]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/xen-blkfront.c
block: convert to device_add_disk()
[mirror_ubuntu-bionic-kernel.git] / drivers / block / xen-blkfront.c
1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60
61 #include <asm/xen/hypervisor.h>
62
63 /*
64 * The minimal size of segment supported by the block framework is PAGE_SIZE.
65 * When Linux is using a different page size than Xen, it may not be possible
66 * to put all the data in a single segment.
67 * This can happen when the backend doesn't support indirect descriptor and
68 * therefore the maximum amount of data that a request can carry is
69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70 *
71 * Note that we only support one extra request. So the Linux page size
72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73 * 88KB.
74 */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76
77 enum blkif_state {
78 BLKIF_STATE_DISCONNECTED,
79 BLKIF_STATE_CONNECTED,
80 BLKIF_STATE_SUSPENDED,
81 };
82
83 struct grant {
84 grant_ref_t gref;
85 struct page *page;
86 struct list_head node;
87 };
88
89 enum blk_req_status {
90 REQ_WAITING,
91 REQ_DONE,
92 REQ_ERROR,
93 REQ_EOPNOTSUPP,
94 };
95
96 struct blk_shadow {
97 struct blkif_request req;
98 struct request *request;
99 struct grant **grants_used;
100 struct grant **indirect_grants;
101 struct scatterlist *sg;
102 unsigned int num_sg;
103 enum blk_req_status status;
104
105 #define NO_ASSOCIATED_ID ~0UL
106 /*
107 * Id of the sibling if we ever need 2 requests when handling a
108 * block I/O request
109 */
110 unsigned long associated_id;
111 };
112
113 struct split_bio {
114 struct bio *bio;
115 atomic_t pending;
116 };
117
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120
121 /*
122 * Maximum number of segments in indirect requests, the actual value used by
123 * the frontend driver is the minimum of this value and the value provided
124 * by the backend driver.
125 */
126
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 "Maximum amount of segments in indirect requests (default is 32)");
132
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136
137 /*
138 * Maximum order of pages to be used for the shared ring between front and
139 * backend, 4KB page granularity is used.
140 */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144
145 #define BLK_RING_SIZE(info) \
146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147
148 #define BLK_MAX_RING_SIZE \
149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150
151 /*
152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153 * characters are enough. Define to 20 to keep consistent with backend.
154 */
155 #define RINGREF_NAME_LEN (20)
156 /*
157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158 */
159 #define QUEUE_NAME_LEN (17)
160
161 /*
162 * Per-ring info.
163 * Every blkfront device can associate with one or more blkfront_ring_info,
164 * depending on how many hardware queues/rings to be used.
165 */
166 struct blkfront_ring_info {
167 /* Lock to protect data in every ring buffer. */
168 spinlock_t ring_lock;
169 struct blkif_front_ring ring;
170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 unsigned int evtchn, irq;
172 struct work_struct work;
173 struct gnttab_free_callback callback;
174 struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 struct list_head indirect_pages;
176 struct list_head grants;
177 unsigned int persistent_gnts_c;
178 unsigned long shadow_free;
179 struct blkfront_info *dev_info;
180 };
181
182 /*
183 * We have one of these per vbd, whether ide, scsi or 'other'. They
184 * hang in private_data off the gendisk structure. We may end up
185 * putting all kinds of interesting stuff here :-)
186 */
187 struct blkfront_info
188 {
189 struct mutex mutex;
190 struct xenbus_device *xbdev;
191 struct gendisk *gd;
192 int vdevice;
193 blkif_vdev_t handle;
194 enum blkif_state connected;
195 /* Number of pages per ring buffer. */
196 unsigned int nr_ring_pages;
197 struct request_queue *rq;
198 unsigned int feature_flush;
199 unsigned int feature_fua;
200 unsigned int feature_discard:1;
201 unsigned int feature_secdiscard:1;
202 unsigned int discard_granularity;
203 unsigned int discard_alignment;
204 unsigned int feature_persistent:1;
205 /* Number of 4KB segments handled */
206 unsigned int max_indirect_segments;
207 int is_ready;
208 struct blk_mq_tag_set tag_set;
209 struct blkfront_ring_info *rinfo;
210 unsigned int nr_rings;
211 };
212
213 static unsigned int nr_minors;
214 static unsigned long *minors;
215 static DEFINE_SPINLOCK(minor_lock);
216
217 #define GRANT_INVALID_REF 0
218
219 #define PARTS_PER_DISK 16
220 #define PARTS_PER_EXT_DISK 256
221
222 #define BLKIF_MAJOR(dev) ((dev)>>8)
223 #define BLKIF_MINOR(dev) ((dev) & 0xff)
224
225 #define EXT_SHIFT 28
226 #define EXTENDED (1<<EXT_SHIFT)
227 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
228 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
229 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
230 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
231 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
232 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
233
234 #define DEV_NAME "xvd" /* name in /dev */
235
236 /*
237 * Grants are always the same size as a Xen page (i.e 4KB).
238 * A physical segment is always the same size as a Linux page.
239 * Number of grants per physical segment
240 */
241 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
242
243 #define GRANTS_PER_INDIRECT_FRAME \
244 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
245
246 #define PSEGS_PER_INDIRECT_FRAME \
247 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
248
249 #define INDIRECT_GREFS(_grants) \
250 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
251
252 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG)
253
254 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
255 static void blkfront_gather_backend_features(struct blkfront_info *info);
256
257 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
258 {
259 unsigned long free = rinfo->shadow_free;
260
261 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
262 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
263 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
264 return free;
265 }
266
267 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
268 unsigned long id)
269 {
270 if (rinfo->shadow[id].req.u.rw.id != id)
271 return -EINVAL;
272 if (rinfo->shadow[id].request == NULL)
273 return -EINVAL;
274 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
275 rinfo->shadow[id].request = NULL;
276 rinfo->shadow_free = id;
277 return 0;
278 }
279
280 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
281 {
282 struct blkfront_info *info = rinfo->dev_info;
283 struct page *granted_page;
284 struct grant *gnt_list_entry, *n;
285 int i = 0;
286
287 while (i < num) {
288 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
289 if (!gnt_list_entry)
290 goto out_of_memory;
291
292 if (info->feature_persistent) {
293 granted_page = alloc_page(GFP_NOIO);
294 if (!granted_page) {
295 kfree(gnt_list_entry);
296 goto out_of_memory;
297 }
298 gnt_list_entry->page = granted_page;
299 }
300
301 gnt_list_entry->gref = GRANT_INVALID_REF;
302 list_add(&gnt_list_entry->node, &rinfo->grants);
303 i++;
304 }
305
306 return 0;
307
308 out_of_memory:
309 list_for_each_entry_safe(gnt_list_entry, n,
310 &rinfo->grants, node) {
311 list_del(&gnt_list_entry->node);
312 if (info->feature_persistent)
313 __free_page(gnt_list_entry->page);
314 kfree(gnt_list_entry);
315 i--;
316 }
317 BUG_ON(i != 0);
318 return -ENOMEM;
319 }
320
321 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
322 {
323 struct grant *gnt_list_entry;
324
325 BUG_ON(list_empty(&rinfo->grants));
326 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
327 node);
328 list_del(&gnt_list_entry->node);
329
330 if (gnt_list_entry->gref != GRANT_INVALID_REF)
331 rinfo->persistent_gnts_c--;
332
333 return gnt_list_entry;
334 }
335
336 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
337 const struct blkfront_info *info)
338 {
339 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
340 info->xbdev->otherend_id,
341 gnt_list_entry->page,
342 0);
343 }
344
345 static struct grant *get_grant(grant_ref_t *gref_head,
346 unsigned long gfn,
347 struct blkfront_ring_info *rinfo)
348 {
349 struct grant *gnt_list_entry = get_free_grant(rinfo);
350 struct blkfront_info *info = rinfo->dev_info;
351
352 if (gnt_list_entry->gref != GRANT_INVALID_REF)
353 return gnt_list_entry;
354
355 /* Assign a gref to this page */
356 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
357 BUG_ON(gnt_list_entry->gref == -ENOSPC);
358 if (info->feature_persistent)
359 grant_foreign_access(gnt_list_entry, info);
360 else {
361 /* Grant access to the GFN passed by the caller */
362 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
363 info->xbdev->otherend_id,
364 gfn, 0);
365 }
366
367 return gnt_list_entry;
368 }
369
370 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
371 struct blkfront_ring_info *rinfo)
372 {
373 struct grant *gnt_list_entry = get_free_grant(rinfo);
374 struct blkfront_info *info = rinfo->dev_info;
375
376 if (gnt_list_entry->gref != GRANT_INVALID_REF)
377 return gnt_list_entry;
378
379 /* Assign a gref to this page */
380 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
381 BUG_ON(gnt_list_entry->gref == -ENOSPC);
382 if (!info->feature_persistent) {
383 struct page *indirect_page;
384
385 /* Fetch a pre-allocated page to use for indirect grefs */
386 BUG_ON(list_empty(&rinfo->indirect_pages));
387 indirect_page = list_first_entry(&rinfo->indirect_pages,
388 struct page, lru);
389 list_del(&indirect_page->lru);
390 gnt_list_entry->page = indirect_page;
391 }
392 grant_foreign_access(gnt_list_entry, info);
393
394 return gnt_list_entry;
395 }
396
397 static const char *op_name(int op)
398 {
399 static const char *const names[] = {
400 [BLKIF_OP_READ] = "read",
401 [BLKIF_OP_WRITE] = "write",
402 [BLKIF_OP_WRITE_BARRIER] = "barrier",
403 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
404 [BLKIF_OP_DISCARD] = "discard" };
405
406 if (op < 0 || op >= ARRAY_SIZE(names))
407 return "unknown";
408
409 if (!names[op])
410 return "reserved";
411
412 return names[op];
413 }
414 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
415 {
416 unsigned int end = minor + nr;
417 int rc;
418
419 if (end > nr_minors) {
420 unsigned long *bitmap, *old;
421
422 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
