]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/xen-blkfront.c
block/fs/drivers: remove rw argument from submit_bio
[mirror_ubuntu-artful-kernel.git] / drivers / block / xen-blkfront.c
1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60
61 #include <asm/xen/hypervisor.h>
62
63 /*
64 * The minimal size of segment supported by the block framework is PAGE_SIZE.
65 * When Linux is using a different page size than Xen, it may not be possible
66 * to put all the data in a single segment.
67 * This can happen when the backend doesn't support indirect descriptor and
68 * therefore the maximum amount of data that a request can carry is
69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70 *
71 * Note that we only support one extra request. So the Linux page size
72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73 * 88KB.
74 */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76
77 enum blkif_state {
78 BLKIF_STATE_DISCONNECTED,
79 BLKIF_STATE_CONNECTED,
80 BLKIF_STATE_SUSPENDED,
81 };
82
83 struct grant {
84 grant_ref_t gref;
85 struct page *page;
86 struct list_head node;
87 };
88
89 enum blk_req_status {
90 REQ_WAITING,
91 REQ_DONE,
92 REQ_ERROR,
93 REQ_EOPNOTSUPP,
94 };
95
96 struct blk_shadow {
97 struct blkif_request req;
98 struct request *request;
99 struct grant **grants_used;
100 struct grant **indirect_grants;
101 struct scatterlist *sg;
102 unsigned int num_sg;
103 enum blk_req_status status;
104
105 #define NO_ASSOCIATED_ID ~0UL
106 /*
107 * Id of the sibling if we ever need 2 requests when handling a
108 * block I/O request
109 */
110 unsigned long associated_id;
111 };
112
113 struct split_bio {
114 struct bio *bio;
115 atomic_t pending;
116 };
117
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120
121 /*
122 * Maximum number of segments in indirect requests, the actual value used by
123 * the frontend driver is the minimum of this value and the value provided
124 * by the backend driver.
125 */
126
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 "Maximum amount of segments in indirect requests (default is 32)");
132
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136
137 /*
138 * Maximum order of pages to be used for the shared ring between front and
139 * backend, 4KB page granularity is used.
140 */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144
145 #define BLK_RING_SIZE(info) \
146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147
148 #define BLK_MAX_RING_SIZE \
149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150
151 /*
152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153 * characters are enough. Define to 20 to keep consistent with backend.
154 */
155 #define RINGREF_NAME_LEN (20)
156 /*
157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158 */
159 #define QUEUE_NAME_LEN (17)
160
161 /*
162 * Per-ring info.
163 * Every blkfront device can associate with one or more blkfront_ring_info,
164 * depending on how many hardware queues/rings to be used.
165 */
166 struct blkfront_ring_info {
167 /* Lock to protect data in every ring buffer. */
168 spinlock_t ring_lock;
169 struct blkif_front_ring ring;
170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 unsigned int evtchn, irq;
172 struct work_struct work;
173 struct gnttab_free_callback callback;
174 struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 struct list_head indirect_pages;
176 struct list_head grants;
177 unsigned int persistent_gnts_c;
178 unsigned long shadow_free;
179 struct blkfront_info *dev_info;
180 };
181
182 /*
183 * We have one of these per vbd, whether ide, scsi or 'other'. They
184 * hang in private_data off the gendisk structure. We may end up
185 * putting all kinds of interesting stuff here :-)
186 */
187 struct blkfront_info
188 {
189 struct mutex mutex;
190 struct xenbus_device *xbdev;
191 struct gendisk *gd;
192 int vdevice;
193 blkif_vdev_t handle;
194 enum blkif_state connected;
195 /* Number of pages per ring buffer. */
196 unsigned int nr_ring_pages;
197 struct request_queue *rq;
198 unsigned int feature_flush;
199 unsigned int feature_discard:1;
200 unsigned int feature_secdiscard:1;
201 unsigned int discard_granularity;
202 unsigned int discard_alignment;
203 unsigned int feature_persistent:1;
204 /* Number of 4KB segments handled */
205 unsigned int max_indirect_segments;
206 int is_ready;
207 struct blk_mq_tag_set tag_set;
208 struct blkfront_ring_info *rinfo;
209 unsigned int nr_rings;
210 };
211
212 static unsigned int nr_minors;
213 static unsigned long *minors;
214 static DEFINE_SPINLOCK(minor_lock);
215
216 #define GRANT_INVALID_REF 0
217
218 #define PARTS_PER_DISK 16
219 #define PARTS_PER_EXT_DISK 256
220
221 #define BLKIF_MAJOR(dev) ((dev)>>8)
222 #define BLKIF_MINOR(dev) ((dev) & 0xff)
223
224 #define EXT_SHIFT 28
225 #define EXTENDED (1<<EXT_SHIFT)
226 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
227 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
228 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
229 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
230 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
231 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
232
233 #define DEV_NAME "xvd" /* name in /dev */
234
235 /*
236 * Grants are always the same size as a Xen page (i.e 4KB).
237 * A physical segment is always the same size as a Linux page.
238 * Number of grants per physical segment
239 */
240 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
241
242 #define GRANTS_PER_INDIRECT_FRAME \
243 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
244
245 #define PSEGS_PER_INDIRECT_FRAME \
246 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
247
248 #define INDIRECT_GREFS(_grants) \
249 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
250
251 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG)
252
253 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
254 static void blkfront_gather_backend_features(struct blkfront_info *info);
255
256 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
257 {
258 unsigned long free = rinfo->shadow_free;
259
260 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
261 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
262 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
263 return free;
264 }
265
266 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
267 unsigned long id)
268 {
269 if (rinfo->shadow[id].req.u.rw.id != id)
270 return -EINVAL;
271 if (rinfo->shadow[id].request == NULL)
272 return -EINVAL;
273 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
274 rinfo->shadow[id].request = NULL;
275 rinfo->shadow_free = id;
276 return 0;
277 }
278
279 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
280 {
281 struct blkfront_info *info = rinfo->dev_info;
282 struct page *granted_page;
283 struct grant *gnt_list_entry, *n;
284 int i = 0;
285
286 while (i < num) {
287 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
288 if (!gnt_list_entry)
289 goto out_of_memory;
290
291 if (info->feature_persistent) {
292 granted_page = alloc_page(GFP_NOIO);
293 if (!granted_page) {
294 kfree(gnt_list_entry);
295 goto out_of_memory;
296 }
297 gnt_list_entry->page = granted_page;
298 }
299
300 gnt_list_entry->gref = GRANT_INVALID_REF;
301 list_add(&gnt_list_entry->node, &rinfo->grants);
302 i++;
303 }
304
305 return 0;
306
307 out_of_memory:
308 list_for_each_entry_safe(gnt_list_entry, n,
309 &rinfo->grants, node) {
310 list_del(&gnt_list_entry->node);
311 if (info->feature_persistent)
312 __free_page(gnt_list_entry->page);
313 kfree(gnt_list_entry);
314 i--;
315 }
316 BUG_ON(i != 0);
317 return -ENOMEM;
318 }
319
320 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
321 {
322 struct grant *gnt_list_entry;
323
324 BUG_ON(list_empty(&rinfo->grants));
325 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
326 node);
327 list_del(&gnt_list_entry->node);
328
329 if (gnt_list_entry->gref != GRANT_INVALID_REF)
330 rinfo->persistent_gnts_c--;
331
332 return gnt_list_entry;
333 }
334
335 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
336 const struct blkfront_info *info)
337 {
338 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
339 info->xbdev->otherend_id,
340 gnt_list_entry->page,
341 0);
342 }
343
344 static struct grant *get_grant(grant_ref_t *gref_head,
345 unsigned long gfn,
346 struct blkfront_ring_info *rinfo)
347 {
348 struct grant *gnt_list_entry = get_free_grant(rinfo);
349 struct blkfront_info *info = rinfo->dev_info;
350
351 if (gnt_list_entry->gref != GRANT_INVALID_REF)
352 return gnt_list_entry;
353
354 /* Assign a gref to this page */
355 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
356 BUG_ON(gnt_list_entry->gref == -ENOSPC);
357 if (info->feature_persistent)
358 grant_foreign_access(gnt_list_entry, info);
359 else {
360 /* Grant access to the GFN passed by the caller */
361 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
362 info->xbdev->otherend_id,
363 gfn, 0);
364 }
365
366 return gnt_list_entry;
367 }
368
369 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
370 struct blkfront_ring_info *rinfo)
371 {
372 struct grant *gnt_list_entry = get_free_grant(rinfo);
373 struct blkfront_info *info = rinfo->dev_info;
374
375 if (gnt_list_entry->gref != GRANT_INVALID_REF)
376 return gnt_list_entry;
377
378 /* Assign a gref to this page */
379 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
380 BUG_ON(gnt_list_entry->gref == -ENOSPC);
381 if (!info->feature_persistent) {
382 struct page *indirect_page;
383
384 /* Fetch a pre-allocated page to use for indirect grefs */
385 BUG_ON(list_empty(&rinfo->indirect_pages));
386 indirect_page = list_first_entry(&rinfo->indirect_pages,
387 struct page, lru);
388 list_del(&indirect_page->lru);
389 gnt_list_entry->page = indirect_page;
390 }
391 grant_foreign_access(gnt_list_entry, info);
392
393 return gnt_list_entry;
394 }
395
396 static const char *op_name(int op)
397 {
398 static const char *const names[] = {
399 [BLKIF_OP_READ] = "read",
400 [BLKIF_OP_WRITE] = "write",
401 [BLKIF_OP_WRITE_BARRIER] = "barrier",
402 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
403 [BLKIF_OP_DISCARD] = "discard" };
404
405 if (op < 0 || op >= ARRAY_SIZE(names))
406 return "unknown";
407
408 if (!names[op])
409 return "reserved";
410
411 return names[op];
412 }
413 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
414 {
415 unsigned int end = minor + nr;
416 int rc;
417
418 if (end > nr_minors) {
419 unsigned long *bitmap, *old;
420
421 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
