]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/xen-blkfront.c
ASoC: ux500: Restore platform DAI assignments
[mirror_ubuntu-artful-kernel.git] / drivers / block / xen-blkfront.c
1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60
61 #include <asm/xen/hypervisor.h>
62
63 /*
64 * The minimal size of segment supported by the block framework is PAGE_SIZE.
65 * When Linux is using a different page size than Xen, it may not be possible
66 * to put all the data in a single segment.
67 * This can happen when the backend doesn't support indirect descriptor and
68 * therefore the maximum amount of data that a request can carry is
69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70 *
71 * Note that we only support one extra request. So the Linux page size
72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73 * 88KB.
74 */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76
77 enum blkif_state {
78 BLKIF_STATE_DISCONNECTED,
79 BLKIF_STATE_CONNECTED,
80 BLKIF_STATE_SUSPENDED,
81 };
82
83 struct grant {
84 grant_ref_t gref;
85 struct page *page;
86 struct list_head node;
87 };
88
89 enum blk_req_status {
90 REQ_WAITING,
91 REQ_DONE,
92 REQ_ERROR,
93 REQ_EOPNOTSUPP,
94 };
95
96 struct blk_shadow {
97 struct blkif_request req;
98 struct request *request;
99 struct grant **grants_used;
100 struct grant **indirect_grants;
101 struct scatterlist *sg;
102 unsigned int num_sg;
103 enum blk_req_status status;
104
105 #define NO_ASSOCIATED_ID ~0UL
106 /*
107 * Id of the sibling if we ever need 2 requests when handling a
108 * block I/O request
109 */
110 unsigned long associated_id;
111 };
112
113 struct blkif_req {
114 int error;
115 };
116
117 static inline struct blkif_req *blkif_req(struct request *rq)
118 {
119 return blk_mq_rq_to_pdu(rq);
120 }
121
122 static DEFINE_MUTEX(blkfront_mutex);
123 static const struct block_device_operations xlvbd_block_fops;
124
125 /*
126 * Maximum number of segments in indirect requests, the actual value used by
127 * the frontend driver is the minimum of this value and the value provided
128 * by the backend driver.
129 */
130
131 static unsigned int xen_blkif_max_segments = 32;
132 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
133 S_IRUGO);
134 MODULE_PARM_DESC(max_indirect_segments,
135 "Maximum amount of segments in indirect requests (default is 32)");
136
137 static unsigned int xen_blkif_max_queues = 4;
138 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
139 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
140
141 /*
142 * Maximum order of pages to be used for the shared ring between front and
143 * backend, 4KB page granularity is used.
144 */
145 static unsigned int xen_blkif_max_ring_order;
146 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
147 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
148
149 #define BLK_RING_SIZE(info) \
150 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
151
152 #define BLK_MAX_RING_SIZE \
153 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
154
155 /*
156 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
157 * characters are enough. Define to 20 to keep consistent with backend.
158 */
159 #define RINGREF_NAME_LEN (20)
160 /*
161 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
162 */
163 #define QUEUE_NAME_LEN (17)
164
165 /*
166 * Per-ring info.
167 * Every blkfront device can associate with one or more blkfront_ring_info,
168 * depending on how many hardware queues/rings to be used.
169 */
170 struct blkfront_ring_info {
171 /* Lock to protect data in every ring buffer. */
172 spinlock_t ring_lock;
173 struct blkif_front_ring ring;
174 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
175 unsigned int evtchn, irq;
176 struct work_struct work;
177 struct gnttab_free_callback callback;
178 struct blk_shadow shadow[BLK_MAX_RING_SIZE];
179 struct list_head indirect_pages;
180 struct list_head grants;
181 unsigned int persistent_gnts_c;
182 unsigned long shadow_free;
183 struct blkfront_info *dev_info;
184 };
185
186 /*
187 * We have one of these per vbd, whether ide, scsi or 'other'. They
188 * hang in private_data off the gendisk structure. We may end up
189 * putting all kinds of interesting stuff here :-)
190 */
191 struct blkfront_info
192 {
193 struct mutex mutex;
194 struct xenbus_device *xbdev;
195 struct gendisk *gd;
196 u16 sector_size;
197 unsigned int physical_sector_size;
198 int vdevice;
199 blkif_vdev_t handle;
200 enum blkif_state connected;
201 /* Number of pages per ring buffer. */
202 unsigned int nr_ring_pages;
203 struct request_queue *rq;
204 unsigned int feature_flush:1;
205 unsigned int feature_fua:1;
206 unsigned int feature_discard:1;
207 unsigned int feature_secdiscard:1;
208 unsigned int feature_persistent:1;
209 unsigned int discard_granularity;
210 unsigned int discard_alignment;
211 /* Number of 4KB segments handled */
212 unsigned int max_indirect_segments;
213 int is_ready;
214 struct blk_mq_tag_set tag_set;
215 struct blkfront_ring_info *rinfo;
216 unsigned int nr_rings;
217 /* Save uncomplete reqs and bios for migration. */
218 struct list_head requests;
219 struct bio_list bio_list;
220 };
221
222 static unsigned int nr_minors;
223 static unsigned long *minors;
224 static DEFINE_SPINLOCK(minor_lock);
225
226 #define GRANT_INVALID_REF 0
227
228 #define PARTS_PER_DISK 16
229 #define PARTS_PER_EXT_DISK 256
230
231 #define BLKIF_MAJOR(dev) ((dev)>>8)
232 #define BLKIF_MINOR(dev) ((dev) & 0xff)
233
234 #define EXT_SHIFT 28
235 #define EXTENDED (1<<EXT_SHIFT)
236 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
237 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
238 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
239 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
240 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
241 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
242
243 #define DEV_NAME "xvd" /* name in /dev */
244
245 /*
246 * Grants are always the same size as a Xen page (i.e 4KB).
247 * A physical segment is always the same size as a Linux page.
248 * Number of grants per physical segment
249 */
250 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
251
252 #define GRANTS_PER_INDIRECT_FRAME \
253 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
254
255 #define PSEGS_PER_INDIRECT_FRAME \
256 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
257
258 #define INDIRECT_GREFS(_grants) \
259 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
260
261 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG)
262
263 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
264 static void blkfront_gather_backend_features(struct blkfront_info *info);
265
266 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
267 {
268 unsigned long free = rinfo->shadow_free;
269
270 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
271 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
272 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
273 return free;
274 }
275
276 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
277 unsigned long id)
278 {
279 if (rinfo->shadow[id].req.u.rw.id != id)
280 return -EINVAL;
281 if (rinfo->shadow[id].request == NULL)
282 return -EINVAL;
283 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
284 rinfo->shadow[id].request = NULL;
285 rinfo->shadow_free = id;
286 return 0;
287 }
288
289 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
290 {
291 struct blkfront_info *info = rinfo->dev_info;
292 struct page *granted_page;
293 struct grant *gnt_list_entry, *n;
294 int i = 0;
295
296 while (i < num) {
297 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
298 if (!gnt_list_entry)
299 goto out_of_memory;
300
301 if (info->feature_persistent) {
302 granted_page = alloc_page(GFP_NOIO);
303 if (!granted_page) {
304 kfree(gnt_list_entry);
305 goto out_of_memory;
306 }
307 gnt_list_entry->page = granted_page;
308 }
309
310 gnt_list_entry->gref = GRANT_INVALID_REF;
311 list_add(&gnt_list_entry->node, &rinfo->grants);
312 i++;
313 }
314
315 return 0;
316
317 out_of_memory:
318 list_for_each_entry_safe(gnt_list_entry, n,
319 &rinfo->grants, node) {
320 list_del(&gnt_list_entry->node);
321 if (info->feature_persistent)
322 __free_page(gnt_list_entry->page);
323 kfree(gnt_list_entry);
324 i--;
325 }
326 BUG_ON(i != 0);
327 return -ENOMEM;
328 }
329
330 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
331 {
332 struct grant *gnt_list_entry;
333
334 BUG_ON(list_empty(&rinfo->grants));
335 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
336 node);
337 list_del(&gnt_list_entry->node);
338
339 if (gnt_list_entry->gref != GRANT_INVALID_REF)
340 rinfo->persistent_gnts_c--;
341
342 return gnt_list_entry;
343 }
344
345 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
346 const struct blkfront_info *info)
347 {
348 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
349 info->xbdev->otherend_id,
350 gnt_list_entry->page,
351 0);
352 }
353
354 static struct grant *get_grant(grant_ref_t *gref_head,
355 unsigned long gfn,
356 struct blkfront_ring_info *rinfo)
357 {
358 struct grant *gnt_list_entry = get_free_grant(rinfo);
359 struct blkfront_info *info = rinfo->dev_info;
360
361 if (gnt_list_entry->gref != GRANT_INVALID_REF)
362 return gnt_list_entry;
363
364 /* Assign a gref to this page */
365 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
366 BUG_ON(gnt_list_entry->gref == -ENOSPC);
367 if (info->feature_persistent)
368 grant_foreign_access(gnt_list_entry, info);
369 else {
370 /* Grant access to the GFN passed by the caller */
371 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
372 info->xbdev->otherend_id,
373 gfn, 0);
374 }
375
376 return gnt_list_entry;
377 }
378
379 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
380 struct blkfront_ring_info *rinfo)
381 {
382 struct grant *gnt_list_entry = get_free_grant(rinfo);
383 struct blkfront_info *info = rinfo->dev_info;
384
385 if (gnt_list_entry->gref != GRANT_INVALID_REF)
386 return gnt_list_entry;
387
388 /* Assign a gref to this page */
389 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
390 BUG_ON(gnt_list_entry->gref == -ENOSPC);
391 if (!info->feature_persistent) {
392 struct page *indirect_page;
393
394 /* Fetch a pre-allocated page to use for indirect grefs */
395 BUG_ON(list_empty(&rinfo->indirect_pages));
396 indirect_page = list_first_entry(&rinfo->indirect_pages,
397 struct page, lru);
398 list_del(&indirect_page->lru);
399 gnt_list_entry->page = indirect_page;
400 }
401 grant_foreign_access(gnt_list_entry, info);
402
403 return gnt_list_entry;
404 }
405
406 static const char *op_name(int op)
407 {
408 static const char *const names[] = {
409 [BLKIF_OP_READ] = "read",
410 [BLKIF_OP_WRITE] = "write",
