]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/skd_main.c
block: introduce new block status code type
[mirror_ubuntu-bionic-kernel.git] / drivers / block / skd_main.c
1 /* Copyright 2012 STEC, Inc.
2 *
3 * This file is licensed under the terms of the 3-clause
4 * BSD License (http://opensource.org/licenses/BSD-3-Clause)
5 * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
6 * at your option. Both licenses are also available in the LICENSE file
7 * distributed with this project. This file may not be copied, modified,
8 * or distributed except in accordance with those terms.
9 * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
10 * Initial Driver Design!
11 * Thomas Swann <tswann@stec-inc.com>
12 * Interrupt handling.
13 * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
14 * biomode implementation.
15 * Akhil Bhansali <abhansali@stec-inc.com>
16 * Added support for DISCARD / FLUSH and FUA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/pci.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/blkdev.h>
26 #include <linux/sched.h>
27 #include <linux/interrupt.h>
28 #include <linux/compiler.h>
29 #include <linux/workqueue.h>
30 #include <linux/bitops.h>
31 #include <linux/delay.h>
32 #include <linux/time.h>
33 #include <linux/hdreg.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/completion.h>
36 #include <linux/scatterlist.h>
37 #include <linux/version.h>
38 #include <linux/err.h>
39 #include <linux/aer.h>
40 #include <linux/ctype.h>
41 #include <linux/wait.h>
42 #include <linux/uio.h>
43 #include <scsi/scsi.h>
44 #include <scsi/sg.h>
45 #include <linux/io.h>
46 #include <linux/uaccess.h>
47 #include <asm/unaligned.h>
48
49 #include "skd_s1120.h"
50
51 static int skd_dbg_level;
52 static int skd_isr_comp_limit = 4;
53
54 enum {
55 STEC_LINK_2_5GTS = 0,
56 STEC_LINK_5GTS = 1,
57 STEC_LINK_8GTS = 2,
58 STEC_LINK_UNKNOWN = 0xFF
59 };
60
61 enum {
62 SKD_FLUSH_INITIALIZER,
63 SKD_FLUSH_ZERO_SIZE_FIRST,
64 SKD_FLUSH_DATA_SECOND,
65 };
66
67 #define SKD_ASSERT(expr) \
68 do { \
69 if (unlikely(!(expr))) { \
70 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
71 # expr, __FILE__, __func__, __LINE__); \
72 } \
73 } while (0)
74
75 #define DRV_NAME "skd"
76 #define DRV_VERSION "2.2.1"
77 #define DRV_BUILD_ID "0260"
78 #define PFX DRV_NAME ": "
79 #define DRV_BIN_VERSION 0x100
80 #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
81
82 MODULE_AUTHOR("bug-reports: support@stec-inc.com");
83 MODULE_LICENSE("Dual BSD/GPL");
84
85 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
86 MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
87
88 #define PCI_VENDOR_ID_STEC 0x1B39
89 #define PCI_DEVICE_ID_S1120 0x0001
90
91 #define SKD_FUA_NV (1 << 1)
92 #define SKD_MINORS_PER_DEVICE 16
93
94 #define SKD_MAX_QUEUE_DEPTH 200u
95
96 #define SKD_PAUSE_TIMEOUT (5 * 1000)
97
98 #define SKD_N_FITMSG_BYTES (512u)
99
100 #define SKD_N_SPECIAL_CONTEXT 32u
101 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
102
103 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
104 * 128KB limit. That allows 4096*4K = 16M xfer size
105 */
106 #define SKD_N_SG_PER_REQ_DEFAULT 256u
107 #define SKD_N_SG_PER_SPECIAL 256u
108
109 #define SKD_N_COMPLETION_ENTRY 256u
110 #define SKD_N_READ_CAP_BYTES (8u)
111
112 #define SKD_N_INTERNAL_BYTES (512u)
113
114 /* 5 bits of uniqifier, 0xF800 */
115 #define SKD_ID_INCR (0x400)
116 #define SKD_ID_TABLE_MASK (3u << 8u)
117 #define SKD_ID_RW_REQUEST (0u << 8u)
118 #define SKD_ID_INTERNAL (1u << 8u)
119 #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
120 #define SKD_ID_FIT_MSG (3u << 8u)
121 #define SKD_ID_SLOT_MASK 0x00FFu
122 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
123
124 #define SKD_N_TIMEOUT_SLOT 4u
125 #define SKD_TIMEOUT_SLOT_MASK 3u
126
127 #define SKD_N_MAX_SECTORS 2048u
128
129 #define SKD_MAX_RETRIES 2u
130
131 #define SKD_TIMER_SECONDS(seconds) (seconds)
132 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
133
134 #define INQ_STD_NBYTES 36
135
136 enum skd_drvr_state {
137 SKD_DRVR_STATE_LOAD,
138 SKD_DRVR_STATE_IDLE,
139 SKD_DRVR_STATE_BUSY,
140 SKD_DRVR_STATE_STARTING,
141 SKD_DRVR_STATE_ONLINE,
142 SKD_DRVR_STATE_PAUSING,
143 SKD_DRVR_STATE_PAUSED,
144 SKD_DRVR_STATE_DRAINING_TIMEOUT,
145 SKD_DRVR_STATE_RESTARTING,
146 SKD_DRVR_STATE_RESUMING,
147 SKD_DRVR_STATE_STOPPING,
148 SKD_DRVR_STATE_FAULT,
149 SKD_DRVR_STATE_DISAPPEARED,
150 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
151 SKD_DRVR_STATE_BUSY_ERASE,
152 SKD_DRVR_STATE_BUSY_SANITIZE,
153 SKD_DRVR_STATE_BUSY_IMMINENT,
154 SKD_DRVR_STATE_WAIT_BOOT,
155 SKD_DRVR_STATE_SYNCING,
156 };
157
158 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
159 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
160 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
161 #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
162 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
163 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
164 #define SKD_START_WAIT_SECONDS 90u
165
166 enum skd_req_state {
167 SKD_REQ_STATE_IDLE,
168 SKD_REQ_STATE_SETUP,
169 SKD_REQ_STATE_BUSY,
170 SKD_REQ_STATE_COMPLETED,
171 SKD_REQ_STATE_TIMEOUT,
172 SKD_REQ_STATE_ABORTED,
173 };
174
175 enum skd_fit_msg_state {
176 SKD_MSG_STATE_IDLE,
177 SKD_MSG_STATE_BUSY,
178 };
179
180 enum skd_check_status_action {
181 SKD_CHECK_STATUS_REPORT_GOOD,
182 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
183 SKD_CHECK_STATUS_REQUEUE_REQUEST,
184 SKD_CHECK_STATUS_REPORT_ERROR,
185 SKD_CHECK_STATUS_BUSY_IMMINENT,
186 };
187
188 struct skd_fitmsg_context {
189 enum skd_fit_msg_state state;
190
191 struct skd_fitmsg_context *next;
192
193 u32 id;
194 u16 outstanding;
195
196 u32 length;
197 u32 offset;
198
199 u8 *msg_buf;
200 dma_addr_t mb_dma_address;
201 };
202
203 struct skd_request_context {
204 enum skd_req_state state;
205
206 struct skd_request_context *next;
207
208 u16 id;
209 u32 fitmsg_id;
210
211 struct request *req;
212 u8 flush_cmd;
213
214 u32 timeout_stamp;
215 u8 sg_data_dir;
216 struct scatterlist *sg;
217 u32 n_sg;
218 u32 sg_byte_count;
219
220 struct fit_sg_descriptor *sksg_list;
221 dma_addr_t sksg_dma_address;
222
223 struct fit_completion_entry_v1 completion;
224
225 struct fit_comp_error_info err_info;
226
227 };
228 #define SKD_DATA_DIR_HOST_TO_CARD 1
229 #define SKD_DATA_DIR_CARD_TO_HOST 2
230
231 struct skd_special_context {
232 struct skd_request_context req;
233
234 u8 orphaned;
235
236 void *data_buf;
237 dma_addr_t db_dma_address;
238
239 u8 *msg_buf;
240 dma_addr_t mb_dma_address;
241 };
242
243 struct skd_sg_io {
244 fmode_t mode;
245 void __user *argp;
246
247 struct sg_io_hdr sg;
248
249 u8 cdb[16];
250
251 u32 dxfer_len;
252 u32 iovcnt;
253 struct sg_iovec *iov;
254 struct sg_iovec no_iov_iov;
255
256 struct skd_special_context *skspcl;
257 };
258
259 typedef enum skd_irq_type {
260 SKD_IRQ_LEGACY,
261 SKD_IRQ_MSI,
262 SKD_IRQ_MSIX
263 } skd_irq_type_t;
264
265 #define SKD_MAX_BARS 2
266
267 struct skd_device {
268 volatile void __iomem *mem_map[SKD_MAX_BARS];
269 resource_size_t mem_phys[SKD_MAX_BARS];
270 u32 mem_size[SKD_MAX_BARS];
271
272 struct skd_msix_entry *msix_entries;
273
274 struct pci_dev *pdev;
275 int pcie_error_reporting_is_enabled;
276
277 spinlock_t lock;
278 struct gendisk *disk;
279 struct request_queue *queue;
280 struct device *class_dev;
281 int gendisk_on;
282 int sync_done;
283
284 atomic_t device_count;
285 u32 devno;
286 u32 major;
287 char name[32];
288 char isr_name[30];
289
290 enum skd_drvr_state state;
291 u32 drive_state;
292
293 u32 in_flight;
294 u32 cur_max_queue_depth;
295 u32 queue_low_water_mark;
296 u32 dev_max_queue_depth;
297
298 u32 num_fitmsg_context;
299 u32 num_req_context;
300
301 u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
302 u32 timeout_stamp;
303 struct skd_fitmsg_context *skmsg_free_list;
304 struct skd_fitmsg_context *skmsg_table;
305
306 struct skd_request_context *skreq_free_list;
307 struct skd_request_context *skreq_table;
308
309 struct skd_special_context *skspcl_free_list;
310 struct skd_special_context *skspcl_table;
311
312 struct skd_special_context internal_skspcl;
313 u32 read_cap_blocksize;
314 u32 read_cap_last_lba;
315 int read_cap_is_valid;
316 int inquiry_is_valid;
317 u8 inq_serial_num[13]; /*12 chars plus null term */
318 u8 id_str[80]; /* holds a composite name (pci + sernum) */
319
320 u8 skcomp_cycle;
321 u32 skcomp_ix;
322 struct fit_completion_entry_v1 *skcomp_table;
323 struct fit_comp_error_info *skerr_table;
324 dma_addr_t cq_dma_address;
325
326 wait_queue_head_t waitq;
327
328 struct timer_list timer;
329 u32 timer_countdown;
330 u32 timer_substate;
331
332 int n_special;
333 int sgs_per_request;
334 u32 last_mtd;
335
336 u32 proto_ver;
337
338 int dbg_level;
339 u32 connect_time_stamp;
340 int connect_retries;
341 #define SKD_MAX_CONNECT_RETRIES 16
342 u32 drive_jiffies;
343
344 u32 timo_slot;
345
346
347 struct work_struct completion_worker;
348 };
349
350 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
351 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
352 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
353
354 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
355 {
356 u32 val;
357
358 if (likely(skdev->dbg_level < 2))
359 return readl(skdev->mem_map[1] + offset);
360 else {
361 barrier();
362 val = readl(skdev->mem_map[1] + offset);
363 barrier();
364 pr_debug("%s:%s:%d offset %x = %x\n",
365 skdev->name, __func__, __LINE__, offset, val);
366 return val;
367 }
368
369 }
370
371 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
372 u32 offset)
373 {
374 if (likely(skdev->dbg_level < 2)) {
375 writel(val, skdev->mem_map[1] + offset);
376 barrier();
377 } else {
378 barrier();
379 writel(val, skdev->mem_map[1] + offset);
380 barrier();
381 pr_debug("%s:%s:%d offset %x = %x\n",
382 skdev->name, __func__, __LINE__, offset, val);
383 }
384 }
385
386 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
387 u32 offset)
388 {
389 if (likely(skdev->dbg_level < 2)) {
390 writeq(val, skdev->mem_map[1] + offset);
391 barrier();
392 } else {
393 barrier();
394 writeq(val, skdev->mem_map[1] + offset);
395 barrier();
396 pr_debug("%s:%s:%d offset %x = %016llx\n",
397 skdev->name, __func__, __LINE__, offset, val);
398 }
399 }
400
401
402 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
403 static int skd_isr_type = SKD_IRQ_DEFAULT;
404
405 module_param(skd_isr_type, int, 0444);
406 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
407 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
408
409 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
410 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
411
412 module_param(skd_max_req_per_msg, int, 0444);
413 MODULE_PARM_DESC(skd_max_req_per_msg,
414 "Maximum SCSI requests packed in a single message."
415 " (1-14, default==1)");
416
417 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
418 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
419 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
420
421 module_param(skd_max_queue_depth, int, 0444);
422 MODULE_PARM_DESC(skd_max_queue_depth,
423 "Maximum SCSI requests issued to s1120."
424 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
425
426 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
427 module_param(skd_sgs_per_request, int, 0444);
428 MODULE_PARM_DESC(skd_sgs_per_request,
429 "Maximum SG elements per block request."
430 " (1-4096, default==256)");
431
432 static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
433 module_param(skd_max_pass_thru, int, 0444);
434 MODULE_PARM_DESC(skd_max_pass_thru,
435 "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
436
437 module_param(skd_dbg_level, int, 0444);
438 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
439
440 module_param(skd_isr_comp_limit, int, 0444);
441 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
442
443 /* Major device number dynamically assigned. */
444 static u32 skd_major;
445
446 static void skd_destruct(struct skd_device *skdev);
447 static const struct block_device_operations skd_blockdev_ops;
448 static void skd_send_fitmsg(struct skd_device *skdev,
449 struct skd_fitmsg_context *skmsg);
450 static void skd_send_special_fitmsg(struct skd_device *skdev,
451 struct skd_special_context *skspcl);
452 static void skd_request_fn(struct request_queue *rq);
453 static void skd_end_request(struct skd_device *skdev,
454 struct skd_request_context *skreq, blk_status_t status);
455 static bool skd_preop_sg_list(struct skd_device *skdev,
456 struct skd_request_context *skreq);
457 static void skd_postop_sg_list(struct skd_device *skdev,
458 struct skd_request_context *skreq);
459
460 static void skd_restart_device(struct skd_device *skdev);
461 static int skd_quiesce_dev(struct skd_device *skdev);
462 static int skd_unquiesce_dev(struct skd_device *skdev);
463 static void skd_release_special(struct skd_device *skdev,
464 struct skd_special_context *skspcl);
465 static void skd_disable_interrupts(struct skd_device *skdev);
466 static void skd_isr_fwstate(struct skd_device *skdev);
467 static void skd_recover_requests(struct skd_device *skdev, int requeue);
468 static void skd_soft_reset(struct skd_device *skdev);
469
470 static const char *skd_name(struct skd_device *skdev);
471 const char *skd_drive_state_to_str(int state);
472 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
473 static void skd_log_skdev(struct skd_device *skdev, const char *event);
474 static void skd_log_skmsg(struct skd_device *skdev,
475 struct skd_fitmsg_context *skmsg, const char *event);
476 static void skd_log_skreq(struct skd_device *skdev,
477 struct skd_request_context *skreq, const char *event);
478
479 /*
480 *****************************************************************************
481 * READ/WRITE REQUESTS
482 *****************************************************************************
483 */
484 static void skd_fail_all_pending(struct skd_device *skdev)
485 {
486 struct request_queue *q = skdev->queue;
487 struct request *req;
488
489 for (;; ) {
490 req = blk_peek_request(q);
491 if (req == NULL)
492 break;
493 blk_start_request(req);
494 __blk_end_request_all(req, BLK_STS_IOERR);
495 }
496 }
497
498 static void
499 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
500 int data_dir, unsigned lba,
501 unsigned count)
502 {
503 if (data_dir == READ)
504 scsi_req->cdb[0] = 0x28;
505 else
506 scsi_req->cdb[0] = 0x2a;
507
508 scsi_req->cdb[1] = 0;
509 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
510 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
511 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
512 scsi_req->cdb[5] = (lba & 0xff);
513 scsi_req->cdb[6] = 0;
514 scsi_req->cdb[7] = (count & 0xff00) >> 8;
515 scsi_req->cdb[8] = count & 0xff;
516 scsi_req->cdb[9] = 0;
517 }
518
519 static void
520 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
521 struct skd_request_context *skreq)
522 {
523 skreq->flush_cmd = 1;
524
525 scsi_req->cdb[0] = 0x35;
526 scsi_req->cdb[1] = 0;
527 scsi_req->cdb[2] = 0;
528 scsi_req->cdb[3] = 0;
529 scsi_req->cdb[4] = 0;
530 scsi_req->cdb[5] = 0;
531 scsi_req->cdb[6] = 0;
532 scsi_req->cdb[7] = 0;
533 scsi_req->cdb[8] = 0;
534 scsi_req->cdb[9] = 0;
535 }
536
537 static void skd_request_fn_not_online(struct request_queue *q);
538
539 static void skd_request_fn(struct request_queue *q)
540 {
541 struct skd_device *skdev = q->queuedata;
542 struct skd_fitmsg_context *skmsg = NULL;
543 struct fit_msg_hdr *fmh = NULL;
544 struct skd_request_context *skreq;
545 struct request *req = NULL;
546 struct skd_scsi_request *scsi_req;
547 unsigned long io_flags;
548 u32 lba;
549 u32 count;
550 int data_dir;
551 u32 be_lba;
552 u32 be_count;
553 u64 be_dmaa;
554 u64 cmdctxt;
555 u32 timo_slot;
556 void *cmd_ptr;
557 int flush, fua;
558
559 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
560 skd_request_fn_not_online(q);
561 return;
562 }
563
564 if (blk_queue_stopped(skdev->queue)) {
565 if (skdev->skmsg_free_list == NULL ||
566 skdev->skreq_free_list == NULL ||
567 skdev->in_flight >= skdev->queue_low_water_mark)
568 /* There is still some kind of shortage */
569 return;
570
571 queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
572 }
573
574 /*
575 * Stop conditions:
576 * - There are no more native requests
577 * - There are already the maximum number of requests in progress
578 * - There are no more skd_request_context entries
579 * - There are no more FIT msg buffers
580 */
581 for (;; ) {
582
583 flush = fua = 0;
584
585 req = blk_peek_request(q);
586
587 /* Are there any native requests to start? */
588 if (req == NULL)
589 break;
590
591 lba = (u32)blk_rq_pos(req);
592 count = blk_rq_sectors(req);
593 data_dir = rq_data_dir(req);
594 io_flags = req->cmd_flags;
595
596 if (req_op(req) == REQ_OP_FLUSH)
597 flush++;
598
599 if (io_flags & REQ_FUA)
600 fua++;
601
602 pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
603 "count=%u(0x%x) dir=%d\n",
604 skdev->name, __func__, __LINE__,
605 req, lba, lba, count, count, data_dir);
606
607 /* At this point we know there is a request */
608
609 /* Are too many requets already in progress? */
610 if (skdev->in_flight >= skdev->cur_max_queue_depth) {
611 pr_debug("%s:%s:%d qdepth %d, limit %d\n",
612 skdev->name, __func__, __LINE__,
613 skdev->in_flight, skdev->cur_max_queue_depth);
614 break;
615 }
616
617 /* Is a skd_request_context available? */
618 skreq = skdev->skreq_free_list;
619 if (skreq == NULL) {
620 pr_debug("%s:%s:%d Out of req=%p\n",
621 skdev->name, __func__, __LINE__, q);
622 break;
623 }
624 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
625 SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
626
627 /* Now we check to see if we can get a fit msg */
628 if (skmsg == NULL) {
629 if (skdev->skmsg_free_list == NULL) {
630 pr_debug("%s:%s:%d Out of msg\n",
631 skdev->name, __func__, __LINE__);
632 break;
633 }
634 }
635
636 skreq->flush_cmd = 0;
637 skreq->n_sg = 0;
638 skreq->sg_byte_count = 0;
639
640 /*
641 * OK to now dequeue request from q.
642 *
643 * At this point we are comitted to either start or reject
644 * the native request. Note that skd_request_context is
645 * available but is still at the head of the free list.
646 */
647 blk_start_request(req);
648 skreq->req = req;
649 skreq->fitmsg_id = 0;
650
651 /* Either a FIT msg is in progress or we have to start one. */
652 if (skmsg == NULL) {
653 /* Are there any FIT msg buffers available? */
654 skmsg = skdev->skmsg_free_list;
655 if (skmsg == NULL) {
656 pr_debug("%s:%s:%d Out of msg skdev=%p\n",
657 skdev->name, __func__, __LINE__,
658 skdev);
659 break;
660 }
661 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
662 SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
663
664 skdev->skmsg_free_list = skmsg->next;
665
666 skmsg->state = SKD_MSG_STATE_BUSY;
667 skmsg->id += SKD_ID_INCR;
668
669 /* Initialize the FIT msg header */
670 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
671 memset(fmh, 0, sizeof(*fmh));
672 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
673 skmsg->length = sizeof(*fmh);
674 }
675
676 skreq->fitmsg_id = skmsg->id;
677
678 /*
679 * Note that a FIT msg may have just been started
680 * but contains no SoFIT requests yet.
