]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/xen-blkfront.c
block: Fix front merge check
[mirror_ubuntu-artful-kernel.git] / drivers / block / xen-blkfront.c
1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60
61 #include <asm/xen/hypervisor.h>
62
63 /*
64 * The minimal size of segment supported by the block framework is PAGE_SIZE.
65 * When Linux is using a different page size than Xen, it may not be possible
66 * to put all the data in a single segment.
67 * This can happen when the backend doesn't support indirect descriptor and
68 * therefore the maximum amount of data that a request can carry is
69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70 *
71 * Note that we only support one extra request. So the Linux page size
72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73 * 88KB.
74 */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76
77 enum blkif_state {
78 BLKIF_STATE_DISCONNECTED,
79 BLKIF_STATE_CONNECTED,
80 BLKIF_STATE_SUSPENDED,
81 };
82
83 struct grant {
84 grant_ref_t gref;
85 struct page *page;
86 struct list_head node;
87 };
88
89 enum blk_req_status {
90 REQ_WAITING,
91 REQ_DONE,
92 REQ_ERROR,
93 REQ_EOPNOTSUPP,
94 };
95
96 struct blk_shadow {
97 struct blkif_request req;
98 struct request *request;
99 struct grant **grants_used;
100 struct grant **indirect_grants;
101 struct scatterlist *sg;
102 unsigned int num_sg;
103 enum blk_req_status status;
104
105 #define NO_ASSOCIATED_ID ~0UL
106 /*
107 * Id of the sibling if we ever need 2 requests when handling a
108 * block I/O request
109 */
110 unsigned long associated_id;
111 };
112
113 struct split_bio {
114 struct bio *bio;
115 atomic_t pending;
116 };
117
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120
121 /*
122 * Maximum number of segments in indirect requests, the actual value used by
123 * the frontend driver is the minimum of this value and the value provided
124 * by the backend driver.
125 */
126
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 "Maximum amount of segments in indirect requests (default is 32)");
132
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136
137 /*
138 * Maximum order of pages to be used for the shared ring between front and
139 * backend, 4KB page granularity is used.
140 */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144
145 #define BLK_RING_SIZE(info) \
146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147
148 #define BLK_MAX_RING_SIZE \
149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150
151 /*
152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153 * characters are enough. Define to 20 to keep consistent with backend.
154 */
155 #define RINGREF_NAME_LEN (20)
156 /*
157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158 */
159 #define QUEUE_NAME_LEN (17)
160
161 /*
162 * Per-ring info.
163 * Every blkfront device can associate with one or more blkfront_ring_info,
164 * depending on how many hardware queues/rings to be used.
165 */
166 struct blkfront_ring_info {
167 /* Lock to protect data in every ring buffer. */
168 spinlock_t ring_lock;
169 struct blkif_front_ring ring;
170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 unsigned int evtchn, irq;
172 struct work_struct work;
173 struct gnttab_free_callback callback;
174 struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 struct list_head indirect_pages;
176 struct list_head grants;
177 unsigned int persistent_gnts_c;
178 unsigned long shadow_free;
179 struct blkfront_info *dev_info;
180 };
181
182 /*
183 * We have one of these per vbd, whether ide, scsi or 'other'. They
184 * hang in private_data off the gendisk structure. We may end up
185 * putting all kinds of interesting stuff here :-)
186 */
187 struct blkfront_info
188 {
189 struct mutex mutex;
190 struct xenbus_device *xbdev;
191 struct gendisk *gd;
192 int vdevice;
193 blkif_vdev_t handle;
194 enum blkif_state connected;
195 /* Number of pages per ring buffer. */
196 unsigned int nr_ring_pages;
197 struct request_queue *rq;
198 unsigned int feature_flush;
199 unsigned int feature_fua;
200 unsigned int feature_discard:1;
201 unsigned int feature_secdiscard:1;
202 unsigned int discard_granularity;
203 unsigned int discard_alignment;
204 unsigned int feature_persistent:1;
205 /* Number of 4KB segments handled */
206 unsigned int max_indirect_segments;
207 int is_ready;
208 struct blk_mq_tag_set tag_set;
209 struct blkfront_ring_info *rinfo;
210 unsigned int nr_rings;
211 };
212
213 static unsigned int nr_minors;
214 static unsigned long *minors;
215 static DEFINE_SPINLOCK(minor_lock);
216
217 #define GRANT_INVALID_REF 0
218
219 #define PARTS_PER_DISK 16
220 #define PARTS_PER_EXT_DISK 256
221
222 #define BLKIF_MAJOR(dev) ((dev)>>8)
223 #define BLKIF_MINOR(dev) ((dev) & 0xff)
224
225 #define EXT_SHIFT 28
226 #define EXTENDED (1<<EXT_SHIFT)
227 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
228 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
229 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
230 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
231 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
232 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
233
234 #define DEV_NAME "xvd" /* name in /dev */
235
236 /*
237 * Grants are always the same size as a Xen page (i.e 4KB).
238 * A physical segment is always the same size as a Linux page.
239 * Number of grants per physical segment
240 */
241 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
242
243 #define GRANTS_PER_INDIRECT_FRAME \
244 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
245
246 #define PSEGS_PER_INDIRECT_FRAME \
247 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
248
249 #define INDIRECT_GREFS(_grants) \
250 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
251
252 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG)
253
254 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
255 static void blkfront_gather_backend_features(struct blkfront_info *info);
256
257 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
258 {
259 unsigned long free = rinfo->shadow_free;
260
261 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
262 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
263 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
264 return free;
265 }
266
267 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
268 unsigned long id)
269 {
270 if (rinfo->shadow[id].req.u.rw.id != id)
271 return -EINVAL;
272 if (rinfo->shadow[id].request == NULL)
273 return -EINVAL;
274 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
275 rinfo->shadow[id].request = NULL;
276 rinfo->shadow_free = id;
277 return 0;
278 }
279
280 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
281 {
282 struct blkfront_info *info = rinfo->dev_info;
283 struct page *granted_page;
284 struct grant *gnt_list_entry, *n;
285 int i = 0;
286
287 while (i < num) {
288 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
289 if (!gnt_list_entry)
290 goto out_of_memory;
291
292 if (info->feature_persistent) {
293 granted_page = alloc_page(GFP_NOIO);
294 if (!granted_page) {
295 kfree(gnt_list_entry);
296 goto out_of_memory;
297 }
298 gnt_list_entry->page = granted_page;
299 }
300
301 gnt_list_entry->gref = GRANT_INVALID_REF;
302 list_add(&gnt_list_entry->node, &rinfo->grants);
303 i++;
304 }
305
306 return 0;
307
308 out_of_memory:
309 list_for_each_entry_safe(gnt_list_entry, n,
310 &rinfo->grants, node) {
311 list_del(&gnt_list_entry->node);
312 if (info->feature_persistent)
313 __free_page(gnt_list_entry->page);
314 kfree(gnt_list_entry);
315 i--;
316 }
317 BUG_ON(i != 0);
318 return -ENOMEM;
319 }
320
321 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
322 {
323 struct grant *gnt_list_entry;
324
325 BUG_ON(list_empty(&rinfo->grants));
326 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
327 node);
328 list_del(&gnt_list_entry->node);
329
330 if (gnt_list_entry->gref != GRANT_INVALID_REF)
331 rinfo->persistent_gnts_c--;
332
333 return gnt_list_entry;
334 }
335
336 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
337 const struct blkfront_info *info)
338 {
339 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
340 info->xbdev->otherend_id,
341 gnt_list_entry->page,
342 0);
343 }
344
345 static struct grant *get_grant(grant_ref_t *gref_head,
346 unsigned long gfn,
347 struct blkfront_ring_info *rinfo)
348 {
349 struct grant *gnt_list_entry = get_free_grant(rinfo);
350 struct blkfront_info *info = rinfo->dev_info;
351
352 if (gnt_list_entry->gref != GRANT_INVALID_REF)
353 return gnt_list_entry;
354
355 /* Assign a gref to this page */
356 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
357 BUG_ON(gnt_list_entry->gref == -ENOSPC);
358 if (info->feature_persistent)
359 grant_foreign_access(gnt_list_entry, info);
360 else {
361 /* Grant access to the GFN passed by the caller */
362 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
363 info->xbdev->otherend_id,
364 gfn, 0);
365 }
366
367 return gnt_list_entry;
368 }
369
370 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
371 struct blkfront_ring_info *rinfo)
372 {
373 struct grant *gnt_list_entry = get_free_grant(rinfo);
374 struct blkfront_info *info = rinfo->dev_info;
375
376 if (gnt_list_entry->gref != GRANT_INVALID_REF)
377 return gnt_list_entry;
378
379 /* Assign a gref to this page */
380 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
381 BUG_ON(gnt_list_entry->gref == -ENOSPC);
382 if (!info->feature_persistent) {
383 struct page *indirect_page;
384
385 /* Fetch a pre-allocated page to use for indirect grefs */
386 BUG_ON(list_empty(&rinfo->indirect_pages));
387 indirect_page = list_first_entry(&rinfo->indirect_pages,
388 struct page, lru);
389 list_del(&indirect_page->lru);
390 gnt_list_entry->page = indirect_page;
391 }
392 grant_foreign_access(gnt_list_entry, info);
393
394 return gnt_list_entry;
395 }
396
397 static const char *op_name(int op)
398 {
399 static const char *const names[] = {
400 [BLKIF_OP_READ] = "read",
401 [BLKIF_OP_WRITE] = "write",
402 [BLKIF_OP_WRITE_BARRIER] = "barrier",
403 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
404 [BLKIF_OP_DISCARD] = "discard" };
405
406 if (op < 0 || op >= ARRAY_SIZE(names))
407 return "unknown";
408
409 if (!names[op])
410 return "reserved";
411
412 return names[op];
413 }
414 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
415 {
416 unsigned int end = minor + nr;
417 int rc;
418
419 if (end > nr_minors) {
420 unsigned long *bitmap, *old;
421
422 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
