]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/xen-blkfront.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / drivers / block / xen-blkfront.c
1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60
61 #include <asm/xen/hypervisor.h>
62
63 /*
64 * The minimal size of segment supported by the block framework is PAGE_SIZE.
65 * When Linux is using a different page size than Xen, it may not be possible
66 * to put all the data in a single segment.
67 * This can happen when the backend doesn't support indirect descriptor and
68 * therefore the maximum amount of data that a request can carry is
69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70 *
71 * Note that we only support one extra request. So the Linux page size
72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73 * 88KB.
74 */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76
77 enum blkif_state {
78 BLKIF_STATE_DISCONNECTED,
79 BLKIF_STATE_CONNECTED,
80 BLKIF_STATE_SUSPENDED,
81 };
82
83 struct grant {
84 grant_ref_t gref;
85 struct page *page;
86 struct list_head node;
87 };
88
89 enum blk_req_status {
90 REQ_WAITING,
91 REQ_DONE,
92 REQ_ERROR,
93 REQ_EOPNOTSUPP,
94 };
95
96 struct blk_shadow {
97 struct blkif_request req;
98 struct request *request;
99 struct grant **grants_used;
100 struct grant **indirect_grants;
101 struct scatterlist *sg;
102 unsigned int num_sg;
103 enum blk_req_status status;
104
105 #define NO_ASSOCIATED_ID ~0UL
106 /*
107 * Id of the sibling if we ever need 2 requests when handling a
108 * block I/O request
109 */
110 unsigned long associated_id;
111 };
112
113 struct split_bio {
114 struct bio *bio;
115 atomic_t pending;
116 };
117
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120
121 /*
122 * Maximum number of segments in indirect requests, the actual value used by
123 * the frontend driver is the minimum of this value and the value provided
124 * by the backend driver.
125 */
126
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 "Maximum amount of segments in indirect requests (default is 32)");
132
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136
137 /*
138 * Maximum order of pages to be used for the shared ring between front and
139 * backend, 4KB page granularity is used.
140 */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144
145 #define BLK_RING_SIZE(info) \
146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147
148 #define BLK_MAX_RING_SIZE \
149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150
151 /*
152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153 * characters are enough. Define to 20 to keep consistent with backend.
154 */
155 #define RINGREF_NAME_LEN (20)
156 /*
157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158 */
159 #define QUEUE_NAME_LEN (17)
160
161 /*
162 * Per-ring info.
163 * Every blkfront device can associate with one or more blkfront_ring_info,
164 * depending on how many hardware queues/rings to be used.
165 */
166 struct blkfront_ring_info {
167 /* Lock to protect data in every ring buffer. */
168 spinlock_t ring_lock;
169 struct blkif_front_ring ring;
170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 unsigned int evtchn, irq;
172 struct work_struct work;
173 struct gnttab_free_callback callback;
174 struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 struct list_head indirect_pages;
176 struct list_head grants;
177 unsigned int persistent_gnts_c;
178 unsigned long shadow_free;
179 struct blkfront_info *dev_info;
180 };
181
182 /*
183 * We have one of these per vbd, whether ide, scsi or 'other'. They
184 * hang in private_data off the gendisk structure. We may end up
185 * putting all kinds of interesting stuff here :-)
186 */
187 struct blkfront_info
188 {
189 struct mutex mutex;
190 struct xenbus_device *xbdev;
191 struct gendisk *gd;
192 int vdevice;
193 blkif_vdev_t handle;
194 enum blkif_state connected;
195 /* Number of pages per ring buffer. */
196 unsigned int nr_ring_pages;
197 struct request_queue *rq;
198 unsigned int feature_flush;
199 unsigned int feature_fua;
200 unsigned int feature_discard:1;
201 unsigned int feature_secdiscard:1;
202 unsigned int discard_granularity;
203 unsigned int discard_alignment;
204 unsigned int feature_persistent:1;
205 /* Number of 4KB segments handled */
206 unsigned int max_indirect_segments;
207 int is_ready;
208 struct blk_mq_tag_set tag_set;
209 struct blkfront_ring_info *rinfo;
210 unsigned int nr_rings;
211 /* Save uncomplete reqs and bios for migration. */
212 struct list_head requests;
213 struct bio_list bio_list;
214 };
215
216 static unsigned int nr_minors;
217 static unsigned long *minors;
218 static DEFINE_SPINLOCK(minor_lock);
219
220 #define GRANT_INVALID_REF 0
221
222 #define PARTS_PER_DISK 16
223 #define PARTS_PER_EXT_DISK 256
224
225 #define BLKIF_MAJOR(dev) ((dev)>>8)
226 #define BLKIF_MINOR(dev) ((dev) & 0xff)
227
228 #define EXT_SHIFT 28
229 #define EXTENDED (1<<EXT_SHIFT)
230 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
231 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
232 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
233 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
234 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
235 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
236
237 #define DEV_NAME "xvd" /* name in /dev */
238
239 /*
240 * Grants are always the same size as a Xen page (i.e 4KB).
241 * A physical segment is always the same size as a Linux page.
242 * Number of grants per physical segment
243 */
244 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
245
246 #define GRANTS_PER_INDIRECT_FRAME \
247 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
248
249 #define PSEGS_PER_INDIRECT_FRAME \
250 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
251
252 #define INDIRECT_GREFS(_grants) \
253 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
254
255 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG)
256
257 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
258 static void blkfront_gather_backend_features(struct blkfront_info *info);
259
260 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
261 {
262 unsigned long free = rinfo->shadow_free;
263
264 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
265 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
266 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
267 return free;
268 }
269
270 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
271 unsigned long id)
272 {
273 if (rinfo->shadow[id].req.u.rw.id != id)
274 return -EINVAL;
275 if (rinfo->shadow[id].request == NULL)
276 return -EINVAL;
277 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
278 rinfo->shadow[id].request = NULL;
279 rinfo->shadow_free = id;
280 return 0;
281 }
282
283 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
284 {
285 struct blkfront_info *info = rinfo->dev_info;
286 struct page *granted_page;
287 struct grant *gnt_list_entry, *n;
288 int i = 0;
289
290 while (i < num) {
291 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
292 if (!gnt_list_entry)
293 goto out_of_memory;
294
295 if (info->feature_persistent) {
296 granted_page = alloc_page(GFP_NOIO);
297 if (!granted_page) {
298 kfree(gnt_list_entry);
299 goto out_of_memory;
300 }
301 gnt_list_entry->page = granted_page;
302 }
303
304 gnt_list_entry->gref = GRANT_INVALID_REF;
305 list_add(&gnt_list_entry->node, &rinfo->grants);
306 i++;
307 }
308
309 return 0;
310
311 out_of_memory:
312 list_for_each_entry_safe(gnt_list_entry, n,
313 &rinfo->grants, node) {
314 list_del(&gnt_list_entry->node);
315 if (info->feature_persistent)
316 __free_page(gnt_list_entry->page);
317 kfree(gnt_list_entry);
318 i--;
319 }
320 BUG_ON(i != 0);
321 return -ENOMEM;
322 }
323
324 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
325 {
326 struct grant *gnt_list_entry;
327
328 BUG_ON(list_empty(&rinfo->grants));
329 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
330 node);
331 list_del(&gnt_list_entry->node);
332
333 if (gnt_list_entry->gref != GRANT_INVALID_REF)
334 rinfo->persistent_gnts_c--;
335
336 return gnt_list_entry;
337 }
338
339 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
340 const struct blkfront_info *info)
341 {
342 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
343 info->xbdev->otherend_id,
344 gnt_list_entry->page,
345 0);
346 }
347
348 static struct grant *get_grant(grant_ref_t *gref_head,
349 unsigned long gfn,
350 struct blkfront_ring_info *rinfo)
351 {
352 struct grant *gnt_list_entry = get_free_grant(rinfo);
353 struct blkfront_info *info = rinfo->dev_info;
354
355 if (gnt_list_entry->gref != GRANT_INVALID_REF)
356 return gnt_list_entry;
357
358 /* Assign a gref to this page */
359 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
360 BUG_ON(gnt_list_entry->gref == -ENOSPC);
361 if (info->feature_persistent)
362 grant_foreign_access(gnt_list_entry, info);
363 else {
364 /* Grant access to the GFN passed by the caller */
365 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
366 info->xbdev->otherend_id,
367 gfn, 0);
368 }
369
370 return gnt_list_entry;
371 }
372
373 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
374 struct blkfront_ring_info *rinfo)
375 {
376 struct grant *gnt_list_entry = get_free_grant(rinfo);
377 struct blkfront_info *info = rinfo->dev_info;
378
379 if (gnt_list_entry->gref != GRANT_INVALID_REF)
380 return gnt_list_entry;
381
382 /* Assign a gref to this page */
383 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
384 BUG_ON(gnt_list_entry->gref == -ENOSPC);
385 if (!info->feature_persistent) {
386 struct page *indirect_page;
387
388 /* Fetch a pre-allocated page to use for indirect grefs */
389 BUG_ON(list_empty(&rinfo->indirect_pages));
390 indirect_page = list_first_entry(&rinfo->indirect_pages,
391 struct page, lru);
392 list_del(&indirect_page->lru);
393 gnt_list_entry->page = indirect_page;
394 }
395 grant_foreign_access(gnt_list_entry, info);
396
397 return gnt_list_entry;
398 }
399
400 static const char *op_name(int op)
401 {
402 static const char *const names[] = {
403 [BLKIF_OP_READ] = "read",
404 [BLKIF_OP_WRITE] = "write",
405 [BLKIF_OP_WRITE_BARRIER] = "barrier",
406 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
407 [BLKIF_OP_DISCARD] = "discard" };
408
409 if (op < 0 || op >= ARRAY_SIZE(names))
410 return "unknown";
411
412 if (!names[op])
413 return "reserved";
414
415 return names[op];
416 }
417 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
418 {
419 unsigned int end = minor + nr;
420 int rc;
421
422 if (end > nr_minors) {
423 unsigned long *bitmap, *old;
424
