 }
1565 }
1566
1567 return 0;
1568 }
1569
1570 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1571 struct skd_sg_io *sksgio)
1572 {
1573 struct skd_special_context *skspcl = sksgio->skspcl;
1574 struct skd_request_context *skreq = &skspcl->req;
1575 u32 dxfer_len = sksgio->dxfer_len;
1576 int rc;
1577
1578 rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
1579 /*
1580 * Eventually, errors or not, skd_release_special() is called
1581 * to recover allocations including partial allocations.
1582 */
1583 return rc;
1584 }
1585
1586 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1587 struct skd_sg_io *sksgio, int dxfer_dir)
1588 {
1589 struct skd_special_context *skspcl = sksgio->skspcl;
1590 u32 iov_ix = 0;
1591 struct sg_iovec curiov;
1592 u32 sksg_ix = 0;
1593 u8 *bufp = NULL;
1594 u32 buf_len = 0;
1595 u32 resid = sksgio->dxfer_len;
1596 int rc;
1597
1598 curiov.iov_len = 0;
1599 curiov.iov_base = NULL;
1600
1601 if (dxfer_dir != sksgio->sg.dxfer_direction) {
1602 if (dxfer_dir != SG_DXFER_TO_DEV ||
1603 sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
1604 return 0;
1605 }
1606
1607 while (resid > 0) {
1608 u32 nbytes = PAGE_SIZE;
1609
1610 if (curiov.iov_len == 0) {
1611 curiov = sksgio->iov[iov_ix++];
1612 continue;
1613 }
1614
1615 if (buf_len == 0) {
1616 struct page *page;
1617 page = sg_page(&skspcl->req.sg[sksg_ix++]);
1618 bufp = page_address(page);
1619 buf_len = PAGE_SIZE;
1620 }
1621
1622 nbytes = min_t(u32, nbytes, resid);
1623 nbytes = min_t(u32, nbytes, curiov.iov_len);
1624 nbytes = min_t(u32, nbytes, buf_len);
1625
1626 if (dxfer_dir == SG_DXFER_TO_DEV)
1627 rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
1628 else
1629 rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
1630
1631 if (rc)
1632 return -EFAULT;
1633
1634 resid -= nbytes;
1635 curiov.iov_len -= nbytes;
1636 curiov.iov_base += nbytes;
1637 buf_len -= nbytes;
1638 }
1639
1640 return 0;
1641 }
1642
1643 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1644 struct skd_sg_io *sksgio)
1645 {
1646 struct skd_special_context *skspcl = sksgio->skspcl;
1647 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
1648 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
1649
1650 memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
1651
1652 /* Initialize the FIT msg header */
1653 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1654 fmh->num_protocol_cmds_coalesced = 1;
1655
1656 /* Initialize the SCSI request */
1657 if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
1658 scsi_req->hdr.sg_list_dma_address =
1659 cpu_to_be64(skspcl->req.sksg_dma_address);
1660 scsi_req->hdr.tag = skspcl->req.id;
1661 scsi_req->hdr.sg_list_len_bytes =
1662 cpu_to_be32(skspcl->req.sg_byte_count);
1663 memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
1664
1665 skspcl->req.state = SKD_REQ_STATE_BUSY;
1666 skd_send_special_fitmsg(skdev, skspcl);
1667
1668 return 0;
1669 }
1670
1671 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
1672 {
1673 unsigned long flags;
1674 int rc;
1675
1676 rc = wait_event_interruptible_timeout(skdev->waitq,
1677 (sksgio->skspcl->req.state !=
1678 SKD_REQ_STATE_BUSY),
1679 msecs_to_jiffies(sksgio->sg.
1680 timeout));
1681
1682 spin_lock_irqsave(&skdev->lock, flags);
1683
1684 if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
1685 pr_debug("%s:%s:%d skspcl %p aborted\n",
1686 skdev->name, __func__, __LINE__, sksgio->skspcl);
1687
1688 /* Build check cond, sense and let command finish. */
1689 /* For a timeout, we must fabricate completion and sense
1690 * data to complete the command */
1691 sksgio->skspcl->req.completion.status =
1692 SAM_STAT_CHECK_CONDITION;
1693
1694 memset(&sksgio->skspcl->req.err_info, 0,
1695 sizeof(sksgio->skspcl->req.err_info));
1696 sksgio->skspcl->req.err_info.type = 0x70;
1697 sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
1698 sksgio->skspcl->req.err_info.code = 0x44;
1699 sksgio->skspcl->req.err_info.qual = 0;
1700 rc = 0;
1701 } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
1702 /* No longer on the adapter. We finish. */
1703 rc = 0;
1704 else {
1705 /* Something's gone wrong. Still busy. Timeout or
1706 * user interrupted (control-C). Mark as an orphan
1707 * so it will be disposed when completed. */
1708 sksgio->skspcl->orphaned = 1;
1709 sksgio->skspcl = NULL;
1710 if (rc == 0) {
1711 pr_debug("%s:%s:%d timed out %p (%u ms)\n",
1712 skdev->name, __func__, __LINE__,
1713 sksgio, sksgio->sg.timeout);
1714 rc = -ETIMEDOUT;
1715 } else {
1716 pr_debug("%s:%s:%d cntlc %p\n",
1717 skdev->name, __func__, __LINE__, sksgio);
1718 rc = -EINTR;
1719 }
1720 }
1721
1722 spin_unlock_irqrestore(&skdev->lock, flags);
1723
1724 return rc;
1725 }
1726
1727 static int skd_sg_io_put_status(struct skd_device *skdev,
1728 struct skd_sg_io *sksgio)
1729 {
1730 struct sg_io_hdr *sgp = &sksgio->sg;
1731 struct skd_special_context *skspcl = sksgio->skspcl;
1732 int resid = 0;
1733
1734 u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
1735
1736 sgp->status = skspcl->req.completion.status;
1737 resid = sksgio->dxfer_len - nb;
1738
1739 sgp->masked_status = sgp->status & STATUS_MASK;
1740 sgp->msg_status = 0;
1741 sgp->host_status = 0;
1742 sgp->driver_status = 0;
1743 sgp->resid = resid;
1744 if (sgp->masked_status || sgp->host_status || sgp->driver_status)
1745 sgp->info |= SG_INFO_CHECK;
1746
1747 pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
1748 skdev->name, __func__, __LINE__,
1749 sgp->status, sgp->masked_status, sgp->resid);
1750
1751 if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
1752 if (sgp->mx_sb_len > 0) {
1753 struct fit_comp_error_info *ei = &skspcl->req.err_info;
1754 u32 nbytes = sizeof(*ei);
1755
1756 nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
1757
1758 sgp->sb_len_wr = nbytes;
1759
1760 if (__copy_to_user(sgp->sbp, ei, nbytes)) {
1761 pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
1762 skdev->name, __func__, __LINE__,
1763 sgp->sbp);
1764 return -EFAULT;
1765 }
1766 }
1767 }
1768
1769 if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
1770 pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
1771 skdev->name, __func__, __LINE__, sksgio->argp);
1772 return -EFAULT;
1773 }
1774
1775 return 0;
1776 }
1777
1778 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1779 struct skd_sg_io *sksgio)
1780 {
1781 struct skd_special_context *skspcl = sksgio->skspcl;
1782
1783 if (skspcl != NULL) {
1784 ulong flags;
1785
1786 sksgio->skspcl = NULL;
1787
1788 spin_lock_irqsave(&skdev->lock, flags);
1789 skd_release_special(skdev, skspcl);
1790 spin_unlock_irqrestore(&skdev->lock, flags);
1791 }
1792
1793 return 0;
1794 }
1795
1796 /*
1797 *****************************************************************************
1798 * INTERNAL REQUESTS -- generated by driver itself
1799 *****************************************************************************
1800 */
1801
1802 static int skd_format_internal_skspcl(struct skd_device *skdev)
1803 {
1804 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1805 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1806 struct fit_msg_hdr *fmh;
1807 uint64_t dma_address;
1808 struct skd_scsi_request *scsi;
1809
1810 fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
1811 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1812 fmh->num_protocol_cmds_coalesced = 1;
1813
1814 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1815 memset(scsi, 0, sizeof(*scsi));
1816 dma_address = skspcl->req.sksg_dma_address;
1817 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
1818 sgd->control = FIT_SGD_CONTROL_LAST;
1819 sgd->byte_count = 0;
1820 sgd->host_side_addr = skspcl->db_dma_address;
1821 sgd->dev_side_addr = 0;
1822 sgd->next_desc_ptr = 0LL;
1823
1824 return 1;
1825 }
1826
1827 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
1828
1829 static void skd_send_internal_skspcl(struct skd_device *skdev,
1830 struct skd_special_context *skspcl,
1831 u8 opcode)
1832 {
1833 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1834 struct skd_scsi_request *scsi;
1835 unsigned char *buf = skspcl->data_buf;
1836 int i;
1837
1838 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
1839 /*
1840 * A refresh is already in progress.
1841 * Just wait for it to finish.
1842 */
1843 return;
1844
1845 SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
1846 skspcl->req.state = SKD_REQ_STATE_BUSY;
1847 skspcl->req.id += SKD_ID_INCR;
1848
1849 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1850 scsi->hdr.tag = skspcl->req.id;
1851
1852 memset(scsi->cdb, 0, sizeof(scsi->cdb));
1853
1854 switch (opcode) {
1855 case TEST_UNIT_READY:
1856 scsi->cdb[0] = TEST_UNIT_READY;
1857 sgd->byte_count = 0;
1858 scsi->hdr.sg_list_len_bytes = 0;
1859 break;
1860
1861 case READ_CAPACITY:
1862 scsi->cdb[0] = READ_CAPACITY;
1863 sgd->byte_count = SKD_N_READ_CAP_BYTES;
1864 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1865 break;
1866
1867 case INQUIRY:
1868 scsi->cdb[0] = INQUIRY;
1869 scsi->cdb[1] = 0x01; /* evpd */
1870 scsi->cdb[2] = 0x80; /* serial number page */
1871 scsi->cdb[4] = 0x10;
1872 sgd->byte_count = 16;
1873 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1874 break;
1875
1876 case SYNCHRONIZE_CACHE:
1877 scsi->cdb[0] = SYNCHRONIZE_CACHE;
1878 sgd->byte_count = 0;
1879 scsi->hdr.sg_list_len_bytes = 0;
1880 break;
1881
1882 case WRITE_BUFFER:
1883 scsi->cdb[0] = WRITE_BUFFER;
1884 scsi->cdb[1] = 0x02;
1885 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1886 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1887 sgd->byte_count = WR_BUF_SIZE;
1888 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1889 /* fill incrementing byte pattern */
1890 for (i = 0; i < sgd->byte_count; i++)
1891 buf[i] = i & 0xFF;
1892 break;
1893
1894 case READ_BUFFER:
1895 scsi->cdb[0] = READ_BUFFER;
1896 scsi->cdb[1] = 0x02;
1897 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1898 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1899 sgd->byte_count = WR_BUF_SIZE;
1900 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1901 memset(skspcl->data_buf, 0, sgd->byte_count);
1902 break;
1903
1904 default:
1905 SKD_ASSERT("Don't know what to send");
1906 return;
1907
1908 }
1909 skd_send_special_fitmsg(skdev, skspcl);
1910 }
1911
1912 static void skd_refresh_device_data(struct skd_device *skdev)
1913 {
1914 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1915
1916 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1917 }
1918
1919 static int skd_chk_read_buf(struct skd_device *skdev,
1920 struct skd_special_context *skspcl)
1921 {
1922 unsigned char *buf = skspcl->data_buf;
1923 int i;
1924
1925 /* check for incrementing byte pattern */
1926 for (i = 0; i < WR_BUF_SIZE; i++)
1927 if (buf[i] != (i & 0xFF))
1928 return 1;
1929
1930 return 0;
1931 }
1932
1933 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1934 u8 code, u8 qual, u8 fruc)
1935 {
1936 /* If the check condition is of special interest, log a message */
1937 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1938 && (code == 0x04) && (qual == 0x06)) {
1939 pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
1940 "ascq/fruc %02x/%02x/%02x/%02x\n",
1941 skd_name(skdev), key, code, qual, fruc);
1942 }
1943 }
1944
1945 static void skd_complete_internal(struct skd_device *skdev,
1946 volatile struct fit_completion_entry_v1
1947 *skcomp,
1948 volatile struct fit_comp_error_info *skerr,
1949 struct skd_special_context *skspcl)
1950 {
1951 u8 *buf = skspcl->data_buf;
1952 u8 status;
1953 int i;
1954 struct skd_scsi_request *scsi =
1955 (struct skd_scsi_request *)&skspcl->msg_buf[64];
1956
1957 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1958
1959 pr_debug("%s:%s:%d complete internal %x\n",
1960 skdev->name, __func__, __LINE__, scsi->cdb[0]);
1961
1962 skspcl->req.completion = *skcomp;
1963 skspcl->req.state = SKD_REQ_STATE_IDLE;
1964 skspcl->req.id += SKD_ID_INCR;
1965
1966 status = skspcl->req.completion.status;
1967
1968 skd_log_check_status(skdev, status, skerr->key, skerr->code,
1969 skerr->qual, skerr->fruc);
1970
1971 switch (scsi->cdb[0]) {
1972 case TEST_UNIT_READY:
1973 if (status == SAM_STAT_GOOD)
1974 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1975 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1976 (skerr->key == MEDIUM_ERROR))
1977 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1978 else {
1979 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1980 pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
1981 skdev->name, __func__, __LINE__,
1982 skdev->state);
1983 return;
1984 }
1985 pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
1986 skdev->name, __func__, __LINE__);
1987 skd_send_internal_skspcl(skdev, skspcl, 0x00);
1988 }
1989 break;
1990
1991 case WRITE_BUFFER:
1992 if (status == SAM_STAT_GOOD)
1993 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1994 else {
1995 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1996 pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
1997 skdev->name, __func__, __LINE__,
1998 skdev->state);
1999 return;
2000 }
2001 pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
2002 skdev->name, __func__, __LINE__);
2003 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2004 }
2005 break;
2006
2007 case READ_BUFFER:
2008 if (status == SAM_STAT_GOOD) {
2009 if (skd_chk_read_buf(skdev, skspcl) == 0)
2010 skd_send_internal_skspcl(skdev, skspcl,
2011 READ_CAPACITY);
2012 else {
2013 pr_err(
2014 "(%s):*** W/R Buffer mismatch %d ***\n",
2015 skd_name(skdev), skdev->connect_retries);
2016 if (skdev->connect_retries <
2017 SKD_MAX_CONNECT_RETRIES) {
2018 skdev->connect_retries++;