411 [BLKIF_OP_WRITE_BARRIER] = "barrier",
412 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
413 [BLKIF_OP_DISCARD] = "discard" };
414
415 if (op < 0 || op >= ARRAY_SIZE(names))
416 return "unknown";
417
418 if (!names[op])
419 return "reserved";
420
421 return names[op];
422 }
423 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
424 {
425 unsigned int end = minor + nr;
426 int rc;
427
428 if (end > nr_minors) {
429 unsigned long *bitmap, *old;
430
431 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
432 GFP_KERNEL);
433 if (bitmap == NULL)
434 return -ENOMEM;
435
436 spin_lock(&minor_lock);
437 if (end > nr_minors) {
438 old = minors;
439 memcpy(bitmap, minors,
440 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
441 minors = bitmap;
442 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
443 } else
444 old = bitmap;
445 spin_unlock(&minor_lock);
446 kfree(old);
447 }
448
449 spin_lock(&minor_lock);
450 if (find_next_bit(minors, end, minor) >= end) {
451 bitmap_set(minors, minor, nr);
452 rc = 0;
453 } else
454 rc = -EBUSY;
455 spin_unlock(&minor_lock);
456
457 return rc;
458 }
459
460 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
461 {
462 unsigned int end = minor + nr;
463
464 BUG_ON(end > nr_minors);
465 spin_lock(&minor_lock);
466 bitmap_clear(minors, minor, nr);
467 spin_unlock(&minor_lock);
468 }
469
470 static void blkif_restart_queue_callback(void *arg)
471 {
472 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
473 schedule_work(&rinfo->work);
474 }
475
476 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
477 {
478 /* We don't have real geometry info, but let's at least return
479 values consistent with the size of the device */
480 sector_t nsect = get_capacity(bd->bd_disk);
481 sector_t cylinders = nsect;
482
483 hg->heads = 0xff;
484 hg->sectors = 0x3f;
485 sector_div(cylinders, hg->heads * hg->sectors);
486 hg->cylinders = cylinders;
487 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
488 hg->cylinders = 0xffff;
489 return 0;
490 }
491
492 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
493 unsigned command, unsigned long argument)
494 {
495 struct blkfront_info *info = bdev->bd_disk->private_data;
496 int i;
497
498 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
499 command, (long)argument);
500
501 switch (command) {
502 case CDROMMULTISESSION:
503 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
504 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
505 if (put_user(0, (char __user *)(argument + i)))
506 return -EFAULT;
507 return 0;
508
509 case CDROM_GET_CAPABILITY: {
510 struct gendisk *gd = info->gd;
511 if (gd->flags & GENHD_FL_CD)
512 return 0;
513 return -EINVAL;
514 }
515
516 default:
517 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
518 command);*/
519 return -EINVAL; /* same return as native Linux */
520 }
521
522 return 0;
523 }
524
525 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
526 struct request *req,
527 struct blkif_request **ring_req)
528 {
529 unsigned long id;
530
531 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
532 rinfo->ring.req_prod_pvt++;
533
534 id = get_id_from_freelist(rinfo);
535 rinfo->shadow[id].request = req;
536 rinfo->shadow[id].status = REQ_WAITING;
537 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
538
539 (*ring_req)->u.rw.id = id;
540
541 return id;
542 }
543
544 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
545 {
546 struct blkfront_info *info = rinfo->dev_info;
547 struct blkif_request *ring_req;
548 unsigned long id;
549
550 /* Fill out a communications ring structure. */
551 id = blkif_ring_get_request(rinfo, req, &ring_req);
552
553 ring_req->operation = BLKIF_OP_DISCARD;
554 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
555 ring_req->u.discard.id = id;
556 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
557 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
558 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
559 else
560 ring_req->u.discard.flag = 0;
561
562 /* Keep a private copy so we can reissue requests when recovering. */
563 rinfo->shadow[id].req = *ring_req;
564
565 return 0;
566 }
567
568 struct setup_rw_req {
569 unsigned int grant_idx;
570 struct blkif_request_segment *segments;
571 struct blkfront_ring_info *rinfo;
572 struct blkif_request *ring_req;
573 grant_ref_t gref_head;
574 unsigned int id;
575 /* Only used when persistent grant is used and it's a read request */
576 bool need_copy;
577 unsigned int bvec_off;
578 char *bvec_data;
579
580 bool require_extra_req;
581 struct blkif_request *extra_ring_req;
582 };
583
584 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
585 unsigned int len, void *data)
586 {
587 struct setup_rw_req *setup = data;
588 int n, ref;
589 struct grant *gnt_list_entry;
590 unsigned int fsect, lsect;
591 /* Convenient aliases */
592 unsigned int grant_idx = setup->grant_idx;
593 struct blkif_request *ring_req = setup->ring_req;
594 struct blkfront_ring_info *rinfo = setup->rinfo;
595 /*
596 * We always use the shadow of the first request to store the list
597 * of grant associated to the block I/O request. This made the
598 * completion more easy to handle even if the block I/O request is
599 * split.
600 */
601 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
602
603 if (unlikely(setup->require_extra_req &&
604 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
605 /*
606 * We are using the second request, setup grant_idx
607 * to be the index of the segment array.
608 */
609 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
610 ring_req = setup->extra_ring_req;
611 }
612
613 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
614 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
615 if (setup->segments)
616 kunmap_atomic(setup->segments);
617
618 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
619 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
620 shadow->indirect_grants[n] = gnt_list_entry;
621 setup->segments = kmap_atomic(gnt_list_entry->page);
622 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
623 }
624
625 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
626 ref = gnt_list_entry->gref;
627 /*
628 * All the grants are stored in the shadow of the first
629 * request. Therefore we have to use the global index.
630 */
631 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
632
633 if (setup->need_copy) {
634 void *shared_data;
635
636 shared_data = kmap_atomic(gnt_list_entry->page);
637 /*
638 * this does not wipe data stored outside the
639 * range sg->offset..sg->offset+sg->length.
640 * Therefore, blkback *could* see data from
641 * previous requests. This is OK as long as
642 * persistent grants are shared with just one
643 * domain. It may need refactoring if this
644 * changes
645 */
646 memcpy(shared_data + offset,
647 setup->bvec_data + setup->bvec_off,
648 len);
649
650 kunmap_atomic(shared_data);
651 setup->bvec_off += len;
652 }
653
654 fsect = offset >> 9;
655 lsect = fsect + (len >> 9) - 1;
656 if (ring_req->operation != BLKIF_OP_INDIRECT) {
657 ring_req->u.rw.seg[grant_idx] =
658 (struct blkif_request_segment) {
659 .gref = ref,
660 .first_sect = fsect,
661 .last_sect = lsect };
662 } else {
663 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
664 (struct blkif_request_segment) {
665 .gref = ref,
666 .first_sect = fsect,
667 .last_sect = lsect };
668 }
669
670 (setup->grant_idx)++;
671 }
672
673 static void blkif_setup_extra_req(struct blkif_request *first,
674 struct blkif_request *second)
675 {
676 uint16_t nr_segments = first->u.rw.nr_segments;
677
678 /*
679 * The second request is only present when the first request uses
680 * all its segments. It's always the continuity of the first one.
681 */
682 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
683
684 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
685 second->u.rw.sector_number = first->u.rw.sector_number +
686 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
687
688 second->u.rw.handle = first->u.rw.handle;
689 second->operation = first->operation;
690 }
691
692 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
693 {
694 struct blkfront_info *info = rinfo->dev_info;
695 struct blkif_request *ring_req, *extra_ring_req = NULL;
696 unsigned long id, extra_id = NO_ASSOCIATED_ID;
697 bool require_extra_req = false;
698 int i;
699 struct setup_rw_req setup = {
700 .grant_idx = 0,
701 .segments = NULL,
702 .rinfo = rinfo,
703 .need_copy = rq_data_dir(req) && info->feature_persistent,
704 };
705
706 /*
707 * Used to store if we are able to queue the request by just using
708 * existing persistent grants, or if we have to get new grants,
709 * as there are not sufficiently many free.
710 */
711 struct scatterlist *sg;
712 int num_sg, max_grefs, num_grant;
713
714 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
715 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
716 /*
717 * If we are using indirect segments we need to account
718 * for the indirect grefs used in the request.
719 */
720 max_grefs += INDIRECT_GREFS(max_grefs);
721
722 /*
723 * We have to reserve 'max_grefs' grants because persistent
724 * grants are shared by all rings.
725 */
726 if (max_grefs > 0)
727 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
728 gnttab_request_free_callback(
729 &rinfo->callback,
730 blkif_restart_queue_callback,
731 rinfo,
732 max_grefs);
733 return 1;
734 }
735
736 /* Fill out a communications ring structure. */
737 id = blkif_ring_get_request(rinfo, req, &ring_req);
738
739 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
740 num_grant = 0;
741 /* Calculate the number of grant used */
742 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
743 num_grant += gnttab_count_grant(sg->offset, sg->length);
744
745 require_extra_req = info->max_indirect_segments == 0 &&
746 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
747 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
748
749 rinfo->shadow[id].num_sg = num_sg;
750 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
751 likely(!require_extra_req)) {
752 /*
753 * The indirect operation can only be a BLKIF_OP_READ or
754 * BLKIF_OP_WRITE
755 */
756 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
757 ring_req->operation = BLKIF_OP_INDIRECT;
758 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
759 BLKIF_OP_WRITE : BLKIF_OP_READ;
760 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
761 ring_req->u.indirect.handle = info->handle;
762 ring_req->u.indirect.nr_segments = num_grant;
763 } else {
764 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
765 ring_req->u.rw.handle = info->handle;
766 ring_req->operation = rq_data_dir(req) ?