423 GFP_KERNEL);
424 if (bitmap == NULL)
425 return -ENOMEM;
426
427 spin_lock(&minor_lock);
428 if (end > nr_minors) {
429 old = minors;
430 memcpy(bitmap, minors,
431 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
432 minors = bitmap;
433 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
434 } else
435 old = bitmap;
436 spin_unlock(&minor_lock);
437 kfree(old);
438 }
439
440 spin_lock(&minor_lock);
441 if (find_next_bit(minors, end, minor) >= end) {
442 bitmap_set(minors, minor, nr);
443 rc = 0;
444 } else
445 rc = -EBUSY;
446 spin_unlock(&minor_lock);
447
448 return rc;
449 }
450
451 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
452 {
453 unsigned int end = minor + nr;
454
455 BUG_ON(end > nr_minors);
456 spin_lock(&minor_lock);
457 bitmap_clear(minors, minor, nr);
458 spin_unlock(&minor_lock);
459 }
460
461 static void blkif_restart_queue_callback(void *arg)
462 {
463 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
464 schedule_work(&rinfo->work);
465 }
466
467 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
468 {
469 /* We don't have real geometry info, but let's at least return
470 values consistent with the size of the device */
471 sector_t nsect = get_capacity(bd->bd_disk);
472 sector_t cylinders = nsect;
473
474 hg->heads = 0xff;
475 hg->sectors = 0x3f;
476 sector_div(cylinders, hg->heads * hg->sectors);
477 hg->cylinders = cylinders;
478 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
479 hg->cylinders = 0xffff;
480 return 0;
481 }
482
483 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
484 unsigned command, unsigned long argument)
485 {
486 struct blkfront_info *info = bdev->bd_disk->private_data;
487 int i;
488
489 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
490 command, (long)argument);
491
492 switch (command) {
493 case CDROMMULTISESSION:
494 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
495 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
496 if (put_user(0, (char __user *)(argument + i)))
497 return -EFAULT;
498 return 0;
499
500 case CDROM_GET_CAPABILITY: {
501 struct gendisk *gd = info->gd;
502 if (gd->flags & GENHD_FL_CD)
503 return 0;
504 return -EINVAL;
505 }
506
507 default:
508 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
509 command);*/
510 return -EINVAL; /* same return as native Linux */
511 }
512
513 return 0;
514 }
515
516 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
517 struct request *req,
518 struct blkif_request **ring_req)
519 {
520 unsigned long id;
521
522 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
523 rinfo->ring.req_prod_pvt++;
524
525 id = get_id_from_freelist(rinfo);
526 rinfo->shadow[id].request = req;
527 rinfo->shadow[id].status = REQ_WAITING;
528 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
529
530 (*ring_req)->u.rw.id = id;
531
532 return id;
533 }
534
535 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
536 {
537 struct blkfront_info *info = rinfo->dev_info;
538 struct blkif_request *ring_req;
539 unsigned long id;
540
541 /* Fill out a communications ring structure. */
542 id = blkif_ring_get_request(rinfo, req, &ring_req);
543
544 ring_req->operation = BLKIF_OP_DISCARD;
545 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
546 ring_req->u.discard.id = id;
547 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
548 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
549 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
550 else
551 ring_req->u.discard.flag = 0;
552
553 /* Keep a private copy so we can reissue requests when recovering. */
554 rinfo->shadow[id].req = *ring_req;
555
556 return 0;
557 }
558
559 struct setup_rw_req {
560 unsigned int grant_idx;
561 struct blkif_request_segment *segments;
562 struct blkfront_ring_info *rinfo;
563 struct blkif_request *ring_req;
564 grant_ref_t gref_head;
565 unsigned int id;
566 /* Only used when persistent grant is used and it's a read request */
567 bool need_copy;
568 unsigned int bvec_off;
569 char *bvec_data;
570
571 bool require_extra_req;
572 struct blkif_request *extra_ring_req;
573 };
574
575 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
576 unsigned int len, void *data)
577 {
578 struct setup_rw_req *setup = data;
579 int n, ref;
580 struct grant *gnt_list_entry;
581 unsigned int fsect, lsect;
582 /* Convenient aliases */
583 unsigned int grant_idx = setup->grant_idx;
584 struct blkif_request *ring_req = setup->ring_req;
585 struct blkfront_ring_info *rinfo = setup->rinfo;
586 /*
587 * We always use the shadow of the first request to store the list
588 * of grant associated to the block I/O request. This made the
589 * completion more easy to handle even if the block I/O request is
590 * split.
591 */
592 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
593
594 if (unlikely(setup->require_extra_req &&
595 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
596 /*
597 * We are using the second request, setup grant_idx
598 * to be the index of the segment array.
599 */
600 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
601 ring_req = setup->extra_ring_req;
602 }
603
604 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
605 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
606 if (setup->segments)
607 kunmap_atomic(setup->segments);
608
609 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
610 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
611 shadow->indirect_grants[n] = gnt_list_entry;
612 setup->segments = kmap_atomic(gnt_list_entry->page);
613 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
614 }
615
616 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
617 ref = gnt_list_entry->gref;
618 /*
619 * All the grants are stored in the shadow of the first
620 * request. Therefore we have to use the global index.
621 */
622 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
623
624 if (setup->need_copy) {
625 void *shared_data;
626
627 shared_data = kmap_atomic(gnt_list_entry->page);
628 /*
629 * this does not wipe data stored outside the
630 * range sg->offset..sg->offset+sg->length.
631 * Therefore, blkback *could* see data from
632 * previous requests. This is OK as long as
633 * persistent grants are shared with just one
634 * domain. It may need refactoring if this
635 * changes
636 */
637 memcpy(shared_data + offset,
638 setup->bvec_data + setup->bvec_off,
639 len);
640
641 kunmap_atomic(shared_data);
642 setup->bvec_off += len;
643 }
644
645 fsect = offset >> 9;
646 lsect = fsect + (len >> 9) - 1;
647 if (ring_req->operation != BLKIF_OP_INDIRECT) {
648 ring_req->u.rw.seg[grant_idx] =
649 (struct blkif_request_segment) {
650 .gref = ref,
651 .first_sect = fsect,
652 .last_sect = lsect };
653 } else {
654 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
655 (struct blkif_request_segment) {
656 .gref = ref,
657 .first_sect = fsect,
658 .last_sect = lsect };
659 }
660
661 (setup->grant_idx)++;
662 }
663
664 static void blkif_setup_extra_req(struct blkif_request *first,
665 struct blkif_request *second)
666 {
667 uint16_t nr_segments = first->u.rw.nr_segments;
668
669 /*
670 * The second request is only present when the first request uses
671 * all its segments. It's always the continuity of the first one.
672 */
673 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
674
675 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
676 second->u.rw.sector_number = first->u.rw.sector_number +
677 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
678
679 second->u.rw.handle = first->u.rw.handle;
680 second->operation = first->operation;
681 }
682
683 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
684 {
685 struct blkfront_info *info = rinfo->dev_info;
686 struct blkif_request *ring_req, *extra_ring_req = NULL;
687 unsigned long id, extra_id = NO_ASSOCIATED_ID;
688 bool require_extra_req = false;
689 int i;
690 struct setup_rw_req setup = {
691 .grant_idx = 0,
692 .segments = NULL,
693 .rinfo = rinfo,
694 .need_copy = rq_data_dir(req) && info->feature_persistent,
695 };
696
697 /*
698 * Used to store if we are able to queue the request by just using
699 * existing persistent grants, or if we have to get new grants,
700 * as there are not sufficiently many free.
701 */
702 struct scatterlist *sg;
703 int num_sg, max_grefs, num_grant;
704
705 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
706 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
707 /*
708 * If we are using indirect segments we need to account
709 * for the indirect grefs used in the request.
710 */
711 max_grefs += INDIRECT_GREFS(max_grefs);
712
713 /*
714 * We have to reserve 'max_grefs' grants because persistent
715 * grants are shared by all rings.
716 */
717 if (max_grefs > 0)
718 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
719 gnttab_request_free_callback(
720 &rinfo->callback,
721 blkif_restart_queue_callback,
722 rinfo,
723 max_grefs);
724 return 1;
725 }
726
727 /* Fill out a communications ring structure. */
728 id = blkif_ring_get_request(rinfo, req, &ring_req);
729
730 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
731 num_grant = 0;
732 /* Calculate the number of grant used */
733 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
734 num_grant += gnttab_count_grant(sg->offset, sg->length);
735
736 require_extra_req = info->max_indirect_segments == 0 &&
737 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
738 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
739
740 rinfo->shadow[id].num_sg = num_sg;
741 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
742 likely(!require_extra_req)) {
743 /*
744 * The indirect operation can only be a BLKIF_OP_READ or
745 * BLKIF_OP_WRITE
746 */
747 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
748 ring_req->operation = BLKIF_OP_INDIRECT;
749 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
750 BLKIF_OP_WRITE : BLKIF_OP_READ;
751 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
752 ring_req->u.indirect.handle = info->handle;
753 ring_req->u.indirect.nr_segments = num_grant;
754 } else {
755 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
756 ring_req->u.rw.handle = info->handle;
757 ring_req->operation = rq_data_dir(req) ?
758 BLKIF_OP_WRITE : BLKIF_OP_READ;
759 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
760 /*
761 * Ideally we can do an unordered flush-to-disk.
762 * In case the backend onlysupports barriers, use that.
763 * A barrier request a superset of FUA, so we can
764 * implement it the same way. (It's also a FLUSH+FUA,
765 * since it is guaranteed ordered WRT previous writes.)