2019 skd_soft_reset(skdev);
2020 } else {
2021 pr_err(
2022 "(%s): W/R Buffer Connect Error\n",
2023 skd_name(skdev));
2024 return;
2025 }
2026 }
2027
2028 } else {
2029 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2030 pr_debug("%s:%s:%d "
2031 "read buffer failed, don't send anymore state 0x%x\n",
2032 skdev->name, __func__, __LINE__,
2033 skdev->state);
2034 return;
2035 }
2036 pr_debug("%s:%s:%d "
2037 "**** read buffer failed, retry skerr\n",
2038 skdev->name, __func__, __LINE__);
2039 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2040 }
2041 break;
2042
2043 case READ_CAPACITY:
2044 skdev->read_cap_is_valid = 0;
2045 if (status == SAM_STAT_GOOD) {
2046 skdev->read_cap_last_lba =
2047 (buf[0] << 24) | (buf[1] << 16) |
2048 (buf[2] << 8) | buf[3];
2049 skdev->read_cap_blocksize =
2050 (buf[4] << 24) | (buf[5] << 16) |
2051 (buf[6] << 8) | buf[7];
2052
2053 pr_debug("%s:%s:%d last lba %d, bs %d\n",
2054 skdev->name, __func__, __LINE__,
2055 skdev->read_cap_last_lba,
2056 skdev->read_cap_blocksize);
2057
2058 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2059
2060 skdev->read_cap_is_valid = 1;
2061
2062 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2063 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
2064 (skerr->key == MEDIUM_ERROR)) {
2065 skdev->read_cap_last_lba = ~0;
2066 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2067 pr_debug("%s:%s:%d "
2068 "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
2069 skdev->name, __func__, __LINE__);
2070 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2071 } else {
2072 pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
2073 skdev->name, __func__, __LINE__);
2074 skd_send_internal_skspcl(skdev, skspcl,
2075 TEST_UNIT_READY);
2076 }
2077 break;
2078
2079 case INQUIRY:
2080 skdev->inquiry_is_valid = 0;
2081 if (status == SAM_STAT_GOOD) {
2082 skdev->inquiry_is_valid = 1;
2083
2084 for (i = 0; i < 12; i++)
2085 skdev->inq_serial_num[i] = buf[i + 4];
2086 skdev->inq_serial_num[12] = 0;
2087 }
2088
2089 if (skd_unquiesce_dev(skdev) < 0)
2090 pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
2091 skdev->name, __func__, __LINE__);
2092 /* connection is complete */
2093 skdev->connect_retries = 0;
2094 break;
2095
2096 case SYNCHRONIZE_CACHE:
2097 if (status == SAM_STAT_GOOD)
2098 skdev->sync_done = 1;
2099 else
2100 skdev->sync_done = -1;
2101 wake_up_interruptible(&skdev->waitq);
2102 break;
2103
2104 default:
2105 SKD_ASSERT("we didn't send this");
2106 }
2107 }
2108
2109 /*
2110 *****************************************************************************
2111 * FIT MESSAGES
2112 *****************************************************************************
2113 */
2114
2115 static void skd_send_fitmsg(struct skd_device *skdev,
2116 struct skd_fitmsg_context *skmsg)
2117 {
2118 u64 qcmd;
2119 struct fit_msg_hdr *fmh;
2120
2121 pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
2122 skdev->name, __func__, __LINE__,
2123 skmsg->mb_dma_address, skdev->in_flight);
2124 pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
2125 skdev->name, __func__, __LINE__,
2126 skmsg->msg_buf, skmsg->offset);
2127
2128 qcmd = skmsg->mb_dma_address;
2129 qcmd |= FIT_QCMD_QID_NORMAL;
2130
2131 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
2132 skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
2133
2134 if (unlikely(skdev->dbg_level > 1)) {
2135 u8 *bp = (u8 *)skmsg->msg_buf;
2136 int i;
2137 for (i = 0; i < skmsg->length; i += 8) {
2138 pr_debug("%s:%s:%d msg[%2d] %8ph\n",
2139 skdev->name, __func__, __LINE__, i, &bp[i]);
2140 if (i == 0)
2141 i = 64 - 8;
2142 }
2143 }
2144
2145 if (skmsg->length > 256)
2146 qcmd |= FIT_QCMD_MSGSIZE_512;
2147 else if (skmsg->length > 128)
2148 qcmd |= FIT_QCMD_MSGSIZE_256;
2149 else if (skmsg->length > 64)
2150 qcmd |= FIT_QCMD_MSGSIZE_128;
2151 else
2152 /*
2153 * This makes no sense because the FIT msg header is
2154 * 64 bytes. If the msg is only 64 bytes long it has
2155 * no payload.
2156 */
2157 qcmd |= FIT_QCMD_MSGSIZE_64;
2158
2159 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2160 }
2161
2162 static void skd_send_special_fitmsg(struct skd_device *skdev,
2163 struct skd_special_context *skspcl)
2164 {
2165 u64 qcmd;
2166
2167 if (unlikely(skdev->dbg_level > 1)) {
2168 u8 *bp = (u8 *)skspcl->msg_buf;
2169 int i;
2170
2171 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
2172 pr_debug("%s:%s:%d spcl[%2d] %8ph\n",
2173 skdev->name, __func__, __LINE__, i, &bp[i]);
2174 if (i == 0)
2175 i = 64 - 8;
2176 }
2177
2178 pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
2179 skdev->name, __func__, __LINE__,
2180 skspcl, skspcl->req.id, skspcl->req.sksg_list,
2181 skspcl->req.sksg_dma_address);
2182 for (i = 0; i < skspcl->req.n_sg; i++) {
2183 struct fit_sg_descriptor *sgd =
2184 &skspcl->req.sksg_list[i];
2185
2186 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
2187 "addr=0x%llx next=0x%llx\n",
2188 skdev->name, __func__, __LINE__,
2189 i, sgd->byte_count, sgd->control,
2190 sgd->host_side_addr, sgd->next_desc_ptr);
2191 }
2192 }
2193
2194 /*
2195 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
2196 * and one 64-byte SSDI command.
2197 */
2198 qcmd = skspcl->mb_dma_address;
2199 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
2200
2201 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2202 }
2203
2204 /*
2205 *****************************************************************************
2206 * COMPLETION QUEUE
2207 *****************************************************************************
2208 */
2209
2210 static void skd_complete_other(struct skd_device *skdev,
2211 volatile struct fit_completion_entry_v1 *skcomp,
2212 volatile struct fit_comp_error_info *skerr);
2213
2214 struct sns_info {
2215 u8 type;
2216 u8 stat;
2217 u8 key;
2218 u8 asc;
2219 u8 ascq;
2220 u8 mask;
2221 enum skd_check_status_action action;
2222 };
2223
2224 static struct sns_info skd_chkstat_table[] = {
2225 /* Good */
2226 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
2227 SKD_CHECK_STATUS_REPORT_GOOD },
2228
2229 /* Smart alerts */
2230 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
2231 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2232 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
2233 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2234 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
2235 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2236
2237 /* Retry (with limits) */
2238 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
2239 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2240 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
2241 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2242 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
2243 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2244 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
2245 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2246
2247 /* Busy (or about to be) */
2248 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
2249 SKD_CHECK_STATUS_BUSY_IMMINENT },
2250 };
2251
2252 /*
2253 * Look up status and sense data to decide how to handle the error
2254 * from the device.
2255 * mask says which fields must match e.g., mask=0x18 means check
2256 * type and stat, ignore key, asc, ascq.
2257 */
2258
2259 static enum skd_check_status_action
2260 skd_check_status(struct skd_device *skdev,
2261 u8 cmp_status, volatile struct fit_comp_error_info *skerr)
2262 {
2263 int i, n;
2264
2265 pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
2266 skd_name(skdev), skerr->key, skerr->code, skerr->qual,
2267 skerr->fruc);
2268
2269 pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
2270 skdev->name, __func__, __LINE__, skerr->type, cmp_status,
2271 skerr->key, skerr->code, skerr->qual, skerr->fruc);
2272
2273 /* Does the info match an entry in the good category? */
2274 n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
2275 for (i = 0; i < n; i++) {
2276 struct sns_info *sns = &skd_chkstat_table[i];
2277
2278 if (sns->mask & 0x10)
2279 if (skerr->type != sns->type)
2280 continue;
2281
2282 if (sns->mask & 0x08)
2283 if (cmp_status != sns->stat)
2284 continue;
2285
2286 if (sns->mask & 0x04)
2287 if (skerr->key != sns->key)
2288 continue;
2289
2290 if (sns->mask & 0x02)
2291 if (skerr->code != sns->asc)
2292 continue;
2293
2294 if (sns->mask & 0x01)
2295 if (skerr->qual != sns->ascq)
2296 continue;
2297
2298 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
2299 pr_err("(%s): SMART Alert: sense key/asc/ascq "
2300 "%02x/%02x/%02x\n",
2301 skd_name(skdev), skerr->key,
2302 skerr->code, skerr->qual);
2303 }
2304 return sns->action;
2305 }
2306
2307 /* No other match, so nonzero status means error,
2308 * zero status means good
2309 */
2310 if (cmp_status) {
2311 pr_debug("%s:%s:%d status check: error\n",
2312 skdev->name, __func__, __LINE__);
2313 return SKD_CHECK_STATUS_REPORT_ERROR;
2314 }
2315
2316 pr_debug("%s:%s:%d status check good default\n",
2317 skdev->name, __func__, __LINE__);
2318 return SKD_CHECK_STATUS_REPORT_GOOD;
2319 }
2320
2321 static void skd_resolve_req_exception(struct skd_device *skdev,
2322 struct skd_request_context *skreq)
2323 {
2324 u8 cmp_status = skreq->completion.status;
2325
2326 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
2327 case SKD_CHECK_STATUS_REPORT_GOOD:
2328 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
2329 skd_end_request(skdev, skreq, 0);
2330 break;
2331
2332 case SKD_CHECK_STATUS_BUSY_IMMINENT:
2333 skd_log_skreq(skdev, skreq, "retry(busy)");
2334 blk_requeue_request(skdev->queue, skreq->req);
2335 pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
2336 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
2337 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2338 skd_quiesce_dev(skdev);
2339 break;
2340
2341 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
2342 if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
2343 skd_log_skreq(skdev, skreq, "retry");
2344 blk_requeue_request(skdev->queue, skreq->req);
2345 break;
2346 }
2347 /* fall through to report error */
2348
2349 case SKD_CHECK_STATUS_REPORT_ERROR:
2350 default:
2351 skd_end_request(skdev, skreq, -EIO);
2352 break;
2353 }
2354 }
2355
2356 /* assume spinlock is already held */
2357 static void skd_release_skreq(struct skd_device *skdev,
2358 struct skd_request_context *skreq)
2359 {
2360 u32 msg_slot;
2361 struct skd_fitmsg_context *skmsg;
2362
2363 u32 timo_slot;
2364
2365 /*
2366 * Reclaim the FIT msg buffer if this is
2367 * the first of the requests it carried to
2368 * be completed. The FIT msg buffer used to
2369 * send this request cannot be reused until
2370 * we are sure the s1120 card has copied
2371 * it to its memory. The FIT msg might have
2372 * contained several requests. As soon as
2373 * any of them are completed we know that
2374 * the entire FIT msg was transferred.
2375 * Only the first completed request will
2376 * match the FIT msg buffer id. The FIT
2377 * msg buffer id is immediately updated.
2378 * When subsequent requests complete the FIT
2379 * msg buffer id won't match, so we know
2380 * quite cheaply that it is already done.
2381 */
2382 msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
2383 SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
2384
2385 skmsg = &skdev->skmsg_table[msg_slot];
2386 if (skmsg->id == skreq->fitmsg_id) {
2387 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
2388 SKD_ASSERT(skmsg->outstanding > 0);
2389 skmsg->outstanding--;
2390 if (skmsg->outstanding == 0) {
2391 skmsg->state = SKD_MSG_STATE_IDLE;
2392 skmsg->id += SKD_ID_INCR;
2393 skmsg->next = skdev->skmsg_free_list;
2394 skdev->skmsg_free_list = skmsg;
2395 }
2396 }
2397
2398 /*
2399 * Decrease the number of active requests.
2400 * Also decrements the count in the timeout slot.
2401 */
2402 SKD_ASSERT(skdev->in_flight > 0);
2403 skdev->in_flight -= 1;
2404
2405 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
2406 SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
2407 skdev->timeout_slot[timo_slot] -= 1;
2408
2409 /*
2410 * Reset backpointer
2411 */
2412 skreq->req = NULL;
2413
2414 /*
2415 * Reclaim the skd_request_context
2416 */
2417 skreq->state = SKD_REQ_STATE_IDLE;
2418 skreq->id += SKD_ID_INCR;
2419 skreq->next = skdev->skreq_free_list;
2420 skdev->skreq_free_list = skreq;
2421 }
2422
2423 #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
2424
2425 static void skd_do_inq_page_00(struct skd_device *skdev,
2426 volatile struct fit_completion_entry_v1 *skcomp,
2427 volatile struct fit_comp_error_info *skerr,
2428 uint8_t *cdb, uint8_t *buf)
2429 {
2430 uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
2431
2432 /* Caller requested "supported pages". The driver needs to insert
2433 * its page.
2434 */
2435 pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
2436 skdev->name, __func__, __LINE__);
2437
2438 /* If the device rejected the request because the CDB was
2439 * improperly formed, then just leave.
2440 */
2441 if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
2442 skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
2443 return;
2444
2445 /* Get the amount of space the caller allocated */
2446 max_bytes = (cdb[3] << 8) | cdb[4];
2447
2448 /* Get the number of pages actually returned by the device */
2449 drive_pages = (buf[2] << 8) | buf[3];
2450 drive_bytes = drive_pages + 4;
2451 new_size = drive_pages + 1;
2452
2453 /* Supported pages must be in numerical order, so find where
2454 * the driver page needs to be inserted into the list of
2455 * pages returned by the device.