767 BLKIF_OP_WRITE : BLKIF_OP_READ;
768 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
769 /*
770 * Ideally we can do an unordered flush-to-disk.
771 * In case the backend onlysupports barriers, use that.
772 * A barrier request a superset of FUA, so we can
773 * implement it the same way. (It's also a FLUSH+FUA,
774 * since it is guaranteed ordered WRT previous writes.)
775 */
776 if (info->feature_flush && info->feature_fua)
777 ring_req->operation =
778 BLKIF_OP_WRITE_BARRIER;
779 else if (info->feature_flush)
780 ring_req->operation =
781 BLKIF_OP_FLUSH_DISKCACHE;
782 else
783 ring_req->operation = 0;
784 }
785 ring_req->u.rw.nr_segments = num_grant;
786 if (unlikely(require_extra_req)) {
787 extra_id = blkif_ring_get_request(rinfo, req,
788 &extra_ring_req);
789 /*
790 * Only the first request contains the scatter-gather
791 * list.
792 */
793 rinfo->shadow[extra_id].num_sg = 0;
794
795 blkif_setup_extra_req(ring_req, extra_ring_req);
796
797 /* Link the 2 requests together */
798 rinfo->shadow[extra_id].associated_id = id;
799 rinfo->shadow[id].associated_id = extra_id;
800 }
801 }
802
803 setup.ring_req = ring_req;
804 setup.id = id;
805
806 setup.require_extra_req = require_extra_req;
807 if (unlikely(require_extra_req))
808 setup.extra_ring_req = extra_ring_req;
809
810 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
811 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
812
813 if (setup.need_copy) {
814 setup.bvec_off = sg->offset;
815 setup.bvec_data = kmap_atomic(sg_page(sg));
816 }
817
818 gnttab_foreach_grant_in_range(sg_page(sg),
819 sg->offset,
820 sg->length,
821 blkif_setup_rw_req_grant,
822 &setup);
823
824 if (setup.need_copy)
825 kunmap_atomic(setup.bvec_data);
826 }
827 if (setup.segments)
828 kunmap_atomic(setup.segments);
829
830 /* Keep a private copy so we can reissue requests when recovering. */
831 rinfo->shadow[id].req = *ring_req;
832 if (unlikely(require_extra_req))
833 rinfo->shadow[extra_id].req = *extra_ring_req;
834
835 if (max_grefs > 0)
836 gnttab_free_grant_references(setup.gref_head);
837
838 return 0;
839 }
840
841 /*
842 * Generate a Xen blkfront IO request from a blk layer request. Reads
843 * and writes are handled as expected.
844 *
845 * @req: a request struct
846 */
847 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
848 {
849 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
850 return 1;
851
852 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
853 req_op(req) == REQ_OP_SECURE_ERASE))
854 return blkif_queue_discard_req(req, rinfo);
855 else
856 return blkif_queue_rw_req(req, rinfo);
857 }
858
859 static inline void flush_requests(struct blkfront_ring_info *rinfo)
860 {
861 int notify;
862
863 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
864
865 if (notify)
866 notify_remote_via_irq(rinfo->irq);
867 }
868
869 static inline bool blkif_request_flush_invalid(struct request *req,
870 struct blkfront_info *info)
871 {
872 return (blk_rq_is_passthrough(req) ||
873 ((req_op(req) == REQ_OP_FLUSH) &&
874 !info->feature_flush) ||
875 ((req->cmd_flags & REQ_FUA) &&
876 !info->feature_fua));
877 }
878
879 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
880 const struct blk_mq_queue_data *qd)
881 {
882 unsigned long flags;
883 int qid = hctx->queue_num;
884 struct blkfront_info *info = hctx->queue->queuedata;
885 struct blkfront_ring_info *rinfo = NULL;
886
887 BUG_ON(info->nr_rings <= qid);
888 rinfo = &info->rinfo[qid];
889 blk_mq_start_request(qd->rq);
890 spin_lock_irqsave(&rinfo->ring_lock, flags);
891 if (RING_FULL(&rinfo->ring))
892 goto out_busy;
893
894 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
895 goto out_err;
896
897 if (blkif_queue_request(qd->rq, rinfo))
898 goto out_busy;
899
900 flush_requests(rinfo);
901 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
902 return BLK_STS_OK;
903
904 out_err:
905 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
906 return BLK_STS_IOERR;
907
908 out_busy:
909 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
910 blk_mq_stop_hw_queue(hctx);
911 return BLK_STS_RESOURCE;
912 }
913
914 static void blkif_complete_rq(struct request *rq)
915 {
916 blk_mq_end_request(rq, blkif_req(rq)->error);
917 }
918
919 static const struct blk_mq_ops blkfront_mq_ops = {
920 .queue_rq = blkif_queue_rq,
921 .complete = blkif_complete_rq,
922 };
923
924 static void blkif_set_queue_limits(struct blkfront_info *info)
925 {
926 struct request_queue *rq = info->rq;
927 struct gendisk *gd = info->gd;
928 unsigned int segments = info->max_indirect_segments ? :
929 BLKIF_MAX_SEGMENTS_PER_REQUEST;
930
931 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
932
933 if (info->feature_discard) {
934 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
935 blk_queue_max_discard_sectors(rq, get_capacity(gd));
936 rq->limits.discard_granularity = info->discard_granularity;
937 rq->limits.discard_alignment = info->discard_alignment;
938 if (info->feature_secdiscard)
939 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq);
940 }
941
942 /* Hard sector size and max sectors impersonate the equiv. hardware. */
943 blk_queue_logical_block_size(rq, info->sector_size);
944 blk_queue_physical_block_size(rq, info->physical_sector_size);
945 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
946
947 /* Each segment in a request is up to an aligned page in size. */
948 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
949 blk_queue_max_segment_size(rq, PAGE_SIZE);
950
951 /* Ensure a merged request will fit in a single I/O ring slot. */
952 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
953
954 /* Make sure buffer addresses are sector-aligned. */
955 blk_queue_dma_alignment(rq, 511);
956 }
957
958 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
959 unsigned int physical_sector_size)
960 {
961 struct request_queue *rq;
962 struct blkfront_info *info = gd->private_data;
963
964 memset(&info->tag_set, 0, sizeof(info->tag_set));
965 info->tag_set.ops = &blkfront_mq_ops;
966 info->tag_set.nr_hw_queues = info->nr_rings;
967 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
968 /*
969 * When indirect descriptior is not supported, the I/O request
970 * will be split between multiple request in the ring.
971 * To avoid problems when sending the request, divide by
972 * 2 the depth of the queue.
973 */
974 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
975 } else
976 info->tag_set.queue_depth = BLK_RING_SIZE(info);
977 info->tag_set.numa_node = NUMA_NO_NODE;
978 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
979 info->tag_set.cmd_size = sizeof(struct blkif_req);
980 info->tag_set.driver_data = info;
981
982 if (blk_mq_alloc_tag_set(&info->tag_set))
983 return -EINVAL;
984 rq = blk_mq_init_queue(&info->tag_set);
985 if (IS_ERR(rq)) {
986 blk_mq_free_tag_set(&info->tag_set);
987 return PTR_ERR(rq);
988 }
989
990 rq->queuedata = info;
991 info->rq = gd->queue = rq;
992 info->gd = gd;
993 info->sector_size = sector_size;
994 info->physical_sector_size = physical_sector_size;
995 blkif_set_queue_limits(info);
996
997 return 0;
998 }
999
1000 static const char *flush_info(struct blkfront_info *info)
1001 {
1002 if (info->feature_flush && info->feature_fua)
1003 return "barrier: enabled;";
1004 else if (info->feature_flush)
1005 return "flush diskcache: enabled;";
1006 else
1007 return "barrier or flush: disabled;";
1008 }
1009
1010 static void xlvbd_flush(struct blkfront_info *info)
1011 {
1012 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1013 info->feature_fua ? true : false);
1014 pr_info("blkfront: %s: %s %s %s %s %s\n",
1015 info->gd->disk_name, flush_info(info),
1016 "persistent grants:", info->feature_persistent ?