766 */
767 if (info->feature_flush && info->feature_fua)
768 ring_req->operation =
769 BLKIF_OP_WRITE_BARRIER;
770 else if (info->feature_flush)
771 ring_req->operation =
772 BLKIF_OP_FLUSH_DISKCACHE;
773 else
774 ring_req->operation = 0;
775 }
776 ring_req->u.rw.nr_segments = num_grant;
777 if (unlikely(require_extra_req)) {
778 extra_id = blkif_ring_get_request(rinfo, req,
779 &extra_ring_req);
780 /*
781 * Only the first request contains the scatter-gather
782 * list.
783 */
784 rinfo->shadow[extra_id].num_sg = 0;
785
786 blkif_setup_extra_req(ring_req, extra_ring_req);
787
788 /* Link the 2 requests together */
789 rinfo->shadow[extra_id].associated_id = id;
790 rinfo->shadow[id].associated_id = extra_id;
791 }
792 }
793
794 setup.ring_req = ring_req;
795 setup.id = id;
796
797 setup.require_extra_req = require_extra_req;
798 if (unlikely(require_extra_req))
799 setup.extra_ring_req = extra_ring_req;
800
801 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
802 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
803
804 if (setup.need_copy) {
805 setup.bvec_off = sg->offset;
806 setup.bvec_data = kmap_atomic(sg_page(sg));
807 }
808
809 gnttab_foreach_grant_in_range(sg_page(sg),
810 sg->offset,
811 sg->length,
812 blkif_setup_rw_req_grant,
813 &setup);
814
815 if (setup.need_copy)
816 kunmap_atomic(setup.bvec_data);
817 }
818 if (setup.segments)
819 kunmap_atomic(setup.segments);
820
821 /* Keep a private copy so we can reissue requests when recovering. */
822 rinfo->shadow[id].req = *ring_req;
823 if (unlikely(require_extra_req))
824 rinfo->shadow[extra_id].req = *extra_ring_req;
825
826 if (max_grefs > 0)
827 gnttab_free_grant_references(setup.gref_head);
828
829 return 0;
830 }
831
832 /*
833 * Generate a Xen blkfront IO request from a blk layer request. Reads
834 * and writes are handled as expected.
835 *
836 * @req: a request struct
837 */
838 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
839 {
840 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
841 return 1;
842
843 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
844 req_op(req) == REQ_OP_SECURE_ERASE))
845 return blkif_queue_discard_req(req, rinfo);
846 else
847 return blkif_queue_rw_req(req, rinfo);
848 }
849
850 static inline void flush_requests(struct blkfront_ring_info *rinfo)
851 {
852 int notify;
853
854 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
855
856 if (notify)
857 notify_remote_via_irq(rinfo->irq);
858 }
859
860 static inline bool blkif_request_flush_invalid(struct request *req,
861 struct blkfront_info *info)
862 {
863 return ((req->cmd_type != REQ_TYPE_FS) ||
864 ((req_op(req) == REQ_OP_FLUSH) &&
865 !info->feature_flush) ||
866 ((req->cmd_flags & REQ_FUA) &&
867 !info->feature_fua));
868 }
869
870 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
871 const struct blk_mq_queue_data *qd)
872 {
873 unsigned long flags;
874 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)hctx->driver_data;
875
876 blk_mq_start_request(qd->rq);
877 spin_lock_irqsave(&rinfo->ring_lock, flags);
878 if (RING_FULL(&rinfo->ring))
879 goto out_busy;
880
881 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
882 goto out_err;
883
884 if (blkif_queue_request(qd->rq, rinfo))
885 goto out_busy;
886
887 flush_requests(rinfo);
888 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
889 return BLK_MQ_RQ_QUEUE_OK;
890
891 out_err:
892 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
893 return BLK_MQ_RQ_QUEUE_ERROR;
894
895 out_busy:
896 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
897 blk_mq_stop_hw_queue(hctx);
898 return BLK_MQ_RQ_QUEUE_BUSY;
899 }
900
901 static int blk_mq_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
902 unsigned int index)
903 {
904 struct blkfront_info *info = (struct blkfront_info *)data;
905
906 BUG_ON(info->nr_rings <= index);
907 hctx->driver_data = &info->rinfo[index];
908 return 0;
909 }
910
911 static struct blk_mq_ops blkfront_mq_ops = {
912 .queue_rq = blkif_queue_rq,
913 .map_queue = blk_mq_map_queue,
914 .init_hctx = blk_mq_init_hctx,
915 };
916
917 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
918 unsigned int physical_sector_size,
919 unsigned int segments)
920 {
921 struct request_queue *rq;
922 struct blkfront_info *info = gd->private_data;
923
924 memset(&info->tag_set, 0, sizeof(info->tag_set));
925 info->tag_set.ops = &blkfront_mq_ops;
926 info->tag_set.nr_hw_queues = info->nr_rings;
927 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
928 /*
929 * When indirect descriptior is not supported, the I/O request
930 * will be split between multiple request in the ring.
931 * To avoid problems when sending the request, divide by
932 * 2 the depth of the queue.
933 */
934 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
935 } else
936 info->tag_set.queue_depth = BLK_RING_SIZE(info);
937 info->tag_set.numa_node = NUMA_NO_NODE;
938 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
939 info->tag_set.cmd_size = 0;
940 info->tag_set.driver_data = info;
941
942 if (blk_mq_alloc_tag_set(&info->tag_set))
943 return -EINVAL;
944 rq = blk_mq_init_queue(&info->tag_set);
945 if (IS_ERR(rq)) {
946 blk_mq_free_tag_set(&info->tag_set);
947 return PTR_ERR(rq);
948 }
949
950 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
951
952 if (info->feature_discard) {
953 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
954 blk_queue_max_discard_sectors(rq, get_capacity(gd));
955 rq->limits.discard_granularity = info->discard_granularity;
956 rq->limits.discard_alignment = info->discard_alignment;
957 if (info->feature_secdiscard)
958 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq);
959 }
960
961 /* Hard sector size and max sectors impersonate the equiv. hardware. */
962 blk_queue_logical_block_size(rq, sector_size);
963 blk_queue_physical_block_size(rq, physical_sector_size);
964 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
965
966 /* Each segment in a request is up to an aligned page in size. */
967 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
968 blk_queue_max_segment_size(rq, PAGE_SIZE);
969
970 /* Ensure a merged request will fit in a single I/O ring slot. */
971 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
972
973 /* Make sure buffer addresses are sector-aligned. */
974 blk_queue_dma_alignment(rq, 511);
975
976 /* Make sure we don't use bounce buffers. */
977 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
978
979 gd->queue = rq;
980
981 return 0;
982 }
983
984 static const char *flush_info(struct blkfront_info *info)
985 {
986 if (info->feature_flush && info->feature_fua)
987 return "barrier: enabled;";
988 else if (info->feature_flush)
989 return "flush diskcache: enabled;";
990 else
991 return "barrier or flush: disabled;";
992 }
993
994 static void xlvbd_flush(struct blkfront_info *info)
995 {
996 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
997 info->feature_fua ? true : false);
998 pr_info("blkfront: %s: %s %s %s %s %s\n",
999 info->gd->disk_name, flush_info(info),
1000 "persistent grants:", info->feature_persistent ?