422 GFP_KERNEL);
423 if (bitmap == NULL)
424 return -ENOMEM;
425
426 spin_lock(&minor_lock);
427 if (end > nr_minors) {
428 old = minors;
429 memcpy(bitmap, minors,
430 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
431 minors = bitmap;
432 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
433 } else
434 old = bitmap;
435 spin_unlock(&minor_lock);
436 kfree(old);
437 }
438
439 spin_lock(&minor_lock);
440 if (find_next_bit(minors, end, minor) >= end) {
441 bitmap_set(minors, minor, nr);
442 rc = 0;
443 } else
444 rc = -EBUSY;
445 spin_unlock(&minor_lock);
446
447 return rc;
448 }
449
450 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
451 {
452 unsigned int end = minor + nr;
453
454 BUG_ON(end > nr_minors);
455 spin_lock(&minor_lock);
456 bitmap_clear(minors, minor, nr);
457 spin_unlock(&minor_lock);
458 }
459
460 static void blkif_restart_queue_callback(void *arg)
461 {
462 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
463 schedule_work(&rinfo->work);
464 }
465
466 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
467 {
468 /* We don't have real geometry info, but let's at least return
469 values consistent with the size of the device */
470 sector_t nsect = get_capacity(bd->bd_disk);
471 sector_t cylinders = nsect;
472
473 hg->heads = 0xff;
474 hg->sectors = 0x3f;
475 sector_div(cylinders, hg->heads * hg->sectors);
476 hg->cylinders = cylinders;
477 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
478 hg->cylinders = 0xffff;
479 return 0;
480 }
481
482 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
483 unsigned command, unsigned long argument)
484 {
485 struct blkfront_info *info = bdev->bd_disk->private_data;
486 int i;
487
488 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
489 command, (long)argument);
490
491 switch (command) {
492 case CDROMMULTISESSION:
493 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
494 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
495 if (put_user(0, (char __user *)(argument + i)))
496 return -EFAULT;
497 return 0;
498
499 case CDROM_GET_CAPABILITY: {
500 struct gendisk *gd = info->gd;
501 if (gd->flags & GENHD_FL_CD)
502 return 0;
503 return -EINVAL;
504 }
505
506 default:
507 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
508 command);*/
509 return -EINVAL; /* same return as native Linux */
510 }
511
512 return 0;
513 }
514
515 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
516 struct request *req,
517 struct blkif_request **ring_req)
518 {
519 unsigned long id;
520
521 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
522 rinfo->ring.req_prod_pvt++;
523
524 id = get_id_from_freelist(rinfo);
525 rinfo->shadow[id].request = req;
526 rinfo->shadow[id].status = REQ_WAITING;
527 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
528
529 (*ring_req)->u.rw.id = id;
530
531 return id;
532 }
533
534 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
535 {
536 struct blkfront_info *info = rinfo->dev_info;
537 struct blkif_request *ring_req;
538 unsigned long id;
539
540 /* Fill out a communications ring structure. */
541 id = blkif_ring_get_request(rinfo, req, &ring_req);
542
543 ring_req->operation = BLKIF_OP_DISCARD;
544 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
545 ring_req->u.discard.id = id;
546 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
547 if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard)
548 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
549 else
550 ring_req->u.discard.flag = 0;
551
552 /* Keep a private copy so we can reissue requests when recovering. */
553 rinfo->shadow[id].req = *ring_req;
554
555 return 0;
556 }
557
558 struct setup_rw_req {
559 unsigned int grant_idx;
560 struct blkif_request_segment *segments;
561 struct blkfront_ring_info *rinfo;
562 struct blkif_request *ring_req;
563 grant_ref_t gref_head;
564 unsigned int id;
565 /* Only used when persistent grant is used and it's a read request */
566 bool need_copy;
567 unsigned int bvec_off;
568 char *bvec_data;
569
570 bool require_extra_req;
571 struct blkif_request *extra_ring_req;
572 };
573
574 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
575 unsigned int len, void *data)
576 {
577 struct setup_rw_req *setup = data;
578 int n, ref;
579 struct grant *gnt_list_entry;
580 unsigned int fsect, lsect;
581 /* Convenient aliases */
582 unsigned int grant_idx = setup->grant_idx;
583 struct blkif_request *ring_req = setup->ring_req;
584 struct blkfront_ring_info *rinfo = setup->rinfo;
585 /*
586 * We always use the shadow of the first request to store the list
587 * of grant associated to the block I/O request. This made the
588 * completion more easy to handle even if the block I/O request is
589 * split.
590 */
591 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
592
593 if (unlikely(setup->require_extra_req &&
594 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
595 /*
596 * We are using the second request, setup grant_idx
597 * to be the index of the segment array.
598 */
599 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
600 ring_req = setup->extra_ring_req;
601 }
602
603 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
604 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
605 if (setup->segments)
606 kunmap_atomic(setup->segments);
607
608 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
609 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
610 shadow->indirect_grants[n] = gnt_list_entry;
611 setup->segments = kmap_atomic(gnt_list_entry->page);
612 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
613 }
614
615 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
616 ref = gnt_list_entry->gref;
617 /*
618 * All the grants are stored in the shadow of the first
619 * request. Therefore we have to use the global index.
620 */
621 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
622
623 if (setup->need_copy) {
624 void *shared_data;
625
626 shared_data = kmap_atomic(gnt_list_entry->page);
627 /*
628 * this does not wipe data stored outside the
629 * range sg->offset..sg->offset+sg->length.
630 * Therefore, blkback *could* see data from
631 * previous requests. This is OK as long as
632 * persistent grants are shared with just one
633 * domain. It may need refactoring if this
634 * changes
635 */
636 memcpy(shared_data + offset,
637 setup->bvec_data + setup->bvec_off,
638 len);
639
640 kunmap_atomic(shared_data);
641 setup->bvec_off += len;
642 }
643
644 fsect = offset >> 9;
645 lsect = fsect + (len >> 9) - 1;
646 if (ring_req->operation != BLKIF_OP_INDIRECT) {
647 ring_req->u.rw.seg[grant_idx] =
648 (struct blkif_request_segment) {
649 .gref = ref,
650 .first_sect = fsect,
651 .last_sect = lsect };
652 } else {
653 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
654 (struct blkif_request_segment) {
655 .gref = ref,
656 .first_sect = fsect,
657 .last_sect = lsect };
658 }
659
660 (setup->grant_idx)++;
661 }
662
663 static void blkif_setup_extra_req(struct blkif_request *first,
664 struct blkif_request *second)
665 {
666 uint16_t nr_segments = first->u.rw.nr_segments;
667
668 /*
669 * The second request is only present when the first request uses
670 * all its segments. It's always the continuity of the first one.
671 */
672 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
673
674 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
675 second->u.rw.sector_number = first->u.rw.sector_number +
676 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
677
678 second->u.rw.handle = first->u.rw.handle;
679 second->operation = first->operation;
680 }
681
682 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
683 {
684 struct blkfront_info *info = rinfo->dev_info;
685 struct blkif_request *ring_req, *extra_ring_req = NULL;
686 unsigned long id, extra_id = NO_ASSOCIATED_ID;
687 bool require_extra_req = false;
688 int i;
689 struct setup_rw_req setup = {
690 .grant_idx = 0,
691 .segments = NULL,
692 .rinfo = rinfo,
693 .need_copy = rq_data_dir(req) && info->feature_persistent,
694 };
695
696 /*
697 * Used to store if we are able to queue the request by just using
698 * existing persistent grants, or if we have to get new grants,
699 * as there are not sufficiently many free.
700 */
701 struct scatterlist *sg;
702 int num_sg, max_grefs, num_grant;
703
704 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
705 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
706 /*
707 * If we are using indirect segments we need to account
708 * for the indirect grefs used in the request.
709 */
710 max_grefs += INDIRECT_GREFS(max_grefs);
711
712 /*
713 * We have to reserve 'max_grefs' grants because persistent
714 * grants are shared by all rings.
715 */
716 if (max_grefs > 0)
717 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
718 gnttab_request_free_callback(
719 &rinfo->callback,
720 blkif_restart_queue_callback,
721 rinfo,
722 max_grefs);
723 return 1;
724 }
725
726 /* Fill out a communications ring structure. */
727 id = blkif_ring_get_request(rinfo, req, &ring_req);
728
729 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
730 num_grant = 0;
731 /* Calculate the number of grant used */
732 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
733 num_grant += gnttab_count_grant(sg->offset, sg->length);
734
735 require_extra_req = info->max_indirect_segments == 0 &&
736 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
737 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
738
739 rinfo->shadow[id].num_sg = num_sg;
740 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
741 likely(!require_extra_req)) {
742 /*
743 * The indirect operation can only be a BLKIF_OP_READ or
744 * BLKIF_OP_WRITE
745 */
746 BUG_ON(req->cmd_flags & (REQ_FLUSH | REQ_FUA));
747 ring_req->operation = BLKIF_OP_INDIRECT;
748 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
749 BLKIF_OP_WRITE : BLKIF_OP_READ;
750 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
751 ring_req->u.indirect.handle = info->handle;
752 ring_req->u.indirect.nr_segments = num_grant;
753 } else {
754 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
755 ring_req->u.rw.handle = info->handle;
756 ring_req->operation = rq_data_dir(req) ?
757 BLKIF_OP_WRITE : BLKIF_OP_READ;
758 if (req->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
759 /*
760 * Ideally we can do an unordered flush-to-disk.
761 * In case the backend onlysupports barriers, use that.
762 * A barrier request a superset of FUA, so we can
763 * implement it the same way. (It's also a FLUSH+FUA,
764 * since it is guaranteed ordered WRT previous writes.)