1017 "enabled;" : "disabled;", "indirect descriptors:",
1018 info->max_indirect_segments ? "enabled;" : "disabled;");
1019 }
1020
1021 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1022 {
1023 int major;
1024 major = BLKIF_MAJOR(vdevice);
1025 *minor = BLKIF_MINOR(vdevice);
1026 switch (major) {
1027 case XEN_IDE0_MAJOR:
1028 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1029 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1030 EMULATED_HD_DISK_MINOR_OFFSET;
1031 break;
1032 case XEN_IDE1_MAJOR:
1033 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1034 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1035 EMULATED_HD_DISK_MINOR_OFFSET;
1036 break;
1037 case XEN_SCSI_DISK0_MAJOR:
1038 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1039 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1040 break;
1041 case XEN_SCSI_DISK1_MAJOR:
1042 case XEN_SCSI_DISK2_MAJOR:
1043 case XEN_SCSI_DISK3_MAJOR:
1044 case XEN_SCSI_DISK4_MAJOR:
1045 case XEN_SCSI_DISK5_MAJOR:
1046 case XEN_SCSI_DISK6_MAJOR:
1047 case XEN_SCSI_DISK7_MAJOR:
1048 *offset = (*minor / PARTS_PER_DISK) +
1049 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1050 EMULATED_SD_DISK_NAME_OFFSET;
1051 *minor = *minor +
1052 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1053 EMULATED_SD_DISK_MINOR_OFFSET;
1054 break;
1055 case XEN_SCSI_DISK8_MAJOR:
1056 case XEN_SCSI_DISK9_MAJOR:
1057 case XEN_SCSI_DISK10_MAJOR:
1058 case XEN_SCSI_DISK11_MAJOR:
1059 case XEN_SCSI_DISK12_MAJOR:
1060 case XEN_SCSI_DISK13_MAJOR:
1061 case XEN_SCSI_DISK14_MAJOR:
1062 case XEN_SCSI_DISK15_MAJOR:
1063 *offset = (*minor / PARTS_PER_DISK) +
1064 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1065 EMULATED_SD_DISK_NAME_OFFSET;
1066 *minor = *minor +
1067 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1068 EMULATED_SD_DISK_MINOR_OFFSET;
1069 break;
1070 case XENVBD_MAJOR:
1071 *offset = *minor / PARTS_PER_DISK;
1072 break;
1073 default:
1074 printk(KERN_WARNING "blkfront: your disk configuration is "
1075 "incorrect, please use an xvd device instead\n");
1076 return -ENODEV;
1077 }
1078 return 0;
1079 }
1080
1081 static char *encode_disk_name(char *ptr, unsigned int n)
1082 {
1083 if (n >= 26)
1084 ptr = encode_disk_name(ptr, n / 26 - 1);
1085 *ptr = 'a' + n % 26;
1086 return ptr + 1;
1087 }
1088
1089 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1090 struct blkfront_info *info,
1091 u16 vdisk_info, u16 sector_size,
1092 unsigned int physical_sector_size)
1093 {
1094 struct gendisk *gd;
1095 int nr_minors = 1;
1096 int err;
1097 unsigned int offset;
1098 int minor;
1099 int nr_parts;
1100 char *ptr;
1101
1102 BUG_ON(info->gd != NULL);
1103 BUG_ON(info->rq != NULL);
1104
1105 if ((info->vdevice>>EXT_SHIFT) > 1) {
1106 /* this is above the extended range; something is wrong */
1107 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1108 return -ENODEV;
1109 }
1110
1111 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1112 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1113 if (err)
1114 return err;
1115 nr_parts = PARTS_PER_DISK;
1116 } else {
1117 minor = BLKIF_MINOR_EXT(info->vdevice);
1118 nr_parts = PARTS_PER_EXT_DISK;
1119 offset = minor / nr_parts;
1120 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1121 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1122 "emulated IDE disks,\n\t choose an xvd device name"
1123 "from xvde on\n", info->vdevice);
1124 }
1125 if (minor >> MINORBITS) {
1126 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1127 info->vdevice, minor);
1128 return -ENODEV;
1129 }
1130
1131 if ((minor % nr_parts) == 0)
1132 nr_minors = nr_parts;
1133
1134 err = xlbd_reserve_minors(minor, nr_minors);
1135 if (err)
1136 goto out;
1137 err = -ENODEV;
1138
1139 gd = alloc_disk(nr_minors);
1140 if (gd == NULL)
1141 goto release;
1142
1143 strcpy(gd->disk_name, DEV_NAME);
1144 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1145 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1146 if (nr_minors > 1)
1147 *ptr = 0;
1148 else
1149 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1150 "%d", minor & (nr_parts - 1));
1151
1152 gd->major = XENVBD_MAJOR;
1153 gd->first_minor = minor;
1154 gd->fops = &xlvbd_block_fops;
1155 gd->private_data = info;
1156 set_capacity(gd, capacity);
1157
1158 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1159 del_gendisk(gd);
1160 goto release;
1161 }
1162
1163 xlvbd_flush(info);
1164
1165 if (vdisk_info & VDISK_READONLY)
1166 set_disk_ro(gd, 1);
1167
1168 if (vdisk_info & VDISK_REMOVABLE)
1169 gd->flags |= GENHD_FL_REMOVABLE;
1170
1171 if (vdisk_info & VDISK_CDROM)
1172 gd->flags |= GENHD_FL_CD;
1173
1174 return 0;
1175
1176 release:
1177 xlbd_release_minors(minor, nr_minors);
1178 out:
1179 return err;
1180 }
1181
1182 static void xlvbd_release_gendisk(struct blkfront_info *info)
1183 {
1184 unsigned int minor, nr_minors, i;
1185
1186 if (info->rq == NULL)
1187 return;
1188
1189 /* No more blkif_request(). */
1190 blk_mq_stop_hw_queues(info->rq);
1191
1192 for (i = 0; i < info->nr_rings; i++) {
1193 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1194
1195 /* No more gnttab callback work. */
1196 gnttab_cancel_free_callback(&rinfo->callback);
1197
1198 /* Flush gnttab callback work. Must be done with no locks held. */
1199 flush_work(&rinfo->work);
1200 }
1201
1202 del_gendisk(info->gd);
1203
1204 minor = info->gd->first_minor;
1205 nr_minors = info->gd->minors;
1206 xlbd_release_minors(minor, nr_minors);
1207
1208 blk_cleanup_queue(info->rq);
1209 blk_mq_free_tag_set(&info->tag_set);
1210 info->rq = NULL;
1211
1212 put_disk(info->gd);
1213 info->gd = NULL;
1214 }
1215
1216 /* Already hold rinfo->ring_lock. */
1217 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1218 {
1219 if (!RING_FULL(&rinfo->ring))
1220 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1221 }
1222
1223 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1224 {
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&rinfo->ring_lock, flags);
1228 kick_pending_request_queues_locked(rinfo);
1229 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1230 }
1231
1232 static void blkif_restart_queue(struct work_struct *work)
1233 {
1234 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1235
1236 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1237 kick_pending_request_queues(rinfo);
1238 }
1239
1240 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1241 {
1242 struct grant *persistent_gnt, *n;
1243 struct blkfront_info *info = rinfo->dev_info;
1244 int i, j, segs;
1245
1246 /*
1247 * Remove indirect pages, this only happens when using indirect
1248 * descriptors but not persistent grants
1249 */
1250 if (!list_empty(&rinfo->indirect_pages)) {
1251 struct page *indirect_page, *n;
1252
1253 BUG_ON(info->feature_persistent);
1254 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1255 list_del(&indirect_page->lru);
1256 __free_page(indirect_page);
1257 }
1258 }
1259
1260 /* Remove all persistent grants. */
1261 if (!list_empty(&rinfo->grants)) {
1262 list_for_each_entry_safe(persistent_gnt, n,
1263 &rinfo->grants, node) {
1264 list_del(&persistent_gnt->node);
1265 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1266 gnttab_end_foreign_access(persistent_gnt->gref,
1267 0, 0UL);
1268 rinfo->persistent_gnts_c--;
1269 }
1270 if (info->feature_persistent)
1271 __free_page(persistent_gnt->page);
1272 kfree(persistent_gnt);
1273 }
1274 }
1275 BUG_ON(rinfo->persistent_gnts_c != 0);
1276
1277 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1278 /*
1279 * Clear persistent grants present in requests already
1280 * on the shared ring
1281 */
1282 if (!rinfo->shadow[i].request)
1283 goto free_shadow;
1284
1285 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1286 rinfo->shadow[i].req.u.indirect.nr_segments :
1287 rinfo->shadow[i].req.u.rw.nr_segments;
1288 for (j = 0; j < segs; j++) {
1289 persistent_gnt = rinfo->shadow[i].grants_used[j];
1290 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1291 if (info->feature_persistent)
1292 __free_page(persistent_gnt->page);
1293 kfree(persistent_gnt);
1294 }
1295
1296 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1297 /*
1298 * If this is not an indirect operation don't try to
1299 * free indirect segments
1300 */
1301 goto free_shadow;
1302
1303 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1304 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1305 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1306 __free_page(persistent_gnt->page);
1307 kfree(persistent_gnt);
1308 }
1309
1310 free_shadow:
1311 kfree(rinfo->shadow[i].grants_used);
1312 rinfo->shadow[i].grants_used = NULL;
1313 kfree(rinfo->shadow[i].indirect_grants);
1314 rinfo->shadow[i].indirect_grants = NULL;
1315 kfree(rinfo->shadow[i].sg);
1316 rinfo->shadow[i].sg = NULL;
1317 }
1318
1319 /* No more gnttab callback work. */
1320 gnttab_cancel_free_callback(&rinfo->callback);
1321
1322 /* Flush gnttab callback work. Must be done with no locks held. */
1323 flush_work(&rinfo->work);
1324
1325 /* Free resources associated with old device channel. */
1326 for (i = 0; i < info->nr_ring_pages; i++) {
1327 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1328 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1329 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1330 }
1331 }
1332 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1333 rinfo->ring.sring = NULL;
1334
1335 if (rinfo->irq)
1336 unbind_from_irqhandler(rinfo->irq, rinfo);
1337 rinfo->evtchn = rinfo->irq = 0;
1338 }
1339
1340 static void blkif_free(struct blkfront_info *info, int suspend)
1341 {
1342 unsigned int i;
1343
1344 /* Prevent new requests being issued until we fix things up. */
1345 info->connected = suspend ?