1001 "enabled;" : "disabled;", "indirect descriptors:",
1002 info->max_indirect_segments ? "enabled;" : "disabled;");
1003 }
1004
1005 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1006 {
1007 int major;
1008 major = BLKIF_MAJOR(vdevice);
1009 *minor = BLKIF_MINOR(vdevice);
1010 switch (major) {
1011 case XEN_IDE0_MAJOR:
1012 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1013 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1014 EMULATED_HD_DISK_MINOR_OFFSET;
1015 break;
1016 case XEN_IDE1_MAJOR:
1017 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1018 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1019 EMULATED_HD_DISK_MINOR_OFFSET;
1020 break;
1021 case XEN_SCSI_DISK0_MAJOR:
1022 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1023 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1024 break;
1025 case XEN_SCSI_DISK1_MAJOR:
1026 case XEN_SCSI_DISK2_MAJOR:
1027 case XEN_SCSI_DISK3_MAJOR:
1028 case XEN_SCSI_DISK4_MAJOR:
1029 case XEN_SCSI_DISK5_MAJOR:
1030 case XEN_SCSI_DISK6_MAJOR:
1031 case XEN_SCSI_DISK7_MAJOR:
1032 *offset = (*minor / PARTS_PER_DISK) +
1033 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1034 EMULATED_SD_DISK_NAME_OFFSET;
1035 *minor = *minor +
1036 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1037 EMULATED_SD_DISK_MINOR_OFFSET;
1038 break;
1039 case XEN_SCSI_DISK8_MAJOR:
1040 case XEN_SCSI_DISK9_MAJOR:
1041 case XEN_SCSI_DISK10_MAJOR:
1042 case XEN_SCSI_DISK11_MAJOR:
1043 case XEN_SCSI_DISK12_MAJOR:
1044 case XEN_SCSI_DISK13_MAJOR:
1045 case XEN_SCSI_DISK14_MAJOR:
1046 case XEN_SCSI_DISK15_MAJOR:
1047 *offset = (*minor / PARTS_PER_DISK) +
1048 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1049 EMULATED_SD_DISK_NAME_OFFSET;
1050 *minor = *minor +
1051 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1052 EMULATED_SD_DISK_MINOR_OFFSET;
1053 break;
1054 case XENVBD_MAJOR:
1055 *offset = *minor / PARTS_PER_DISK;
1056 break;
1057 default:
1058 printk(KERN_WARNING "blkfront: your disk configuration is "
1059 "incorrect, please use an xvd device instead\n");
1060 return -ENODEV;
1061 }
1062 return 0;
1063 }
1064
1065 static char *encode_disk_name(char *ptr, unsigned int n)
1066 {
1067 if (n >= 26)
1068 ptr = encode_disk_name(ptr, n / 26 - 1);
1069 *ptr = 'a' + n % 26;
1070 return ptr + 1;
1071 }
1072
1073 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1074 struct blkfront_info *info,
1075 u16 vdisk_info, u16 sector_size,
1076 unsigned int physical_sector_size)
1077 {
1078 struct gendisk *gd;
1079 int nr_minors = 1;
1080 int err;
1081 unsigned int offset;
1082 int minor;
1083 int nr_parts;
1084 char *ptr;
1085
1086 BUG_ON(info->gd != NULL);
1087 BUG_ON(info->rq != NULL);
1088
1089 if ((info->vdevice>>EXT_SHIFT) > 1) {
1090 /* this is above the extended range; something is wrong */
1091 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1092 return -ENODEV;
1093 }
1094
1095 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1096 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1097 if (err)
1098 return err;
1099 nr_parts = PARTS_PER_DISK;
1100 } else {
1101 minor = BLKIF_MINOR_EXT(info->vdevice);
1102 nr_parts = PARTS_PER_EXT_DISK;
1103 offset = minor / nr_parts;
1104 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1105 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1106 "emulated IDE disks,\n\t choose an xvd device name"
1107 "from xvde on\n", info->vdevice);
1108 }
1109 if (minor >> MINORBITS) {
1110 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1111 info->vdevice, minor);
1112 return -ENODEV;
1113 }
1114
1115 if ((minor % nr_parts) == 0)
1116 nr_minors = nr_parts;
1117
1118 err = xlbd_reserve_minors(minor, nr_minors);
1119 if (err)
1120 goto out;
1121 err = -ENODEV;
1122
1123 gd = alloc_disk(nr_minors);
1124 if (gd == NULL)
1125 goto release;
1126
1127 strcpy(gd->disk_name, DEV_NAME);
1128 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1129 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1130 if (nr_minors > 1)
1131 *ptr = 0;
1132 else
1133 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1134 "%d", minor & (nr_parts - 1));
1135
1136 gd->major = XENVBD_MAJOR;
1137 gd->first_minor = minor;
1138 gd->fops = &xlvbd_block_fops;
1139 gd->private_data = info;
1140 set_capacity(gd, capacity);
1141
1142 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size,
1143 info->max_indirect_segments ? :
1144 BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
1145 del_gendisk(gd);
1146 goto release;
1147 }
1148
1149 info->rq = gd->queue;
1150 info->gd = gd;
1151
1152 xlvbd_flush(info);
1153
1154 if (vdisk_info & VDISK_READONLY)
1155 set_disk_ro(gd, 1);
1156
1157 if (vdisk_info & VDISK_REMOVABLE)
1158 gd->flags |= GENHD_FL_REMOVABLE;
1159
1160 if (vdisk_info & VDISK_CDROM)
1161 gd->flags |= GENHD_FL_CD;
1162
1163 return 0;
1164
1165 release:
1166 xlbd_release_minors(minor, nr_minors);
1167 out:
1168 return err;
1169 }
1170
1171 static void xlvbd_release_gendisk(struct blkfront_info *info)
1172 {
1173 unsigned int minor, nr_minors, i;
1174
1175 if (info->rq == NULL)
1176 return;
1177
1178 /* No more blkif_request(). */
1179 blk_mq_stop_hw_queues(info->rq);
1180
1181 for (i = 0; i < info->nr_rings; i++) {
1182 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1183
1184 /* No more gnttab callback work. */
1185 gnttab_cancel_free_callback(&rinfo->callback);
1186
1187 /* Flush gnttab callback work. Must be done with no locks held. */
1188 flush_work(&rinfo->work);
1189 }
1190
1191 del_gendisk(info->gd);
1192
1193 minor = info->gd->first_minor;
1194 nr_minors = info->gd->minors;
1195 xlbd_release_minors(minor, nr_minors);
1196
1197 blk_cleanup_queue(info->rq);
1198 blk_mq_free_tag_set(&info->tag_set);
1199 info->rq = NULL;
1200
1201 put_disk(info->gd);
1202 info->gd = NULL;
1203 }
1204
1205 /* Already hold rinfo->ring_lock. */
1206 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1207 {
1208 if (!RING_FULL(&rinfo->ring))
1209 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1210 }
1211
1212 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1213 {
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&rinfo->ring_lock, flags);
1217 kick_pending_request_queues_locked(rinfo);
1218 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1219 }
1220
1221 static void blkif_restart_queue(struct work_struct *work)
1222 {
1223 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1224
1225 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1226 kick_pending_request_queues(rinfo);
1227 }
1228
1229 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1230 {
1231 struct grant *persistent_gnt, *n;
1232 struct blkfront_info *info = rinfo->dev_info;
1233 int i, j, segs;
1234
1235 /*
1236 * Remove indirect pages, this only happens when using indirect
1237 * descriptors but not persistent grants
1238 */
1239 if (!list_empty(&rinfo->indirect_pages)) {
1240 struct page *indirect_page, *n;
1241
1242 BUG_ON(info->feature_persistent);
1243 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1244 list_del(&indirect_page->lru);
1245 __free_page(indirect_page);
1246 }
1247 }
1248
1249 /* Remove all persistent grants. */
1250 if (!list_empty(&rinfo->grants)) {
1251 list_for_each_entry_safe(persistent_gnt, n,
1252 &rinfo->grants, node) {
1253 list_del(&persistent_gnt->node);
1254 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1255 gnttab_end_foreign_access(persistent_gnt->gref,
1256 0, 0UL);
1257 rinfo->persistent_gnts_c--;
1258 }
1259 if (info->feature_persistent)
1260 __free_page(persistent_gnt->page);
1261 kfree(persistent_gnt);
1262 }
1263 }
1264 BUG_ON(rinfo->persistent_gnts_c != 0);
1265
1266 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1267 /*
1268 * Clear persistent grants present in requests already
1269 * on the shared ring
1270 */
1271 if (!rinfo->shadow[i].request)
1272 goto free_shadow;
1273
1274 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1275 rinfo->shadow[i].req.u.indirect.nr_segments :
1276 rinfo->shadow[i].req.u.rw.nr_segments;
1277 for (j = 0; j < segs; j++) {
1278 persistent_gnt = rinfo->shadow[i].grants_used[j];
1279 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1280 if (info->feature_persistent)
1281 __free_page(persistent_gnt->page);
1282 kfree(persistent_gnt);
1283 }
1284
1285 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1286 /*
1287 * If this is not an indirect operation don't try to
1288 * free indirect segments
1289 */
1290 goto free_shadow;
1291
1292 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1293 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1294 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1295 __free_page(persistent_gnt->page);
1296 kfree(persistent_gnt);
1297 }
1298
1299 free_shadow:
1300 kfree(rinfo->shadow[i].grants_used);
1301 rinfo->shadow[i].grants_used = NULL;
1302 kfree(rinfo->shadow[i].indirect_grants);
1303 rinfo->shadow[i].indirect_grants = NULL;
1304 kfree(rinfo->shadow[i].sg);
1305 rinfo->shadow[i].sg = NULL;
1306 }
1307
1308 /* No more gnttab callback work. */
1309 gnttab_cancel_free_callback(&rinfo->callback);
1310
1311 /* Flush gnttab callback work. Must be done with no locks held. */
1312 flush_work(&rinfo->work);
1313
1314 /* Free resources associated with old device channel. */
1315 for (i = 0; i < info->nr_ring_pages; i++) {
1316 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1317 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1318 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1319 }
1320 }
1321 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE));
1322 rinfo->ring.sring = NULL;
1323
1324 if (rinfo->irq)
1325 unbind_from_irqhandler(rinfo->irq, rinfo);
1326 rinfo->evtchn = rinfo->irq = 0;
1327 }
1328
1329 static void blkif_free(struct blkfront_info *info, int suspend)
1330 {
1331 unsigned int i;
1332
1333 /* Prevent new requests being issued until we fix things up. */
1334 info->connected = suspend ?
1335 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1336 /* No more blkif_request(). */
1337 if (info->rq)
1338 blk_mq_stop_hw_queues(info->rq);
1339
1340 for (i = 0; i < info->nr_rings; i++)
1341 blkif_free_ring(&info->rinfo[i]);
1342
1343 kfree(info->rinfo);
1344 info->rinfo = NULL;
1345 info->nr_rings = 0;
1346 }
1347
1348 struct copy_from_grant {
1349 const struct blk_shadow *s;
1350 unsigned int grant_idx;
1351 unsigned int bvec_offset;
1352 char *bvec_data;
1353 };
1354
1355 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1356 unsigned int len, void *data)
1357 {
1358 struct copy_from_grant *info = data;
1359 char *shared_data;
1360 /* Convenient aliases */
1361 const struct blk_shadow *s = info->s;
1362
1363 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1364
1365 memcpy(info->bvec_data + info->bvec_offset,
1366 shared_data + offset, len);
1367
1368 info->bvec_offset += len;
1369 info->grant_idx++;
1370
1371 kunmap_atomic(shared_data);
1372 }
1373
1374 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1375 {
1376 switch (rsp)
1377 {
1378 case BLKIF_RSP_OKAY:
1379 return REQ_DONE;
1380 case BLKIF_RSP_EOPNOTSUPP:
1381 return REQ_EOPNOTSUPP;
1382 case BLKIF_RSP_ERROR:
1383 /* Fallthrough. */
1384 default:
1385 return REQ_ERROR;
1386 }
1387 }
1388
1389 /*
1390 * Get the final status of the block request based on two ring response
1391 */
1392 static int blkif_get_final_status(enum blk_req_status s1,
1393 enum blk_req_status s2)
1394 {
1395 BUG_ON(s1 == REQ_WAITING);
1396 BUG_ON(s2 == REQ_WAITING);
1397
1398 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1399 return BLKIF_RSP_ERROR;
1400 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1401 return BLKIF_RSP_EOPNOTSUPP;
1402 return BLKIF_RSP_OKAY;
1403 }
1404
1405 static bool blkif_completion(unsigned long *id,
1406 struct blkfront_ring_info *rinfo,
1407 struct blkif_response *bret)
1408 {
1409 int i = 0;
1410 struct scatterlist *sg;
1411 int num_sg, num_grant;
1412 struct blkfront_info *info = rinfo->dev_info;
1413 struct blk_shadow *s = &rinfo->shadow[*id];
1414 struct copy_from_grant data = {
1415 .grant_idx = 0,
1416 };
1417
1418 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1419 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1420
1421 /* The I/O request may be split in two. */
1422 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1423 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1424
1425 /* Keep the status of the current response in shadow. */
1426 s->status = blkif_rsp_to_req_status(bret->status);
1427
1428 /* Wait the second response if not yet here. */
1429 if (s2->status == REQ_WAITING)
1430 return 0;
1431
1432 bret->status = blkif_get_final_status(s->status,
1433 s2->status);
1434
1435 /*
1436 * All the grants is stored in the first shadow in order
1437 * to make the completion code simpler.