681 */
682
683 /*
684 * Transcode the request, checking as we go. The outcome of
685 * the transcoding is represented by the error variable.
686 */
687 cmd_ptr = &skmsg->msg_buf[skmsg->length];
688 memset(cmd_ptr, 0, 32);
689
690 be_lba = cpu_to_be32(lba);
691 be_count = cpu_to_be32(count);
692 be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
693 cmdctxt = skreq->id + SKD_ID_INCR;
694
695 scsi_req = cmd_ptr;
696 scsi_req->hdr.tag = cmdctxt;
697 scsi_req->hdr.sg_list_dma_address = be_dmaa;
698
699 if (data_dir == READ)
700 skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
701 else
702 skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
703
704 if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
705 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
706 SKD_ASSERT(skreq->flush_cmd == 1);
707
708 } else {
709 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
710 }
711
712 if (fua)
713 scsi_req->cdb[1] |= SKD_FUA_NV;
714
715 if (!req->bio)
716 goto skip_sg;
717
718 if (!skd_preop_sg_list(skdev, skreq)) {
719 /*
720 * Complete the native request with error.
721 * Note that the request context is still at the
722 * head of the free list, and that the SoFIT request
723 * was encoded into the FIT msg buffer but the FIT
724 * msg length has not been updated. In short, the
725 * only resource that has been allocated but might
726 * not be used is that the FIT msg could be empty.
727 */
728 pr_debug("%s:%s:%d error Out\n",
729 skdev->name, __func__, __LINE__);
730 skd_end_request(skdev, skreq, BLK_STS_RESOURCE);
731 continue;
732 }
733
734 skip_sg:
735 scsi_req->hdr.sg_list_len_bytes =
736 cpu_to_be32(skreq->sg_byte_count);
737
738 /* Complete resource allocations. */
739 skdev->skreq_free_list = skreq->next;
740 skreq->state = SKD_REQ_STATE_BUSY;
741 skreq->id += SKD_ID_INCR;
742
743 skmsg->length += sizeof(struct skd_scsi_request);
744 fmh->num_protocol_cmds_coalesced++;
745
746 /*
747 * Update the active request counts.
748 * Capture the timeout timestamp.
749 */
750 skreq->timeout_stamp = skdev->timeout_stamp;
751 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
752 skdev->timeout_slot[timo_slot]++;
753 skdev->in_flight++;
754 pr_debug("%s:%s:%d req=0x%x busy=%d\n",
755 skdev->name, __func__, __LINE__,
756 skreq->id, skdev->in_flight);
757
758 /*
759 * If the FIT msg buffer is full send it.
760 */
761 if (skmsg->length >= SKD_N_FITMSG_BYTES ||
762 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
763 skd_send_fitmsg(skdev, skmsg);
764 skmsg = NULL;
765 fmh = NULL;
766 }
767 }
768
769 /*
770 * Is a FIT msg in progress? If it is empty put the buffer back
771 * on the free list. If it is non-empty send what we got.
772 * This minimizes latency when there are fewer requests than
773 * what fits in a FIT msg.
774 */
775 if (skmsg != NULL) {
776 /* Bigger than just a FIT msg header? */
777 if (skmsg->length > sizeof(struct fit_msg_hdr)) {
778 pr_debug("%s:%s:%d sending msg=%p, len %d\n",
779 skdev->name, __func__, __LINE__,
780 skmsg, skmsg->length);
781 skd_send_fitmsg(skdev, skmsg);
782 } else {
783 /*
784 * The FIT msg is empty. It means we got started
785 * on the msg, but the requests were rejected.
786 */
787 skmsg->state = SKD_MSG_STATE_IDLE;
788 skmsg->id += SKD_ID_INCR;
789 skmsg->next = skdev->skmsg_free_list;
790 skdev->skmsg_free_list = skmsg;
791 }
792 skmsg = NULL;
793 fmh = NULL;
794 }
795
796 /*
797 * If req is non-NULL it means there is something to do but
798 * we are out of a resource.
799 */
800 if (req)
801 blk_stop_queue(skdev->queue);
802 }
803
804 static void skd_end_request(struct skd_device *skdev,
805 struct skd_request_context *skreq, blk_status_t error)
806 {
807 if (unlikely(error)) {
808 struct request *req = skreq->req;
809 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
810 u32 lba = (u32)blk_rq_pos(req);
811 u32 count = blk_rq_sectors(req);
812
813 pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
814 skd_name(skdev), cmd, lba, count, skreq->id);
815 } else
816 pr_debug("%s:%s:%d id=0x%x error=%d\n",
817 skdev->name, __func__, __LINE__, skreq->id, error);
818
819 __blk_end_request_all(skreq->req, error);
820 }
821
822 static bool skd_preop_sg_list(struct skd_device *skdev,
823 struct skd_request_context *skreq)
824 {
825 struct request *req = skreq->req;
826 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
827 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
828 struct scatterlist *sg = &skreq->sg[0];
829 int n_sg;
830 int i;
831
832 skreq->sg_byte_count = 0;
833
834 /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
835 skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
836
837 n_sg = blk_rq_map_sg(skdev->queue, req, sg);
838 if (n_sg <= 0)
839 return false;
840
841 /*
842 * Map scatterlist to PCI bus addresses.
843 * Note PCI might change the number of entries.
844 */
845 n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
846 if (n_sg <= 0)
847 return false;
848
849 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
850
851 skreq->n_sg = n_sg;
852
853 for (i = 0; i < n_sg; i++) {
854 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
855 u32 cnt = sg_dma_len(&sg[i]);
856 uint64_t dma_addr = sg_dma_address(&sg[i]);
857
858 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
859 sgd->byte_count = cnt;
860 skreq->sg_byte_count += cnt;
861 sgd->host_side_addr = dma_addr;
862 sgd->dev_side_addr = 0;
863 }
864
865 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
866 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
867
868 if (unlikely(skdev->dbg_level > 1)) {
869 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
870 skdev->name, __func__, __LINE__,
871 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
872 for (i = 0; i < n_sg; i++) {
873 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
874 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
875 "addr=0x%llx next=0x%llx\n",
876 skdev->name, __func__, __LINE__,
877 i, sgd->byte_count, sgd->control,
878 sgd->host_side_addr, sgd->next_desc_ptr);
879 }
880 }
881
882 return true;
883 }
884
885 static void skd_postop_sg_list(struct skd_device *skdev,
886 struct skd_request_context *skreq)
887 {
888 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
889 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
890
891 /*
892 * restore the next ptr for next IO request so we
893 * don't have to set it every time.
894 */
895 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
896 skreq->sksg_dma_address +
897 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
898 pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
899 }
900
901 static void skd_request_fn_not_online(struct request_queue *q)
902 {
903 struct skd_device *skdev = q->queuedata;
904 int error;
905
906 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
907
908 skd_log_skdev(skdev, "req_not_online");
909 switch (skdev->state) {
910 case SKD_DRVR_STATE_PAUSING:
911 case SKD_DRVR_STATE_PAUSED:
912 case SKD_DRVR_STATE_STARTING:
913 case SKD_DRVR_STATE_RESTARTING:
914 case SKD_DRVR_STATE_WAIT_BOOT:
915 /* In case of starting, we haven't started the queue,
916 * so we can't get here... but requests are
917 * possibly hanging out waiting for us because we
918 * reported the dev/skd0 already. They'll wait
919 * forever if connect doesn't complete.
920 * What to do??? delay dev/skd0 ??
921 */
922 case SKD_DRVR_STATE_BUSY:
923 case SKD_DRVR_STATE_BUSY_IMMINENT:
924 case SKD_DRVR_STATE_BUSY_ERASE:
925 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
926 return;
927
928 case SKD_DRVR_STATE_BUSY_SANITIZE:
929 case SKD_DRVR_STATE_STOPPING:
930 case SKD_DRVR_STATE_SYNCING:
931 case SKD_DRVR_STATE_FAULT:
932 case SKD_DRVR_STATE_DISAPPEARED:
933 default:
934 error = -EIO;
935 break;
936 }
937
938 /* If we get here, terminate all pending block requeusts
939 * with EIO and any scsi pass thru with appropriate sense
940 */
941
942 skd_fail_all_pending(skdev);
943 }
944
945 /*
946 *****************************************************************************
947 * TIMER
948 *****************************************************************************
949 */
950
951 static void skd_timer_tick_not_online(struct skd_device *skdev);
952
953 static void skd_timer_tick(ulong arg)
954 {
955 struct skd_device *skdev = (struct skd_device *)arg;
956
957 u32 timo_slot;
958 u32 overdue_timestamp;
959 unsigned long reqflags;
960 u32 state;
961
962 if (skdev->state == SKD_DRVR_STATE_FAULT)
963 /* The driver has declared fault, and we want it to
964 * stay that way until driver is reloaded.
965 */
966 return;
967
968 spin_lock_irqsave(&skdev->lock, reqflags);
969
970 state = SKD_READL(skdev, FIT_STATUS);
971 state &= FIT_SR_DRIVE_STATE_MASK;
972 if (state != skdev->drive_state)
973 skd_isr_fwstate(skdev);
974
975 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
976 skd_timer_tick_not_online(skdev);
977 goto timer_func_out;
978 }
979 skdev->timeout_stamp++;
980 timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
981
982 /*
983 * All requests that happened during the previous use of
984 * this slot should be done by now. The previous use was
985 * over 7 seconds ago.
986 */
987 if (skdev->timeout_slot[timo_slot] == 0)
988 goto timer_func_out;
989
990 /* Something is overdue */
991 overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
992
993 pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
994 skdev->name, __func__, __LINE__,
995 skdev->timeout_slot[timo_slot], skdev->in_flight);
996 pr_err("(%s): Overdue IOs (%d), busy %d\n",
997 skd_name(skdev), skdev->timeout_slot[timo_slot],
998 skdev->in_flight);
999
1000 skdev->timer_countdown = SKD_DRAINING_TIMO;
1001 skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
1002 skdev->timo_slot = timo_slot;
1003 blk_stop_queue(skdev->queue);
1004
1005 timer_func_out:
1006 mod_timer(&skdev->timer, (jiffies + HZ));
1007
1008 spin_unlock_irqrestore(&skdev->lock, reqflags);
1009 }
1010
1011 static void skd_timer_tick_not_online(struct skd_device *skdev)
1012 {
1013 switch (skdev->state) {
1014 case SKD_DRVR_STATE_IDLE:
1015 case SKD_DRVR_STATE_LOAD:
1016 break;
1017 case SKD_DRVR_STATE_BUSY_SANITIZE:
1018 pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
1019 skdev->name, __func__, __LINE__,
1020 skdev->drive_state, skdev->state);
1021 /* If we've been in sanitize for 3 seconds, we figure we're not
1022 * going to get anymore completions, so recover requests now
1023 */
1024 if (skdev->timer_countdown > 0) {
1025 skdev->timer_countdown--;
1026 return;
1027 }
1028 skd_recover_requests(skdev, 0);
1029 break;
1030
1031 case SKD_DRVR_STATE_BUSY:
1032 case SKD_DRVR_STATE_BUSY_IMMINENT:
1033 case SKD_DRVR_STATE_BUSY_ERASE:
1034 pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
1035 skdev->name, __func__, __LINE__,
1036 skdev->state, skdev->timer_countdown);
1037 if (skdev->timer_countdown > 0) {
1038 skdev->timer_countdown--;
1039 return;
1040 }
1041 pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
1042 skdev->name, __func__, __LINE__,
1043 skdev->state, skdev->timer_countdown);
1044 skd_restart_device(skdev);
1045 break;
1046
1047 case SKD_DRVR_STATE_WAIT_BOOT:
1048 case SKD_DRVR_STATE_STARTING:
1049 if (skdev->timer_countdown > 0) {
1050 skdev->timer_countdown--;
1051 return;
1052 }
1053 /* For now, we fault the drive. Could attempt resets to
1054 * revcover at some point. */
1055 skdev->state = SKD_DRVR_STATE_FAULT;
1056
1057 pr_err("(%s): DriveFault Connect Timeout (%x)\n",
1058 skd_name(skdev), skdev->drive_state);
1059
1060 /*start the queue so we can respond with error to requests */
1061 /* wakeup anyone waiting for startup complete */
1062 blk_start_queue(skdev->queue);
1063 skdev->gendisk_on = -1;
1064 wake_up_interruptible(&skdev->waitq);
1065 break;
1066
1067 case SKD_DRVR_STATE_ONLINE:
1068 /* shouldn't get here. */
1069 break;
1070
1071 case SKD_DRVR_STATE_PAUSING:
1072 case SKD_DRVR_STATE_PAUSED:
1073 break;
1074
1075 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
1076 pr_debug("%s:%s:%d "
1077 "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
1078 skdev->name, __func__, __LINE__,
1079 skdev->timo_slot,
1080 skdev->timer_countdown,
1081 skdev->in_flight,
1082 skdev->timeout_slot[skdev->timo_slot]);
1083 /* if the slot has cleared we can let the I/O continue */
1084 if (skdev->timeout_slot[skdev->timo_slot] == 0) {
1085 pr_debug("%s:%s:%d Slot drained, starting queue.\n",
1086 skdev->name, __func__, __LINE__);
1087 skdev->state = SKD_DRVR_STATE_ONLINE;
1088 blk_start_queue(skdev->queue);
1089 return;
1090 }
1091 if (skdev->timer_countdown > 0) {
1092 skdev->timer_countdown--;
1093 return;
1094 }
1095 skd_restart_device(skdev);
1096 break;
1097
1098 case SKD_DRVR_STATE_RESTARTING:
1099 if (skdev->timer_countdown > 0) {
1100 skdev->timer_countdown--;
1101 return;
1102 }
1103 /* For now, we fault the drive. Could attempt resets to
1104 * revcover at some point. */
1105 skdev->state = SKD_DRVR_STATE_FAULT;
1106 pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
1107 skd_name(skdev), skdev->drive_state);
1108
1109 /*
1110 * Recovering does two things:
1111 * 1. completes IO with error
1112 * 2. reclaims dma resources
1113 * When is it safe to recover requests?
1114 * - if the drive state is faulted
1115 * - if the state is still soft reset after out timeout
1116 * - if the drive registers are dead (state = FF)
1117 * If it is "unsafe", we still need to recover, so we will
1118 * disable pci bus mastering and disable our interrupts.