765 */
766 switch (info->feature_flush &
767 ((REQ_FLUSH|REQ_FUA))) {
768 case REQ_FLUSH|REQ_FUA:
769 ring_req->operation =
770 BLKIF_OP_WRITE_BARRIER;
771 break;
772 case REQ_FLUSH:
773 ring_req->operation =
774 BLKIF_OP_FLUSH_DISKCACHE;
775 break;
776 default:
777 ring_req->operation = 0;
778 }
779 }
780 ring_req->u.rw.nr_segments = num_grant;
781 if (unlikely(require_extra_req)) {
782 extra_id = blkif_ring_get_request(rinfo, req,
783 &extra_ring_req);
784 /*
785 * Only the first request contains the scatter-gather
786 * list.
787 */
788 rinfo->shadow[extra_id].num_sg = 0;
789
790 blkif_setup_extra_req(ring_req, extra_ring_req);
791
792 /* Link the 2 requests together */
793 rinfo->shadow[extra_id].associated_id = id;
794 rinfo->shadow[id].associated_id = extra_id;
795 }
796 }
797
798 setup.ring_req = ring_req;
799 setup.id = id;
800
801 setup.require_extra_req = require_extra_req;
802 if (unlikely(require_extra_req))
803 setup.extra_ring_req = extra_ring_req;
804
805 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
806 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
807
808 if (setup.need_copy) {
809 setup.bvec_off = sg->offset;
810 setup.bvec_data = kmap_atomic(sg_page(sg));
811 }
812
813 gnttab_foreach_grant_in_range(sg_page(sg),
814 sg->offset,
815 sg->length,
816 blkif_setup_rw_req_grant,
817 &setup);
818
819 if (setup.need_copy)
820 kunmap_atomic(setup.bvec_data);
821 }
822 if (setup.segments)
823 kunmap_atomic(setup.segments);
824
825 /* Keep a private copy so we can reissue requests when recovering. */
826 rinfo->shadow[id].req = *ring_req;
827 if (unlikely(require_extra_req))
828 rinfo->shadow[extra_id].req = *extra_ring_req;
829
830 if (max_grefs > 0)
831 gnttab_free_grant_references(setup.gref_head);
832
833 return 0;
834 }
835
836 /*
837 * Generate a Xen blkfront IO request from a blk layer request. Reads
838 * and writes are handled as expected.
839 *
840 * @req: a request struct
841 */
842 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
843 {
844 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
845 return 1;
846
847 if (unlikely(req->cmd_flags & (REQ_DISCARD | REQ_SECURE)))
848 return blkif_queue_discard_req(req, rinfo);
849 else
850 return blkif_queue_rw_req(req, rinfo);
851 }
852
853 static inline void flush_requests(struct blkfront_ring_info *rinfo)
854 {
855 int notify;
856
857 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
858
859 if (notify)
860 notify_remote_via_irq(rinfo->irq);
861 }
862
863 static inline bool blkif_request_flush_invalid(struct request *req,
864 struct blkfront_info *info)
865 {
866 return ((req->cmd_type != REQ_TYPE_FS) ||
867 ((req->cmd_flags & REQ_FLUSH) &&
868 !(info->feature_flush & REQ_FLUSH)) ||
869 ((req->cmd_flags & REQ_FUA) &&
870 !(info->feature_flush & REQ_FUA)));
871 }
872
873 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
874 const struct blk_mq_queue_data *qd)
875 {
876 unsigned long flags;
877 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)hctx->driver_data;
878
879 blk_mq_start_request(qd->rq);
880 spin_lock_irqsave(&rinfo->ring_lock, flags);
881 if (RING_FULL(&rinfo->ring))
882 goto out_busy;
883
884 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
885 goto out_err;
886
887 if (blkif_queue_request(qd->rq, rinfo))
888 goto out_busy;
889
890 flush_requests(rinfo);
891 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
892 return BLK_MQ_RQ_QUEUE_OK;
893
894 out_err:
895 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
896 return BLK_MQ_RQ_QUEUE_ERROR;
897
898 out_busy:
899 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
900 blk_mq_stop_hw_queue(hctx);
901 return BLK_MQ_RQ_QUEUE_BUSY;
902 }
903
904 static int blk_mq_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
905 unsigned int index)
906 {
907 struct blkfront_info *info = (struct blkfront_info *)data;
908
909 BUG_ON(info->nr_rings <= index);
910 hctx->driver_data = &info->rinfo[index];
911 return 0;
912 }
913
914 static struct blk_mq_ops blkfront_mq_ops = {
915 .queue_rq = blkif_queue_rq,
916 .map_queue = blk_mq_map_queue,
917 .init_hctx = blk_mq_init_hctx,
918 };
919
920 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
921 unsigned int physical_sector_size,
922 unsigned int segments)
923 {
924 struct request_queue *rq;
925 struct blkfront_info *info = gd->private_data;
926
927 memset(&info->tag_set, 0, sizeof(info->tag_set));
928 info->tag_set.ops = &blkfront_mq_ops;
929 info->tag_set.nr_hw_queues = info->nr_rings;
930 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
931 /*
932 * When indirect descriptior is not supported, the I/O request
933 * will be split between multiple request in the ring.
934 * To avoid problems when sending the request, divide by
935 * 2 the depth of the queue.
936 */
937 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
938 } else
939 info->tag_set.queue_depth = BLK_RING_SIZE(info);
940 info->tag_set.numa_node = NUMA_NO_NODE;
941 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
942 info->tag_set.cmd_size = 0;
943 info->tag_set.driver_data = info;
944
945 if (blk_mq_alloc_tag_set(&info->tag_set))
946 return -EINVAL;
947 rq = blk_mq_init_queue(&info->tag_set);
948 if (IS_ERR(rq)) {
949 blk_mq_free_tag_set(&info->tag_set);
950 return PTR_ERR(rq);
951 }
952
953 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
954
955 if (info->feature_discard) {
956 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
957 blk_queue_max_discard_sectors(rq, get_capacity(gd));
958 rq->limits.discard_granularity = info->discard_granularity;
959 rq->limits.discard_alignment = info->discard_alignment;
960 if (info->feature_secdiscard)
961 queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq);
962 }
963
964 /* Hard sector size and max sectors impersonate the equiv. hardware. */
965 blk_queue_logical_block_size(rq, sector_size);
966 blk_queue_physical_block_size(rq, physical_sector_size);
967 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
968
969 /* Each segment in a request is up to an aligned page in size. */
970 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
971 blk_queue_max_segment_size(rq, PAGE_SIZE);
972
973 /* Ensure a merged request will fit in a single I/O ring slot. */
974 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
975
976 /* Make sure buffer addresses are sector-aligned. */
977 blk_queue_dma_alignment(rq, 511);
978
979 /* Make sure we don't use bounce buffers. */
980 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
981
982 gd->queue = rq;
983
984 return 0;
985 }
986
987 static const char *flush_info(unsigned int feature_flush)
988 {
989 switch (feature_flush & ((REQ_FLUSH | REQ_FUA))) {
990 case REQ_FLUSH|REQ_FUA:
991 return "barrier: enabled;";
992 case REQ_FLUSH:
993 return "flush diskcache: enabled;";
994 default:
995 return "barrier or flush: disabled;";
996 }
997 }
998
999 static void xlvbd_flush(struct blkfront_info *info)
1000 {
1001 blk_queue_write_cache(info->rq, info->feature_flush & REQ_FLUSH,
1002 info->feature_flush & REQ_FUA);
1003 pr_info("blkfront: %s: %s %s %s %s %s\n",
1004 info->gd->disk_name, flush_info(info->feature_flush),
1005 "persistent grants:", info->feature_persistent ?