1438 */
1439 num_grant += s2->req.u.rw.nr_segments;
1440
1441 /*
1442 * The two responses may not come in order. Only the
1443 * first request will store the scatter-gather list.
1444 */
1445 if (s2->num_sg != 0) {
1446 /* Update "id" with the ID of the first response. */
1447 *id = s->associated_id;
1448 s = s2;
1449 }
1450
1451 /*
1452 * We don't need anymore the second request, so recycling
1453 * it now.
1454 */
1455 if (add_id_to_freelist(rinfo, s->associated_id))
1456 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1457 info->gd->disk_name, s->associated_id);
1458 }
1459
1460 data.s = s;
1461 num_sg = s->num_sg;
1462
1463 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1464 for_each_sg(s->sg, sg, num_sg, i) {
1465 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1466
1467 data.bvec_offset = sg->offset;
1468 data.bvec_data = kmap_atomic(sg_page(sg));
1469
1470 gnttab_foreach_grant_in_range(sg_page(sg),
1471 sg->offset,
1472 sg->length,
1473 blkif_copy_from_grant,
1474 &data);
1475
1476 kunmap_atomic(data.bvec_data);
1477 }
1478 }
1479 /* Add the persistent grant into the list of free grants */
1480 for (i = 0; i < num_grant; i++) {
1481 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1482 /*
1483 * If the grant is still mapped by the backend (the
1484 * backend has chosen to make this grant persistent)
1485 * we add it at the head of the list, so it will be
1486 * reused first.
1487 */
1488 if (!info->feature_persistent)
1489 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1490 s->grants_used[i]->gref);
1491 list_add(&s->grants_used[i]->node, &rinfo->grants);
1492 rinfo->persistent_gnts_c++;
1493 } else {
1494 /*
1495 * If the grant is not mapped by the backend we end the
1496 * foreign access and add it to the tail of the list,
1497 * so it will not be picked again unless we run out of
1498 * persistent grants.
1499 */
1500 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1501 s->grants_used[i]->gref = GRANT_INVALID_REF;
1502 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1503 }
1504 }
1505 if (s->req.operation == BLKIF_OP_INDIRECT) {
1506 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1507 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1508 if (!info->feature_persistent)
1509 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1510 s->indirect_grants[i]->gref);
1511 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1512 rinfo->persistent_gnts_c++;
1513 } else {
1514 struct page *indirect_page;
1515
1516 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1517 /*
1518 * Add the used indirect page back to the list of
1519 * available pages for indirect grefs.
1520 */
1521 if (!info->feature_persistent) {
1522 indirect_page = s->indirect_grants[i]->page;
1523 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1524 }
1525 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1526 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1527 }
1528 }
1529 }
1530
1531 return 1;
1532 }
1533
1534 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1535 {
1536 struct request *req;
1537 struct blkif_response *bret;
1538 RING_IDX i, rp;
1539 unsigned long flags;
1540 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1541 struct blkfront_info *info = rinfo->dev_info;
1542 int error;
1543
1544 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1545 return IRQ_HANDLED;
1546
1547 spin_lock_irqsave(&rinfo->ring_lock, flags);
1548 again:
1549 rp = rinfo->ring.sring->rsp_prod;
1550 rmb(); /* Ensure we see queued responses up to 'rp'. */
1551
1552 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1553 unsigned long id;
1554
1555 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1556 id = bret->id;
1557 /*
1558 * The backend has messed up and given us an id that we would
1559 * never have given to it (we stamp it up to BLK_RING_SIZE -
1560 * look in get_id_from_freelist.
1561 */
1562 if (id >= BLK_RING_SIZE(info)) {
1563 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1564 info->gd->disk_name, op_name(bret->operation), id);
1565 /* We can't safely get the 'struct request' as
1566 * the id is busted. */
1567 continue;
1568 }
1569 req = rinfo->shadow[id].request;
1570
1571 if (bret->operation != BLKIF_OP_DISCARD) {
1572 /*
1573 * We may need to wait for an extra response if the
1574 * I/O request is split in 2
1575 */
1576 if (!blkif_completion(&id, rinfo, bret))
1577 continue;
1578 }
1579
1580 if (add_id_to_freelist(rinfo, id)) {
1581 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1582 info->gd->disk_name, op_name(bret->operation), id);
1583 continue;
1584 }
1585
1586 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1587 switch (bret->operation) {
1588 case BLKIF_OP_DISCARD:
1589 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1590 struct request_queue *rq = info->rq;
1591 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1592 info->gd->disk_name, op_name(bret->operation));
1593 error = -EOPNOTSUPP;
1594 info->feature_discard = 0;
1595 info->feature_secdiscard = 0;
1596 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1597 queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1598 }
1599 blk_mq_complete_request(req, error);
1600 break;
1601 case BLKIF_OP_FLUSH_DISKCACHE:
1602 case BLKIF_OP_WRITE_BARRIER:
1603 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1604 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1605 info->gd->disk_name, op_name(bret->operation));
1606 error = -EOPNOTSUPP;
1607 }
1608 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1609 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1610 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1611 info->gd->disk_name, op_name(bret->operation));
1612 error = -EOPNOTSUPP;
1613 }
1614 if (unlikely(error)) {
1615 if (error == -EOPNOTSUPP)
1616 error = 0;
1617 info->feature_fua = 0;
1618 info->feature_flush = 0;
1619 xlvbd_flush(info);
1620 }
1621 /* fall through */
1622 case BLKIF_OP_READ:
1623 case BLKIF_OP_WRITE:
1624 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1625 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1626 "request: %x\n", bret->status);
1627
1628 blk_mq_complete_request(req, error);
1629 break;
1630 default:
1631 BUG();
1632 }
1633 }
1634
1635 rinfo->ring.rsp_cons = i;
1636
1637 if (i != rinfo->ring.req_prod_pvt) {
1638 int more_to_do;
1639 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1640 if (more_to_do)
1641 goto again;
1642 } else
1643 rinfo->ring.sring->rsp_event = i + 1;
1644
1645 kick_pending_request_queues_locked(rinfo);
1646
1647 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1648
1649 return IRQ_HANDLED;
1650 }
1651
1652
1653 static int setup_blkring(struct xenbus_device *dev,
1654 struct blkfront_ring_info *rinfo)
1655 {
1656 struct blkif_sring *sring;
1657 int err, i;
1658 struct blkfront_info *info = rinfo->dev_info;
1659 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1660 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1661
1662 for (i = 0; i < info->nr_ring_pages; i++)
1663 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1664
1665 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1666 get_order(ring_size));
1667 if (!sring) {
1668 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1669 return -ENOMEM;
1670 }
1671 SHARED_RING_INIT(sring);
1672 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1673
1674 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1675 if (err < 0) {
1676 free_pages((unsigned long)sring, get_order(ring_size));
1677 rinfo->ring.sring = NULL;
1678 goto fail;
1679 }
1680 for (i = 0; i < info->nr_ring_pages; i++)
1681 rinfo->ring_ref[i] = gref[i];
1682
1683 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1684 if (err)
1685 goto fail;
1686
1687 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1688 "blkif", rinfo);
1689 if (err <= 0) {
1690 xenbus_dev_fatal(dev, err,
1691 "bind_evtchn_to_irqhandler failed");
1692 goto fail;
1693 }
1694 rinfo->irq = err;
1695
1696 return 0;
1697 fail:
1698 blkif_free(info, 0);
1699 return err;
1700 }
1701
1702 /*
1703 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1704 * ring buffer may have multi pages depending on ->nr_ring_pages.