1119 */
1120
1121 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
1122 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
1123 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
1124 /* It never came out of soft reset. Try to
1125 * recover the requests and then let them
1126 * fail. This is to mitigate hung processes. */
1127 skd_recover_requests(skdev, 0);
1128 else {
1129 pr_err("(%s): Disable BusMaster (%x)\n",
1130 skd_name(skdev), skdev->drive_state);
1131 pci_disable_device(skdev->pdev);
1132 skd_disable_interrupts(skdev);
1133 skd_recover_requests(skdev, 0);
1134 }
1135
1136 /*start the queue so we can respond with error to requests */
1137 /* wakeup anyone waiting for startup complete */
1138 blk_start_queue(skdev->queue);
1139 skdev->gendisk_on = -1;
1140 wake_up_interruptible(&skdev->waitq);
1141 break;
1142
1143 case SKD_DRVR_STATE_RESUMING:
1144 case SKD_DRVR_STATE_STOPPING:
1145 case SKD_DRVR_STATE_SYNCING:
1146 case SKD_DRVR_STATE_FAULT:
1147 case SKD_DRVR_STATE_DISAPPEARED:
1148 default:
1149 break;
1150 }
1151 }
1152
1153 static int skd_start_timer(struct skd_device *skdev)
1154 {
1155 int rc;
1156
1157 init_timer(&skdev->timer);
1158 setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
1159
1160 rc = mod_timer(&skdev->timer, (jiffies + HZ));
1161 if (rc)
1162 pr_err("%s: failed to start timer %d\n",
1163 __func__, rc);
1164 return rc;
1165 }
1166
1167 static void skd_kill_timer(struct skd_device *skdev)
1168 {
1169 del_timer_sync(&skdev->timer);
1170 }
1171
1172 /*
1173 *****************************************************************************
1174 * IOCTL
1175 *****************************************************************************
1176 */
1177 static int skd_ioctl_sg_io(struct skd_device *skdev,
1178 fmode_t mode, void __user *argp);
1179 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1180 struct skd_sg_io *sksgio);
1181 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1182 struct skd_sg_io *sksgio);
1183 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1184 struct skd_sg_io *sksgio);
1185 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1186 struct skd_sg_io *sksgio, int dxfer_dir);
1187 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1188 struct skd_sg_io *sksgio);
1189 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
1190 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1191 struct skd_sg_io *sksgio);
1192 static int skd_sg_io_put_status(struct skd_device *skdev,
1193 struct skd_sg_io *sksgio);
1194
1195 static void skd_complete_special(struct skd_device *skdev,
1196 volatile struct fit_completion_entry_v1
1197 *skcomp,
1198 volatile struct fit_comp_error_info *skerr,
1199 struct skd_special_context *skspcl);
1200
1201 static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
1202 uint cmd_in, ulong arg)
1203 {
1204 static const int sg_version_num = 30527;
1205 int rc = 0, timeout;
1206 struct gendisk *disk = bdev->bd_disk;
1207 struct skd_device *skdev = disk->private_data;
1208 int __user *p = (int __user *)arg;
1209
1210 pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
1211 skdev->name, __func__, __LINE__,
1212 disk->disk_name, current->comm, mode, cmd_in, arg);
1213
1214 if (!capable(CAP_SYS_ADMIN))
1215 return -EPERM;
1216
1217 switch (cmd_in) {
1218 case SG_SET_TIMEOUT:
1219 rc = get_user(timeout, p);
1220 if (!rc)
1221 disk->queue->sg_timeout = clock_t_to_jiffies(timeout);
1222 break;
1223 case SG_GET_TIMEOUT:
1224 rc = jiffies_to_clock_t(disk->queue->sg_timeout);
1225 break;
1226 case SG_GET_VERSION_NUM:
1227 rc = put_user(sg_version_num, p);
1228 break;
1229 case SG_IO:
1230 rc = skd_ioctl_sg_io(skdev, mode, (void __user *)arg);
1231 break;
1232
1233 default:
1234 rc = -ENOTTY;
1235 break;
1236 }
1237
1238 pr_debug("%s:%s:%d %s: completion rc %d\n",
1239 skdev->name, __func__, __LINE__, disk->disk_name, rc);
1240 return rc;
1241 }
1242
1243 static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
1244 void __user *argp)
1245 {
1246 int rc;
1247 struct skd_sg_io sksgio;
1248
1249 memset(&sksgio, 0, sizeof(sksgio));
1250 sksgio.mode = mode;
1251 sksgio.argp = argp;
1252 sksgio.iov = &sksgio.no_iov_iov;
1253
1254 switch (skdev->state) {
1255 case SKD_DRVR_STATE_ONLINE:
1256 case SKD_DRVR_STATE_BUSY_IMMINENT:
1257 break;
1258
1259 default:
1260 pr_debug("%s:%s:%d drive not online\n",
1261 skdev->name, __func__, __LINE__);
1262 rc = -ENXIO;
1263 goto out;
1264 }
1265
1266 rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
1267 if (rc)
1268 goto out;
1269
1270 rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
1271 if (rc)
1272 goto out;
1273
1274 rc = skd_sg_io_prep_buffering(skdev, &sksgio);
1275 if (rc)
1276 goto out;
1277
1278 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
1279 if (rc)
1280 goto out;
1281
1282 rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
1283 if (rc)
1284 goto out;
1285
1286 rc = skd_sg_io_await(skdev, &sksgio);
1287 if (rc)
1288 goto out;
1289
1290 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
1291 if (rc)
1292 goto out;
1293
1294 rc = skd_sg_io_put_status(skdev, &sksgio);
1295 if (rc)
1296 goto out;
1297
1298 rc = 0;
1299
1300 out:
1301 skd_sg_io_release_skspcl(skdev, &sksgio);
1302
1303 if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
1304 kfree(sksgio.iov);
1305 return rc;
1306 }
1307
1308 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1309 struct skd_sg_io *sksgio)
1310 {
1311 struct sg_io_hdr *sgp = &sksgio->sg;
1312 int i, acc;
1313
1314 if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
1315 pr_debug("%s:%s:%d access sg failed %p\n",
1316 skdev->name, __func__, __LINE__, sksgio->argp);
1317 return -EFAULT;
1318 }
1319
1320 if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
1321 pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
1322 skdev->name, __func__, __LINE__, sksgio->argp);
1323 return -EFAULT;
1324 }
1325
1326 if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
1327 pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
1328 skdev->name, __func__, __LINE__, sgp->interface_id);
1329 return -EINVAL;
1330 }
1331
1332 if (sgp->cmd_len > sizeof(sksgio->cdb)) {
1333 pr_debug("%s:%s:%d cmd_len invalid %d\n",
1334 skdev->name, __func__, __LINE__, sgp->cmd_len);
1335 return -EINVAL;
1336 }
1337
1338 if (sgp->iovec_count > 256) {
1339 pr_debug("%s:%s:%d iovec_count invalid %d\n",
1340 skdev->name, __func__, __LINE__, sgp->iovec_count);
1341 return -EINVAL;
1342 }
1343
1344 if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
1345 pr_debug("%s:%s:%d dxfer_len invalid %d\n",
1346 skdev->name, __func__, __LINE__, sgp->dxfer_len);
1347 return -EINVAL;
1348 }
1349
1350 switch (sgp->dxfer_direction) {
1351 case SG_DXFER_NONE:
1352 acc = -1;
1353 break;
1354
1355 case SG_DXFER_TO_DEV:
1356 acc = VERIFY_READ;
1357 break;
1358
1359 case SG_DXFER_FROM_DEV:
1360 case SG_DXFER_TO_FROM_DEV:
1361 acc = VERIFY_WRITE;
1362 break;
1363
1364 default:
1365 pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
1366 skdev->name, __func__, __LINE__, sgp->dxfer_direction);
1367 return -EINVAL;
1368 }
1369
1370 if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
1371 pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
1372 skdev->name, __func__, __LINE__, sgp->cmdp);
1373 return -EFAULT;
1374 }
1375
1376 if (sgp->mx_sb_len != 0) {
1377 if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
1378 pr_debug("%s:%s:%d access sbp failed %p\n",
1379 skdev->name, __func__, __LINE__, sgp->sbp);
1380 return -EFAULT;
1381 }
1382 }
1383
1384 if (sgp->iovec_count == 0) {
1385 sksgio->iov[0].iov_base = sgp->dxferp;
1386 sksgio->iov[0].iov_len = sgp->dxfer_len;
1387 sksgio->iovcnt = 1;
1388 sksgio->dxfer_len = sgp->dxfer_len;
1389 } else {
1390 struct sg_iovec *iov;
1391 uint nbytes = sizeof(*iov) * sgp->iovec_count;
1392 size_t iov_data_len;
1393
1394 iov = kmalloc(nbytes, GFP_KERNEL);
1395 if (iov == NULL) {
1396 pr_debug("%s:%s:%d alloc iovec failed %d\n",
1397 skdev->name, __func__, __LINE__,
1398 sgp->iovec_count);
1399 return -ENOMEM;
1400 }
1401 sksgio->iov = iov;
1402 sksgio->iovcnt = sgp->iovec_count;
1403
1404 if (copy_from_user(iov, sgp->dxferp, nbytes)) {
1405 pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
1406 skdev->name, __func__, __LINE__, sgp->dxferp);
1407 return -EFAULT;
1408 }
1409
1410 /*
1411 * Sum up the vecs, making sure they don't overflow
1412 */
1413 iov_data_len = 0;
1414 for (i = 0; i < sgp->iovec_count; i++) {
1415 if (iov_data_len + iov[i].iov_len < iov_data_len)
1416 return -EINVAL;
1417 iov_data_len += iov[i].iov_len;
1418 }
1419
1420 /* SG_IO howto says that the shorter of the two wins */
1421 if (sgp->dxfer_len < iov_data_len) {
1422 sksgio->iovcnt = iov_shorten((struct iovec *)iov,
1423 sgp->iovec_count,
1424 sgp->dxfer_len);
1425 sksgio->dxfer_len = sgp->dxfer_len;
1426 } else
1427 sksgio->dxfer_len = iov_data_len;
1428 }
1429
1430 if (sgp->dxfer_direction != SG_DXFER_NONE) {
1431 struct sg_iovec *iov = sksgio->iov;
1432 for (i = 0; i < sksgio->iovcnt; i++, iov++) {
1433 if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
1434 pr_debug("%s:%s:%d access data failed %p/%d\n",
1435 skdev->name, __func__, __LINE__,
1436 iov->iov_base, (int)iov->iov_len);
1437 return -EFAULT;
1438 }
1439 }
1440 }
1441
1442 return 0;
1443 }
1444
1445 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1446 struct skd_sg_io *sksgio)
1447 {
1448 struct skd_special_context *skspcl = NULL;
1449 int rc;
1450
1451 for (;;) {
1452 ulong flags;
1453
1454 spin_lock_irqsave(&skdev->lock, flags);
1455 skspcl = skdev->skspcl_free_list;
1456 if (skspcl != NULL) {
1457 skdev->skspcl_free_list =
1458 (struct skd_special_context *)skspcl->req.next;
1459 skspcl->req.id += SKD_ID_INCR;
1460 skspcl->req.state = SKD_REQ_STATE_SETUP;
1461 skspcl->orphaned = 0;
1462 skspcl->req.n_sg = 0;
1463 }
1464 spin_unlock_irqrestore(&skdev->lock, flags);
1465
1466 if (skspcl != NULL) {
1467 rc = 0;
1468 break;
1469 }
1470
1471 pr_debug("%s:%s:%d blocking\n",
1472 skdev->name, __func__, __LINE__);
1473
1474 rc = wait_event_interruptible_timeout(
1475 skdev->waitq,
1476 (skdev->skspcl_free_list != NULL),
1477 msecs_to_jiffies(sksgio->sg.timeout));
1478
1479 pr_debug("%s:%s:%d unblocking, rc=%d\n",
1480 skdev->name, __func__, __LINE__, rc);
1481
1482 if (rc <= 0) {
1483 if (rc == 0)
1484 rc = -ETIMEDOUT;
1485 else
1486 rc = -EINTR;
1487 break;
1488 }
1489 /*
1490 * If we get here rc > 0 meaning the timeout to
1491 * wait_event_interruptible_timeout() had time left, hence the
1492 * sought event -- non-empty free list -- happened.
1493 * Retry the allocation.
1494 */
1495 }
1496 sksgio->skspcl = skspcl;
1497
1498 return rc;
1499 }
1500
1501 static int skd_skreq_prep_buffering(struct skd_device *skdev,
1502 struct skd_request_context *skreq,
1503 u32 dxfer_len)
1504 {
1505 u32 resid = dxfer_len;
1506
1507 /*
1508 * The DMA engine must have aligned addresses and byte counts.
1509 */
1510 resid += (-resid) & 3;
1511 skreq->sg_byte_count = resid;
1512
1513 skreq->n_sg = 0;
1514
1515 while (resid > 0) {
1516 u32 nbytes = PAGE_SIZE;
1517 u32 ix = skreq->n_sg;
1518 struct scatterlist *sg = &skreq->sg[ix];
1519 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1520 struct page *page;
1521
1522 if (nbytes > resid)
1523 nbytes = resid;
1524
1525 page = alloc_page(GFP_KERNEL);
1526 if (page == NULL)
1527 return -ENOMEM;
1528
1529 sg_set_page(sg, page, nbytes, 0);
1530
1531 /* TODO: This should be going through a pci_???()
1532 * routine to do proper mapping. */
1533 sksg->control = FIT_SGD_CONTROL_NOT_LAST;
1534 sksg->byte_count = nbytes;
1535
1536 sksg->host_side_addr = sg_phys(sg);
1537
1538 sksg->dev_side_addr = 0;
1539 sksg->next_desc_ptr = skreq->sksg_dma_address +
1540 (ix + 1) * sizeof(*sksg);
1541
1542 skreq->n_sg++;
1543 resid -= nbytes;
1544 }
1545
1546 if (skreq->n_sg > 0) {
1547 u32 ix = skreq->n_sg - 1;
1548 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1549
1550 sksg->control = FIT_SGD_CONTROL_LAST;
1551 sksg->next_desc_ptr = 0;
1552 }
1553
1554 if (unlikely(skdev->dbg_level > 1)) {
1555 u32 i;
1556
1557 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
1558 skdev->name, __func__, __LINE__,
1559 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
1560 for (i = 0; i < skreq->n_sg; i++) {
1561 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
1562
1563 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
1564 "addr=0x%llx next=0x%llx\n",
1565 skdev->name, __func__, __LINE__,
1566 i, sgd->byte_count, sgd->control,
1567 sgd->host_side_addr, sgd->next_desc_ptr);
1568 }
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1575 struct skd_sg_io *sksgio)
1576 {
1577 struct skd_special_context *skspcl = sksgio->skspcl;
1578 struct skd_request_context *skreq = &skspcl->req;
1579 u32 dxfer_len = sksgio->dxfer_len;
1580 int rc;
1581
1582 rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
1583 /*
1584 * Eventually, errors or not, skd_release_special() is called
1585 * to recover allocations including partial allocations.
1586 */
1587 return rc;
1588 }
1589
1590 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1591 struct skd_sg_io *sksgio, int dxfer_dir)
1592 {
1593 struct skd_special_context *skspcl = sksgio->skspcl;
1594 u32 iov_ix = 0;
1595 struct sg_iovec curiov;
1596 u32 sksg_ix = 0;
1597 u8 *bufp = NULL;
1598 u32 buf_len = 0;
1599 u32 resid = sksgio->dxfer_len;
1600 int rc;
1601
1602 curiov.iov_len = 0;
1603 curiov.iov_base = NULL;
1604
1605 if (dxfer_dir != sksgio->sg.dxfer_direction) {
1606 if (dxfer_dir != SG_DXFER_TO_DEV ||
1607 sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
1608 return 0;
1609 }
1610
1611 while (resid > 0) {
1612 u32 nbytes = PAGE_SIZE;
1613
1614 if (curiov.iov_len == 0) {
1615 curiov = sksgio->iov[iov_ix++];
1616 continue;
1617 }
1618
1619 if (buf_len == 0) {
1620 struct page *page;
1621 page = sg_page(&skspcl->req.sg[sksg_ix++]);
1622 bufp = page_address(page);
1623 buf_len = PAGE_SIZE;
1624 }
1625
1626 nbytes = min_t(u32, nbytes, resid);
1627 nbytes = min_t(u32, nbytes, curiov.iov_len);
1628 nbytes = min_t(u32, nbytes, buf_len);
1629
1630 if (dxfer_dir == SG_DXFER_TO_DEV)
1631 rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
1632 else
1633 rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
1634
1635 if (rc)
1636 return -EFAULT;
1637
1638 resid -= nbytes;
1639 curiov.iov_len -= nbytes;
1640 curiov.iov_base += nbytes;
1641 buf_len -= nbytes;
1642 }
1643
1644 return 0;
1645 }
1646
1647 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1648 struct skd_sg_io *sksgio)
1649 {
1650 struct skd_special_context *skspcl = sksgio->skspcl;
1651 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
1652 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
1653
1654 memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
1655
1656 /* Initialize the FIT msg header */
1657 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1658 fmh->num_protocol_cmds_coalesced = 1;
1659
1660 /* Initialize the SCSI request */
1661 if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
1662 scsi_req->hdr.sg_list_dma_address =
1663 cpu_to_be64(skspcl->req.sksg_dma_address);
1664 scsi_req->hdr.tag = skspcl->req.id;
1665 scsi_req->hdr.sg_list_len_bytes =
1666 cpu_to_be32(skspcl->req.sg_byte_count);
1667 memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
1668
1669 skspcl->req.state = SKD_REQ_STATE_BUSY;
1670 skd_send_special_fitmsg(skdev, skspcl);
1671
1672 return 0;
1673 }
1674
1675 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
1676 {
1677 unsigned long flags;
1678 int rc;
1679
1680 rc = wait_event_interruptible_timeout(skdev->waitq,
1681 (sksgio->skspcl->req.state !=
1682 SKD_REQ_STATE_BUSY),
1683 msecs_to_jiffies(sksgio->sg.
1684 timeout));
1685
1686 spin_lock_irqsave(&skdev->lock, flags);
1687
1688 if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
1689 pr_debug("%s:%s:%d skspcl %p aborted\n",
1690 skdev->name, __func__, __LINE__, sksgio->skspcl);
1691
1692 /* Build check cond, sense and let command finish. */
1693 /* For a timeout, we must fabricate completion and sense
1694 * data to complete the command */
1695 sksgio->skspcl->req.completion.status =
1696 SAM_STAT_CHECK_CONDITION;
1697
1698 memset(&sksgio->skspcl->req.err_info, 0,
1699 sizeof(sksgio->skspcl->req.err_info));
1700 sksgio->skspcl->req.err_info.type = 0x70;
1701 sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
1702 sksgio->skspcl->req.err_info.code = 0x44;
1703 sksgio->skspcl->req.err_info.qual = 0;
1704 rc = 0;
1705 } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
1706 /* No longer on the adapter. We finish. */
1707 rc = 0;
1708 else {
1709 /* Something's gone wrong. Still busy. Timeout or
1710 * user interrupted (control-C). Mark as an orphan
1711 * so it will be disposed when completed. */
1712 sksgio->skspcl->orphaned = 1;
1713 sksgio->skspcl = NULL;
1714 if (rc == 0) {
1715 pr_debug("%s:%s:%d timed out %p (%u ms)\n",
1716 skdev->name, __func__, __LINE__,
1717 sksgio, sksgio->sg.timeout);
1718 rc = -ETIMEDOUT;
1719 } else {
1720 pr_debug("%s:%s:%d cntlc %p\n",
1721 skdev->name, __func__, __LINE__, sksgio);
1722 rc = -EINTR;
1723 }
1724 }
1725
1726 spin_unlock_irqrestore(&skdev->lock, flags);
1727
1728 return rc;
1729 }
1730
1731 static int skd_sg_io_put_status(struct skd_device *skdev,
1732 struct skd_sg_io *sksgio)
1733 {
1734 struct sg_io_hdr *sgp = &sksgio->sg;
1735 struct skd_special_context *skspcl = sksgio->skspcl;
1736 int resid = 0;
1737
1738 u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
1739
1740 sgp->status = skspcl->req.completion.status;
1741 resid = sksgio->dxfer_len - nb;
1742
1743 sgp->masked_status = sgp->status & STATUS_MASK;
1744 sgp->msg_status = 0;
1745 sgp->host_status = 0;
1746 sgp->driver_status = 0;
1747 sgp->resid = resid;
1748 if (sgp->masked_status || sgp->host_status || sgp->driver_status)
1749 sgp->info |= SG_INFO_CHECK;
1750
1751 pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
1752 skdev->name, __func__, __LINE__,
1753 sgp->status, sgp->masked_status, sgp->resid);
1754
1755 if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
1756 if (sgp->mx_sb_len > 0) {
1757 struct fit_comp_error_info *ei = &skspcl->req.err_info;
1758 u32 nbytes = sizeof(*ei);
1759
1760 nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
1761
1762 sgp->sb_len_wr = nbytes;
1763
1764 if (__copy_to_user(sgp->sbp, ei, nbytes)) {
1765 pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
1766 skdev->name, __func__, __LINE__,
1767 sgp->sbp);
1768 return -EFAULT;
1769 }
1770 }
1771 }
1772
1773 if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
1774 pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
1775 skdev->name, __func__, __LINE__, sksgio->argp);
1776 return -EFAULT;
1777 }
1778
1779 return 0;
1780 }
1781
1782 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1783 struct skd_sg_io *sksgio)
1784 {
1785 struct skd_special_context *skspcl = sksgio->skspcl;
1786
1787 if (skspcl != NULL) {
1788 ulong flags;
1789
1790 sksgio->skspcl = NULL;
1791
1792 spin_lock_irqsave(&skdev->lock, flags);
1793 skd_release_special(skdev, skspcl);
1794 spin_unlock_irqrestore(&skdev->lock, flags);
1795 }
1796
1797 return 0;
1798 }
1799
1800 /*
1801 *****************************************************************************
1802 * INTERNAL REQUESTS -- generated by driver itself
1803 *****************************************************************************
1804 */
1805
1806 static int skd_format_internal_skspcl(struct skd_device *skdev)
1807 {
1808 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1809 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1810 struct fit_msg_hdr *fmh;
1811 uint64_t dma_address;
1812 struct skd_scsi_request *scsi;
1813
1814 fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
1815 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1816 fmh->num_protocol_cmds_coalesced = 1;
1817
1818 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1819 memset(scsi, 0, sizeof(*scsi));
1820 dma_address = skspcl->req.sksg_dma_address;
1821 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
1822 sgd->control = FIT_SGD_CONTROL_LAST;
1823 sgd->byte_count = 0;
1824 sgd->host_side_addr = skspcl->db_dma_address;
1825 sgd->dev_side_addr = 0;
1826 sgd->next_desc_ptr = 0LL;
1827
1828 return 1;
1829 }
1830
1831 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
1832
1833 static void skd_send_internal_skspcl(struct skd_device *skdev,
1834 struct skd_special_context *skspcl,
1835 u8 opcode)
1836 {
1837 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1838 struct skd_scsi_request *scsi;
1839 unsigned char *buf = skspcl->data_buf;
1840 int i;
1841
1842 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
1843 /*
1844 * A refresh is already in progress.
1845 * Just wait for it to finish.
