]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/xen-blkfront.c
blk-mq: constify struct blk_mq_ops
[mirror_ubuntu-bionic-kernel.git] / drivers / block / xen-blkfront.c
1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60
61 #include <asm/xen/hypervisor.h>
62
63 /*
64 * The minimal size of segment supported by the block framework is PAGE_SIZE.
65 * When Linux is using a different page size than Xen, it may not be possible
66 * to put all the data in a single segment.
67 * This can happen when the backend doesn't support indirect descriptor and
68 * therefore the maximum amount of data that a request can carry is
69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70 *
71 * Note that we only support one extra request. So the Linux page size
72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73 * 88KB.
74 */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76
77 enum blkif_state {
78 BLKIF_STATE_DISCONNECTED,
79 BLKIF_STATE_CONNECTED,
80 BLKIF_STATE_SUSPENDED,
81 };
82
83 struct grant {
84 grant_ref_t gref;
85 struct page *page;
86 struct list_head node;
87 };
88
89 enum blk_req_status {
90 REQ_WAITING,
91 REQ_DONE,
92 REQ_ERROR,
93 REQ_EOPNOTSUPP,
94 };
95
96 struct blk_shadow {
97 struct blkif_request req;
98 struct request *request;
99 struct grant **grants_used;
100 struct grant **indirect_grants;
101 struct scatterlist *sg;
102 unsigned int num_sg;
103 enum blk_req_status status;
104
105 #define NO_ASSOCIATED_ID ~0UL
106 /*
107 * Id of the sibling if we ever need 2 requests when handling a
108 * block I/O request
109 */
110 unsigned long associated_id;
111 };
112
113 struct split_bio {
114 struct bio *bio;
115 atomic_t pending;
116 };
117
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120
121 /*
122 * Maximum number of segments in indirect requests, the actual value used by
123 * the frontend driver is the minimum of this value and the value provided
124 * by the backend driver.
125 */
126
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 "Maximum amount of segments in indirect requests (default is 32)");
132
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136
137 /*
138 * Maximum order of pages to be used for the shared ring between front and
139 * backend, 4KB page granularity is used.
140 */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144
145 #define BLK_RING_SIZE(info) \
146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147
148 #define BLK_MAX_RING_SIZE \
149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150
151 /*
152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153 * characters are enough. Define to 20 to keep consistent with backend.
154 */
155 #define RINGREF_NAME_LEN (20)
156 /*
157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158 */
159 #define QUEUE_NAME_LEN (17)
160
161 /*
162 * Per-ring info.
163 * Every blkfront device can associate with one or more blkfront_ring_info,
164 * depending on how many hardware queues/rings to be used.
165 */
166 struct blkfront_ring_info {
167 /* Lock to protect data in every ring buffer. */
168 spinlock_t ring_lock;
169 struct blkif_front_ring ring;
170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 unsigned int evtchn, irq;
172 struct work_struct work;
173 struct gnttab_free_callback callback;
174 struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 struct list_head indirect_pages;
176 struct list_head grants;
177 unsigned int persistent_gnts_c;
178 unsigned long shadow_free;
179 struct blkfront_info *dev_info;
180 };
181
182 /*
183 * We have one of these per vbd, whether ide, scsi or 'other'. They
184 * hang in private_data off the gendisk structure. We may end up
185 * putting all kinds of interesting stuff here :-)
186 */
187 struct blkfront_info
188 {
189 struct mutex mutex;
190 struct xenbus_device *xbdev;
191 struct gendisk *gd;
192 u16 sector_size;
193 unsigned int physical_sector_size;
194 int vdevice;
195 blkif_vdev_t handle;
196 enum blkif_state connected;
197 /* Number of pages per ring buffer. */
198 unsigned int nr_ring_pages;
199 struct request_queue *rq;
200 unsigned int feature_flush:1;
201 unsigned int feature_fua:1;
202 unsigned int feature_discard:1;
203 unsigned int feature_secdiscard:1;
204 unsigned int feature_persistent:1;
205 unsigned int discard_granularity;
206 unsigned int discard_alignment;
207 /* Number of 4KB segments handled */
208 unsigned int max_indirect_segments;
209 int is_ready;
210 struct blk_mq_tag_set tag_set;
211 struct blkfront_ring_info *rinfo;
212 unsigned int nr_rings;
213 /* Save uncomplete reqs and bios for migration. */
214 struct list_head requests;
215 struct bio_list bio_list;
216 };
217
218 static unsigned int nr_minors;
219 static unsigned long *minors;
220 static DEFINE_SPINLOCK(minor_lock);
221
222 #define GRANT_INVALID_REF 0
223
224 #define PARTS_PER_DISK 16
225 #define PARTS_PER_EXT_DISK 256
226
227 #define BLKIF_MAJOR(dev) ((dev)>>8)
228 #define BLKIF_MINOR(dev) ((dev) & 0xff)
229
230 #define EXT_SHIFT 28
231 #define EXTENDED (1<<EXT_SHIFT)
232 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
233 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
234 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
235 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
236 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
237 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
238
239 #define DEV_NAME "xvd" /* name in /dev */
240
241 /*
242 * Grants are always the same size as a Xen page (i.e 4KB).