423 GFP_KERNEL);
424 if (bitmap == NULL)
425 return -ENOMEM;
426
427 spin_lock(&minor_lock);
428 if (end > nr_minors) {
429 old = minors;
430 memcpy(bitmap, minors,
431 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
432 minors = bitmap;
433 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
434 } else
435 old = bitmap;
436 spin_unlock(&minor_lock);
437 kfree(old);
438 }
439
440 spin_lock(&minor_lock);
441 if (find_next_bit(minors, end, minor) >= end) {
442 bitmap_set(minors, minor, nr);
443 rc = 0;
444 } else
445 rc = -EBUSY;
446 spin_unlock(&minor_lock);
447
448 return rc;
449 }
450
451 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
452 {
453 unsigned int end = minor + nr;
454
455 BUG_ON(end > nr_minors);
456 spin_lock(&minor_lock);
457 bitmap_clear(minors, minor, nr);
458 spin_unlock(&minor_lock);
459 }
460
461 static void blkif_restart_queue_callback(void *arg)
462 {
463 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
464 schedule_work(&rinfo->work);
465 }
466
467 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
468 {
469 /* We don't have real geometry info, but let's at least return
470 values consistent with the size of the device */
471 sector_t nsect = get_capacity(bd->bd_disk);
472 sector_t cylinders = nsect;
473
474 hg->heads = 0xff;
475 hg->sectors = 0x3f;
476 sector_div(cylinders, hg->heads * hg->sectors);
477 hg->cylinders = cylinders;
478 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
479 hg->cylinders = 0xffff;
480 return 0;
481 }
482
483 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
484 unsigned command, unsigned long argument)
485 {
486 struct blkfront_info *info = bdev->bd_disk->private_data;
487 int i;
488
489 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
490 command, (long)argument);
491
492 switch (command) {
493 case CDROMMULTISESSION:
494 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
495 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
496 if (put_user(0, (char __user *)(argument + i)))
497 return -EFAULT;
498 return 0;
499
500 case CDROM_GET_CAPABILITY: {
501 struct gendisk *gd = info->gd;
502 if (gd->flags & GENHD_FL_CD)
503 return 0;
504 return -EINVAL;
505 }
506
507 default:
508 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
509 command);*/
510 return -EINVAL; /* same return as native Linux */
511 }
512
513 return 0;
514 }
515
516 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
517 struct request *req,
518 struct blkif_request **ring_req)
519 {
520 unsigned long id;
521
522 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
523 rinfo->ring.req_prod_pvt++;
524
525 id = get_id_from_freelist(rinfo);
526 rinfo->shadow[id].request = req;
527 rinfo->shadow[id].status = REQ_WAITING;
528 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
529
530 (*ring_req)->u.rw.id = id;
531
532 return id;
533 }
534
535 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
536 {
537 struct blkfront_info *info = rinfo->dev_info;
538 struct blkif_request *ring_req;
539 unsigned long id;
540
541 /* Fill out a communications ring structure. */
542 id = blkif_ring_get_request(rinfo, req, &ring_req);
543
544 ring_req->operation = BLKIF_OP_DISCARD;
545 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
546 ring_req->u.discard.id = id;
547 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
548 if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard)
549 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
550 else
551 ring_req->u.discard.flag = 0;
552
553 /* Keep a private copy so we can reissue requests when recovering. */
554 rinfo->shadow[id].req = *ring_req;
555
556 return 0;
557 }
558
559 struct setup_rw_req {
560 unsigned int grant_idx;
561 struct blkif_request_segment *segments;
562 struct blkfront_ring_info *rinfo;
563 struct blkif_request *ring_req;
564 grant_ref_t gref_head;
565 unsigned int id;
566 /* Only used when persistent grant is used and it's a read request */
567 bool need_copy;
568 unsigned int bvec_off;
569 char *bvec_data;
570
571 bool require_extra_req;
572 struct blkif_request *extra_ring_req;
573 };
574
575 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
576 unsigned int len, void *data)
577 {
578 struct setup_rw_req *setup = data;
579 int n, ref;
580 struct grant *gnt_list_entry;
581 unsigned int fsect, lsect;
582 /* Convenient aliases */
583 unsigned int grant_idx = setup->grant_idx;
584 struct blkif_request *ring_req = setup->ring_req;
585 struct blkfront_ring_info *rinfo = setup->rinfo;
586 /*
587 * We always use the shadow of the first request to store the list
588 * of grant associated to the block I/O request. This made the
589 * completion more easy to handle even if the block I/O request is
590 * split.
591 */
592 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
593
594 if (unlikely(setup->require_extra_req &&
595 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
596 /*
597 * We are using the second request, setup grant_idx
598 * to be the index of the segment array.
599 */
600 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
601 ring_req = setup->extra_ring_req;
602 }
603
604 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
605 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
606 if (setup->segments)
607 kunmap_atomic(setup->segments);
608
609 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
610 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
611 shadow->indirect_grants[n] = gnt_list_entry;
612 setup->segments = kmap_atomic(gnt_list_entry->page);
613 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
614 }
615
616 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
617 ref = gnt_list_entry->gref;
618 /*
619 * All the grants are stored in the shadow of the first
620 * request. Therefore we have to use the global index.
621 */
622 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
623
624 if (setup->need_copy) {
625 void *shared_data;
626
627 shared_data = kmap_atomic(gnt_list_entry->page);
628 /*
629 * this does not wipe data stored outside the
630 * range sg->offset..sg->offset+sg->length.
631 * Therefore, blkback *could* see data from
632 * previous requests. This is OK as long as
633 * persistent grants are shared with just one
634 * domain. It may need refactoring if this
635 * changes
636 */
637 memcpy(shared_data + offset,
638 setup->bvec_data + setup->bvec_off,
639 len);
640
641 kunmap_atomic(shared_data);
642 setup->bvec_off += len;
643 }
644
645 fsect = offset >> 9;
646 lsect = fsect + (len >> 9) - 1;
647 if (ring_req->operation != BLKIF_OP_INDIRECT) {
648 ring_req->u.rw.seg[grant_idx] =
649 (struct blkif_request_segment) {
650 .gref = ref,
651 .first_sect = fsect,
652 .last_sect = lsect };
653 } else {
654 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
655 (struct blkif_request_segment) {
656 .gref = ref,
657 .first_sect = fsect,
658 .last_sect = lsect };
659 }
660
661 (setup->grant_idx)++;
662 }
663
664 static void blkif_setup_extra_req(struct blkif_request *first,
665 struct blkif_request *second)
666 {
667 uint16_t nr_segments = first->u.rw.nr_segments;
668
669 /*
670 * The second request is only present when the first request uses
671 * all its segments. It's always the continuity of the first one.
672 */
673 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
674
675 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
676 second->u.rw.sector_number = first->u.rw.sector_number +
677 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
678
679 second->u.rw.handle = first->u.rw.handle;
680 second->operation = first->operation;
681 }
682
683 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
684 {
685 struct blkfront_info *info = rinfo->dev_info;
686 struct blkif_request *ring_req, *extra_ring_req = NULL;
687 unsigned long id, extra_id = NO_ASSOCIATED_ID;
688 bool require_extra_req = false;
689 int i;
690 struct setup_rw_req setup = {
691 .grant_idx = 0,
692 .segments = NULL,
693 .rinfo = rinfo,
694 .need_copy = rq_data_dir(req) && info->feature_persistent,
695 };
696
697 /*
698 * Used to store if we are able to queue the request by just using
699 * existing persistent grants, or if we have to get new grants,
700 * as there are not sufficiently many free.
701 */
702 struct scatterlist *sg;
703 int num_sg, max_grefs, num_grant;
704
705 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
706 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
707 /*
708 * If we are using indirect segments we need to account
709 * for the indirect grefs used in the request.
710 */
711 max_grefs += INDIRECT_GREFS(max_grefs);
712
713 /*
714 * We have to reserve 'max_grefs' grants because persistent
715 * grants are shared by all rings.
716 */
717 if (max_grefs > 0)
718 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
719 gnttab_request_free_callback(
720 &rinfo->callback,
721 blkif_restart_queue_callback,
722 rinfo,
723 max_grefs);
724 return 1;
725 }
726
727 /* Fill out a communications ring structure. */
728 id = blkif_ring_get_request(rinfo, req, &ring_req);
729
730 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
731 num_grant = 0;
732 /* Calculate the number of grant used */
733 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
734 num_grant += gnttab_count_grant(sg->offset, sg->length);
735
736 require_extra_req = info->max_indirect_segments == 0 &&
737 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
738 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
739
740 rinfo->shadow[id].num_sg = num_sg;
741 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
742 likely(!require_extra_req)) {
743 /*
744 * The indirect operation can only be a BLKIF_OP_READ or
745 * BLKIF_OP_WRITE
746 */
747 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
748 ring_req->operation = BLKIF_OP_INDIRECT;
749 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
750 BLKIF_OP_WRITE : BLKIF_OP_READ;
751 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
752 ring_req->u.indirect.handle = info->handle;
753 ring_req->u.indirect.nr_segments = num_grant;
754 } else {
755 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
756 ring_req->u.rw.handle = info->handle;
757 ring_req->operation = rq_data_dir(req) ?
758 BLKIF_OP_WRITE : BLKIF_OP_READ;
759 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
760 /*
761 * Ideally we can do an unordered flush-to-disk.
762 * In case the backend onlysupports barriers, use that.
763 * A barrier request a superset of FUA, so we can
764 * implement it the same way. (It's also a FLUSH+FUA,
765 * since it is guaranteed ordered WRT previous writes.)