2456 */
2457 for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
2458 if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
2459 return; /* Device using this page code. abort */
2460 else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
2461 break;
2462 }
2463
2464 if (insert_pt < max_bytes) {
2465 uint16_t u;
2466
2467 /* Shift everything up one byte to make room. */
2468 for (u = new_size + 3; u > insert_pt; u--)
2469 buf[u] = buf[u - 1];
2470 buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
2471
2472 /* SCSI byte order increment of num_returned_bytes by 1 */
2473 skcomp->num_returned_bytes =
2474 be32_to_cpu(skcomp->num_returned_bytes) + 1;
2475 skcomp->num_returned_bytes =
2476 be32_to_cpu(skcomp->num_returned_bytes);
2477 }
2478
2479 /* update page length field to reflect the driver's page too */
2480 buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
2481 buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
2482 }
2483
2484 static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
2485 {
2486 int pcie_reg;
2487 u16 pci_bus_speed;
2488 u8 pci_lanes;
2489
2490 pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2491 if (pcie_reg) {
2492 u16 linksta;
2493 pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
2494
2495 pci_bus_speed = linksta & 0xF;
2496 pci_lanes = (linksta & 0x3F0) >> 4;
2497 } else {
2498 *speed = STEC_LINK_UNKNOWN;
2499 *width = 0xFF;
2500 return;
2501 }
2502
2503 switch (pci_bus_speed) {
2504 case 1:
2505 *speed = STEC_LINK_2_5GTS;
2506 break;
2507 case 2:
2508 *speed = STEC_LINK_5GTS;
2509 break;
2510 case 3:
2511 *speed = STEC_LINK_8GTS;
2512 break;
2513 default:
2514 *speed = STEC_LINK_UNKNOWN;
2515 break;
2516 }
2517
2518 if (pci_lanes <= 0x20)
2519 *width = pci_lanes;
2520 else
2521 *width = 0xFF;
2522 }
2523
2524 static void skd_do_inq_page_da(struct skd_device *skdev,
2525 volatile struct fit_completion_entry_v1 *skcomp,
2526 volatile struct fit_comp_error_info *skerr,
2527 uint8_t *cdb, uint8_t *buf)
2528 {
2529 struct pci_dev *pdev = skdev->pdev;
2530 unsigned max_bytes;
2531 struct driver_inquiry_data inq;
2532 u16 val;
2533
2534 pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
2535 skdev->name, __func__, __LINE__);
2536
2537 memset(&inq, 0, sizeof(inq));
2538
2539 inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
2540
2541 skd_get_link_info(pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes);
2542 inq.pcie_bus_number = cpu_to_be16(pdev->bus->number);
2543 inq.pcie_device_number = PCI_SLOT(pdev->devfn);
2544 inq.pcie_function_number = PCI_FUNC(pdev->devfn);
2545
2546 pci_read_config_word(pdev, PCI_VENDOR_ID, &val);
2547 inq.pcie_vendor_id = cpu_to_be16(val);
2548
2549 pci_read_config_word(pdev, PCI_DEVICE_ID, &val);
2550 inq.pcie_device_id = cpu_to_be16(val);
2551
2552 pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &val);
2553 inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
2554
2555 pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &val);
2556 inq.pcie_subsystem_device_id = cpu_to_be16(val);
2557
2558 /* Driver version, fixed lenth, padded with spaces on the right */
2559 inq.driver_version_length = sizeof(inq.driver_version);
2560 memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
2561 memcpy(inq.driver_version, DRV_VER_COMPL,
2562 min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
2563
2564 inq.page_length = cpu_to_be16((sizeof(inq) - 4));
2565
2566 /* Clear the error set by the device */
2567 skcomp->status = SAM_STAT_GOOD;
2568 memset((void *)skerr, 0, sizeof(*skerr));
2569
2570 /* copy response into output buffer */
2571 max_bytes = (cdb[3] << 8) | cdb[4];
2572 memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
2573
2574 skcomp->num_returned_bytes =
2575 be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
2576 }
2577
2578 static void skd_do_driver_inq(struct skd_device *skdev,
2579 volatile struct fit_completion_entry_v1 *skcomp,
2580 volatile struct fit_comp_error_info *skerr,
2581 uint8_t *cdb, uint8_t *buf)
2582 {
2583 if (!buf)
2584 return;
2585 else if (cdb[0] != INQUIRY)
2586 return; /* Not an INQUIRY */
2587 else if ((cdb[1] & 1) == 0)
2588 return; /* EVPD not set */
2589 else if (cdb[2] == 0)
2590 /* Need to add driver's page to supported pages list */
2591 skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
2592 else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
2593 /* Caller requested driver's page */
2594 skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
2595 }
2596
2597 static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
2598 {
2599 if (!sg)
2600 return NULL;
2601 if (!sg_page(sg))
2602 return NULL;
2603 return sg_virt(sg);
2604 }
2605
2606 static void skd_process_scsi_inq(struct skd_device *skdev,
2607 volatile struct fit_completion_entry_v1
2608 *skcomp,
2609 volatile struct fit_comp_error_info *skerr,
2610 struct skd_special_context *skspcl)
2611 {
2612 uint8_t *buf;
2613 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
2614 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
2615
2616 dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
2617 skspcl->req.sg_data_dir);
2618 buf = skd_sg_1st_page_ptr(skspcl->req.sg);
2619
2620 if (buf)
2621 skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
2622 }
2623
2624
2625 static int skd_isr_completion_posted(struct skd_device *skdev,
2626 int limit, int *enqueued)
2627 {
2628 volatile struct fit_completion_entry_v1 *skcmp = NULL;
2629 volatile struct fit_comp_error_info *skerr;
2630 u16 req_id;
2631 u32 req_slot;
2632 struct skd_request_context *skreq;
2633 u16 cmp_cntxt = 0;
2634 u8 cmp_status = 0;
2635 u8 cmp_cycle = 0;
2636 u32 cmp_bytes = 0;
2637 int rc = 0;
2638 int processed = 0;
2639
2640 for (;; ) {
2641 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
2642
2643 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
2644 cmp_cycle = skcmp->cycle;
2645 cmp_cntxt = skcmp->tag;
2646 cmp_status = skcmp->status;
2647 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
2648
2649 skerr = &skdev->skerr_table[skdev->skcomp_ix];
2650
2651 pr_debug("%s:%s:%d "
2652 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
2653 "busy=%d rbytes=0x%x proto=%d\n",
2654 skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
2655 skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
2656 skdev->in_flight, cmp_bytes, skdev->proto_ver);
2657
2658 if (cmp_cycle != skdev->skcomp_cycle) {
2659 pr_debug("%s:%s:%d end of completions\n",
2660 skdev->name, __func__, __LINE__);
2661 break;
2662 }
2663 /*
2664 * Update the completion queue head index and possibly
2665 * the completion cycle count. 8-bit wrap-around.
2666 */
2667 skdev->skcomp_ix++;
2668 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
2669 skdev->skcomp_ix = 0;
2670 skdev->skcomp_cycle++;
2671 }
2672
2673 /*
2674 * The command context is a unique 32-bit ID. The low order
2675 * bits help locate the request. The request is usually a
2676 * r/w request (see skd_start() above) or a special request.
2677 */
2678 req_id = cmp_cntxt;
2679 req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
2680
2681 /* Is this other than a r/w request? */
2682 if (req_slot >= skdev->num_req_context) {
2683 /*
2684 * This is not a completion for a r/w request.
2685 */
2686 skd_complete_other(skdev, skcmp, skerr);
2687 continue;
2688 }
2689
2690 skreq = &skdev->skreq_table[req_slot];
2691
2692 /*
2693 * Make sure the request ID for the slot matches.
2694 */
2695 if (skreq->id != req_id) {
2696 pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
2697 skdev->name, __func__, __LINE__,
2698 req_id, skreq->id);
2699 {
2700 u16 new_id = cmp_cntxt;
2701 pr_err("(%s): Completion mismatch "
2702 "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
2703 skd_name(skdev), req_id,
2704 skreq->id, new_id);
2705
2706 continue;
2707 }
2708 }
2709
2710 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
2711
2712 if (skreq->state == SKD_REQ_STATE_ABORTED) {
2713 pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
2714 skdev->name, __func__, __LINE__,
2715 skreq, skreq->id);
2716 /* a previously timed out command can
2717 * now be cleaned up */
2718 skd_release_skreq(skdev, skreq);
2719 continue;
2720 }
2721
2722 skreq->completion = *skcmp;
2723 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
2724 skreq->err_info = *skerr;
2725 skd_log_check_status(skdev, cmp_status, skerr->key,
2726 skerr->code, skerr->qual,
2727 skerr->fruc);
2728 }
2729 /* Release DMA resources for the request. */
2730 if (skreq->n_sg > 0)
2731 skd_postop_sg_list(skdev, skreq);
2732
2733 if (!skreq->req) {
2734 pr_debug("%s:%s:%d NULL backptr skdreq %p, "
2735 "req=0x%x req_id=0x%x\n",
2736 skdev->name, __func__, __LINE__,
2737 skreq, skreq->id, req_id);
2738 } else {
2739 /*
2740 * Capture the outcome and post it back to the
2741 * native request.
2742 */
2743 if (likely(cmp_status == SAM_STAT_GOOD))
2744 skd_end_request(skdev, skreq, 0);
2745 else
2746 skd_resolve_req_exception(skdev, skreq);
2747 }
2748
2749 /*
2750 * Release the skreq, its FIT msg (if one), timeout slot,
2751 * and queue depth.
2752 */
2753 skd_release_skreq(skdev, skreq);
2754
2755 /* skd_isr_comp_limit equal zero means no limit */
2756 if (limit) {
2757 if (++processed >= limit) {
2758 rc = 1;
2759 break;
2760 }
2761 }
2762 }
2763
2764 if ((skdev->state == SKD_DRVR_STATE_PAUSING)
2765 && (skdev->in_flight) == 0) {
2766 skdev->state = SKD_DRVR_STATE_PAUSED;
2767 wake_up_interruptible(&skdev->waitq);
2768 }
2769
2770 return rc;
2771 }
2772
2773 static void skd_complete_other(struct skd_device *skdev,
2774 volatile struct fit_completion_entry_v1 *skcomp,
2775 volatile struct fit_comp_error_info *skerr)
2776 {
2777 u32 req_id = 0;
2778 u32 req_table;
2779 u32 req_slot;
2780 struct skd_special_context *skspcl;
2781
2782 req_id = skcomp->tag;
2783 req_table = req_id & SKD_ID_TABLE_MASK;
2784 req_slot = req_id & SKD_ID_SLOT_MASK;
2785
2786 pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
2787 skdev->name, __func__, __LINE__,
2788 req_table, req_id, req_slot);
2789
2790 /*
2791 * Based on the request id, determine how to dispatch this completion.
2792 * This swich/case is finding the good cases and forwarding the
2793 * completion entry. Errors are reported below the switch.
2794 */
2795 switch (req_table) {
2796 case SKD_ID_RW_REQUEST:
2797 /*
2798 * The caller, skd_completion_posted_isr() above,
2799 * handles r/w requests. The only way we get here
2800 * is if the req_slot is out of bounds.
2801 */
2802 break;
2803
2804 case SKD_ID_SPECIAL_REQUEST:
2805 /*
2806 * Make sure the req_slot is in bounds and that the id
2807 * matches.
2808 */
2809 if (req_slot < skdev->n_special) {
2810 skspcl = &skdev->skspcl_table[req_slot];
2811 if (skspcl->req.id == req_id &&
2812 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2813 skd_complete_special(skdev,
2814 skcomp, skerr, skspcl);
2815 return;
2816 }
2817 }
2818 break;
2819
2820 case SKD_ID_INTERNAL:
2821 if (req_slot == 0) {
2822 skspcl = &skdev->internal_skspcl;
2823 if (skspcl->req.id == req_id &&
2824 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2825 skd_complete_internal(skdev,
2826 skcomp, skerr, skspcl);
2827 return;
2828 }
2829 }
2830 break;
2831
2832 case SKD_ID_FIT_MSG:
2833 /*
2834 * These id's should never appear in a completion record.
2835 */
2836 break;
2837
2838 default:
2839 /*
2840 * These id's should never appear anywhere;
2841 */
2842 break;
2843 }
2844
2845 /*
2846 * If we get here it is a bad or stale id.
2847 */
2848 }
2849
2850 static void skd_complete_special(struct skd_device *skdev,
2851 volatile struct fit_completion_entry_v1
2852 *skcomp,
2853 volatile struct fit_comp_error_info *skerr,
2854 struct skd_special_context *skspcl)
2855 {
2856 pr_debug("%s:%s:%d completing special request %p\n",
2857 skdev->name, __func__, __LINE__, skspcl);
2858 if (skspcl->orphaned) {
2859 /* Discard orphaned request */
2860 /* ?: Can this release directly or does it need
2861 * to use a worker? */
2862 pr_debug("%s:%s:%d release orphaned %p\n",
2863 skdev->name, __func__, __LINE__, skspcl);
2864 skd_release_special(skdev, skspcl);
2865 return;
2866 }
2867
2868 skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
2869
2870 skspcl->req.state = SKD_REQ_STATE_COMPLETED;
2871 skspcl->req.completion = *skcomp;
2872 skspcl->req.err_info = *skerr;
2873
2874 skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
2875 skerr->code, skerr->qual, skerr->fruc);
2876
2877 wake_up_interruptible(&skdev->waitq);
2878 }
2879
2880 /* assume spinlock is already held */
2881 static void skd_release_special(struct skd_device *skdev,
2882 struct skd_special_context *skspcl)
2883 {
2884 int i, was_depleted;
2885
2886 for (i = 0; i < skspcl->req.n_sg; i++) {
2887 struct page *page = sg_page(&skspcl->req.sg[i]);
2888 __free_page(page);
2889 }
2890
2891 was_depleted = (skdev->skspcl_free_list == NULL);
2892
2893 skspcl->req.state = SKD_REQ_STATE_IDLE;
2894 skspcl->req.id += SKD_ID_INCR;
2895 skspcl->req.next =
2896 (struct skd_request_context *)skdev->skspcl_free_list;
2897 skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
2898
2899 if (was_depleted) {
2900 pr_debug("%s:%s:%d skspcl was depleted\n",
2901 skdev->name, __func__, __LINE__);
2902 /* Free list was depleted. Their might be waiters. */
2903 wake_up_interruptible(&skdev->waitq);
2904 }
2905 }
2906
2907 static void skd_reset_skcomp(struct skd_device *skdev)
2908 {
2909 u32 nbytes;
2910 struct fit_completion_entry_v1 *skcomp;
2911
2912 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
2913 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
2914
2915 memset(skdev->skcomp_table, 0, nbytes);
2916
2917 skdev->skcomp_ix = 0;
2918 skdev->skcomp_cycle = 1;
2919 }
2920
2921 /*
2922 *****************************************************************************
2923 * INTERRUPTS
2924 *****************************************************************************
2925 */
2926 static void skd_completion_worker(struct work_struct *work)
2927 {
2928 struct skd_device *skdev =
2929 container_of(work, struct skd_device, completion_worker);
2930 unsigned long flags;
2931 int flush_enqueued = 0;
2932
2933 spin_lock_irqsave(&skdev->lock, flags);
2934
2935 /*
2936 * pass in limit=0, which means no limit..
