]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/umem.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending
[mirror_ubuntu-artful-kernel.git] / drivers / block / umem.c
1 /*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3 *
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7 *
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
10 *
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
14 *
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
35 */
36
37 #undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h> /* O_ACCMODE */
53 #include <linux/hdreg.h> /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2 /* two sectors */
62 #define MM_BLKSIZE 1024 /* 1k blocks */
63 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
64 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
65
66 /*
67 * Version Information
68 */
69
70 #define DRIVER_NAME "umem"
71 #define DRIVER_VERSION "v2.3"
72 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER 0x01
80 #define DEBUG_BATTERY_POLLING 0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C; /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F; /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101 struct pci_dev *dev;
102
103 unsigned char __iomem *csr_remap;
104 unsigned int mm_size; /* size in kbytes */
105
106 unsigned int init_size; /* initial segment, in sectors,
107 * that we know to
108 * have been written
109 */
110 struct bio *bio, *currentbio, **biotail;
111 int current_idx;
112 sector_t current_sector;
113
114 struct request_queue *queue;
115
116 struct mm_page {
117 dma_addr_t page_dma;
118 struct mm_dma_desc *desc;
119 int cnt, headcnt;
120 struct bio *bio, **biotail;
121 int idx;
122 } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125 int Active, Ready;
126
127 struct tasklet_struct tasklet;
128 unsigned int dma_status;
129
130 struct {
131 int good;
132 int warned;
133 unsigned long last_change;
134 } battery[2];
135
136 spinlock_t lock;
137 int check_batteries;
138
139 int flags;
140 };
141
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct timer_list battery_timer;
144
145 static int num_cards;
146
147 static struct gendisk *mm_gendisk[MM_MAXCARDS];
148
149 static void check_batteries(struct cardinfo *card);
150
151 static int get_userbit(struct cardinfo *card, int bit)
152 {
153 unsigned char led;
154
155 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156 return led & bit;
157 }
158
159 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160 {
161 unsigned char led;
162
163 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164 if (state)
165 led |= bit;
166 else
167 led &= ~bit;
168 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169
170 return 0;
171 }
172
173 /*
174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175 */
176 static void set_led(struct cardinfo *card, int shift, unsigned char state)
177 {
178 unsigned char led;
179
180 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181 if (state == LED_FLIP)
182 led ^= (1<<shift);
183 else {
184 led &= ~(0x03 << shift);
185 led |= (state << shift);
186 }
187 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189 }
190
191 #ifdef MM_DIAG
192 static void dump_regs(struct cardinfo *card)
193 {
194 unsigned char *p;
195 int i, i1;
196
197 p = card->csr_remap;
198 for (i = 0; i < 8; i++) {
199 printk(KERN_DEBUG "%p ", p);
200
201 for (i1 = 0; i1 < 16; i1++)
202 printk("%02x ", *p++);
203
204 printk("\n");
205 }
206 }
207 #endif
208
209 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210 {
211 dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212 if (dmastat & DMASCR_ANY_ERR)
213 printk(KERN_CONT "ANY_ERR ");
214 if (dmastat & DMASCR_MBE_ERR)
215 printk(KERN_CONT "MBE_ERR ");
216 if (dmastat & DMASCR_PARITY_ERR_REP)
217 printk(KERN_CONT "PARITY_ERR_REP ");
218 if (dmastat & DMASCR_PARITY_ERR_DET)
219 printk(KERN_CONT "PARITY_ERR_DET ");
220 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221 printk(KERN_CONT "SYSTEM_ERR_SIG ");
222 if (dmastat & DMASCR_TARGET_ABT)
223 printk(KERN_CONT "TARGET_ABT ");
224 if (dmastat & DMASCR_MASTER_ABT)
225 printk(KERN_CONT "MASTER_ABT ");
226 if (dmastat & DMASCR_CHAIN_COMPLETE)
227 printk(KERN_CONT "CHAIN_COMPLETE ");
228 if (dmastat & DMASCR_DMA_COMPLETE)
229 printk(KERN_CONT "DMA_COMPLETE ");
230 printk("\n");
231 }
232
233 /*
234 * Theory of request handling
235 *
236 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237 * We have two pages of mm_dma_desc, holding about 64 descriptors
238 * each. These are allocated at init time.