425 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
426 GFP_KERNEL);
427 if (bitmap == NULL)
428 return -ENOMEM;
429
430 spin_lock(&minor_lock);
431 if (end > nr_minors) {
432 old = minors;
433 memcpy(bitmap, minors,
434 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
435 minors = bitmap;
436 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
437 } else
438 old = bitmap;
439 spin_unlock(&minor_lock);
440 kfree(old);
441 }
442
443 spin_lock(&minor_lock);
444 if (find_next_bit(minors, end, minor) >= end) {
445 bitmap_set(minors, minor, nr);
446 rc = 0;
447 } else
448 rc = -EBUSY;
449 spin_unlock(&minor_lock);
450
451 return rc;
452 }
453
454 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
455 {
456 unsigned int end = minor + nr;
457
458 BUG_ON(end > nr_minors);
459 spin_lock(&minor_lock);
460 bitmap_clear(minors, minor, nr);
461 spin_unlock(&minor_lock);
462 }
463
464 static void blkif_restart_queue_callback(void *arg)
465 {
466 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
467 schedule_work(&rinfo->work);
468 }
469
470 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
471 {
472 /* We don't have real geometry info, but let's at least return
473 values consistent with the size of the device */
474 sector_t nsect = get_capacity(bd->bd_disk);
475 sector_t cylinders = nsect;
476
477 hg->heads = 0xff;
478 hg->sectors = 0x3f;
479 sector_div(cylinders, hg->heads * hg->sectors);
480 hg->cylinders = cylinders;
481 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
482 hg->cylinders = 0xffff;
483 return 0;
484 }
485
486 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
487 unsigned command, unsigned long argument)
488 {
489 struct blkfront_info *info = bdev->bd_disk->private_data;
490 int i;
491
492 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
493 command, (long)argument);
494
495 switch (command) {
496 case CDROMMULTISESSION:
497 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
498 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
499 if (put_user(0, (char __user *)(argument + i)))
500 return -EFAULT;
501 return 0;
502
503 case CDROM_GET_CAPABILITY: {
504 struct gendisk *gd = info->gd;
505 if (gd->flags & GENHD_FL_CD)
506 return 0;
507 return -EINVAL;
508 }
509
510 default:
511 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
512 command);*/
513 return -EINVAL; /* same return as native Linux */
514 }
515
516 return 0;
517 }
518
519 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
520 struct request *req,
521 struct blkif_request **ring_req)
522 {
523 unsigned long id;
524
525 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
526 rinfo->ring.req_prod_pvt++;
527
528 id = get_id_from_freelist(rinfo);
529 rinfo->shadow[id].request = req;
530 rinfo->shadow[id].status = REQ_WAITING;
531 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
532
533 (*ring_req)->u.rw.id = id;
534
535 return id;
536 }
537
538 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
539 {
540 struct blkfront_info *info = rinfo->dev_info;
541 struct blkif_request *ring_req;
542 unsigned long id;
543
544 /* Fill out a communications ring structure. */
545 id = blkif_ring_get_request(rinfo, req, &ring_req);
546
547 ring_req->operation = BLKIF_OP_DISCARD;
548 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
549 ring_req->u.discard.id = id;
550 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
551 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
552 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
553 else
554 ring_req->u.discard.flag = 0;
555
556 /* Keep a private copy so we can reissue requests when recovering. */
557 rinfo->shadow[id].req = *ring_req;
558
559 return 0;
560 }
561
562 struct setup_rw_req {
563 unsigned int grant_idx;
564 struct blkif_request_segment *segments;
565 struct blkfront_ring_info *rinfo;
566 struct blkif_request *ring_req;
567 grant_ref_t gref_head;
568 unsigned int id;
569 /* Only used when persistent grant is used and it's a read request */
570 bool need_copy;
571 unsigned int bvec_off;
572 char *bvec_data;
573
574 bool require_extra_req;
575 struct blkif_request *extra_ring_req;
576 };
577
578 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
579 unsigned int len, void *data)
580 {
581 struct setup_rw_req *setup = data;
582 int n, ref;
583 struct grant *gnt_list_entry;
584 unsigned int fsect, lsect;
585 /* Convenient aliases */
586 unsigned int grant_idx = setup->grant_idx;
587 struct blkif_request *ring_req = setup->ring_req;
588 struct blkfront_ring_info *rinfo = setup->rinfo;
589 /*
590 * We always use the shadow of the first request to store the list
591 * of grant associated to the block I/O request. This made the
592 * completion more easy to handle even if the block I/O request is
593 * split.
594 */
595 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
596
597 if (unlikely(setup->require_extra_req &&
598 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
599 /*
600 * We are using the second request, setup grant_idx
601 * to be the index of the segment array.
602 */
603 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
604 ring_req = setup->extra_ring_req;
605 }
606
607 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
608 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
609 if (setup->segments)
610 kunmap_atomic(setup->segments);
611
612 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
613 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
614 shadow->indirect_grants[n] = gnt_list_entry;
615 setup->segments = kmap_atomic(gnt_list_entry->page);
616 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
617 }
618
619 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
620 ref = gnt_list_entry->gref;
621 /*
622 * All the grants are stored in the shadow of the first
623 * request. Therefore we have to use the global index.
624 */
625 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
626
627 if (setup->need_copy) {
628 void *shared_data;
629
630 shared_data = kmap_atomic(gnt_list_entry->page);
631 /*
632 * this does not wipe data stored outside the
633 * range sg->offset..sg->offset+sg->length.
634 * Therefore, blkback *could* see data from
635 * previous requests. This is OK as long as
636 * persistent grants are shared with just one
637 * domain. It may need refactoring if this
638 * changes
639 */
640 memcpy(shared_data + offset,
641 setup->bvec_data + setup->bvec_off,
642 len);
643
644 kunmap_atomic(shared_data);
645 setup->bvec_off += len;
646 }
647
648 fsect = offset >> 9;
649 lsect = fsect + (len >> 9) - 1;
650 if (ring_req->operation != BLKIF_OP_INDIRECT) {
651 ring_req->u.rw.seg[grant_idx] =
652 (struct blkif_request_segment) {
653 .gref = ref,
654 .first_sect = fsect,
655 .last_sect = lsect };
656 } else {
657 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
658 (struct blkif_request_segment) {
659 .gref = ref,
660 .first_sect = fsect,
661 .last_sect = lsect };
662 }
663
664 (setup->grant_idx)++;
665 }
666
667 static void blkif_setup_extra_req(struct blkif_request *first,
668 struct blkif_request *second)
669 {
670 uint16_t nr_segments = first->u.rw.nr_segments;
671
672 /*
673 * The second request is only present when the first request uses
674 * all its segments. It's always the continuity of the first one.
675 */
676 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
677
678 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
679 second->u.rw.sector_number = first->u.rw.sector_number +
680 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
681
682 second->u.rw.handle = first->u.rw.handle;
683 second->operation = first->operation;
684 }
685
686 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
687 {
688 struct blkfront_info *info = rinfo->dev_info;
689 struct blkif_request *ring_req, *extra_ring_req = NULL;
690 unsigned long id, extra_id = NO_ASSOCIATED_ID;
691 bool require_extra_req = false;
692 int i;
693 struct setup_rw_req setup = {
694 .grant_idx = 0,
695 .segments = NULL,
696 .rinfo = rinfo,
697 .need_copy = rq_data_dir(req) && info->feature_persistent,
698 };
699
700 /*
701 * Used to store if we are able to queue the request by just using
702 * existing persistent grants, or if we have to get new grants,
703 * as there are not sufficiently many free.
704 */
705 struct scatterlist *sg;
706 int num_sg, max_grefs, num_grant;
707
708 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
709 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
710 /*
711 * If we are using indirect segments we need to account
712 * for the indirect grefs used in the request.
713 */
714 max_grefs += INDIRECT_GREFS(max_grefs);
715
716 /*
717 * We have to reserve 'max_grefs' grants because persistent
718 * grants are shared by all rings.
719 */
720 if (max_grefs > 0)
721 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
722 gnttab_request_free_callback(
723 &rinfo->callback,
724 blkif_restart_queue_callback,
725 rinfo,
726 max_grefs);
727 return 1;
728 }
729
730 /* Fill out a communications ring structure. */
731 id = blkif_ring_get_request(rinfo, req, &ring_req);
732
733 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
734 num_grant = 0;
735 /* Calculate the number of grant used */
736 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
737 num_grant += gnttab_count_grant(sg->offset, sg->length);
738
739 require_extra_req = info->max_indirect_segments == 0 &&
740 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
741 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
742
743 rinfo->shadow[id].num_sg = num_sg;
744 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
745 likely(!require_extra_req)) {
746 /*
747 * The indirect operation can only be a BLKIF_OP_READ or
748 * BLKIF_OP_WRITE
749 */
750 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
751 ring_req->operation = BLKIF_OP_INDIRECT;
752 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
753 BLKIF_OP_WRITE : BLKIF_OP_READ;
754 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
755 ring_req->u.indirect.handle = info->handle;
756 ring_req->u.indirect.nr_segments = num_grant;
757 } else {
758 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
759 ring_req->u.rw.handle = info->handle;
760 ring_req->operation = rq_data_dir(req) ?
761 BLKIF_OP_WRITE : BLKIF_OP_READ;
762 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
763 /*
764 * Ideally we can do an unordered flush-to-disk.
765 * In case the backend onlysupports barriers, use that.
766 * A barrier request a superset of FUA, so we can
767 * implement it the same way. (It's also a FLUSH+FUA,
768 * since it is guaranteed ordered WRT previous writes.)