2937 * process everything in compq
2938 */
2939 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
2940 skd_request_fn(skdev->queue);
2941
2942 spin_unlock_irqrestore(&skdev->lock, flags);
2943 }
2944
2945 static void skd_isr_msg_from_dev(struct skd_device *skdev);
2946
2947 static irqreturn_t
2948 skd_isr(int irq, void *ptr)
2949 {
2950 struct skd_device *skdev;
2951 u32 intstat;
2952 u32 ack;
2953 int rc = 0;
2954 int deferred = 0;
2955 int flush_enqueued = 0;
2956
2957 skdev = (struct skd_device *)ptr;
2958 spin_lock(&skdev->lock);
2959
2960 for (;; ) {
2961 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2962
2963 ack = FIT_INT_DEF_MASK;
2964 ack &= intstat;
2965
2966 pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
2967 skdev->name, __func__, __LINE__, intstat, ack);
2968
2969 /* As long as there is an int pending on device, keep
2970 * running loop. When none, get out, but if we've never
2971 * done any processing, call completion handler?
2972 */
2973 if (ack == 0) {
2974 /* No interrupts on device, but run the completion
2975 * processor anyway?
2976 */
2977 if (rc == 0)
2978 if (likely (skdev->state
2979 == SKD_DRVR_STATE_ONLINE))
2980 deferred = 1;
2981 break;
2982 }
2983
2984 rc = IRQ_HANDLED;
2985
2986 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
2987
2988 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
2989 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
2990 if (intstat & FIT_ISH_COMPLETION_POSTED) {
2991 /*
2992 * If we have already deferred completion
2993 * processing, don't bother running it again
2994 */
2995 if (deferred == 0)
2996 deferred =
2997 skd_isr_completion_posted(skdev,
2998 skd_isr_comp_limit, &flush_enqueued);
2999 }
3000
3001 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
3002 skd_isr_fwstate(skdev);
3003 if (skdev->state == SKD_DRVR_STATE_FAULT ||
3004 skdev->state ==
3005 SKD_DRVR_STATE_DISAPPEARED) {
3006 spin_unlock(&skdev->lock);
3007 return rc;
3008 }
3009 }
3010
3011 if (intstat & FIT_ISH_MSG_FROM_DEV)
3012 skd_isr_msg_from_dev(skdev);
3013 }
3014 }
3015
3016 if (unlikely(flush_enqueued))
3017 skd_request_fn(skdev->queue);
3018
3019 if (deferred)
3020 schedule_work(&skdev->completion_worker);
3021 else if (!flush_enqueued)
3022 skd_request_fn(skdev->queue);
3023
3024 spin_unlock(&skdev->lock);
3025
3026 return rc;
3027 }
3028
3029 static void skd_drive_fault(struct skd_device *skdev)
3030 {
3031 skdev->state = SKD_DRVR_STATE_FAULT;
3032 pr_err("(%s): Drive FAULT\n", skd_name(skdev));
3033 }
3034
3035 static void skd_drive_disappeared(struct skd_device *skdev)
3036 {
3037 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
3038 pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
3039 }
3040
3041 static void skd_isr_fwstate(struct skd_device *skdev)
3042 {
3043 u32 sense;
3044 u32 state;
3045 u32 mtd;
3046 int prev_driver_state = skdev->state;
3047
3048 sense = SKD_READL(skdev, FIT_STATUS);
3049 state = sense & FIT_SR_DRIVE_STATE_MASK;
3050
3051 pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
3052 skd_name(skdev),
3053 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3054 skd_drive_state_to_str(state), state);
3055
3056 skdev->drive_state = state;
3057
3058 switch (skdev->drive_state) {
3059 case FIT_SR_DRIVE_INIT:
3060 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
3061 skd_disable_interrupts(skdev);
3062 break;
3063 }
3064 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
3065 skd_recover_requests(skdev, 0);
3066 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
3067 skdev->timer_countdown = SKD_STARTING_TIMO;
3068 skdev->state = SKD_DRVR_STATE_STARTING;
3069 skd_soft_reset(skdev);
3070 break;
3071 }
3072 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
3073 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3074 skdev->last_mtd = mtd;
3075 break;
3076
3077 case FIT_SR_DRIVE_ONLINE:
3078 skdev->cur_max_queue_depth = skd_max_queue_depth;
3079 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
3080 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
3081
3082 skdev->queue_low_water_mark =
3083 skdev->cur_max_queue_depth * 2 / 3 + 1;
3084 if (skdev->queue_low_water_mark < 1)
3085 skdev->queue_low_water_mark = 1;
3086 pr_info(
3087 "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
3088 skd_name(skdev),
3089 skdev->cur_max_queue_depth,
3090 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3091
3092 skd_refresh_device_data(skdev);
3093 break;
3094
3095 case FIT_SR_DRIVE_BUSY:
3096 skdev->state = SKD_DRVR_STATE_BUSY;
3097 skdev->timer_countdown = SKD_BUSY_TIMO;
3098 skd_quiesce_dev(skdev);
3099 break;
3100 case FIT_SR_DRIVE_BUSY_SANITIZE:
3101 /* set timer for 3 seconds, we'll abort any unfinished
3102 * commands after that expires
3103 */
3104 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3105 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
3106 blk_start_queue(skdev->queue);
3107 break;
3108 case FIT_SR_DRIVE_BUSY_ERASE:
3109 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3110 skdev->timer_countdown = SKD_BUSY_TIMO;
3111 break;
3112 case FIT_SR_DRIVE_OFFLINE:
3113 skdev->state = SKD_DRVR_STATE_IDLE;
3114 break;
3115 case FIT_SR_DRIVE_SOFT_RESET:
3116 switch (skdev->state) {
3117 case SKD_DRVR_STATE_STARTING:
3118 case SKD_DRVR_STATE_RESTARTING:
3119 /* Expected by a caller of skd_soft_reset() */
3120 break;
3121 default:
3122 skdev->state = SKD_DRVR_STATE_RESTARTING;
3123 break;
3124 }
3125 break;
3126 case FIT_SR_DRIVE_FW_BOOTING:
3127 pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
3128 skdev->name, __func__, __LINE__, skdev->name);
3129 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3130 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3131 break;
3132
3133 case FIT_SR_DRIVE_DEGRADED:
3134 case FIT_SR_PCIE_LINK_DOWN:
3135 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3136 break;
3137
3138 case FIT_SR_DRIVE_FAULT:
3139 skd_drive_fault(skdev);
3140 skd_recover_requests(skdev, 0);
3141 blk_start_queue(skdev->queue);
3142 break;
3143
3144 /* PCIe bus returned all Fs? */
3145 case 0xFF:
3146 pr_info("(%s): state=0x%x sense=0x%x\n",
3147 skd_name(skdev), state, sense);
3148 skd_drive_disappeared(skdev);
3149 skd_recover_requests(skdev, 0);
3150 blk_start_queue(skdev->queue);
3151 break;
3152 default:
3153 /*
3154 * Uknown FW State. Wait for a state we recognize.
3155 */
3156 break;
3157 }
3158 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3159 skd_name(skdev),
3160 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
3161 skd_skdev_state_to_str(skdev->state), skdev->state);
3162 }
3163
3164 static void skd_recover_requests(struct skd_device *skdev, int requeue)
3165 {
3166 int i;
3167
3168 for (i = 0; i < skdev->num_req_context; i++) {
3169 struct skd_request_context *skreq = &skdev->skreq_table[i];
3170
3171 if (skreq->state == SKD_REQ_STATE_BUSY) {
3172 skd_log_skreq(skdev, skreq, "recover");
3173
3174 SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
3175 SKD_ASSERT(skreq->req != NULL);
3176
3177 /* Release DMA resources for the request. */
3178 if (skreq->n_sg > 0)
3179 skd_postop_sg_list(skdev, skreq);
3180
3181 if (requeue &&
3182 (unsigned long) ++skreq->req->special <
3183 SKD_MAX_RETRIES)
3184 blk_requeue_request(skdev->queue, skreq->req);
3185 else
3186 skd_end_request(skdev, skreq, -EIO);
3187
3188 skreq->req = NULL;
3189
3190 skreq->state = SKD_REQ_STATE_IDLE;
3191 skreq->id += SKD_ID_INCR;
3192 }
3193 if (i > 0)
3194 skreq[-1].next = skreq;
3195 skreq->next = NULL;
3196 }
3197 skdev->skreq_free_list = skdev->skreq_table;
3198
3199 for (i = 0; i < skdev->num_fitmsg_context; i++) {
3200 struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
3201
3202 if (skmsg->state == SKD_MSG_STATE_BUSY) {
3203 skd_log_skmsg(skdev, skmsg, "salvaged");
3204 SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
3205 skmsg->state = SKD_MSG_STATE_IDLE;
3206 skmsg->id += SKD_ID_INCR;
3207 }
3208 if (i > 0)
3209 skmsg[-1].next = skmsg;
3210 skmsg->next = NULL;
3211 }
3212 skdev->skmsg_free_list = skdev->skmsg_table;
3213
3214 for (i = 0; i < skdev->n_special; i++) {
3215 struct skd_special_context *skspcl = &skdev->skspcl_table[i];
3216
3217 /* If orphaned, reclaim it because it has already been reported
3218 * to the process as an error (it was just waiting for
3219 * a completion that didn't come, and now it will never come)
3220 * If busy, change to a state that will cause it to error
3221 * out in the wait routine and let it do the normal
3222 * reporting and reclaiming
3223 */
3224 if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
3225 if (skspcl->orphaned) {
3226 pr_debug("%s:%s:%d orphaned %p\n",
3227 skdev->name, __func__, __LINE__,
3228 skspcl);
3229 skd_release_special(skdev, skspcl);
3230 } else {
3231 pr_debug("%s:%s:%d not orphaned %p\n",
3232 skdev->name, __func__, __LINE__,
3233 skspcl);
3234 skspcl->req.state = SKD_REQ_STATE_ABORTED;
3235 }
3236 }
3237 }
3238 skdev->skspcl_free_list = skdev->skspcl_table;
3239
3240 for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
3241 skdev->timeout_slot[i] = 0;
3242
3243 skdev->in_flight = 0;
3244 }
3245
3246 static void skd_isr_msg_from_dev(struct skd_device *skdev)
3247 {
3248 u32 mfd;
3249 u32 mtd;
3250 u32 data;
3251
3252 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3253
3254 pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
3255 skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
3256
3257 /* ignore any mtd that is an ack for something we didn't send */
3258 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
3259 return;
3260
3261 switch (FIT_MXD_TYPE(mfd)) {
3262 case FIT_MTD_FITFW_INIT:
3263 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
3264
3265 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
3266 pr_err("(%s): protocol mismatch\n",
3267 skdev->name);
3268 pr_err("(%s): got=%d support=%d\n",
3269 skdev->name, skdev->proto_ver,
3270 FIT_PROTOCOL_VERSION_1);
3271 pr_err("(%s): please upgrade driver\n",
3272 skdev->name);
3273 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
3274 skd_soft_reset(skdev);
3275 break;
3276 }
3277 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
3278 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3279 skdev->last_mtd = mtd;
3280 break;
3281
3282 case FIT_MTD_GET_CMDQ_DEPTH:
3283 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
3284 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
3285 SKD_N_COMPLETION_ENTRY);
3286 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3287 skdev->last_mtd = mtd;
3288 break;
3289
3290 case FIT_MTD_SET_COMPQ_DEPTH:
3291 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
3292 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
3293 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3294 skdev->last_mtd = mtd;
3295 break;
3296
3297 case FIT_MTD_SET_COMPQ_ADDR:
3298 skd_reset_skcomp(skdev);
3299 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
3300 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3301 skdev->last_mtd = mtd;
3302 break;
3303
3304 case FIT_MTD_CMD_LOG_HOST_ID:
3305 skdev->connect_time_stamp = get_seconds();
3306 data = skdev->connect_time_stamp & 0xFFFF;
3307 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
3308 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3309 skdev->last_mtd = mtd;
3310 break;
3311
3312 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
3313 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
3314 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
3315 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
3316 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3317 skdev->last_mtd = mtd;
3318 break;
3319
3320 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
3321 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
3322 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
3323 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3324 skdev->last_mtd = mtd;
3325
3326 pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
3327 skd_name(skdev),
3328 skdev->connect_time_stamp, skdev->drive_jiffies);
3329 break;
3330
3331 case FIT_MTD_ARM_QUEUE:
3332 skdev->last_mtd = 0;
3333 /*
3334 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
3335 */
3336 break;
3337
3338 default:
3339 break;
3340 }
3341 }
3342
3343 static void skd_disable_interrupts(struct skd_device *skdev)
3344 {
3345 u32 sense;
3346
3347 sense = SKD_READL(skdev, FIT_CONTROL);
3348 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
3349 SKD_WRITEL(skdev, sense, FIT_CONTROL);
3350 pr_debug("%s:%s:%d sense 0x%x\n",
3351 skdev->name, __func__, __LINE__, sense);
3352
3353 /* Note that the 1s is written. A 1-bit means
3354 * disable, a 0 means enable.