1846 */
1847 return;
1848
1849 SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
1850 skspcl->req.state = SKD_REQ_STATE_BUSY;
1851 skspcl->req.id += SKD_ID_INCR;
1852
1853 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1854 scsi->hdr.tag = skspcl->req.id;
1855
1856 memset(scsi->cdb, 0, sizeof(scsi->cdb));
1857
1858 switch (opcode) {
1859 case TEST_UNIT_READY:
1860 scsi->cdb[0] = TEST_UNIT_READY;
1861 sgd->byte_count = 0;
1862 scsi->hdr.sg_list_len_bytes = 0;
1863 break;
1864
1865 case READ_CAPACITY:
1866 scsi->cdb[0] = READ_CAPACITY;
1867 sgd->byte_count = SKD_N_READ_CAP_BYTES;
1868 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1869 break;
1870
1871 case INQUIRY:
1872 scsi->cdb[0] = INQUIRY;
1873 scsi->cdb[1] = 0x01; /* evpd */
1874 scsi->cdb[2] = 0x80; /* serial number page */
1875 scsi->cdb[4] = 0x10;
1876 sgd->byte_count = 16;
1877 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1878 break;
1879
1880 case SYNCHRONIZE_CACHE:
1881 scsi->cdb[0] = SYNCHRONIZE_CACHE;
1882 sgd->byte_count = 0;
1883 scsi->hdr.sg_list_len_bytes = 0;
1884 break;
1885
1886 case WRITE_BUFFER:
1887 scsi->cdb[0] = WRITE_BUFFER;
1888 scsi->cdb[1] = 0x02;
1889 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1890 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1891 sgd->byte_count = WR_BUF_SIZE;
1892 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1893 /* fill incrementing byte pattern */
1894 for (i = 0; i < sgd->byte_count; i++)
1895 buf[i] = i & 0xFF;
1896 break;
1897
1898 case READ_BUFFER:
1899 scsi->cdb[0] = READ_BUFFER;
1900 scsi->cdb[1] = 0x02;
1901 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1902 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1903 sgd->byte_count = WR_BUF_SIZE;
1904 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1905 memset(skspcl->data_buf, 0, sgd->byte_count);
1906 break;
1907
1908 default:
1909 SKD_ASSERT("Don't know what to send");
1910 return;
1911
1912 }
1913 skd_send_special_fitmsg(skdev, skspcl);
1914 }
1915
1916 static void skd_refresh_device_data(struct skd_device *skdev)
1917 {
1918 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1919
1920 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1921 }
1922
1923 static int skd_chk_read_buf(struct skd_device *skdev,
1924 struct skd_special_context *skspcl)
1925 {
1926 unsigned char *buf = skspcl->data_buf;
1927 int i;
1928
1929 /* check for incrementing byte pattern */
1930 for (i = 0; i < WR_BUF_SIZE; i++)
1931 if (buf[i] != (i & 0xFF))
1932 return 1;
1933
1934 return 0;
1935 }
1936
1937 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1938 u8 code, u8 qual, u8 fruc)
1939 {
1940 /* If the check condition is of special interest, log a message */
1941 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1942 && (code == 0x04) && (qual == 0x06)) {
1943 pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
1944 "ascq/fruc %02x/%02x/%02x/%02x\n",
1945 skd_name(skdev), key, code, qual, fruc);
1946 }
1947 }
1948
1949 static void skd_complete_internal(struct skd_device *skdev,
1950 volatile struct fit_completion_entry_v1
1951 *skcomp,
1952 volatile struct fit_comp_error_info *skerr,
1953 struct skd_special_context *skspcl)
1954 {
1955 u8 *buf = skspcl->data_buf;
1956 u8 status;
1957 int i;
1958 struct skd_scsi_request *scsi =
1959 (struct skd_scsi_request *)&skspcl->msg_buf[64];
1960
1961 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1962
1963 pr_debug("%s:%s:%d complete internal %x\n",
1964 skdev->name, __func__, __LINE__, scsi->cdb[0]);
1965
1966 skspcl->req.completion = *skcomp;
1967 skspcl->req.state = SKD_REQ_STATE_IDLE;
1968 skspcl->req.id += SKD_ID_INCR;
1969
1970 status = skspcl->req.completion.status;
1971
1972 skd_log_check_status(skdev, status, skerr->key, skerr->code,
1973 skerr->qual, skerr->fruc);
1974
1975 switch (scsi->cdb[0]) {
1976 case TEST_UNIT_READY:
1977 if (status == SAM_STAT_GOOD)
1978 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1979 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1980 (skerr->key == MEDIUM_ERROR))
1981 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1982 else {
1983 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1984 pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
1985 skdev->name, __func__, __LINE__,
1986 skdev->state);
1987 return;
1988 }
1989 pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
1990 skdev->name, __func__, __LINE__);
1991 skd_send_internal_skspcl(skdev, skspcl, 0x00);
1992 }
1993 break;
1994
1995 case WRITE_BUFFER:
1996 if (status == SAM_STAT_GOOD)
1997 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1998 else {
1999 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2000 pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
2001 skdev->name, __func__, __LINE__,
2002 skdev->state);
2003 return;
2004 }
2005 pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
2006 skdev->name, __func__, __LINE__);
2007 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2008 }
2009 break;
2010
2011 case READ_BUFFER:
2012 if (status == SAM_STAT_GOOD) {
2013 if (skd_chk_read_buf(skdev, skspcl) == 0)
2014 skd_send_internal_skspcl(skdev, skspcl,
2015 READ_CAPACITY);
2016 else {
2017 pr_err(
2018 "(%s):*** W/R Buffer mismatch %d ***\n",
2019 skd_name(skdev), skdev->connect_retries);
2020 if (skdev->connect_retries <
2021 SKD_MAX_CONNECT_RETRIES) {
2022 skdev->connect_retries++;
2023 skd_soft_reset(skdev);
2024 } else {
2025 pr_err(
2026 "(%s): W/R Buffer Connect Error\n",
2027 skd_name(skdev));
2028 return;
2029 }
2030 }
2031
2032 } else {
2033 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2034 pr_debug("%s:%s:%d "
2035 "read buffer failed, don't send anymore state 0x%x\n",
2036 skdev->name, __func__, __LINE__,
2037 skdev->state);
2038 return;
2039 }
2040 pr_debug("%s:%s:%d "
2041 "**** read buffer failed, retry skerr\n",
2042 skdev->name, __func__, __LINE__);
2043 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2044 }
2045 break;
2046
2047 case READ_CAPACITY:
2048 skdev->read_cap_is_valid = 0;
2049 if (status == SAM_STAT_GOOD) {
2050 skdev->read_cap_last_lba =
2051 (buf[0] << 24) | (buf[1] << 16) |
2052 (buf[2] << 8) | buf[3];
2053 skdev->read_cap_blocksize =
2054 (buf[4] << 24) | (buf[5] << 16) |
2055 (buf[6] << 8) | buf[7];
2056
2057 pr_debug("%s:%s:%d last lba %d, bs %d\n",
2058 skdev->name, __func__, __LINE__,
2059 skdev->read_cap_last_lba,
2060 skdev->read_cap_blocksize);
2061
2062 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2063
2064 skdev->read_cap_is_valid = 1;
2065
2066 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2067 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
2068 (skerr->key == MEDIUM_ERROR)) {
2069 skdev->read_cap_last_lba = ~0;
2070 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2071 pr_debug("%s:%s:%d "
2072 "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
2073 skdev->name, __func__, __LINE__);
2074 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2075 } else {
2076 pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
2077 skdev->name, __func__, __LINE__);
2078 skd_send_internal_skspcl(skdev, skspcl,
2079 TEST_UNIT_READY);
2080 }
2081 break;
2082
2083 case INQUIRY:
2084 skdev->inquiry_is_valid = 0;
2085 if (status == SAM_STAT_GOOD) {
2086 skdev->inquiry_is_valid = 1;
2087
2088 for (i = 0; i < 12; i++)
2089 skdev->inq_serial_num[i] = buf[i + 4];
2090 skdev->inq_serial_num[12] = 0;
2091 }
2092
2093 if (skd_unquiesce_dev(skdev) < 0)
2094 pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
2095 skdev->name, __func__, __LINE__);
2096 /* connection is complete */
2097 skdev->connect_retries = 0;
2098 break;
2099
2100 case SYNCHRONIZE_CACHE:
2101 if (status == SAM_STAT_GOOD)
2102 skdev->sync_done = 1;
2103 else
2104 skdev->sync_done = -1;
2105 wake_up_interruptible(&skdev->waitq);
2106 break;
2107
2108 default:
2109 SKD_ASSERT("we didn't send this");
2110 }
2111 }
2112
2113 /*
2114 *****************************************************************************
2115 * FIT MESSAGES
2116 *****************************************************************************
2117 */
2118
2119 static void skd_send_fitmsg(struct skd_device *skdev,
2120 struct skd_fitmsg_context *skmsg)
2121 {
2122 u64 qcmd;
2123 struct fit_msg_hdr *fmh;
2124
2125 pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
2126 skdev->name, __func__, __LINE__,
2127 skmsg->mb_dma_address, skdev->in_flight);
2128 pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
2129 skdev->name, __func__, __LINE__,
2130 skmsg->msg_buf, skmsg->offset);
2131
2132 qcmd = skmsg->mb_dma_address;
2133 qcmd |= FIT_QCMD_QID_NORMAL;
2134
2135 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
2136 skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
2137
2138 if (unlikely(skdev->dbg_level > 1)) {
2139 u8 *bp = (u8 *)skmsg->msg_buf;
2140 int i;
2141 for (i = 0; i < skmsg->length; i += 8) {
2142 pr_debug("%s:%s:%d msg[%2d] %8ph\n",
2143 skdev->name, __func__, __LINE__, i, &bp[i]);
2144 if (i == 0)
2145 i = 64 - 8;
2146 }
2147 }
2148
2149 if (skmsg->length > 256)
2150 qcmd |= FIT_QCMD_MSGSIZE_512;
2151 else if (skmsg->length > 128)
2152 qcmd |= FIT_QCMD_MSGSIZE_256;
2153 else if (skmsg->length > 64)
2154 qcmd |= FIT_QCMD_MSGSIZE_128;
2155 else
2156 /*
2157 * This makes no sense because the FIT msg header is
2158 * 64 bytes. If the msg is only 64 bytes long it has
2159 * no payload.
2160 */
2161 qcmd |= FIT_QCMD_MSGSIZE_64;
2162
2163 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2164 }
2165
2166 static void skd_send_special_fitmsg(struct skd_device *skdev,
2167 struct skd_special_context *skspcl)
2168 {
2169 u64 qcmd;
2170
2171 if (unlikely(skdev->dbg_level > 1)) {
2172 u8 *bp = (u8 *)skspcl->msg_buf;
2173 int i;
2174
2175 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
2176 pr_debug("%s:%s:%d spcl[%2d] %8ph\n",
2177 skdev->name, __func__, __LINE__, i, &bp[i]);
2178 if (i == 0)
2179 i = 64 - 8;
2180 }
2181
2182 pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
2183 skdev->name, __func__, __LINE__,
2184 skspcl, skspcl->req.id, skspcl->req.sksg_list,
2185 skspcl->req.sksg_dma_address);
2186 for (i = 0; i < skspcl->req.n_sg; i++) {
2187 struct fit_sg_descriptor *sgd =
2188 &skspcl->req.sksg_list[i];
2189
2190 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
2191 "addr=0x%llx next=0x%llx\n",
2192 skdev->name, __func__, __LINE__,
2193 i, sgd->byte_count, sgd->control,
2194 sgd->host_side_addr, sgd->next_desc_ptr);
2195 }
2196 }
2197
2198 /*
2199 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
2200 * and one 64-byte SSDI command.
2201 */
2202 qcmd = skspcl->mb_dma_address;
2203 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
2204
2205 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2206 }
2207
2208 /*
2209 *****************************************************************************
2210 * COMPLETION QUEUE
2211 *****************************************************************************
2212 */
2213
2214 static void skd_complete_other(struct skd_device *skdev,
2215 volatile struct fit_completion_entry_v1 *skcomp,
2216 volatile struct fit_comp_error_info *skerr);
2217
2218 struct sns_info {
2219 u8 type;
2220 u8 stat;
2221 u8 key;
2222 u8 asc;
2223 u8 ascq;
2224 u8 mask;
2225 enum skd_check_status_action action;
2226 };
2227
2228 static struct sns_info skd_chkstat_table[] = {
2229 /* Good */
2230 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
2231 SKD_CHECK_STATUS_REPORT_GOOD },
2232
2233 /* Smart alerts */
2234 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
2235 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2236 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
2237 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2238 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
2239 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2240
2241 /* Retry (with limits) */
2242 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
2243 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2244 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
2245 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2246 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
2247 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2248 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
2249 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2250
2251 /* Busy (or about to be) */
2252 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
2253 SKD_CHECK_STATUS_BUSY_IMMINENT },
2254 };
2255
2256 /*
2257 * Look up status and sense data to decide how to handle the error
2258 * from the device.
2259 * mask says which fields must match e.g., mask=0x18 means check
2260 * type and stat, ignore key, asc, ascq.
2261 */
2262
2263 static enum skd_check_status_action
2264 skd_check_status(struct skd_device *skdev,
2265 u8 cmp_status, volatile struct fit_comp_error_info *skerr)
2266 {
2267 int i, n;
2268
2269 pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
2270 skd_name(skdev), skerr->key, skerr->code, skerr->qual,
2271 skerr->fruc);
2272
2273 pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
2274 skdev->name, __func__, __LINE__, skerr->type, cmp_status,
2275 skerr->key, skerr->code, skerr->qual, skerr->fruc);
2276
2277 /* Does the info match an entry in the good category? */
2278 n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
2279 for (i = 0; i < n; i++) {
2280 struct sns_info *sns = &skd_chkstat_table[i];
2281
2282 if (sns->mask & 0x10)
2283 if (skerr->type != sns->type)
2284 continue;
2285
2286 if (sns->mask & 0x08)
2287 if (cmp_status != sns->stat)
2288 continue;
2289
2290 if (sns->mask & 0x04)
2291 if (skerr->key != sns->key)
2292 continue;
2293
2294 if (sns->mask & 0x02)
2295 if (skerr->code != sns->asc)
2296 continue;
2297
2298 if (sns->mask & 0x01)
2299 if (skerr->qual != sns->ascq)
2300 continue;
2301
2302 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
2303 pr_err("(%s): SMART Alert: sense key/asc/ascq "
2304 "%02x/%02x/%02x\n",
2305 skd_name(skdev), skerr->key,
2306 skerr->code, skerr->qual);
2307 }
2308 return sns->action;
2309 }
2310
2311 /* No other match, so nonzero status means error,
2312 * zero status means good
2313 */
2314 if (cmp_status) {
2315 pr_debug("%s:%s:%d status check: error\n",
2316 skdev->name, __func__, __LINE__);
2317 return SKD_CHECK_STATUS_REPORT_ERROR;
2318 }
2319
2320 pr_debug("%s:%s:%d status check good default\n",
2321 skdev->name, __func__, __LINE__);
2322 return SKD_CHECK_STATUS_REPORT_GOOD;
2323 }
2324
2325 static void skd_resolve_req_exception(struct skd_device *skdev,
2326 struct skd_request_context *skreq)
2327 {
2328 u8 cmp_status = skreq->completion.status;
2329
2330 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
2331 case SKD_CHECK_STATUS_REPORT_GOOD:
2332 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
2333 skd_end_request(skdev, skreq, BLK_STS_OK);
2334 break;
2335
2336 case SKD_CHECK_STATUS_BUSY_IMMINENT:
2337 skd_log_skreq(skdev, skreq, "retry(busy)");
2338 blk_requeue_request(skdev->queue, skreq->req);
2339 pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
2340 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
2341 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2342 skd_quiesce_dev(skdev);
2343 break;
2344
2345 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
2346 if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
2347 skd_log_skreq(skdev, skreq, "retry");
2348 blk_requeue_request(skdev->queue, skreq->req);
2349 break;
2350 }
2351 /* fall through to report error */
2352
2353 case SKD_CHECK_STATUS_REPORT_ERROR:
2354 default:
2355 skd_end_request(skdev, skreq, BLK_STS_IOERR);
2356 break;
2357 }
2358 }
2359
2360 /* assume spinlock is already held */
2361 static void skd_release_skreq(struct skd_device *skdev,
2362 struct skd_request_context *skreq)
2363 {
2364 u32 msg_slot;
2365 struct skd_fitmsg_context *skmsg;
2366
2367 u32 timo_slot;
2368
2369 /*
2370 * Reclaim the FIT msg buffer if this is
2371 * the first of the requests it carried to
2372 * be completed. The FIT msg buffer used to
2373 * send this request cannot be reused until
2374 * we are sure the s1120 card has copied
2375 * it to its memory. The FIT msg might have
2376 * contained several requests. As soon as
2377 * any of them are completed we know that
2378 * the entire FIT msg was transferred.
2379 * Only the first completed request will
2380 * match the FIT msg buffer id. The FIT
2381 * msg buffer id is immediately updated.
2382 * When subsequent requests complete the FIT
2383 * msg buffer id won't match, so we know
2384 * quite cheaply that it is already done.
2385 */
2386 msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
2387 SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
2388
2389 skmsg = &skdev->skmsg_table[msg_slot];
2390 if (skmsg->id == skreq->fitmsg_id) {
2391 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
2392 SKD_ASSERT(skmsg->outstanding > 0);
2393 skmsg->outstanding--;
2394 if (skmsg->outstanding == 0) {
2395 skmsg->state = SKD_MSG_STATE_IDLE;
2396 skmsg->id += SKD_ID_INCR;
2397 skmsg->next = skdev->skmsg_free_list;
2398 skdev->skmsg_free_list = skmsg;
2399 }
2400 }
2401
2402 /*
2403 * Decrease the number of active requests.
2404 * Also decrements the count in the timeout slot.
2405 */
2406 SKD_ASSERT(skdev->in_flight > 0);
2407 skdev->in_flight -= 1;
2408
2409 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
2410 SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
2411 skdev->timeout_slot[timo_slot] -= 1;
2412
2413 /*
2414 * Reset backpointer
2415 */
2416 skreq->req = NULL;
2417
2418 /*
2419 * Reclaim the skd_request_context
2420 */
2421 skreq->state = SKD_REQ_STATE_IDLE;
2422 skreq->id += SKD_ID_INCR;
2423 skreq->next = skdev->skreq_free_list;
2424 skdev->skreq_free_list = skreq;
2425 }
2426
2427 #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
2428
2429 static void skd_do_inq_page_00(struct skd_device *skdev,
2430 volatile struct fit_completion_entry_v1 *skcomp,
2431 volatile struct fit_comp_error_info *skerr,
2432 uint8_t *cdb, uint8_t *buf)
2433 {
2434 uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
2435
2436 /* Caller requested "supported pages". The driver needs to insert
2437 * its page.
2438 */
2439 pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
2440 skdev->name, __func__, __LINE__);
2441
2442 /* If the device rejected the request because the CDB was
2443 * improperly formed, then just leave.
2444 */
2445 if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
2446 skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
2447 return;
2448
2449 /* Get the amount of space the caller allocated */
2450 max_bytes = (cdb[3] << 8) | cdb[4];
2451
2452 /* Get the number of pages actually returned by the device */
2453 drive_pages = (buf[2] << 8) | buf[3];
2454 drive_bytes = drive_pages + 4;
2455 new_size = drive_pages + 1;
2456
2457 /* Supported pages must be in numerical order, so find where
2458 * the driver page needs to be inserted into the list of
2459 * pages returned by the device.
2460 */
2461 for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
2462 if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
2463 return; /* Device using this page code. abort */
2464 else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
2465 break;
2466 }
2467
2468 if (insert_pt < max_bytes) {
2469 uint16_t u;
2470
2471 /* Shift everything up one byte to make room. */
2472 for (u = new_size + 3; u > insert_pt; u--)
2473 buf[u] = buf[u - 1];
2474 buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
2475
2476 /* SCSI byte order increment of num_returned_bytes by 1 */
2477 skcomp->num_returned_bytes =
2478 be32_to_cpu(skcomp->num_returned_bytes) + 1;
2479 skcomp->num_returned_bytes =
2480 be32_to_cpu(skcomp->num_returned_bytes);
2481 }
2482
2483 /* update page length field to reflect the driver's page too */
2484 buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
2485 buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
2486 }
2487
2488 static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
2489 {
2490 int pcie_reg;
2491 u16 pci_bus_speed;
2492 u8 pci_lanes;
2493
2494 pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2495 if (pcie_reg) {
2496 u16 linksta;
2497 pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
2498
2499 pci_bus_speed = linksta & 0xF;
2500 pci_lanes = (linksta & 0x3F0) >> 4;
2501 } else {
2502 *speed = STEC_LINK_UNKNOWN;
2503 *width = 0xFF;
2504 return;
2505 }
2506
2507 switch (pci_bus_speed) {
2508 case 1:
2509 *speed = STEC_LINK_2_5GTS;
2510 break;
2511 case 2:
2512 *speed = STEC_LINK_5GTS;
2513 break;
2514 case 3:
2515 *speed = STEC_LINK_8GTS;
2516 break;
2517 default:
2518 *speed = STEC_LINK_UNKNOWN;
2519 break;
2520 }
2521
2522 if (pci_lanes <= 0x20)
2523 *width = pci_lanes;
2524 else
2525 *width = 0xFF;
2526 }
2527
2528 static void skd_do_inq_page_da(struct skd_device *skdev,
2529 volatile struct fit_completion_entry_v1 *skcomp,
2530 volatile struct fit_comp_error_info *skerr,
2531 uint8_t *cdb, uint8_t *buf)
2532 {
2533 struct pci_dev *pdev = skdev->pdev;
2534 unsigned max_bytes;
2535 struct driver_inquiry_data inq;
2536 u16 val;
2537
2538 pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
2539 skdev->name, __func__, __LINE__);
2540
2541 memset(&inq, 0, sizeof(inq));
2542
2543 inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
2544
2545 skd_get_link_info(pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes);
2546 inq.pcie_bus_number = cpu_to_be16(pdev->bus->number);
2547 inq.pcie_device_number = PCI_SLOT(pdev->devfn);
2548 inq.pcie_function_number = PCI_FUNC(pdev->devfn);
2549
2550 pci_read_config_word(pdev, PCI_VENDOR_ID, &val);
2551 inq.pcie_vendor_id = cpu_to_be16(val);
2552
2553 pci_read_config_word(pdev, PCI_DEVICE_ID, &val);
2554 inq.pcie_device_id = cpu_to_be16(val);
2555
2556 pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &val);
2557 inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
2558
2559 pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &val);
2560 inq.pcie_subsystem_device_id = cpu_to_be16(val);
2561
2562 /* Driver version, fixed lenth, padded with spaces on the right */
2563 inq.driver_version_length = sizeof(inq.driver_version);
2564 memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
2565 memcpy(inq.driver_version, DRV_VER_COMPL,
2566 min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
2567
2568 inq.page_length = cpu_to_be16((sizeof(inq) - 4));
2569
2570 /* Clear the error set by the device */
2571 skcomp->status = SAM_STAT_GOOD;
2572 memset((void *)skerr, 0, sizeof(*skerr));
2573
2574 /* copy response into output buffer */
2575 max_bytes = (cdb[3] << 8) | cdb[4];
2576 memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
2577
2578 skcomp->num_returned_bytes =
2579 be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
2580 }
2581
2582 static void skd_do_driver_inq(struct skd_device *skdev,
2583 volatile struct fit_completion_entry_v1 *skcomp,
2584 volatile struct fit_comp_error_info *skerr,
2585 uint8_t *cdb, uint8_t *buf)
2586 {
2587 if (!buf)
2588 return;
2589 else if (cdb[0] != INQUIRY)
2590 return; /* Not an INQUIRY */
2591 else if ((cdb[1] & 1) == 0)
2592 return; /* EVPD not set */
2593 else if (cdb[2] == 0)
2594 /* Need to add driver's page to supported pages list */
2595 skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
2596 else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
2597 /* Caller requested driver's page */
2598 skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
2599 }
2600
2601 static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
2602 {
2603 if (!sg)
2604 return NULL;
2605 if (!sg_page(sg))
2606 return NULL;
2607 return sg_virt(sg);
2608 }
2609
2610 static void skd_process_scsi_inq(struct skd_device *skdev,
2611 volatile struct fit_completion_entry_v1
2612 *skcomp,
2613 volatile struct fit_comp_error_info *skerr,
2614 struct skd_special_context *skspcl)
2615 {
2616 uint8_t *buf;
2617 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
2618 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
2619
2620 dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
2621 skspcl->req.sg_data_dir);
2622 buf = skd_sg_1st_page_ptr(skspcl->req.sg);
2623
2624 if (buf)
2625 skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
2626 }
2627
2628
2629 static int skd_isr_completion_posted(struct skd_device *skdev,
2630 int limit, int *enqueued)
2631 {
2632 volatile struct fit_completion_entry_v1 *skcmp = NULL;
2633 volatile struct fit_comp_error_info *skerr;
2634 u16 req_id;
2635 u32 req_slot;
2636 struct skd_request_context *skreq;
2637 u16 cmp_cntxt = 0;
2638 u8 cmp_status = 0;
2639 u8 cmp_cycle = 0;
2640 u32 cmp_bytes = 0;
2641 int rc = 0;
2642 int processed = 0;
2643
2644 for (;; ) {
2645 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
2646
2647 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
2648 cmp_cycle = skcmp->cycle;
2649 cmp_cntxt = skcmp->tag;
2650 cmp_status = skcmp->status;
2651 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
2652
2653 skerr = &skdev->skerr_table[skdev->skcomp_ix];
2654
2655 pr_debug("%s:%s:%d "
2656 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
2657 "busy=%d rbytes=0x%x proto=%d\n",
2658 skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
2659 skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
2660 skdev->in_flight, cmp_bytes, skdev->proto_ver);
2661
2662 if (cmp_cycle != skdev->skcomp_cycle) {
2663 pr_debug("%s:%s:%d end of completions\n",
2664 skdev->name, __func__, __LINE__);
2665 break;
2666 }
2667 /*
2668 * Update the completion queue head index and possibly
2669 * the completion cycle count. 8-bit wrap-around.