1006 "enabled;" : "disabled;", "indirect descriptors:",
1007 info->max_indirect_segments ? "enabled;" : "disabled;");
1008 }
1009
1010 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1011 {
1012 int major;
1013 major = BLKIF_MAJOR(vdevice);
1014 *minor = BLKIF_MINOR(vdevice);
1015 switch (major) {
1016 case XEN_IDE0_MAJOR:
1017 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1018 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1019 EMULATED_HD_DISK_MINOR_OFFSET;
1020 break;
1021 case XEN_IDE1_MAJOR:
1022 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1023 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1024 EMULATED_HD_DISK_MINOR_OFFSET;
1025 break;
1026 case XEN_SCSI_DISK0_MAJOR:
1027 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1028 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1029 break;
1030 case XEN_SCSI_DISK1_MAJOR:
1031 case XEN_SCSI_DISK2_MAJOR:
1032 case XEN_SCSI_DISK3_MAJOR:
1033 case XEN_SCSI_DISK4_MAJOR:
1034 case XEN_SCSI_DISK5_MAJOR:
1035 case XEN_SCSI_DISK6_MAJOR:
1036 case XEN_SCSI_DISK7_MAJOR:
1037 *offset = (*minor / PARTS_PER_DISK) +
1038 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1039 EMULATED_SD_DISK_NAME_OFFSET;
1040 *minor = *minor +
1041 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1042 EMULATED_SD_DISK_MINOR_OFFSET;
1043 break;
1044 case XEN_SCSI_DISK8_MAJOR:
1045 case XEN_SCSI_DISK9_MAJOR:
1046 case XEN_SCSI_DISK10_MAJOR:
1047 case XEN_SCSI_DISK11_MAJOR:
1048 case XEN_SCSI_DISK12_MAJOR:
1049 case XEN_SCSI_DISK13_MAJOR:
1050 case XEN_SCSI_DISK14_MAJOR:
1051 case XEN_SCSI_DISK15_MAJOR:
1052 *offset = (*minor / PARTS_PER_DISK) +
1053 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1054 EMULATED_SD_DISK_NAME_OFFSET;
1055 *minor = *minor +
1056 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1057 EMULATED_SD_DISK_MINOR_OFFSET;
1058 break;
1059 case XENVBD_MAJOR:
1060 *offset = *minor / PARTS_PER_DISK;
1061 break;
1062 default:
1063 printk(KERN_WARNING "blkfront: your disk configuration is "
1064 "incorrect, please use an xvd device instead\n");
1065 return -ENODEV;
1066 }
1067 return 0;
1068 }
1069
1070 static char *encode_disk_name(char *ptr, unsigned int n)
1071 {
1072 if (n >= 26)
1073 ptr = encode_disk_name(ptr, n / 26 - 1);
1074 *ptr = 'a' + n % 26;
1075 return ptr + 1;
1076 }
1077
1078 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1079 struct blkfront_info *info,
1080 u16 vdisk_info, u16 sector_size,
1081 unsigned int physical_sector_size)
1082 {
1083 struct gendisk *gd;
1084 int nr_minors = 1;
1085 int err;
1086 unsigned int offset;
1087 int minor;
1088 int nr_parts;
1089 char *ptr;
1090
1091 BUG_ON(info->gd != NULL);
1092 BUG_ON(info->rq != NULL);
1093
1094 if ((info->vdevice>>EXT_SHIFT) > 1) {
1095 /* this is above the extended range; something is wrong */
1096 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1097 return -ENODEV;
1098 }
1099
1100 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1101 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1102 if (err)
1103 return err;
1104 nr_parts = PARTS_PER_DISK;
1105 } else {
1106 minor = BLKIF_MINOR_EXT(info->vdevice);
1107 nr_parts = PARTS_PER_EXT_DISK;
1108 offset = minor / nr_parts;
1109 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1110 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1111 "emulated IDE disks,\n\t choose an xvd device name"
1112 "from xvde on\n", info->vdevice);
1113 }
1114 if (minor >> MINORBITS) {
1115 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1116 info->vdevice, minor);
1117 return -ENODEV;
1118 }
1119
1120 if ((minor % nr_parts) == 0)
1121 nr_minors = nr_parts;
1122
1123 err = xlbd_reserve_minors(minor, nr_minors);
1124 if (err)
1125 goto out;
1126 err = -ENODEV;
1127
1128 gd = alloc_disk(nr_minors);
1129 if (gd == NULL)
1130 goto release;
1131
1132 strcpy(gd->disk_name, DEV_NAME);
1133 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1134 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1135 if (nr_minors > 1)
1136 *ptr = 0;
1137 else
1138 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1139 "%d", minor & (nr_parts - 1));
1140
1141 gd->major = XENVBD_MAJOR;
1142 gd->first_minor = minor;
1143 gd->fops = &xlvbd_block_fops;
1144 gd->private_data = info;
1145 gd->driverfs_dev = &(info->xbdev->dev);
1146 set_capacity(gd, capacity);
1147
1148 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size,
1149 info->max_indirect_segments ? :
1150 BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
1151 del_gendisk(gd);
1152 goto release;
1153 }
1154
1155 info->rq = gd->queue;
1156 info->gd = gd;
1157
1158 xlvbd_flush(info);
1159
1160 if (vdisk_info & VDISK_READONLY)
1161 set_disk_ro(gd, 1);
1162
1163 if (vdisk_info & VDISK_REMOVABLE)
1164 gd->flags |= GENHD_FL_REMOVABLE;
1165
1166 if (vdisk_info & VDISK_CDROM)
1167 gd->flags |= GENHD_FL_CD;
1168
1169 return 0;
1170
1171 release:
1172 xlbd_release_minors(minor, nr_minors);
1173 out:
1174 return err;
1175 }
1176
1177 static void xlvbd_release_gendisk(struct blkfront_info *info)
1178 {
1179 unsigned int minor, nr_minors, i;
1180
1181 if (info->rq == NULL)
1182 return;
1183
1184 /* No more blkif_request(). */
1185 blk_mq_stop_hw_queues(info->rq);
1186
1187 for (i = 0; i < info->nr_rings; i++) {
1188 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1189
1190 /* No more gnttab callback work. */
1191 gnttab_cancel_free_callback(&rinfo->callback);
1192
1193 /* Flush gnttab callback work. Must be done with no locks held. */
1194 flush_work(&rinfo->work);
1195 }
1196
1197 del_gendisk(info->gd);
1198
1199 minor = info->gd->first_minor;
1200 nr_minors = info->gd->minors;
1201 xlbd_release_minors(minor, nr_minors);
1202
1203 blk_cleanup_queue(info->rq);
1204 blk_mq_free_tag_set(&info->tag_set);
1205 info->rq = NULL;
1206
1207 put_disk(info->gd);
1208 info->gd = NULL;
1209 }
1210
1211 /* Already hold rinfo->ring_lock. */
1212 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1213 {
1214 if (!RING_FULL(&rinfo->ring))
1215 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1216 }
1217
1218 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1219 {
1220 unsigned long flags;
1221
1222 spin_lock_irqsave(&rinfo->ring_lock, flags);
1223 kick_pending_request_queues_locked(rinfo);
1224 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1225 }
1226
1227 static void blkif_restart_queue(struct work_struct *work)
1228 {
1229 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1230
1231 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1232 kick_pending_request_queues(rinfo);
1233 }
1234
1235 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1236 {
1237 struct grant *persistent_gnt, *n;
1238 struct blkfront_info *info = rinfo->dev_info;
1239 int i, j, segs;
1240
1241 /*
1242 * Remove indirect pages, this only happens when using indirect
1243 * descriptors but not persistent grants
1244 */
1245 if (!list_empty(&rinfo->indirect_pages)) {
1246 struct page *indirect_page, *n;
1247
1248 BUG_ON(info->feature_persistent);
1249 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1250 list_del(&indirect_page->lru);
1251 __free_page(indirect_page);
1252 }
1253 }
1254
1255 /* Remove all persistent grants. */
1256 if (!list_empty(&rinfo->grants)) {
1257 list_for_each_entry_safe(persistent_gnt, n,
1258 &rinfo->grants, node) {
1259 list_del(&persistent_gnt->node);
1260 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1261 gnttab_end_foreign_access(persistent_gnt->gref,
1262 0, 0UL);
1263 rinfo->persistent_gnts_c--;
1264 }
1265 if (info->feature_persistent)
1266 __free_page(persistent_gnt->page);
1267 kfree(persistent_gnt);
1268 }
1269 }
1270 BUG_ON(rinfo->persistent_gnts_c != 0);
1271
1272 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1273 /*
1274 * Clear persistent grants present in requests already
1275 * on the shared ring
1276 */
1277 if (!rinfo->shadow[i].request)
1278 goto free_shadow;
1279
1280 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1281 rinfo->shadow[i].req.u.indirect.nr_segments :
1282 rinfo->shadow[i].req.u.rw.nr_segments;
1283 for (j = 0; j < segs; j++) {
1284 persistent_gnt = rinfo->shadow[i].grants_used[j];
1285 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1286 if (info->feature_persistent)
1287 __free_page(persistent_gnt->page);
1288 kfree(persistent_gnt);
1289 }
1290
1291 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1292 /*
1293 * If this is not an indirect operation don't try to
1294 * free indirect segments
1295 */
1296 goto free_shadow;
1297
1298 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1299 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1300 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1301 __free_page(persistent_gnt->page);
1302 kfree(persistent_gnt);
1303 }
1304
1305 free_shadow:
1306 kfree(rinfo->shadow[i].grants_used);
1307 rinfo->shadow[i].grants_used = NULL;
1308 kfree(rinfo->shadow[i].indirect_grants);
1309 rinfo->shadow[i].indirect_grants = NULL;
1310 kfree(rinfo->shadow[i].sg);
1311 rinfo->shadow[i].sg = NULL;
1312 }
1313
1314 /* No more gnttab callback work. */
1315 gnttab_cancel_free_callback(&rinfo->callback);
1316
1317 /* Flush gnttab callback work. Must be done with no locks held. */
1318 flush_work(&rinfo->work);
1319
1320 /* Free resources associated with old device channel. */
1321 for (i = 0; i < info->nr_ring_pages; i++) {
1322 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1323 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1324 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1325 }
1326 }
1327 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE));
1328 rinfo->ring.sring = NULL;
1329
1330 if (rinfo->irq)
1331 unbind_from_irqhandler(rinfo->irq, rinfo);
1332 rinfo->evtchn = rinfo->irq = 0;
1333 }
1334
1335 static void blkif_free(struct blkfront_info *info, int suspend)
1336 {
1337 unsigned int i;
1338
1339 /* Prevent new requests being issued until we fix things up. */
1340 info->connected = suspend ?