239 * One page is "Ready" and is either full, or can have request added.
240 * The other page might be "Active", which DMA is happening on it.
241 *
242 * Whenever IO on the active page completes, the Ready page is activated
243 * and the ex-Active page is clean out and made Ready.
244 * Otherwise the Ready page is only activated when it becomes full.
245 *
246 * If a request arrives while both pages a full, it is queued, and b_rdev is
247 * overloaded to record whether it was a read or a write.
248 *
249 * The interrupt handler only polls the device to clear the interrupt.
250 * The processing of the result is done in a tasklet.
251 */
252
253 static void mm_start_io(struct cardinfo *card)
254 {
255 /* we have the lock, we know there is
256 * no IO active, and we know that card->Active
257 * is set
258 */
259 struct mm_dma_desc *desc;
260 struct mm_page *page;
261 int offset;
262
263 /* make the last descriptor end the chain */
264 page = &card->mm_pages[card->Active];
265 pr_debug("start_io: %d %d->%d\n",
266 card->Active, page->headcnt, page->cnt - 1);
267 desc = &page->desc[page->cnt-1];
268
269 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
270 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
271 desc->sem_control_bits = desc->control_bits;
272
273
274 if (debug & DEBUG_LED_ON_TRANSFER)
275 set_led(card, LED_REMOVE, LED_ON);
276
277 desc = &page->desc[page->headcnt];
278 writel(0, card->csr_remap + DMA_PCI_ADDR);
279 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
280
281 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
282 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
283
284 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
285 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
286
287 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
288 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
289
290 offset = ((char *)desc) - ((char *)page->desc);
291 writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
292 card->csr_remap + DMA_DESCRIPTOR_ADDR);
293 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
294 * and on some ports will do nothing ! */
295 writel(cpu_to_le32(((u64)page->page_dma)>>32),
296 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
297
298 /* Go, go, go */
299 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
300 card->csr_remap + DMA_STATUS_CTRL);
301 }
302
303 static int add_bio(struct cardinfo *card);
304
305 static void activate(struct cardinfo *card)
306 {
307 /* if No page is Active, and Ready is
308 * not empty, then switch Ready page
309 * to active and start IO.
310 * Then add any bh's that are available to Ready
311 */
312
313 do {
314 while (add_bio(card))
315 ;
316
317 if (card->Active == -1 &&
318 card->mm_pages[card->Ready].cnt > 0) {
319 card->Active = card->Ready;
320 card->Ready = 1-card->Ready;
321 mm_start_io(card);
322 }
323
324 } while (card->Active == -1 && add_bio(card));
325 }
326
327 static inline void reset_page(struct mm_page *page)
328 {
329 page->cnt = 0;
330 page->headcnt = 0;
331 page->bio = NULL;
332 page->biotail = &page->bio;
333 }
334
335 /*
336 * If there is room on Ready page, take
337 * one bh off list and add it.
338 * return 1 if there was room, else 0.
339 */
340 static int add_bio(struct cardinfo *card)
341 {
342 struct mm_page *p;
343 struct mm_dma_desc *desc;
344 dma_addr_t dma_handle;
345 int offset;
346 struct bio *bio;
347 struct bio_vec *vec;
348 int idx;
349 int rw;
350 int len;
351
352 bio = card->currentbio;
353 if (!bio && card->bio) {
354 card->currentbio = card->bio;
355 card->current_idx = card->bio->bi_idx;
356 card->current_sector = card->bio->bi_sector;
357 card->bio = card->bio->bi_next;
358 if (card->bio == NULL)
359 card->biotail = &card->bio;
360 card->currentbio->bi_next = NULL;
361 return 1;
362 }
363 if (!bio)
364 return 0;
365 idx = card->current_idx;
366
367 rw = bio_rw(bio);
368 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
369 return 0;
370
371 vec = bio_iovec_idx(bio, idx);
372 len = vec->bv_len;
373 dma_handle = pci_map_page(card->dev,
374 vec->bv_page,
375 vec->bv_offset,
376 len,
377 (rw == READ) ?