769 */
770 if (info->feature_flush && info->feature_fua)
771 ring_req->operation =
772 BLKIF_OP_WRITE_BARRIER;
773 else if (info->feature_flush)
774 ring_req->operation =
775 BLKIF_OP_FLUSH_DISKCACHE;
776 else
777 ring_req->operation = 0;
778 }
779 ring_req->u.rw.nr_segments = num_grant;
780 if (unlikely(require_extra_req)) {
781 extra_id = blkif_ring_get_request(rinfo, req,
782 &extra_ring_req);
783 /*
784 * Only the first request contains the scatter-gather
785 * list.
786 */
787 rinfo->shadow[extra_id].num_sg = 0;
788
789 blkif_setup_extra_req(ring_req, extra_ring_req);
790
791 /* Link the 2 requests together */
792 rinfo->shadow[extra_id].associated_id = id;
793 rinfo->shadow[id].associated_id = extra_id;
794 }
795 }
796
797 setup.ring_req = ring_req;
798 setup.id = id;
799
800 setup.require_extra_req = require_extra_req;
801 if (unlikely(require_extra_req))
802 setup.extra_ring_req = extra_ring_req;
803
804 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
805 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
806
807 if (setup.need_copy) {
808 setup.bvec_off = sg->offset;
809 setup.bvec_data = kmap_atomic(sg_page(sg));
810 }
811
812 gnttab_foreach_grant_in_range(sg_page(sg),
813 sg->offset,
814 sg->length,
815 blkif_setup_rw_req_grant,
816 &setup);
817
818 if (setup.need_copy)
819 kunmap_atomic(setup.bvec_data);
820 }
821 if (setup.segments)
822 kunmap_atomic(setup.segments);
823
824 /* Keep a private copy so we can reissue requests when recovering. */
825 rinfo->shadow[id].req = *ring_req;
826 if (unlikely(require_extra_req))
827 rinfo->shadow[extra_id].req = *extra_ring_req;
828
829 if (max_grefs > 0)
830 gnttab_free_grant_references(setup.gref_head);
831
832 return 0;
833 }
834
835 /*
836 * Generate a Xen blkfront IO request from a blk layer request. Reads
837 * and writes are handled as expected.
838 *
839 * @req: a request struct
840 */
841 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
842 {
843 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
844 return 1;
845
846 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
847 req_op(req) == REQ_OP_SECURE_ERASE))
848 return blkif_queue_discard_req(req, rinfo);
849 else
850 return blkif_queue_rw_req(req, rinfo);
851 }
852
853 static inline void flush_requests(struct blkfront_ring_info *rinfo)
854 {
855 int notify;
856
857 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
858
859 if (notify)
860 notify_remote_via_irq(rinfo->irq);
861 }
862
863 static inline bool blkif_request_flush_invalid(struct request *req,
864 struct blkfront_info *info)
865 {
866 return ((req->cmd_type != REQ_TYPE_FS) ||
867 ((req_op(req) == REQ_OP_FLUSH) &&
868 !info->feature_flush) ||
869 ((req->cmd_flags & REQ_FUA) &&
870 !info->feature_fua));
871 }
872
873 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
874 const struct blk_mq_queue_data *qd)
875 {
876 unsigned long flags;
877 int qid = hctx->queue_num;
878 struct blkfront_info *info = hctx->queue->queuedata;
879 struct blkfront_ring_info *rinfo = NULL;
880
881 BUG_ON(info->nr_rings <= qid);
882 rinfo = &info->rinfo[qid];
883 blk_mq_start_request(qd->rq);
884 spin_lock_irqsave(&rinfo->ring_lock, flags);
885 if (RING_FULL(&rinfo->ring))
886 goto out_busy;
887
888 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
889 goto out_err;
890
891 if (blkif_queue_request(qd->rq, rinfo))
892 goto out_busy;
893
894 flush_requests(rinfo);
895 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
896 return BLK_MQ_RQ_QUEUE_OK;
897
898 out_err:
899 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
900 return BLK_MQ_RQ_QUEUE_ERROR;
901
902 out_busy:
903 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
904 blk_mq_stop_hw_queue(hctx);
905 return BLK_MQ_RQ_QUEUE_BUSY;
906 }
907
908 static struct blk_mq_ops blkfront_mq_ops = {
909 .queue_rq = blkif_queue_rq,
910 .map_queue = blk_mq_map_queue,
911 };
912
913 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
914 unsigned int physical_sector_size,
915 unsigned int segments)
916 {
917 struct request_queue *rq;
918 struct blkfront_info *info = gd->private_data;
919
920 memset(&info->tag_set, 0, sizeof(info->tag_set));
921 info->tag_set.ops = &blkfront_mq_ops;
922 info->tag_set.nr_hw_queues = info->nr_rings;
923 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
924 /*
925 * When indirect descriptior is not supported, the I/O request
926 * will be split between multiple request in the ring.
927 * To avoid problems when sending the request, divide by
928 * 2 the depth of the queue.
929 */
930 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
931 } else
932 info->tag_set.queue_depth = BLK_RING_SIZE(info);
933 info->tag_set.numa_node = NUMA_NO_NODE;
934 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
935 info->tag_set.cmd_size = 0;
936 info->tag_set.driver_data = info;
937
938 if (blk_mq_alloc_tag_set(&info->tag_set))
939 return -EINVAL;
940 rq = blk_mq_init_queue(&info->tag_set);
941 if (IS_ERR(rq)) {
942 blk_mq_free_tag_set(&info->tag_set);
943 return PTR_ERR(rq);
944 }
945
946 rq->queuedata = info;
947 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
948
949 if (info->feature_discard) {
950 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
951 blk_queue_max_discard_sectors(rq, get_capacity(gd));
952 rq->limits.discard_granularity = info->discard_granularity;
953 rq->limits.discard_alignment = info->discard_alignment;
954 if (info->feature_secdiscard)
955 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq);
956 }
957
958 /* Hard sector size and max sectors impersonate the equiv. hardware. */
959 blk_queue_logical_block_size(rq, sector_size);
960 blk_queue_physical_block_size(rq, physical_sector_size);
961 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
962
963 /* Each segment in a request is up to an aligned page in size. */
964 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
965 blk_queue_max_segment_size(rq, PAGE_SIZE);
966
967 /* Ensure a merged request will fit in a single I/O ring slot. */
968 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
969
970 /* Make sure buffer addresses are sector-aligned. */
971 blk_queue_dma_alignment(rq, 511);
972
973 /* Make sure we don't use bounce buffers. */
974 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
975
976 gd->queue = rq;
977
978 return 0;
979 }
980
981 static const char *flush_info(struct blkfront_info *info)
982 {
983 if (info->feature_flush && info->feature_fua)
984 return "barrier: enabled;";
985 else if (info->feature_flush)
986 return "flush diskcache: enabled;";
987 else
988 return "barrier or flush: disabled;";
989 }
990
991 static void xlvbd_flush(struct blkfront_info *info)
992 {
993 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
994 info->feature_fua ? true : false);
995 pr_info("blkfront: %s: %s %s %s %s %s\n",
996 info->gd->disk_name, flush_info(info),
997 "persistent grants:", info->feature_persistent ?