1341 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1342 /* No more blkif_request(). */
1343 if (info->rq)
1344 blk_mq_stop_hw_queues(info->rq);
1345
1346 for (i = 0; i < info->nr_rings; i++)
1347 blkif_free_ring(&info->rinfo[i]);
1348
1349 kfree(info->rinfo);
1350 info->rinfo = NULL;
1351 info->nr_rings = 0;
1352 }
1353
1354 struct copy_from_grant {
1355 const struct blk_shadow *s;
1356 unsigned int grant_idx;
1357 unsigned int bvec_offset;
1358 char *bvec_data;
1359 };
1360
1361 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1362 unsigned int len, void *data)
1363 {
1364 struct copy_from_grant *info = data;
1365 char *shared_data;
1366 /* Convenient aliases */
1367 const struct blk_shadow *s = info->s;
1368
1369 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1370
1371 memcpy(info->bvec_data + info->bvec_offset,
1372 shared_data + offset, len);
1373
1374 info->bvec_offset += len;
1375 info->grant_idx++;
1376
1377 kunmap_atomic(shared_data);
1378 }
1379
1380 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1381 {
1382 switch (rsp)
1383 {
1384 case BLKIF_RSP_OKAY:
1385 return REQ_DONE;
1386 case BLKIF_RSP_EOPNOTSUPP:
1387 return REQ_EOPNOTSUPP;
1388 case BLKIF_RSP_ERROR:
1389 /* Fallthrough. */
1390 default:
1391 return REQ_ERROR;
1392 }
1393 }
1394
1395 /*
1396 * Get the final status of the block request based on two ring response
1397 */
1398 static int blkif_get_final_status(enum blk_req_status s1,
1399 enum blk_req_status s2)
1400 {
1401 BUG_ON(s1 == REQ_WAITING);
1402 BUG_ON(s2 == REQ_WAITING);
1403
1404 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1405 return BLKIF_RSP_ERROR;
1406 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1407 return BLKIF_RSP_EOPNOTSUPP;
1408 return BLKIF_RSP_OKAY;
1409 }
1410
1411 static bool blkif_completion(unsigned long *id,
1412 struct blkfront_ring_info *rinfo,
1413 struct blkif_response *bret)
1414 {
1415 int i = 0;
1416 struct scatterlist *sg;
1417 int num_sg, num_grant;
1418 struct blkfront_info *info = rinfo->dev_info;
1419 struct blk_shadow *s = &rinfo->shadow[*id];
1420 struct copy_from_grant data = {
1421 .grant_idx = 0,
1422 };
1423
1424 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1425 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1426
1427 /* The I/O request may be split in two. */
1428 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1429 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1430
1431 /* Keep the status of the current response in shadow. */
1432 s->status = blkif_rsp_to_req_status(bret->status);
1433
1434 /* Wait the second response if not yet here. */
1435 if (s2->status == REQ_WAITING)
1436 return 0;
1437
1438 bret->status = blkif_get_final_status(s->status,
1439 s2->status);
1440
1441 /*
1442 * All the grants is stored in the first shadow in order
1443 * to make the completion code simpler.
1444 */
1445 num_grant += s2->req.u.rw.nr_segments;
1446
1447 /*
1448 * The two responses may not come in order. Only the
1449 * first request will store the scatter-gather list.
1450 */
1451 if (s2->num_sg != 0) {
1452 /* Update "id" with the ID of the first response. */
1453 *id = s->associated_id;
1454 s = s2;
1455 }
1456
1457 /*
1458 * We don't need anymore the second request, so recycling
1459 * it now.
1460 */
1461 if (add_id_to_freelist(rinfo, s->associated_id))
1462 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1463 info->gd->disk_name, s->associated_id);
1464 }
1465
1466 data.s = s;
1467 num_sg = s->num_sg;
1468
1469 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1470 for_each_sg(s->sg, sg, num_sg, i) {
1471 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1472
1473 data.bvec_offset = sg->offset;
1474 data.bvec_data = kmap_atomic(sg_page(sg));
1475
1476 gnttab_foreach_grant_in_range(sg_page(sg),
1477 sg->offset,
1478 sg->length,
1479 blkif_copy_from_grant,
1480 &data);
1481
1482 kunmap_atomic(data.bvec_data);
1483 }
1484 }
1485 /* Add the persistent grant into the list of free grants */
1486 for (i = 0; i < num_grant; i++) {
1487 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1488 /*
1489 * If the grant is still mapped by the backend (the
1490 * backend has chosen to make this grant persistent)
1491 * we add it at the head of the list, so it will be
1492 * reused first.
1493 */
1494 if (!info->feature_persistent)
1495 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1496 s->grants_used[i]->gref);
1497 list_add(&s->grants_used[i]->node, &rinfo->grants);
1498 rinfo->persistent_gnts_c++;
1499 } else {
1500 /*
1501 * If the grant is not mapped by the backend we end the
1502 * foreign access and add it to the tail of the list,
1503 * so it will not be picked again unless we run out of
1504 * persistent grants.
1505 */
1506 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1507 s->grants_used[i]->gref = GRANT_INVALID_REF;
1508 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1509 }
1510 }
1511 if (s->req.operation == BLKIF_OP_INDIRECT) {
1512 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1513 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1514 if (!info->feature_persistent)
1515 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1516 s->indirect_grants[i]->gref);
1517 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1518 rinfo->persistent_gnts_c++;
1519 } else {
1520 struct page *indirect_page;
1521
1522 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1523 /*
1524 * Add the used indirect page back to the list of
1525 * available pages for indirect grefs.
1526 */
1527 if (!info->feature_persistent) {
1528 indirect_page = s->indirect_grants[i]->page;
1529 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1530 }
1531 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1532 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1533 }
1534 }
1535 }
1536
1537 return 1;
1538 }
1539
1540 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1541 {
1542 struct request *req;
1543 struct blkif_response *bret;
1544 RING_IDX i, rp;
1545 unsigned long flags;
1546 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1547 struct blkfront_info *info = rinfo->dev_info;
1548 int error;
1549
1550 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1551 return IRQ_HANDLED;
1552
1553 spin_lock_irqsave(&rinfo->ring_lock, flags);
1554 again:
1555 rp = rinfo->ring.sring->rsp_prod;
1556 rmb(); /* Ensure we see queued responses up to 'rp'. */
1557
1558 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1559 unsigned long id;
1560
1561 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1562 id = bret->id;
1563 /*
1564 * The backend has messed up and given us an id that we would
1565 * never have given to it (we stamp it up to BLK_RING_SIZE -
1566 * look in get_id_from_freelist.
1567 */
1568 if (id >= BLK_RING_SIZE(info)) {
1569 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1570 info->gd->disk_name, op_name(bret->operation), id);
1571 /* We can't safely get the 'struct request' as
1572 * the id is busted. */
1573 continue;
1574 }
1575 req = rinfo->shadow[id].request;
1576
1577 if (bret->operation != BLKIF_OP_DISCARD) {
1578 /*
1579 * We may need to wait for an extra response if the
1580 * I/O request is split in 2
1581 */
1582 if (!blkif_completion(&id, rinfo, bret))
1583 continue;
1584 }
1585
1586 if (add_id_to_freelist(rinfo, id)) {
1587 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1588 info->gd->disk_name, op_name(bret->operation), id);
1589 continue;
1590 }
1591
1592 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1593 switch (bret->operation) {
1594 case BLKIF_OP_DISCARD:
1595 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1596 struct request_queue *rq = info->rq;
1597 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1598 info->gd->disk_name, op_name(bret->operation));
1599 error = -EOPNOTSUPP;
1600 info->feature_discard = 0;
1601 info->feature_secdiscard = 0;
1602 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1603 queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq);
1604 }
1605 blk_mq_complete_request(req, error);
1606 break;
1607 case BLKIF_OP_FLUSH_DISKCACHE:
1608 case BLKIF_OP_WRITE_BARRIER:
1609 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1610 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1611 info->gd->disk_name, op_name(bret->operation));
1612 error = -EOPNOTSUPP;
1613 }
1614 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1615 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1616 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1617 info->gd->disk_name, op_name(bret->operation));
1618 error = -EOPNOTSUPP;
1619 }
1620 if (unlikely(error)) {
1621 if (error == -EOPNOTSUPP)
1622 error = 0;
1623 info->feature_flush = 0;
1624 xlvbd_flush(info);
1625 }
1626 /* fall through */
1627 case BLKIF_OP_READ:
1628 case BLKIF_OP_WRITE:
1629 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1630 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1631 "request: %x\n", bret->status);
1632
1633 blk_mq_complete_request(req, error);
1634 break;
1635 default:
1636 BUG();
1637 }
1638 }
1639
1640 rinfo->ring.rsp_cons = i;
1641
1642 if (i != rinfo->ring.req_prod_pvt) {
1643 int more_to_do;
1644 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1645 if (more_to_do)
1646 goto again;
1647 } else
1648 rinfo->ring.sring->rsp_event = i + 1;
1649
1650 kick_pending_request_queues_locked(rinfo);
1651
1652 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1653
1654 return IRQ_HANDLED;
1655 }
1656
1657
1658 static int setup_blkring(struct xenbus_device *dev,
1659 struct blkfront_ring_info *rinfo)
1660 {
1661 struct blkif_sring *sring;
1662 int err, i;
1663 struct blkfront_info *info = rinfo->dev_info;
1664 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1665 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1666
1667 for (i = 0; i < info->nr_ring_pages; i++)
1668 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1669
1670 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1671 get_order(ring_size));
1672 if (!sring) {
1673 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1674 return -ENOMEM;
1675 }
1676 SHARED_RING_INIT(sring);
1677 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1678
1679 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1680 if (err < 0) {
1681 free_pages((unsigned long)sring, get_order(ring_size));
1682 rinfo->ring.sring = NULL;
1683 goto fail;
1684 }
1685 for (i = 0; i < info->nr_ring_pages; i++)
1686 rinfo->ring_ref[i] = gref[i];
1687
1688 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1689 if (err)
1690 goto fail;
1691
1692 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1693 "blkif", rinfo);
1694 if (err <= 0) {
1695 xenbus_dev_fatal(dev, err,
1696 "bind_evtchn_to_irqhandler failed");
1697 goto fail;
1698 }
1699 rinfo->irq = err;
1700
1701 return 0;
1702 fail:
1703 blkif_free(info, 0);
1704 return err;
1705 }
1706
1707 /*
1708 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1709 * ring buffer may have multi pages depending on ->nr_ring_pages.
