]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/umem.c
[PATCH] Add block_device_operations.getgeo block device method
[mirror_ubuntu-bionic-kernel.git] / drivers / block / umem.c
1 /*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3 *
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7 *
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
10 *
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
14 *
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
35 */
36
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/config.h>
39 #include <linux/sched.h>
40 #include <linux/fs.h>
41 #include <linux/bio.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/mman.h>
45 #include <linux/ioctl.h>
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/interrupt.h>
49 #include <linux/smp_lock.h>
50 #include <linux/timer.h>
51 #include <linux/pci.h>
52 #include <linux/slab.h>
53
54 #include <linux/fcntl.h> /* O_ACCMODE */
55 #include <linux/hdreg.h> /* HDIO_GETGEO */
56
57 #include <linux/umem.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/io.h>
61
62 #define MM_MAXCARDS 4
63 #define MM_RAHEAD 2 /* two sectors */
64 #define MM_BLKSIZE 1024 /* 1k blocks */
65 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
66 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
67
68 /*
69 * Version Information
70 */
71
72 #define DRIVER_VERSION "v2.3"
73 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
74 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
75
76 static int debug;
77 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
78 #define HW_TRACE(x)
79
80 #define DEBUG_LED_ON_TRANSFER 0x01
81 #define DEBUG_BATTERY_POLLING 0x02
82
83 module_param(debug, int, 0644);
84 MODULE_PARM_DESC(debug, "Debug bitmask");
85
86 static int pci_read_cmd = 0x0C; /* Read Multiple */
87 module_param(pci_read_cmd, int, 0);
88 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
89
90 static int pci_write_cmd = 0x0F; /* Write and Invalidate */
91 module_param(pci_write_cmd, int, 0);
92 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
93
94 static int pci_cmds;
95
96 static int major_nr;
97
98 #include <linux/blkdev.h>
99 #include <linux/blkpg.h>
100
101 struct cardinfo {
102 int card_number;
103 struct pci_dev *dev;
104
105 int irq;
106
107 unsigned long csr_base;
108 unsigned char __iomem *csr_remap;
109 unsigned long csr_len;
110 #ifdef CONFIG_MM_MAP_MEMORY
111 unsigned long mem_base;
112 unsigned char __iomem *mem_remap;
113 unsigned long mem_len;
114 #endif
115
116 unsigned int win_size; /* PCI window size */
117 unsigned int mm_size; /* size in kbytes */
118
119 unsigned int init_size; /* initial segment, in sectors,
120 * that we know to
121 * have been written
122 */
123 struct bio *bio, *currentbio, **biotail;
124
125 request_queue_t *queue;
126
127 struct mm_page {
128 dma_addr_t page_dma;
129 struct mm_dma_desc *desc;
130 int cnt, headcnt;
131 struct bio *bio, **biotail;
132 } mm_pages[2];
133 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
134
135 int Active, Ready;
136
137 struct tasklet_struct tasklet;
138 unsigned int dma_status;
139
140 struct {
141 int good;
142 int warned;
143 unsigned long last_change;
144 } battery[2];
145
146 spinlock_t lock;
147 int check_batteries;
148
149 int flags;
150 };
151
152 static struct cardinfo cards[MM_MAXCARDS];
153 static struct block_device_operations mm_fops;
154 static struct timer_list battery_timer;
155
156 static int num_cards = 0;
157
158 static struct gendisk *mm_gendisk[MM_MAXCARDS];
159
160 static void check_batteries(struct cardinfo *card);
161
162 /*
163 -----------------------------------------------------------------------------------
164 -- get_userbit
165 -----------------------------------------------------------------------------------
166 */
167 static int get_userbit(struct cardinfo *card, int bit)
168 {
169 unsigned char led;
170
171 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
172 return led & bit;
173 }
174 /*
175 -----------------------------------------------------------------------------------
176 -- set_userbit
177 -----------------------------------------------------------------------------------
178 */
179 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
180 {
181 unsigned char led;
182
183 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
184 if (state)
185 led |= bit;
186 else
187 led &= ~bit;
188 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
189
190 return 0;
191 }
192 /*
193 -----------------------------------------------------------------------------------
194 -- set_led
195 -----------------------------------------------------------------------------------
196 */
197 /*
198 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