998 "enabled;" : "disabled;", "indirect descriptors:",
999 info->max_indirect_segments ? "enabled;" : "disabled;");
1000 }
1001
1002 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1003 {
1004 int major;
1005 major = BLKIF_MAJOR(vdevice);
1006 *minor = BLKIF_MINOR(vdevice);
1007 switch (major) {
1008 case XEN_IDE0_MAJOR:
1009 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1010 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1011 EMULATED_HD_DISK_MINOR_OFFSET;
1012 break;
1013 case XEN_IDE1_MAJOR:
1014 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1015 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1016 EMULATED_HD_DISK_MINOR_OFFSET;
1017 break;
1018 case XEN_SCSI_DISK0_MAJOR:
1019 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1020 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1021 break;
1022 case XEN_SCSI_DISK1_MAJOR:
1023 case XEN_SCSI_DISK2_MAJOR:
1024 case XEN_SCSI_DISK3_MAJOR:
1025 case XEN_SCSI_DISK4_MAJOR:
1026 case XEN_SCSI_DISK5_MAJOR:
1027 case XEN_SCSI_DISK6_MAJOR:
1028 case XEN_SCSI_DISK7_MAJOR:
1029 *offset = (*minor / PARTS_PER_DISK) +
1030 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1031 EMULATED_SD_DISK_NAME_OFFSET;
1032 *minor = *minor +
1033 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1034 EMULATED_SD_DISK_MINOR_OFFSET;
1035 break;
1036 case XEN_SCSI_DISK8_MAJOR:
1037 case XEN_SCSI_DISK9_MAJOR:
1038 case XEN_SCSI_DISK10_MAJOR:
1039 case XEN_SCSI_DISK11_MAJOR:
1040 case XEN_SCSI_DISK12_MAJOR:
1041 case XEN_SCSI_DISK13_MAJOR:
1042 case XEN_SCSI_DISK14_MAJOR:
1043 case XEN_SCSI_DISK15_MAJOR:
1044 *offset = (*minor / PARTS_PER_DISK) +
1045 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1046 EMULATED_SD_DISK_NAME_OFFSET;
1047 *minor = *minor +
1048 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1049 EMULATED_SD_DISK_MINOR_OFFSET;
1050 break;
1051 case XENVBD_MAJOR:
1052 *offset = *minor / PARTS_PER_DISK;
1053 break;
1054 default:
1055 printk(KERN_WARNING "blkfront: your disk configuration is "
1056 "incorrect, please use an xvd device instead\n");
1057 return -ENODEV;
1058 }
1059 return 0;
1060 }
1061
1062 static char *encode_disk_name(char *ptr, unsigned int n)
1063 {
1064 if (n >= 26)
1065 ptr = encode_disk_name(ptr, n / 26 - 1);
1066 *ptr = 'a' + n % 26;
1067 return ptr + 1;
1068 }
1069
1070 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1071 struct blkfront_info *info,
1072 u16 vdisk_info, u16 sector_size,
1073 unsigned int physical_sector_size)
1074 {
1075 struct gendisk *gd;
1076 int nr_minors = 1;
1077 int err;
1078 unsigned int offset;
1079 int minor;
1080 int nr_parts;
1081 char *ptr;
1082
1083 BUG_ON(info->gd != NULL);
1084 BUG_ON(info->rq != NULL);
1085
1086 if ((info->vdevice>>EXT_SHIFT) > 1) {
1087 /* this is above the extended range; something is wrong */
1088 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1089 return -ENODEV;
1090 }
1091
1092 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1093 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1094 if (err)
1095 return err;
1096 nr_parts = PARTS_PER_DISK;
1097 } else {
1098 minor = BLKIF_MINOR_EXT(info->vdevice);
1099 nr_parts = PARTS_PER_EXT_DISK;
1100 offset = minor / nr_parts;
1101 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1102 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1103 "emulated IDE disks,\n\t choose an xvd device name"
1104 "from xvde on\n", info->vdevice);
1105 }
1106 if (minor >> MINORBITS) {
1107 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1108 info->vdevice, minor);
1109 return -ENODEV;
1110 }
1111
1112 if ((minor % nr_parts) == 0)
1113 nr_minors = nr_parts;
1114
1115 err = xlbd_reserve_minors(minor, nr_minors);
1116 if (err)
1117 goto out;
1118 err = -ENODEV;
1119
1120 gd = alloc_disk(nr_minors);
1121 if (gd == NULL)
1122 goto release;
1123
1124 strcpy(gd->disk_name, DEV_NAME);
1125 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1126 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1127 if (nr_minors > 1)
1128 *ptr = 0;
1129 else
1130 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1131 "%d", minor & (nr_parts - 1));
1132
1133 gd->major = XENVBD_MAJOR;
1134 gd->first_minor = minor;
1135 gd->fops = &xlvbd_block_fops;
1136 gd->private_data = info;
1137 set_capacity(gd, capacity);
1138
1139 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size,
1140 info->max_indirect_segments ? :
1141 BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
1142 del_gendisk(gd);
1143 goto release;
1144 }
1145
1146 info->rq = gd->queue;
1147 info->gd = gd;
1148
1149 xlvbd_flush(info);
1150
1151 if (vdisk_info & VDISK_READONLY)
1152 set_disk_ro(gd, 1);
1153
1154 if (vdisk_info & VDISK_REMOVABLE)
1155 gd->flags |= GENHD_FL_REMOVABLE;
1156
1157 if (vdisk_info & VDISK_CDROM)
1158 gd->flags |= GENHD_FL_CD;
1159
1160 return 0;
1161
1162 release:
1163 xlbd_release_minors(minor, nr_minors);
1164 out:
1165 return err;
1166 }
1167
1168 static void xlvbd_release_gendisk(struct blkfront_info *info)
1169 {
1170 unsigned int minor, nr_minors, i;
1171
1172 if (info->rq == NULL)
1173 return;
1174
1175 /* No more blkif_request(). */
1176 blk_mq_stop_hw_queues(info->rq);
1177
1178 for (i = 0; i < info->nr_rings; i++) {
1179 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1180
1181 /* No more gnttab callback work. */
1182 gnttab_cancel_free_callback(&rinfo->callback);
1183
1184 /* Flush gnttab callback work. Must be done with no locks held. */
1185 flush_work(&rinfo->work);
1186 }
1187
1188 del_gendisk(info->gd);
1189
1190 minor = info->gd->first_minor;
1191 nr_minors = info->gd->minors;
1192 xlbd_release_minors(minor, nr_minors);
1193
1194 blk_cleanup_queue(info->rq);
1195 blk_mq_free_tag_set(&info->tag_set);
1196 info->rq = NULL;
1197
1198 put_disk(info->gd);
1199 info->gd = NULL;
1200 }
1201
1202 /* Already hold rinfo->ring_lock. */
1203 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1204 {
1205 if (!RING_FULL(&rinfo->ring))
1206 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1207 }
1208
1209 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1210 {
1211 unsigned long flags;
1212
1213 spin_lock_irqsave(&rinfo->ring_lock, flags);
1214 kick_pending_request_queues_locked(rinfo);
1215 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1216 }
1217
1218 static void blkif_restart_queue(struct work_struct *work)
1219 {
1220 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1221
1222 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1223 kick_pending_request_queues(rinfo);
1224 }
1225
1226 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1227 {
1228 struct grant *persistent_gnt, *n;
1229 struct blkfront_info *info = rinfo->dev_info;
1230 int i, j, segs;
1231
1232 /*
1233 * Remove indirect pages, this only happens when using indirect
1234 * descriptors but not persistent grants
1235 */
1236 if (!list_empty(&rinfo->indirect_pages)) {
1237 struct page *indirect_page, *n;
1238
1239 BUG_ON(info->feature_persistent);
1240 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1241 list_del(&indirect_page->lru);
1242 __free_page(indirect_page);
1243 }
1244 }
1245
1246 /* Remove all persistent grants. */
1247 if (!list_empty(&rinfo->grants)) {
1248 list_for_each_entry_safe(persistent_gnt, n,
1249 &rinfo->grants, node) {
1250 list_del(&persistent_gnt->node);
1251 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1252 gnttab_end_foreign_access(persistent_gnt->gref,
1253 0, 0UL);
1254 rinfo->persistent_gnts_c--;
1255 }
1256 if (info->feature_persistent)
1257 __free_page(persistent_gnt->page);
1258 kfree(persistent_gnt);
1259 }
1260 }
1261 BUG_ON(rinfo->persistent_gnts_c != 0);
1262
1263 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1264 /*
1265 * Clear persistent grants present in requests already
1266 * on the shared ring
1267 */
1268 if (!rinfo->shadow[i].request)
1269 goto free_shadow;
1270
1271 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1272 rinfo->shadow[i].req.u.indirect.nr_segments :
1273 rinfo->shadow[i].req.u.rw.nr_segments;
1274 for (j = 0; j < segs; j++) {
1275 persistent_gnt = rinfo->shadow[i].grants_used[j];
1276 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1277 if (info->feature_persistent)
1278 __free_page(persistent_gnt->page);
1279 kfree(persistent_gnt);
1280 }
1281
1282 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1283 /*
1284 * If this is not an indirect operation don't try to
1285 * free indirect segments
1286 */
1287 goto free_shadow;
1288
1289 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1290 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1291 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1292 __free_page(persistent_gnt->page);
1293 kfree(persistent_gnt);
1294 }
1295
1296 free_shadow:
1297 kfree(rinfo->shadow[i].grants_used);
1298 rinfo->shadow[i].grants_used = NULL;
1299 kfree(rinfo->shadow[i].indirect_grants);
1300 rinfo->shadow[i].indirect_grants = NULL;
1301 kfree(rinfo->shadow[i].sg);
1302 rinfo->shadow[i].sg = NULL;
1303 }
1304
1305 /* No more gnttab callback work. */
1306 gnttab_cancel_free_callback(&rinfo->callback);
1307
1308 /* Flush gnttab callback work. Must be done with no locks held. */
1309 flush_work(&rinfo->work);
1310
1311 /* Free resources associated with old device channel. */
1312 for (i = 0; i < info->nr_ring_pages; i++) {
1313 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1314 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1315 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1316 }
1317 }
1318 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE));
1319 rinfo->ring.sring = NULL;
1320
1321 if (rinfo->irq)
1322 unbind_from_irqhandler(rinfo->irq, rinfo);
1323 rinfo->evtchn = rinfo->irq = 0;
1324 }
1325
1326 static void blkif_free(struct blkfront_info *info, int suspend)
1327 {
1328 unsigned int i;
1329
1330 /* Prevent new requests being issued until we fix things up. */
1331 info->connected = suspend ?
1332 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1333 /* No more blkif_request(). */
1334 if (info->rq)
1335 blk_mq_stop_hw_queues(info->rq);
1336
1337 for (i = 0; i < info->nr_rings; i++)
1338 blkif_free_ring(&info->rinfo[i]);
1339
1340 kfree(info->rinfo);
1341 info->rinfo = NULL;
1342 info->nr_rings = 0;
1343 }
1344
1345 struct copy_from_grant {
1346 const struct blk_shadow *s;
1347 unsigned int grant_idx;
1348 unsigned int bvec_offset;
1349 char *bvec_data;
1350 };
1351
1352 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1353 unsigned int len, void *data)
1354 {
1355 struct copy_from_grant *info = data;
1356 char *shared_data;
1357 /* Convenient aliases */
1358 const struct blk_shadow *s = info->s;
1359
1360 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1361
1362 memcpy(info->bvec_data + info->bvec_offset,
1363 shared_data + offset, len);
1364
1365 info->bvec_offset += len;
1366 info->grant_idx++;
1367
1368 kunmap_atomic(shared_data);
1369 }
1370
1371 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1372 {
1373 switch (rsp)
1374 {
1375 case BLKIF_RSP_OKAY:
1376 return REQ_DONE;
1377 case BLKIF_RSP_EOPNOTSUPP:
1378 return REQ_EOPNOTSUPP;
1379 case BLKIF_RSP_ERROR:
1380 /* Fallthrough. */
1381 default:
1382 return REQ_ERROR;
1383 }
1384 }
1385
1386 /*
1387 * Get the final status of the block request based on two ring response
1388 */
1389 static int blkif_get_final_status(enum blk_req_status s1,
1390 enum blk_req_status s2)
1391 {
1392 BUG_ON(s1 == REQ_WAITING);
1393 BUG_ON(s2 == REQ_WAITING);
1394
1395 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1396 return BLKIF_RSP_ERROR;
1397 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1398 return BLKIF_RSP_EOPNOTSUPP;
1399 return BLKIF_RSP_OKAY;
1400 }
1401
1402 static bool blkif_completion(unsigned long *id,
1403 struct blkfront_ring_info *rinfo,
1404 struct blkif_response *bret)
1405 {
1406 int i = 0;
1407 struct scatterlist *sg;
1408 int num_sg, num_grant;
1409 struct blkfront_info *info = rinfo->dev_info;
1410 struct blk_shadow *s = &rinfo->shadow[*id];
1411 struct copy_from_grant data = {
1412 .grant_idx = 0,
1413 };
1414
1415 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1416 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1417
1418 /* The I/O request may be split in two. */
1419 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1420 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1421
1422 /* Keep the status of the current response in shadow. */
1423 s->status = blkif_rsp_to_req_status(bret->status);
1424
1425 /* Wait the second response if not yet here. */
1426 if (s2->status == REQ_WAITING)
1427 return 0;
1428
1429 bret->status = blkif_get_final_status(s->status,
1430 s2->status);
1431
1432 /*
1433 * All the grants is stored in the first shadow in order
1434 * to make the completion code simpler.