766 */
767 if (info->feature_flush && info->feature_fua)
768 ring_req->operation =
769 BLKIF_OP_WRITE_BARRIER;
770 else if (info->feature_flush)
771 ring_req->operation =
772 BLKIF_OP_FLUSH_DISKCACHE;
773 else
774 ring_req->operation = 0;
775 }
776 ring_req->u.rw.nr_segments = num_grant;
777 if (unlikely(require_extra_req)) {
778 extra_id = blkif_ring_get_request(rinfo, req,
779 &extra_ring_req);
780 /*
781 * Only the first request contains the scatter-gather
782 * list.
783 */
784 rinfo->shadow[extra_id].num_sg = 0;
785
786 blkif_setup_extra_req(ring_req, extra_ring_req);
787
788 /* Link the 2 requests together */
789 rinfo->shadow[extra_id].associated_id = id;
790 rinfo->shadow[id].associated_id = extra_id;
791 }
792 }
793
794 setup.ring_req = ring_req;
795 setup.id = id;
796
797 setup.require_extra_req = require_extra_req;
798 if (unlikely(require_extra_req))
799 setup.extra_ring_req = extra_ring_req;
800
801 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
802 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
803
804 if (setup.need_copy) {
805 setup.bvec_off = sg->offset;
806 setup.bvec_data = kmap_atomic(sg_page(sg));
807 }
808
809 gnttab_foreach_grant_in_range(sg_page(sg),
810 sg->offset,
811 sg->length,
812 blkif_setup_rw_req_grant,
813 &setup);
814
815 if (setup.need_copy)
816 kunmap_atomic(setup.bvec_data);
817 }
818 if (setup.segments)
819 kunmap_atomic(setup.segments);
820
821 /* Keep a private copy so we can reissue requests when recovering. */
822 rinfo->shadow[id].req = *ring_req;
823 if (unlikely(require_extra_req))
824 rinfo->shadow[extra_id].req = *extra_ring_req;
825
826 if (max_grefs > 0)
827 gnttab_free_grant_references(setup.gref_head);
828
829 return 0;
830 }
831
832 /*
833 * Generate a Xen blkfront IO request from a blk layer request. Reads
834 * and writes are handled as expected.
835 *
836 * @req: a request struct
837 */
838 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
839 {
840 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
841 return 1;
842
843 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
844 req->cmd_flags & REQ_SECURE))
845 return blkif_queue_discard_req(req, rinfo);
846 else
847 return blkif_queue_rw_req(req, rinfo);
848 }
849
850 static inline void flush_requests(struct blkfront_ring_info *rinfo)
851 {
852 int notify;
853
854 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
855
856 if (notify)
857 notify_remote_via_irq(rinfo->irq);
858 }
859
860 static inline bool blkif_request_flush_invalid(struct request *req,
861 struct blkfront_info *info)
862 {
863 return ((req->cmd_type != REQ_TYPE_FS) ||
864 ((req_op(req) == REQ_OP_FLUSH) &&
865 !info->feature_flush) ||
866 ((req->cmd_flags & REQ_FUA) &&
867 !info->feature_fua));
868 }
869
870 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
871 const struct blk_mq_queue_data *qd)
872 {
873 unsigned long flags;
874 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)hctx->driver_data;
875
876 blk_mq_start_request(qd->rq);
877 spin_lock_irqsave(&rinfo->ring_lock, flags);
878 if (RING_FULL(&rinfo->ring))
879 goto out_busy;
880
881 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
882 goto out_err;
883
884 if (blkif_queue_request(qd->rq, rinfo))
885 goto out_busy;
886
887 flush_requests(rinfo);
888 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
889 return BLK_MQ_RQ_QUEUE_OK;
890
891 out_err:
892 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
893 return BLK_MQ_RQ_QUEUE_ERROR;
894
895 out_busy:
896 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
897 blk_mq_stop_hw_queue(hctx);
898 return BLK_MQ_RQ_QUEUE_BUSY;
899 }
900
901 static int blk_mq_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
902 unsigned int index)
903 {
904 struct blkfront_info *info = (struct blkfront_info *)data;
905
906 BUG_ON(info->nr_rings <= index);
907 hctx->driver_data = &info->rinfo[index];
908 return 0;
909 }
910
911 static struct blk_mq_ops blkfront_mq_ops = {
912 .queue_rq = blkif_queue_rq,
913 .map_queue = blk_mq_map_queue,
914 .init_hctx = blk_mq_init_hctx,
915 };
916
917 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
918 unsigned int physical_sector_size,
919 unsigned int segments)
920 {
921 struct request_queue *rq;
922 struct blkfront_info *info = gd->private_data;
923
924 memset(&info->tag_set, 0, sizeof(info->tag_set));
925 info->tag_set.ops = &blkfront_mq_ops;
926 info->tag_set.nr_hw_queues = info->nr_rings;
927 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
928 /*
929 * When indirect descriptior is not supported, the I/O request
930 * will be split between multiple request in the ring.
931 * To avoid problems when sending the request, divide by
932 * 2 the depth of the queue.
933 */
934 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
935 } else
936 info->tag_set.queue_depth = BLK_RING_SIZE(info);
937 info->tag_set.numa_node = NUMA_NO_NODE;
938 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
939 info->tag_set.cmd_size = 0;
940 info->tag_set.driver_data = info;
941
942 if (blk_mq_alloc_tag_set(&info->tag_set))
943 return -EINVAL;
944 rq = blk_mq_init_queue(&info->tag_set);
945 if (IS_ERR(rq)) {
946 blk_mq_free_tag_set(&info->tag_set);
947 return PTR_ERR(rq);
948 }
949
950 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
951
952 if (info->feature_discard) {
953 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
954 blk_queue_max_discard_sectors(rq, get_capacity(gd));
955 rq->limits.discard_granularity = info->discard_granularity;
956 rq->limits.discard_alignment = info->discard_alignment;
957 if (info->feature_secdiscard)
958 queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq);
959 }
960
961 /* Hard sector size and max sectors impersonate the equiv. hardware. */
962 blk_queue_logical_block_size(rq, sector_size);
963 blk_queue_physical_block_size(rq, physical_sector_size);
964 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
965
966 /* Each segment in a request is up to an aligned page in size. */
967 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
968 blk_queue_max_segment_size(rq, PAGE_SIZE);
969
970 /* Ensure a merged request will fit in a single I/O ring slot. */
971 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
972
973 /* Make sure buffer addresses are sector-aligned. */
974 blk_queue_dma_alignment(rq, 511);
975
976 /* Make sure we don't use bounce buffers. */
977 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
978
979 gd->queue = rq;
980
981 return 0;
982 }
983
984 static const char *flush_info(struct blkfront_info *info)
985 {
986 if (info->feature_flush && info->feature_fua)
987 return "barrier: enabled;";
988 else if (info->feature_flush)
989 return "flush diskcache: enabled;";
990 else
991 return "barrier or flush: disabled;";
992 }
993
994 static void xlvbd_flush(struct blkfront_info *info)
995 {
996 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
997 info->feature_fua ? true : false);
998 pr_info("blkfront: %s: %s %s %s %s %s\n",
999 info->gd->disk_name, flush_info(info),
1000 "persistent grants:", info->feature_persistent ?