378 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
379
380 p = &card->mm_pages[card->Ready];
381 desc = &p->desc[p->cnt];
382 p->cnt++;
383 if (p->bio == NULL)
384 p->idx = idx;
385 if ((p->biotail) != &bio->bi_next) {
386 *(p->biotail) = bio;
387 p->biotail = &(bio->bi_next);
388 bio->bi_next = NULL;
389 }
390
391 desc->data_dma_handle = dma_handle;
392
393 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
394 desc->local_addr = cpu_to_le64(card->current_sector << 9);
395 desc->transfer_size = cpu_to_le32(len);
396 offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
397 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
398 desc->zero1 = desc->zero2 = 0;
399 offset = (((char *)(desc+1)) - ((char *)p->desc));
400 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
401 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
402 DMASCR_PARITY_INT_EN|
403 DMASCR_CHAIN_EN |
404 DMASCR_SEM_EN |
405 pci_cmds);
406 if (rw == WRITE)
407 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
408 desc->sem_control_bits = desc->control_bits;
409
410 card->current_sector += (len >> 9);
411 idx++;
412 card->current_idx = idx;
413 if (idx >= bio->bi_vcnt)
414 card->currentbio = NULL;
415
416 return 1;
417 }
418
419 static void process_page(unsigned long data)
420 {
421 /* check if any of the requests in the page are DMA_COMPLETE,
422 * and deal with them appropriately.
423 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
424 * dma must have hit an error on that descriptor, so use dma_status
425 * instead and assume that all following descriptors must be re-tried.
426 */
427 struct mm_page *page;
428 struct bio *return_bio = NULL;
429 struct cardinfo *card = (struct cardinfo *)data;
430 unsigned int dma_status = card->dma_status;
431
432 spin_lock_bh(&card->lock);
433 if (card->Active < 0)
434 goto out_unlock;
435 page = &card->mm_pages[card->Active];
436
437 while (page->headcnt < page->cnt) {
438 struct bio *bio = page->bio;
439 struct mm_dma_desc *desc = &page->desc[page->headcnt];
440 int control = le32_to_cpu(desc->sem_control_bits);
441 int last = 0;
442 int idx;
443
444 if (!(control & DMASCR_DMA_COMPLETE)) {
445 control = dma_status;
446 last = 1;
447 }
448 page->headcnt++;
449 idx = page->idx;
450 page->idx++;
451 if (page->idx >= bio->bi_vcnt) {
452 page->bio = bio->bi_next;
453 if (page->bio)
454 page->idx = page->bio->bi_idx;
455 }
456
457 pci_unmap_page(card->dev, desc->data_dma_handle,
458 bio_iovec_idx(bio, idx)->bv_len,
459 (control & DMASCR_TRANSFER_READ) ?