1435 */
1436 num_grant += s2->req.u.rw.nr_segments;
1437
1438 /*
1439 * The two responses may not come in order. Only the
1440 * first request will store the scatter-gather list.
1441 */
1442 if (s2->num_sg != 0) {
1443 /* Update "id" with the ID of the first response. */
1444 *id = s->associated_id;
1445 s = s2;
1446 }
1447
1448 /*
1449 * We don't need anymore the second request, so recycling
1450 * it now.
1451 */
1452 if (add_id_to_freelist(rinfo, s->associated_id))
1453 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1454 info->gd->disk_name, s->associated_id);
1455 }
1456
1457 data.s = s;
1458 num_sg = s->num_sg;
1459
1460 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1461 for_each_sg(s->sg, sg, num_sg, i) {
1462 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1463
1464 data.bvec_offset = sg->offset;
1465 data.bvec_data = kmap_atomic(sg_page(sg));
1466
1467 gnttab_foreach_grant_in_range(sg_page(sg),
1468 sg->offset,
1469 sg->length,
1470 blkif_copy_from_grant,
1471 &data);
1472
1473 kunmap_atomic(data.bvec_data);
1474 }
1475 }
1476 /* Add the persistent grant into the list of free grants */
1477 for (i = 0; i < num_grant; i++) {
1478 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1479 /*
1480 * If the grant is still mapped by the backend (the
1481 * backend has chosen to make this grant persistent)
1482 * we add it at the head of the list, so it will be
1483 * reused first.
1484 */
1485 if (!info->feature_persistent)
1486 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1487 s->grants_used[i]->gref);
1488 list_add(&s->grants_used[i]->node, &rinfo->grants);
1489 rinfo->persistent_gnts_c++;
1490 } else {
1491 /*
1492 * If the grant is not mapped by the backend we end the
1493 * foreign access and add it to the tail of the list,
1494 * so it will not be picked again unless we run out of
1495 * persistent grants.
1496 */
1497 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1498 s->grants_used[i]->gref = GRANT_INVALID_REF;
1499 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1500 }
1501 }
1502 if (s->req.operation == BLKIF_OP_INDIRECT) {
1503 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1504 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1505 if (!info->feature_persistent)
1506 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1507 s->indirect_grants[i]->gref);
1508 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1509 rinfo->persistent_gnts_c++;
1510 } else {
1511 struct page *indirect_page;
1512
1513 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1514 /*
1515 * Add the used indirect page back to the list of
1516 * available pages for indirect grefs.
1517 */
1518 if (!info->feature_persistent) {
1519 indirect_page = s->indirect_grants[i]->page;
1520 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1521 }
1522 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1523 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1524 }
1525 }
1526 }
1527
1528 return 1;
1529 }
1530
1531 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1532 {
1533 struct request *req;
1534 struct blkif_response *bret;
1535 RING_IDX i, rp;
1536 unsigned long flags;
1537 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1538 struct blkfront_info *info = rinfo->dev_info;
1539 int error;
1540
1541 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1542 return IRQ_HANDLED;
1543
1544 spin_lock_irqsave(&rinfo->ring_lock, flags);
1545 again:
1546 rp = rinfo->ring.sring->rsp_prod;
1547 rmb(); /* Ensure we see queued responses up to 'rp'. */
1548
1549 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1550 unsigned long id;
1551
1552 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1553 id = bret->id;
1554 /*
1555 * The backend has messed up and given us an id that we would
1556 * never have given to it (we stamp it up to BLK_RING_SIZE -
1557 * look in get_id_from_freelist.
1558 */
1559 if (id >= BLK_RING_SIZE(info)) {
1560 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1561 info->gd->disk_name, op_name(bret->operation), id);
1562 /* We can't safely get the 'struct request' as
1563 * the id is busted. */
1564 continue;
1565 }
1566 req = rinfo->shadow[id].request;
1567
1568 if (bret->operation != BLKIF_OP_DISCARD) {
1569 /*
1570 * We may need to wait for an extra response if the
1571 * I/O request is split in 2
1572 */
1573 if (!blkif_completion(&id, rinfo, bret))
1574 continue;
1575 }
1576
1577 if (add_id_to_freelist(rinfo, id)) {
1578 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1579 info->gd->disk_name, op_name(bret->operation), id);
1580 continue;
1581 }
1582
1583 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1584 switch (bret->operation) {
1585 case BLKIF_OP_DISCARD:
1586 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1587 struct request_queue *rq = info->rq;
1588 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1589 info->gd->disk_name, op_name(bret->operation));
1590 error = -EOPNOTSUPP;
1591 info->feature_discard = 0;
1592 info->feature_secdiscard = 0;
1593 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1594 queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1595 }
1596 blk_mq_complete_request(req, error);
1597 break;
1598 case BLKIF_OP_FLUSH_DISKCACHE:
1599 case BLKIF_OP_WRITE_BARRIER:
1600 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1601 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1602 info->gd->disk_name, op_name(bret->operation));
1603 error = -EOPNOTSUPP;
1604 }
1605 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1606 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1607 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1608 info->gd->disk_name, op_name(bret->operation));
1609 error = -EOPNOTSUPP;
1610 }
1611 if (unlikely(error)) {
1612 if (error == -EOPNOTSUPP)
1613 error = 0;
1614 info->feature_fua = 0;
1615 info->feature_flush = 0;
1616 xlvbd_flush(info);
1617 }
1618 /* fall through */
1619 case BLKIF_OP_READ:
1620 case BLKIF_OP_WRITE:
1621 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1622 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1623 "request: %x\n", bret->status);
1624
1625 blk_mq_complete_request(req, error);
1626 break;
1627 default:
1628 BUG();
1629 }
1630 }
1631
1632 rinfo->ring.rsp_cons = i;
1633
1634 if (i != rinfo->ring.req_prod_pvt) {
1635 int more_to_do;
1636 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1637 if (more_to_do)
1638 goto again;
1639 } else
1640 rinfo->ring.sring->rsp_event = i + 1;
1641
1642 kick_pending_request_queues_locked(rinfo);
1643
1644 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1645
1646 return IRQ_HANDLED;
1647 }
1648
1649
1650 static int setup_blkring(struct xenbus_device *dev,
1651 struct blkfront_ring_info *rinfo)
1652 {
1653 struct blkif_sring *sring;
1654 int err, i;
1655 struct blkfront_info *info = rinfo->dev_info;
1656 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1657 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1658
1659 for (i = 0; i < info->nr_ring_pages; i++)
1660 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1661
1662 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1663 get_order(ring_size));
1664 if (!sring) {
1665 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1666 return -ENOMEM;
1667 }
1668 SHARED_RING_INIT(sring);
1669 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1670
1671 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1672 if (err < 0) {
1673 free_pages((unsigned long)sring, get_order(ring_size));
1674 rinfo->ring.sring = NULL;
1675 goto fail;
1676 }
1677 for (i = 0; i < info->nr_ring_pages; i++)
1678 rinfo->ring_ref[i] = gref[i];
1679
1680 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1681 if (err)
1682 goto fail;
1683
1684 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1685 "blkif", rinfo);
1686 if (err <= 0) {
1687 xenbus_dev_fatal(dev, err,
1688 "bind_evtchn_to_irqhandler failed");
1689 goto fail;
1690 }
1691 rinfo->irq = err;
1692
1693 return 0;
1694 fail:
1695 blkif_free(info, 0);
1696 return err;
1697 }
1698
1699 /*
1700 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1701 * ring buffer may have multi pages depending on ->nr_ring_pages.