199 */
200 static void set_led(struct cardinfo *card, int shift, unsigned char state)
201 {
202 unsigned char led;
203
204 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
205 if (state == LED_FLIP)
206 led ^= (1<<shift);
207 else {
208 led &= ~(0x03 << shift);
209 led |= (state << shift);
210 }
211 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
212
213 }
214
215 #ifdef MM_DIAG
216 /*
217 -----------------------------------------------------------------------------------
218 -- dump_regs
219 -----------------------------------------------------------------------------------
220 */
221 static void dump_regs(struct cardinfo *card)
222 {
223 unsigned char *p;
224 int i, i1;
225
226 p = card->csr_remap;
227 for (i = 0; i < 8; i++) {
228 printk(KERN_DEBUG "%p ", p);
229
230 for (i1 = 0; i1 < 16; i1++)
231 printk("%02x ", *p++);
232
233 printk("\n");
234 }
235 }
236 #endif
237 /*
238 -----------------------------------------------------------------------------------
239 -- dump_dmastat
240 -----------------------------------------------------------------------------------
241 */
242 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
243 {
244 printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
245 if (dmastat & DMASCR_ANY_ERR)
246 printk("ANY_ERR ");
247 if (dmastat & DMASCR_MBE_ERR)
248 printk("MBE_ERR ");
249 if (dmastat & DMASCR_PARITY_ERR_REP)
250 printk("PARITY_ERR_REP ");
251 if (dmastat & DMASCR_PARITY_ERR_DET)
252 printk("PARITY_ERR_DET ");
253 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
254 printk("SYSTEM_ERR_SIG ");
255 if (dmastat & DMASCR_TARGET_ABT)
256 printk("TARGET_ABT ");
257 if (dmastat & DMASCR_MASTER_ABT)
258 printk("MASTER_ABT ");
259 if (dmastat & DMASCR_CHAIN_COMPLETE)
260 printk("CHAIN_COMPLETE ");
261 if (dmastat & DMASCR_DMA_COMPLETE)
262 printk("DMA_COMPLETE ");
263 printk("\n");
264 }
265
266 /*
267 * Theory of request handling
268 *
269 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
270 * We have two pages of mm_dma_desc, holding about 64 descriptors
271 * each. These are allocated at init time.
272 * One page is "Ready" and is either full, or can have request added.
273 * The other page might be "Active", which DMA is happening on it.
274 *
275 * Whenever IO on the active page completes, the Ready page is activated
276 * and the ex-Active page is clean out and made Ready.
277 * Otherwise the Ready page is only activated when it becomes full, or
278 * when mm_unplug_device is called via the unplug_io_fn.
279 *
280 * If a request arrives while both pages a full, it is queued, and b_rdev is
281 * overloaded to record whether it was a read or a write.
282 *
283 * The interrupt handler only polls the device to clear the interrupt.
284 * The processing of the result is done in a tasklet.
285 */
286
287 static void mm_start_io(struct cardinfo *card)
288 {
289 /* we have the lock, we know there is
290 * no IO active, and we know that card->Active
291 * is set
292 */
293 struct mm_dma_desc *desc;
294 struct mm_page *page;
295 int offset;
296
297 /* make the last descriptor end the chain */
298 page = &card->mm_pages[card->Active];
299 pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
300 desc = &page->desc[page->cnt-1];
301
302 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
303 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
304 desc->sem_control_bits = desc->control_bits;
305
306
307 if (debug & DEBUG_LED_ON_TRANSFER)
308 set_led(card, LED_REMOVE, LED_ON);
309
310 desc = &page->desc[page->headcnt];
311 writel(0, card->csr_remap + DMA_PCI_ADDR);
312 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
313
314 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
315 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
316
317 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
318 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
319
320 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
321 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
322
323 offset = ((char*)desc) - ((char*)page->desc);
324 writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
325 card->csr_remap + DMA_DESCRIPTOR_ADDR);
326 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
327 * and on some ports will do nothing ! */
328 writel(cpu_to_le32(((u64)page->page_dma)>>32),
329 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
330
331 /* Go, go, go */
332 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
333 card->csr_remap + DMA_STATUS_CTRL);
334 }
335
336 static int add_bio(struct cardinfo *card);
337
338 static void activate(struct cardinfo *card)
339 {
340 /* if No page is Active, and Ready is
341 * not empty, then switch Ready page
342 * to active and start IO.