1346 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1347 /* No more blkif_request(). */
1348 if (info->rq)
1349 blk_mq_stop_hw_queues(info->rq);
1350
1351 for (i = 0; i < info->nr_rings; i++)
1352 blkif_free_ring(&info->rinfo[i]);
1353
1354 kfree(info->rinfo);
1355 info->rinfo = NULL;
1356 info->nr_rings = 0;
1357 }
1358
1359 struct copy_from_grant {
1360 const struct blk_shadow *s;
1361 unsigned int grant_idx;
1362 unsigned int bvec_offset;
1363 char *bvec_data;
1364 };
1365
1366 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1367 unsigned int len, void *data)
1368 {
1369 struct copy_from_grant *info = data;
1370 char *shared_data;
1371 /* Convenient aliases */
1372 const struct blk_shadow *s = info->s;
1373
1374 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1375
1376 memcpy(info->bvec_data + info->bvec_offset,
1377 shared_data + offset, len);
1378
1379 info->bvec_offset += len;
1380 info->grant_idx++;
1381
1382 kunmap_atomic(shared_data);
1383 }
1384
1385 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1386 {
1387 switch (rsp)
1388 {
1389 case BLKIF_RSP_OKAY:
1390 return REQ_DONE;
1391 case BLKIF_RSP_EOPNOTSUPP:
1392 return REQ_EOPNOTSUPP;
1393 case BLKIF_RSP_ERROR:
1394 /* Fallthrough. */
1395 default:
1396 return REQ_ERROR;
1397 }
1398 }
1399
1400 /*
1401 * Get the final status of the block request based on two ring response
1402 */
1403 static int blkif_get_final_status(enum blk_req_status s1,
1404 enum blk_req_status s2)
1405 {
1406 BUG_ON(s1 == REQ_WAITING);
1407 BUG_ON(s2 == REQ_WAITING);
1408
1409 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1410 return BLKIF_RSP_ERROR;
1411 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1412 return BLKIF_RSP_EOPNOTSUPP;
1413 return BLKIF_RSP_OKAY;
1414 }
1415
1416 static bool blkif_completion(unsigned long *id,
1417 struct blkfront_ring_info *rinfo,
1418 struct blkif_response *bret)
1419 {
1420 int i = 0;
1421 struct scatterlist *sg;
1422 int num_sg, num_grant;
1423 struct blkfront_info *info = rinfo->dev_info;
1424 struct blk_shadow *s = &rinfo->shadow[*id];
1425 struct copy_from_grant data = {
1426 .grant_idx = 0,
1427 };
1428
1429 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1430 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1431
1432 /* The I/O request may be split in two. */
1433 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1434 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1435
1436 /* Keep the status of the current response in shadow. */
1437 s->status = blkif_rsp_to_req_status(bret->status);
1438
1439 /* Wait the second response if not yet here. */
1440 if (s2->status == REQ_WAITING)
1441 return 0;
1442
1443 bret->status = blkif_get_final_status(s->status,
1444 s2->status);
1445
1446 /*
1447 * All the grants is stored in the first shadow in order
1448 * to make the completion code simpler.
1449 */
1450 num_grant += s2->req.u.rw.nr_segments;
1451
1452 /*
1453 * The two responses may not come in order. Only the
1454 * first request will store the scatter-gather list.
1455 */
1456 if (s2->num_sg != 0) {
1457 /* Update "id" with the ID of the first response. */
1458 *id = s->associated_id;
1459 s = s2;
1460 }
1461
1462 /*
1463 * We don't need anymore the second request, so recycling
1464 * it now.
1465 */
1466 if (add_id_to_freelist(rinfo, s->associated_id))
1467 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1468 info->gd->disk_name, s->associated_id);
1469 }
1470
1471 data.s = s;
1472 num_sg = s->num_sg;
1473
1474 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1475 for_each_sg(s->sg, sg, num_sg, i) {
1476 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1477
1478 data.bvec_offset = sg->offset;
1479 data.bvec_data = kmap_atomic(sg_page(sg));
1480
1481 gnttab_foreach_grant_in_range(sg_page(sg),
1482 sg->offset,
1483 sg->length,
1484 blkif_copy_from_grant,
1485 &data);
1486
1487 kunmap_atomic(data.bvec_data);
1488 }
1489 }
1490 /* Add the persistent grant into the list of free grants */
1491 for (i = 0; i < num_grant; i++) {
1492 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1493 /*
1494 * If the grant is still mapped by the backend (the
1495 * backend has chosen to make this grant persistent)
1496 * we add it at the head of the list, so it will be
1497 * reused first.
1498 */
1499 if (!info->feature_persistent)
1500 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1501 s->grants_used[i]->gref);
1502 list_add(&s->grants_used[i]->node, &rinfo->grants);
1503 rinfo->persistent_gnts_c++;
1504 } else {
1505 /*
1506 * If the grant is not mapped by the backend we end the
1507 * foreign access and add it to the tail of the list,
1508 * so it will not be picked again unless we run out of
1509 * persistent grants.
1510 */
1511 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1512 s->grants_used[i]->gref = GRANT_INVALID_REF;
1513 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1514 }
1515 }
1516 if (s->req.operation == BLKIF_OP_INDIRECT) {
1517 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1518 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1519 if (!info->feature_persistent)
1520 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1521 s->indirect_grants[i]->gref);
1522 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1523 rinfo->persistent_gnts_c++;
1524 } else {
1525 struct page *indirect_page;
1526
1527 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1528 /*
1529 * Add the used indirect page back to the list of
1530 * available pages for indirect grefs.
1531 */
1532 if (!info->feature_persistent) {
1533 indirect_page = s->indirect_grants[i]->page;
1534 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1535 }
1536 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1537 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1538 }
1539 }
1540 }
1541
1542 return 1;
1543 }
1544
1545 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1546 {
1547 struct request *req;
1548 struct blkif_response *bret;
1549 RING_IDX i, rp;
1550 unsigned long flags;
1551 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1552 struct blkfront_info *info = rinfo->dev_info;
1553
1554 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1555 return IRQ_HANDLED;
1556
1557 spin_lock_irqsave(&rinfo->ring_lock, flags);
1558 again:
1559 rp = rinfo->ring.sring->rsp_prod;
1560 rmb(); /* Ensure we see queued responses up to 'rp'. */
1561
1562 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1563 unsigned long id;
1564
1565 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1566 id = bret->id;
1567 /*
1568 * The backend has messed up and given us an id that we would
1569 * never have given to it (we stamp it up to BLK_RING_SIZE -
1570 * look in get_id_from_freelist.
1571 */
1572 if (id >= BLK_RING_SIZE(info)) {
1573 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1574 info->gd->disk_name, op_name(bret->operation), id);
1575 /* We can't safely get the 'struct request' as
1576 * the id is busted. */
1577 continue;
1578 }
1579 req = rinfo->shadow[id].request;
1580
1581 if (bret->operation != BLKIF_OP_DISCARD) {
1582 /*
1583 * We may need to wait for an extra response if the
1584 * I/O request is split in 2
1585 */
1586 if (!blkif_completion(&id, rinfo, bret))
1587 continue;
1588 }
1589
1590 if (add_id_to_freelist(rinfo, id)) {
1591 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1592 info->gd->disk_name, op_name(bret->operation), id);
1593 continue;
1594 }
1595
1596 if (bret->status == BLKIF_RSP_OKAY)
1597 blkif_req(req)->error = BLK_STS_OK;
1598 else
1599 blkif_req(req)->error = BLK_STS_IOERR;
1600
1601 switch (bret->operation) {
1602 case BLKIF_OP_DISCARD:
1603 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1604 struct request_queue *rq = info->rq;
1605 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1606 info->gd->disk_name, op_name(bret->operation));
1607 blkif_req(req)->error = BLK_STS_NOTSUPP;
1608 info->feature_discard = 0;
1609 info->feature_secdiscard = 0;
1610 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1611 queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1612 }
1613 break;
1614 case BLKIF_OP_FLUSH_DISKCACHE:
1615 case BLKIF_OP_WRITE_BARRIER:
1616 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1617 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1618 info->gd->disk_name, op_name(bret->operation));
1619 blkif_req(req)->error = -EOPNOTSUPP;
1620 }
1621 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1622 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1623 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1624 info->gd->disk_name, op_name(bret->operation));
1625 blkif_req(req)->error = BLK_STS_NOTSUPP;
1626 }
1627 if (unlikely(blkif_req(req)->error)) {
1628 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1629 blkif_req(req)->error = BLK_STS_OK;
1630 info->feature_fua = 0;
1631 info->feature_flush = 0;
1632 xlvbd_flush(info);
1633 }
1634 /* fall through */
1635 case BLKIF_OP_READ:
1636 case BLKIF_OP_WRITE:
1637 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1638 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1639 "request: %x\n", bret->status);
1640
1641 break;
1642 default:
1643 BUG();
1644 }
1645
1646 blk_mq_complete_request(req);
1647 }
1648
1649 rinfo->ring.rsp_cons = i;
1650
1651 if (i != rinfo->ring.req_prod_pvt) {
1652 int more_to_do;
1653 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1654 if (more_to_do)
1655 goto again;
1656 } else
1657 rinfo->ring.sring->rsp_event = i + 1;
1658
1659 kick_pending_request_queues_locked(rinfo);
1660
1661 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1662
1663 return IRQ_HANDLED;
1664 }
1665
1666
1667 static int setup_blkring(struct xenbus_device *dev,
1668 struct blkfront_ring_info *rinfo)
1669 {
1670 struct blkif_sring *sring;
1671 int err, i;
1672 struct blkfront_info *info = rinfo->dev_info;
1673 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1674 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1675
1676 for (i = 0; i < info->nr_ring_pages; i++)
1677 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1678
1679 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1680 get_order(ring_size));
1681 if (!sring) {
1682 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1683 return -ENOMEM;
1684 }
1685 SHARED_RING_INIT(sring);
1686 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1687
1688 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1689 if (err < 0) {
1690 free_pages((unsigned long)sring, get_order(ring_size));
1691 rinfo->ring.sring = NULL;
1692 goto fail;
1693 }
1694 for (i = 0; i < info->nr_ring_pages; i++)
1695 rinfo->ring_ref[i] = gref[i];
1696
1697 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1698 if (err)
1699 goto fail;
1700
1701 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1702 "blkif", rinfo);
1703 if (err <= 0) {
1704 xenbus_dev_fatal(dev, err,
1705 "bind_evtchn_to_irqhandler failed");
1706 goto fail;
1707 }
1708 rinfo->irq = err;
1709
1710 return 0;
1711 fail:
1712 blkif_free(info, 0);
1713 return err;
1714 }
1715
1716 /*
1717 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1718 * ring buffer may have multi pages depending on ->nr_ring_pages.