1001 "enabled;" : "disabled;", "indirect descriptors:",
1002 info->max_indirect_segments ? "enabled;" : "disabled;");
1003 }
1004
1005 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1006 {
1007 int major;
1008 major = BLKIF_MAJOR(vdevice);
1009 *minor = BLKIF_MINOR(vdevice);
1010 switch (major) {
1011 case XEN_IDE0_MAJOR:
1012 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1013 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1014 EMULATED_HD_DISK_MINOR_OFFSET;
1015 break;
1016 case XEN_IDE1_MAJOR:
1017 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1018 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1019 EMULATED_HD_DISK_MINOR_OFFSET;
1020 break;
1021 case XEN_SCSI_DISK0_MAJOR:
1022 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1023 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1024 break;
1025 case XEN_SCSI_DISK1_MAJOR:
1026 case XEN_SCSI_DISK2_MAJOR:
1027 case XEN_SCSI_DISK3_MAJOR:
1028 case XEN_SCSI_DISK4_MAJOR:
1029 case XEN_SCSI_DISK5_MAJOR:
1030 case XEN_SCSI_DISK6_MAJOR:
1031 case XEN_SCSI_DISK7_MAJOR:
1032 *offset = (*minor / PARTS_PER_DISK) +
1033 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1034 EMULATED_SD_DISK_NAME_OFFSET;
1035 *minor = *minor +
1036 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1037 EMULATED_SD_DISK_MINOR_OFFSET;
1038 break;
1039 case XEN_SCSI_DISK8_MAJOR:
1040 case XEN_SCSI_DISK9_MAJOR:
1041 case XEN_SCSI_DISK10_MAJOR:
1042 case XEN_SCSI_DISK11_MAJOR:
1043 case XEN_SCSI_DISK12_MAJOR:
1044 case XEN_SCSI_DISK13_MAJOR:
1045 case XEN_SCSI_DISK14_MAJOR:
1046 case XEN_SCSI_DISK15_MAJOR:
1047 *offset = (*minor / PARTS_PER_DISK) +
1048 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1049 EMULATED_SD_DISK_NAME_OFFSET;
1050 *minor = *minor +
1051 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1052 EMULATED_SD_DISK_MINOR_OFFSET;
1053 break;
1054 case XENVBD_MAJOR:
1055 *offset = *minor / PARTS_PER_DISK;
1056 break;
1057 default:
1058 printk(KERN_WARNING "blkfront: your disk configuration is "
1059 "incorrect, please use an xvd device instead\n");
1060 return -ENODEV;
1061 }
1062 return 0;
1063 }
1064
1065 static char *encode_disk_name(char *ptr, unsigned int n)
1066 {
1067 if (n >= 26)
1068 ptr = encode_disk_name(ptr, n / 26 - 1);
1069 *ptr = 'a' + n % 26;
1070 return ptr + 1;
1071 }
1072
1073 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1074 struct blkfront_info *info,
1075 u16 vdisk_info, u16 sector_size,
1076 unsigned int physical_sector_size)
1077 {
1078 struct gendisk *gd;
1079 int nr_minors = 1;
1080 int err;
1081 unsigned int offset;
1082 int minor;
1083 int nr_parts;
1084 char *ptr;
1085
1086 BUG_ON(info->gd != NULL);
1087 BUG_ON(info->rq != NULL);
1088
1089 if ((info->vdevice>>EXT_SHIFT) > 1) {
1090 /* this is above the extended range; something is wrong */
1091 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1092 return -ENODEV;
1093 }
1094
1095 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1096 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1097 if (err)
1098 return err;
1099 nr_parts = PARTS_PER_DISK;
1100 } else {
1101 minor = BLKIF_MINOR_EXT(info->vdevice);
1102 nr_parts = PARTS_PER_EXT_DISK;
1103 offset = minor / nr_parts;
1104 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1105 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1106 "emulated IDE disks,\n\t choose an xvd device name"
1107 "from xvde on\n", info->vdevice);
1108 }
1109 if (minor >> MINORBITS) {
1110 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1111 info->vdevice, minor);
1112 return -ENODEV;
1113 }
1114
1115 if ((minor % nr_parts) == 0)
1116 nr_minors = nr_parts;
1117
1118 err = xlbd_reserve_minors(minor, nr_minors);
1119 if (err)
1120 goto out;
1121 err = -ENODEV;
1122
1123 gd = alloc_disk(nr_minors);
1124 if (gd == NULL)
1125 goto release;
1126
1127 strcpy(gd->disk_name, DEV_NAME);
1128 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1129 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1130 if (nr_minors > 1)
1131 *ptr = 0;
1132 else
1133 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1134 "%d", minor & (nr_parts - 1));
1135
1136 gd->major = XENVBD_MAJOR;
1137 gd->first_minor = minor;
1138 gd->fops = &xlvbd_block_fops;
1139 gd->private_data = info;
1140 gd->driverfs_dev = &(info->xbdev->dev);
1141 set_capacity(gd, capacity);
1142
1143 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size,
1144 info->max_indirect_segments ? :
1145 BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
1146 del_gendisk(gd);
1147 goto release;
1148 }
1149
1150 info->rq = gd->queue;
1151 info->gd = gd;
1152
1153 xlvbd_flush(info);
1154
1155 if (vdisk_info & VDISK_READONLY)
1156 set_disk_ro(gd, 1);
1157
1158 if (vdisk_info & VDISK_REMOVABLE)
1159 gd->flags |= GENHD_FL_REMOVABLE;
1160
1161 if (vdisk_info & VDISK_CDROM)
1162 gd->flags |= GENHD_FL_CD;
1163
1164 return 0;
1165
1166 release:
1167 xlbd_release_minors(minor, nr_minors);
1168 out:
1169 return err;
1170 }
1171
1172 static void xlvbd_release_gendisk(struct blkfront_info *info)
1173 {
1174 unsigned int minor, nr_minors, i;
1175
1176 if (info->rq == NULL)
1177 return;
1178
1179 /* No more blkif_request(). */
1180 blk_mq_stop_hw_queues(info->rq);
1181
1182 for (i = 0; i < info->nr_rings; i++) {
1183 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1184
1185 /* No more gnttab callback work. */
1186 gnttab_cancel_free_callback(&rinfo->callback);
1187
1188 /* Flush gnttab callback work. Must be done with no locks held. */
1189 flush_work(&rinfo->work);
1190 }
1191
1192 del_gendisk(info->gd);
1193
1194 minor = info->gd->first_minor;
1195 nr_minors = info->gd->minors;
1196 xlbd_release_minors(minor, nr_minors);
1197
1198 blk_cleanup_queue(info->rq);
1199 blk_mq_free_tag_set(&info->tag_set);
1200 info->rq = NULL;
1201
1202 put_disk(info->gd);
1203 info->gd = NULL;
1204 }
1205
1206 /* Already hold rinfo->ring_lock. */
1207 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1208 {
1209 if (!RING_FULL(&rinfo->ring))
1210 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1211 }
1212
1213 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1214 {
1215 unsigned long flags;
1216
1217 spin_lock_irqsave(&rinfo->ring_lock, flags);
1218 kick_pending_request_queues_locked(rinfo);
1219 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1220 }
1221
1222 static void blkif_restart_queue(struct work_struct *work)
1223 {
1224 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1225
1226 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1227 kick_pending_request_queues(rinfo);
1228 }
1229
1230 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1231 {
1232 struct grant *persistent_gnt, *n;
1233 struct blkfront_info *info = rinfo->dev_info;
1234 int i, j, segs;
1235
1236 /*
1237 * Remove indirect pages, this only happens when using indirect
1238 * descriptors but not persistent grants
1239 */
1240 if (!list_empty(&rinfo->indirect_pages)) {
1241 struct page *indirect_page, *n;
1242
1243 BUG_ON(info->feature_persistent);
1244 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1245 list_del(&indirect_page->lru);
1246 __free_page(indirect_page);
1247 }
1248 }
1249
1250 /* Remove all persistent grants. */
1251 if (!list_empty(&rinfo->grants)) {
1252 list_for_each_entry_safe(persistent_gnt, n,
1253 &rinfo->grants, node) {
1254 list_del(&persistent_gnt->node);
1255 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1256 gnttab_end_foreign_access(persistent_gnt->gref,
1257 0, 0UL);
1258 rinfo->persistent_gnts_c--;
1259 }
1260 if (info->feature_persistent)
1261 __free_page(persistent_gnt->page);
1262 kfree(persistent_gnt);
1263 }
1264 }
1265 BUG_ON(rinfo->persistent_gnts_c != 0);
1266
1267 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1268 /*
1269 * Clear persistent grants present in requests already
1270 * on the shared ring
1271 */
1272 if (!rinfo->shadow[i].request)
1273 goto free_shadow;
1274
1275 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1276 rinfo->shadow[i].req.u.indirect.nr_segments :
1277 rinfo->shadow[i].req.u.rw.nr_segments;
1278 for (j = 0; j < segs; j++) {
1279 persistent_gnt = rinfo->shadow[i].grants_used[j];
1280 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1281 if (info->feature_persistent)
1282 __free_page(persistent_gnt->page);
1283 kfree(persistent_gnt);
1284 }
1285
1286 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1287 /*
1288 * If this is not an indirect operation don't try to
1289 * free indirect segments
1290 */
1291 goto free_shadow;
1292
1293 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1294 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1295 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1296 __free_page(persistent_gnt->page);
1297 kfree(persistent_gnt);
1298 }
1299
1300 free_shadow:
1301 kfree(rinfo->shadow[i].grants_used);
1302 rinfo->shadow[i].grants_used = NULL;
1303 kfree(rinfo->shadow[i].indirect_grants);
1304 rinfo->shadow[i].indirect_grants = NULL;
1305 kfree(rinfo->shadow[i].sg);
1306 rinfo->shadow[i].sg = NULL;
1307 }
1308
1309 /* No more gnttab callback work. */
1310 gnttab_cancel_free_callback(&rinfo->callback);
1311
1312 /* Flush gnttab callback work. Must be done with no locks held. */
1313 flush_work(&rinfo->work);
1314
1315 /* Free resources associated with old device channel. */
1316 for (i = 0; i < info->nr_ring_pages; i++) {
1317 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1318 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1319 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1320 }
1321 }
1322 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE));
1323 rinfo->ring.sring = NULL;
1324
1325 if (rinfo->irq)
1326 unbind_from_irqhandler(rinfo->irq, rinfo);
1327 rinfo->evtchn = rinfo->irq = 0;
1328 }
1329
1330 static void blkif_free(struct blkfront_info *info, int suspend)
1331 {
1332 unsigned int i;
1333
1334 /* Prevent new requests being issued until we fix things up. */
1335 info->connected = suspend ?
1336 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1337 /* No more blkif_request(). */
1338 if (info->rq)
1339 blk_mq_stop_hw_queues(info->rq);
1340
1341 for (i = 0; i < info->nr_rings; i++)
1342 blkif_free_ring(&info->rinfo[i]);
1343
1344 kfree(info->rinfo);
1345 info->rinfo = NULL;
1346 info->nr_rings = 0;
1347 }
1348
1349 struct copy_from_grant {
1350 const struct blk_shadow *s;
1351 unsigned int grant_idx;
1352 unsigned int bvec_offset;
1353 char *bvec_data;
1354 };
1355
1356 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1357 unsigned int len, void *data)
1358 {
1359 struct copy_from_grant *info = data;
1360 char *shared_data;
1361 /* Convenient aliases */
1362 const struct blk_shadow *s = info->s;
1363
1364 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1365
1366 memcpy(info->bvec_data + info->bvec_offset,
1367 shared_data + offset, len);
1368
1369 info->bvec_offset += len;
1370 info->grant_idx++;
1371
1372 kunmap_atomic(shared_data);
1373 }
1374
1375 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1376 {
1377 switch (rsp)
1378 {
1379 case BLKIF_RSP_OKAY:
1380 return REQ_DONE;
1381 case BLKIF_RSP_EOPNOTSUPP:
1382 return REQ_EOPNOTSUPP;
1383 case BLKIF_RSP_ERROR:
1384 /* Fallthrough. */
1385 default:
1386 return REQ_ERROR;
1387 }
1388 }
1389
1390 /*
1391 * Get the final status of the block request based on two ring response
1392 */
1393 static int blkif_get_final_status(enum blk_req_status s1,
1394 enum blk_req_status s2)
1395 {
1396 BUG_ON(s1 == REQ_WAITING);
1397 BUG_ON(s2 == REQ_WAITING);
1398
1399 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1400 return BLKIF_RSP_ERROR;
1401 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1402 return BLKIF_RSP_EOPNOTSUPP;
1403 return BLKIF_RSP_OKAY;
1404 }
1405
1406 static bool blkif_completion(unsigned long *id,
1407 struct blkfront_ring_info *rinfo,
1408 struct blkif_response *bret)
1409 {
1410 int i = 0;
1411 struct scatterlist *sg;
1412 int num_sg, num_grant;
1413 struct blkfront_info *info = rinfo->dev_info;
1414 struct blk_shadow *s = &rinfo->shadow[*id];
1415 struct copy_from_grant data = {
1416 .grant_idx = 0,
1417 };
1418
1419 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1420 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1421
1422 /* The I/O request may be split in two. */
1423 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1424 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1425
1426 /* Keep the status of the current response in shadow. */
1427 s->status = blkif_rsp_to_req_status(bret->status);
1428
1429 /* Wait the second response if not yet here. */
1430 if (s2->status == REQ_WAITING)
1431 return 0;
1432
1433 bret->status = blkif_get_final_status(s->status,
1434 s2->status);
1435
1436 /*
1437 * All the grants is stored in the first shadow in order
1438 * to make the completion code simpler.