2670 */
2671 skdev->skcomp_ix++;
2672 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
2673 skdev->skcomp_ix = 0;
2674 skdev->skcomp_cycle++;
2675 }
2676
2677 /*
2678 * The command context is a unique 32-bit ID. The low order
2679 * bits help locate the request. The request is usually a
2680 * r/w request (see skd_start() above) or a special request.
2681 */
2682 req_id = cmp_cntxt;
2683 req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
2684
2685 /* Is this other than a r/w request? */
2686 if (req_slot >= skdev->num_req_context) {
2687 /*
2688 * This is not a completion for a r/w request.
2689 */
2690 skd_complete_other(skdev, skcmp, skerr);
2691 continue;
2692 }
2693
2694 skreq = &skdev->skreq_table[req_slot];
2695
2696 /*
2697 * Make sure the request ID for the slot matches.
2698 */
2699 if (skreq->id != req_id) {
2700 pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
2701 skdev->name, __func__, __LINE__,
2702 req_id, skreq->id);
2703 {
2704 u16 new_id = cmp_cntxt;
2705 pr_err("(%s): Completion mismatch "
2706 "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
2707 skd_name(skdev), req_id,
2708 skreq->id, new_id);
2709
2710 continue;
2711 }
2712 }
2713
2714 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
2715
2716 if (skreq->state == SKD_REQ_STATE_ABORTED) {
2717 pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
2718 skdev->name, __func__, __LINE__,
2719 skreq, skreq->id);
2720 /* a previously timed out command can
2721 * now be cleaned up */
2722 skd_release_skreq(skdev, skreq);
2723 continue;
2724 }
2725
2726 skreq->completion = *skcmp;
2727 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
2728 skreq->err_info = *skerr;
2729 skd_log_check_status(skdev, cmp_status, skerr->key,
2730 skerr->code, skerr->qual,
2731 skerr->fruc);
2732 }
2733 /* Release DMA resources for the request. */
2734 if (skreq->n_sg > 0)
2735 skd_postop_sg_list(skdev, skreq);
2736
2737 if (!skreq->req) {
2738 pr_debug("%s:%s:%d NULL backptr skdreq %p, "
2739 "req=0x%x req_id=0x%x\n",
2740 skdev->name, __func__, __LINE__,
2741 skreq, skreq->id, req_id);
2742 } else {
2743 /*
2744 * Capture the outcome and post it back to the
2745 * native request.
2746 */
2747 if (likely(cmp_status == SAM_STAT_GOOD))
2748 skd_end_request(skdev, skreq, BLK_STS_OK);
2749 else
2750 skd_resolve_req_exception(skdev, skreq);
2751 }
2752
2753 /*
2754 * Release the skreq, its FIT msg (if one), timeout slot,
2755 * and queue depth.
2756 */
2757 skd_release_skreq(skdev, skreq);
2758
2759 /* skd_isr_comp_limit equal zero means no limit */
2760 if (limit) {
2761 if (++processed >= limit) {
2762 rc = 1;
2763 break;
2764 }
2765 }
2766 }
2767
2768 if ((skdev->state == SKD_DRVR_STATE_PAUSING)
2769 && (skdev->in_flight) == 0) {
2770 skdev->state = SKD_DRVR_STATE_PAUSED;
2771 wake_up_interruptible(&skdev->waitq);
2772 }
2773
2774 return rc;
2775 }
2776
2777 static void skd_complete_other(struct skd_device *skdev,
2778 volatile struct fit_completion_entry_v1 *skcomp,
2779 volatile struct fit_comp_error_info *skerr)
2780 {
2781 u32 req_id = 0;
2782 u32 req_table;
2783 u32 req_slot;
2784 struct skd_special_context *skspcl;
2785
2786 req_id = skcomp->tag;
2787 req_table = req_id & SKD_ID_TABLE_MASK;
2788 req_slot = req_id & SKD_ID_SLOT_MASK;
2789
2790 pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
2791 skdev->name, __func__, __LINE__,
2792 req_table, req_id, req_slot);
2793
2794 /*
2795 * Based on the request id, determine how to dispatch this completion.
2796 * This swich/case is finding the good cases and forwarding the
2797 * completion entry. Errors are reported below the switch.
2798 */
2799 switch (req_table) {
2800 case SKD_ID_RW_REQUEST:
2801 /*
2802 * The caller, skd_completion_posted_isr() above,
2803 * handles r/w requests. The only way we get here
2804 * is if the req_slot is out of bounds.
2805 */
2806 break;
2807
2808 case SKD_ID_SPECIAL_REQUEST:
2809 /*
2810 * Make sure the req_slot is in bounds and that the id
2811 * matches.
2812 */
2813 if (req_slot < skdev->n_special) {
2814 skspcl = &skdev->skspcl_table[req_slot];
2815 if (skspcl->req.id == req_id &&
2816 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2817 skd_complete_special(skdev,
2818 skcomp, skerr, skspcl);
2819 return;
2820 }
2821 }
2822 break;
2823
2824 case SKD_ID_INTERNAL:
2825 if (req_slot == 0) {
2826 skspcl = &skdev->internal_skspcl;
2827 if (skspcl->req.id == req_id &&
2828 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2829 skd_complete_internal(skdev,
2830 skcomp, skerr, skspcl);
2831 return;
2832 }
2833 }
2834 break;
2835
2836 case SKD_ID_FIT_MSG:
2837 /*
2838 * These id's should never appear in a completion record.
2839 */
2840 break;
2841
2842 default:
2843 /*
2844 * These id's should never appear anywhere;
2845 */
2846 break;
2847 }
2848
2849 /*
2850 * If we get here it is a bad or stale id.
2851 */
2852 }
2853
2854 static void skd_complete_special(struct skd_device *skdev,
2855 volatile struct fit_completion_entry_v1
2856 *skcomp,
2857 volatile struct fit_comp_error_info *skerr,
2858 struct skd_special_context *skspcl)
2859 {
2860 pr_debug("%s:%s:%d completing special request %p\n",
2861 skdev->name, __func__, __LINE__, skspcl);
2862 if (skspcl->orphaned) {
2863 /* Discard orphaned request */
2864 /* ?: Can this release directly or does it need
2865 * to use a worker? */
2866 pr_debug("%s:%s:%d release orphaned %p\n",
2867 skdev->name, __func__, __LINE__, skspcl);
2868 skd_release_special(skdev, skspcl);
2869 return;
2870 }
2871
2872 skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
2873
2874 skspcl->req.state = SKD_REQ_STATE_COMPLETED;
2875 skspcl->req.completion = *skcomp;
2876 skspcl->req.err_info = *skerr;
2877
2878 skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
2879 skerr->code, skerr->qual, skerr->fruc);
2880
2881 wake_up_interruptible(&skdev->waitq);
2882 }
2883
2884 /* assume spinlock is already held */
2885 static void skd_release_special(struct skd_device *skdev,
2886 struct skd_special_context *skspcl)
2887 {
2888 int i, was_depleted;
2889
2890 for (i = 0; i < skspcl->req.n_sg; i++) {
2891 struct page *page = sg_page(&skspcl->req.sg[i]);
2892 __free_page(page);
2893 }
2894
2895 was_depleted = (skdev->skspcl_free_list == NULL);
2896
2897 skspcl->req.state = SKD_REQ_STATE_IDLE;
2898 skspcl->req.id += SKD_ID_INCR;
2899 skspcl->req.next =
2900 (struct skd_request_context *)skdev->skspcl_free_list;
2901 skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
2902
2903 if (was_depleted) {
2904 pr_debug("%s:%s:%d skspcl was depleted\n",
2905 skdev->name, __func__, __LINE__);
2906 /* Free list was depleted. Their might be waiters. */
2907 wake_up_interruptible(&skdev->waitq);
2908 }
2909 }
2910
2911 static void skd_reset_skcomp(struct skd_device *skdev)
2912 {
2913 u32 nbytes;
2914 struct fit_completion_entry_v1 *skcomp;
2915
2916 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
2917 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
2918
2919 memset(skdev->skcomp_table, 0, nbytes);
2920
2921 skdev->skcomp_ix = 0;
2922 skdev->skcomp_cycle = 1;
2923 }
2924
2925 /*
2926 *****************************************************************************
2927 * INTERRUPTS
2928 *****************************************************************************
2929 */
2930 static void skd_completion_worker(struct work_struct *work)
2931 {
2932 struct skd_device *skdev =
2933 container_of(work, struct skd_device, completion_worker);
2934 unsigned long flags;
2935 int flush_enqueued = 0;
2936
2937 spin_lock_irqsave(&skdev->lock, flags);
2938
2939 /*
2940 * pass in limit=0, which means no limit..
2941 * process everything in compq
2942 */
2943 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
2944 skd_request_fn(skdev->queue);
2945
2946 spin_unlock_irqrestore(&skdev->lock, flags);
2947 }
2948
2949 static void skd_isr_msg_from_dev(struct skd_device *skdev);
2950
2951 static irqreturn_t
2952 skd_isr(int irq, void *ptr)
2953 {
2954 struct skd_device *skdev;
2955 u32 intstat;
2956 u32 ack;
2957 int rc = 0;
2958 int deferred = 0;
2959 int flush_enqueued = 0;
2960
2961 skdev = (struct skd_device *)ptr;
2962 spin_lock(&skdev->lock);
2963
2964 for (;; ) {
2965 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2966
2967 ack = FIT_INT_DEF_MASK;
2968 ack &= intstat;
2969
2970 pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
2971 skdev->name, __func__, __LINE__, intstat, ack);
2972
2973 /* As long as there is an int pending on device, keep
2974 * running loop. When none, get out, but if we've never
2975 * done any processing, call completion handler?
2976 */
2977 if (ack == 0) {
2978 /* No interrupts on device, but run the completion
2979 * processor anyway?
2980 */
2981 if (rc == 0)
2982 if (likely (skdev->state
2983 == SKD_DRVR_STATE_ONLINE))
2984 deferred = 1;
2985 break;
2986 }
2987
2988 rc = IRQ_HANDLED;
2989
2990 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
2991
2992 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
2993 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
2994 if (intstat & FIT_ISH_COMPLETION_POSTED) {
2995 /*
2996 * If we have already deferred completion
2997 * processing, don't bother running it again
2998 */
2999 if (deferred == 0)
3000 deferred =
3001 skd_isr_completion_posted(skdev,
3002 skd_isr_comp_limit, &flush_enqueued);
3003 }
3004
3005 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
3006 skd_isr_fwstate(skdev);
3007 if (skdev->state == SKD_DRVR_STATE_FAULT ||
3008 skdev->state ==
3009 SKD_DRVR_STATE_DISAPPEARED) {
3010 spin_unlock(&skdev->lock);
3011 return rc;
3012 }
3013 }
3014
3015 if (intstat & FIT_ISH_MSG_FROM_DEV)
3016 skd_isr_msg_from_dev(skdev);
3017 }
3018 }
3019
3020 if (unlikely(flush_enqueued))
3021 skd_request_fn(skdev->queue);
3022
3023 if (deferred)
3024 schedule_work(&skdev->completion_worker);
3025 else if (!flush_enqueued)
3026 skd_request_fn(skdev->queue);
3027
3028 spin_unlock(&skdev->lock);
3029
3030 return rc;
3031 }
3032
3033 static void skd_drive_fault(struct skd_device *skdev)
3034 {
3035 skdev->state = SKD_DRVR_STATE_FAULT;
3036 pr_err("(%s): Drive FAULT\n", skd_name(skdev));
3037 }
3038
3039 static void skd_drive_disappeared(struct skd_device *skdev)
3040 {
3041 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
3042 pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
3043 }
3044
3045 static void skd_isr_fwstate(struct skd_device *skdev)
3046 {
3047 u32 sense;
3048 u32 state;
3049 u32 mtd;
3050 int prev_driver_state = skdev->state;
3051
3052 sense = SKD_READL(skdev, FIT_STATUS);
3053 state = sense & FIT_SR_DRIVE_STATE_MASK;
3054
3055 pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
3056 skd_name(skdev),
3057 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3058 skd_drive_state_to_str(state), state);
3059
3060 skdev->drive_state = state;
3061
3062 switch (skdev->drive_state) {
3063 case FIT_SR_DRIVE_INIT:
3064 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
3065 skd_disable_interrupts(skdev);
3066 break;
3067 }
3068 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
3069 skd_recover_requests(skdev, 0);
3070 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
3071 skdev->timer_countdown = SKD_STARTING_TIMO;
3072 skdev->state = SKD_DRVR_STATE_STARTING;
3073 skd_soft_reset(skdev);
3074 break;
3075 }
3076 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
3077 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3078 skdev->last_mtd = mtd;
3079 break;
3080
3081 case FIT_SR_DRIVE_ONLINE:
3082 skdev->cur_max_queue_depth = skd_max_queue_depth;
3083 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
3084 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
3085
3086 skdev->queue_low_water_mark =
3087 skdev->cur_max_queue_depth * 2 / 3 + 1;
3088 if (skdev->queue_low_water_mark < 1)
3089 skdev->queue_low_water_mark = 1;
3090 pr_info(
3091 "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
3092 skd_name(skdev),
3093 skdev->cur_max_queue_depth,
3094 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3095
3096 skd_refresh_device_data(skdev);
3097 break;
3098
3099 case FIT_SR_DRIVE_BUSY:
3100 skdev->state = SKD_DRVR_STATE_BUSY;
3101 skdev->timer_countdown = SKD_BUSY_TIMO;
3102 skd_quiesce_dev(skdev);
3103 break;
3104 case FIT_SR_DRIVE_BUSY_SANITIZE:
3105 /* set timer for 3 seconds, we'll abort any unfinished
3106 * commands after that expires
3107 */
3108 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3109 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
3110 blk_start_queue(skdev->queue);
3111 break;
3112 case FIT_SR_DRIVE_BUSY_ERASE:
3113 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3114 skdev->timer_countdown = SKD_BUSY_TIMO;
3115 break;
3116 case FIT_SR_DRIVE_OFFLINE:
3117 skdev->state = SKD_DRVR_STATE_IDLE;
3118 break;
3119 case FIT_SR_DRIVE_SOFT_RESET:
3120 switch (skdev->state) {
3121 case SKD_DRVR_STATE_STARTING:
3122 case SKD_DRVR_STATE_RESTARTING:
3123 /* Expected by a caller of skd_soft_reset() */
3124 break;
3125 default:
3126 skdev->state = SKD_DRVR_STATE_RESTARTING;
3127 break;
3128 }
3129 break;
3130 case FIT_SR_DRIVE_FW_BOOTING:
3131 pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
3132 skdev->name, __func__, __LINE__, skdev->name);
3133 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3134 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3135 break;
3136
3137 case FIT_SR_DRIVE_DEGRADED:
3138 case FIT_SR_PCIE_LINK_DOWN:
3139 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3140 break;
3141
3142 case FIT_SR_DRIVE_FAULT:
3143 skd_drive_fault(skdev);
3144 skd_recover_requests(skdev, 0);
3145 blk_start_queue(skdev->queue);
3146 break;
3147
3148 /* PCIe bus returned all Fs? */
3149 case 0xFF:
3150 pr_info("(%s): state=0x%x sense=0x%x\n",
3151 skd_name(skdev), state, sense);
3152 skd_drive_disappeared(skdev);
3153 skd_recover_requests(skdev, 0);
3154 blk_start_queue(skdev->queue);
3155 break;
3156 default:
3157 /*
3158 * Uknown FW State. Wait for a state we recognize.
3159 */
3160 break;
3161 }
3162 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3163 skd_name(skdev),
3164 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
3165 skd_skdev_state_to_str(skdev->state), skdev->state);
3166 }
3167
3168 static void skd_recover_requests(struct skd_device *skdev, int requeue)
3169 {
3170 int i;
3171
3172 for (i = 0; i < skdev->num_req_context; i++) {
3173 struct skd_request_context *skreq = &skdev->skreq_table[i];
3174
3175 if (skreq->state == SKD_REQ_STATE_BUSY) {
3176 skd_log_skreq(skdev, skreq, "recover");
3177
3178 SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
3179 SKD_ASSERT(skreq->req != NULL);
3180
3181 /* Release DMA resources for the request. */
3182 if (skreq->n_sg > 0)
3183 skd_postop_sg_list(skdev, skreq);
3184
3185 if (requeue &&
3186 (unsigned long) ++skreq->req->special <
3187 SKD_MAX_RETRIES)
3188 blk_requeue_request(skdev->queue, skreq->req);
3189 else
3190 skd_end_request(skdev, skreq, BLK_STS_IOERR);
3191
3192 skreq->req = NULL;
3193
3194 skreq->state = SKD_REQ_STATE_IDLE;
3195 skreq->id += SKD_ID_INCR;
3196 }
3197 if (i > 0)
3198 skreq[-1].next = skreq;
3199 skreq->next = NULL;
3200 }
3201 skdev->skreq_free_list = skdev->skreq_table;
3202
3203 for (i = 0; i < skdev->num_fitmsg_context; i++) {
3204 struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
3205
3206 if (skmsg->state == SKD_MSG_STATE_BUSY) {
3207 skd_log_skmsg(skdev, skmsg, "salvaged");
3208 SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
3209 skmsg->state = SKD_MSG_STATE_IDLE;
3210 skmsg->id += SKD_ID_INCR;
3211 }
3212 if (i > 0)
3213 skmsg[-1].next = skmsg;
3214 skmsg->next = NULL;
3215 }
3216 skdev->skmsg_free_list = skdev->skmsg_table;
3217
3218 for (i = 0; i < skdev->n_special; i++) {
3219 struct skd_special_context *skspcl = &skdev->skspcl_table[i];
3220
3221 /* If orphaned, reclaim it because it has already been reported
3222 * to the process as an error (it was just waiting for
3223 * a completion that didn't come, and now it will never come)
3224 * If busy, change to a state that will cause it to error
3225 * out in the wait routine and let it do the normal
3226 * reporting and reclaiming
3227 */
3228 if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
3229 if (skspcl->orphaned) {
3230 pr_debug("%s:%s:%d orphaned %p\n",
3231 skdev->name, __func__, __LINE__,
3232 skspcl);
3233 skd_release_special(skdev, skspcl);
3234 } else {
3235 pr_debug("%s:%s:%d not orphaned %p\n",
3236 skdev->name, __func__, __LINE__,
3237 skspcl);
3238 skspcl->req.state = SKD_REQ_STATE_ABORTED;
3239 }
3240 }
3241 }
3242 skdev->skspcl_free_list = skdev->skspcl_table;
3243
3244 for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
3245 skdev->timeout_slot[i] = 0;
3246
3247 skdev->in_flight = 0;
3248 }
3249
3250 static void skd_isr_msg_from_dev(struct skd_device *skdev)
3251 {
3252 u32 mfd;
3253 u32 mtd;
3254 u32 data;
3255
3256 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3257
3258 pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
3259 skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
3260
3261 /* ignore any mtd that is an ack for something we didn't send */
3262 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
3263 return;
3264
3265 switch (FIT_MXD_TYPE(mfd)) {
3266 case FIT_MTD_FITFW_INIT:
3267 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
3268
3269 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
3270 pr_err("(%s): protocol mismatch\n",
3271 skdev->name);
3272 pr_err("(%s): got=%d support=%d\n",
3273 skdev->name, skdev->proto_ver,
3274 FIT_PROTOCOL_VERSION_1);
3275 pr_err("(%s): please upgrade driver\n",
3276 skdev->name);
3277 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
3278 skd_soft_reset(skdev);
3279 break;
3280 }
3281 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
3282 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3283 skdev->last_mtd = mtd;
3284 break;
3285
3286 case FIT_MTD_GET_CMDQ_DEPTH:
3287 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
3288 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
3289 SKD_N_COMPLETION_ENTRY);
3290 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3291 skdev->last_mtd = mtd;
3292 break;
3293
3294 case FIT_MTD_SET_COMPQ_DEPTH:
3295 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
3296 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
3297 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3298 skdev->last_mtd = mtd;
3299 break;
3300
3301 case FIT_MTD_SET_COMPQ_ADDR:
3302 skd_reset_skcomp(skdev);
3303 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
3304 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3305 skdev->last_mtd = mtd;
3306 break;
3307
3308 case FIT_MTD_CMD_LOG_HOST_ID:
3309 skdev->connect_time_stamp = get_seconds();
3310 data = skdev->connect_time_stamp & 0xFFFF;
3311 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
3312 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3313 skdev->last_mtd = mtd;
3314 break;
3315
3316 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
3317 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
3318 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
3319 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
3320 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3321 skdev->last_mtd = mtd;
3322 break;
3323
3324 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
3325 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
3326 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
3327 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3328 skdev->last_mtd = mtd;
3329
3330 pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
3331 skd_name(skdev),
3332 skdev->connect_time_stamp, skdev->drive_jiffies);
3333 break;
3334
3335 case FIT_MTD_ARM_QUEUE:
3336 skdev->last_mtd = 0;
3337 /*
3338 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
3339 */
3340 break;
3341
3342 default:
3343 break;
3344 }
3345 }
3346
3347 static void skd_disable_interrupts(struct skd_device *skdev)
3348 {
3349 u32 sense;
3350
3351 sense = SKD_READL(skdev, FIT_CONTROL);
3352 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
3353 SKD_WRITEL(skdev, sense, FIT_CONTROL);
3354 pr_debug("%s:%s:%d sense 0x%x\n",
3355 skdev->name, __func__, __LINE__, sense);
3356
3357 /* Note that the 1s is written. A 1-bit means
3358 * disable, a 0 means enable.