460 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
461 if (control & DMASCR_HARD_ERROR) {
462 /* error */
463 clear_bit(BIO_UPTODATE, &bio->bi_flags);
464 dev_printk(KERN_WARNING, &card->dev->dev,
465 "I/O error on sector %d/%d\n",
466 le32_to_cpu(desc->local_addr)>>9,
467 le32_to_cpu(desc->transfer_size));
468 dump_dmastat(card, control);
469 } else if ((bio->bi_rw & REQ_WRITE) &&
470 le32_to_cpu(desc->local_addr) >> 9 ==
471 card->init_size) {
472 card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
473 if (card->init_size >> 1 >= card->mm_size) {
474 dev_printk(KERN_INFO, &card->dev->dev,
475 "memory now initialised\n");
476 set_userbit(card, MEMORY_INITIALIZED, 1);
477 }
478 }
479 if (bio != page->bio) {
480 bio->bi_next = return_bio;
481 return_bio = bio;
482 }
483
484 if (last)
485 break;
486 }
487
488 if (debug & DEBUG_LED_ON_TRANSFER)
489 set_led(card, LED_REMOVE, LED_OFF);
490
491 if (card->check_batteries) {
492 card->check_batteries = 0;
493 check_batteries(card);
494 }
495 if (page->headcnt >= page->cnt) {
496 reset_page(page);
497 card->Active = -1;
498 activate(card);
499 } else {
500 /* haven't finished with this one yet */
501 pr_debug("do some more\n");
502 mm_start_io(card);
503 }
504 out_unlock:
505 spin_unlock_bh(&card->lock);
506
507 while (return_bio) {
508 struct bio *bio = return_bio;
509
510 return_bio = bio->bi_next;
511 bio->bi_next = NULL;
512 bio_endio(bio, 0);
513 }
514 }
515
516 struct mm_plug_cb {
517 struct blk_plug_cb cb;
518 struct cardinfo *card;
519 };
520
521 static void mm_unplug(struct blk_plug_cb *cb)
522 {
523 struct mm_plug_cb *mmcb = container_of(cb, struct mm_plug_cb, cb);
524
525 spin_lock_irq(&mmcb->card->lock);
526 activate(mmcb->card);
527 spin_unlock_irq(&mmcb->card->lock);
528 kfree(mmcb);
529 }
530
531 static int mm_check_plugged(struct cardinfo *card)
532 {
533 struct blk_plug *plug = current->plug;
534 struct mm_plug_cb *mmcb;
535
536 if (!plug)
537 return 0;
538
539 list_for_each_entry(mmcb, &plug->cb_list, cb.list) {
540 if (mmcb->cb.callback == mm_unplug && mmcb->card == card)
541 return 1;
542 }
543 /* Not currently on the callback list */
544 mmcb = kmalloc(sizeof(*mmcb), GFP_ATOMIC);
545 if (!mmcb)
546 return 0;
547
548 mmcb->card = card;
549 mmcb->cb.callback = mm_unplug;
550 list_add(&mmcb->cb.list, &plug->cb_list);
551 return 1;
552 }
553
554 static void mm_make_request(struct request_queue *q, struct bio *bio)
555 {
556 struct cardinfo *card = q->queuedata;
557 pr_debug("mm_make_request %llu %u\n",
558 (unsigned long long)bio->bi_sector, bio->bi_size);
559
560 spin_lock_irq(&card->lock);
561 *card->biotail = bio;
562 bio->bi_next = NULL;
563 card->biotail = &bio->bi_next;
564 if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
565 activate(card);
566 spin_unlock_irq(&card->lock);
567
568 return;
569 }
570
571 static irqreturn_t mm_interrupt(int irq, void *__card)
572 {
573 struct cardinfo *card = (struct cardinfo *) __card;
574 unsigned int dma_status;
575 unsigned short cfg_status;
576
577 HW_TRACE(0x30);
578
579 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
580
581 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
582 /* interrupt wasn't for me ... */
583 return IRQ_NONE;
584 }
585
586 /* clear COMPLETION interrupts */
587 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
588 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
589 card->csr_remap + DMA_STATUS_CTRL);
590 else
591 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
592 card->csr_remap + DMA_STATUS_CTRL + 2);
593
594 /* log errors and clear interrupt status */
595 if (dma_status & DMASCR_ANY_ERR) {
596 unsigned int data_log1, data_log2;
597 unsigned int addr_log1, addr_log2;
598 unsigned char stat, count, syndrome, check;
599
600 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
601
602 data_log1 = le32_to_cpu(readl(card->csr_remap +
603 ERROR_DATA_LOG));
604 data_log2 = le32_to_cpu(readl(card->csr_remap +
605 ERROR_DATA_LOG + 4));
606 addr_log1 = le32_to_cpu(readl(card->csr_remap +
607 ERROR_ADDR_LOG));
608 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
609
610 count = readb(card->csr_remap + ERROR_COUNT);
611 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
612 check = readb(card->csr_remap + ERROR_CHECK);
613
614 dump_dmastat(card, dma_status);
615
616 if (stat & 0x01)
617 dev_printk(KERN_ERR, &card->dev->dev,
618 "Memory access error detected (err count %d)\n",
619 count);
620 if (stat & 0x02)
621 dev_printk(KERN_ERR, &card->dev->dev,
622 "Multi-bit EDC error\n");
623
624 dev_printk(KERN_ERR, &card->dev->dev,
625 "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
626 addr_log2, addr_log1, data_log2, data_log1);
627 dev_printk(KERN_ERR, &card->dev->dev,