1439 */
1440 num_grant += s2->req.u.rw.nr_segments;
1441
1442 /*
1443 * The two responses may not come in order. Only the
1444 * first request will store the scatter-gather list.
1445 */
1446 if (s2->num_sg != 0) {
1447 /* Update "id" with the ID of the first response. */
1448 *id = s->associated_id;
1449 s = s2;
1450 }
1451
1452 /*
1453 * We don't need anymore the second request, so recycling
1454 * it now.
1455 */
1456 if (add_id_to_freelist(rinfo, s->associated_id))
1457 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1458 info->gd->disk_name, s->associated_id);
1459 }
1460
1461 data.s = s;
1462 num_sg = s->num_sg;
1463
1464 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1465 for_each_sg(s->sg, sg, num_sg, i) {
1466 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1467
1468 data.bvec_offset = sg->offset;
1469 data.bvec_data = kmap_atomic(sg_page(sg));
1470
1471 gnttab_foreach_grant_in_range(sg_page(sg),
1472 sg->offset,
1473 sg->length,
1474 blkif_copy_from_grant,
1475 &data);
1476
1477 kunmap_atomic(data.bvec_data);
1478 }
1479 }
1480 /* Add the persistent grant into the list of free grants */
1481 for (i = 0; i < num_grant; i++) {
1482 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1483 /*
1484 * If the grant is still mapped by the backend (the
1485 * backend has chosen to make this grant persistent)
1486 * we add it at the head of the list, so it will be
1487 * reused first.
1488 */
1489 if (!info->feature_persistent)
1490 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1491 s->grants_used[i]->gref);
1492 list_add(&s->grants_used[i]->node, &rinfo->grants);
1493 rinfo->persistent_gnts_c++;
1494 } else {
1495 /*
1496 * If the grant is not mapped by the backend we end the
1497 * foreign access and add it to the tail of the list,
1498 * so it will not be picked again unless we run out of
1499 * persistent grants.
1500 */
1501 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1502 s->grants_used[i]->gref = GRANT_INVALID_REF;
1503 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1504 }
1505 }
1506 if (s->req.operation == BLKIF_OP_INDIRECT) {
1507 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1508 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1509 if (!info->feature_persistent)
1510 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1511 s->indirect_grants[i]->gref);
1512 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1513 rinfo->persistent_gnts_c++;
1514 } else {
1515 struct page *indirect_page;
1516
1517 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1518 /*
1519 * Add the used indirect page back to the list of
1520 * available pages for indirect grefs.
1521 */
1522 if (!info->feature_persistent) {
1523 indirect_page = s->indirect_grants[i]->page;
1524 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1525 }
1526 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1527 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1528 }
1529 }
1530 }
1531
1532 return 1;
1533 }
1534
1535 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1536 {
1537 struct request *req;
1538 struct blkif_response *bret;
1539 RING_IDX i, rp;
1540 unsigned long flags;
1541 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1542 struct blkfront_info *info = rinfo->dev_info;
1543 int error;
1544
1545 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1546 return IRQ_HANDLED;
1547
1548 spin_lock_irqsave(&rinfo->ring_lock, flags);
1549 again:
1550 rp = rinfo->ring.sring->rsp_prod;
1551 rmb(); /* Ensure we see queued responses up to 'rp'. */
1552
1553 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1554 unsigned long id;
1555
1556 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1557 id = bret->id;
1558 /*
1559 * The backend has messed up and given us an id that we would
1560 * never have given to it (we stamp it up to BLK_RING_SIZE -
1561 * look in get_id_from_freelist.
1562 */
1563 if (id >= BLK_RING_SIZE(info)) {
1564 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1565 info->gd->disk_name, op_name(bret->operation), id);
1566 /* We can't safely get the 'struct request' as
1567 * the id is busted. */
1568 continue;
1569 }
1570 req = rinfo->shadow[id].request;
1571
1572 if (bret->operation != BLKIF_OP_DISCARD) {
1573 /*
1574 * We may need to wait for an extra response if the
1575 * I/O request is split in 2
1576 */
1577 if (!blkif_completion(&id, rinfo, bret))
1578 continue;
1579 }
1580
1581 if (add_id_to_freelist(rinfo, id)) {
1582 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1583 info->gd->disk_name, op_name(bret->operation), id);
1584 continue;
1585 }
1586
1587 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1588 switch (bret->operation) {
1589 case BLKIF_OP_DISCARD:
1590 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1591 struct request_queue *rq = info->rq;
1592 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1593 info->gd->disk_name, op_name(bret->operation));
1594 error = -EOPNOTSUPP;
1595 info->feature_discard = 0;
1596 info->feature_secdiscard = 0;
1597 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1598 queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq);
1599 }
1600 blk_mq_complete_request(req, error);
1601 break;
1602 case BLKIF_OP_FLUSH_DISKCACHE:
1603 case BLKIF_OP_WRITE_BARRIER:
1604 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1605 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1606 info->gd->disk_name, op_name(bret->operation));
1607 error = -EOPNOTSUPP;
1608 }
1609 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1610 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1611 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1612 info->gd->disk_name, op_name(bret->operation));
1613 error = -EOPNOTSUPP;
1614 }
1615 if (unlikely(error)) {
1616 if (error == -EOPNOTSUPP)
1617 error = 0;
1618 info->feature_fua = 0;
1619 info->feature_flush = 0;
1620 xlvbd_flush(info);
1621 }
1622 /* fall through */
1623 case BLKIF_OP_READ:
1624 case BLKIF_OP_WRITE:
1625 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1626 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1627 "request: %x\n", bret->status);
1628
1629 blk_mq_complete_request(req, error);
1630 break;
1631 default:
1632 BUG();
1633 }
1634 }
1635
1636 rinfo->ring.rsp_cons = i;
1637
1638 if (i != rinfo->ring.req_prod_pvt) {
1639 int more_to_do;
1640 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1641 if (more_to_do)
1642 goto again;
1643 } else
1644 rinfo->ring.sring->rsp_event = i + 1;
1645
1646 kick_pending_request_queues_locked(rinfo);
1647
1648 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1649
1650 return IRQ_HANDLED;
1651 }
1652
1653
1654 static int setup_blkring(struct xenbus_device *dev,
1655 struct blkfront_ring_info *rinfo)
1656 {
1657 struct blkif_sring *sring;
1658 int err, i;
1659 struct blkfront_info *info = rinfo->dev_info;
1660 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1661 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1662
1663 for (i = 0; i < info->nr_ring_pages; i++)
1664 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1665
1666 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1667 get_order(ring_size));
1668 if (!sring) {
1669 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1670 return -ENOMEM;
1671 }
1672 SHARED_RING_INIT(sring);
1673 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1674
1675 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1676 if (err < 0) {
1677 free_pages((unsigned long)sring, get_order(ring_size));
1678 rinfo->ring.sring = NULL;
1679 goto fail;
1680 }
1681 for (i = 0; i < info->nr_ring_pages; i++)
1682 rinfo->ring_ref[i] = gref[i];
1683
1684 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1685 if (err)
1686 goto fail;
1687
1688 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1689 "blkif", rinfo);
1690 if (err <= 0) {
1691 xenbus_dev_fatal(dev, err,
1692 "bind_evtchn_to_irqhandler failed");
1693 goto fail;
1694 }
1695 rinfo->irq = err;
1696
1697 return 0;
1698 fail:
1699 blkif_free(info, 0);
1700 return err;
1701 }
1702
1703 /*
1704 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1705 * ring buffer may have multi pages depending on ->nr_ring_pages.