1710 */
1711 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1712 struct blkfront_ring_info *rinfo, const char *dir)
1713 {
1714 int err;
1715 unsigned int i;
1716 const char *message = NULL;
1717 struct blkfront_info *info = rinfo->dev_info;
1718
1719 if (info->nr_ring_pages == 1) {
1720 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1721 if (err) {
1722 message = "writing ring-ref";
1723 goto abort_transaction;
1724 }
1725 } else {
1726 for (i = 0; i < info->nr_ring_pages; i++) {
1727 char ring_ref_name[RINGREF_NAME_LEN];
1728
1729 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1730 err = xenbus_printf(xbt, dir, ring_ref_name,
1731 "%u", rinfo->ring_ref[i]);
1732 if (err) {
1733 message = "writing ring-ref";
1734 goto abort_transaction;
1735 }
1736 }
1737 }
1738
1739 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1740 if (err) {
1741 message = "writing event-channel";
1742 goto abort_transaction;
1743 }
1744
1745 return 0;
1746
1747 abort_transaction:
1748 xenbus_transaction_end(xbt, 1);
1749 if (message)
1750 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1751
1752 return err;
1753 }
1754
1755 /* Common code used when first setting up, and when resuming. */
1756 static int talk_to_blkback(struct xenbus_device *dev,
1757 struct blkfront_info *info)
1758 {
1759 const char *message = NULL;
1760 struct xenbus_transaction xbt;
1761 int err;
1762 unsigned int i, max_page_order = 0;
1763 unsigned int ring_page_order = 0;
1764
1765 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1766 "max-ring-page-order", "%u", &max_page_order);
1767 if (err != 1)
1768 info->nr_ring_pages = 1;
1769 else {
1770 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1771 info->nr_ring_pages = 1 << ring_page_order;
1772 }
1773
1774 for (i = 0; i < info->nr_rings; i++) {
1775 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1776
1777 /* Create shared ring, alloc event channel. */
1778 err = setup_blkring(dev, rinfo);
1779 if (err)
1780 goto destroy_blkring;
1781 }
1782
1783 again:
1784 err = xenbus_transaction_start(&xbt);
1785 if (err) {
1786 xenbus_dev_fatal(dev, err, "starting transaction");
1787 goto destroy_blkring;
1788 }
1789
1790 if (info->nr_ring_pages > 1) {
1791 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1792 ring_page_order);
1793 if (err) {
1794 message = "writing ring-page-order";
1795 goto abort_transaction;
1796 }
1797 }
1798
1799 /* We already got the number of queues/rings in _probe */
1800 if (info->nr_rings == 1) {
1801 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1802 if (err)
1803 goto destroy_blkring;
1804 } else {
1805 char *path;
1806 size_t pathsize;
1807
1808 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1809 info->nr_rings);
1810 if (err) {
1811 message = "writing multi-queue-num-queues";
1812 goto abort_transaction;
1813 }
1814
1815 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1816 path = kmalloc(pathsize, GFP_KERNEL);
1817 if (!path) {
1818 err = -ENOMEM;
1819 message = "ENOMEM while writing ring references";
1820 goto abort_transaction;
1821 }
1822
1823 for (i = 0; i < info->nr_rings; i++) {
1824 memset(path, 0, pathsize);
1825 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1826 err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1827 if (err) {
1828 kfree(path);
1829 goto destroy_blkring;
1830 }
1831 }
1832 kfree(path);
1833 }
1834 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1835 XEN_IO_PROTO_ABI_NATIVE);
1836 if (err) {
1837 message = "writing protocol";
1838 goto abort_transaction;
1839 }
1840 err = xenbus_printf(xbt, dev->nodename,
1841 "feature-persistent", "%u", 1);
1842 if (err)
1843 dev_warn(&dev->dev,
1844 "writing persistent grants feature to xenbus");
1845
1846 err = xenbus_transaction_end(xbt, 0);
1847 if (err) {
1848 if (err == -EAGAIN)
1849 goto again;
1850 xenbus_dev_fatal(dev, err, "completing transaction");
1851 goto destroy_blkring;
1852 }
1853
1854 for (i = 0; i < info->nr_rings; i++) {
1855 unsigned int j;
1856 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1857
1858 for (j = 0; j < BLK_RING_SIZE(info); j++)
1859 rinfo->shadow[j].req.u.rw.id = j + 1;
1860 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1861 }
1862 xenbus_switch_state(dev, XenbusStateInitialised);
1863
1864 return 0;
1865
1866 abort_transaction:
1867 xenbus_transaction_end(xbt, 1);
1868 if (message)
1869 xenbus_dev_fatal(dev, err, "%s", message);
1870 destroy_blkring:
1871 blkif_free(info, 0);
1872
1873 kfree(info);
1874 dev_set_drvdata(&dev->dev, NULL);
1875
1876 return err;
1877 }
1878
1879 static int negotiate_mq(struct blkfront_info *info)
1880 {
1881 unsigned int backend_max_queues = 0;
1882 int err;
1883 unsigned int i;
1884
1885 BUG_ON(info->nr_rings);
1886
1887 /* Check if backend supports multiple queues. */
1888 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1889 "multi-queue-max-queues", "%u", &backend_max_queues);
1890 if (err < 0)
1891 backend_max_queues = 1;
1892
1893 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1894 /* We need at least one ring. */
1895 if (!info->nr_rings)
1896 info->nr_rings = 1;
1897
1898 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1899 if (!info->rinfo) {
1900 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1901 return -ENOMEM;
1902 }
1903
1904 for (i = 0; i < info->nr_rings; i++) {
1905 struct blkfront_ring_info *rinfo;
1906
1907 rinfo = &info->rinfo[i];
1908 INIT_LIST_HEAD(&rinfo->indirect_pages);
1909 INIT_LIST_HEAD(&rinfo->grants);
1910 rinfo->dev_info = info;
1911 INIT_WORK(&rinfo->work, blkif_restart_queue);
1912 spin_lock_init(&rinfo->ring_lock);
1913 }
1914 return 0;
1915 }
1916 /**
1917 * Entry point to this code when a new device is created. Allocate the basic
1918 * structures and the ring buffer for communication with the backend, and
1919 * inform the backend of the appropriate details for those. Switch to
1920 * Initialised state.
1921 */
1922 static int blkfront_probe(struct xenbus_device *dev,
1923 const struct xenbus_device_id *id)
1924 {
1925 int err, vdevice;
1926 struct blkfront_info *info;
1927
1928 /* FIXME: Use dynamic device id if this is not set. */
1929 err = xenbus_scanf(XBT_NIL, dev->nodename,
1930 "virtual-device", "%i", &vdevice);
1931 if (err != 1) {
1932 /* go looking in the extended area instead */
1933 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1934 "%i", &vdevice);
1935 if (err != 1) {
1936 xenbus_dev_fatal(dev, err, "reading virtual-device");
1937 return err;
1938 }
1939 }
1940
1941 if (xen_hvm_domain()) {
1942 char *type;
1943 int len;
1944 /* no unplug has been done: do not hook devices != xen vbds */
1945 if (xen_has_pv_and_legacy_disk_devices()) {
1946 int major;
1947
1948 if (!VDEV_IS_EXTENDED(vdevice))
1949 major = BLKIF_MAJOR(vdevice);
1950 else
1951 major = XENVBD_MAJOR;
1952
1953 if (major != XENVBD_MAJOR) {
1954 printk(KERN_INFO
1955 "%s: HVM does not support vbd %d as xen block device\n",
1956 __func__, vdevice);
1957 return -ENODEV;
1958 }
1959 }
1960 /* do not create a PV cdrom device if we are an HVM guest */
1961 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1962 if (IS_ERR(type))
1963 return -ENODEV;
1964 if (strncmp(type, "cdrom", 5) == 0) {
1965 kfree(type);
1966 return -ENODEV;
1967 }
1968 kfree(type);
1969 }
1970 info = kzalloc(sizeof(*info), GFP_KERNEL);
1971 if (!info) {
1972 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1973 return -ENOMEM;
1974 }
1975
1976 info->xbdev = dev;
1977 err = negotiate_mq(info);
1978 if (err) {
1979 kfree(info);
1980 return err;
1981 }
1982
1983 mutex_init(&info->mutex);
1984 info->vdevice = vdevice;
1985 info->connected = BLKIF_STATE_DISCONNECTED;
1986
1987 /* Front end dir is a number, which is used as the id. */
1988 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1989 dev_set_drvdata(&dev->dev, info);
1990
1991 return 0;
1992 }
1993
1994 static void split_bio_end(struct bio *bio)
1995 {
1996 struct split_bio *split_bio = bio->bi_private;
1997
1998 if (atomic_dec_and_test(&split_bio->pending)) {
1999 split_bio->bio->bi_phys_segments = 0;
2000 split_bio->bio->bi_error = bio->bi_error;
2001 bio_endio(split_bio->bio);
2002 kfree(split_bio);
2003 }
2004 bio_put(bio);
2005 }
2006
2007 static int blkif_recover(struct blkfront_info *info)
2008 {
2009 unsigned int i, r_index;
2010 struct request *req, *n;
2011 struct blk_shadow *copy;
2012 int rc;
2013 struct bio *bio, *cloned_bio;
2014 struct bio_list bio_list, merge_bio;
2015 unsigned int segs, offset;
2016 int pending, size;
2017 struct split_bio *split_bio;
2018 struct list_head requests;
2019
2020 blkfront_gather_backend_features(info);
2021 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2022 blk_queue_max_segments(info->rq, segs);
2023 bio_list_init(&bio_list);
2024 INIT_LIST_HEAD(&requests);
2025
2026 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2027 struct blkfront_ring_info *rinfo;
2028
2029 rinfo = &info->rinfo[r_index];
2030 /* Stage 1: Make a safe copy of the shadow state. */
2031 copy = kmemdup(rinfo->shadow, sizeof(rinfo->shadow),
2032 GFP_NOIO | __GFP_REPEAT | __GFP_HIGH);
2033 if (!copy)
2034 return -ENOMEM;
2035
2036 /* Stage 2: Set up free list. */
2037 memset(&rinfo->shadow, 0, sizeof(rinfo->shadow));
2038 for (i = 0; i < BLK_RING_SIZE(info); i++)
2039 rinfo->shadow[i].req.u.rw.id = i+1;
2040 rinfo->shadow_free = rinfo->ring.req_prod_pvt;
2041 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
2042
2043 rc = blkfront_setup_indirect(rinfo);
2044 if (rc) {
2045 kfree(copy);
2046 return rc;
2047 }
2048
2049 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2050 /* Not in use? */
2051 if (!copy[i].request)
2052 continue;
2053
2054 /*
2055 * Get the bios in the request so we can re-queue them.