628 "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
629 check, syndrome);
630
631 writeb(0, card->csr_remap + ERROR_COUNT);
632 }
633
634 if (dma_status & DMASCR_PARITY_ERR_REP) {
635 dev_printk(KERN_ERR, &card->dev->dev,
636 "PARITY ERROR REPORTED\n");
637 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
639 }
640
641 if (dma_status & DMASCR_PARITY_ERR_DET) {
642 dev_printk(KERN_ERR, &card->dev->dev,
643 "PARITY ERROR DETECTED\n");
644 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
645 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
646 }
647
648 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
649 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
650 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
651 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
652 }
653
654 if (dma_status & DMASCR_TARGET_ABT) {
655 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
656 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
657 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
658 }
659
660 if (dma_status & DMASCR_MASTER_ABT) {
661 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
662 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
663 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
664 }
665
666 /* and process the DMA descriptors */
667 card->dma_status = dma_status;
668 tasklet_schedule(&card->tasklet);
669
670 HW_TRACE(0x36);
671
672 return IRQ_HANDLED;
673 }
674
675 /*
676 * If both batteries are good, no LED
677 * If either battery has been warned, solid LED
678 * If both batteries are bad, flash the LED quickly
679 * If either battery is bad, flash the LED semi quickly
680 */
681 static void set_fault_to_battery_status(struct cardinfo *card)
682 {
683 if (card->battery[0].good && card->battery[1].good)
684 set_led(card, LED_FAULT, LED_OFF);
685 else if (card->battery[0].warned || card->battery[1].warned)
686 set_led(card, LED_FAULT, LED_ON);
687 else if (!card->battery[0].good && !card->battery[1].good)
688 set_led(card, LED_FAULT, LED_FLASH_7_0);
689 else
690 set_led(card, LED_FAULT, LED_FLASH_3_5);
691 }
692
693 static void init_battery_timer(void);
694
695 static int check_battery(struct cardinfo *card, int battery, int status)
696 {
697 if (status != card->battery[battery].good) {
698 card->battery[battery].good = !card->battery[battery].good;
699 card->battery[battery].last_change = jiffies;
700
701 if (card->battery[battery].good) {
702 dev_printk(KERN_ERR, &card->dev->dev,
703 "Battery %d now good\n", battery + 1);
704 card->battery[battery].warned = 0;
705 } else
706 dev_printk(KERN_ERR, &card->dev->dev,
707 "Battery %d now FAILED\n", battery + 1);
708
709 return 1;
710 } else if (!card->battery[battery].good &&
711 !card->battery[battery].warned &&
712 time_after_eq(jiffies, card->battery[battery].last_change +
713 (HZ * 60 * 60 * 5))) {
714 dev_printk(KERN_ERR, &card->dev->dev,
715 "Battery %d still FAILED after 5 hours\n", battery + 1);
716 card->battery[battery].warned = 1;
717
718 return 1;
719 }
720
721 return 0;
722 }
723
724 static void check_batteries(struct cardinfo *card)
725 {
726 /* NOTE: this must *never* be called while the card
727 * is doing (bus-to-card) DMA, or you will need the
728 * reset switch
729 */
730 unsigned char status;
731 int ret1, ret2;
732
733 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
734 if (debug & DEBUG_BATTERY_POLLING)
735 dev_printk(KERN_DEBUG, &card->dev->dev,
736 "checking battery status, 1 = %s, 2 = %s\n",
737 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
738 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
739
740 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
741 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
742
743 if (ret1 || ret2)
744 set_fault_to_battery_status(card);
745 }
746
747 static void check_all_batteries(unsigned long ptr)
748 {
749 int i;
750
751 for (i = 0; i < num_cards; i++)
752 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
753 struct cardinfo *card = &cards[i];
754 spin_lock_bh(&card->lock);
755 if (card->Active >= 0)
756 card->check_batteries = 1;
757 else
758 check_batteries(card);
759 spin_unlock_bh(&card->lock);
760 }
761
762 init_battery_timer();
763 }
764
765 static void init_battery_timer(void)
766 {
767 init_timer(&battery_timer);
768 battery_timer.function = check_all_batteries;
769 battery_timer.expires = jiffies + (HZ * 60);
770 add_timer(&battery_timer);
771 }
772
773 static void del_battery_timer(void)
774 {
775 del_timer(&battery_timer);
776 }
777
778 /*
779 * Note no locks taken out here. In a worst case scenario, we could drop
780 * a chunk of system memory. But that should never happen, since validation
781 * happens at open or mount time, when locks are held.