1702 */
1703 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1704 struct blkfront_ring_info *rinfo, const char *dir)
1705 {
1706 int err;
1707 unsigned int i;
1708 const char *message = NULL;
1709 struct blkfront_info *info = rinfo->dev_info;
1710
1711 if (info->nr_ring_pages == 1) {
1712 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1713 if (err) {
1714 message = "writing ring-ref";
1715 goto abort_transaction;
1716 }
1717 } else {
1718 for (i = 0; i < info->nr_ring_pages; i++) {
1719 char ring_ref_name[RINGREF_NAME_LEN];
1720
1721 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1722 err = xenbus_printf(xbt, dir, ring_ref_name,
1723 "%u", rinfo->ring_ref[i]);
1724 if (err) {
1725 message = "writing ring-ref";
1726 goto abort_transaction;
1727 }
1728 }
1729 }
1730
1731 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1732 if (err) {
1733 message = "writing event-channel";
1734 goto abort_transaction;
1735 }
1736
1737 return 0;
1738
1739 abort_transaction:
1740 xenbus_transaction_end(xbt, 1);
1741 if (message)
1742 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1743
1744 return err;
1745 }
1746
1747 /* Common code used when first setting up, and when resuming. */
1748 static int talk_to_blkback(struct xenbus_device *dev,
1749 struct blkfront_info *info)
1750 {
1751 const char *message = NULL;
1752 struct xenbus_transaction xbt;
1753 int err;
1754 unsigned int i, max_page_order = 0;
1755 unsigned int ring_page_order = 0;
1756
1757 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1758 "max-ring-page-order", "%u", &max_page_order);
1759 if (err != 1)
1760 info->nr_ring_pages = 1;
1761 else {
1762 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1763 info->nr_ring_pages = 1 << ring_page_order;
1764 }
1765
1766 for (i = 0; i < info->nr_rings; i++) {
1767 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1768
1769 /* Create shared ring, alloc event channel. */
1770 err = setup_blkring(dev, rinfo);
1771 if (err)
1772 goto destroy_blkring;
1773 }
1774
1775 again:
1776 err = xenbus_transaction_start(&xbt);
1777 if (err) {
1778 xenbus_dev_fatal(dev, err, "starting transaction");
1779 goto destroy_blkring;
1780 }
1781
1782 if (info->nr_ring_pages > 1) {
1783 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1784 ring_page_order);
1785 if (err) {
1786 message = "writing ring-page-order";
1787 goto abort_transaction;
1788 }
1789 }
1790
1791 /* We already got the number of queues/rings in _probe */
1792 if (info->nr_rings == 1) {
1793 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1794 if (err)
1795 goto destroy_blkring;
1796 } else {
1797 char *path;
1798 size_t pathsize;
1799
1800 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1801 info->nr_rings);
1802 if (err) {
1803 message = "writing multi-queue-num-queues";
1804 goto abort_transaction;
1805 }
1806
1807 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1808 path = kmalloc(pathsize, GFP_KERNEL);
1809 if (!path) {
1810 err = -ENOMEM;
1811 message = "ENOMEM while writing ring references";
1812 goto abort_transaction;
1813 }
1814
1815 for (i = 0; i < info->nr_rings; i++) {
1816 memset(path, 0, pathsize);
1817 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1818 err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1819 if (err) {
1820 kfree(path);
1821 goto destroy_blkring;
1822 }
1823 }
1824 kfree(path);
1825 }
1826 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1827 XEN_IO_PROTO_ABI_NATIVE);
1828 if (err) {
1829 message = "writing protocol";
1830 goto abort_transaction;
1831 }
1832 err = xenbus_printf(xbt, dev->nodename,
1833 "feature-persistent", "%u", 1);
1834 if (err)
1835 dev_warn(&dev->dev,
1836 "writing persistent grants feature to xenbus");
1837
1838 err = xenbus_transaction_end(xbt, 0);
1839 if (err) {
1840 if (err == -EAGAIN)
1841 goto again;
1842 xenbus_dev_fatal(dev, err, "completing transaction");
1843 goto destroy_blkring;
1844 }
1845
1846 for (i = 0; i < info->nr_rings; i++) {
1847 unsigned int j;
1848 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1849
1850 for (j = 0; j < BLK_RING_SIZE(info); j++)
1851 rinfo->shadow[j].req.u.rw.id = j + 1;
1852 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1853 }
1854 xenbus_switch_state(dev, XenbusStateInitialised);
1855
1856 return 0;
1857
1858 abort_transaction:
1859 xenbus_transaction_end(xbt, 1);
1860 if (message)
1861 xenbus_dev_fatal(dev, err, "%s", message);
1862 destroy_blkring:
1863 blkif_free(info, 0);
1864
1865 kfree(info);
1866 dev_set_drvdata(&dev->dev, NULL);
1867
1868 return err;
1869 }
1870
1871 static int negotiate_mq(struct blkfront_info *info)
1872 {
1873 unsigned int backend_max_queues = 0;
1874 int err;
1875 unsigned int i;
1876
1877 BUG_ON(info->nr_rings);
1878
1879 /* Check if backend supports multiple queues. */
1880 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1881 "multi-queue-max-queues", "%u", &backend_max_queues);
1882 if (err < 0)
1883 backend_max_queues = 1;
1884
1885 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1886 /* We need at least one ring. */
1887 if (!info->nr_rings)
1888 info->nr_rings = 1;
1889
1890 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1891 if (!info->rinfo) {
1892 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1893 return -ENOMEM;
1894 }
1895
1896 for (i = 0; i < info->nr_rings; i++) {
1897 struct blkfront_ring_info *rinfo;
1898
1899 rinfo = &info->rinfo[i];
1900 INIT_LIST_HEAD(&rinfo->indirect_pages);
1901 INIT_LIST_HEAD(&rinfo->grants);
1902 rinfo->dev_info = info;
1903 INIT_WORK(&rinfo->work, blkif_restart_queue);
1904 spin_lock_init(&rinfo->ring_lock);
1905 }
1906 return 0;
1907 }
1908 /**
1909 * Entry point to this code when a new device is created. Allocate the basic
1910 * structures and the ring buffer for communication with the backend, and
1911 * inform the backend of the appropriate details for those. Switch to
1912 * Initialised state.
1913 */
1914 static int blkfront_probe(struct xenbus_device *dev,
1915 const struct xenbus_device_id *id)
1916 {
1917 int err, vdevice;
1918 struct blkfront_info *info;
1919
1920 /* FIXME: Use dynamic device id if this is not set. */
1921 err = xenbus_scanf(XBT_NIL, dev->nodename,
1922 "virtual-device", "%i", &vdevice);
1923 if (err != 1) {
1924 /* go looking in the extended area instead */
1925 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1926 "%i", &vdevice);
1927 if (err != 1) {
1928 xenbus_dev_fatal(dev, err, "reading virtual-device");
1929 return err;
1930 }
1931 }
1932
1933 if (xen_hvm_domain()) {
1934 char *type;
1935 int len;
1936 /* no unplug has been done: do not hook devices != xen vbds */
1937 if (xen_has_pv_and_legacy_disk_devices()) {
1938 int major;
1939
1940 if (!VDEV_IS_EXTENDED(vdevice))
1941 major = BLKIF_MAJOR(vdevice);
1942 else
1943 major = XENVBD_MAJOR;
1944
1945 if (major != XENVBD_MAJOR) {
1946 printk(KERN_INFO
1947 "%s: HVM does not support vbd %d as xen block device\n",
1948 __func__, vdevice);
1949 return -ENODEV;
1950 }
1951 }
1952 /* do not create a PV cdrom device if we are an HVM guest */
1953 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1954 if (IS_ERR(type))
1955 return -ENODEV;
1956 if (strncmp(type, "cdrom", 5) == 0) {
1957 kfree(type);
1958 return -ENODEV;
1959 }
1960 kfree(type);
1961 }
1962 info = kzalloc(sizeof(*info), GFP_KERNEL);
1963 if (!info) {
1964 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1965 return -ENOMEM;
1966 }
1967
1968 info->xbdev = dev;
1969 err = negotiate_mq(info);
1970 if (err) {
1971 kfree(info);
1972 return err;
1973 }
1974
1975 mutex_init(&info->mutex);
1976 info->vdevice = vdevice;
1977 info->connected = BLKIF_STATE_DISCONNECTED;
1978
1979 /* Front end dir is a number, which is used as the id. */
1980 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1981 dev_set_drvdata(&dev->dev, info);
1982
1983 return 0;
1984 }
1985
1986 static void split_bio_end(struct bio *bio)
1987 {
1988 struct split_bio *split_bio = bio->bi_private;
1989
1990 if (atomic_dec_and_test(&split_bio->pending)) {
1991 split_bio->bio->bi_phys_segments = 0;
1992 split_bio->bio->bi_error = bio->bi_error;
1993 bio_endio(split_bio->bio);
1994 kfree(split_bio);
1995 }
1996 bio_put(bio);
1997 }
1998
1999 static int blkif_recover(struct blkfront_info *info)
2000 {
2001 unsigned int i, r_index;
2002 struct request *req, *n;
2003 int rc;
2004 struct bio *bio, *cloned_bio;
2005 unsigned int segs, offset;
2006 int pending, size;
2007 struct split_bio *split_bio;
2008
2009 blkfront_gather_backend_features(info);
2010 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2011 blk_queue_max_segments(info->rq, segs);
2012
2013 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2014 struct blkfront_ring_info *rinfo = &info->rinfo[r_index];
2015
2016 rc = blkfront_setup_indirect(rinfo);
2017 if (rc)
2018 return rc;
2019 }
2020 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2021
2022 /* Now safe for us to use the shared ring */
2023 info->connected = BLKIF_STATE_CONNECTED;
2024
2025 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2026 struct blkfront_ring_info *rinfo;
2027
2028 rinfo = &info->rinfo[r_index];
2029 /* Kick any other new requests queued since we resumed */
2030 kick_pending_request_queues(rinfo);
2031 }
2032
2033 list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2034 /* Requeue pending requests (flush or discard) */
2035 list_del_init(&req->queuelist);
2036 BUG_ON(req->nr_phys_segments > segs);
2037 blk_mq_requeue_request(req);
2038 }
2039 blk_mq_kick_requeue_list(info->rq);
2040
2041 while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2042 /* Traverse the list of pending bios and re-queue them */
2043 if (bio_segments(bio) > segs) {
2044 /*
2045 * This bio has more segments than what we can
2046 * handle, we have to split it.
2047 */
2048 pending = (bio_segments(bio) + segs - 1) / segs;
2049 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2050 BUG_ON(split_bio == NULL);
2051 atomic_set(&split_bio->pending, pending);
2052 split_bio->bio = bio;
2053 for (i = 0; i < pending; i++) {
2054 offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2055 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2056 (unsigned int)bio_sectors(bio) - offset);
2057 cloned_bio = bio_clone(bio, GFP_NOIO);
2058 BUG_ON(cloned_bio == NULL);
2059 bio_trim(cloned_bio, offset, size);
2060 cloned_bio->bi_private = split_bio;
2061 cloned_bio->bi_end_io = split_bio_end;
2062 submit_bio(cloned_bio);
2063 }
2064 /*
2065 * Now we have to wait for all those smaller bios to
2066 * end, so we can also end the "parent" bio.