1705 */
1706 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1707 struct blkfront_ring_info *rinfo, const char *dir)
1708 {
1709 int err;
1710 unsigned int i;
1711 const char *message = NULL;
1712 struct blkfront_info *info = rinfo->dev_info;
1713
1714 if (info->nr_ring_pages == 1) {
1715 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1716 if (err) {
1717 message = "writing ring-ref";
1718 goto abort_transaction;
1719 }
1720 } else {
1721 for (i = 0; i < info->nr_ring_pages; i++) {
1722 char ring_ref_name[RINGREF_NAME_LEN];
1723
1724 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1725 err = xenbus_printf(xbt, dir, ring_ref_name,
1726 "%u", rinfo->ring_ref[i]);
1727 if (err) {
1728 message = "writing ring-ref";
1729 goto abort_transaction;
1730 }
1731 }
1732 }
1733
1734 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1735 if (err) {
1736 message = "writing event-channel";
1737 goto abort_transaction;
1738 }
1739
1740 return 0;
1741
1742 abort_transaction:
1743 xenbus_transaction_end(xbt, 1);
1744 if (message)
1745 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1746
1747 return err;
1748 }
1749
1750 /* Common code used when first setting up, and when resuming. */
1751 static int talk_to_blkback(struct xenbus_device *dev,
1752 struct blkfront_info *info)
1753 {
1754 const char *message = NULL;
1755 struct xenbus_transaction xbt;
1756 int err;
1757 unsigned int i, max_page_order = 0;
1758 unsigned int ring_page_order = 0;
1759
1760 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1761 "max-ring-page-order", "%u", &max_page_order);
1762 if (err != 1)
1763 info->nr_ring_pages = 1;
1764 else {
1765 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1766 info->nr_ring_pages = 1 << ring_page_order;
1767 }
1768
1769 for (i = 0; i < info->nr_rings; i++) {
1770 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1771
1772 /* Create shared ring, alloc event channel. */
1773 err = setup_blkring(dev, rinfo);
1774 if (err)
1775 goto destroy_blkring;
1776 }
1777
1778 again:
1779 err = xenbus_transaction_start(&xbt);
1780 if (err) {
1781 xenbus_dev_fatal(dev, err, "starting transaction");
1782 goto destroy_blkring;
1783 }
1784
1785 if (info->nr_ring_pages > 1) {
1786 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1787 ring_page_order);
1788 if (err) {
1789 message = "writing ring-page-order";
1790 goto abort_transaction;
1791 }
1792 }
1793
1794 /* We already got the number of queues/rings in _probe */
1795 if (info->nr_rings == 1) {
1796 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1797 if (err)
1798 goto destroy_blkring;
1799 } else {
1800 char *path;
1801 size_t pathsize;
1802
1803 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1804 info->nr_rings);
1805 if (err) {
1806 message = "writing multi-queue-num-queues";
1807 goto abort_transaction;
1808 }
1809
1810 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1811 path = kmalloc(pathsize, GFP_KERNEL);
1812 if (!path) {
1813 err = -ENOMEM;
1814 message = "ENOMEM while writing ring references";
1815 goto abort_transaction;
1816 }
1817
1818 for (i = 0; i < info->nr_rings; i++) {
1819 memset(path, 0, pathsize);
1820 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1821 err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1822 if (err) {
1823 kfree(path);
1824 goto destroy_blkring;
1825 }
1826 }
1827 kfree(path);
1828 }
1829 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1830 XEN_IO_PROTO_ABI_NATIVE);
1831 if (err) {
1832 message = "writing protocol";
1833 goto abort_transaction;
1834 }
1835 err = xenbus_printf(xbt, dev->nodename,
1836 "feature-persistent", "%u", 1);
1837 if (err)
1838 dev_warn(&dev->dev,
1839 "writing persistent grants feature to xenbus");
1840
1841 err = xenbus_transaction_end(xbt, 0);
1842 if (err) {
1843 if (err == -EAGAIN)
1844 goto again;
1845 xenbus_dev_fatal(dev, err, "completing transaction");
1846 goto destroy_blkring;
1847 }
1848
1849 for (i = 0; i < info->nr_rings; i++) {
1850 unsigned int j;
1851 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1852
1853 for (j = 0; j < BLK_RING_SIZE(info); j++)
1854 rinfo->shadow[j].req.u.rw.id = j + 1;
1855 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1856 }
1857 xenbus_switch_state(dev, XenbusStateInitialised);
1858
1859 return 0;
1860
1861 abort_transaction:
1862 xenbus_transaction_end(xbt, 1);
1863 if (message)
1864 xenbus_dev_fatal(dev, err, "%s", message);
1865 destroy_blkring:
1866 blkif_free(info, 0);
1867
1868 kfree(info);
1869 dev_set_drvdata(&dev->dev, NULL);
1870
1871 return err;
1872 }
1873
1874 static int negotiate_mq(struct blkfront_info *info)
1875 {
1876 unsigned int backend_max_queues = 0;
1877 int err;
1878 unsigned int i;
1879
1880 BUG_ON(info->nr_rings);
1881
1882 /* Check if backend supports multiple queues. */
1883 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1884 "multi-queue-max-queues", "%u", &backend_max_queues);
1885 if (err < 0)
1886 backend_max_queues = 1;
1887
1888 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1889 /* We need at least one ring. */
1890 if (!info->nr_rings)
1891 info->nr_rings = 1;
1892
1893 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1894 if (!info->rinfo) {
1895 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1896 return -ENOMEM;
1897 }
1898
1899 for (i = 0; i < info->nr_rings; i++) {
1900 struct blkfront_ring_info *rinfo;
1901
1902 rinfo = &info->rinfo[i];
1903 INIT_LIST_HEAD(&rinfo->indirect_pages);
1904 INIT_LIST_HEAD(&rinfo->grants);
1905 rinfo->dev_info = info;
1906 INIT_WORK(&rinfo->work, blkif_restart_queue);
1907 spin_lock_init(&rinfo->ring_lock);
1908 }
1909 return 0;
1910 }
1911 /**
1912 * Entry point to this code when a new device is created. Allocate the basic
1913 * structures and the ring buffer for communication with the backend, and
1914 * inform the backend of the appropriate details for those. Switch to
1915 * Initialised state.
1916 */
1917 static int blkfront_probe(struct xenbus_device *dev,
1918 const struct xenbus_device_id *id)
1919 {
1920 int err, vdevice;
1921 struct blkfront_info *info;
1922
1923 /* FIXME: Use dynamic device id if this is not set. */
1924 err = xenbus_scanf(XBT_NIL, dev->nodename,
1925 "virtual-device", "%i", &vdevice);
1926 if (err != 1) {
1927 /* go looking in the extended area instead */
1928 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1929 "%i", &vdevice);
1930 if (err != 1) {
1931 xenbus_dev_fatal(dev, err, "reading virtual-device");
1932 return err;
1933 }
1934 }
1935
1936 if (xen_hvm_domain()) {
1937 char *type;
1938 int len;
1939 /* no unplug has been done: do not hook devices != xen vbds */
1940 if (xen_has_pv_and_legacy_disk_devices()) {
1941 int major;
1942
1943 if (!VDEV_IS_EXTENDED(vdevice))
1944 major = BLKIF_MAJOR(vdevice);
1945 else
1946 major = XENVBD_MAJOR;
1947
1948 if (major != XENVBD_MAJOR) {
1949 printk(KERN_INFO
1950 "%s: HVM does not support vbd %d as xen block device\n",
1951 __func__, vdevice);
1952 return -ENODEV;
1953 }
1954 }
1955 /* do not create a PV cdrom device if we are an HVM guest */
1956 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1957 if (IS_ERR(type))
1958 return -ENODEV;
1959 if (strncmp(type, "cdrom", 5) == 0) {
1960 kfree(type);
1961 return -ENODEV;
1962 }
1963 kfree(type);
1964 }
1965 info = kzalloc(sizeof(*info), GFP_KERNEL);
1966 if (!info) {
1967 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1968 return -ENOMEM;
1969 }
1970
1971 info->xbdev = dev;
1972 err = negotiate_mq(info);
1973 if (err) {
1974 kfree(info);
1975 return err;
1976 }
1977
1978 mutex_init(&info->mutex);
1979 info->vdevice = vdevice;
1980 info->connected = BLKIF_STATE_DISCONNECTED;
1981
1982 /* Front end dir is a number, which is used as the id. */
1983 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1984 dev_set_drvdata(&dev->dev, info);
1985
1986 return 0;
1987 }
1988
1989 static void split_bio_end(struct bio *bio)
1990 {
1991 struct split_bio *split_bio = bio->bi_private;
1992
1993 if (atomic_dec_and_test(&split_bio->pending)) {
1994 split_bio->bio->bi_phys_segments = 0;
1995 split_bio->bio->bi_error = bio->bi_error;
1996 bio_endio(split_bio->bio);
1997 kfree(split_bio);
1998 }
1999 bio_put(bio);
2000 }
2001
2002 static int blkif_recover(struct blkfront_info *info)
2003 {
2004 unsigned int i, r_index;
2005 struct request *req, *n;
2006 struct blk_shadow *copy;
2007 int rc;
2008 struct bio *bio, *cloned_bio;
2009 struct bio_list bio_list, merge_bio;
2010 unsigned int segs, offset;
2011 int pending, size;
2012 struct split_bio *split_bio;
2013 struct list_head requests;
2014
2015 blkfront_gather_backend_features(info);
2016 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2017 blk_queue_max_segments(info->rq, segs);
2018 bio_list_init(&bio_list);
2019 INIT_LIST_HEAD(&requests);
2020
2021 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2022 struct blkfront_ring_info *rinfo;
2023
2024 rinfo = &info->rinfo[r_index];
2025 /* Stage 1: Make a safe copy of the shadow state. */
2026 copy = kmemdup(rinfo->shadow, sizeof(rinfo->shadow),
2027 GFP_NOIO | __GFP_REPEAT | __GFP_HIGH);
2028 if (!copy)
2029 return -ENOMEM;
2030
2031 /* Stage 2: Set up free list. */
2032 memset(&rinfo->shadow, 0, sizeof(rinfo->shadow));
2033 for (i = 0; i < BLK_RING_SIZE(info); i++)
2034 rinfo->shadow[i].req.u.rw.id = i+1;
2035 rinfo->shadow_free = rinfo->ring.req_prod_pvt;
2036 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
2037
2038 rc = blkfront_setup_indirect(rinfo);
2039 if (rc) {
2040 kfree(copy);
2041 return rc;
2042 }
2043
2044 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2045 /* Not in use? */
2046 if (!copy[i].request)
2047 continue;
2048
2049 /*
2050 * Get the bios in the request so we can re-queue them.
2051 */
2052 if (req_op(copy[i].request) == REQ_OP_FLUSH ||
2053 req_op(copy[i].request) == REQ_OP_DISCARD ||
2054 req_op(copy[i].request) == REQ_OP_SECURE_ERASE ||
2055 copy[i].request->cmd_flags & REQ_FUA) {
2056 /*
2057 * Flush operations don't contain bios, so
2058 * we need to requeue the whole request
2059 *
2060 * XXX: but this doesn't make any sense for a
2061 * write with the FUA flag set..