343 * Then add any bh's that are available to Ready
344 */
345
346 do {
347 while (add_bio(card))
348 ;
349
350 if (card->Active == -1 &&
351 card->mm_pages[card->Ready].cnt > 0) {
352 card->Active = card->Ready;
353 card->Ready = 1-card->Ready;
354 mm_start_io(card);
355 }
356
357 } while (card->Active == -1 && add_bio(card));
358 }
359
360 static inline void reset_page(struct mm_page *page)
361 {
362 page->cnt = 0;
363 page->headcnt = 0;
364 page->bio = NULL;
365 page->biotail = & page->bio;
366 }
367
368 static void mm_unplug_device(request_queue_t *q)
369 {
370 struct cardinfo *card = q->queuedata;
371 unsigned long flags;
372
373 spin_lock_irqsave(&card->lock, flags);
374 if (blk_remove_plug(q))
375 activate(card);
376 spin_unlock_irqrestore(&card->lock, flags);
377 }
378
379 /*
380 * If there is room on Ready page, take
381 * one bh off list and add it.
382 * return 1 if there was room, else 0.
383 */
384 static int add_bio(struct cardinfo *card)
385 {
386 struct mm_page *p;
387 struct mm_dma_desc *desc;
388 dma_addr_t dma_handle;
389 int offset;
390 struct bio *bio;
391 int rw;
392 int len;
393
394 bio = card->currentbio;
395 if (!bio && card->bio) {
396 card->currentbio = card->bio;
397 card->bio = card->bio->bi_next;
398 if (card->bio == NULL)
399 card->biotail = &card->bio;
400 card->currentbio->bi_next = NULL;
401 return 1;
402 }
403 if (!bio)
404 return 0;
405
406 rw = bio_rw(bio);
407 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
408 return 0;
409
410 len = bio_iovec(bio)->bv_len;
411 dma_handle = pci_map_page(card->dev,
412 bio_page(bio),
413 bio_offset(bio),
414 len,
415 (rw==READ) ?
416 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
417
418 p = &card->mm_pages[card->Ready];
419 desc = &p->desc[p->cnt];
420 p->cnt++;
421 if ((p->biotail) != &bio->bi_next) {
422 *(p->biotail) = bio;
423 p->biotail = &(bio->bi_next);
424 bio->bi_next = NULL;
425 }
426
427 desc->data_dma_handle = dma_handle;
428
429 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
430 desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
431 desc->transfer_size = cpu_to_le32(len);
432 offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
433 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
434 desc->zero1 = desc->zero2 = 0;
435 offset = ( ((char*)(desc+1)) - ((char*)p->desc));
436 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
437 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
438 DMASCR_PARITY_INT_EN|
439 DMASCR_CHAIN_EN |
440 DMASCR_SEM_EN |
441 pci_cmds);
442 if (rw == WRITE)
443 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
444 desc->sem_control_bits = desc->control_bits;
445
446 bio->bi_sector += (len>>9);
447 bio->bi_size -= len;
448 bio->bi_idx++;
449 if (bio->bi_idx >= bio->bi_vcnt)
450 card->currentbio = NULL;
451
452 return 1;
453 }
454
455 static void process_page(unsigned long data)
456 {
457 /* check if any of the requests in the page are DMA_COMPLETE,
458 * and deal with them appropriately.
459 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
460 * dma must have hit an error on that descriptor, so use dma_status instead
461 * and assume that all following descriptors must be re-tried.
462 */
463 struct mm_page *page;
464 struct bio *return_bio=NULL;
465 struct cardinfo *card = (struct cardinfo *)data;
466 unsigned int dma_status = card->dma_status;
467
468 spin_lock_bh(&card->lock);
469 if (card->Active < 0)
470 goto out_unlock;
471 page = &card->mm_pages[card->Active];
472
473 while (page->headcnt < page->cnt) {
474 struct bio *bio = page->bio;
475 struct mm_dma_desc *desc = &page->desc[page->headcnt];
476 int control = le32_to_cpu(desc->sem_control_bits);
477 int last=0;
478 int idx;
479
480 if (!(control & DMASCR_DMA_COMPLETE)) {
481 control = dma_status;
482 last=1;
483 }
484 page->headcnt++;
485 idx = bio->bi_phys_segments;
486 bio->bi_phys_segments++;
487 if (bio->bi_phys_segments >= bio->bi_vcnt)
488 page->bio = bio->bi_next;
489
490 pci_unmap_page(card->dev, desc->data_dma_handle,
491 bio_iovec_idx(bio,idx)->bv_len,
492 (control& DMASCR_TRANSFER_READ) ?