1706 */
1707 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1708 struct blkfront_ring_info *rinfo, const char *dir)
1709 {
1710 int err;
1711 unsigned int i;
1712 const char *message = NULL;
1713 struct blkfront_info *info = rinfo->dev_info;
1714
1715 if (info->nr_ring_pages == 1) {
1716 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1717 if (err) {
1718 message = "writing ring-ref";
1719 goto abort_transaction;
1720 }
1721 } else {
1722 for (i = 0; i < info->nr_ring_pages; i++) {
1723 char ring_ref_name[RINGREF_NAME_LEN];
1724
1725 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1726 err = xenbus_printf(xbt, dir, ring_ref_name,
1727 "%u", rinfo->ring_ref[i]);
1728 if (err) {
1729 message = "writing ring-ref";
1730 goto abort_transaction;
1731 }
1732 }
1733 }
1734
1735 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1736 if (err) {
1737 message = "writing event-channel";
1738 goto abort_transaction;
1739 }
1740
1741 return 0;
1742
1743 abort_transaction:
1744 xenbus_transaction_end(xbt, 1);
1745 if (message)
1746 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1747
1748 return err;
1749 }
1750
1751 /* Common code used when first setting up, and when resuming. */
1752 static int talk_to_blkback(struct xenbus_device *dev,
1753 struct blkfront_info *info)
1754 {
1755 const char *message = NULL;
1756 struct xenbus_transaction xbt;
1757 int err;
1758 unsigned int i, max_page_order = 0;
1759 unsigned int ring_page_order = 0;
1760
1761 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1762 "max-ring-page-order", "%u", &max_page_order);
1763 if (err != 1)
1764 info->nr_ring_pages = 1;
1765 else {
1766 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1767 info->nr_ring_pages = 1 << ring_page_order;
1768 }
1769
1770 for (i = 0; i < info->nr_rings; i++) {
1771 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1772
1773 /* Create shared ring, alloc event channel. */
1774 err = setup_blkring(dev, rinfo);
1775 if (err)
1776 goto destroy_blkring;
1777 }
1778
1779 again:
1780 err = xenbus_transaction_start(&xbt);
1781 if (err) {
1782 xenbus_dev_fatal(dev, err, "starting transaction");
1783 goto destroy_blkring;
1784 }
1785
1786 if (info->nr_ring_pages > 1) {
1787 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1788 ring_page_order);
1789 if (err) {
1790 message = "writing ring-page-order";
1791 goto abort_transaction;
1792 }
1793 }
1794
1795 /* We already got the number of queues/rings in _probe */
1796 if (info->nr_rings == 1) {
1797 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1798 if (err)
1799 goto destroy_blkring;
1800 } else {
1801 char *path;
1802 size_t pathsize;
1803
1804 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1805 info->nr_rings);
1806 if (err) {
1807 message = "writing multi-queue-num-queues";
1808 goto abort_transaction;
1809 }
1810
1811 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1812 path = kmalloc(pathsize, GFP_KERNEL);
1813 if (!path) {
1814 err = -ENOMEM;
1815 message = "ENOMEM while writing ring references";
1816 goto abort_transaction;
1817 }
1818
1819 for (i = 0; i < info->nr_rings; i++) {
1820 memset(path, 0, pathsize);
1821 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1822 err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1823 if (err) {
1824 kfree(path);
1825 goto destroy_blkring;
1826 }
1827 }
1828 kfree(path);
1829 }
1830 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1831 XEN_IO_PROTO_ABI_NATIVE);
1832 if (err) {
1833 message = "writing protocol";
1834 goto abort_transaction;
1835 }
1836 err = xenbus_printf(xbt, dev->nodename,
1837 "feature-persistent", "%u", 1);
1838 if (err)
1839 dev_warn(&dev->dev,
1840 "writing persistent grants feature to xenbus");
1841
1842 err = xenbus_transaction_end(xbt, 0);
1843 if (err) {
1844 if (err == -EAGAIN)
1845 goto again;
1846 xenbus_dev_fatal(dev, err, "completing transaction");
1847 goto destroy_blkring;
1848 }
1849
1850 for (i = 0; i < info->nr_rings; i++) {
1851 unsigned int j;
1852 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1853
1854 for (j = 0; j < BLK_RING_SIZE(info); j++)
1855 rinfo->shadow[j].req.u.rw.id = j + 1;
1856 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1857 }
1858 xenbus_switch_state(dev, XenbusStateInitialised);
1859
1860 return 0;
1861
1862 abort_transaction:
1863 xenbus_transaction_end(xbt, 1);
1864 if (message)
1865 xenbus_dev_fatal(dev, err, "%s", message);
1866 destroy_blkring:
1867 blkif_free(info, 0);
1868
1869 kfree(info);
1870 dev_set_drvdata(&dev->dev, NULL);
1871
1872 return err;
1873 }
1874
1875 static int negotiate_mq(struct blkfront_info *info)
1876 {
1877 unsigned int backend_max_queues = 0;
1878 int err;
1879 unsigned int i;
1880
1881 BUG_ON(info->nr_rings);
1882
1883 /* Check if backend supports multiple queues. */
1884 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1885 "multi-queue-max-queues", "%u", &backend_max_queues);
1886 if (err < 0)
1887 backend_max_queues = 1;
1888
1889 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1890 /* We need at least one ring. */
1891 if (!info->nr_rings)
1892 info->nr_rings = 1;
1893
1894 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1895 if (!info->rinfo) {
1896 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1897 return -ENOMEM;
1898 }
1899
1900 for (i = 0; i < info->nr_rings; i++) {
1901 struct blkfront_ring_info *rinfo;
1902
1903 rinfo = &info->rinfo[i];
1904 INIT_LIST_HEAD(&rinfo->indirect_pages);
1905 INIT_LIST_HEAD(&rinfo->grants);
1906 rinfo->dev_info = info;
1907 INIT_WORK(&rinfo->work, blkif_restart_queue);
1908 spin_lock_init(&rinfo->ring_lock);
1909 }
1910 return 0;
1911 }
1912 /**
1913 * Entry point to this code when a new device is created. Allocate the basic
1914 * structures and the ring buffer for communication with the backend, and
1915 * inform the backend of the appropriate details for those. Switch to
1916 * Initialised state.
1917 */
1918 static int blkfront_probe(struct xenbus_device *dev,
1919 const struct xenbus_device_id *id)
1920 {
1921 int err, vdevice;
1922 struct blkfront_info *info;
1923
1924 /* FIXME: Use dynamic device id if this is not set. */
1925 err = xenbus_scanf(XBT_NIL, dev->nodename,
1926 "virtual-device", "%i", &vdevice);
1927 if (err != 1) {
1928 /* go looking in the extended area instead */
1929 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1930 "%i", &vdevice);
1931 if (err != 1) {
1932 xenbus_dev_fatal(dev, err, "reading virtual-device");
1933 return err;
1934 }
1935 }
1936
1937 if (xen_hvm_domain()) {
1938 char *type;
1939 int len;
1940 /* no unplug has been done: do not hook devices != xen vbds */
1941 if (xen_has_pv_and_legacy_disk_devices()) {
1942 int major;
1943
1944 if (!VDEV_IS_EXTENDED(vdevice))
1945 major = BLKIF_MAJOR(vdevice);
1946 else
1947 major = XENVBD_MAJOR;
1948
1949 if (major != XENVBD_MAJOR) {
1950 printk(KERN_INFO
1951 "%s: HVM does not support vbd %d as xen block device\n",
1952 __func__, vdevice);
1953 return -ENODEV;
1954 }
1955 }
1956 /* do not create a PV cdrom device if we are an HVM guest */
1957 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1958 if (IS_ERR(type))
1959 return -ENODEV;
1960 if (strncmp(type, "cdrom", 5) == 0) {
1961 kfree(type);
1962 return -ENODEV;
1963 }
1964 kfree(type);
1965 }
1966 info = kzalloc(sizeof(*info), GFP_KERNEL);
1967 if (!info) {
1968 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1969 return -ENOMEM;
1970 }
1971
1972 info->xbdev = dev;
1973 err = negotiate_mq(info);
1974 if (err) {
1975 kfree(info);
1976 return err;
1977 }
1978
1979 mutex_init(&info->mutex);
1980 info->vdevice = vdevice;
1981 info->connected = BLKIF_STATE_DISCONNECTED;
1982
1983 /* Front end dir is a number, which is used as the id. */
1984 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1985 dev_set_drvdata(&dev->dev, info);
1986
1987 return 0;
1988 }
1989
1990 static void split_bio_end(struct bio *bio)
1991 {
1992 struct split_bio *split_bio = bio->bi_private;
1993
1994 if (atomic_dec_and_test(&split_bio->pending)) {
1995 split_bio->bio->bi_phys_segments = 0;
1996 split_bio->bio->bi_error = bio->bi_error;
1997 bio_endio(split_bio->bio);
1998 kfree(split_bio);
1999 }
2000 bio_put(bio);
2001 }
2002
2003 static int blkif_recover(struct blkfront_info *info)
2004 {
2005 unsigned int i, r_index;
2006 struct request *req, *n;
2007 struct blk_shadow *copy;
2008 int rc;
2009 struct bio *bio, *cloned_bio;
2010 struct bio_list bio_list, merge_bio;
2011 unsigned int segs, offset;
2012 int pending, size;
2013 struct split_bio *split_bio;
2014 struct list_head requests;
2015
2016 blkfront_gather_backend_features(info);
2017 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2018 blk_queue_max_segments(info->rq, segs);
2019 bio_list_init(&bio_list);
2020 INIT_LIST_HEAD(&requests);
2021
2022 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2023 struct blkfront_ring_info *rinfo;
2024
2025 rinfo = &info->rinfo[r_index];
2026 /* Stage 1: Make a safe copy of the shadow state. */
2027 copy = kmemdup(rinfo->shadow, sizeof(rinfo->shadow),
2028 GFP_NOIO | __GFP_REPEAT | __GFP_HIGH);
2029 if (!copy)
2030 return -ENOMEM;
2031
2032 /* Stage 2: Set up free list. */
2033 memset(&rinfo->shadow, 0, sizeof(rinfo->shadow));
2034 for (i = 0; i < BLK_RING_SIZE(info); i++)
2035 rinfo->shadow[i].req.u.rw.id = i+1;
2036 rinfo->shadow_free = rinfo->ring.req_prod_pvt;
2037 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
2038
2039 rc = blkfront_setup_indirect(rinfo);
2040 if (rc) {
2041 kfree(copy);
2042 return rc;
2043 }
2044
2045 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2046 /* Not in use? */
2047 if (!copy[i].request)
2048 continue;
2049
2050 /*
2051 * Get the bios in the request so we can re-queue them.