782 *
783 * That's crap, since doing that while some partitions are opened
784 * or mounted will give you really nasty results.
785 */
786 static int mm_revalidate(struct gendisk *disk)
787 {
788 struct cardinfo *card = disk->private_data;
789 set_capacity(disk, card->mm_size << 1);
790 return 0;
791 }
792
793 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
794 {
795 struct cardinfo *card = bdev->bd_disk->private_data;
796 int size = card->mm_size * (1024 / MM_HARDSECT);
797
798 /*
799 * get geometry: we have to fake one... trim the size to a
800 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
801 * whatever cylinders.
802 */
803 geo->heads = 64;
804 geo->sectors = 32;
805 geo->cylinders = size / (geo->heads * geo->sectors);
806 return 0;
807 }
808
809 static const struct block_device_operations mm_fops = {
810 .owner = THIS_MODULE,
811 .getgeo = mm_getgeo,
812 .revalidate_disk = mm_revalidate,
813 };
814
815 static int __devinit mm_pci_probe(struct pci_dev *dev,
816 const struct pci_device_id *id)
817 {
818 int ret = -ENODEV;
819 struct cardinfo *card = &cards[num_cards];
820 unsigned char mem_present;
821 unsigned char batt_status;
822 unsigned int saved_bar, data;
823 unsigned long csr_base;
824 unsigned long csr_len;
825 int magic_number;
826 static int printed_version;
827
828 if (!printed_version++)
829 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
830
831 ret = pci_enable_device(dev);
832 if (ret)
833 return ret;
834
835 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
836 pci_set_master(dev);
837
838 card->dev = dev;
839
840 csr_base = pci_resource_start(dev, 0);
841 csr_len = pci_resource_len(dev, 0);
842 if (!csr_base || !csr_len)
843 return -ENODEV;
844
845 dev_printk(KERN_INFO, &dev->dev,
846 "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
847
848 if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
849 pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
850 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
851 return -ENOMEM;
852 }
853
854 ret = pci_request_regions(dev, DRIVER_NAME);
855 if (ret) {
856 dev_printk(KERN_ERR, &card->dev->dev,
857 "Unable to request memory region\n");
858 goto failed_req_csr;
859 }
860
861 card->csr_remap = ioremap_nocache(csr_base, csr_len);
862 if (!card->csr_remap) {
863 dev_printk(KERN_ERR, &card->dev->dev,
864 "Unable to remap memory region\n");
865 ret = -ENOMEM;
866
867 goto failed_remap_csr;
868 }
869
870 dev_printk(KERN_INFO, &card->dev->dev,
871 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
872 csr_base, card->csr_remap, csr_len);
873
874 switch (card->dev->device) {
875 case 0x5415:
876 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
877 magic_number = 0x59;
878 break;
879
880 case 0x5425:
881 card->flags |= UM_FLAG_NO_BYTE_STATUS;
882 magic_number = 0x5C;
883 break;
884
885 case 0x6155:
886 card->flags |= UM_FLAG_NO_BYTE_STATUS |
887 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
888 magic_number = 0x99;
889 break;
890
891 default:
892 magic_number = 0x100;
893 break;
894 }
895
896 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
897 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
898 ret = -ENOMEM;
899 goto failed_magic;
900 }
901
902 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
903 PAGE_SIZE * 2,
904 &card->mm_pages[0].page_dma);
905 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
906 PAGE_SIZE * 2,
907 &card->mm_pages[1].page_dma);
908 if (card->mm_pages[0].desc == NULL ||
909 card->mm_pages[1].desc == NULL) {