3359 */
3360 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
3361 }
3362
3363 static void skd_enable_interrupts(struct skd_device *skdev)
3364 {
3365 u32 val;
3366
3367 /* unmask interrupts first */
3368 val = FIT_ISH_FW_STATE_CHANGE +
3369 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
3370
3371 /* Note that the compliment of mask is written. A 1-bit means
3372 * disable, a 0 means enable. */
3373 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
3374 pr_debug("%s:%s:%d interrupt mask=0x%x\n",
3375 skdev->name, __func__, __LINE__, ~val);
3376
3377 val = SKD_READL(skdev, FIT_CONTROL);
3378 val |= FIT_CR_ENABLE_INTERRUPTS;
3379 pr_debug("%s:%s:%d control=0x%x\n",
3380 skdev->name, __func__, __LINE__, val);
3381 SKD_WRITEL(skdev, val, FIT_CONTROL);
3382 }
3383
3384 /*
3385 *****************************************************************************
3386 * START, STOP, RESTART, QUIESCE, UNQUIESCE
3387 *****************************************************************************
3388 */
3389
3390 static void skd_soft_reset(struct skd_device *skdev)
3391 {
3392 u32 val;
3393
3394 val = SKD_READL(skdev, FIT_CONTROL);
3395 val |= (FIT_CR_SOFT_RESET);
3396 pr_debug("%s:%s:%d control=0x%x\n",
3397 skdev->name, __func__, __LINE__, val);
3398 SKD_WRITEL(skdev, val, FIT_CONTROL);
3399 }
3400
3401 static void skd_start_device(struct skd_device *skdev)
3402 {
3403 unsigned long flags;
3404 u32 sense;
3405 u32 state;
3406
3407 spin_lock_irqsave(&skdev->lock, flags);
3408
3409 /* ack all ghost interrupts */
3410 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3411
3412 sense = SKD_READL(skdev, FIT_STATUS);
3413
3414 pr_debug("%s:%s:%d initial status=0x%x\n",
3415 skdev->name, __func__, __LINE__, sense);
3416
3417 state = sense & FIT_SR_DRIVE_STATE_MASK;
3418 skdev->drive_state = state;
3419 skdev->last_mtd = 0;
3420
3421 skdev->state = SKD_DRVR_STATE_STARTING;
3422 skdev->timer_countdown = SKD_STARTING_TIMO;
3423
3424 skd_enable_interrupts(skdev);
3425
3426 switch (skdev->drive_state) {
3427 case FIT_SR_DRIVE_OFFLINE:
3428 pr_err("(%s): Drive offline...\n", skd_name(skdev));
3429 break;
3430
3431 case FIT_SR_DRIVE_FW_BOOTING:
3432 pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
3433 skdev->name, __func__, __LINE__, skdev->name);
3434 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3435 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3436 break;
3437
3438 case FIT_SR_DRIVE_BUSY_SANITIZE:
3439 pr_info("(%s): Start: BUSY_SANITIZE\n",
3440 skd_name(skdev));
3441 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3442 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3443 break;
3444
3445 case FIT_SR_DRIVE_BUSY_ERASE:
3446 pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
3447 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3448 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3449 break;
3450
3451 case FIT_SR_DRIVE_INIT:
3452 case FIT_SR_DRIVE_ONLINE:
3453 skd_soft_reset(skdev);
3454 break;
3455
3456 case FIT_SR_DRIVE_BUSY:
3457 pr_err("(%s): Drive Busy...\n", skd_name(skdev));
3458 skdev->state = SKD_DRVR_STATE_BUSY;
3459 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3460 break;
3461
3462 case FIT_SR_DRIVE_SOFT_RESET:
3463 pr_err("(%s) drive soft reset in prog\n",
3464 skd_name(skdev));
3465 break;
3466
3467 case FIT_SR_DRIVE_FAULT:
3468 /* Fault state is bad...soft reset won't do it...
3469 * Hard reset, maybe, but does it work on device?
3470 * For now, just fault so the system doesn't hang.
3471 */
3472 skd_drive_fault(skdev);
3473 /*start the queue so we can respond with error to requests */
3474 pr_debug("%s:%s:%d starting %s queue\n",
3475 skdev->name, __func__, __LINE__, skdev->name);
3476 blk_start_queue(skdev->queue);
3477 skdev->gendisk_on = -1;
3478 wake_up_interruptible(&skdev->waitq);
3479 break;
3480
3481 case 0xFF:
3482 /* Most likely the device isn't there or isn't responding
3483 * to the BAR1 addresses. */
3484 skd_drive_disappeared(skdev);
3485 /*start the queue so we can respond with error to requests */
3486 pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
3487 skdev->name, __func__, __LINE__, skdev->name);
3488 blk_start_queue(skdev->queue);
3489 skdev->gendisk_on = -1;
3490 wake_up_interruptible(&skdev->waitq);
3491 break;
3492
3493 default:
3494 pr_err("(%s) Start: unknown state %x\n",
3495 skd_name(skdev), skdev->drive_state);
3496 break;
3497 }
3498
3499 state = SKD_READL(skdev, FIT_CONTROL);
3500 pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
3501 skdev->name, __func__, __LINE__, state);
3502
3503 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
3504 pr_debug("%s:%s:%d Intr Status=0x%x\n",
3505 skdev->name, __func__, __LINE__, state);
3506
3507 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
3508 pr_debug("%s:%s:%d Intr Mask=0x%x\n",
3509 skdev->name, __func__, __LINE__, state);
3510
3511 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3512 pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
3513 skdev->name, __func__, __LINE__, state);
3514
3515 state = SKD_READL(skdev, FIT_HW_VERSION);
3516 pr_debug("%s:%s:%d HW version=0x%x\n",
3517 skdev->name, __func__, __LINE__, state);
3518
3519 spin_unlock_irqrestore(&skdev->lock, flags);
3520 }
3521
3522 static void skd_stop_device(struct skd_device *skdev)
3523 {
3524 unsigned long flags;
3525 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3526 u32 dev_state;
3527 int i;
3528
3529 spin_lock_irqsave(&skdev->lock, flags);
3530
3531 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
3532 pr_err("(%s): skd_stop_device not online no sync\n",
3533 skd_name(skdev));
3534 goto stop_out;
3535 }
3536
3537 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
3538 pr_err("(%s): skd_stop_device no special\n",
3539 skd_name(skdev));
3540 goto stop_out;
3541 }
3542
3543 skdev->state = SKD_DRVR_STATE_SYNCING;
3544 skdev->sync_done = 0;
3545
3546 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
3547
3548 spin_unlock_irqrestore(&skdev->lock, flags);
3549
3550 wait_event_interruptible_timeout(skdev->waitq,
3551 (skdev->sync_done), (10 * HZ));
3552
3553 spin_lock_irqsave(&skdev->lock, flags);
3554
3555 switch (skdev->sync_done) {
3556 case 0:
3557 pr_err("(%s): skd_stop_device no sync\n",
3558 skd_name(skdev));
3559 break;
3560 case 1:
3561 pr_err("(%s): skd_stop_device sync done\n",
3562 skd_name(skdev));
3563 break;
3564 default:
3565 pr_err("(%s): skd_stop_device sync error\n",
3566 skd_name(skdev));
3567 }
3568
3569 stop_out:
3570 skdev->state = SKD_DRVR_STATE_STOPPING;
3571 spin_unlock_irqrestore(&skdev->lock, flags);
3572
3573 skd_kill_timer(skdev);
3574
3575 spin_lock_irqsave(&skdev->lock, flags);
3576 skd_disable_interrupts(skdev);
3577
3578 /* ensure all ints on device are cleared */
3579 /* soft reset the device to unload with a clean slate */
3580 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3581 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
3582
3583 spin_unlock_irqrestore(&skdev->lock, flags);
3584
3585 /* poll every 100ms, 1 second timeout */
3586 for (i = 0; i < 10; i++) {
3587 dev_state =
3588 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
3589 if (dev_state == FIT_SR_DRIVE_INIT)
3590 break;
3591 set_current_state(TASK_INTERRUPTIBLE);
3592 schedule_timeout(msecs_to_jiffies(100));
3593 }
3594
3595 if (dev_state != FIT_SR_DRIVE_INIT)
3596 pr_err("(%s): skd_stop_device state error 0x%02x\n",
3597 skd_name(skdev), dev_state);
3598 }
3599
3600 /* assume spinlock is held */
3601 static void skd_restart_device(struct skd_device *skdev)
3602 {
3603 u32 state;
3604
3605 /* ack all ghost interrupts */
3606 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3607
3608 state = SKD_READL(skdev, FIT_STATUS);
3609
3610 pr_debug("%s:%s:%d drive status=0x%x\n",
3611 skdev->name, __func__, __LINE__, state);
3612
3613 state &= FIT_SR_DRIVE_STATE_MASK;
3614 skdev->drive_state = state;
3615 skdev->last_mtd = 0;
3616
3617 skdev->state = SKD_DRVR_STATE_RESTARTING;
3618 skdev->timer_countdown = SKD_RESTARTING_TIMO;
3619
3620 skd_soft_reset(skdev);
3621 }
3622
3623 /* assume spinlock is held */
3624 static int skd_quiesce_dev(struct skd_device *skdev)
3625 {
3626 int rc = 0;
3627
3628 switch (skdev->state) {
3629 case SKD_DRVR_STATE_BUSY:
3630 case SKD_DRVR_STATE_BUSY_IMMINENT:
3631 pr_debug("%s:%s:%d stopping %s queue\n",
3632 skdev->name, __func__, __LINE__, skdev->name);
3633 blk_stop_queue(skdev->queue);
3634 break;
3635 case SKD_DRVR_STATE_ONLINE:
3636 case SKD_DRVR_STATE_STOPPING:
3637 case SKD_DRVR_STATE_SYNCING:
3638 case SKD_DRVR_STATE_PAUSING:
3639 case SKD_DRVR_STATE_PAUSED:
3640 case SKD_DRVR_STATE_STARTING:
3641 case SKD_DRVR_STATE_RESTARTING:
3642 case SKD_DRVR_STATE_RESUMING:
3643 default:
3644 rc = -EINVAL;
3645 pr_debug("%s:%s:%d state [%d] not implemented\n",
3646 skdev->name, __func__, __LINE__, skdev->state);
3647 }
3648 return rc;
3649 }
3650
3651 /* assume spinlock is held */
3652 static int skd_unquiesce_dev(struct skd_device *skdev)
3653 {
3654 int prev_driver_state = skdev->state;
3655
3656 skd_log_skdev(skdev, "unquiesce");
3657 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
3658 pr_debug("%s:%s:%d **** device already ONLINE\n",
3659 skdev->name, __func__, __LINE__);
3660 return 0;
3661 }
3662 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
3663 /*
3664 * If there has been an state change to other than
3665 * ONLINE, we will rely on controller state change
3666 * to come back online and restart the queue.
3667 * The BUSY state means that driver is ready to
3668 * continue normal processing but waiting for controller
3669 * to become available.
3670 */
3671 skdev->state = SKD_DRVR_STATE_BUSY;
3672 pr_debug("%s:%s:%d drive BUSY state\n",
3673 skdev->name, __func__, __LINE__);
3674 return 0;
3675 }
3676
3677 /*
3678 * Drive has just come online, driver is either in startup,
3679 * paused performing a task, or bust waiting for hardware.
3680 */
3681 switch (skdev->state) {
3682 case SKD_DRVR_STATE_PAUSED:
3683 case SKD_DRVR_STATE_BUSY:
3684 case SKD_DRVR_STATE_BUSY_IMMINENT:
3685 case SKD_DRVR_STATE_BUSY_ERASE:
3686 case SKD_DRVR_STATE_STARTING:
3687 case SKD_DRVR_STATE_RESTARTING:
3688 case SKD_DRVR_STATE_FAULT:
3689 case SKD_DRVR_STATE_IDLE:
3690 case SKD_DRVR_STATE_LOAD:
3691 skdev->state = SKD_DRVR_STATE_ONLINE;
3692 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3693 skd_name(skdev),
3694 skd_skdev_state_to_str(prev_driver_state),
3695 prev_driver_state, skd_skdev_state_to_str(skdev->state),
3696 skdev->state);
3697 pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
3698 skdev->name, __func__, __LINE__);
3699 pr_debug("%s:%s:%d starting %s queue\n",
3700 skdev->name, __func__, __LINE__, skdev->name);
3701 pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
3702 blk_start_queue(skdev->queue);
3703 skdev->gendisk_on = 1;
3704 wake_up_interruptible(&skdev->waitq);
3705 break;
3706
3707 case SKD_DRVR_STATE_DISAPPEARED:
3708 default:
3709 pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
3710 skdev->name, __func__, __LINE__,
3711 skdev->state);
3712 return -EBUSY;
3713 }
3714 return 0;
3715 }
3716
3717 /*
3718 *****************************************************************************
3719 * PCIe MSI/MSI-X INTERRUPT HANDLERS
3720 *****************************************************************************
3721 */
3722
3723 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
3724 {
3725 struct skd_device *skdev = skd_host_data;
3726 unsigned long flags;
3727
3728 spin_lock_irqsave(&skdev->lock, flags);
3729 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3730 skdev->name, __func__, __LINE__,
3731 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3732 pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
3733 irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
3734 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
3735 spin_unlock_irqrestore(&skdev->lock, flags);
3736 return IRQ_HANDLED;
3737 }
3738
3739 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
3740 {
3741 struct skd_device *skdev = skd_host_data;
3742 unsigned long flags;
3743
3744 spin_lock_irqsave(&skdev->lock, flags);
3745 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3746 skdev->name, __func__, __LINE__,
3747 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3748 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
3749 skd_isr_fwstate(skdev);
3750 spin_unlock_irqrestore(&skdev->lock, flags);
3751 return IRQ_HANDLED;
3752 }
3753
3754 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
3755 {
3756 struct skd_device *skdev = skd_host_data;
3757 unsigned long flags;
3758 int flush_enqueued = 0;
3759 int deferred;
3760
3761 spin_lock_irqsave(&skdev->lock, flags);
3762 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3763 skdev->name, __func__, __LINE__,
3764 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3765 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
3766 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
3767 &flush_enqueued);
3768 if (flush_enqueued)
3769 skd_request_fn(skdev->queue);
3770
3771 if (deferred)
3772 schedule_work(&skdev->completion_worker);
3773 else if (!flush_enqueued)
3774 skd_request_fn(skdev->queue);
3775
3776 spin_unlock_irqrestore(&skdev->lock, flags);
3777
3778 return IRQ_HANDLED;
3779 }
3780
3781 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
3782 {
3783 struct skd_device *skdev = skd_host_data;
3784 unsigned long flags;
3785
3786 spin_lock_irqsave(&skdev->lock, flags);
3787 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3788 skdev->name, __func__, __LINE__,
3789 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3790 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
3791 skd_isr_msg_from_dev(skdev);
3792 spin_unlock_irqrestore(&skdev->lock, flags);
3793 return IRQ_HANDLED;
3794 }
3795
3796 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
3797 {
3798 struct skd_device *skdev = skd_host_data;
3799 unsigned long flags;
3800
3801 spin_lock_irqsave(&skdev->lock, flags);
3802 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3803 skdev->name, __func__, __LINE__,
3804 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3805 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
3806 spin_unlock_irqrestore(&skdev->lock, flags);
3807 return IRQ_HANDLED;
3808 }
3809
3810 /*
3811 *****************************************************************************
3812 * PCIe MSI/MSI-X SETUP
3813 *****************************************************************************
3814 */
3815
3816 struct skd_msix_entry {
3817 char isr_name[30];
3818 };
3819
3820 struct skd_init_msix_entry {
3821 const char *name;
3822 irq_handler_t handler;
3823 };
3824
3825 #define SKD_MAX_MSIX_COUNT 13
3826 #define SKD_MIN_MSIX_COUNT 7
3827 #define SKD_BASE_MSIX_IRQ 4
3828
3829 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
3830 { "(DMA 0)", skd_reserved_isr },
3831 { "(DMA 1)", skd_reserved_isr },
3832 { "(DMA 2)", skd_reserved_isr },
3833 { "(DMA 3)", skd_reserved_isr },
3834 { "(State Change)", skd_statec_isr },
3835 { "(COMPL_Q)", skd_comp_q },
3836 { "(MSG)", skd_msg_isr },
3837 { "(Reserved)", skd_reserved_isr },
3838 { "(Reserved)", skd_reserved_isr },
3839 { "(Queue Full 0)", skd_qfull_isr },
3840 { "(Queue Full 1)", skd_qfull_isr },
3841 { "(Queue Full 2)", skd_qfull_isr },
3842 { "(Queue Full 3)", skd_qfull_isr },
3843 };
3844
3845 static int skd_acquire_msix(struct skd_device *skdev)
3846 {
3847 int i, rc;
3848 struct pci_dev *pdev = skdev->pdev;
3849
3850 rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
3851 PCI_IRQ_MSIX);
3852 if (rc < 0) {
3853 pr_err("(%s): failed to enable MSI-X %d\n",
3854 skd_name(skdev), rc);
3855 goto out;
3856 }
3857
3858 skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
3859 sizeof(struct skd_msix_entry), GFP_KERNEL);
3860 if (!skdev->msix_entries) {
3861 rc = -ENOMEM;
3862 pr_err("(%s): msix table allocation error\n",
3863 skd_name(skdev));
3864 goto out;
3865 }
3866
3867 /* Enable MSI-X vectors for the base queue */
3868 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
3869 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
3870
3871 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
3872 "%s%d-msix %s", DRV_NAME, skdev->devno,
3873 msix_entries[i].name);
3874
3875 rc = devm_request_irq(&skdev->pdev->dev,
3876 pci_irq_vector(skdev->pdev, i),
3877 msix_entries[i].handler, 0,
3878 qentry->isr_name, skdev);
3879 if (rc) {
3880 pr_err("(%s): Unable to register(%d) MSI-X "
3881 "handler %d: %s\n",
3882 skd_name(skdev), rc, i, qentry->isr_name);
3883 goto msix_out;
3884 }
3885 }
3886
3887 pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
3888 skdev->name, __func__, __LINE__,
3889 pci_name(pdev), skdev->name, SKD_MAX_MSIX_COUNT);
3890 return 0;
3891
3892 msix_out:
3893 while (--i >= 0)
3894 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
3895 out:
3896 kfree(skdev->msix_entries);
3897 skdev->msix_entries = NULL;
3898 return rc;
3899 }
3900
3901 static int skd_acquire_irq(struct skd_device *skdev)
3902 {
3903 struct pci_dev *pdev = skdev->pdev;
3904 unsigned int irq_flag = PCI_IRQ_LEGACY;
3905 int rc;
3906
3907 if (skd_isr_type == SKD_IRQ_MSIX) {
3908 rc = skd_acquire_msix(skdev);
3909 if (!rc)
3910 return 0;
3911
3912 pr_err("(%s): failed to enable MSI-X, re-trying with MSI %d\n",
3913 skd_name(skdev), rc);
3914 }
3915
3916 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
3917 skdev->devno);
3918
3919 if (skd_isr_type != SKD_IRQ_LEGACY)
3920 irq_flag |= PCI_IRQ_MSI;
3921 rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
3922 if (rc < 0) {
3923 pr_err("(%s): failed to allocate the MSI interrupt %d\n",
3924 skd_name(skdev), rc);
3925 return rc;
3926 }
3927
3928 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
3929 pdev->msi_enabled ? 0 : IRQF_SHARED,
3930 skdev->isr_name, skdev);
3931 if (rc) {
3932 pci_free_irq_vectors(pdev);
3933 pr_err("(%s): failed to allocate interrupt %d\n",
3934 skd_name(skdev), rc);
3935 return rc;
3936 }
3937
3938 return 0;
3939 }