2052 */
2053 if (req_op(copy[i].request) == REQ_OP_FLUSH ||
2054 req_op(copy[i].request) == REQ_OP_DISCARD ||
2055 copy[i].request->cmd_flags & (REQ_FUA | REQ_SECURE)) {
2056 /*
2057 * Flush operations don't contain bios, so
2058 * we need to requeue the whole request
2059 */
2060 list_add(&copy[i].request->queuelist, &requests);
2061 continue;
2062 }
2063 merge_bio.head = copy[i].request->bio;
2064 merge_bio.tail = copy[i].request->biotail;
2065 bio_list_merge(&bio_list, &merge_bio);
2066 copy[i].request->bio = NULL;
2067 blk_end_request_all(copy[i].request, 0);
2068 }
2069
2070 kfree(copy);
2071 }
2072 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2073
2074 /* Now safe for us to use the shared ring */
2075 info->connected = BLKIF_STATE_CONNECTED;
2076
2077 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2078 struct blkfront_ring_info *rinfo;
2079
2080 rinfo = &info->rinfo[r_index];
2081 /* Kick any other new requests queued since we resumed */
2082 kick_pending_request_queues(rinfo);
2083 }
2084
2085 list_for_each_entry_safe(req, n, &requests, queuelist) {
2086 /* Requeue pending requests (flush or discard) */
2087 list_del_init(&req->queuelist);
2088 BUG_ON(req->nr_phys_segments > segs);
2089 blk_mq_requeue_request(req);
2090 }
2091 blk_mq_kick_requeue_list(info->rq);
2092
2093 while ((bio = bio_list_pop(&bio_list)) != NULL) {
2094 /* Traverse the list of pending bios and re-queue them */
2095 if (bio_segments(bio) > segs) {
2096 /*
2097 * This bio has more segments than what we can
2098 * handle, we have to split it.
2099 */
2100 pending = (bio_segments(bio) + segs - 1) / segs;
2101 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2102 BUG_ON(split_bio == NULL);
2103 atomic_set(&split_bio->pending, pending);
2104 split_bio->bio = bio;
2105 for (i = 0; i < pending; i++) {
2106 offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2107 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2108 (unsigned int)bio_sectors(bio) - offset);
2109 cloned_bio = bio_clone(bio, GFP_NOIO);
2110 BUG_ON(cloned_bio == NULL);
2111 bio_trim(cloned_bio, offset, size);
2112 cloned_bio->bi_private = split_bio;
2113 cloned_bio->bi_end_io = split_bio_end;
2114 submit_bio(cloned_bio);
2115 }
2116 /*
2117 * Now we have to wait for all those smaller bios to
2118 * end, so we can also end the "parent" bio.
2119 */
2120 continue;
2121 }
2122 /* We don't need to split this bio */
2123 submit_bio(bio);
2124 }
2125
2126 return 0;
2127 }
2128
2129 /**
2130 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2131 * driver restart. We tear down our blkif structure and recreate it, but
2132 * leave the device-layer structures intact so that this is transparent to the
2133 * rest of the kernel.
2134 */
2135 static int blkfront_resume(struct xenbus_device *dev)
2136 {
2137 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2138 int err = 0;
2139
2140 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2141
2142 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2143
2144 err = negotiate_mq(info);
2145 if (err)
2146 return err;
2147
2148 err = talk_to_blkback(dev, info);
2149
2150 /*
2151 * We have to wait for the backend to switch to
2152 * connected state, since we want to read which
2153 * features it supports.
2154 */
2155
2156 return err;
2157 }
2158
2159 static void blkfront_closing(struct blkfront_info *info)
2160 {
2161 struct xenbus_device *xbdev = info->xbdev;
2162 struct block_device *bdev = NULL;
2163
2164 mutex_lock(&info->mutex);
2165
2166 if (xbdev->state == XenbusStateClosing) {
2167 mutex_unlock(&info->mutex);
2168 return;
2169 }
2170
2171 if (info->gd)
2172 bdev = bdget_disk(info->gd, 0);
2173
2174 mutex_unlock(&info->mutex);
2175
2176 if (!bdev) {
2177 xenbus_frontend_closed(xbdev);
2178 return;
2179 }
2180
2181 mutex_lock(&bdev->bd_mutex);
2182
2183 if (bdev->bd_openers) {
2184 xenbus_dev_error(xbdev, -EBUSY,
2185 "Device in use; refusing to close");
2186 xenbus_switch_state(xbdev, XenbusStateClosing);
2187 } else {
2188 xlvbd_release_gendisk(info);
2189 xenbus_frontend_closed(xbdev);
2190 }
2191
2192 mutex_unlock(&bdev->bd_mutex);
2193 bdput(bdev);
2194 }
2195
2196 static void blkfront_setup_discard(struct blkfront_info *info)
2197 {
2198 int err;
2199 unsigned int discard_granularity;
2200 unsigned int discard_alignment;
2201 unsigned int discard_secure;
2202
2203 info->feature_discard = 1;
2204 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2205 "discard-granularity", "%u", &discard_granularity,
2206 "discard-alignment", "%u", &discard_alignment,
2207 NULL);
2208 if (!err) {
2209 info->discard_granularity = discard_granularity;
2210 info->discard_alignment = discard_alignment;
2211 }
2212 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2213 "discard-secure", "%d", &discard_secure,
2214 NULL);
2215 if (!err)
2216 info->feature_secdiscard = !!discard_secure;
2217 }
2218
2219 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2220 {
2221 unsigned int psegs, grants;
2222 int err, i;
2223 struct blkfront_info *info = rinfo->dev_info;
2224
2225 if (info->max_indirect_segments == 0) {
2226 if (!HAS_EXTRA_REQ)
2227 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2228 else {
2229 /*
2230 * When an extra req is required, the maximum
2231 * grants supported is related to the size of the
2232 * Linux block segment.
2233 */
2234 grants = GRANTS_PER_PSEG;
2235 }
2236 }
2237 else
2238 grants = info->max_indirect_segments;
2239 psegs = grants / GRANTS_PER_PSEG;
2240
2241 err = fill_grant_buffer(rinfo,
2242 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2243 if (err)
2244 goto out_of_memory;
2245
2246 if (!info->feature_persistent && info->max_indirect_segments) {
2247 /*
2248 * We are using indirect descriptors but not persistent
2249 * grants, we need to allocate a set of pages that can be
2250 * used for mapping indirect grefs
2251 */
2252 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2253
2254 BUG_ON(!list_empty(&rinfo->indirect_pages));
2255 for (i = 0; i < num; i++) {
2256 struct page *indirect_page = alloc_page(GFP_NOIO);
2257 if (!indirect_page)
2258 goto out_of_memory;
2259 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2260 }
2261 }
2262
2263 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2264 rinfo->shadow[i].grants_used = kzalloc(
2265 sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2266 GFP_NOIO);
2267 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2268 if (info->max_indirect_segments)
2269 rinfo->shadow[i].indirect_grants = kzalloc(
2270 sizeof(rinfo->shadow[i].indirect_grants[0]) *
2271 INDIRECT_GREFS(grants),
2272 GFP_NOIO);
2273 if ((rinfo->shadow[i].grants_used == NULL) ||
2274 (rinfo->shadow[i].sg == NULL) ||
2275 (info->max_indirect_segments &&
2276 (rinfo->shadow[i].indirect_grants == NULL)))
2277 goto out_of_memory;
2278 sg_init_table(rinfo->shadow[i].sg, psegs);
2279 }
2280
2281
2282 return 0;
2283
2284 out_of_memory:
2285 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2286 kfree(rinfo->shadow[i].grants_used);
2287 rinfo->shadow[i].grants_used = NULL;
2288 kfree(rinfo->shadow[i].sg);
2289 rinfo->shadow[i].sg = NULL;
2290 kfree(rinfo->shadow[i].indirect_grants);
2291 rinfo->shadow[i].indirect_grants = NULL;
2292 }
2293 if (!list_empty(&rinfo->indirect_pages)) {
2294 struct page *indirect_page, *n;
2295 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2296 list_del(&indirect_page->lru);
2297 __free_page(indirect_page);
2298 }
2299 }
2300 return -ENOMEM;
2301 }
2302
2303 /*
2304 * Gather all backend feature-*
2305 */
2306 static void blkfront_gather_backend_features(struct blkfront_info *info)
2307 {
2308 int err;
2309 int barrier, flush, discard, persistent;
2310 unsigned int indirect_segments;
2311
2312 info->feature_flush = 0;
2313 info->feature_fua = 0;
2314
2315 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2316 "feature-barrier", "%d", &barrier,
2317 NULL);
2318
2319 /*
2320 * If there's no "feature-barrier" defined, then it means
2321 * we're dealing with a very old backend which writes
2322 * synchronously; nothing to do.
2323 *
2324 * If there are barriers, then we use flush.
2325 */
2326 if (!err && barrier) {
2327 info->feature_flush = 1;
2328 info->feature_fua = 1;
2329 }
2330
2331 /*
2332 * And if there is "feature-flush-cache" use that above
2333 * barriers.
2334 */
2335 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2336 "feature-flush-cache", "%d", &flush,
2337 NULL);
2338
2339 if (!err && flush) {
2340 info->feature_flush = 1;
2341 info->feature_fua = 0;
2342 }
2343
2344 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2345 "feature-discard", "%d", &discard,
2346 NULL);
2347
2348 if (!err && discard)
2349 blkfront_setup_discard(info);
2350
2351 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2352 "feature-persistent", "%u", &persistent,
2353 NULL);
2354 if (err)
2355 info->feature_persistent = 0;
2356 else
2357 info->feature_persistent = persistent;
2358
2359 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2360 "feature-max-indirect-segments", "%u", &indirect_segments,
2361 NULL);
2362 if (err)
2363 info->max_indirect_segments = 0;
2364 else
2365 info->max_indirect_segments = min(indirect_segments,
2366 xen_blkif_max_segments);
2367 }
2368
2369 /*
2370 * Invoked when the backend is finally 'ready' (and has told produced
2371 * the details about the physical device - #sectors, size, etc).