3355 */
3356 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
3357 }
3358
3359 static void skd_enable_interrupts(struct skd_device *skdev)
3360 {
3361 u32 val;
3362
3363 /* unmask interrupts first */
3364 val = FIT_ISH_FW_STATE_CHANGE +
3365 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
3366
3367 /* Note that the compliment of mask is written. A 1-bit means
3368 * disable, a 0 means enable. */
3369 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
3370 pr_debug("%s:%s:%d interrupt mask=0x%x\n",
3371 skdev->name, __func__, __LINE__, ~val);
3372
3373 val = SKD_READL(skdev, FIT_CONTROL);
3374 val |= FIT_CR_ENABLE_INTERRUPTS;
3375 pr_debug("%s:%s:%d control=0x%x\n",
3376 skdev->name, __func__, __LINE__, val);
3377 SKD_WRITEL(skdev, val, FIT_CONTROL);
3378 }
3379
3380 /*
3381 *****************************************************************************
3382 * START, STOP, RESTART, QUIESCE, UNQUIESCE
3383 *****************************************************************************
3384 */
3385
3386 static void skd_soft_reset(struct skd_device *skdev)
3387 {
3388 u32 val;
3389
3390 val = SKD_READL(skdev, FIT_CONTROL);
3391 val |= (FIT_CR_SOFT_RESET);
3392 pr_debug("%s:%s:%d control=0x%x\n",
3393 skdev->name, __func__, __LINE__, val);
3394 SKD_WRITEL(skdev, val, FIT_CONTROL);
3395 }
3396
3397 static void skd_start_device(struct skd_device *skdev)
3398 {
3399 unsigned long flags;
3400 u32 sense;
3401 u32 state;
3402
3403 spin_lock_irqsave(&skdev->lock, flags);
3404
3405 /* ack all ghost interrupts */
3406 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3407
3408 sense = SKD_READL(skdev, FIT_STATUS);
3409
3410 pr_debug("%s:%s:%d initial status=0x%x\n",
3411 skdev->name, __func__, __LINE__, sense);
3412
3413 state = sense & FIT_SR_DRIVE_STATE_MASK;
3414 skdev->drive_state = state;
3415 skdev->last_mtd = 0;
3416
3417 skdev->state = SKD_DRVR_STATE_STARTING;
3418 skdev->timer_countdown = SKD_STARTING_TIMO;
3419
3420 skd_enable_interrupts(skdev);
3421
3422 switch (skdev->drive_state) {
3423 case FIT_SR_DRIVE_OFFLINE:
3424 pr_err("(%s): Drive offline...\n", skd_name(skdev));
3425 break;
3426
3427 case FIT_SR_DRIVE_FW_BOOTING:
3428 pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
3429 skdev->name, __func__, __LINE__, skdev->name);
3430 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3431 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3432 break;
3433
3434 case FIT_SR_DRIVE_BUSY_SANITIZE:
3435 pr_info("(%s): Start: BUSY_SANITIZE\n",
3436 skd_name(skdev));
3437 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3438 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3439 break;
3440
3441 case FIT_SR_DRIVE_BUSY_ERASE:
3442 pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
3443 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3444 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3445 break;
3446
3447 case FIT_SR_DRIVE_INIT:
3448 case FIT_SR_DRIVE_ONLINE:
3449 skd_soft_reset(skdev);
3450 break;
3451
3452 case FIT_SR_DRIVE_BUSY:
3453 pr_err("(%s): Drive Busy...\n", skd_name(skdev));
3454 skdev->state = SKD_DRVR_STATE_BUSY;
3455 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3456 break;
3457
3458 case FIT_SR_DRIVE_SOFT_RESET:
3459 pr_err("(%s) drive soft reset in prog\n",
3460 skd_name(skdev));
3461 break;
3462
3463 case FIT_SR_DRIVE_FAULT:
3464 /* Fault state is bad...soft reset won't do it...
3465 * Hard reset, maybe, but does it work on device?
3466 * For now, just fault so the system doesn't hang.
3467 */
3468 skd_drive_fault(skdev);
3469 /*start the queue so we can respond with error to requests */
3470 pr_debug("%s:%s:%d starting %s queue\n",
3471 skdev->name, __func__, __LINE__, skdev->name);
3472 blk_start_queue(skdev->queue);
3473 skdev->gendisk_on = -1;
3474 wake_up_interruptible(&skdev->waitq);
3475 break;
3476
3477 case 0xFF:
3478 /* Most likely the device isn't there or isn't responding
3479 * to the BAR1 addresses. */
3480 skd_drive_disappeared(skdev);
3481 /*start the queue so we can respond with error to requests */
3482 pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
3483 skdev->name, __func__, __LINE__, skdev->name);
3484 blk_start_queue(skdev->queue);
3485 skdev->gendisk_on = -1;
3486 wake_up_interruptible(&skdev->waitq);
3487 break;
3488
3489 default:
3490 pr_err("(%s) Start: unknown state %x\n",
3491 skd_name(skdev), skdev->drive_state);
3492 break;
3493 }
3494
3495 state = SKD_READL(skdev, FIT_CONTROL);
3496 pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
3497 skdev->name, __func__, __LINE__, state);
3498
3499 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
3500 pr_debug("%s:%s:%d Intr Status=0x%x\n",
3501 skdev->name, __func__, __LINE__, state);
3502
3503 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
3504 pr_debug("%s:%s:%d Intr Mask=0x%x\n",
3505 skdev->name, __func__, __LINE__, state);
3506
3507 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3508 pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
3509 skdev->name, __func__, __LINE__, state);
3510
3511 state = SKD_READL(skdev, FIT_HW_VERSION);
3512 pr_debug("%s:%s:%d HW version=0x%x\n",
3513 skdev->name, __func__, __LINE__, state);
3514
3515 spin_unlock_irqrestore(&skdev->lock, flags);
3516 }
3517
3518 static void skd_stop_device(struct skd_device *skdev)
3519 {
3520 unsigned long flags;
3521 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3522 u32 dev_state;
3523 int i;
3524
3525 spin_lock_irqsave(&skdev->lock, flags);
3526
3527 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
3528 pr_err("(%s): skd_stop_device not online no sync\n",
3529 skd_name(skdev));
3530 goto stop_out;
3531 }
3532
3533 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
3534 pr_err("(%s): skd_stop_device no special\n",
3535 skd_name(skdev));
3536 goto stop_out;
3537 }
3538
3539 skdev->state = SKD_DRVR_STATE_SYNCING;
3540 skdev->sync_done = 0;
3541
3542 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
3543
3544 spin_unlock_irqrestore(&skdev->lock, flags);
3545
3546 wait_event_interruptible_timeout(skdev->waitq,
3547 (skdev->sync_done), (10 * HZ));
3548
3549 spin_lock_irqsave(&skdev->lock, flags);
3550
3551 switch (skdev->sync_done) {
3552 case 0:
3553 pr_err("(%s): skd_stop_device no sync\n",
3554 skd_name(skdev));
3555 break;
3556 case 1:
3557 pr_err("(%s): skd_stop_device sync done\n",
3558 skd_name(skdev));
3559 break;
3560 default:
3561 pr_err("(%s): skd_stop_device sync error\n",
3562 skd_name(skdev));
3563 }
3564
3565 stop_out:
3566 skdev->state = SKD_DRVR_STATE_STOPPING;
3567 spin_unlock_irqrestore(&skdev->lock, flags);
3568
3569 skd_kill_timer(skdev);
3570
3571 spin_lock_irqsave(&skdev->lock, flags);
3572 skd_disable_interrupts(skdev);
3573
3574 /* ensure all ints on device are cleared */
3575 /* soft reset the device to unload with a clean slate */
3576 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3577 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
3578
3579 spin_unlock_irqrestore(&skdev->lock, flags);
3580
3581 /* poll every 100ms, 1 second timeout */
3582 for (i = 0; i < 10; i++) {
3583 dev_state =
3584 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
3585 if (dev_state == FIT_SR_DRIVE_INIT)
3586 break;
3587 set_current_state(TASK_INTERRUPTIBLE);
3588 schedule_timeout(msecs_to_jiffies(100));
3589 }
3590
3591 if (dev_state != FIT_SR_DRIVE_INIT)
3592 pr_err("(%s): skd_stop_device state error 0x%02x\n",
3593 skd_name(skdev), dev_state);
3594 }
3595
3596 /* assume spinlock is held */
3597 static void skd_restart_device(struct skd_device *skdev)
3598 {
3599 u32 state;
3600
3601 /* ack all ghost interrupts */
3602 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3603
3604 state = SKD_READL(skdev, FIT_STATUS);
3605
3606 pr_debug("%s:%s:%d drive status=0x%x\n",
3607 skdev->name, __func__, __LINE__, state);
3608
3609 state &= FIT_SR_DRIVE_STATE_MASK;
3610 skdev->drive_state = state;
3611 skdev->last_mtd = 0;
3612
3613 skdev->state = SKD_DRVR_STATE_RESTARTING;
3614 skdev->timer_countdown = SKD_RESTARTING_TIMO;
3615
3616 skd_soft_reset(skdev);
3617 }
3618
3619 /* assume spinlock is held */
3620 static int skd_quiesce_dev(struct skd_device *skdev)
3621 {
3622 int rc = 0;
3623
3624 switch (skdev->state) {
3625 case SKD_DRVR_STATE_BUSY:
3626 case SKD_DRVR_STATE_BUSY_IMMINENT:
3627 pr_debug("%s:%s:%d stopping %s queue\n",
3628 skdev->name, __func__, __LINE__, skdev->name);
3629 blk_stop_queue(skdev->queue);
3630 break;
3631 case SKD_DRVR_STATE_ONLINE:
3632 case SKD_DRVR_STATE_STOPPING:
3633 case SKD_DRVR_STATE_SYNCING:
3634 case SKD_DRVR_STATE_PAUSING:
3635 case SKD_DRVR_STATE_PAUSED:
3636 case SKD_DRVR_STATE_STARTING:
3637 case SKD_DRVR_STATE_RESTARTING:
3638 case SKD_DRVR_STATE_RESUMING:
3639 default:
3640 rc = -EINVAL;
3641 pr_debug("%s:%s:%d state [%d] not implemented\n",
3642 skdev->name, __func__, __LINE__, skdev->state);
3643 }
3644 return rc;
3645 }
3646
3647 /* assume spinlock is held */
3648 static int skd_unquiesce_dev(struct skd_device *skdev)
3649 {
3650 int prev_driver_state = skdev->state;
3651
3652 skd_log_skdev(skdev, "unquiesce");
3653 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
3654 pr_debug("%s:%s:%d **** device already ONLINE\n",
3655 skdev->name, __func__, __LINE__);
3656 return 0;
3657 }
3658 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
3659 /*
3660 * If there has been an state change to other than
3661 * ONLINE, we will rely on controller state change
3662 * to come back online and restart the queue.
3663 * The BUSY state means that driver is ready to
3664 * continue normal processing but waiting for controller
3665 * to become available.
3666 */
3667 skdev->state = SKD_DRVR_STATE_BUSY;
3668 pr_debug("%s:%s:%d drive BUSY state\n",
3669 skdev->name, __func__, __LINE__);
3670 return 0;
3671 }
3672
3673 /*
3674 * Drive has just come online, driver is either in startup,
3675 * paused performing a task, or bust waiting for hardware.
3676 */
3677 switch (skdev->state) {
3678 case SKD_DRVR_STATE_PAUSED:
3679 case SKD_DRVR_STATE_BUSY:
3680 case SKD_DRVR_STATE_BUSY_IMMINENT:
3681 case SKD_DRVR_STATE_BUSY_ERASE:
3682 case SKD_DRVR_STATE_STARTING:
3683 case SKD_DRVR_STATE_RESTARTING:
3684 case SKD_DRVR_STATE_FAULT:
3685 case SKD_DRVR_STATE_IDLE:
3686 case SKD_DRVR_STATE_LOAD:
3687 skdev->state = SKD_DRVR_STATE_ONLINE;
3688 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3689 skd_name(skdev),
3690 skd_skdev_state_to_str(prev_driver_state),
3691 prev_driver_state, skd_skdev_state_to_str(skdev->state),
3692 skdev->state);
3693 pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
3694 skdev->name, __func__, __LINE__);
3695 pr_debug("%s:%s:%d starting %s queue\n",
3696 skdev->name, __func__, __LINE__, skdev->name);
3697 pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
3698 blk_start_queue(skdev->queue);
3699 skdev->gendisk_on = 1;
3700 wake_up_interruptible(&skdev->waitq);
3701 break;
3702
3703 case SKD_DRVR_STATE_DISAPPEARED:
3704 default:
3705 pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
3706 skdev->name, __func__, __LINE__,
3707 skdev->state);
3708 return -EBUSY;
3709 }
3710 return 0;
3711 }
3712
3713 /*
3714 *****************************************************************************
3715 * PCIe MSI/MSI-X INTERRUPT HANDLERS
3716 *****************************************************************************
3717 */
3718
3719 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
3720 {
3721 struct skd_device *skdev = skd_host_data;
3722 unsigned long flags;
3723
3724 spin_lock_irqsave(&skdev->lock, flags);
3725 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3726 skdev->name, __func__, __LINE__,
3727 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3728 pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
3729 irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
3730 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
3731 spin_unlock_irqrestore(&skdev->lock, flags);
3732 return IRQ_HANDLED;
3733 }
3734
3735 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
3736 {
3737 struct skd_device *skdev = skd_host_data;
3738 unsigned long flags;
3739
3740 spin_lock_irqsave(&skdev->lock, flags);
3741 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3742 skdev->name, __func__, __LINE__,
3743 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3744 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
3745 skd_isr_fwstate(skdev);
3746 spin_unlock_irqrestore(&skdev->lock, flags);