493 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
494 if (control & DMASCR_HARD_ERROR) {
495 /* error */
496 clear_bit(BIO_UPTODATE, &bio->bi_flags);
497 printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
498 card->card_number,
499 le32_to_cpu(desc->local_addr)>>9,
500 le32_to_cpu(desc->transfer_size));
501 dump_dmastat(card, control);
502 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
503 le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
504 card->init_size += le32_to_cpu(desc->transfer_size)>>9;
505 if (card->init_size>>1 >= card->mm_size) {
506 printk(KERN_INFO "MM%d: memory now initialised\n",
507 card->card_number);
508 set_userbit(card, MEMORY_INITIALIZED, 1);
509 }
510 }
511 if (bio != page->bio) {
512 bio->bi_next = return_bio;
513 return_bio = bio;
514 }
515
516 if (last) break;
517 }
518
519 if (debug & DEBUG_LED_ON_TRANSFER)
520 set_led(card, LED_REMOVE, LED_OFF);
521
522 if (card->check_batteries) {
523 card->check_batteries = 0;
524 check_batteries(card);
525 }
526 if (page->headcnt >= page->cnt) {
527 reset_page(page);
528 card->Active = -1;
529 activate(card);
530 } else {
531 /* haven't finished with this one yet */
532 pr_debug("do some more\n");
533 mm_start_io(card);
534 }
535 out_unlock:
536 spin_unlock_bh(&card->lock);
537
538 while(return_bio) {
539 struct bio *bio = return_bio;
540
541 return_bio = bio->bi_next;
542 bio->bi_next = NULL;
543 bio_endio(bio, bio->bi_size, 0);
544 }
545 }
546
547 /*
548 -----------------------------------------------------------------------------------
549 -- mm_make_request
550 -----------------------------------------------------------------------------------
551 */
552 static int mm_make_request(request_queue_t *q, struct bio *bio)
553 {
554 struct cardinfo *card = q->queuedata;
555 pr_debug("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size);
556
557 bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
558 spin_lock_irq(&card->lock);
559 *card->biotail = bio;
560 bio->bi_next = NULL;
561 card->biotail = &bio->bi_next;
562 blk_plug_device(q);
563 spin_unlock_irq(&card->lock);
564
565 return 0;
566 }
567
568 /*
569 -----------------------------------------------------------------------------------
570 -- mm_interrupt
571 -----------------------------------------------------------------------------------
572 */
573 static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs)
574 {
575 struct cardinfo *card = (struct cardinfo *) __card;
576 unsigned int dma_status;
577 unsigned short cfg_status;
578
579 HW_TRACE(0x30);
580
581 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
582
583 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
584 /* interrupt wasn't for me ... */
585 return IRQ_NONE;
586 }
587
588 /* clear COMPLETION interrupts */
589 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
590 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
591 card->csr_remap+ DMA_STATUS_CTRL);
592 else
593 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
594 card->csr_remap+ DMA_STATUS_CTRL + 2);
595
596 /* log errors and clear interrupt status */
597 if (dma_status & DMASCR_ANY_ERR) {
598 unsigned int data_log1, data_log2;
599 unsigned int addr_log1, addr_log2;
600 unsigned char stat, count, syndrome, check;
601
602 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
603
604 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
605 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
606 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
607 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
608
609 count = readb(card->csr_remap + ERROR_COUNT);
610 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
611 check = readb(card->csr_remap + ERROR_CHECK);
612
613 dump_dmastat(card, dma_status);
614
615 if (stat & 0x01)
616 printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
617 card->card_number, count);
618 if (stat & 0x02)
619 printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
620 card->card_number);
621
622 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
623 card->card_number, addr_log2, addr_log1, data_log2, data_log1);
624 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
625 card->card_number, check, syndrome);
626
627 writeb(0, card->csr_remap + ERROR_COUNT);
628 }
629
630 if (dma_status & DMASCR_PARITY_ERR_REP) {
631 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
632 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
633 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
634 }
635
636 if (dma_status & DMASCR_PARITY_ERR_DET) {
637 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
638 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
639 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
640 }
641
642 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
643 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
644 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
645 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
646 }
647
648 if (dma_status & DMASCR_TARGET_ABT) {
649 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