3940
3941 static void skd_release_irq(struct skd_device *skdev)
3942 {
3943 struct pci_dev *pdev = skdev->pdev;
3944
3945 if (skdev->msix_entries) {
3946 int i;
3947
3948 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
3949 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
3950 skdev);
3951 }
3952
3953 kfree(skdev->msix_entries);
3954 skdev->msix_entries = NULL;
3955 } else {
3956 devm_free_irq(&pdev->dev, pdev->irq, skdev);
3957 }
3958
3959 pci_free_irq_vectors(pdev);
3960 }
3961
3962 /*
3963 *****************************************************************************
3964 * CONSTRUCT
3965 *****************************************************************************
3966 */
3967
3968 static int skd_cons_skcomp(struct skd_device *skdev)
3969 {
3970 int rc = 0;
3971 struct fit_completion_entry_v1 *skcomp;
3972 u32 nbytes;
3973
3974 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
3975 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
3976
3977 pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
3978 skdev->name, __func__, __LINE__,
3979 nbytes, SKD_N_COMPLETION_ENTRY);
3980
3981 skcomp = pci_zalloc_consistent(skdev->pdev, nbytes,
3982 &skdev->cq_dma_address);
3983
3984 if (skcomp == NULL) {
3985 rc = -ENOMEM;
3986 goto err_out;
3987 }
3988
3989 skdev->skcomp_table = skcomp;
3990 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
3991 sizeof(*skcomp) *
3992 SKD_N_COMPLETION_ENTRY);
3993
3994 err_out:
3995 return rc;
3996 }
3997
3998 static int skd_cons_skmsg(struct skd_device *skdev)
3999 {
4000 int rc = 0;
4001 u32 i;
4002
4003 pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
4004 skdev->name, __func__, __LINE__,
4005 sizeof(struct skd_fitmsg_context),
4006 skdev->num_fitmsg_context,
4007 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
4008
4009 skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
4010 *skdev->num_fitmsg_context, GFP_KERNEL);
4011 if (skdev->skmsg_table == NULL) {
4012 rc = -ENOMEM;
4013 goto err_out;
4014 }
4015
4016 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4017 struct skd_fitmsg_context *skmsg;
4018
4019 skmsg = &skdev->skmsg_table[i];
4020
4021 skmsg->id = i + SKD_ID_FIT_MSG;
4022
4023 skmsg->state = SKD_MSG_STATE_IDLE;
4024 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
4025 SKD_N_FITMSG_BYTES + 64,
4026 &skmsg->mb_dma_address);
4027
4028 if (skmsg->msg_buf == NULL) {
4029 rc = -ENOMEM;
4030 goto err_out;
4031 }
4032
4033 skmsg->offset = (u32)((u64)skmsg->msg_buf &
4034 (~FIT_QCMD_BASE_ADDRESS_MASK));
4035 skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
4036 skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
4037 FIT_QCMD_BASE_ADDRESS_MASK);
4038 skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
4039 skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
4040 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
4041
4042 skmsg->next = &skmsg[1];
4043 }
4044
4045 /* Free list is in order starting with the 0th entry. */
4046 skdev->skmsg_table[i - 1].next = NULL;
4047 skdev->skmsg_free_list = skdev->skmsg_table;
4048
4049 err_out:
4050 return rc;
4051 }
4052
4053 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
4054 u32 n_sg,
4055 dma_addr_t *ret_dma_addr)
4056 {
4057 struct fit_sg_descriptor *sg_list;
4058 u32 nbytes;
4059
4060 nbytes = sizeof(*sg_list) * n_sg;
4061
4062 sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
4063
4064 if (sg_list != NULL) {
4065 uint64_t dma_address = *ret_dma_addr;
4066 u32 i;
4067
4068 memset(sg_list, 0, nbytes);
4069
4070 for (i = 0; i < n_sg - 1; i++) {
4071 uint64_t ndp_off;
4072 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
4073
4074 sg_list[i].next_desc_ptr = dma_address + ndp_off;
4075 }
4076 sg_list[i].next_desc_ptr = 0LL;
4077 }
4078
4079 return sg_list;
4080 }
4081
4082 static int skd_cons_skreq(struct skd_device *skdev)
4083 {
4084 int rc = 0;
4085 u32 i;
4086
4087 pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
4088 skdev->name, __func__, __LINE__,
4089 sizeof(struct skd_request_context),
4090 skdev->num_req_context,
4091 sizeof(struct skd_request_context) * skdev->num_req_context);
4092
4093 skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
4094 * skdev->num_req_context, GFP_KERNEL);
4095 if (skdev->skreq_table == NULL) {
4096 rc = -ENOMEM;
4097 goto err_out;
4098 }
4099
4100 pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
4101 skdev->name, __func__, __LINE__,
4102 skdev->sgs_per_request, sizeof(struct scatterlist),
4103 skdev->sgs_per_request * sizeof(struct scatterlist));
4104
4105 for (i = 0; i < skdev->num_req_context; i++) {
4106 struct skd_request_context *skreq;
4107
4108 skreq = &skdev->skreq_table[i];
4109
4110 skreq->id = i + SKD_ID_RW_REQUEST;
4111 skreq->state = SKD_REQ_STATE_IDLE;
4112
4113 skreq->sg = kzalloc(sizeof(struct scatterlist) *
4114 skdev->sgs_per_request, GFP_KERNEL);
4115 if (skreq->sg == NULL) {
4116 rc = -ENOMEM;
4117 goto err_out;
4118 }
4119 sg_init_table(skreq->sg, skdev->sgs_per_request);
4120
4121 skreq->sksg_list = skd_cons_sg_list(skdev,
4122 skdev->sgs_per_request,
4123 &skreq->sksg_dma_address);
4124
4125 if (skreq->sksg_list == NULL) {
4126 rc = -ENOMEM;
4127 goto err_out;
4128 }
4129
4130 skreq->next = &skreq[1];
4131 }
4132
4133 /* Free list is in order starting with the 0th entry. */
4134 skdev->skreq_table[i - 1].next = NULL;
4135 skdev->skreq_free_list = skdev->skreq_table;
4136
4137 err_out:
4138 return rc;
4139 }
4140
4141 static int skd_cons_skspcl(struct skd_device *skdev)
4142 {
4143 int rc = 0;
4144 u32 i, nbytes;
4145
4146 pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
4147 skdev->name, __func__, __LINE__,
4148 sizeof(struct skd_special_context),
4149 skdev->n_special,
4150 sizeof(struct skd_special_context) * skdev->n_special);
4151
4152 skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
4153 * skdev->n_special, GFP_KERNEL);
4154 if (skdev->skspcl_table == NULL) {
4155 rc = -ENOMEM;
4156 goto err_out;
4157 }
4158
4159 for (i = 0; i < skdev->n_special; i++) {
4160 struct skd_special_context *skspcl;
4161
4162 skspcl = &skdev->skspcl_table[i];
4163
4164 skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
4165 skspcl->req.state = SKD_REQ_STATE_IDLE;
4166
4167 skspcl->req.next = &skspcl[1].req;
4168
4169 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4170
4171 skspcl->msg_buf =
4172 pci_zalloc_consistent(skdev->pdev, nbytes,
4173 &skspcl->mb_dma_address);
4174 if (skspcl->msg_buf == NULL) {
4175 rc = -ENOMEM;
4176 goto err_out;
4177 }
4178
4179 skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
4180 SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
4181 if (skspcl->req.sg == NULL) {
4182 rc = -ENOMEM;
4183 goto err_out;
4184 }
4185
4186 skspcl->req.sksg_list = skd_cons_sg_list(skdev,
4187 SKD_N_SG_PER_SPECIAL,
4188 &skspcl->req.
4189 sksg_dma_address);
4190 if (skspcl->req.sksg_list == NULL) {
4191 rc = -ENOMEM;
4192 goto err_out;
4193 }
4194 }
4195
4196 /* Free list is in order starting with the 0th entry. */
4197 skdev->skspcl_table[i - 1].req.next = NULL;
4198 skdev->skspcl_free_list = skdev->skspcl_table;
4199
4200 return rc;
4201
4202 err_out:
4203 return rc;
4204 }
4205
4206 static int skd_cons_sksb(struct skd_device *skdev)
4207 {
4208 int rc = 0;
4209 struct skd_special_context *skspcl;
4210 u32 nbytes;
4211
4212 skspcl = &skdev->internal_skspcl;
4213
4214 skspcl->req.id = 0 + SKD_ID_INTERNAL;
4215 skspcl->req.state = SKD_REQ_STATE_IDLE;
4216
4217 nbytes = SKD_N_INTERNAL_BYTES;
4218
4219 skspcl->data_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
4220 &skspcl->db_dma_address);
4221 if (skspcl->data_buf == NULL) {
4222 rc = -ENOMEM;
4223 goto err_out;
4224 }
4225
4226 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4227 skspcl->msg_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
4228 &skspcl->mb_dma_address);
4229 if (skspcl->msg_buf == NULL) {
4230 rc = -ENOMEM;
4231 goto err_out;
4232 }
4233
4234 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
4235 &skspcl->req.sksg_dma_address);
4236 if (skspcl->req.sksg_list == NULL) {
4237 rc = -ENOMEM;
4238 goto err_out;
4239 }
4240
4241 if (!skd_format_internal_skspcl(skdev)) {
4242 rc = -EINVAL;
4243 goto err_out;
4244 }
4245
4246 err_out:
4247 return rc;
4248 }
4249
4250 static int skd_cons_disk(struct skd_device *skdev)
4251 {
4252 int rc = 0;
4253 struct gendisk *disk;
4254 struct request_queue *q;
4255 unsigned long flags;
4256
4257 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
4258 if (!disk) {
4259 rc = -ENOMEM;
4260 goto err_out;
4261 }
4262
4263 skdev->disk = disk;
4264 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
4265
4266 disk->major = skdev->major;
4267 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
4268 disk->fops = &skd_blockdev_ops;
4269 disk->private_data = skdev;
4270
4271 q = blk_init_queue(skd_request_fn, &skdev->lock);
4272 if (!q) {
4273 rc = -ENOMEM;
4274 goto err_out;
4275 }
4276
4277 skdev->queue = q;
4278 disk->queue = q;
4279 q->queuedata = skdev;
4280
4281 blk_queue_write_cache(q, true, true);
4282 blk_queue_max_segments(q, skdev->sgs_per_request);
4283 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
4284
4285 /* set sysfs ptimal_io_size to 8K */
4286 blk_queue_io_opt(q, 8192);
4287
4288 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4289 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
4290
4291 spin_lock_irqsave(&skdev->lock, flags);
4292 pr_debug("%s:%s:%d stopping %s queue\n",
4293 skdev->name, __func__, __LINE__, skdev->name);
4294 blk_stop_queue(skdev->queue);
4295 spin_unlock_irqrestore(&skdev->lock, flags);
4296
4297 err_out:
4298 return rc;
4299 }
4300
4301 #define SKD_N_DEV_TABLE 16u
4302 static u32 skd_next_devno;
4303
4304 static struct skd_device *skd_construct(struct pci_dev *pdev)
4305 {
4306 struct skd_device *skdev;
4307 int blk_major = skd_major;
4308 int rc;
4309
4310 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
4311
4312 if (!skdev) {
4313 pr_err(PFX "(%s): memory alloc failure\n",
4314 pci_name(pdev));
4315 return NULL;
4316 }
4317
4318 skdev->state = SKD_DRVR_STATE_LOAD;
4319 skdev->pdev = pdev;
4320 skdev->devno = skd_next_devno++;
4321 skdev->major = blk_major;
4322 sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
4323 skdev->dev_max_queue_depth = 0;
4324
4325 skdev->num_req_context = skd_max_queue_depth;
4326 skdev->num_fitmsg_context = skd_max_queue_depth;
4327 skdev->n_special = skd_max_pass_thru;
4328 skdev->cur_max_queue_depth = 1;
4329 skdev->queue_low_water_mark = 1;
4330 skdev->proto_ver = 99;
4331 skdev->sgs_per_request = skd_sgs_per_request;
4332 skdev->dbg_level = skd_dbg_level;
4333
4334 atomic_set(&skdev->device_count, 0);
4335
4336 spin_lock_init(&skdev->lock);
4337
4338 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
4339
4340 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4341 rc = skd_cons_skcomp(skdev);
4342 if (rc < 0)
4343 goto err_out;
4344
4345 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4346 rc = skd_cons_skmsg(skdev);
4347 if (rc < 0)
4348 goto err_out;
4349
4350 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4351 rc = skd_cons_skreq(skdev);
4352 if (rc < 0)
4353 goto err_out;
4354
4355 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4356 rc = skd_cons_skspcl(skdev);
4357 if (rc < 0)
4358 goto err_out;
4359
4360 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4361 rc = skd_cons_sksb(skdev);
4362 if (rc < 0)
4363 goto err_out;
4364
4365 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4366 rc = skd_cons_disk(skdev);
4367 if (rc < 0)
4368 goto err_out;
4369
4370 pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
4371 return skdev;
4372
4373 err_out:
4374 pr_debug("%s:%s:%d construct failed\n",
4375 skdev->name, __func__, __LINE__);
4376 skd_destruct(skdev);
4377 return NULL;
4378 }
4379
4380 /*
4381 *****************************************************************************
4382 * DESTRUCT (FREE)
4383 *****************************************************************************
4384 */
4385
4386 static void skd_free_skcomp(struct skd_device *skdev)
4387 {
4388 if (skdev->skcomp_table != NULL) {
4389 u32 nbytes;
4390
4391 nbytes = sizeof(skdev->skcomp_table[0]) *
4392 SKD_N_COMPLETION_ENTRY;
4393 pci_free_consistent(skdev->pdev, nbytes,
4394 skdev->skcomp_table, skdev->cq_dma_address);
4395 }
4396
4397 skdev->skcomp_table = NULL;
4398 skdev->cq_dma_address = 0;
4399 }
4400
4401 static void skd_free_skmsg(struct skd_device *skdev)
4402 {
4403 u32 i;
4404
4405 if (skdev->skmsg_table == NULL)
4406 return;
4407
4408 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4409 struct skd_fitmsg_context *skmsg;
4410
4411 skmsg = &skdev->skmsg_table[i];
4412
4413 if (skmsg->msg_buf != NULL) {
4414 skmsg->msg_buf += skmsg->offset;
4415 skmsg->mb_dma_address += skmsg->offset;
4416 pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
4417 skmsg->msg_buf,
4418 skmsg->mb_dma_address);
4419 }
4420 skmsg->msg_buf = NULL;
4421 skmsg->mb_dma_address = 0;
4422 }
4423
4424 kfree(skdev->skmsg_table);
4425 skdev->skmsg_table = NULL;
4426 }
4427
4428 static void skd_free_sg_list(struct skd_device *skdev,
4429 struct fit_sg_descriptor *sg_list,
4430 u32 n_sg, dma_addr_t dma_addr)
4431 {
4432 if (sg_list != NULL) {
4433 u32 nbytes;
4434
4435 nbytes = sizeof(*sg_list) * n_sg;
4436
4437 pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
4438 }
4439 }
4440
4441 static void skd_free_skreq(struct skd_device *skdev)
4442 {
4443 u32 i;
4444
4445 if (skdev->skreq_table == NULL)
4446 return;
4447
4448 for (i = 0; i < skdev->num_req_context; i++) {
4449 struct skd_request_context *skreq;
4450
4451 skreq = &skdev->skreq_table[i];
4452
4453 skd_free_sg_list(skdev, skreq->sksg_list,
4454 skdev->sgs_per_request,
4455 skreq->sksg_dma_address);
4456
4457 skreq->sksg_list = NULL;
4458 skreq->sksg_dma_address = 0;
4459
4460 kfree(skreq->sg);
4461 }
4462
4463 kfree(skdev->skreq_table);
4464 skdev->skreq_table = NULL;
4465 }
4466
4467 static void skd_free_skspcl(struct skd_device *skdev)
4468 {
4469 u32 i;
4470 u32 nbytes;
4471
4472 if (skdev->skspcl_table == NULL)
4473 return;
4474
4475 for (i = 0; i < skdev->n_special; i++) {
4476 struct skd_special_context *skspcl;
4477
4478 skspcl = &skdev->skspcl_table[i];
4479
4480 if (skspcl->msg_buf != NULL) {
4481 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4482 pci_free_consistent(skdev->pdev, nbytes,
4483 skspcl->msg_buf,
4484 skspcl->mb_dma_address);
4485 }
4486
4487 skspcl->msg_buf = NULL;
4488 skspcl->mb_dma_address = 0;
4489
4490 skd_free_sg_list(skdev, skspcl->req.sksg_list,
4491 SKD_N_SG_PER_SPECIAL,
4492 skspcl->req.sksg_dma_address);
4493
4494 skspcl->req.sksg_list = NULL;
4495 skspcl->req.sksg_dma_address = 0;
4496
4497 kfree(skspcl->req.sg);
4498 }
4499
4500 kfree(skdev->skspcl_table);
4501 skdev->skspcl_table = NULL;
4502 }
4503
4504 static void skd_free_sksb(struct skd_device *skdev)
4505 {
4506 struct skd_special_context *skspcl;
4507 u32 nbytes;
4508
4509 skspcl = &skdev->internal_skspcl;
4510
4511 if (skspcl->data_buf != NULL) {
4512 nbytes = SKD_N_INTERNAL_BYTES;
4513
4514 pci_free_consistent(skdev->pdev, nbytes,
4515 skspcl->data_buf, skspcl->db_dma_address);
4516 }
4517
4518 skspcl->data_buf = NULL;
4519 skspcl->db_dma_address = 0;
4520
4521 if (skspcl->msg_buf != NULL) {
4522 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4523 pci_free_consistent(skdev->pdev, nbytes,
4524 skspcl->msg_buf, skspcl->mb_dma_address);
4525 }
4526
4527 skspcl->msg_buf = NULL;
4528 skspcl->mb_dma_address = 0;
4529
4530 skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
4531 skspcl->req.sksg_dma_address);
4532
4533 skspcl->req.sksg_list = NULL;
4534 skspcl->req.sksg_dma_address = 0;
4535 }
4536
4537 static void skd_free_disk(struct skd_device *skdev)
4538 {
4539 struct gendisk *disk = skdev->disk;
4540
4541 if (disk != NULL) {
4542 struct request_queue *q = disk->queue;
4543
4544 if (disk->flags & GENHD_FL_UP)
4545 del_gendisk(disk);
4546 if (q)
4547 blk_cleanup_queue(q);
4548 put_disk(disk);
4549 }
4550 skdev->disk = NULL;
4551 }
4552
4553 static void skd_destruct(struct skd_device *skdev)
4554 {
4555 if (skdev == NULL)
4556 return;
4557
4558
4559 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4560 skd_free_disk(skdev);
4561
4562 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4563 skd_free_sksb(skdev);
4564
4565 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4566 skd_free_skspcl(skdev);
4567
4568 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4569 skd_free_skreq(skdev);
4570
4571 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4572 skd_free_skmsg(skdev);
4573
4574 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4575 skd_free_skcomp(skdev);
4576
4577 pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
4578 kfree(skdev);
4579 }
4580
4581 /*
4582 *****************************************************************************
4583 * BLOCK DEVICE (BDEV) GLUE
4584 *****************************************************************************
4585 */
4586
4587 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4588 {
4589 struct skd_device *skdev;
4590 u64 capacity;
4591
4592 skdev = bdev->bd_disk->private_data;
4593
4594 pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
4595 skdev->name, __func__, __LINE__,
4596 bdev->bd_disk->disk_name, current->comm);
4597
4598 if (skdev->read_cap_is_valid) {
4599 capacity = get_capacity(skdev->disk);
4600 geo->heads = 64;
4601 geo->sectors = 255;
4602 geo->cylinders = (capacity) / (255 * 64);
4603
4604 return 0;
4605 }
4606 return -EIO;
4607 }
4608
4609 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
4610 {
4611 pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
4612 device_add_disk(parent, skdev->disk);
4613 return 0;
4614 }
4615
4616 static const struct block_device_operations skd_blockdev_ops = {
4617 .owner = THIS_MODULE,
4618 .ioctl = skd_bdev_ioctl,
4619 .getgeo = skd_bdev_getgeo,
4620 };
4621
4622
4623 /*
4624 *****************************************************************************