1719 */
1720 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1721 struct blkfront_ring_info *rinfo, const char *dir)
1722 {
1723 int err;
1724 unsigned int i;
1725 const char *message = NULL;
1726 struct blkfront_info *info = rinfo->dev_info;
1727
1728 if (info->nr_ring_pages == 1) {
1729 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1730 if (err) {
1731 message = "writing ring-ref";
1732 goto abort_transaction;
1733 }
1734 } else {
1735 for (i = 0; i < info->nr_ring_pages; i++) {
1736 char ring_ref_name[RINGREF_NAME_LEN];
1737
1738 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1739 err = xenbus_printf(xbt, dir, ring_ref_name,
1740 "%u", rinfo->ring_ref[i]);
1741 if (err) {
1742 message = "writing ring-ref";
1743 goto abort_transaction;
1744 }
1745 }
1746 }
1747
1748 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1749 if (err) {
1750 message = "writing event-channel";
1751 goto abort_transaction;
1752 }
1753
1754 return 0;
1755
1756 abort_transaction:
1757 xenbus_transaction_end(xbt, 1);
1758 if (message)
1759 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1760
1761 return err;
1762 }
1763
1764 /* Common code used when first setting up, and when resuming. */
1765 static int talk_to_blkback(struct xenbus_device *dev,
1766 struct blkfront_info *info)
1767 {
1768 const char *message = NULL;
1769 struct xenbus_transaction xbt;
1770 int err;
1771 unsigned int i, max_page_order;
1772 unsigned int ring_page_order;
1773
1774 max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1775 "max-ring-page-order", 0);
1776 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1777 info->nr_ring_pages = 1 << ring_page_order;
1778
1779 for (i = 0; i < info->nr_rings; i++) {
1780 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1781
1782 /* Create shared ring, alloc event channel. */
1783 err = setup_blkring(dev, rinfo);
1784 if (err)
1785 goto destroy_blkring;
1786 }
1787
1788 again:
1789 err = xenbus_transaction_start(&xbt);
1790 if (err) {
1791 xenbus_dev_fatal(dev, err, "starting transaction");
1792 goto destroy_blkring;
1793 }
1794
1795 if (info->nr_ring_pages > 1) {
1796 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1797 ring_page_order);
1798 if (err) {
1799 message = "writing ring-page-order";
1800 goto abort_transaction;
1801 }
1802 }
1803
1804 /* We already got the number of queues/rings in _probe */
1805 if (info->nr_rings == 1) {
1806 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1807 if (err)
1808 goto destroy_blkring;
1809 } else {
1810 char *path;
1811 size_t pathsize;
1812
1813 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1814 info->nr_rings);
1815 if (err) {
1816 message = "writing multi-queue-num-queues";
1817 goto abort_transaction;
1818 }
1819
1820 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1821 path = kmalloc(pathsize, GFP_KERNEL);
1822 if (!path) {
1823 err = -ENOMEM;
1824 message = "ENOMEM while writing ring references";
1825 goto abort_transaction;
1826 }
1827
1828 for (i = 0; i < info->nr_rings; i++) {
1829 memset(path, 0, pathsize);
1830 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1831 err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1832 if (err) {
1833 kfree(path);
1834 goto destroy_blkring;
1835 }
1836 }
1837 kfree(path);
1838 }
1839 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1840 XEN_IO_PROTO_ABI_NATIVE);
1841 if (err) {
1842 message = "writing protocol";
1843 goto abort_transaction;
1844 }
1845 err = xenbus_printf(xbt, dev->nodename,
1846 "feature-persistent", "%u", 1);
1847 if (err)
1848 dev_warn(&dev->dev,
1849 "writing persistent grants feature to xenbus");
1850
1851 err = xenbus_transaction_end(xbt, 0);
1852 if (err) {
1853 if (err == -EAGAIN)
1854 goto again;
1855 xenbus_dev_fatal(dev, err, "completing transaction");
1856 goto destroy_blkring;
1857 }
1858
1859 for (i = 0; i < info->nr_rings; i++) {
1860 unsigned int j;
1861 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1862
1863 for (j = 0; j < BLK_RING_SIZE(info); j++)
1864 rinfo->shadow[j].req.u.rw.id = j + 1;
1865 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1866 }
1867 xenbus_switch_state(dev, XenbusStateInitialised);
1868
1869 return 0;
1870
1871 abort_transaction:
1872 xenbus_transaction_end(xbt, 1);
1873 if (message)
1874 xenbus_dev_fatal(dev, err, "%s", message);
1875 destroy_blkring:
1876 blkif_free(info, 0);
1877
1878 kfree(info);
1879 dev_set_drvdata(&dev->dev, NULL);
1880
1881 return err;
1882 }
1883
1884 static int negotiate_mq(struct blkfront_info *info)
1885 {
1886 unsigned int backend_max_queues;
1887 unsigned int i;
1888
1889 BUG_ON(info->nr_rings);
1890
1891 /* Check if backend supports multiple queues. */
1892 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1893 "multi-queue-max-queues", 1);
1894 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1895 /* We need at least one ring. */
1896 if (!info->nr_rings)
1897 info->nr_rings = 1;
1898
1899 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1900 if (!info->rinfo) {
1901 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1902 return -ENOMEM;
1903 }
1904
1905 for (i = 0; i < info->nr_rings; i++) {
1906 struct blkfront_ring_info *rinfo;
1907
1908 rinfo = &info->rinfo[i];
1909 INIT_LIST_HEAD(&rinfo->indirect_pages);
1910 INIT_LIST_HEAD(&rinfo->grants);
1911 rinfo->dev_info = info;
1912 INIT_WORK(&rinfo->work, blkif_restart_queue);
1913 spin_lock_init(&rinfo->ring_lock);
1914 }
1915 return 0;
1916 }
1917 /**
1918 * Entry point to this code when a new device is created. Allocate the basic
1919 * structures and the ring buffer for communication with the backend, and
1920 * inform the backend of the appropriate details for those. Switch to
1921 * Initialised state.
1922 */
1923 static int blkfront_probe(struct xenbus_device *dev,
1924 const struct xenbus_device_id *id)
1925 {
1926 int err, vdevice;
1927 struct blkfront_info *info;
1928
1929 /* FIXME: Use dynamic device id if this is not set. */
1930 err = xenbus_scanf(XBT_NIL, dev->nodename,
1931 "virtual-device", "%i", &vdevice);
1932 if (err != 1) {
1933 /* go looking in the extended area instead */
1934 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1935 "%i", &vdevice);
1936 if (err != 1) {
1937 xenbus_dev_fatal(dev, err, "reading virtual-device");
1938 return err;
1939 }
1940 }
1941
1942 if (xen_hvm_domain()) {
1943 char *type;
1944 int len;
1945 /* no unplug has been done: do not hook devices != xen vbds */
1946 if (xen_has_pv_and_legacy_disk_devices()) {
1947 int major;
1948
1949 if (!VDEV_IS_EXTENDED(vdevice))
1950 major = BLKIF_MAJOR(vdevice);
1951 else
1952 major = XENVBD_MAJOR;
1953
1954 if (major != XENVBD_MAJOR) {
1955 printk(KERN_INFO
1956 "%s: HVM does not support vbd %d as xen block device\n",
1957 __func__, vdevice);
1958 return -ENODEV;
1959 }
1960 }
1961 /* do not create a PV cdrom device if we are an HVM guest */
1962 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1963 if (IS_ERR(type))
1964 return -ENODEV;
1965 if (strncmp(type, "cdrom", 5) == 0) {
1966 kfree(type);
1967 return -ENODEV;
1968 }
1969 kfree(type);
1970 }
1971 info = kzalloc(sizeof(*info), GFP_KERNEL);
1972 if (!info) {
1973 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1974 return -ENOMEM;
1975 }
1976
1977 info->xbdev = dev;
1978 err = negotiate_mq(info);
1979 if (err) {
1980 kfree(info);
1981 return err;
1982 }
1983
1984 mutex_init(&info->mutex);
1985 info->vdevice = vdevice;
1986 info->connected = BLKIF_STATE_DISCONNECTED;
1987
1988 /* Front end dir is a number, which is used as the id. */
1989 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1990 dev_set_drvdata(&dev->dev, info);
1991
1992 return 0;
1993 }
1994
1995 static int blkif_recover(struct blkfront_info *info)
1996 {
1997 unsigned int r_index;
1998 struct request *req, *n;
1999 int rc;
2000 struct bio *bio;
2001 unsigned int segs;
2002
2003 blkfront_gather_backend_features(info);
2004 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2005 blkif_set_queue_limits(info);
2006 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2007 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2008
2009 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2010 struct blkfront_ring_info *rinfo = &info->rinfo[r_index];
2011
2012 rc = blkfront_setup_indirect(rinfo);
2013 if (rc)
2014 return rc;
2015 }
2016 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2017
2018 /* Now safe for us to use the shared ring */
2019 info->connected = BLKIF_STATE_CONNECTED;
2020
2021 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2022 struct blkfront_ring_info *rinfo;
2023
2024 rinfo = &info->rinfo[r_index];
2025 /* Kick any other new requests queued since we resumed */
2026 kick_pending_request_queues(rinfo);
2027 }
2028
2029 list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2030 /* Requeue pending requests (flush or discard) */
2031 list_del_init(&req->queuelist);
2032 BUG_ON(req->nr_phys_segments > segs);
2033 blk_mq_requeue_request(req, false);
2034 }
2035 blk_mq_start_stopped_hw_queues(info->rq, true);
2036 blk_mq_kick_requeue_list(info->rq);
2037
2038 while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2039 /* Traverse the list of pending bios and re-queue them */
2040 submit_bio(bio);
2041 }
2042
2043 return 0;
2044 }
2045
2046 /**
2047 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2048 * driver restart. We tear down our blkif structure and recreate it, but
2049 * leave the device-layer structures intact so that this is transparent to the
2050 * rest of the kernel.