650 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
651 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
652 }
653
654 if (dma_status & DMASCR_MASTER_ABT) {
655 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
656 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
657 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
658 }
659
660 /* and process the DMA descriptors */
661 card->dma_status = dma_status;
662 tasklet_schedule(&card->tasklet);
663
664 HW_TRACE(0x36);
665
666 return IRQ_HANDLED;
667 }
668 /*
669 -----------------------------------------------------------------------------------
670 -- set_fault_to_battery_status
671 -----------------------------------------------------------------------------------
672 */
673 /*
674 * If both batteries are good, no LED
675 * If either battery has been warned, solid LED
676 * If both batteries are bad, flash the LED quickly
677 * If either battery is bad, flash the LED semi quickly
678 */
679 static void set_fault_to_battery_status(struct cardinfo *card)
680 {
681 if (card->battery[0].good && card->battery[1].good)
682 set_led(card, LED_FAULT, LED_OFF);
683 else if (card->battery[0].warned || card->battery[1].warned)
684 set_led(card, LED_FAULT, LED_ON);
685 else if (!card->battery[0].good && !card->battery[1].good)
686 set_led(card, LED_FAULT, LED_FLASH_7_0);
687 else
688 set_led(card, LED_FAULT, LED_FLASH_3_5);
689 }
690
691 static void init_battery_timer(void);
692
693
694 /*
695 -----------------------------------------------------------------------------------
696 -- check_battery
697 -----------------------------------------------------------------------------------
698 */
699 static int check_battery(struct cardinfo *card, int battery, int status)
700 {
701 if (status != card->battery[battery].good) {
702 card->battery[battery].good = !card->battery[battery].good;
703 card->battery[battery].last_change = jiffies;
704
705 if (card->battery[battery].good) {
706 printk(KERN_ERR "MM%d: Battery %d now good\n",
707 card->card_number, battery + 1);
708 card->battery[battery].warned = 0;
709 } else
710 printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
711 card->card_number, battery + 1);
712
713 return 1;
714 } else if (!card->battery[battery].good &&
715 !card->battery[battery].warned &&
716 time_after_eq(jiffies, card->battery[battery].last_change +
717 (HZ * 60 * 60 * 5))) {
718 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
719 card->card_number, battery + 1);
720 card->battery[battery].warned = 1;
721
722 return 1;
723 }
724
725 return 0;
726 }
727 /*
728 -----------------------------------------------------------------------------------
729 -- check_batteries
730 -----------------------------------------------------------------------------------
731 */
732 static void check_batteries(struct cardinfo *card)
733 {
734 /* NOTE: this must *never* be called while the card
735 * is doing (bus-to-card) DMA, or you will need the
736 * reset switch
737 */
738 unsigned char status;
739 int ret1, ret2;
740
741 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
742 if (debug & DEBUG_BATTERY_POLLING)
743 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
744 card->card_number,
745 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
746 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
747
748 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
749 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
750
751 if (ret1 || ret2)
752 set_fault_to_battery_status(card);
753 }
754
755 static void check_all_batteries(unsigned long ptr)
756 {
757 int i;
758
759 for (i = 0; i < num_cards; i++)
760 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
761 struct cardinfo *card = &cards[i];
762 spin_lock_bh(&card->lock);
763 if (card->Active >= 0)
764 card->check_batteries = 1;
765 else
766 check_batteries(card);
767 spin_unlock_bh(&card->lock);
768 }
769
770 init_battery_timer();
771 }
772 /*
773 -----------------------------------------------------------------------------------
774 -- init_battery_timer
775 -----------------------------------------------------------------------------------
776 */
777 static void init_battery_timer(void)
778 {
779 init_timer(&battery_timer);
780 battery_timer.function = check_all_batteries;
781 battery_timer.expires = jiffies + (HZ * 60);
782 add_timer(&battery_timer);
783 }
784 /*
785 -----------------------------------------------------------------------------------
786 -- del_battery_timer
787 -----------------------------------------------------------------------------------
788 */
789 static void del_battery_timer(void)
790 {
791 del_timer(&battery_timer);
792 }
793 /*
794 -----------------------------------------------------------------------------------
795 -- mm_revalidate
796 -----------------------------------------------------------------------------------
797 */
798 /*
799 * Note no locks taken out here. In a worst case scenario, we could drop
800 * a chunk of system memory. But that should never happen, since validation
801 * happens at open or mount time, when locks are held.