3747 return IRQ_HANDLED;
3748 }
3749
3750 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
3751 {
3752 struct skd_device *skdev = skd_host_data;
3753 unsigned long flags;
3754 int flush_enqueued = 0;
3755 int deferred;
3756
3757 spin_lock_irqsave(&skdev->lock, flags);
3758 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3759 skdev->name, __func__, __LINE__,
3760 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3761 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
3762 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
3763 &flush_enqueued);
3764 if (flush_enqueued)
3765 skd_request_fn(skdev->queue);
3766
3767 if (deferred)
3768 schedule_work(&skdev->completion_worker);
3769 else if (!flush_enqueued)
3770 skd_request_fn(skdev->queue);
3771
3772 spin_unlock_irqrestore(&skdev->lock, flags);
3773
3774 return IRQ_HANDLED;
3775 }
3776
3777 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
3778 {
3779 struct skd_device *skdev = skd_host_data;
3780 unsigned long flags;
3781
3782 spin_lock_irqsave(&skdev->lock, flags);
3783 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3784 skdev->name, __func__, __LINE__,
3785 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3786 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
3787 skd_isr_msg_from_dev(skdev);
3788 spin_unlock_irqrestore(&skdev->lock, flags);
3789 return IRQ_HANDLED;
3790 }
3791
3792 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
3793 {
3794 struct skd_device *skdev = skd_host_data;
3795 unsigned long flags;
3796
3797 spin_lock_irqsave(&skdev->lock, flags);
3798 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3799 skdev->name, __func__, __LINE__,
3800 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3801 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
3802 spin_unlock_irqrestore(&skdev->lock, flags);
3803 return IRQ_HANDLED;
3804 }
3805
3806 /*
3807 *****************************************************************************
3808 * PCIe MSI/MSI-X SETUP
3809 *****************************************************************************
3810 */
3811
3812 struct skd_msix_entry {
3813 char isr_name[30];
3814 };
3815
3816 struct skd_init_msix_entry {
3817 const char *name;
3818 irq_handler_t handler;
3819 };
3820
3821 #define SKD_MAX_MSIX_COUNT 13
3822 #define SKD_MIN_MSIX_COUNT 7
3823 #define SKD_BASE_MSIX_IRQ 4
3824
3825 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
3826 { "(DMA 0)", skd_reserved_isr },
3827 { "(DMA 1)", skd_reserved_isr },
3828 { "(DMA 2)", skd_reserved_isr },
3829 { "(DMA 3)", skd_reserved_isr },
3830 { "(State Change)", skd_statec_isr },
3831 { "(COMPL_Q)", skd_comp_q },
3832 { "(MSG)", skd_msg_isr },
3833 { "(Reserved)", skd_reserved_isr },
3834 { "(Reserved)", skd_reserved_isr },
3835 { "(Queue Full 0)", skd_qfull_isr },
3836 { "(Queue Full 1)", skd_qfull_isr },
3837 { "(Queue Full 2)", skd_qfull_isr },
3838 { "(Queue Full 3)", skd_qfull_isr },
3839 };
3840
3841 static int skd_acquire_msix(struct skd_device *skdev)
3842 {
3843 int i, rc;
3844 struct pci_dev *pdev = skdev->pdev;
3845
3846 rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
3847 PCI_IRQ_MSIX);
3848 if (rc < 0) {
3849 pr_err("(%s): failed to enable MSI-X %d\n",
3850 skd_name(skdev), rc);
3851 goto out;
3852 }
3853
3854 skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
3855 sizeof(struct skd_msix_entry), GFP_KERNEL);
3856 if (!skdev->msix_entries) {
3857 rc = -ENOMEM;
3858 pr_err("(%s): msix table allocation error\n",
3859 skd_name(skdev));
3860 goto out;
3861 }
3862
3863 /* Enable MSI-X vectors for the base queue */
3864 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
3865 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
3866
3867 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
3868 "%s%d-msix %s", DRV_NAME, skdev->devno,
3869 msix_entries[i].name);
3870
3871 rc = devm_request_irq(&skdev->pdev->dev,
3872 pci_irq_vector(skdev->pdev, i),
3873 msix_entries[i].handler, 0,
3874 qentry->isr_name, skdev);
3875 if (rc) {
3876 pr_err("(%s): Unable to register(%d) MSI-X "
3877 "handler %d: %s\n",
3878 skd_name(skdev), rc, i, qentry->isr_name);
3879 goto msix_out;
3880 }
3881 }
3882
3883 pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
3884 skdev->name, __func__, __LINE__,
3885 pci_name(pdev), skdev->name, SKD_MAX_MSIX_COUNT);
3886 return 0;
3887
3888 msix_out:
3889 while (--i >= 0)
3890 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
3891 out:
3892 kfree(skdev->msix_entries);
3893 skdev->msix_entries = NULL;
3894 return rc;
3895 }
3896
3897 static int skd_acquire_irq(struct skd_device *skdev)
3898 {
3899 struct pci_dev *pdev = skdev->pdev;
3900 unsigned int irq_flag = PCI_IRQ_LEGACY;
3901 int rc;
3902
3903 if (skd_isr_type == SKD_IRQ_MSIX) {
3904 rc = skd_acquire_msix(skdev);
3905 if (!rc)
3906 return 0;
3907
3908 pr_err("(%s): failed to enable MSI-X, re-trying with MSI %d\n",
3909 skd_name(skdev), rc);
3910 }
3911
3912 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
3913 skdev->devno);
3914
3915 if (skd_isr_type != SKD_IRQ_LEGACY)
3916 irq_flag |= PCI_IRQ_MSI;
3917 rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
3918 if (rc < 0) {
3919 pr_err("(%s): failed to allocate the MSI interrupt %d\n",
3920 skd_name(skdev), rc);
3921 return rc;
3922 }
3923
3924 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
3925 pdev->msi_enabled ? 0 : IRQF_SHARED,
3926 skdev->isr_name, skdev);
3927 if (rc) {
3928 pci_free_irq_vectors(pdev);
3929 pr_err("(%s): failed to allocate interrupt %d\n",
3930 skd_name(skdev), rc);
3931 return rc;
3932 }
3933
3934 return 0;
3935 }
3936
3937 static void skd_release_irq(struct skd_device *skdev)
3938 {
3939 struct pci_dev *pdev = skdev->pdev;
3940
3941 if (skdev->msix_entries) {
3942 int i;
3943
3944 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
3945 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
3946 skdev);
3947 }
3948
3949 kfree(skdev->msix_entries);
3950 skdev->msix_entries = NULL;
3951 } else {
3952 devm_free_irq(&pdev->dev, pdev->irq, skdev);
3953 }
3954
3955 pci_free_irq_vectors(pdev);
3956 }
3957
3958 /*
3959 *****************************************************************************
3960 * CONSTRUCT
3961 *****************************************************************************
3962 */
3963
3964 static int skd_cons_skcomp(struct skd_device *skdev)
3965 {
3966 int rc = 0;
3967 struct fit_completion_entry_v1 *skcomp;
3968 u32 nbytes;
3969
3970 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
3971 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
3972
3973 pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
3974 skdev->name, __func__, __LINE__,
3975 nbytes, SKD_N_COMPLETION_ENTRY);
3976
3977 skcomp = pci_zalloc_consistent(skdev->pdev, nbytes,
3978 &skdev->cq_dma_address);
3979
3980 if (skcomp == NULL) {
3981 rc = -ENOMEM;
3982 goto err_out;
3983 }
3984
3985 skdev->skcomp_table = skcomp;
3986 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
3987 sizeof(*skcomp) *
3988 SKD_N_COMPLETION_ENTRY);
3989
3990 err_out:
3991 return rc;
3992 }
3993
3994 static int skd_cons_skmsg(struct skd_device *skdev)
3995 {
3996 int rc = 0;
3997 u32 i;
3998
3999 pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
4000 skdev->name, __func__, __LINE__,
4001 sizeof(struct skd_fitmsg_context),
4002 skdev->num_fitmsg_context,
4003 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
4004
4005 skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
4006 *skdev->num_fitmsg_context, GFP_KERNEL);
4007 if (skdev->skmsg_table == NULL) {
4008 rc = -ENOMEM;
4009 goto err_out;
4010 }
4011
4012 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4013 struct skd_fitmsg_context *skmsg;
4014
4015 skmsg = &skdev->skmsg_table[i];
4016
4017 skmsg->id = i + SKD_ID_FIT_MSG;
4018
4019 skmsg->state = SKD_MSG_STATE_IDLE;
4020 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
4021 SKD_N_FITMSG_BYTES + 64,
4022 &skmsg->mb_dma_address);
4023
4024 if (skmsg->msg_buf == NULL) {
4025 rc = -ENOMEM;
4026 goto err_out;
4027 }
4028
4029 skmsg->offset = (u32)((u64)skmsg->msg_buf &
4030 (~FIT_QCMD_BASE_ADDRESS_MASK));
4031 skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
4032 skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
4033 FIT_QCMD_BASE_ADDRESS_MASK);
4034 skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
4035 skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
4036 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
4037
4038 skmsg->next = &skmsg[1];
4039 }
4040
4041 /* Free list is in order starting with the 0th entry. */
4042 skdev->skmsg_table[i - 1].next = NULL;
4043 skdev->skmsg_free_list = skdev->skmsg_table;
4044
4045 err_out:
4046 return rc;
4047 }
4048
4049 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
4050 u32 n_sg,
4051 dma_addr_t *ret_dma_addr)
4052 {
4053 struct fit_sg_descriptor *sg_list;
4054 u32 nbytes;
4055
4056 nbytes = sizeof(*sg_list) * n_sg;
4057
4058 sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
4059
4060 if (sg_list != NULL) {
4061 uint64_t dma_address = *ret_dma_addr;
4062 u32 i;
4063
4064 memset(sg_list, 0, nbytes);
4065
4066 for (i = 0; i < n_sg - 1; i++) {
4067 uint64_t ndp_off;
4068 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
4069
4070 sg_list[i].next_desc_ptr = dma_address + ndp_off;
4071 }
4072 sg_list[i].next_desc_ptr = 0LL;
4073 }
4074
4075 return sg_list;
4076 }
4077
4078 static int skd_cons_skreq(struct skd_device *skdev)
4079 {
4080 int rc = 0;
4081 u32 i;
4082
4083 pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
4084 skdev->name, __func__, __LINE__,
4085 sizeof(struct skd_request_context),
4086 skdev->num_req_context,
4087 sizeof(struct skd_request_context) * skdev->num_req_context);
4088
4089 skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
4090 * skdev->num_req_context, GFP_KERNEL);
4091 if (skdev->skreq_table == NULL) {
4092 rc = -ENOMEM;
4093 goto err_out;
4094 }
4095
4096 pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
4097 skdev->name, __func__, __LINE__,
4098 skdev->sgs_per_request, sizeof(struct scatterlist),
4099 skdev->sgs_per_request * sizeof(struct scatterlist));
4100
4101 for (i = 0; i < skdev->num_req_context; i++) {
4102 struct skd_request_context *skreq;
4103
4104 skreq = &skdev->skreq_table[i];
4105
4106 skreq->id = i + SKD_ID_RW_REQUEST;
4107 skreq->state = SKD_REQ_STATE_IDLE;
4108
4109 skreq->sg = kzalloc(sizeof(struct scatterlist) *
4110 skdev->sgs_per_request, GFP_KERNEL);
4111 if (skreq->sg == NULL) {
4112 rc = -ENOMEM;
4113 goto err_out;
4114 }
4115 sg_init_table(skreq->sg, skdev->sgs_per_request);
4116
4117 skreq->sksg_list = skd_cons_sg_list(skdev,
4118 skdev->sgs_per_request,
4119 &skreq->sksg_dma_address);
4120
4121 if (skreq->sksg_list == NULL) {
4122 rc = -ENOMEM;
4123 goto err_out;
4124 }
4125
4126 skreq->next = &skreq[1];
4127 }
4128
4129 /* Free list is in order starting with the 0th entry. */
4130 skdev->skreq_table[i - 1].next = NULL;
4131 skdev->skreq_free_list = skdev->skreq_table;
4132
4133 err_out:
4134 return rc;
4135 }
4136
4137 static int skd_cons_skspcl(struct skd_device *skdev)
4138 {
4139 int rc = 0;
4140 u32 i, nbytes;
4141
4142 pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
4143 skdev->name, __func__, __LINE__,
4144 sizeof(struct skd_special_context),
4145 skdev->n_special,
4146 sizeof(struct skd_special_context) * skdev->n_special);
4147
4148 skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
4149 * skdev->n_special, GFP_KERNEL);
4150 if (skdev->skspcl_table == NULL) {
4151 rc = -ENOMEM;
4152 goto err_out;
4153 }
4154
4155 for (i = 0; i < skdev->n_special; i++) {
4156 struct skd_special_context *skspcl;
4157
4158 skspcl = &skdev->skspcl_table[i];
4159
4160 skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
4161 skspcl->req.state = SKD_REQ_STATE_IDLE;
4162
4163 skspcl->req.next = &skspcl[1].req;
4164
4165 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4166
4167 skspcl->msg_buf =
4168 pci_zalloc_consistent(skdev->pdev, nbytes,
4169 &skspcl->mb_dma_address);
4170 if (skspcl->msg_buf == NULL) {
4171 rc = -ENOMEM;
4172 goto err_out;
4173 }
4174
4175 skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
4176 SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
4177 if (skspcl->req.sg == NULL) {
4178 rc = -ENOMEM;
4179 goto err_out;
4180 }
4181
4182 skspcl->req.sksg_list = skd_cons_sg_list(skdev,
4183 SKD_N_SG_PER_SPECIAL,
4184 &skspcl->req.