2372 */
2373 static void blkfront_connect(struct blkfront_info *info)
2374 {
2375 unsigned long long sectors;
2376 unsigned long sector_size;
2377 unsigned int physical_sector_size;
2378 unsigned int binfo;
2379 int err, i;
2380
2381 switch (info->connected) {
2382 case BLKIF_STATE_CONNECTED:
2383 /*
2384 * Potentially, the back-end may be signalling
2385 * a capacity change; update the capacity.
2386 */
2387 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2388 "sectors", "%Lu", &sectors);
2389 if (XENBUS_EXIST_ERR(err))
2390 return;
2391 printk(KERN_INFO "Setting capacity to %Lu\n",
2392 sectors);
2393 set_capacity(info->gd, sectors);
2394 revalidate_disk(info->gd);
2395
2396 return;
2397 case BLKIF_STATE_SUSPENDED:
2398 /*
2399 * If we are recovering from suspension, we need to wait
2400 * for the backend to announce it's features before
2401 * reconnecting, at least we need to know if the backend
2402 * supports indirect descriptors, and how many.
2403 */
2404 blkif_recover(info);
2405 return;
2406
2407 default:
2408 break;
2409 }
2410
2411 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2412 __func__, info->xbdev->otherend);
2413
2414 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2415 "sectors", "%llu", &sectors,
2416 "info", "%u", &binfo,
2417 "sector-size", "%lu", &sector_size,
2418 NULL);
2419 if (err) {
2420 xenbus_dev_fatal(info->xbdev, err,
2421 "reading backend fields at %s",
2422 info->xbdev->otherend);
2423 return;
2424 }
2425
2426 /*
2427 * physcial-sector-size is a newer field, so old backends may not
2428 * provide this. Assume physical sector size to be the same as
2429 * sector_size in that case.
2430 */
2431 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2432 "physical-sector-size", "%u", &physical_sector_size);
2433 if (err != 1)
2434 physical_sector_size = sector_size;
2435
2436 blkfront_gather_backend_features(info);
2437 for (i = 0; i < info->nr_rings; i++) {
2438 err = blkfront_setup_indirect(&info->rinfo[i]);
2439 if (err) {
2440 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2441 info->xbdev->otherend);
2442 blkif_free(info, 0);
2443 break;
2444 }
2445 }
2446
2447 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2448 physical_sector_size);
2449 if (err) {
2450 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2451 info->xbdev->otherend);
2452 return;
2453 }
2454
2455 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2456
2457 /* Kick pending requests. */
2458 info->connected = BLKIF_STATE_CONNECTED;
2459 for (i = 0; i < info->nr_rings; i++)
2460 kick_pending_request_queues(&info->rinfo[i]);
2461
2462 add_disk(info->gd);
2463
2464 info->is_ready = 1;
2465 }
2466
2467 /**
2468 * Callback received when the backend's state changes.
2469 */
2470 static void blkback_changed(struct xenbus_device *dev,
2471 enum xenbus_state backend_state)
2472 {
2473 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2474
2475 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2476
2477 switch (backend_state) {
2478 case XenbusStateInitWait:
2479 if (dev->state != XenbusStateInitialising)
2480 break;
2481 if (talk_to_blkback(dev, info))
2482 break;
2483 case XenbusStateInitialising:
2484 case XenbusStateInitialised:
2485 case XenbusStateReconfiguring:
2486 case XenbusStateReconfigured:
2487 case XenbusStateUnknown:
2488 break;
2489
2490 case XenbusStateConnected:
2491 if (dev->state != XenbusStateInitialised) {
2492 if (talk_to_blkback(dev, info))
2493 break;
2494 }
2495 blkfront_connect(info);
2496 break;
2497
2498 case XenbusStateClosed:
2499 if (dev->state == XenbusStateClosed)
2500 break;
2501 /* Missed the backend's Closing state -- fallthrough */
2502 case XenbusStateClosing:
2503 if (info)
2504 blkfront_closing(info);
2505 break;
2506 }
2507 }
2508
2509 static int blkfront_remove(struct xenbus_device *xbdev)
2510 {
2511 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2512 struct block_device *bdev = NULL;
2513 struct gendisk *disk;
2514
2515 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2516
2517 blkif_free(info, 0);
2518
2519 mutex_lock(&info->mutex);
2520
2521 disk = info->gd;
2522 if (disk)
2523 bdev = bdget_disk(disk, 0);
2524
2525 info->xbdev = NULL;
2526 mutex_unlock(&info->mutex);
2527
2528 if (!bdev) {
2529 kfree(info);
2530 return 0;
2531 }
2532
2533 /*
2534 * The xbdev was removed before we reached the Closed
2535 * state. See if it's safe to remove the disk. If the bdev
2536 * isn't closed yet, we let release take care of it.
2537 */
2538
2539 mutex_lock(&bdev->bd_mutex);
2540 info = disk->private_data;
2541
2542 dev_warn(disk_to_dev(disk),
2543 "%s was hot-unplugged, %d stale handles\n",
2544 xbdev->nodename, bdev->bd_openers);
2545
2546 if (info && !bdev->bd_openers) {
2547 xlvbd_release_gendisk(info);
2548 disk->private_data = NULL;
2549 kfree(info);
2550 }
2551
2552 mutex_unlock(&bdev->bd_mutex);
2553 bdput(bdev);
2554
2555 return 0;
2556 }
2557
2558 static int blkfront_is_ready(struct xenbus_device *dev)
2559 {
2560 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2561
2562 return info->is_ready && info->xbdev;
2563 }
2564
2565 static int blkif_open(struct block_device *bdev, fmode_t mode)
2566 {
2567 struct gendisk *disk = bdev->bd_disk;
2568 struct blkfront_info *info;
2569 int err = 0;
2570
2571 mutex_lock(&blkfront_mutex);
2572
2573 info = disk->private_data;
2574 if (!info) {
2575 /* xbdev gone */
2576 err = -ERESTARTSYS;
2577 goto out;
2578 }
2579
2580 mutex_lock(&info->mutex);
2581
2582 if (!info->gd)
2583 /* xbdev is closed */
2584 err = -ERESTARTSYS;
2585
2586 mutex_unlock(&info->mutex);
2587
2588 out:
2589 mutex_unlock(&blkfront_mutex);
2590 return err;
2591 }
2592
2593 static void blkif_release(struct gendisk *disk, fmode_t mode)
2594 {
2595 struct blkfront_info *info = disk->private_data;
2596 struct block_device *bdev;
2597 struct xenbus_device *xbdev;
2598
2599 mutex_lock(&blkfront_mutex);
2600
2601 bdev = bdget_disk(disk, 0);
2602
2603 if (!bdev) {
2604 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2605 goto out_mutex;
2606 }
2607 if (bdev->bd_openers)
2608 goto out;
2609
2610 /*
2611 * Check if we have been instructed to close. We will have
2612 * deferred this request, because the bdev was still open.
2613 */
2614
2615 mutex_lock(&info->mutex);
2616 xbdev = info->xbdev;
2617
2618 if (xbdev && xbdev->state == XenbusStateClosing) {
2619 /* pending switch to state closed */
2620 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2621 xlvbd_release_gendisk(info);
2622 xenbus_frontend_closed(info->xbdev);
2623 }
2624
2625 mutex_unlock(&info->mutex);
2626
2627 if (!xbdev) {
2628 /* sudden device removal */
2629 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2630 xlvbd_release_gendisk(info);
2631 disk->private_data = NULL;
2632 kfree(info);
2633 }
2634
2635 out:
2636 bdput(bdev);
2637 out_mutex:
2638 mutex_unlock(&blkfront_mutex);
2639 }
2640
2641 static const struct block_device_operations xlvbd_block_fops =
2642 {
2643 .owner = THIS_MODULE,
2644 .open = blkif_open,
2645 .release = blkif_release,
2646 .getgeo = blkif_getgeo,
2647 .ioctl = blkif_ioctl,
2648 };
2649
2650
2651 static const struct xenbus_device_id blkfront_ids[] = {
2652 { "vbd" },
2653 { "" }
2654 };
2655
2656 static struct xenbus_driver blkfront_driver = {
2657 .ids = blkfront_ids,
2658 .probe = blkfront_probe,
2659 .remove = blkfront_remove,
2660 .resume = blkfront_resume,
2661 .otherend_changed = blkback_changed,
2662 .is_ready = blkfront_is_ready,
2663 };
2664
2665 static int __init xlblk_init(void)
2666 {
2667 int ret;
2668 int nr_cpus = num_online_cpus();
2669
2670 if (!xen_domain())
2671 return -ENODEV;
2672
2673 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2674 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2675 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2676 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2677 }
2678
2679 if (xen_blkif_max_queues > nr_cpus) {
2680 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2681 xen_blkif_max_queues, nr_cpus);
2682 xen_blkif_max_queues = nr_cpus;
2683 }
2684
2685 if (!xen_has_pv_disk_devices())
2686 return -ENODEV;
2687
2688 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2689 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2690 XENVBD_MAJOR, DEV_NAME);
2691 return -ENODEV;
2692 }
2693
2694 ret = xenbus_register_frontend(&blkfront_driver);
2695 if (ret) {
2696 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2697 return ret;
2698 }
2699
2700 return 0;
2701 }
2702 module_init(xlblk_init);
2703
2704
2705 static void __exit xlblk_exit(void)
2706 {
2707 xenbus_unregister_driver(&blkfront_driver);
2708 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2709 kfree(minors);
2710 }
2711 module_exit(xlblk_exit);
2712
2713 MODULE_DESCRIPTION("Xen virtual block device frontend");
2714 MODULE_LICENSE("GPL");
2715 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2716 MODULE_ALIAS("xen:vbd");
2717 MODULE_ALIAS("xenblk");