802 *
803 * That's crap, since doing that while some partitions are opened
804 * or mounted will give you really nasty results.
805 */
806 static int mm_revalidate(struct gendisk *disk)
807 {
808 struct cardinfo *card = disk->private_data;
809 set_capacity(disk, card->mm_size << 1);
810 return 0;
811 }
812
813 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
814 {
815 struct cardinfo *card = bdev->bd_disk->private_data;
816 int size = card->mm_size * (1024 / MM_HARDSECT);
817
818 /*
819 * get geometry: we have to fake one... trim the size to a
820 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
821 * whatever cylinders.
822 */
823 geo->heads = 64;
824 geo->sectors = 32;
825 geo->cylinders = size / (geo->heads * geo->sectors);
826 return 0;
827 }
828
829 /*
830 -----------------------------------------------------------------------------------
831 -- mm_check_change
832 -----------------------------------------------------------------------------------
833 Future support for removable devices
834 */
835 static int mm_check_change(struct gendisk *disk)
836 {
837 /* struct cardinfo *dev = disk->private_data; */
838 return 0;
839 }
840 /*
841 -----------------------------------------------------------------------------------
842 -- mm_fops
843 -----------------------------------------------------------------------------------
844 */
845 static struct block_device_operations mm_fops = {
846 .owner = THIS_MODULE,
847 .getgeo = mm_getgeo,
848 .revalidate_disk= mm_revalidate,
849 .media_changed = mm_check_change,
850 };
851 /*
852 -----------------------------------------------------------------------------------
853 -- mm_pci_probe
854 -----------------------------------------------------------------------------------
855 */
856 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
857 {
858 int ret = -ENODEV;
859 struct cardinfo *card = &cards[num_cards];
860 unsigned char mem_present;
861 unsigned char batt_status;
862 unsigned int saved_bar, data;
863 int magic_number;
864
865 if (pci_enable_device(dev) < 0)
866 return -ENODEV;
867
868 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
869 pci_set_master(dev);
870
871 card->dev = dev;
872 card->card_number = num_cards;
873
874 card->csr_base = pci_resource_start(dev, 0);
875 card->csr_len = pci_resource_len(dev, 0);
876 #ifdef CONFIG_MM_MAP_MEMORY
877 card->mem_base = pci_resource_start(dev, 1);
878 card->mem_len = pci_resource_len(dev, 1);
879 #endif
880
881 printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
882 card->card_number, dev->bus->number, dev->devfn);
883
884 if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
885 !pci_set_dma_mask(dev, 0xffffffffLL)) {
886 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
887 return -ENOMEM;
888 }
889 if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
890 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
891 ret = -ENOMEM;
892
893 goto failed_req_csr;
894 }
895
896 card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
897 if (!card->csr_remap) {
898 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
899 ret = -ENOMEM;
900
901 goto failed_remap_csr;
902 }
903
904 printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
905 card->csr_base, card->csr_remap, card->csr_len);
906
907 #ifdef CONFIG_MM_MAP_MEMORY
908 if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
909 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
910 ret = -ENOMEM;
911
912 goto failed_req_mem;
913 }
914
915 if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
916 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
917 ret = -ENOMEM;
918
919 goto failed_remap_mem;
920 }
921
922 printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
923 card->mem_base, card->mem_remap, card->mem_len);
924 #else
925 printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
926 card->card_number);
927 #endif
928 switch(card->dev->device) {
929 case 0x5415:
930 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
931 magic_number = 0x59;
932 break;
933
934 case 0x5425:
935 card->flags |= UM_FLAG_NO_BYTE_STATUS;
936 magic_number = 0x5C;
937 break;
938
939 case 0x6155:
940 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
941 magic_number = 0x99;
942 break;
943
944 default:
945 magic_number = 0x100;
946 break;
947 }
948
949 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