4185 sksg_dma_address);
4186 if (skspcl->req.sksg_list == NULL) {
4187 rc = -ENOMEM;
4188 goto err_out;
4189 }
4190 }
4191
4192 /* Free list is in order starting with the 0th entry. */
4193 skdev->skspcl_table[i - 1].req.next = NULL;
4194 skdev->skspcl_free_list = skdev->skspcl_table;
4195
4196 return rc;
4197
4198 err_out:
4199 return rc;
4200 }
4201
4202 static int skd_cons_sksb(struct skd_device *skdev)
4203 {
4204 int rc = 0;
4205 struct skd_special_context *skspcl;
4206 u32 nbytes;
4207
4208 skspcl = &skdev->internal_skspcl;
4209
4210 skspcl->req.id = 0 + SKD_ID_INTERNAL;
4211 skspcl->req.state = SKD_REQ_STATE_IDLE;
4212
4213 nbytes = SKD_N_INTERNAL_BYTES;
4214
4215 skspcl->data_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
4216 &skspcl->db_dma_address);
4217 if (skspcl->data_buf == NULL) {
4218 rc = -ENOMEM;
4219 goto err_out;
4220 }
4221
4222 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4223 skspcl->msg_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
4224 &skspcl->mb_dma_address);
4225 if (skspcl->msg_buf == NULL) {
4226 rc = -ENOMEM;
4227 goto err_out;
4228 }
4229
4230 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
4231 &skspcl->req.sksg_dma_address);
4232 if (skspcl->req.sksg_list == NULL) {
4233 rc = -ENOMEM;
4234 goto err_out;
4235 }
4236
4237 if (!skd_format_internal_skspcl(skdev)) {
4238 rc = -EINVAL;
4239 goto err_out;
4240 }
4241
4242 err_out:
4243 return rc;
4244 }
4245
4246 static int skd_cons_disk(struct skd_device *skdev)
4247 {
4248 int rc = 0;
4249 struct gendisk *disk;
4250 struct request_queue *q;
4251 unsigned long flags;
4252
4253 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
4254 if (!disk) {
4255 rc = -ENOMEM;
4256 goto err_out;
4257 }
4258
4259 skdev->disk = disk;
4260 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
4261
4262 disk->major = skdev->major;
4263 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
4264 disk->fops = &skd_blockdev_ops;
4265 disk->private_data = skdev;
4266
4267 q = blk_init_queue(skd_request_fn, &skdev->lock);
4268 if (!q) {
4269 rc = -ENOMEM;
4270 goto err_out;
4271 }
4272
4273 skdev->queue = q;
4274 disk->queue = q;
4275 q->queuedata = skdev;
4276
4277 blk_queue_write_cache(q, true, true);
4278 blk_queue_max_segments(q, skdev->sgs_per_request);
4279 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
4280
4281 /* set sysfs ptimal_io_size to 8K */
4282 blk_queue_io_opt(q, 8192);
4283
4284 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4285 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
4286
4287 spin_lock_irqsave(&skdev->lock, flags);
4288 pr_debug("%s:%s:%d stopping %s queue\n",
4289 skdev->name, __func__, __LINE__, skdev->name);
4290 blk_stop_queue(skdev->queue);
4291 spin_unlock_irqrestore(&skdev->lock, flags);
4292
4293 err_out:
4294 return rc;
4295 }
4296
4297 #define SKD_N_DEV_TABLE 16u
4298 static u32 skd_next_devno;
4299
4300 static struct skd_device *skd_construct(struct pci_dev *pdev)
4301 {
4302 struct skd_device *skdev;
4303 int blk_major = skd_major;
4304 int rc;
4305
4306 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
4307
4308 if (!skdev) {
4309 pr_err(PFX "(%s): memory alloc failure\n",
4310 pci_name(pdev));
4311 return NULL;
4312 }
4313
4314 skdev->state = SKD_DRVR_STATE_LOAD;
4315 skdev->pdev = pdev;
4316 skdev->devno = skd_next_devno++;
4317 skdev->major = blk_major;
4318 sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
4319 skdev->dev_max_queue_depth = 0;
4320
4321 skdev->num_req_context = skd_max_queue_depth;
4322 skdev->num_fitmsg_context = skd_max_queue_depth;
4323 skdev->n_special = skd_max_pass_thru;
4324 skdev->cur_max_queue_depth = 1;
4325 skdev->queue_low_water_mark = 1;
4326 skdev->proto_ver = 99;
4327 skdev->sgs_per_request = skd_sgs_per_request;
4328 skdev->dbg_level = skd_dbg_level;
4329
4330 atomic_set(&skdev->device_count, 0);
4331
4332 spin_lock_init(&skdev->lock);
4333
4334 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
4335
4336 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4337 rc = skd_cons_skcomp(skdev);
4338 if (rc < 0)
4339 goto err_out;
4340
4341 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4342 rc = skd_cons_skmsg(skdev);
4343 if (rc < 0)
4344 goto err_out;
4345
4346 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4347 rc = skd_cons_skreq(skdev);
4348 if (rc < 0)
4349 goto err_out;
4350
4351 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4352 rc = skd_cons_skspcl(skdev);
4353 if (rc < 0)
4354 goto err_out;
4355
4356 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4357 rc = skd_cons_sksb(skdev);
4358 if (rc < 0)
4359 goto err_out;
4360
4361 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4362 rc = skd_cons_disk(skdev);
4363 if (rc < 0)
4364 goto err_out;
4365
4366 pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
4367 return skdev;
4368
4369 err_out:
4370 pr_debug("%s:%s:%d construct failed\n",
4371 skdev->name, __func__, __LINE__);
4372 skd_destruct(skdev);
4373 return NULL;
4374 }
4375
4376 /*
4377 *****************************************************************************
4378 * DESTRUCT (FREE)
4379 *****************************************************************************
4380 */
4381
4382 static void skd_free_skcomp(struct skd_device *skdev)
4383 {
4384 if (skdev->skcomp_table != NULL) {
4385 u32 nbytes;
4386
4387 nbytes = sizeof(skdev->skcomp_table[0]) *
4388 SKD_N_COMPLETION_ENTRY;
4389 pci_free_consistent(skdev->pdev, nbytes,
4390 skdev->skcomp_table, skdev->cq_dma_address);
4391 }
4392
4393 skdev->skcomp_table = NULL;
4394 skdev->cq_dma_address = 0;
4395 }
4396
4397 static void skd_free_skmsg(struct skd_device *skdev)
4398 {
4399 u32 i;
4400
4401 if (skdev->skmsg_table == NULL)
4402 return;
4403
4404 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4405 struct skd_fitmsg_context *skmsg;
4406
4407 skmsg = &skdev->skmsg_table[i];
4408
4409 if (skmsg->msg_buf != NULL) {
4410 skmsg->msg_buf += skmsg->offset;
4411 skmsg->mb_dma_address += skmsg->offset;
4412 pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
4413 skmsg->msg_buf,
4414 skmsg->mb_dma_address);
4415 }
4416 skmsg->msg_buf = NULL;
4417 skmsg->mb_dma_address = 0;
4418 }
4419
4420 kfree(skdev->skmsg_table);
4421 skdev->skmsg_table = NULL;
4422 }
4423
4424 static void skd_free_sg_list(struct skd_device *skdev,
4425 struct fit_sg_descriptor *sg_list,
4426 u32 n_sg, dma_addr_t dma_addr)
4427 {
4428 if (sg_list != NULL) {
4429 u32 nbytes;
4430
4431 nbytes = sizeof(*sg_list) * n_sg;
4432
4433 pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
4434 }
4435 }
4436
4437 static void skd_free_skreq(struct skd_device *skdev)
4438 {
4439 u32 i;
4440
4441 if (skdev->skreq_table == NULL)
4442 return;
4443
4444 for (i = 0; i < skdev->num_req_context; i++) {
4445 struct skd_request_context *skreq;
4446
4447 skreq = &skdev->skreq_table[i];
4448
4449 skd_free_sg_list(skdev, skreq->sksg_list,
4450 skdev->sgs_per_request,
4451 skreq->sksg_dma_address);
4452
4453 skreq->sksg_list = NULL;
4454 skreq->sksg_dma_address = 0;
4455
4456 kfree(skreq->sg);
4457 }
4458
4459 kfree(skdev->skreq_table);
4460 skdev->skreq_table = NULL;
4461 }
4462
4463 static void skd_free_skspcl(struct skd_device *skdev)
4464 {
4465 u32 i;
4466 u32 nbytes;
4467
4468 if (skdev->skspcl_table == NULL)
4469 return;
4470
4471 for (i = 0; i < skdev->n_special; i++) {
4472 struct skd_special_context *skspcl;
4473
4474 skspcl = &skdev->skspcl_table[i];
4475
4476 if (skspcl->msg_buf != NULL) {
4477 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4478 pci_free_consistent(skdev->pdev, nbytes,
4479 skspcl->msg_buf,
4480 skspcl->mb_dma_address);
4481 }
4482
4483 skspcl->msg_buf = NULL;
4484 skspcl->mb_dma_address = 0;
4485
4486 skd_free_sg_list(skdev, skspcl->req.sksg_list,
4487 SKD_N_SG_PER_SPECIAL,
4488 skspcl->req.sksg_dma_address);
4489
4490 skspcl->req.sksg_list = NULL;
4491 skspcl->req.sksg_dma_address = 0;
4492
4493 kfree(skspcl->req.sg);
4494 }
4495
4496 kfree(skdev->skspcl_table);
4497 skdev->skspcl_table = NULL;
4498 }
4499
4500 static void skd_free_sksb(struct skd_device *skdev)
4501 {
4502 struct skd_special_context *skspcl;
4503 u32 nbytes;
4504
4505 skspcl = &skdev->internal_skspcl;
4506
4507 if (skspcl->data_buf != NULL) {
4508 nbytes = SKD_N_INTERNAL_BYTES;
4509
4510 pci_free_consistent(skdev->pdev, nbytes,
4511 skspcl->data_buf, skspcl->db_dma_address);
4512 }
4513
4514 skspcl->data_buf = NULL;
4515 skspcl->db_dma_address = 0;
4516
4517 if (skspcl->msg_buf != NULL) {
4518 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4519 pci_free_consistent(skdev->pdev, nbytes,
4520 skspcl->msg_buf, skspcl->mb_dma_address);
4521 }
4522
4523 skspcl->msg_buf = NULL;
4524 skspcl->mb_dma_address = 0;
4525
4526 skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
4527 skspcl->req.sksg_dma_address);
4528
4529 skspcl->req.sksg_list = NULL;
4530 skspcl->req.sksg_dma_address = 0;
4531 }
4532
4533 static void skd_free_disk(struct skd_device *skdev)
4534 {
4535 struct gendisk *disk = skdev->disk;
4536
4537 if (disk != NULL) {
4538 struct request_queue *q = disk->queue;
4539
4540 if (disk->flags & GENHD_FL_UP)
4541 del_gendisk(disk);
4542 if (q)
4543 blk_cleanup_queue(q);
4544 put_disk(disk);
4545 }
4546 skdev->disk = NULL;
4547 }
4548
4549 static void skd_destruct(struct skd_device *skdev)
4550 {
4551 if (skdev == NULL)
4552 return;
4553
4554
4555 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4556 skd_free_disk(skdev);
4557
4558 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4559 skd_free_sksb(skdev);
4560
4561 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4562 skd_free_skspcl(skdev);
4563
4564 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4565 skd_free_skreq(skdev);
4566
4567 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4568 skd_free_skmsg(skdev);
4569
4570 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4571 skd_free_skcomp(skdev);
4572
4573 pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
4574 kfree(skdev);
4575 }
4576
4577 /*
4578 *****************************************************************************
4579 * BLOCK DEVICE (BDEV) GLUE
4580 *****************************************************************************
4581 */
4582
4583 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4584 {
4585 struct skd_device *skdev;
4586 u64 capacity;
4587
4588 skdev = bdev->bd_disk->private_data;
4589
4590 pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
4591 skdev->name, __func__, __LINE__,
4592 bdev->bd_disk->disk_name, current->comm);
4593
4594 if (skdev->read_cap_is_valid) {
4595 capacity = get_capacity(skdev->disk);
4596 geo->heads = 64;
4597 geo->sectors = 255;
4598 geo->cylinders = (capacity) / (255 * 64);
4599
4600 return 0;
4601 }
4602 return -EIO;
4603 }
4604
4605 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
4606 {
4607 pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
4608 device_add_disk(parent, skdev->disk);
4609 return 0;
4610 }
4611
4612 static const struct block_device_operations skd_blockdev_ops = {
4613 .owner = THIS_MODULE,
4614 .ioctl = skd_bdev_ioctl,
4615 .getgeo = skd_bdev_getgeo,
4616 };
4617
4618
4619 /*
4620 *****************************************************************************
4621 * PCIe DRIVER GLUE
4622 *****************************************************************************
4623 */
4624
4625 static const struct pci_device_id skd_pci_tbl[] = {
4626 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
4627 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
4628 { 0 } /* terminate list */
4629 };
4630
4631 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
4632
4633 static char *skd_pci_info(struct skd_device *skdev, char *str)
4634 {
4635 int pcie_reg;
4636
4637 strcpy(str, "PCIe (");
4638 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
4639
4640 if (pcie_reg) {
4641
4642 char lwstr[6];
4643 uint16_t pcie_lstat, lspeed, lwidth;
4644
4645 pcie_reg += 0x12;
4646 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
4647 lspeed = pcie_lstat & (0xF);
4648 lwidth = (pcie_lstat & 0x3F0) >> 4;
4649
4650 if (lspeed == 1)
4651 strcat(str, "2.5GT/s ");
4652 else if (lspeed == 2)
4653 strcat(str, "5.0GT/s ");
4654 else
4655 strcat(str, "<unknown> ");
4656 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
4657 strcat(str, lwstr);
4658 }
4659 return str;
4660 }
4661
4662 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4663 {
4664 int i;
4665 int rc = 0;
4666 char pci_str[32];
4667 struct skd_device *skdev;
4668
4669 pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
4670 DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
4671 pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
4672 pci_name(pdev), pdev->vendor, pdev->device);
4673
4674 rc = pci_enable_device(pdev);
4675 if (rc)
4676 return rc;
4677 rc = pci_request_regions(pdev, DRV_NAME);
4678 if (rc)
4679 goto err_out;
4680 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4681 if (!rc) {
4682 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4683
4684 pr_err("(%s): consistent DMA mask error %d\n",
4685 pci_name(pdev), rc);
4686 }
4687 } else {
4688 (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
4689 if (rc) {
4690
4691 pr_err("(%s): DMA mask error %d\n",
4692 pci_name(pdev), rc);
4693 goto err_out_regions;
4694 }
4695 }
4696
4697 if (!skd_major) {
4698 rc = register_blkdev(0, DRV_NAME);
4699 if (rc < 0)
4700 goto err_out_regions;
4701 BUG_ON(!rc);
4702 skd_major = rc;
4703 }
4704
4705 skdev = skd_construct(pdev);
4706 if (skdev == NULL) {
4707 rc = -ENOMEM;
4708 goto err_out_regions;
4709 }
4710
4711 skd_pci_info(skdev, pci_str);
4712 pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
4713
4714 pci_set_master(pdev);
4715 rc = pci_enable_pcie_error_reporting(pdev);
4716 if (rc) {
4717 pr_err(
4718 "(%s): bad enable of PCIe error reporting rc=%d\n",
4719 skd_name(skdev), rc);
4720 skdev->pcie_error_reporting_is_enabled = 0;
4721 } else
4722 skdev->pcie_error_reporting_is_enabled = 1;
4723
4724
4725 pci_set_drvdata(pdev, skdev);
4726
4727 for (i = 0; i < SKD_MAX_BARS; i++) {
4728 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4729 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4730 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4731 skdev->mem_size[i]);
4732 if (!skdev->mem_map[i]) {
4733 pr_err("(%s): Unable to map adapter memory!\n",
4734 skd_name(skdev));
4735 rc = -ENODEV;
4736 goto err_out_iounmap;
4737 }
4738 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4739 skdev->name, __func__, __LINE__,
4740 skdev->mem_map[i],
4741 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4742 }
4743