2062 */
2063 list_add(&copy[i].request->queuelist, &requests);
2064 continue;
2065 }
2066 merge_bio.head = copy[i].request->bio;
2067 merge_bio.tail = copy[i].request->biotail;
2068 bio_list_merge(&bio_list, &merge_bio);
2069 copy[i].request->bio = NULL;
2070 blk_end_request_all(copy[i].request, 0);
2071 }
2072
2073 kfree(copy);
2074 }
2075 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2076
2077 /* Now safe for us to use the shared ring */
2078 info->connected = BLKIF_STATE_CONNECTED;
2079
2080 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2081 struct blkfront_ring_info *rinfo;
2082
2083 rinfo = &info->rinfo[r_index];
2084 /* Kick any other new requests queued since we resumed */
2085 kick_pending_request_queues(rinfo);
2086 }
2087
2088 list_for_each_entry_safe(req, n, &requests, queuelist) {
2089 /* Requeue pending requests (flush or discard) */
2090 list_del_init(&req->queuelist);
2091 BUG_ON(req->nr_phys_segments > segs);
2092 blk_mq_requeue_request(req);
2093 }
2094 blk_mq_kick_requeue_list(info->rq);
2095
2096 while ((bio = bio_list_pop(&bio_list)) != NULL) {
2097 /* Traverse the list of pending bios and re-queue them */
2098 if (bio_segments(bio) > segs) {
2099 /*
2100 * This bio has more segments than what we can
2101 * handle, we have to split it.
2102 */
2103 pending = (bio_segments(bio) + segs - 1) / segs;
2104 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2105 BUG_ON(split_bio == NULL);
2106 atomic_set(&split_bio->pending, pending);
2107 split_bio->bio = bio;
2108 for (i = 0; i < pending; i++) {
2109 offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2110 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2111 (unsigned int)bio_sectors(bio) - offset);
2112 cloned_bio = bio_clone(bio, GFP_NOIO);
2113 BUG_ON(cloned_bio == NULL);
2114 bio_trim(cloned_bio, offset, size);
2115 cloned_bio->bi_private = split_bio;
2116 cloned_bio->bi_end_io = split_bio_end;
2117 submit_bio(cloned_bio);
2118 }
2119 /*
2120 * Now we have to wait for all those smaller bios to
2121 * end, so we can also end the "parent" bio.
2122 */
2123 continue;
2124 }
2125 /* We don't need to split this bio */
2126 submit_bio(bio);
2127 }
2128
2129 return 0;
2130 }
2131
2132 /**
2133 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2134 * driver restart. We tear down our blkif structure and recreate it, but
2135 * leave the device-layer structures intact so that this is transparent to the
2136 * rest of the kernel.
2137 */
2138 static int blkfront_resume(struct xenbus_device *dev)
2139 {
2140 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2141 int err = 0;
2142
2143 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2144
2145 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2146
2147 err = negotiate_mq(info);
2148 if (err)
2149 return err;
2150
2151 err = talk_to_blkback(dev, info);
2152
2153 /*
2154 * We have to wait for the backend to switch to
2155 * connected state, since we want to read which
2156 * features it supports.
2157 */
2158
2159 return err;
2160 }
2161
2162 static void blkfront_closing(struct blkfront_info *info)
2163 {
2164 struct xenbus_device *xbdev = info->xbdev;
2165 struct block_device *bdev = NULL;
2166
2167 mutex_lock(&info->mutex);
2168
2169 if (xbdev->state == XenbusStateClosing) {
2170 mutex_unlock(&info->mutex);
2171 return;
2172 }
2173
2174 if (info->gd)
2175 bdev = bdget_disk(info->gd, 0);
2176
2177 mutex_unlock(&info->mutex);
2178
2179 if (!bdev) {
2180 xenbus_frontend_closed(xbdev);
2181 return;
2182 }
2183
2184 mutex_lock(&bdev->bd_mutex);
2185
2186 if (bdev->bd_openers) {
2187 xenbus_dev_error(xbdev, -EBUSY,
2188 "Device in use; refusing to close");
2189 xenbus_switch_state(xbdev, XenbusStateClosing);
2190 } else {
2191 xlvbd_release_gendisk(info);
2192 xenbus_frontend_closed(xbdev);
2193 }
2194
2195 mutex_unlock(&bdev->bd_mutex);
2196 bdput(bdev);
2197 }
2198
2199 static void blkfront_setup_discard(struct blkfront_info *info)
2200 {
2201 int err;
2202 unsigned int discard_granularity;
2203 unsigned int discard_alignment;
2204 unsigned int discard_secure;
2205
2206 info->feature_discard = 1;
2207 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2208 "discard-granularity", "%u", &discard_granularity,
2209 "discard-alignment", "%u", &discard_alignment,
2210 NULL);
2211 if (!err) {
2212 info->discard_granularity = discard_granularity;
2213 info->discard_alignment = discard_alignment;
2214 }
2215 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2216 "discard-secure", "%d", &discard_secure,
2217 NULL);
2218 if (!err)
2219 info->feature_secdiscard = !!discard_secure;
2220 }
2221
2222 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2223 {
2224 unsigned int psegs, grants;
2225 int err, i;
2226 struct blkfront_info *info = rinfo->dev_info;
2227
2228 if (info->max_indirect_segments == 0) {
2229 if (!HAS_EXTRA_REQ)
2230 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2231 else {
2232 /*
2233 * When an extra req is required, the maximum
2234 * grants supported is related to the size of the
2235 * Linux block segment.
2236 */
2237 grants = GRANTS_PER_PSEG;
2238 }
2239 }
2240 else
2241 grants = info->max_indirect_segments;
2242 psegs = grants / GRANTS_PER_PSEG;
2243
2244 err = fill_grant_buffer(rinfo,
2245 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2246 if (err)
2247 goto out_of_memory;
2248
2249 if (!info->feature_persistent && info->max_indirect_segments) {
2250 /*
2251 * We are using indirect descriptors but not persistent
2252 * grants, we need to allocate a set of pages that can be
2253 * used for mapping indirect grefs
2254 */
2255 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2256
2257 BUG_ON(!list_empty(&rinfo->indirect_pages));
2258 for (i = 0; i < num; i++) {
2259 struct page *indirect_page = alloc_page(GFP_NOIO);
2260 if (!indirect_page)
2261 goto out_of_memory;
2262 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2263 }
2264 }
2265
2266 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2267 rinfo->shadow[i].grants_used = kzalloc(
2268 sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2269 GFP_NOIO);
2270 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2271 if (info->max_indirect_segments)
2272 rinfo->shadow[i].indirect_grants = kzalloc(
2273 sizeof(rinfo->shadow[i].indirect_grants[0]) *
2274 INDIRECT_GREFS(grants),
2275 GFP_NOIO);
2276 if ((rinfo->shadow[i].grants_used == NULL) ||
2277 (rinfo->shadow[i].sg == NULL) ||
2278 (info->max_indirect_segments &&
2279 (rinfo->shadow[i].indirect_grants == NULL)))
2280 goto out_of_memory;
2281 sg_init_table(rinfo->shadow[i].sg, psegs);
2282 }
2283
2284
2285 return 0;
2286
2287 out_of_memory:
2288 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2289 kfree(rinfo->shadow[i].grants_used);
2290 rinfo->shadow[i].grants_used = NULL;
2291 kfree(rinfo->shadow[i].sg);
2292 rinfo->shadow[i].sg = NULL;
2293 kfree(rinfo->shadow[i].indirect_grants);
2294 rinfo->shadow[i].indirect_grants = NULL;
2295 }
2296 if (!list_empty(&rinfo->indirect_pages)) {
2297 struct page *indirect_page, *n;
2298 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2299 list_del(&indirect_page->lru);
2300 __free_page(indirect_page);
2301 }
2302 }
2303 return -ENOMEM;
2304 }
2305
2306 /*
2307 * Gather all backend feature-*
2308 */
2309 static void blkfront_gather_backend_features(struct blkfront_info *info)
2310 {
2311 int err;
2312 int barrier, flush, discard, persistent;
2313 unsigned int indirect_segments;
2314
2315 info->feature_flush = 0;
2316 info->feature_fua = 0;
2317
2318 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2319 "feature-barrier", "%d", &barrier,
2320 NULL);
2321
2322 /*
2323 * If there's no "feature-barrier" defined, then it means
2324 * we're dealing with a very old backend which writes
2325 * synchronously; nothing to do.
2326 *
2327 * If there are barriers, then we use flush.
2328 */
2329 if (!err && barrier) {
2330 info->feature_flush = 1;
2331 info->feature_fua = 1;
2332 }
2333
2334 /*
2335 * And if there is "feature-flush-cache" use that above
2336 * barriers.
2337 */
2338 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2339 "feature-flush-cache", "%d", &flush,
2340 NULL);
2341
2342 if (!err && flush) {
2343 info->feature_flush = 1;
2344 info->feature_fua = 0;
2345 }
2346
2347 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2348 "feature-discard", "%d", &discard,
2349 NULL);
2350
2351 if (!err && discard)
2352 blkfront_setup_discard(info);
2353
2354 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2355 "feature-persistent", "%u", &persistent,
2356 NULL);
2357 if (err)
2358 info->feature_persistent = 0;
2359 else
2360 info->feature_persistent = persistent;
2361
2362 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2363 "feature-max-indirect-segments", "%u", &indirect_segments,
2364 NULL);
2365 if (err)
2366 info->max_indirect_segments = 0;
2367 else
2368 info->max_indirect_segments = min(indirect_segments,
2369 xen_blkif_max_segments);
2370 }
2371
2372 /*
2373 * Invoked when the backend is finally 'ready' (and has told produced
2374 * the details about the physical device - #sectors, size, etc).