2051 */
2052 static int blkfront_resume(struct xenbus_device *dev)
2053 {
2054 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2055 int err = 0;
2056 unsigned int i, j;
2057
2058 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2059
2060 bio_list_init(&info->bio_list);
2061 INIT_LIST_HEAD(&info->requests);
2062 for (i = 0; i < info->nr_rings; i++) {
2063 struct blkfront_ring_info *rinfo = &info->rinfo[i];
2064 struct bio_list merge_bio;
2065 struct blk_shadow *shadow = rinfo->shadow;
2066
2067 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2068 /* Not in use? */
2069 if (!shadow[j].request)
2070 continue;
2071
2072 /*
2073 * Get the bios in the request so we can re-queue them.
2074 */
2075 if (req_op(shadow[i].request) == REQ_OP_FLUSH ||
2076 req_op(shadow[i].request) == REQ_OP_DISCARD ||
2077 req_op(shadow[i].request) == REQ_OP_SECURE_ERASE ||
2078 shadow[j].request->cmd_flags & REQ_FUA) {
2079 /*
2080 * Flush operations don't contain bios, so
2081 * we need to requeue the whole request
2082 *
2083 * XXX: but this doesn't make any sense for a
2084 * write with the FUA flag set..
2085 */
2086 list_add(&shadow[j].request->queuelist, &info->requests);
2087 continue;
2088 }
2089 merge_bio.head = shadow[j].request->bio;
2090 merge_bio.tail = shadow[j].request->biotail;
2091 bio_list_merge(&info->bio_list, &merge_bio);
2092 shadow[j].request->bio = NULL;
2093 blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2094 }
2095 }
2096
2097 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2098
2099 err = negotiate_mq(info);
2100 if (err)
2101 return err;
2102
2103 err = talk_to_blkback(dev, info);
2104 if (!err)
2105 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2106
2107 /*
2108 * We have to wait for the backend to switch to
2109 * connected state, since we want to read which
2110 * features it supports.
2111 */
2112
2113 return err;
2114 }
2115
2116 static void blkfront_closing(struct blkfront_info *info)
2117 {
2118 struct xenbus_device *xbdev = info->xbdev;
2119 struct block_device *bdev = NULL;
2120
2121 mutex_lock(&info->mutex);
2122
2123 if (xbdev->state == XenbusStateClosing) {
2124 mutex_unlock(&info->mutex);
2125 return;
2126 }
2127
2128 if (info->gd)
2129 bdev = bdget_disk(info->gd, 0);
2130
2131 mutex_unlock(&info->mutex);
2132
2133 if (!bdev) {
2134 xenbus_frontend_closed(xbdev);
2135 return;
2136 }
2137
2138 mutex_lock(&bdev->bd_mutex);
2139
2140 if (bdev->bd_openers) {
2141 xenbus_dev_error(xbdev, -EBUSY,
2142 "Device in use; refusing to close");
2143 xenbus_switch_state(xbdev, XenbusStateClosing);
2144 } else {
2145 xlvbd_release_gendisk(info);
2146 xenbus_frontend_closed(xbdev);
2147 }
2148
2149 mutex_unlock(&bdev->bd_mutex);
2150 bdput(bdev);
2151 }
2152
2153 static void blkfront_setup_discard(struct blkfront_info *info)
2154 {
2155 int err;
2156 unsigned int discard_granularity;
2157 unsigned int discard_alignment;
2158
2159 info->feature_discard = 1;
2160 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2161 "discard-granularity", "%u", &discard_granularity,
2162 "discard-alignment", "%u", &discard_alignment,
2163 NULL);
2164 if (!err) {
2165 info->discard_granularity = discard_granularity;
2166 info->discard_alignment = discard_alignment;
2167 }
2168 info->feature_secdiscard =
2169 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2170 0);
2171 }
2172
2173 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2174 {
2175 unsigned int psegs, grants;
2176 int err, i;
2177 struct blkfront_info *info = rinfo->dev_info;
2178
2179 if (info->max_indirect_segments == 0) {
2180 if (!HAS_EXTRA_REQ)
2181 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2182 else {
2183 /*
2184 * When an extra req is required, the maximum
2185 * grants supported is related to the size of the
2186 * Linux block segment.
2187 */
2188 grants = GRANTS_PER_PSEG;
2189 }
2190 }
2191 else
2192 grants = info->max_indirect_segments;
2193 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2194
2195 err = fill_grant_buffer(rinfo,
2196 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2197 if (err)
2198 goto out_of_memory;
2199
2200 if (!info->feature_persistent && info->max_indirect_segments) {
2201 /*
2202 * We are using indirect descriptors but not persistent
2203 * grants, we need to allocate a set of pages that can be
2204 * used for mapping indirect grefs
2205 */
2206 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2207
2208 BUG_ON(!list_empty(&rinfo->indirect_pages));
2209 for (i = 0; i < num; i++) {
2210 struct page *indirect_page = alloc_page(GFP_NOIO);
2211 if (!indirect_page)
2212 goto out_of_memory;
2213 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2214 }
2215 }
2216
2217 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2218 rinfo->shadow[i].grants_used = kzalloc(
2219 sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2220 GFP_NOIO);
2221 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2222 if (info->max_indirect_segments)
2223 rinfo->shadow[i].indirect_grants = kzalloc(
2224 sizeof(rinfo->shadow[i].indirect_grants[0]) *
2225 INDIRECT_GREFS(grants),
2226 GFP_NOIO);
2227 if ((rinfo->shadow[i].grants_used == NULL) ||
2228 (rinfo->shadow[i].sg == NULL) ||
2229 (info->max_indirect_segments &&
2230 (rinfo->shadow[i].indirect_grants == NULL)))
2231 goto out_of_memory;
2232 sg_init_table(rinfo->shadow[i].sg, psegs);
2233 }
2234
2235
2236 return 0;
2237
2238 out_of_memory:
2239 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2240 kfree(rinfo->shadow[i].grants_used);
2241 rinfo->shadow[i].grants_used = NULL;
2242 kfree(rinfo->shadow[i].sg);
2243 rinfo->shadow[i].sg = NULL;
2244 kfree(rinfo->shadow[i].indirect_grants);
2245 rinfo->shadow[i].indirect_grants = NULL;
2246 }
2247 if (!list_empty(&rinfo->indirect_pages)) {
2248 struct page *indirect_page, *n;
2249 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2250 list_del(&indirect_page->lru);
2251 __free_page(indirect_page);
2252 }
2253 }
2254 return -ENOMEM;
2255 }
2256
2257 /*
2258 * Gather all backend feature-*
2259 */
2260 static void blkfront_gather_backend_features(struct blkfront_info *info)
2261 {
2262 unsigned int indirect_segments;
2263
2264 info->feature_flush = 0;
2265 info->feature_fua = 0;
2266
2267 /*
2268 * If there's no "feature-barrier" defined, then it means
2269 * we're dealing with a very old backend which writes
2270 * synchronously; nothing to do.
2271 *
2272 * If there are barriers, then we use flush.
2273 */
2274 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2275 info->feature_flush = 1;
2276 info->feature_fua = 1;
2277 }
2278
2279 /*
2280 * And if there is "feature-flush-cache" use that above
2281 * barriers.
2282 */
2283 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2284 0)) {
2285 info->feature_flush = 1;
2286 info->feature_fua = 0;
2287 }
2288
2289 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2290 blkfront_setup_discard(info);
2291
2292 info->feature_persistent =
2293 !!xenbus_read_unsigned(info->xbdev->otherend,
2294 "feature-persistent", 0);
2295
2296 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2297 "feature-max-indirect-segments", 0);
2298 if (indirect_segments > xen_blkif_max_segments)
2299 indirect_segments = xen_blkif_max_segments;
2300 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2301 indirect_segments = 0;
2302 info->max_indirect_segments = indirect_segments;
2303 }
2304
2305 /*
2306 * Invoked when the backend is finally 'ready' (and has told produced
2307 * the details about the physical device - #sectors, size, etc).
2308 */
2309 static void blkfront_connect(struct blkfront_info *info)
2310 {
2311 unsigned long long sectors;
2312 unsigned long sector_size;
2313 unsigned int physical_sector_size;
2314 unsigned int binfo;
2315 char *envp[] = { "RESIZE=1", NULL };
2316 int err, i;
2317
2318 switch (info->connected) {
2319 case BLKIF_STATE_CONNECTED:
2320 /*
2321 * Potentially, the back-end may be signalling
2322 * a capacity change; update the capacity.