910 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
911 goto failed_alloc;
912 }
913 reset_page(&card->mm_pages[0]);
914 reset_page(&card->mm_pages[1]);
915 card->Ready = 0; /* page 0 is ready */
916 card->Active = -1; /* no page is active */
917 card->bio = NULL;
918 card->biotail = &card->bio;
919
920 card->queue = blk_alloc_queue(GFP_KERNEL);
921 if (!card->queue)
922 goto failed_alloc;
923
924 blk_queue_make_request(card->queue, mm_make_request);
925 card->queue->queue_lock = &card->lock;
926 card->queue->queuedata = card;
927
928 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
929
930 card->check_batteries = 0;
931
932 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
933 switch (mem_present) {
934 case MEM_128_MB:
935 card->mm_size = 1024 * 128;
936 break;
937 case MEM_256_MB:
938 card->mm_size = 1024 * 256;
939 break;
940 case MEM_512_MB:
941 card->mm_size = 1024 * 512;
942 break;
943 case MEM_1_GB:
944 card->mm_size = 1024 * 1024;
945 break;
946 case MEM_2_GB:
947 card->mm_size = 1024 * 2048;
948 break;
949 default:
950 card->mm_size = 0;
951 break;
952 }
953
954 /* Clear the LED's we control */
955 set_led(card, LED_REMOVE, LED_OFF);
956 set_led(card, LED_FAULT, LED_OFF);
957
958 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
959
960 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
961 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
962 card->battery[0].last_change = card->battery[1].last_change = jiffies;
963
964 if (card->flags & UM_FLAG_NO_BATT)
965 dev_printk(KERN_INFO, &card->dev->dev,
966 "Size %d KB\n", card->mm_size);
967 else {
968 dev_printk(KERN_INFO, &card->dev->dev,
969 "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
970 card->mm_size,
971 batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
972 card->battery[0].good ? "OK" : "FAILURE",
973 batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
974 card->battery[1].good ? "OK" : "FAILURE");
975
976 set_fault_to_battery_status(card);
977 }
978
979 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
980 data = 0xffffffff;
981 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
982 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
983 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
984 data &= 0xfffffff0;
985 data = ~data;
986 data += 1;
987
988 if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
989 card)) {
990 dev_printk(KERN_ERR, &card->dev->dev,
991 "Unable to allocate IRQ\n");
992 ret = -ENODEV;
993 goto failed_req_irq;
994 }
995
996 dev_printk(KERN_INFO, &card->dev->dev,
997 "Window size %d bytes, IRQ %d\n", data, dev->irq);
998
999 spin_lock_init(&card->lock);
1000
1001 pci_set_drvdata(dev, card);
1002
1003 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1004 pci_write_cmd = 0x07; /* then Memory Write command */
1005
1006 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1007 unsigned short cfg_command;
1008 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1009 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1010 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1011 }
1012 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1013
1014 num_cards++;
1015
1016 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1017 dev_printk(KERN_INFO, &card->dev->dev,
1018 "memory NOT initialized. Consider over-writing whole device.\n");
1019 card->init_size = 0;
1020 } else {
1021 dev_printk(KERN_INFO, &card->dev->dev,
1022 "memory already initialized\n");
1023 card->init_size = card->mm_size;
1024 }
1025
1026 /* Enable ECC */
1027 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1028