4744 rc = skd_acquire_irq(skdev);
4745 if (rc) {
4746 pr_err("(%s): interrupt resource error %d\n",
4747 skd_name(skdev), rc);
4748 goto err_out_iounmap;
4749 }
4750
4751 rc = skd_start_timer(skdev);
4752 if (rc)
4753 goto err_out_timer;
4754
4755 init_waitqueue_head(&skdev->waitq);
4756
4757 skd_start_device(skdev);
4758
4759 rc = wait_event_interruptible_timeout(skdev->waitq,
4760 (skdev->gendisk_on),
4761 (SKD_START_WAIT_SECONDS * HZ));
4762 if (skdev->gendisk_on > 0) {
4763 /* device came on-line after reset */
4764 skd_bdev_attach(&pdev->dev, skdev);
4765 rc = 0;
4766 } else {
4767 /* we timed out, something is wrong with the device,
4768 don't add the disk structure */
4769 pr_err(
4770 "(%s): error: waiting for s1120 timed out %d!\n",
4771 skd_name(skdev), rc);
4772 /* in case of no error; we timeout with ENXIO */
4773 if (!rc)
4774 rc = -ENXIO;
4775 goto err_out_timer;
4776 }
4777
4778
4779 #ifdef SKD_VMK_POLL_HANDLER
4780 if (skdev->irq_type == SKD_IRQ_MSIX) {
4781 /* MSIX completion handler is being used for coredump */
4782 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4783 skdev->msix_entries[5].vector,
4784 skd_comp_q, skdev);
4785 } else {
4786 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4787 skdev->pdev->irq, skd_isr,
4788 skdev);
4789 }
4790 #endif /* SKD_VMK_POLL_HANDLER */
4791
4792 return rc;
4793
4794 err_out_timer:
4795 skd_stop_device(skdev);
4796 skd_release_irq(skdev);
4797
4798 err_out_iounmap:
4799 for (i = 0; i < SKD_MAX_BARS; i++)
4800 if (skdev->mem_map[i])
4801 iounmap(skdev->mem_map[i]);
4802
4803 if (skdev->pcie_error_reporting_is_enabled)
4804 pci_disable_pcie_error_reporting(pdev);
4805
4806 skd_destruct(skdev);
4807
4808 err_out_regions:
4809 pci_release_regions(pdev);
4810
4811 err_out:
4812 pci_disable_device(pdev);
4813 pci_set_drvdata(pdev, NULL);
4814 return rc;
4815 }
4816
4817 static void skd_pci_remove(struct pci_dev *pdev)
4818 {
4819 int i;
4820 struct skd_device *skdev;
4821
4822 skdev = pci_get_drvdata(pdev);
4823 if (!skdev) {
4824 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4825 return;
4826 }
4827 skd_stop_device(skdev);
4828 skd_release_irq(skdev);
4829
4830 for (i = 0; i < SKD_MAX_BARS; i++)
4831 if (skdev->mem_map[i])
4832 iounmap((u32 *)skdev->mem_map[i]);
4833
4834 if (skdev->pcie_error_reporting_is_enabled)
4835 pci_disable_pcie_error_reporting(pdev);
4836
4837 skd_destruct(skdev);
4838
4839 pci_release_regions(pdev);
4840 pci_disable_device(pdev);
4841 pci_set_drvdata(pdev, NULL);
4842
4843 return;
4844 }
4845
4846 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
4847 {
4848 int i;
4849 struct skd_device *skdev;
4850
4851 skdev = pci_get_drvdata(pdev);
4852 if (!skdev) {
4853 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4854 return -EIO;
4855 }
4856
4857 skd_stop_device(skdev);
4858
4859 skd_release_irq(skdev);
4860
4861 for (i = 0; i < SKD_MAX_BARS; i++)
4862 if (skdev->mem_map[i])
4863 iounmap((u32 *)skdev->mem_map[i]);
4864
4865 if (skdev->pcie_error_reporting_is_enabled)
4866 pci_disable_pcie_error_reporting(pdev);
4867
4868 pci_release_regions(pdev);
4869 pci_save_state(pdev);
4870 pci_disable_device(pdev);
4871 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4872 return 0;
4873 }
4874
4875 static int skd_pci_resume(struct pci_dev *pdev)
4876 {
4877 int i;
4878 int rc = 0;
4879 struct skd_device *skdev;
4880
4881 skdev = pci_get_drvdata(pdev);
4882 if (!skdev) {
4883 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4884 return -1;
4885 }
4886
4887 pci_set_power_state(pdev, PCI_D0);
4888 pci_enable_wake(pdev, PCI_D0, 0);
4889 pci_restore_state(pdev);
4890
4891 rc = pci_enable_device(pdev);
4892 if (rc)
4893 return rc;
4894 rc = pci_request_regions(pdev, DRV_NAME);
4895 if (rc)
4896 goto err_out;
4897 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4898 if (!rc) {
4899 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4900
4901 pr_err("(%s): consistent DMA mask error %d\n",
4902 pci_name(pdev), rc);
4903 }
4904 } else {
4905 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4906 if (rc) {
4907
4908 pr_err("(%s): DMA mask error %d\n",
4909 pci_name(pdev), rc);
4910 goto err_out_regions;
4911 }
4912 }
4913
4914 pci_set_master(pdev);
4915 rc = pci_enable_pcie_error_reporting(pdev);
4916 if (rc) {
4917 pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
4918 skdev->name, rc);
4919 skdev->pcie_error_reporting_is_enabled = 0;
4920 } else
4921 skdev->pcie_error_reporting_is_enabled = 1;
4922
4923 for (i = 0; i < SKD_MAX_BARS; i++) {
4924
4925 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4926 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4927 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4928 skdev->mem_size[i]);
4929 if (!skdev->mem_map[i]) {
4930 pr_err("(%s): Unable to map adapter memory!\n",
4931 skd_name(skdev));
4932 rc = -ENODEV;
4933 goto err_out_iounmap;
4934 }
4935 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4936 skdev->name, __func__, __LINE__,
4937 skdev->mem_map[i],
4938 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4939 }
4940 rc = skd_acquire_irq(skdev);
4941 if (rc) {
4942
4943 pr_err("(%s): interrupt resource error %d\n",
4944 pci_name(pdev), rc);
4945 goto err_out_iounmap;
4946 }
4947
4948 rc = skd_start_timer(skdev);
4949 if (rc)
4950 goto err_out_timer;
4951
4952 init_waitqueue_head(&skdev->waitq);
4953
4954 skd_start_device(skdev);
4955
4956 return rc;
4957
4958 err_out_timer:
4959 skd_stop_device(skdev);
4960 skd_release_irq(skdev);
4961
4962 err_out_iounmap:
4963 for (i = 0; i < SKD_MAX_BARS; i++)
4964 if (skdev->mem_map[i])
4965 iounmap(skdev->mem_map[i]);
4966
4967 if (skdev->pcie_error_reporting_is_enabled)
4968 pci_disable_pcie_error_reporting(pdev);
4969
4970 err_out_regions:
4971 pci_release_regions(pdev);
4972
4973 err_out:
4974 pci_disable_device(pdev);
4975 return rc;
4976 }
4977
4978 static void skd_pci_shutdown(struct pci_dev *pdev)
4979 {
4980 struct skd_device *skdev;
4981
4982 pr_err("skd_pci_shutdown called\n");
4983
4984 skdev = pci_get_drvdata(pdev);
4985 if (!skdev) {
4986 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4987 return;
4988 }
4989
4990 pr_err("%s: calling stop\n", skd_name(skdev));
4991 skd_stop_device(skdev);
4992 }
4993
4994 static struct pci_driver skd_driver = {
4995 .name = DRV_NAME,
4996 .id_table = skd_pci_tbl,
4997 .probe = skd_pci_probe,
4998 .remove = skd_pci_remove,
4999 .suspend = skd_pci_suspend,
5000 .resume = skd_pci_resume,
5001 .shutdown = skd_pci_shutdown,
5002 };
5003
5004 /*
5005 *****************************************************************************
5006 * LOGGING SUPPORT
5007 *****************************************************************************
5008 */
5009
5010 static const char *skd_name(struct skd_device *skdev)
5011 {
5012 memset(skdev->id_str, 0, sizeof(skdev->id_str));
5013
5014 if (skdev->inquiry_is_valid)
5015 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
5016 skdev->name, skdev->inq_serial_num,
5017 pci_name(skdev->pdev));
5018 else
5019 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
5020 skdev->name, pci_name(skdev->pdev));
5021
5022 return skdev->id_str;
5023 }
5024
5025 const char *skd_drive_state_to_str(int state)
5026 {
5027 switch (state) {
5028 case FIT_SR_DRIVE_OFFLINE:
5029 return "OFFLINE";
5030 case FIT_SR_DRIVE_INIT:
5031 return "INIT";
5032 case FIT_SR_DRIVE_ONLINE:
5033 return "ONLINE";
5034 case FIT_SR_DRIVE_BUSY:
5035 return "BUSY";
5036 case FIT_SR_DRIVE_FAULT:
5037 return "FAULT";
5038 case FIT_SR_DRIVE_DEGRADED:
5039 return "DEGRADED";
5040 case FIT_SR_PCIE_LINK_DOWN:
5041 return "INK_DOWN";
5042 case FIT_SR_DRIVE_SOFT_RESET:
5043 return "SOFT_RESET";
5044 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
5045 return "NEED_FW";
5046 case FIT_SR_DRIVE_INIT_FAULT:
5047 return "INIT_FAULT";
5048 case FIT_SR_DRIVE_BUSY_SANITIZE:
5049 return "BUSY_SANITIZE";
5050 case FIT_SR_DRIVE_BUSY_ERASE:
5051 return "BUSY_ERASE";
5052 case FIT_SR_DRIVE_FW_BOOTING:
5053 return "FW_BOOTING";
5054 default:
5055 return "???";
5056 }
5057 }
5058
5059 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
5060 {
5061 switch (state) {
5062 case SKD_DRVR_STATE_LOAD:
5063 return "LOAD";
5064 case SKD_DRVR_STATE_IDLE:
5065 return "IDLE";
5066 case SKD_DRVR_STATE_BUSY:
5067 return "BUSY";
5068 case SKD_DRVR_STATE_STARTING:
5069 return "STARTING";
5070 case SKD_DRVR_STATE_ONLINE:
5071 return "ONLINE";
5072 case SKD_DRVR_STATE_PAUSING:
5073 return "PAUSING";
5074 case SKD_DRVR_STATE_PAUSED:
5075 return "PAUSED";
5076 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
5077 return "DRAINING_TIMEOUT";
5078 case SKD_DRVR_STATE_RESTARTING:
5079 return "RESTARTING";
5080 case SKD_DRVR_STATE_RESUMING:
5081 return "RESUMING";
5082 case SKD_DRVR_STATE_STOPPING:
5083 return "STOPPING";
5084 case SKD_DRVR_STATE_SYNCING:
5085 return "SYNCING";
5086 case SKD_DRVR_STATE_FAULT:
5087 return "FAULT";
5088 case SKD_DRVR_STATE_DISAPPEARED:
5089 return "DISAPPEARED";
5090 case SKD_DRVR_STATE_BUSY_ERASE:
5091 return "BUSY_ERASE";
5092 case SKD_DRVR_STATE_BUSY_SANITIZE:
5093 return "BUSY_SANITIZE";
5094 case SKD_DRVR_STATE_BUSY_IMMINENT:
5095 return "BUSY_IMMINENT";
5096 case SKD_DRVR_STATE_WAIT_BOOT:
5097 return "WAIT_BOOT";
5098
5099 default:
5100 return "???";
5101 }
5102 }
5103
5104 static const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
5105 {
5106 switch (state) {
5107 case SKD_MSG_STATE_IDLE:
5108 return "IDLE";
5109 case SKD_MSG_STATE_BUSY:
5110 return "BUSY";
5111 default:
5112 return "???";
5113 }
5114 }
5115
5116 static const char *skd_skreq_state_to_str(enum skd_req_state state)
5117 {
5118 switch (state) {
5119 case SKD_REQ_STATE_IDLE:
5120 return "IDLE";
5121 case SKD_REQ_STATE_SETUP:
5122 return "SETUP";
5123 case SKD_REQ_STATE_BUSY:
5124 return "BUSY";
5125 case SKD_REQ_STATE_COMPLETED:
5126 return "COMPLETED";
5127 case SKD_REQ_STATE_TIMEOUT:
5128 return "TIMEOUT";
5129 case SKD_REQ_STATE_ABORTED:
5130 return "ABORTED";
5131 default:
5132 return "???";
5133 }
5134 }
5135
5136 static void skd_log_skdev(struct skd_device *skdev, const char *event)
5137 {
5138 pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
5139 skdev->name, __func__, __LINE__, skdev->name, skdev, event);
5140 pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
5141 skdev->name, __func__, __LINE__,
5142 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
5143 skd_skdev_state_to_str(skdev->state), skdev->state);
5144 pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
5145 skdev->name, __func__, __LINE__,
5146 skdev->in_flight, skdev->cur_max_queue_depth,
5147 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
5148 pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
5149 skdev->name, __func__, __LINE__,
5150 skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
5151 }
5152
5153 static void skd_log_skmsg(struct skd_device *skdev,
5154 struct skd_fitmsg_context *skmsg, const char *event)
5155 {
5156 pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
5157 skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
5158 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
5159 skdev->name, __func__, __LINE__,
5160 skd_skmsg_state_to_str(skmsg->state), skmsg->state,
5161 skmsg->id, skmsg->length);
5162 }
5163
5164 static void skd_log_skreq(struct skd_device *skdev,
5165 struct skd_request_context *skreq, const char *event)
5166 {
5167 pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
5168 skdev->name, __func__, __LINE__, skdev->name, skreq, event);
5169 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
5170 skdev->name, __func__, __LINE__,
5171 skd_skreq_state_to_str(skreq->state), skreq->state,
5172 skreq->id, skreq->fitmsg_id);
5173 pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
5174 skdev->name, __func__, __LINE__,
5175 skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
5176
5177 if (skreq->req != NULL) {
5178 struct request *req = skreq->req;
5179 u32 lba = (u32)blk_rq_pos(req);
5180 u32 count = blk_rq_sectors(req);
5181
5182 pr_debug("%s:%s:%d "
5183 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
5184 skdev->name, __func__, __LINE__,
5185 req, lba, lba, count, count,
5186 (int)rq_data_dir(req));
5187 } else
5188 pr_debug("%s:%s:%d req=NULL\n",
5189 skdev->name, __func__, __LINE__);
5190 }
5191
5192 /*
5193 *****************************************************************************
5194 * MODULE GLUE
5195 *****************************************************************************
5196 */
5197
5198 static int __init skd_init(void)
5199 {
5200 pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
5201
5202 switch (skd_isr_type) {
5203 case SKD_IRQ_LEGACY:
5204 case SKD_IRQ_MSI:
5205 case SKD_IRQ_MSIX:
5206 break;
5207 default:
5208 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
5209 skd_isr_type, SKD_IRQ_DEFAULT);
5210 skd_isr_type = SKD_IRQ_DEFAULT;
5211 }
5212
5213 if (skd_max_queue_depth < 1 ||
5214 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
5215 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
5216 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
5217 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
5218 }
5219
5220 if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
5221 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
5222 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
5223 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
5224 }
5225
5226 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
5227 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
5228 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
5229 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
5230 }
5231
5232 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
5233 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
5234 skd_dbg_level, 0);
5235 skd_dbg_level = 0;
5236 }
5237
5238 if (skd_isr_comp_limit < 0) {
5239 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
5240 skd_isr_comp_limit, 0);
5241 skd_isr_comp_limit = 0;
5242 }
5243
5244 if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
5245 pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
5246 skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
5247 skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
5248 }
5249
5250 return pci_register_driver(&skd_driver);
5251 }
5252
5253 static void __exit skd_exit(void)
5254 {
5255 pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
5256
5257 pci_unregister_driver(&skd_driver);
5258
5259 if (skd_major)
5260 unregister_blkdev(skd_major, DRV_NAME);
5261 }
5262
5263 module_init(skd_init);
5264 module_exit(skd_exit);