2056 */
2057 if (copy[i].request->cmd_flags &
2058 (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) {
2059 /*
2060 * Flush operations don't contain bios, so
2061 * we need to requeue the whole request
2062 */
2063 list_add(&copy[i].request->queuelist, &requests);
2064 continue;
2065 }
2066 merge_bio.head = copy[i].request->bio;
2067 merge_bio.tail = copy[i].request->biotail;
2068 bio_list_merge(&bio_list, &merge_bio);
2069 copy[i].request->bio = NULL;
2070 blk_end_request_all(copy[i].request, 0);
2071 }
2072
2073 kfree(copy);
2074 }
2075 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2076
2077 /* Now safe for us to use the shared ring */
2078 info->connected = BLKIF_STATE_CONNECTED;
2079
2080 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2081 struct blkfront_ring_info *rinfo;
2082
2083 rinfo = &info->rinfo[r_index];
2084 /* Kick any other new requests queued since we resumed */
2085 kick_pending_request_queues(rinfo);
2086 }
2087
2088 list_for_each_entry_safe(req, n, &requests, queuelist) {
2089 /* Requeue pending requests (flush or discard) */
2090 list_del_init(&req->queuelist);
2091 BUG_ON(req->nr_phys_segments > segs);
2092 blk_mq_requeue_request(req);
2093 }
2094 blk_mq_kick_requeue_list(info->rq);
2095
2096 while ((bio = bio_list_pop(&bio_list)) != NULL) {
2097 /* Traverse the list of pending bios and re-queue them */
2098 if (bio_segments(bio) > segs) {
2099 /*
2100 * This bio has more segments than what we can
2101 * handle, we have to split it.
2102 */
2103 pending = (bio_segments(bio) + segs - 1) / segs;
2104 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2105 BUG_ON(split_bio == NULL);
2106 atomic_set(&split_bio->pending, pending);
2107 split_bio->bio = bio;
2108 for (i = 0; i < pending; i++) {
2109 offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2110 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2111 (unsigned int)bio_sectors(bio) - offset);
2112 cloned_bio = bio_clone(bio, GFP_NOIO);
2113 BUG_ON(cloned_bio == NULL);
2114 bio_trim(cloned_bio, offset, size);
2115 cloned_bio->bi_private = split_bio;
2116 cloned_bio->bi_end_io = split_bio_end;
2117 submit_bio(cloned_bio);
2118 }
2119 /*
2120 * Now we have to wait for all those smaller bios to
2121 * end, so we can also end the "parent" bio.
2122 */
2123 continue;
2124 }
2125 /* We don't need to split this bio */
2126 submit_bio(bio);
2127 }
2128
2129 return 0;
2130 }
2131
2132 /**
2133 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2134 * driver restart. We tear down our blkif structure and recreate it, but
2135 * leave the device-layer structures intact so that this is transparent to the
2136 * rest of the kernel.
2137 */
2138 static int blkfront_resume(struct xenbus_device *dev)
2139 {
2140 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2141 int err = 0;
2142
2143 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2144
2145 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2146
2147 err = negotiate_mq(info);
2148 if (err)
2149 return err;
2150
2151 err = talk_to_blkback(dev, info);
2152
2153 /*
2154 * We have to wait for the backend to switch to
2155 * connected state, since we want to read which
2156 * features it supports.
2157 */
2158
2159 return err;
2160 }
2161
2162 static void blkfront_closing(struct blkfront_info *info)
2163 {
2164 struct xenbus_device *xbdev = info->xbdev;
2165 struct block_device *bdev = NULL;
2166
2167 mutex_lock(&info->mutex);
2168
2169 if (xbdev->state == XenbusStateClosing) {
2170 mutex_unlock(&info->mutex);
2171 return;
2172 }
2173
2174 if (info->gd)
2175 bdev = bdget_disk(info->gd, 0);
2176
2177 mutex_unlock(&info->mutex);
2178
2179 if (!bdev) {
2180 xenbus_frontend_closed(xbdev);
2181 return;
2182 }
2183
2184 mutex_lock(&bdev->bd_mutex);
2185
2186 if (bdev->bd_openers) {
2187 xenbus_dev_error(xbdev, -EBUSY,
2188 "Device in use; refusing to close");
2189 xenbus_switch_state(xbdev, XenbusStateClosing);
2190 } else {
2191 xlvbd_release_gendisk(info);
2192 xenbus_frontend_closed(xbdev);
2193 }
2194
2195 mutex_unlock(&bdev->bd_mutex);
2196 bdput(bdev);
2197 }
2198
2199 static void blkfront_setup_discard(struct blkfront_info *info)
2200 {
2201 int err;
2202 unsigned int discard_granularity;
2203 unsigned int discard_alignment;
2204 unsigned int discard_secure;
2205
2206 info->feature_discard = 1;
2207 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2208 "discard-granularity", "%u", &discard_granularity,
2209 "discard-alignment", "%u", &discard_alignment,
2210 NULL);
2211 if (!err) {
2212 info->discard_granularity = discard_granularity;
2213 info->discard_alignment = discard_alignment;
2214 }
2215 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2216 "discard-secure", "%d", &discard_secure,
2217 NULL);
2218 if (!err)
2219 info->feature_secdiscard = !!discard_secure;
2220 }
2221
2222 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2223 {
2224 unsigned int psegs, grants;
2225 int err, i;
2226 struct blkfront_info *info = rinfo->dev_info;
2227
2228 if (info->max_indirect_segments == 0) {
2229 if (!HAS_EXTRA_REQ)
2230 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2231 else {
2232 /*
2233 * When an extra req is required, the maximum
2234 * grants supported is related to the size of the
2235 * Linux block segment.
2236 */
2237 grants = GRANTS_PER_PSEG;
2238 }
2239 }
2240 else
2241 grants = info->max_indirect_segments;
2242 psegs = grants / GRANTS_PER_PSEG;
2243
2244 err = fill_grant_buffer(rinfo,
2245 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2246 if (err)
2247 goto out_of_memory;
2248
2249 if (!info->feature_persistent && info->max_indirect_segments) {
2250 /*
2251 * We are using indirect descriptors but not persistent
2252 * grants, we need to allocate a set of pages that can be
2253 * used for mapping indirect grefs
2254 */
2255 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2256
2257 BUG_ON(!list_empty(&rinfo->indirect_pages));
2258 for (i = 0; i < num; i++) {
2259 struct page *indirect_page = alloc_page(GFP_NOIO);
2260 if (!indirect_page)
2261 goto out_of_memory;
2262 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2263 }
2264 }
2265
2266 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2267 rinfo->shadow[i].grants_used = kzalloc(
2268 sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2269 GFP_NOIO);
2270 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2271 if (info->max_indirect_segments)
2272 rinfo->shadow[i].indirect_grants = kzalloc(
2273 sizeof(rinfo->shadow[i].indirect_grants[0]) *
2274 INDIRECT_GREFS(grants),
2275 GFP_NOIO);
2276 if ((rinfo->shadow[i].grants_used == NULL) ||
2277 (rinfo->shadow[i].sg == NULL) ||
2278 (info->max_indirect_segments &&
2279 (rinfo->shadow[i].indirect_grants == NULL)))
2280 goto out_of_memory;
2281 sg_init_table(rinfo->shadow[i].sg, psegs);
2282 }
2283
2284
2285 return 0;
2286
2287 out_of_memory:
2288 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2289 kfree(rinfo->shadow[i].grants_used);
2290 rinfo->shadow[i].grants_used = NULL;
2291 kfree(rinfo->shadow[i].sg);
2292 rinfo->shadow[i].sg = NULL;
2293 kfree(rinfo->shadow[i].indirect_grants);
2294 rinfo->shadow[i].indirect_grants = NULL;
2295 }
2296 if (!list_empty(&rinfo->indirect_pages)) {
2297 struct page *indirect_page, *n;
2298 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2299 list_del(&indirect_page->lru);
2300 __free_page(indirect_page);
2301 }
2302 }
2303 return -ENOMEM;
2304 }
2305
2306 /*
2307 * Gather all backend feature-*
2308 */
2309 static void blkfront_gather_backend_features(struct blkfront_info *info)
2310 {
2311 int err;
2312 int barrier, flush, discard, persistent;
2313 unsigned int indirect_segments;
2314
2315 info->feature_flush = 0;
2316
2317 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2318 "feature-barrier", "%d", &barrier,
2319 NULL);
2320
2321 /*
2322 * If there's no "feature-barrier" defined, then it means
2323 * we're dealing with a very old backend which writes
2324 * synchronously; nothing to do.
2325 *
2326 * If there are barriers, then we use flush.
2327 */
2328 if (!err && barrier)
2329 info->feature_flush = REQ_FLUSH | REQ_FUA;
2330 /*
2331 * And if there is "feature-flush-cache" use that above
2332 * barriers.
2333 */
2334 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2335 "feature-flush-cache", "%d", &flush,
2336 NULL);
2337
2338 if (!err && flush)
2339 info->feature_flush = REQ_FLUSH;
2340
2341 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2342 "feature-discard", "%d", &discard,
2343 NULL);
2344
2345 if (!err && discard)
2346 blkfront_setup_discard(info);
2347
2348 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2349 "feature-persistent", "%u", &persistent,
2350 NULL);
2351 if (err)
2352 info->feature_persistent = 0;
2353 else
2354 info->feature_persistent = persistent;
2355
2356 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2357 "feature-max-indirect-segments", "%u", &indirect_segments,
2358 NULL);
2359 if (err)
2360 info->max_indirect_segments = 0;
2361 else
2362 info->max_indirect_segments = min(indirect_segments,
2363 xen_blkif_max_segments);
2364 }
2365
2366 /*
2367 * Invoked when the backend is finally 'ready' (and has told produced
2368 * the details about the physical device - #sectors, size, etc).