950 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
951 ret = -ENOMEM;
952 goto failed_magic;
953 }
954
955 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
956 PAGE_SIZE*2,
957 &card->mm_pages[0].page_dma);
958 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
959 PAGE_SIZE*2,
960 &card->mm_pages[1].page_dma);
961 if (card->mm_pages[0].desc == NULL ||
962 card->mm_pages[1].desc == NULL) {
963 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
964 goto failed_alloc;
965 }
966 reset_page(&card->mm_pages[0]);
967 reset_page(&card->mm_pages[1]);
968 card->Ready = 0; /* page 0 is ready */
969 card->Active = -1; /* no page is active */
970 card->bio = NULL;
971 card->biotail = &card->bio;
972
973 card->queue = blk_alloc_queue(GFP_KERNEL);
974 if (!card->queue)
975 goto failed_alloc;
976
977 blk_queue_make_request(card->queue, mm_make_request);
978 card->queue->queuedata = card;
979 card->queue->unplug_fn = mm_unplug_device;
980
981 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
982
983 card->check_batteries = 0;
984
985 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
986 switch (mem_present) {
987 case MEM_128_MB:
988 card->mm_size = 1024 * 128;
989 break;
990 case MEM_256_MB:
991 card->mm_size = 1024 * 256;
992 break;
993 case MEM_512_MB:
994 card->mm_size = 1024 * 512;
995 break;
996 case MEM_1_GB:
997 card->mm_size = 1024 * 1024;
998 break;
999 case MEM_2_GB:
1000 card->mm_size = 1024 * 2048;
1001 break;
1002 default:
1003 card->mm_size = 0;
1004 break;
1005 }
1006
1007 /* Clear the LED's we control */
1008 set_led(card, LED_REMOVE, LED_OFF);
1009 set_led(card, LED_FAULT, LED_OFF);
1010
1011 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1012
1013 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1014 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1015 card->battery[0].last_change = card->battery[1].last_change = jiffies;
1016
1017 if (card->flags & UM_FLAG_NO_BATT)
1018 printk(KERN_INFO "MM%d: Size %d KB\n",
1019 card->card_number, card->mm_size);
1020 else {
1021 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1022 card->card_number, card->mm_size,
1023 (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1024 card->battery[0].good ? "OK" : "FAILURE",
1025 (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1026 card->battery[1].good ? "OK" : "FAILURE");
1027
1028 set_fault_to_battery_status(card);
1029 }
1030
1031 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1032 data = 0xffffffff;
1033 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1034 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1035 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1036 data &= 0xfffffff0;
1037 data = ~data;
1038 data += 1;
1039
1040 card->win_size = data;
1041
1042
1043 if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
1044 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1045 ret = -ENODEV;
1046
1047 goto failed_req_irq;
1048 }
1049
1050 card->irq = dev->irq;
1051 printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1052 card->win_size, card->irq);
1053
1054 spin_lock_init(&card->lock);
1055
1056 pci_set_drvdata(dev, card);
1057
1058 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1059 pci_write_cmd = 0x07; /* then Memory Write command */
1060
1061 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1062 unsigned short cfg_command;
1063 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1064 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1065 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1066 }
1067 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1068
1069 num_cards++;
1070
1071 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1072 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1073 card->init_size = 0;
1074 } else {
1075 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1076 card->init_size = card->mm_size;
1077 }
1078
1079 /* Enable ECC */
1080 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1081
1082 return 0;
1083
1084 failed_req_irq:
1085 failed_alloc:
1086 if (card->mm_pages[0].desc)
1087 pci_free_consistent(card->dev, PAGE_SIZE*2,
1088 card->mm_pages[0].desc,
1089 card->mm_pages[0].page_dma);
1090 if (card->mm_pages[1].desc)
1091 pci_free_consistent(card->dev, PAGE_SIZE*2,
1092 card->mm_pages[1].desc,