2067 */
2068 continue;
2069 }
2070 /* We don't need to split this bio */
2071 submit_bio(bio);
2072 }
2073
2074 return 0;
2075 }
2076
2077 /**
2078 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2079 * driver restart. We tear down our blkif structure and recreate it, but
2080 * leave the device-layer structures intact so that this is transparent to the
2081 * rest of the kernel.
2082 */
2083 static int blkfront_resume(struct xenbus_device *dev)
2084 {
2085 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2086 int err = 0;
2087 unsigned int i, j;
2088
2089 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2090
2091 bio_list_init(&info->bio_list);
2092 INIT_LIST_HEAD(&info->requests);
2093 for (i = 0; i < info->nr_rings; i++) {
2094 struct blkfront_ring_info *rinfo = &info->rinfo[i];
2095 struct bio_list merge_bio;
2096 struct blk_shadow *shadow = rinfo->shadow;
2097
2098 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2099 /* Not in use? */
2100 if (!shadow[j].request)
2101 continue;
2102
2103 /*
2104 * Get the bios in the request so we can re-queue them.
2105 */
2106 if (req_op(shadow[i].request) == REQ_OP_FLUSH ||
2107 req_op(shadow[i].request) == REQ_OP_DISCARD ||
2108 req_op(shadow[i].request) == REQ_OP_SECURE_ERASE ||
2109 shadow[j].request->cmd_flags & REQ_FUA) {
2110 /*
2111 * Flush operations don't contain bios, so
2112 * we need to requeue the whole request
2113 *
2114 * XXX: but this doesn't make any sense for a
2115 * write with the FUA flag set..
2116 */
2117 list_add(&shadow[j].request->queuelist, &info->requests);
2118 continue;
2119 }
2120 merge_bio.head = shadow[j].request->bio;
2121 merge_bio.tail = shadow[j].request->biotail;
2122 bio_list_merge(&info->bio_list, &merge_bio);
2123 shadow[j].request->bio = NULL;
2124 blk_mq_end_request(shadow[j].request, 0);
2125 }
2126 }
2127
2128 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2129
2130 err = negotiate_mq(info);
2131 if (err)
2132 return err;
2133
2134 err = talk_to_blkback(dev, info);
2135 if (!err)
2136 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2137
2138 /*
2139 * We have to wait for the backend to switch to
2140 * connected state, since we want to read which
2141 * features it supports.
2142 */
2143
2144 return err;
2145 }
2146
2147 static void blkfront_closing(struct blkfront_info *info)
2148 {
2149 struct xenbus_device *xbdev = info->xbdev;
2150 struct block_device *bdev = NULL;
2151
2152 mutex_lock(&info->mutex);
2153
2154 if (xbdev->state == XenbusStateClosing) {
2155 mutex_unlock(&info->mutex);
2156 return;
2157 }
2158
2159 if (info->gd)
2160 bdev = bdget_disk(info->gd, 0);
2161
2162 mutex_unlock(&info->mutex);
2163
2164 if (!bdev) {
2165 xenbus_frontend_closed(xbdev);
2166 return;
2167 }
2168
2169 mutex_lock(&bdev->bd_mutex);
2170
2171 if (bdev->bd_openers) {
2172 xenbus_dev_error(xbdev, -EBUSY,
2173 "Device in use; refusing to close");
2174 xenbus_switch_state(xbdev, XenbusStateClosing);
2175 } else {
2176 xlvbd_release_gendisk(info);
2177 xenbus_frontend_closed(xbdev);
2178 }
2179
2180 mutex_unlock(&bdev->bd_mutex);
2181 bdput(bdev);
2182 }
2183
2184 static void blkfront_setup_discard(struct blkfront_info *info)
2185 {
2186 int err;
2187 unsigned int discard_granularity;
2188 unsigned int discard_alignment;
2189 unsigned int discard_secure;
2190
2191 info->feature_discard = 1;
2192 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2193 "discard-granularity", "%u", &discard_granularity,
2194 "discard-alignment", "%u", &discard_alignment,
2195 NULL);
2196 if (!err) {
2197 info->discard_granularity = discard_granularity;
2198 info->discard_alignment = discard_alignment;
2199 }
2200 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2201 "discard-secure", "%u", &discard_secure);
2202 if (err > 0)
2203 info->feature_secdiscard = !!discard_secure;
2204 }
2205
2206 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2207 {
2208 unsigned int psegs, grants;
2209 int err, i;
2210 struct blkfront_info *info = rinfo->dev_info;
2211
2212 if (info->max_indirect_segments == 0) {
2213 if (!HAS_EXTRA_REQ)
2214 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2215 else {
2216 /*
2217 * When an extra req is required, the maximum
2218 * grants supported is related to the size of the
2219 * Linux block segment.
2220 */
2221 grants = GRANTS_PER_PSEG;
2222 }
2223 }
2224 else
2225 grants = info->max_indirect_segments;
2226 psegs = grants / GRANTS_PER_PSEG;
2227
2228 err = fill_grant_buffer(rinfo,
2229 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2230 if (err)
2231 goto out_of_memory;
2232
2233 if (!info->feature_persistent && info->max_indirect_segments) {
2234 /*
2235 * We are using indirect descriptors but not persistent
2236 * grants, we need to allocate a set of pages that can be
2237 * used for mapping indirect grefs
2238 */
2239 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2240
2241 BUG_ON(!list_empty(&rinfo->indirect_pages));
2242 for (i = 0; i < num; i++) {
2243 struct page *indirect_page = alloc_page(GFP_NOIO);
2244 if (!indirect_page)
2245 goto out_of_memory;
2246 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2247 }
2248 }
2249
2250 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2251 rinfo->shadow[i].grants_used = kzalloc(
2252 sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2253 GFP_NOIO);
2254 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2255 if (info->max_indirect_segments)
2256 rinfo->shadow[i].indirect_grants = kzalloc(
2257 sizeof(rinfo->shadow[i].indirect_grants[0]) *
2258 INDIRECT_GREFS(grants),
2259 GFP_NOIO);
2260 if ((rinfo->shadow[i].grants_used == NULL) ||
2261 (rinfo->shadow[i].sg == NULL) ||
2262 (info->max_indirect_segments &&
2263 (rinfo->shadow[i].indirect_grants == NULL)))
2264 goto out_of_memory;
2265 sg_init_table(rinfo->shadow[i].sg, psegs);
2266 }
2267
2268
2269 return 0;
2270
2271 out_of_memory:
2272 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2273 kfree(rinfo->shadow[i].grants_used);
2274 rinfo->shadow[i].grants_used = NULL;
2275 kfree(rinfo->shadow[i].sg);
2276 rinfo->shadow[i].sg = NULL;
2277 kfree(rinfo->shadow[i].indirect_grants);
2278 rinfo->shadow[i].indirect_grants = NULL;
2279 }
2280 if (!list_empty(&rinfo->indirect_pages)) {
2281 struct page *indirect_page, *n;
2282 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2283 list_del(&indirect_page->lru);
2284 __free_page(indirect_page);
2285 }
2286 }
2287 return -ENOMEM;
2288 }
2289
2290 /*
2291 * Gather all backend feature-*
2292 */
2293 static void blkfront_gather_backend_features(struct blkfront_info *info)
2294 {
2295 int err;
2296 int barrier, flush, discard, persistent;
2297 unsigned int indirect_segments;
2298
2299 info->feature_flush = 0;
2300 info->feature_fua = 0;
2301
2302 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2303 "feature-barrier", "%d", &barrier);
2304
2305 /*
2306 * If there's no "feature-barrier" defined, then it means
2307 * we're dealing with a very old backend which writes
2308 * synchronously; nothing to do.
2309 *
2310 * If there are barriers, then we use flush.
2311 */
2312 if (err > 0 && barrier) {
2313 info->feature_flush = 1;
2314 info->feature_fua = 1;
2315 }
2316
2317 /*
2318 * And if there is "feature-flush-cache" use that above
2319 * barriers.
2320 */
2321 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2322 "feature-flush-cache", "%d", &flush);
2323
2324 if (err > 0 && flush) {
2325 info->feature_flush = 1;
2326 info->feature_fua = 0;
2327 }
2328
2329 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2330 "feature-discard", "%d", &discard);
2331
2332 if (err > 0 && discard)
2333 blkfront_setup_discard(info);
2334
2335 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2336 "feature-persistent", "%d", &persistent);
2337 if (err <= 0)
2338 info->feature_persistent = 0;
2339 else
2340 info->feature_persistent = persistent;
2341
2342 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2343 "feature-max-indirect-segments", "%u",
2344 &indirect_segments);
2345 if (err <= 0)
2346 info->max_indirect_segments = 0;
2347 else
2348 info->max_indirect_segments = min(indirect_segments,
2349 xen_blkif_max_segments);
2350 }
2351
2352 /*
2353 * Invoked when the backend is finally 'ready' (and has told produced
2354 * the details about the physical device - #sectors, size, etc).
2355 */
2356 static void blkfront_connect(struct blkfront_info *info)
2357 {
2358 unsigned long long sectors;
2359 unsigned long sector_size;
2360 unsigned int physical_sector_size;
2361 unsigned int binfo;
2362 int err, i;
2363
2364 switch (info->connected) {
2365 case BLKIF_STATE_CONNECTED:
2366 /*
2367 * Potentially, the back-end may be signalling
2368 * a capacity change; update the capacity.