2375 */
2376 static void blkfront_connect(struct blkfront_info *info)
2377 {
2378 unsigned long long sectors;
2379 unsigned long sector_size;
2380 unsigned int physical_sector_size;
2381 unsigned int binfo;
2382 int err, i;
2383
2384 switch (info->connected) {
2385 case BLKIF_STATE_CONNECTED:
2386 /*
2387 * Potentially, the back-end may be signalling
2388 * a capacity change; update the capacity.
2389 */
2390 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2391 "sectors", "%Lu", &sectors);
2392 if (XENBUS_EXIST_ERR(err))
2393 return;
2394 printk(KERN_INFO "Setting capacity to %Lu\n",
2395 sectors);
2396 set_capacity(info->gd, sectors);
2397 revalidate_disk(info->gd);
2398
2399 return;
2400 case BLKIF_STATE_SUSPENDED:
2401 /*
2402 * If we are recovering from suspension, we need to wait
2403 * for the backend to announce it's features before
2404 * reconnecting, at least we need to know if the backend
2405 * supports indirect descriptors, and how many.
2406 */
2407 blkif_recover(info);
2408 return;
2409
2410 default:
2411 break;
2412 }
2413
2414 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2415 __func__, info->xbdev->otherend);
2416
2417 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2418 "sectors", "%llu", &sectors,
2419 "info", "%u", &binfo,
2420 "sector-size", "%lu", &sector_size,
2421 NULL);
2422 if (err) {
2423 xenbus_dev_fatal(info->xbdev, err,
2424 "reading backend fields at %s",
2425 info->xbdev->otherend);
2426 return;
2427 }
2428
2429 /*
2430 * physcial-sector-size is a newer field, so old backends may not
2431 * provide this. Assume physical sector size to be the same as
2432 * sector_size in that case.
2433 */
2434 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2435 "physical-sector-size", "%u", &physical_sector_size);
2436 if (err != 1)
2437 physical_sector_size = sector_size;
2438
2439 blkfront_gather_backend_features(info);
2440 for (i = 0; i < info->nr_rings; i++) {
2441 err = blkfront_setup_indirect(&info->rinfo[i]);
2442 if (err) {
2443 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2444 info->xbdev->otherend);
2445 blkif_free(info, 0);
2446 break;
2447 }
2448 }
2449
2450 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2451 physical_sector_size);
2452 if (err) {
2453 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2454 info->xbdev->otherend);
2455 return;
2456 }
2457
2458 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2459
2460 /* Kick pending requests. */
2461 info->connected = BLKIF_STATE_CONNECTED;
2462 for (i = 0; i < info->nr_rings; i++)
2463 kick_pending_request_queues(&info->rinfo[i]);
2464
2465 device_add_disk(&info->xbdev->dev, info->gd);
2466
2467 info->is_ready = 1;
2468 }
2469
2470 /**
2471 * Callback received when the backend's state changes.
2472 */
2473 static void blkback_changed(struct xenbus_device *dev,
2474 enum xenbus_state backend_state)
2475 {
2476 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2477
2478 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2479
2480 switch (backend_state) {
2481 case XenbusStateInitWait:
2482 if (dev->state != XenbusStateInitialising)
2483 break;
2484 if (talk_to_blkback(dev, info))
2485 break;
2486 case XenbusStateInitialising:
2487 case XenbusStateInitialised:
2488 case XenbusStateReconfiguring:
2489 case XenbusStateReconfigured:
2490 case XenbusStateUnknown:
2491 break;
2492
2493 case XenbusStateConnected:
2494 if (dev->state != XenbusStateInitialised) {
2495 if (talk_to_blkback(dev, info))
2496 break;
2497 }
2498 blkfront_connect(info);
2499 break;
2500
2501 case XenbusStateClosed:
2502 if (dev->state == XenbusStateClosed)
2503 break;
2504 /* Missed the backend's Closing state -- fallthrough */
2505 case XenbusStateClosing:
2506 if (info)
2507 blkfront_closing(info);
2508 break;
2509 }
2510 }
2511
2512 static int blkfront_remove(struct xenbus_device *xbdev)
2513 {
2514 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2515 struct block_device *bdev = NULL;
2516 struct gendisk *disk;
2517
2518 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2519
2520 blkif_free(info, 0);
2521
2522 mutex_lock(&info->mutex);
2523
2524 disk = info->gd;
2525 if (disk)
2526 bdev = bdget_disk(disk, 0);
2527
2528 info->xbdev = NULL;
2529 mutex_unlock(&info->mutex);
2530
2531 if (!bdev) {
2532 kfree(info);
2533 return 0;
2534 }
2535
2536 /*
2537 * The xbdev was removed before we reached the Closed
2538 * state. See if it's safe to remove the disk. If the bdev
2539 * isn't closed yet, we let release take care of it.
2540 */
2541
2542 mutex_lock(&bdev->bd_mutex);
2543 info = disk->private_data;
2544
2545 dev_warn(disk_to_dev(disk),
2546 "%s was hot-unplugged, %d stale handles\n",
2547 xbdev->nodename, bdev->bd_openers);
2548
2549 if (info && !bdev->bd_openers) {
2550 xlvbd_release_gendisk(info);
2551 disk->private_data = NULL;
2552 kfree(info);
2553 }
2554
2555 mutex_unlock(&bdev->bd_mutex);
2556 bdput(bdev);
2557
2558 return 0;
2559 }
2560
2561 static int blkfront_is_ready(struct xenbus_device *dev)
2562 {
2563 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2564
2565 return info->is_ready && info->xbdev;
2566 }
2567
2568 static int blkif_open(struct block_device *bdev, fmode_t mode)
2569 {
2570 struct gendisk *disk = bdev->bd_disk;
2571 struct blkfront_info *info;
2572 int err = 0;
2573
2574 mutex_lock(&blkfront_mutex);
2575
2576 info = disk->private_data;
2577 if (!info) {
2578 /* xbdev gone */
2579 err = -ERESTARTSYS;
2580 goto out;
2581 }
2582
2583 mutex_lock(&info->mutex);
2584
2585 if (!info->gd)
2586 /* xbdev is closed */
2587 err = -ERESTARTSYS;
2588
2589 mutex_unlock(&info->mutex);
2590
2591 out:
2592 mutex_unlock(&blkfront_mutex);
2593 return err;
2594 }
2595
2596 static void blkif_release(struct gendisk *disk, fmode_t mode)
2597 {
2598 struct blkfront_info *info = disk->private_data;
2599 struct block_device *bdev;
2600 struct xenbus_device *xbdev;
2601
2602 mutex_lock(&blkfront_mutex);
2603
2604 bdev = bdget_disk(disk, 0);
2605
2606 if (!bdev) {
2607 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2608 goto out_mutex;
2609 }
2610 if (bdev->bd_openers)
2611 goto out;
2612
2613 /*
2614 * Check if we have been instructed to close. We will have
2615 * deferred this request, because the bdev was still open.
2616 */
2617
2618 mutex_lock(&info->mutex);
2619 xbdev = info->xbdev;
2620
2621 if (xbdev && xbdev->state == XenbusStateClosing) {
2622 /* pending switch to state closed */
2623 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2624 xlvbd_release_gendisk(info);
2625 xenbus_frontend_closed(info->xbdev);
2626 }
2627
2628 mutex_unlock(&info->mutex);
2629
2630 if (!xbdev) {
2631 /* sudden device removal */
2632 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2633 xlvbd_release_gendisk(info);
2634 disk->private_data = NULL;
2635 kfree(info);
2636 }
2637
2638 out:
2639 bdput(bdev);
2640 out_mutex:
2641 mutex_unlock(&blkfront_mutex);
2642 }
2643
2644 static const struct block_device_operations xlvbd_block_fops =
2645 {
2646 .owner = THIS_MODULE,
2647 .open = blkif_open,
2648 .release = blkif_release,
2649 .getgeo = blkif_getgeo,
2650 .ioctl = blkif_ioctl,
2651 };
2652
2653
2654 static const struct xenbus_device_id blkfront_ids[] = {
2655 { "vbd" },
2656 { "" }
2657 };
2658
2659 static struct xenbus_driver blkfront_driver = {
2660 .ids = blkfront_ids,
2661 .probe = blkfront_probe,
2662 .remove = blkfront_remove,
2663 .resume = blkfront_resume,
2664 .otherend_changed = blkback_changed,
2665 .is_ready = blkfront_is_ready,
2666 };
2667
2668 static int __init xlblk_init(void)
2669 {
2670 int ret;
2671 int nr_cpus = num_online_cpus();
2672
2673 if (!xen_domain())
2674 return -ENODEV;
2675
2676 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2677 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2678 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2679 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2680 }
2681
2682 if (xen_blkif_max_queues > nr_cpus) {
2683 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2684 xen_blkif_max_queues, nr_cpus);
2685 xen_blkif_max_queues = nr_cpus;
2686 }
2687
2688 if (!xen_has_pv_disk_devices())
2689 return -ENODEV;
2690
2691 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2692 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2693 XENVBD_MAJOR, DEV_NAME);
2694 return -ENODEV;
2695 }
2696
2697 ret = xenbus_register_frontend(&blkfront_driver);
2698 if (ret) {
2699 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2700 return ret;
2701 }
2702
2703 return 0;
2704 }
2705 module_init(xlblk_init);
2706
2707
2708 static void __exit xlblk_exit(void)
2709 {
2710 xenbus_unregister_driver(&blkfront_driver);
2711 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2712 kfree(minors);
2713 }
2714 module_exit(xlblk_exit);
2715
2716 MODULE_DESCRIPTION("Xen virtual block device frontend");
2717 MODULE_LICENSE("GPL");
2718 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2719 MODULE_ALIAS("xen:vbd");
2720 MODULE_ALIAS("xenblk");