2323 */
2324 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2325 "sectors", "%Lu", &sectors);
2326 if (XENBUS_EXIST_ERR(err))
2327 return;
2328 printk(KERN_INFO "Setting capacity to %Lu\n",
2329 sectors);
2330 set_capacity(info->gd, sectors);
2331 revalidate_disk(info->gd);
2332 kobject_uevent_env(&disk_to_dev(info->gd)->kobj,
2333 KOBJ_CHANGE, envp);
2334
2335 return;
2336 case BLKIF_STATE_SUSPENDED:
2337 /*
2338 * If we are recovering from suspension, we need to wait
2339 * for the backend to announce it's features before
2340 * reconnecting, at least we need to know if the backend
2341 * supports indirect descriptors, and how many.
2342 */
2343 blkif_recover(info);
2344 return;
2345
2346 default:
2347 break;
2348 }
2349
2350 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2351 __func__, info->xbdev->otherend);
2352
2353 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2354 "sectors", "%llu", &sectors,
2355 "info", "%u", &binfo,
2356 "sector-size", "%lu", &sector_size,
2357 NULL);
2358 if (err) {
2359 xenbus_dev_fatal(info->xbdev, err,
2360 "reading backend fields at %s",
2361 info->xbdev->otherend);
2362 return;
2363 }
2364
2365 /*
2366 * physcial-sector-size is a newer field, so old backends may not
2367 * provide this. Assume physical sector size to be the same as
2368 * sector_size in that case.
2369 */
2370 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2371 "physical-sector-size",
2372 sector_size);
2373 blkfront_gather_backend_features(info);
2374 for (i = 0; i < info->nr_rings; i++) {
2375 err = blkfront_setup_indirect(&info->rinfo[i]);
2376 if (err) {
2377 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2378 info->xbdev->otherend);
2379 blkif_free(info, 0);
2380 break;
2381 }
2382 }
2383
2384 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2385 physical_sector_size);
2386 if (err) {
2387 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2388 info->xbdev->otherend);
2389 goto fail;
2390 }
2391
2392 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2393
2394 /* Kick pending requests. */
2395 info->connected = BLKIF_STATE_CONNECTED;
2396 for (i = 0; i < info->nr_rings; i++)
2397 kick_pending_request_queues(&info->rinfo[i]);
2398
2399 device_add_disk(&info->xbdev->dev, info->gd);
2400
2401 info->is_ready = 1;
2402 return;
2403
2404 fail:
2405 blkif_free(info, 0);
2406 return;
2407 }
2408
2409 /**
2410 * Callback received when the backend's state changes.
2411 */
2412 static void blkback_changed(struct xenbus_device *dev,
2413 enum xenbus_state backend_state)
2414 {
2415 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2416
2417 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2418
2419 switch (backend_state) {
2420 case XenbusStateInitWait:
2421 if (dev->state != XenbusStateInitialising)
2422 break;
2423 if (talk_to_blkback(dev, info))
2424 break;
2425 case XenbusStateInitialising:
2426 case XenbusStateInitialised:
2427 case XenbusStateReconfiguring:
2428 case XenbusStateReconfigured:
2429 case XenbusStateUnknown:
2430 break;
2431
2432 case XenbusStateConnected:
2433 /*
2434 * talk_to_blkback sets state to XenbusStateInitialised
2435 * and blkfront_connect sets it to XenbusStateConnected
2436 * (if connection went OK).
2437 *
2438 * If the backend (or toolstack) decides to poke at backend
2439 * state (and re-trigger the watch by setting the state repeatedly
2440 * to XenbusStateConnected (4)) we need to deal with this.
2441 * This is allowed as this is used to communicate to the guest
2442 * that the size of disk has changed!
2443 */
2444 if ((dev->state != XenbusStateInitialised) &&
2445 (dev->state != XenbusStateConnected)) {
2446 if (talk_to_blkback(dev, info))
2447 break;
2448 }
2449
2450 blkfront_connect(info);
2451 break;
2452
2453 case XenbusStateClosed:
2454 if (dev->state == XenbusStateClosed)
2455 break;
2456 /* Missed the backend's Closing state -- fallthrough */
2457 case XenbusStateClosing:
2458 if (info)
2459 blkfront_closing(info);
2460 break;
2461 }
2462 }
2463
2464 static int blkfront_remove(struct xenbus_device *xbdev)
2465 {
2466 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2467 struct block_device *bdev = NULL;
2468 struct gendisk *disk;
2469
2470 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2471
2472 blkif_free(info, 0);
2473
2474 mutex_lock(&info->mutex);
2475
2476 disk = info->gd;
2477 if (disk)
2478 bdev = bdget_disk(disk, 0);
2479
2480 info->xbdev = NULL;
2481 mutex_unlock(&info->mutex);
2482
2483 if (!bdev) {
2484 kfree(info);
2485 return 0;
2486 }
2487
2488 /*
2489 * The xbdev was removed before we reached the Closed
2490 * state. See if it's safe to remove the disk. If the bdev
2491 * isn't closed yet, we let release take care of it.
2492 */
2493
2494 mutex_lock(&bdev->bd_mutex);
2495 info = disk->private_data;
2496
2497 dev_warn(disk_to_dev(disk),
2498 "%s was hot-unplugged, %d stale handles\n",
2499 xbdev->nodename, bdev->bd_openers);
2500
2501 if (info && !bdev->bd_openers) {
2502 xlvbd_release_gendisk(info);
2503 disk->private_data = NULL;
2504 kfree(info);
2505 }
2506
2507 mutex_unlock(&bdev->bd_mutex);
2508 bdput(bdev);
2509
2510 return 0;
2511 }
2512
2513 static int blkfront_is_ready(struct xenbus_device *dev)
2514 {
2515 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2516
2517 return info->is_ready && info->xbdev;
2518 }
2519
2520 static int blkif_open(struct block_device *bdev, fmode_t mode)
2521 {
2522 struct gendisk *disk = bdev->bd_disk;
2523 struct blkfront_info *info;
2524 int err = 0;
2525
2526 mutex_lock(&blkfront_mutex);
2527
2528 info = disk->private_data;
2529 if (!info) {
2530 /* xbdev gone */
2531 err = -ERESTARTSYS;
2532 goto out;
2533 }
2534
2535 mutex_lock(&info->mutex);
2536
2537 if (!info->gd)
2538 /* xbdev is closed */
2539 err = -ERESTARTSYS;
2540
2541 mutex_unlock(&info->mutex);
2542
2543 out:
2544 mutex_unlock(&blkfront_mutex);
2545 return err;
2546 }
2547
2548 static void blkif_release(struct gendisk *disk, fmode_t mode)
2549 {
2550 struct blkfront_info *info = disk->private_data;
2551 struct block_device *bdev;
2552 struct xenbus_device *xbdev;
2553
2554 mutex_lock(&blkfront_mutex);
2555
2556 bdev = bdget_disk(disk, 0);
2557
2558 if (!bdev) {
2559 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2560 goto out_mutex;
2561 }
2562 if (bdev->bd_openers)
2563 goto out;
2564
2565 /*
2566 * Check if we have been instructed to close. We will have
2567 * deferred this request, because the bdev was still open.
2568 */
2569
2570 mutex_lock(&info->mutex);
2571 xbdev = info->xbdev;
2572
2573 if (xbdev && xbdev->state == XenbusStateClosing) {
2574 /* pending switch to state closed */
2575 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2576 xlvbd_release_gendisk(info);
2577 xenbus_frontend_closed(info->xbdev);
2578 }
2579
2580 mutex_unlock(&info->mutex);
2581
2582 if (!xbdev) {
2583 /* sudden device removal */
2584 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2585 xlvbd_release_gendisk(info);
2586 disk->private_data = NULL;
2587 kfree(info);
2588 }
2589
2590 out:
2591 bdput(bdev);
2592 out_mutex:
2593 mutex_unlock(&blkfront_mutex);
2594 }
2595
2596 static const struct block_device_operations xlvbd_block_fops =
2597 {
2598 .owner = THIS_MODULE,
2599 .open = blkif_open,
2600 .release = blkif_release,
2601 .getgeo = blkif_getgeo,
2602 .ioctl = blkif_ioctl,
2603 };
2604
2605
2606 static const struct xenbus_device_id blkfront_ids[] = {
2607 { "vbd" },
2608 { "" }
2609 };
2610
2611 static struct xenbus_driver blkfront_driver = {
2612 .ids = blkfront_ids,
2613 .probe = blkfront_probe,
2614 .remove = blkfront_remove,
2615 .resume = blkfront_resume,
2616 .otherend_changed = blkback_changed,
2617 .is_ready = blkfront_is_ready,
2618 };
2619
2620 static int __init xlblk_init(void)
2621 {
2622 int ret;
2623 int nr_cpus = num_online_cpus();
2624
2625 if (!xen_domain())
2626 return -ENODEV;
2627
2628 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2629 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2630
2631 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2632 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2633 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2634 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2635 }
2636
2637 if (xen_blkif_max_queues > nr_cpus) {
2638 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2639 xen_blkif_max_queues, nr_cpus);
2640 xen_blkif_max_queues = nr_cpus;
2641 }
2642
2643 if (!xen_has_pv_disk_devices())
2644 return -ENODEV;
2645
2646 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2647 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2648 XENVBD_MAJOR, DEV_NAME);
2649 return -ENODEV;
2650 }
2651
2652 ret = xenbus_register_frontend(&blkfront_driver);
2653 if (ret) {
2654 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2655 return ret;
2656 }
2657
2658 return 0;
2659 }
2660 module_init(xlblk_init);
2661
2662
2663 static void __exit xlblk_exit(void)
2664 {
2665 xenbus_unregister_driver(&blkfront_driver);
2666 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2667 kfree(minors);
2668 }
2669 module_exit(xlblk_exit);
2670
2671 MODULE_DESCRIPTION("Xen virtual block device frontend");
2672 MODULE_LICENSE("GPL");
2673 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2674 MODULE_ALIAS("xen:vbd");
2675 MODULE_ALIAS("xenblk");