1029 return 0;
1030
1031 failed_req_irq:
1032 failed_alloc:
1033 if (card->mm_pages[0].desc)
1034 pci_free_consistent(card->dev, PAGE_SIZE*2,
1035 card->mm_pages[0].desc,
1036 card->mm_pages[0].page_dma);
1037 if (card->mm_pages[1].desc)
1038 pci_free_consistent(card->dev, PAGE_SIZE*2,
1039 card->mm_pages[1].desc,
1040 card->mm_pages[1].page_dma);
1041 failed_magic:
1042 iounmap(card->csr_remap);
1043 failed_remap_csr:
1044 pci_release_regions(dev);
1045 failed_req_csr:
1046
1047 return ret;
1048 }
1049
1050 static void mm_pci_remove(struct pci_dev *dev)
1051 {
1052 struct cardinfo *card = pci_get_drvdata(dev);
1053
1054 tasklet_kill(&card->tasklet);
1055 free_irq(dev->irq, card);
1056 iounmap(card->csr_remap);
1057
1058 if (card->mm_pages[0].desc)
1059 pci_free_consistent(card->dev, PAGE_SIZE*2,
1060 card->mm_pages[0].desc,
1061 card->mm_pages[0].page_dma);
1062 if (card->mm_pages[1].desc)
1063 pci_free_consistent(card->dev, PAGE_SIZE*2,
1064 card->mm_pages[1].desc,
1065 card->mm_pages[1].page_dma);
1066 blk_cleanup_queue(card->queue);
1067
1068 pci_release_regions(dev);
1069 pci_disable_device(dev);
1070 }
1071
1072 static const struct pci_device_id mm_pci_ids[] = {
1073 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1074 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1075 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1076 {
1077 .vendor = 0x8086,
1078 .device = 0xB555,
1079 .subvendor = 0x1332,
1080 .subdevice = 0x5460,
1081 .class = 0x050000,
1082 .class_mask = 0,
1083 }, { /* end: all zeroes */ }
1084 };
1085
1086 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1087
1088 static struct pci_driver mm_pci_driver = {
1089 .name = DRIVER_NAME,
1090 .id_table = mm_pci_ids,
1091 .probe = mm_pci_probe,
1092 .remove = mm_pci_remove,
1093 };
1094
1095 static int __init mm_init(void)
1096 {
1097 int retval, i;
1098 int err;
1099
1100 retval = pci_register_driver(&mm_pci_driver);
1101 if (retval)
1102 return -ENOMEM;
1103
1104 err = major_nr = register_blkdev(0, DRIVER_NAME);
1105 if (err < 0) {
1106 pci_unregister_driver(&mm_pci_driver);
1107 return -EIO;
1108 }
1109
1110 for (i = 0; i < num_cards; i++) {
1111 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1112 if (!mm_gendisk[i])
1113 goto out;
1114 }
1115
1116 for (i = 0; i < num_cards; i++) {
1117 struct gendisk *disk = mm_gendisk[i];
1118 sprintf(disk->disk_name, "umem%c", 'a'+i);
1119 spin_lock_init(&cards[i].lock);
1120 disk->major = major_nr;
1121 disk->first_minor = i << MM_SHIFT;
1122 disk->fops = &mm_fops;
1123 disk->private_data = &cards[i];
1124 disk->queue = cards[i].queue;
1125 set_capacity(disk, cards[i].mm_size << 1);
1126 add_disk(disk);
1127 }
1128
1129 init_battery_timer();
1130 printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1131 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1132 return 0;
1133
1134 out:
1135 pci_unregister_driver(&mm_pci_driver);
1136 unregister_blkdev(major_nr, DRIVER_NAME);
1137 while (i--)
1138 put_disk(mm_gendisk[i]);
1139 return -ENOMEM;
1140 }
1141
1142 static void __exit mm_cleanup(void)
1143 {
1144 int i;
1145
1146 del_battery_timer();
1147
1148 for (i = 0; i < num_cards ; i++) {
1149 del_gendisk(mm_gendisk[i]);
1150 put_disk(mm_gendisk[i]);
1151 }
1152
1153 pci_unregister_driver(&mm_pci_driver);
1154
1155 unregister_blkdev(major_nr, DRIVER_NAME);
1156 }
1157
1158 module_init(mm_init);
1159 module_exit(mm_cleanup);
1160
1161 MODULE_AUTHOR(DRIVER_AUTHOR);
1162 MODULE_DESCRIPTION(DRIVER_DESC);
1163 MODULE_LICENSE("GPL");