2369 */
2370 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2371 "sectors", "%Lu", &sectors);
2372 if (XENBUS_EXIST_ERR(err))
2373 return;
2374 printk(KERN_INFO "Setting capacity to %Lu\n",
2375 sectors);
2376 set_capacity(info->gd, sectors);
2377 revalidate_disk(info->gd);
2378
2379 return;
2380 case BLKIF_STATE_SUSPENDED:
2381 /*
2382 * If we are recovering from suspension, we need to wait
2383 * for the backend to announce it's features before
2384 * reconnecting, at least we need to know if the backend
2385 * supports indirect descriptors, and how many.
2386 */
2387 blkif_recover(info);
2388 return;
2389
2390 default:
2391 break;
2392 }
2393
2394 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2395 __func__, info->xbdev->otherend);
2396
2397 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2398 "sectors", "%llu", &sectors,
2399 "info", "%u", &binfo,
2400 "sector-size", "%lu", &sector_size,
2401 NULL);
2402 if (err) {
2403 xenbus_dev_fatal(info->xbdev, err,
2404 "reading backend fields at %s",
2405 info->xbdev->otherend);
2406 return;
2407 }
2408
2409 /*
2410 * physcial-sector-size is a newer field, so old backends may not
2411 * provide this. Assume physical sector size to be the same as
2412 * sector_size in that case.
2413 */
2414 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2415 "physical-sector-size", "%u", &physical_sector_size);
2416 if (err != 1)
2417 physical_sector_size = sector_size;
2418
2419 blkfront_gather_backend_features(info);
2420 for (i = 0; i < info->nr_rings; i++) {
2421 err = blkfront_setup_indirect(&info->rinfo[i]);
2422 if (err) {
2423 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2424 info->xbdev->otherend);
2425 blkif_free(info, 0);
2426 break;
2427 }
2428 }
2429
2430 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2431 physical_sector_size);
2432 if (err) {
2433 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2434 info->xbdev->otherend);
2435 return;
2436 }
2437
2438 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2439
2440 /* Kick pending requests. */
2441 info->connected = BLKIF_STATE_CONNECTED;
2442 for (i = 0; i < info->nr_rings; i++)
2443 kick_pending_request_queues(&info->rinfo[i]);
2444
2445 device_add_disk(&info->xbdev->dev, info->gd);
2446
2447 info->is_ready = 1;
2448 }
2449
2450 /**
2451 * Callback received when the backend's state changes.
2452 */
2453 static void blkback_changed(struct xenbus_device *dev,
2454 enum xenbus_state backend_state)
2455 {
2456 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2457
2458 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2459
2460 switch (backend_state) {
2461 case XenbusStateInitWait:
2462 if (dev->state != XenbusStateInitialising)
2463 break;
2464 if (talk_to_blkback(dev, info))
2465 break;
2466 case XenbusStateInitialising:
2467 case XenbusStateInitialised:
2468 case XenbusStateReconfiguring:
2469 case XenbusStateReconfigured:
2470 case XenbusStateUnknown:
2471 break;
2472
2473 case XenbusStateConnected:
2474 /*
2475 * talk_to_blkback sets state to XenbusStateInitialised
2476 * and blkfront_connect sets it to XenbusStateConnected
2477 * (if connection went OK).
2478 *
2479 * If the backend (or toolstack) decides to poke at backend
2480 * state (and re-trigger the watch by setting the state repeatedly
2481 * to XenbusStateConnected (4)) we need to deal with this.
2482 * This is allowed as this is used to communicate to the guest
2483 * that the size of disk has changed!
2484 */
2485 if ((dev->state != XenbusStateInitialised) &&
2486 (dev->state != XenbusStateConnected)) {
2487 if (talk_to_blkback(dev, info))
2488 break;
2489 }
2490
2491 blkfront_connect(info);
2492 break;
2493
2494 case XenbusStateClosed:
2495 if (dev->state == XenbusStateClosed)
2496 break;
2497 /* Missed the backend's Closing state -- fallthrough */
2498 case XenbusStateClosing:
2499 if (info)
2500 blkfront_closing(info);
2501 break;
2502 }
2503 }
2504
2505 static int blkfront_remove(struct xenbus_device *xbdev)
2506 {
2507 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2508 struct block_device *bdev = NULL;
2509 struct gendisk *disk;
2510
2511 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2512
2513 blkif_free(info, 0);
2514
2515 mutex_lock(&info->mutex);
2516
2517 disk = info->gd;
2518 if (disk)
2519 bdev = bdget_disk(disk, 0);
2520
2521 info->xbdev = NULL;
2522 mutex_unlock(&info->mutex);
2523
2524 if (!bdev) {
2525 kfree(info);
2526 return 0;
2527 }
2528
2529 /*
2530 * The xbdev was removed before we reached the Closed
2531 * state. See if it's safe to remove the disk. If the bdev
2532 * isn't closed yet, we let release take care of it.
2533 */
2534
2535 mutex_lock(&bdev->bd_mutex);
2536 info = disk->private_data;
2537
2538 dev_warn(disk_to_dev(disk),
2539 "%s was hot-unplugged, %d stale handles\n",
2540 xbdev->nodename, bdev->bd_openers);
2541
2542 if (info && !bdev->bd_openers) {
2543 xlvbd_release_gendisk(info);
2544 disk->private_data = NULL;
2545 kfree(info);
2546 }
2547
2548 mutex_unlock(&bdev->bd_mutex);
2549 bdput(bdev);
2550
2551 return 0;
2552 }
2553
2554 static int blkfront_is_ready(struct xenbus_device *dev)
2555 {
2556 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2557
2558 return info->is_ready && info->xbdev;
2559 }
2560
2561 static int blkif_open(struct block_device *bdev, fmode_t mode)
2562 {
2563 struct gendisk *disk = bdev->bd_disk;
2564 struct blkfront_info *info;
2565 int err = 0;
2566
2567 mutex_lock(&blkfront_mutex);
2568
2569 info = disk->private_data;
2570 if (!info) {
2571 /* xbdev gone */
2572 err = -ERESTARTSYS;
2573 goto out;
2574 }
2575
2576 mutex_lock(&info->mutex);
2577
2578 if (!info->gd)
2579 /* xbdev is closed */
2580 err = -ERESTARTSYS;
2581
2582 mutex_unlock(&info->mutex);
2583
2584 out:
2585 mutex_unlock(&blkfront_mutex);
2586 return err;
2587 }
2588
2589 static void blkif_release(struct gendisk *disk, fmode_t mode)
2590 {
2591 struct blkfront_info *info = disk->private_data;
2592 struct block_device *bdev;
2593 struct xenbus_device *xbdev;
2594
2595 mutex_lock(&blkfront_mutex);
2596
2597 bdev = bdget_disk(disk, 0);
2598
2599 if (!bdev) {
2600 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2601 goto out_mutex;
2602 }
2603 if (bdev->bd_openers)
2604 goto out;
2605
2606 /*
2607 * Check if we have been instructed to close. We will have
2608 * deferred this request, because the bdev was still open.
2609 */
2610
2611 mutex_lock(&info->mutex);
2612 xbdev = info->xbdev;
2613
2614 if (xbdev && xbdev->state == XenbusStateClosing) {
2615 /* pending switch to state closed */
2616 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2617 xlvbd_release_gendisk(info);
2618 xenbus_frontend_closed(info->xbdev);
2619 }
2620
2621 mutex_unlock(&info->mutex);
2622
2623 if (!xbdev) {
2624 /* sudden device removal */
2625 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2626 xlvbd_release_gendisk(info);
2627 disk->private_data = NULL;
2628 kfree(info);
2629 }
2630
2631 out:
2632 bdput(bdev);
2633 out_mutex:
2634 mutex_unlock(&blkfront_mutex);
2635 }
2636
2637 static const struct block_device_operations xlvbd_block_fops =
2638 {
2639 .owner = THIS_MODULE,
2640 .open = blkif_open,
2641 .release = blkif_release,
2642 .getgeo = blkif_getgeo,
2643 .ioctl = blkif_ioctl,
2644 };
2645
2646
2647 static const struct xenbus_device_id blkfront_ids[] = {
2648 { "vbd" },
2649 { "" }
2650 };
2651
2652 static struct xenbus_driver blkfront_driver = {
2653 .ids = blkfront_ids,
2654 .probe = blkfront_probe,
2655 .remove = blkfront_remove,
2656 .resume = blkfront_resume,
2657 .otherend_changed = blkback_changed,
2658 .is_ready = blkfront_is_ready,
2659 };
2660
2661 static int __init xlblk_init(void)
2662 {
2663 int ret;
2664 int nr_cpus = num_online_cpus();
2665
2666 if (!xen_domain())
2667 return -ENODEV;
2668
2669 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2670 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2671 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2672 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2673 }
2674
2675 if (xen_blkif_max_queues > nr_cpus) {
2676 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2677 xen_blkif_max_queues, nr_cpus);
2678 xen_blkif_max_queues = nr_cpus;
2679 }
2680
2681 if (!xen_has_pv_disk_devices())
2682 return -ENODEV;
2683
2684 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2685 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2686 XENVBD_MAJOR, DEV_NAME);
2687 return -ENODEV;
2688 }
2689
2690 ret = xenbus_register_frontend(&blkfront_driver);
2691 if (ret) {
2692 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2693 return ret;
2694 }
2695
2696 return 0;
2697 }
2698 module_init(xlblk_init);
2699
2700
2701 static void __exit xlblk_exit(void)
2702 {
2703 xenbus_unregister_driver(&blkfront_driver);
2704 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2705 kfree(minors);
2706 }
2707 module_exit(xlblk_exit);
2708
2709 MODULE_DESCRIPTION("Xen virtual block device frontend");
2710 MODULE_LICENSE("GPL");
2711 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2712 MODULE_ALIAS("xen:vbd");
2713 MODULE_ALIAS("xenblk");