2369 */
2370 static void blkfront_connect(struct blkfront_info *info)
2371 {
2372 unsigned long long sectors;
2373 unsigned long sector_size;
2374 unsigned int physical_sector_size;
2375 unsigned int binfo;
2376 int err, i;
2377
2378 switch (info->connected) {
2379 case BLKIF_STATE_CONNECTED:
2380 /*
2381 * Potentially, the back-end may be signalling
2382 * a capacity change; update the capacity.
2383 */
2384 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2385 "sectors", "%Lu", &sectors);
2386 if (XENBUS_EXIST_ERR(err))
2387 return;
2388 printk(KERN_INFO "Setting capacity to %Lu\n",
2389 sectors);
2390 set_capacity(info->gd, sectors);
2391 revalidate_disk(info->gd);
2392
2393 return;
2394 case BLKIF_STATE_SUSPENDED:
2395 /*
2396 * If we are recovering from suspension, we need to wait
2397 * for the backend to announce it's features before
2398 * reconnecting, at least we need to know if the backend
2399 * supports indirect descriptors, and how many.
2400 */
2401 blkif_recover(info);
2402 return;
2403
2404 default:
2405 break;
2406 }
2407
2408 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2409 __func__, info->xbdev->otherend);
2410
2411 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2412 "sectors", "%llu", &sectors,
2413 "info", "%u", &binfo,
2414 "sector-size", "%lu", &sector_size,
2415 NULL);
2416 if (err) {
2417 xenbus_dev_fatal(info->xbdev, err,
2418 "reading backend fields at %s",
2419 info->xbdev->otherend);
2420 return;
2421 }
2422
2423 /*
2424 * physcial-sector-size is a newer field, so old backends may not
2425 * provide this. Assume physical sector size to be the same as
2426 * sector_size in that case.
2427 */
2428 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2429 "physical-sector-size", "%u", &physical_sector_size);
2430 if (err != 1)
2431 physical_sector_size = sector_size;
2432
2433 blkfront_gather_backend_features(info);
2434 for (i = 0; i < info->nr_rings; i++) {
2435 err = blkfront_setup_indirect(&info->rinfo[i]);
2436 if (err) {
2437 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2438 info->xbdev->otherend);
2439 blkif_free(info, 0);
2440 break;
2441 }
2442 }
2443
2444 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2445 physical_sector_size);
2446 if (err) {
2447 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2448 info->xbdev->otherend);
2449 return;
2450 }
2451
2452 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2453
2454 /* Kick pending requests. */
2455 info->connected = BLKIF_STATE_CONNECTED;
2456 for (i = 0; i < info->nr_rings; i++)
2457 kick_pending_request_queues(&info->rinfo[i]);
2458
2459 add_disk(info->gd);
2460
2461 info->is_ready = 1;
2462 }
2463
2464 /**
2465 * Callback received when the backend's state changes.
2466 */
2467 static void blkback_changed(struct xenbus_device *dev,
2468 enum xenbus_state backend_state)
2469 {
2470 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2471
2472 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2473
2474 switch (backend_state) {
2475 case XenbusStateInitWait:
2476 if (dev->state != XenbusStateInitialising)
2477 break;
2478 if (talk_to_blkback(dev, info))
2479 break;
2480 case XenbusStateInitialising:
2481 case XenbusStateInitialised:
2482 case XenbusStateReconfiguring:
2483 case XenbusStateReconfigured:
2484 case XenbusStateUnknown:
2485 break;
2486
2487 case XenbusStateConnected:
2488 if (dev->state != XenbusStateInitialised) {
2489 if (talk_to_blkback(dev, info))
2490 break;
2491 }
2492 blkfront_connect(info);
2493 break;
2494
2495 case XenbusStateClosed:
2496 if (dev->state == XenbusStateClosed)
2497 break;
2498 /* Missed the backend's Closing state -- fallthrough */
2499 case XenbusStateClosing:
2500 if (info)
2501 blkfront_closing(info);
2502 break;
2503 }
2504 }
2505
2506 static int blkfront_remove(struct xenbus_device *xbdev)
2507 {
2508 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2509 struct block_device *bdev = NULL;
2510 struct gendisk *disk;
2511
2512 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2513
2514 blkif_free(info, 0);
2515
2516 mutex_lock(&info->mutex);
2517
2518 disk = info->gd;
2519 if (disk)
2520 bdev = bdget_disk(disk, 0);
2521
2522 info->xbdev = NULL;
2523 mutex_unlock(&info->mutex);
2524
2525 if (!bdev) {
2526 kfree(info);
2527 return 0;
2528 }
2529
2530 /*
2531 * The xbdev was removed before we reached the Closed
2532 * state. See if it's safe to remove the disk. If the bdev
2533 * isn't closed yet, we let release take care of it.
2534 */
2535
2536 mutex_lock(&bdev->bd_mutex);
2537 info = disk->private_data;
2538
2539 dev_warn(disk_to_dev(disk),
2540 "%s was hot-unplugged, %d stale handles\n",
2541 xbdev->nodename, bdev->bd_openers);
2542
2543 if (info && !bdev->bd_openers) {
2544 xlvbd_release_gendisk(info);
2545 disk->private_data = NULL;
2546 kfree(info);
2547 }
2548
2549 mutex_unlock(&bdev->bd_mutex);
2550 bdput(bdev);
2551
2552 return 0;
2553 }
2554
2555 static int blkfront_is_ready(struct xenbus_device *dev)
2556 {
2557 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2558
2559 return info->is_ready && info->xbdev;
2560 }
2561
2562 static int blkif_open(struct block_device *bdev, fmode_t mode)
2563 {
2564 struct gendisk *disk = bdev->bd_disk;
2565 struct blkfront_info *info;
2566 int err = 0;
2567
2568 mutex_lock(&blkfront_mutex);
2569
2570 info = disk->private_data;
2571 if (!info) {
2572 /* xbdev gone */
2573 err = -ERESTARTSYS;
2574 goto out;
2575 }
2576
2577 mutex_lock(&info->mutex);
2578
2579 if (!info->gd)
2580 /* xbdev is closed */
2581 err = -ERESTARTSYS;
2582
2583 mutex_unlock(&info->mutex);
2584
2585 out:
2586 mutex_unlock(&blkfront_mutex);
2587 return err;
2588 }
2589
2590 static void blkif_release(struct gendisk *disk, fmode_t mode)
2591 {
2592 struct blkfront_info *info = disk->private_data;
2593 struct block_device *bdev;
2594 struct xenbus_device *xbdev;
2595
2596 mutex_lock(&blkfront_mutex);
2597
2598 bdev = bdget_disk(disk, 0);
2599
2600 if (!bdev) {
2601 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2602 goto out_mutex;
2603 }
2604 if (bdev->bd_openers)
2605 goto out;
2606
2607 /*
2608 * Check if we have been instructed to close. We will have
2609 * deferred this request, because the bdev was still open.
2610 */
2611
2612 mutex_lock(&info->mutex);
2613 xbdev = info->xbdev;
2614
2615 if (xbdev && xbdev->state == XenbusStateClosing) {
2616 /* pending switch to state closed */
2617 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2618 xlvbd_release_gendisk(info);
2619 xenbus_frontend_closed(info->xbdev);
2620 }
2621
2622 mutex_unlock(&info->mutex);
2623
2624 if (!xbdev) {
2625 /* sudden device removal */
2626 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2627 xlvbd_release_gendisk(info);
2628 disk->private_data = NULL;
2629 kfree(info);
2630 }
2631
2632 out:
2633 bdput(bdev);
2634 out_mutex:
2635 mutex_unlock(&blkfront_mutex);
2636 }
2637
2638 static const struct block_device_operations xlvbd_block_fops =
2639 {
2640 .owner = THIS_MODULE,
2641 .open = blkif_open,
2642 .release = blkif_release,
2643 .getgeo = blkif_getgeo,
2644 .ioctl = blkif_ioctl,
2645 };
2646
2647
2648 static const struct xenbus_device_id blkfront_ids[] = {
2649 { "vbd" },
2650 { "" }
2651 };
2652
2653 static struct xenbus_driver blkfront_driver = {
2654 .ids = blkfront_ids,
2655 .probe = blkfront_probe,
2656 .remove = blkfront_remove,
2657 .resume = blkfront_resume,
2658 .otherend_changed = blkback_changed,
2659 .is_ready = blkfront_is_ready,
2660 };
2661
2662 static int __init xlblk_init(void)
2663 {
2664 int ret;
2665 int nr_cpus = num_online_cpus();
2666
2667 if (!xen_domain())
2668 return -ENODEV;
2669
2670 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2671 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2672 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2673 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2674 }
2675
2676 if (xen_blkif_max_queues > nr_cpus) {
2677 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2678 xen_blkif_max_queues, nr_cpus);
2679 xen_blkif_max_queues = nr_cpus;
2680 }
2681
2682 if (!xen_has_pv_disk_devices())
2683 return -ENODEV;
2684
2685 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2686 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2687 XENVBD_MAJOR, DEV_NAME);
2688 return -ENODEV;
2689 }
2690
2691 ret = xenbus_register_frontend(&blkfront_driver);
2692 if (ret) {
2693 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2694 return ret;
2695 }
2696
2697 return 0;
2698 }
2699 module_init(xlblk_init);
2700
2701
2702 static void __exit xlblk_exit(void)
2703 {
2704 xenbus_unregister_driver(&blkfront_driver);
2705 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2706 kfree(minors);
2707 }
2708 module_exit(xlblk_exit);
2709
2710 MODULE_DESCRIPTION("Xen virtual block device frontend");
2711 MODULE_LICENSE("GPL");
2712 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2713 MODULE_ALIAS("xen:vbd");
2714 MODULE_ALIAS("xenblk");