1093 card->mm_pages[1].page_dma);
1094 failed_magic:
1095 #ifdef CONFIG_MM_MAP_MEMORY
1096 iounmap(card->mem_remap);
1097 failed_remap_mem:
1098 release_mem_region(card->mem_base, card->mem_len);
1099 failed_req_mem:
1100 #endif
1101 iounmap(card->csr_remap);
1102 failed_remap_csr:
1103 release_mem_region(card->csr_base, card->csr_len);
1104 failed_req_csr:
1105
1106 return ret;
1107 }
1108 /*
1109 -----------------------------------------------------------------------------------
1110 -- mm_pci_remove
1111 -----------------------------------------------------------------------------------
1112 */
1113 static void mm_pci_remove(struct pci_dev *dev)
1114 {
1115 struct cardinfo *card = pci_get_drvdata(dev);
1116
1117 tasklet_kill(&card->tasklet);
1118 iounmap(card->csr_remap);
1119 release_mem_region(card->csr_base, card->csr_len);
1120 #ifdef CONFIG_MM_MAP_MEMORY
1121 iounmap(card->mem_remap);
1122 release_mem_region(card->mem_base, card->mem_len);
1123 #endif
1124 free_irq(card->irq, card);
1125
1126 if (card->mm_pages[0].desc)
1127 pci_free_consistent(card->dev, PAGE_SIZE*2,
1128 card->mm_pages[0].desc,
1129 card->mm_pages[0].page_dma);
1130 if (card->mm_pages[1].desc)
1131 pci_free_consistent(card->dev, PAGE_SIZE*2,
1132 card->mm_pages[1].desc,
1133 card->mm_pages[1].page_dma);
1134 blk_put_queue(card->queue);
1135 }
1136
1137 static const struct pci_device_id mm_pci_ids[] = { {
1138 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1139 .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
1140 }, {
1141 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1142 .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
1143 }, {
1144 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1145 .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
1146 }, {
1147 .vendor = 0x8086,
1148 .device = 0xB555,
1149 .subvendor= 0x1332,
1150 .subdevice= 0x5460,
1151 .class = 0x050000,
1152 .class_mask= 0,
1153 }, { /* end: all zeroes */ }
1154 };
1155
1156 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1157
1158 static struct pci_driver mm_pci_driver = {
1159 .name = "umem",
1160 .id_table = mm_pci_ids,
1161 .probe = mm_pci_probe,
1162 .remove = mm_pci_remove,
1163 };
1164 /*
1165 -----------------------------------------------------------------------------------
1166 -- mm_init
1167 -----------------------------------------------------------------------------------
1168 */
1169
1170 static int __init mm_init(void)
1171 {
1172 int retval, i;
1173 int err;
1174
1175 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1176
1177 retval = pci_module_init(&mm_pci_driver);
1178 if (retval)
1179 return -ENOMEM;
1180
1181 err = major_nr = register_blkdev(0, "umem");
1182 if (err < 0)
1183 return -EIO;
1184
1185 for (i = 0; i < num_cards; i++) {
1186 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1187 if (!mm_gendisk[i])
1188 goto out;
1189 }
1190
1191 for (i = 0; i < num_cards; i++) {
1192 struct gendisk *disk = mm_gendisk[i];
1193 sprintf(disk->disk_name, "umem%c", 'a'+i);
1194 sprintf(disk->devfs_name, "umem/card%d", i);
1195 spin_lock_init(&cards[i].lock);
1196 disk->major = major_nr;
1197 disk->first_minor = i << MM_SHIFT;
1198 disk->fops = &mm_fops;
1199 disk->private_data = &cards[i];
1200 disk->queue = cards[i].queue;
1201 set_capacity(disk, cards[i].mm_size << 1);
1202 add_disk(disk);
1203 }
1204
1205 init_battery_timer();
1206 printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1207 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1208 return 0;
1209
1210 out:
1211 unregister_blkdev(major_nr, "umem");
1212 while (i--)
1213 put_disk(mm_gendisk[i]);
1214 return -ENOMEM;
1215 }
1216 /*
1217 -----------------------------------------------------------------------------------
1218 -- mm_cleanup
1219 -----------------------------------------------------------------------------------
1220 */
1221 static void __exit mm_cleanup(void)
1222 {
1223 int i;
1224
1225 del_battery_timer();
1226
1227 for (i=0; i < num_cards ; i++) {
1228 del_gendisk(mm_gendisk[i]);
1229 put_disk(mm_gendisk[i]);
1230 }
1231
1232 pci_unregister_driver(&mm_pci_driver);
1233
1234 unregister_blkdev(major_nr, "umem");
1235 }
1236
1237 module_init(mm_init);
1238 module_exit(mm_cleanup);
1239
1240 MODULE_AUTHOR(DRIVER_AUTHOR);
1241 MODULE_DESCRIPTION(DRIVER_DESC);
1242 MODULE_LICENSE("GPL");