4625 * PCIe DRIVER GLUE
4626 *****************************************************************************
4627 */
4628
4629 static const struct pci_device_id skd_pci_tbl[] = {
4630 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
4631 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
4632 { 0 } /* terminate list */
4633 };
4634
4635 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
4636
4637 static char *skd_pci_info(struct skd_device *skdev, char *str)
4638 {
4639 int pcie_reg;
4640
4641 strcpy(str, "PCIe (");
4642 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
4643
4644 if (pcie_reg) {
4645
4646 char lwstr[6];
4647 uint16_t pcie_lstat, lspeed, lwidth;
4648
4649 pcie_reg += 0x12;
4650 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
4651 lspeed = pcie_lstat & (0xF);
4652 lwidth = (pcie_lstat & 0x3F0) >> 4;
4653
4654 if (lspeed == 1)
4655 strcat(str, "2.5GT/s ");
4656 else if (lspeed == 2)
4657 strcat(str, "5.0GT/s ");
4658 else
4659 strcat(str, "<unknown> ");
4660 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
4661 strcat(str, lwstr);
4662 }
4663 return str;
4664 }
4665
4666 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4667 {
4668 int i;
4669 int rc = 0;
4670 char pci_str[32];
4671 struct skd_device *skdev;
4672
4673 pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
4674 DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
4675 pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
4676 pci_name(pdev), pdev->vendor, pdev->device);
4677
4678 rc = pci_enable_device(pdev);
4679 if (rc)
4680 return rc;
4681 rc = pci_request_regions(pdev, DRV_NAME);
4682 if (rc)
4683 goto err_out;
4684 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4685 if (!rc) {
4686 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4687
4688 pr_err("(%s): consistent DMA mask error %d\n",
4689 pci_name(pdev), rc);
4690 }
4691 } else {
4692 (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
4693 if (rc) {
4694
4695 pr_err("(%s): DMA mask error %d\n",
4696 pci_name(pdev), rc);
4697 goto err_out_regions;
4698 }
4699 }
4700
4701 if (!skd_major) {
4702 rc = register_blkdev(0, DRV_NAME);
4703 if (rc < 0)
4704 goto err_out_regions;
4705 BUG_ON(!rc);
4706 skd_major = rc;
4707 }
4708
4709 skdev = skd_construct(pdev);
4710 if (skdev == NULL) {
4711 rc = -ENOMEM;
4712 goto err_out_regions;
4713 }
4714
4715 skd_pci_info(skdev, pci_str);
4716 pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
4717
4718 pci_set_master(pdev);
4719 rc = pci_enable_pcie_error_reporting(pdev);
4720 if (rc) {
4721 pr_err(
4722 "(%s): bad enable of PCIe error reporting rc=%d\n",
4723 skd_name(skdev), rc);
4724 skdev->pcie_error_reporting_is_enabled = 0;
4725 } else
4726 skdev->pcie_error_reporting_is_enabled = 1;
4727
4728
4729 pci_set_drvdata(pdev, skdev);
4730
4731 for (i = 0; i < SKD_MAX_BARS; i++) {
4732 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4733 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4734 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4735 skdev->mem_size[i]);
4736 if (!skdev->mem_map[i]) {
4737 pr_err("(%s): Unable to map adapter memory!\n",
4738 skd_name(skdev));
4739 rc = -ENODEV;
4740 goto err_out_iounmap;
4741 }
4742 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4743 skdev->name, __func__, __LINE__,
4744 skdev->mem_map[i],
4745 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4746 }
4747
4748 rc = skd_acquire_irq(skdev);
4749 if (rc) {
4750 pr_err("(%s): interrupt resource error %d\n",
4751 skd_name(skdev), rc);
4752 goto err_out_iounmap;
4753 }
4754
4755 rc = skd_start_timer(skdev);
4756 if (rc)
4757 goto err_out_timer;
4758
4759 init_waitqueue_head(&skdev->waitq);
4760
4761 skd_start_device(skdev);
4762
4763 rc = wait_event_interruptible_timeout(skdev->waitq,
4764 (skdev->gendisk_on),
4765 (SKD_START_WAIT_SECONDS * HZ));
4766 if (skdev->gendisk_on > 0) {
4767 /* device came on-line after reset */
4768 skd_bdev_attach(&pdev->dev, skdev);
4769 rc = 0;
4770 } else {
4771 /* we timed out, something is wrong with the device,
4772 don't add the disk structure */
4773 pr_err(
4774 "(%s): error: waiting for s1120 timed out %d!\n",
4775 skd_name(skdev), rc);
4776 /* in case of no error; we timeout with ENXIO */
4777 if (!rc)
4778 rc = -ENXIO;
4779 goto err_out_timer;
4780 }
4781
4782
4783 #ifdef SKD_VMK_POLL_HANDLER
4784 if (skdev->irq_type == SKD_IRQ_MSIX) {
4785 /* MSIX completion handler is being used for coredump */
4786 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4787 skdev->msix_entries[5].vector,
4788 skd_comp_q, skdev);
4789 } else {
4790 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4791 skdev->pdev->irq, skd_isr,
4792 skdev);
4793 }
4794 #endif /* SKD_VMK_POLL_HANDLER */
4795
4796 return rc;
4797
4798 err_out_timer:
4799 skd_stop_device(skdev);
4800 skd_release_irq(skdev);
4801
4802 err_out_iounmap:
4803 for (i = 0; i < SKD_MAX_BARS; i++)
4804 if (skdev->mem_map[i])
4805 iounmap(skdev->mem_map[i]);
4806
4807 if (skdev->pcie_error_reporting_is_enabled)
4808 pci_disable_pcie_error_reporting(pdev);
4809
4810 skd_destruct(skdev);
4811
4812 err_out_regions:
4813 pci_release_regions(pdev);
4814
4815 err_out:
4816 pci_disable_device(pdev);
4817 pci_set_drvdata(pdev, NULL);
4818 return rc;
4819 }
4820
4821 static void skd_pci_remove(struct pci_dev *pdev)
4822 {
4823 int i;
4824 struct skd_device *skdev;
4825
4826 skdev = pci_get_drvdata(pdev);
4827 if (!skdev) {
4828 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4829 return;
4830 }
4831 skd_stop_device(skdev);
4832 skd_release_irq(skdev);
4833
4834 for (i = 0; i < SKD_MAX_BARS; i++)
4835 if (skdev->mem_map[i])
4836 iounmap((u32 *)skdev->mem_map[i]);
4837
4838 if (skdev->pcie_error_reporting_is_enabled)
4839 pci_disable_pcie_error_reporting(pdev);
4840
4841 skd_destruct(skdev);
4842
4843 pci_release_regions(pdev);
4844 pci_disable_device(pdev);
4845 pci_set_drvdata(pdev, NULL);
4846
4847 return;
4848 }
4849
4850 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
4851 {
4852 int i;
4853 struct skd_device *skdev;
4854
4855 skdev = pci_get_drvdata(pdev);
4856 if (!skdev) {
4857 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4858 return -EIO;
4859 }
4860
4861 skd_stop_device(skdev);
4862
4863 skd_release_irq(skdev);
4864
4865 for (i = 0; i < SKD_MAX_BARS; i++)
4866 if (skdev->mem_map[i])
4867 iounmap((u32 *)skdev->mem_map[i]);
4868
4869 if (skdev->pcie_error_reporting_is_enabled)
4870 pci_disable_pcie_error_reporting(pdev);
4871
4872 pci_release_regions(pdev);
4873 pci_save_state(pdev);
4874 pci_disable_device(pdev);
4875 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4876 return 0;
4877 }
4878
4879 static int skd_pci_resume(struct pci_dev *pdev)
4880 {
4881 int i;
4882 int rc = 0;
4883 struct skd_device *skdev;
4884
4885 skdev = pci_get_drvdata(pdev);
4886 if (!skdev) {
4887 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4888 return -1;
4889 }
4890
4891 pci_set_power_state(pdev, PCI_D0);
4892 pci_enable_wake(pdev, PCI_D0, 0);
4893 pci_restore_state(pdev);
4894
4895 rc = pci_enable_device(pdev);
4896 if (rc)
4897 return rc;
4898 rc = pci_request_regions(pdev, DRV_NAME);
4899 if (rc)
4900 goto err_out;
4901 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4902 if (!rc) {
4903 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4904
4905 pr_err("(%s): consistent DMA mask error %d\n",
4906 pci_name(pdev), rc);
4907 }
4908 } else {
4909 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4910 if (rc) {
4911
4912 pr_err("(%s): DMA mask error %d\n",
4913 pci_name(pdev), rc);
4914 goto err_out_regions;
4915 }
4916 }
4917
4918 pci_set_master(pdev);
4919 rc = pci_enable_pcie_error_reporting(pdev);
4920 if (rc) {
4921 pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
4922 skdev->name, rc);
4923 skdev->pcie_error_reporting_is_enabled = 0;
4924 } else
4925 skdev->pcie_error_reporting_is_enabled = 1;
4926
4927 for (i = 0; i < SKD_MAX_BARS; i++) {
4928
4929 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4930 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4931 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4932 skdev->mem_size[i]);
4933 if (!skdev->mem_map[i]) {
4934 pr_err("(%s): Unable to map adapter memory!\n",
4935 skd_name(skdev));
4936 rc = -ENODEV;
4937 goto err_out_iounmap;
4938 }
4939 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4940 skdev->name, __func__, __LINE__,
4941 skdev->mem_map[i],
4942 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4943 }
4944 rc = skd_acquire_irq(skdev);
4945 if (rc) {
4946
4947 pr_err("(%s): interrupt resource error %d\n",
4948 pci_name(pdev), rc);
4949 goto err_out_iounmap;
4950 }
4951
4952 rc = skd_start_timer(skdev);
4953 if (rc)
4954 goto err_out_timer;
4955
4956 init_waitqueue_head(&skdev->waitq);
4957
4958 skd_start_device(skdev);
4959
4960 return rc;
4961
4962 err_out_timer:
4963 skd_stop_device(skdev);
4964 skd_release_irq(skdev);
4965
4966 err_out_iounmap:
4967 for (i = 0; i < SKD_MAX_BARS; i++)
4968 if (skdev->mem_map[i])
4969 iounmap(skdev->mem_map[i]);
4970
4971 if (skdev->pcie_error_reporting_is_enabled)
4972 pci_disable_pcie_error_reporting(pdev);
4973
4974 err_out_regions:
4975 pci_release_regions(pdev);
4976
4977 err_out:
4978 pci_disable_device(pdev);
4979 return rc;
4980 }
4981
4982 static void skd_pci_shutdown(struct pci_dev *pdev)
4983 {
4984 struct skd_device *skdev;
4985
4986 pr_err("skd_pci_shutdown called\n");
4987
4988 skdev = pci_get_drvdata(pdev);
4989 if (!skdev) {
4990 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4991 return;
4992 }
4993
4994 pr_err("%s: calling stop\n", skd_name(skdev));
4995 skd_stop_device(skdev);
4996 }
4997
4998 static struct pci_driver skd_driver = {
4999 .name = DRV_NAME,
5000 .id_table = skd_pci_tbl,
5001 .probe = skd_pci_probe,
5002 .remove = skd_pci_remove,
5003 .suspend = skd_pci_suspend,
5004 .resume = skd_pci_resume,
5005 .shutdown = skd_pci_shutdown,
5006 };
5007
5008 /*
5009 *****************************************************************************
5010 * LOGGING SUPPORT
5011 *****************************************************************************
5012 */
5013
5014 static const char *skd_name(struct skd_device *skdev)
5015 {
5016 memset(skdev->id_str, 0, sizeof(skdev->id_str));
5017
5018 if (skdev->inquiry_is_valid)
5019 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
5020 skdev->name, skdev->inq_serial_num,
5021 pci_name(skdev->pdev));
5022 else
5023 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
5024 skdev->name, pci_name(skdev->pdev));
5025
5026 return skdev->id_str;
5027 }
5028
5029 const char *skd_drive_state_to_str(int state)
5030 {
5031 switch (state) {
5032 case FIT_SR_DRIVE_OFFLINE:
5033 return "OFFLINE";
5034 case FIT_SR_DRIVE_INIT:
5035 return "INIT";
5036 case FIT_SR_DRIVE_ONLINE:
5037 return "ONLINE";
5038 case FIT_SR_DRIVE_BUSY:
5039 return "BUSY";
5040 case FIT_SR_DRIVE_FAULT:
5041 return "FAULT";
5042 case FIT_SR_DRIVE_DEGRADED:
5043 return "DEGRADED";
5044 case FIT_SR_PCIE_LINK_DOWN:
5045 return "INK_DOWN";
5046 case FIT_SR_DRIVE_SOFT_RESET:
5047 return "SOFT_RESET";
5048 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
5049 return "NEED_FW";
5050 case FIT_SR_DRIVE_INIT_FAULT:
5051 return "INIT_FAULT";
5052 case FIT_SR_DRIVE_BUSY_SANITIZE:
5053 return "BUSY_SANITIZE";
5054 case FIT_SR_DRIVE_BUSY_ERASE:
5055 return "BUSY_ERASE";
5056 case FIT_SR_DRIVE_FW_BOOTING:
5057 return "FW_BOOTING";
5058 default:
5059 return "???";
5060 }
5061 }
5062
5063 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
5064 {
5065 switch (state) {
5066 case SKD_DRVR_STATE_LOAD:
5067 return "LOAD";
5068 case SKD_DRVR_STATE_IDLE:
5069 return "IDLE";
5070 case SKD_DRVR_STATE_BUSY:
5071 return "BUSY";
5072 case SKD_DRVR_STATE_STARTING:
5073 return "STARTING";
5074 case SKD_DRVR_STATE_ONLINE:
5075 return "ONLINE";
5076 case SKD_DRVR_STATE_PAUSING:
5077 return "PAUSING";
5078 case SKD_DRVR_STATE_PAUSED:
5079 return "PAUSED";
5080 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
5081 return "DRAINING_TIMEOUT";
5082 case SKD_DRVR_STATE_RESTARTING:
5083 return "RESTARTING";
5084 case SKD_DRVR_STATE_RESUMING:
5085 return "RESUMING";
5086 case SKD_DRVR_STATE_STOPPING:
5087 return "STOPPING";
5088 case SKD_DRVR_STATE_SYNCING:
5089 return "SYNCING";
5090 case SKD_DRVR_STATE_FAULT:
5091 return "FAULT";
5092 case SKD_DRVR_STATE_DISAPPEARED:
5093 return "DISAPPEARED";
5094 case SKD_DRVR_STATE_BUSY_ERASE:
5095 return "BUSY_ERASE";
5096 case SKD_DRVR_STATE_BUSY_SANITIZE:
5097 return "BUSY_SANITIZE";
5098 case SKD_DRVR_STATE_BUSY_IMMINENT:
5099 return "BUSY_IMMINENT";
5100 case SKD_DRVR_STATE_WAIT_BOOT:
5101 return "WAIT_BOOT";
5102
5103 default:
5104 return "???";
5105 }
5106 }
5107
5108 static const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
5109 {
5110 switch (state) {
5111 case SKD_MSG_STATE_IDLE:
5112 return "IDLE";
5113 case SKD_MSG_STATE_BUSY:
5114 return "BUSY";
5115 default:
5116 return "???";
5117 }
5118 }
5119
5120 static const char *skd_skreq_state_to_str(enum skd_req_state state)
5121 {
5122 switch (state) {
5123 case SKD_REQ_STATE_IDLE:
5124 return "IDLE";
5125 case SKD_REQ_STATE_SETUP:
5126 return "SETUP";
5127 case SKD_REQ_STATE_BUSY:
5128 return "BUSY";
5129 case SKD_REQ_STATE_COMPLETED:
5130 return "COMPLETED";
5131 case SKD_REQ_STATE_TIMEOUT:
5132 return "TIMEOUT";
5133 case SKD_REQ_STATE_ABORTED:
5134 return "ABORTED";
5135 default:
5136 return "???";
5137 }
5138 }
5139
5140 static void skd_log_skdev(struct skd_device *skdev, const char *event)
5141 {
5142 pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
5143 skdev->name, __func__, __LINE__, skdev->name, skdev, event);
5144 pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
5145 skdev->name, __func__, __LINE__,
5146 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
5147 skd_skdev_state_to_str(skdev->state), skdev->state);
5148 pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
5149 skdev->name, __func__, __LINE__,
5150 skdev->in_flight, skdev->cur_max_queue_depth,
5151 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
5152 pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
5153 skdev->name, __func__, __LINE__,
5154 skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
5155 }
5156
5157 static void skd_log_skmsg(struct skd_device *skdev,
5158 struct skd_fitmsg_context *skmsg, const char *event)
5159 {
5160 pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
5161 skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
5162 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
5163 skdev->name, __func__, __LINE__,
5164 skd_skmsg_state_to_str(skmsg->state), skmsg->state,
5165 skmsg->id, skmsg->length);
5166 }
5167
5168 static void skd_log_skreq(struct skd_device *skdev,
5169 struct skd_request_context *skreq, const char *event)
5170 {
5171 pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
5172 skdev->name, __func__, __LINE__, skdev->name, skreq, event);
5173 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
5174 skdev->name, __func__, __LINE__,
5175 skd_skreq_state_to_str(skreq->state), skreq->state,
5176 skreq->id, skreq->fitmsg_id);
5177 pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
5178 skdev->name, __func__, __LINE__,
5179 skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
5180
5181 if (skreq->req != NULL) {
5182 struct request *req = skreq->req;
5183 u32 lba = (u32)blk_rq_pos(req);
5184 u32 count = blk_rq_sectors(req);
5185
5186 pr_debug("%s:%s:%d "
5187 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
5188 skdev->name, __func__, __LINE__,
5189 req, lba, lba, count, count,
5190 (int)rq_data_dir(req));
5191 } else
5192 pr_debug("%s:%s:%d req=NULL\n",
5193 skdev->name, __func__, __LINE__);
5194 }
5195
5196 /*
5197 *****************************************************************************
5198 * MODULE GLUE
5199 *****************************************************************************
5200 */
5201
5202 static int __init skd_init(void)
5203 {
5204 pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
5205
5206 switch (skd_isr_type) {
5207 case SKD_IRQ_LEGACY:
5208 case SKD_IRQ_MSI:
5209 case SKD_IRQ_MSIX:
5210 break;
5211 default:
5212 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
5213 skd_isr_type, SKD_IRQ_DEFAULT);
5214 skd_isr_type = SKD_IRQ_DEFAULT;
5215 }
5216
5217 if (skd_max_queue_depth < 1 ||
5218 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
5219 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
5220 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
5221 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
5222 }
5223
5224 if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
5225 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
5226 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
5227 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
5228 }
5229
5230 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
5231 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
5232 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
5233 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
5234 }
5235
5236 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
5237 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
5238 skd_dbg_level, 0);
5239 skd_dbg_level = 0;
5240 }
5241
5242 if (skd_isr_comp_limit < 0) {
5243 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
5244 skd_isr_comp_limit, 0);
5245 skd_isr_comp_limit = 0;
5246 }
5247
5248 if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
5249 pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
5250 skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
5251 skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
5252 }
5253
5254 return pci_register_driver(&skd_driver);
5255 }
5256
5257 static void __exit skd_exit(void)
5258 {
5259 pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
5260
5261 pci_unregister_driver(&skd_driver);
5262
5263 if (skd_major)
5264 unregister_blkdev(skd_major, DRV_NAME);
5265 }
5266
5267 module_init(skd_init);
5268 module_exit(skd_exit);