243 * A physical segment is always the same size as a Linux page.
244 * Number of grants per physical segment
245 */
246 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
247
248 #define GRANTS_PER_INDIRECT_FRAME \
249 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
250
251 #define PSEGS_PER_INDIRECT_FRAME \
252 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
253
254 #define INDIRECT_GREFS(_grants) \
255 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
256
257 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG)
258
259 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
260 static void blkfront_gather_backend_features(struct blkfront_info *info);
261
262 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
263 {
264 unsigned long free = rinfo->shadow_free;
265
266 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
267 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
268 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
269 return free;
270 }
271
272 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
273 unsigned long id)
274 {
275 if (rinfo->shadow[id].req.u.rw.id != id)
276 return -EINVAL;
277 if (rinfo->shadow[id].request == NULL)
278 return -EINVAL;
279 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
280 rinfo->shadow[id].request = NULL;
281 rinfo->shadow_free = id;
282 return 0;
283 }
284
285 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
286 {
287 struct blkfront_info *info = rinfo->dev_info;
288 struct page *granted_page;
289 struct grant *gnt_list_entry, *n;
290 int i = 0;
291
292 while (i < num) {
293 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
294 if (!gnt_list_entry)
295 goto out_of_memory;
296
297 if (info->feature_persistent) {
298 granted_page = alloc_page(GFP_NOIO);
299 if (!granted_page) {
300 kfree(gnt_list_entry);
301 goto out_of_memory;
302 }
303 gnt_list_entry->page = granted_page;
304 }
305
306 gnt_list_entry->gref = GRANT_INVALID_REF;
307 list_add(&gnt_list_entry->node, &rinfo->grants);
308 i++;
309 }
310
311 return 0;
312
313 out_of_memory:
314 list_for_each_entry_safe(gnt_list_entry, n,
315 &rinfo->grants, node) {
316 list_del(&gnt_list_entry->node);
317 if (info->feature_persistent)
318 __free_page(gnt_list_entry->page);
319 kfree(gnt_list_entry);
320 i--;
321 }
322 BUG_ON(i != 0);
323 return -ENOMEM;
324 }
325
326 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
327 {
328 struct grant *gnt_list_entry;
329
330 BUG_ON(list_empty(&rinfo->grants));
331 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
332 node);
333 list_del(&gnt_list_entry->node);
334
335 if (gnt_list_entry->gref != GRANT_INVALID_REF)
336 rinfo->persistent_gnts_c--;
337
338 return gnt_list_entry;
339 }
340
341 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
342 const struct blkfront_info *info)
343 {
344 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
345 info->xbdev->otherend_id,
346 gnt_list_entry->page,
347 0);
348 }
349
350 static struct grant *get_grant(grant_ref_t *gref_head,
351 unsigned long gfn,
352 struct blkfront_ring_info *rinfo)
353 {
354 struct grant *gnt_list_entry = get_free_grant(rinfo);
355 struct blkfront_info *info = rinfo->dev_info;
356
357 if (gnt_list_entry->gref != GRANT_INVALID_REF)
358 return gnt_list_entry;
359
360 /* Assign a gref to this page */
361 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
362 BUG_ON(gnt_list_entry->gref == -ENOSPC);
363 if (info->feature_persistent)
364 grant_foreign_access(gnt_list_entry, info);
365 else {
366 /* Grant access to the GFN passed by the caller */
367 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
368 info->xbdev->otherend_id,
369 gfn, 0);
370 }
371
372 return gnt_list_entry;
373 }
374
375 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
376 struct blkfront_ring_info *rinfo)
377 {
378 struct grant *gnt_list_entry = get_free_grant(rinfo);
379 struct blkfront_info *info = rinfo->dev_info;
380
381 if (gnt_list_entry->gref != GRANT_INVALID_REF)
382 return gnt_list_entry;
383
384 /* Assign a gref to this page */
385 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 if (!info->feature_persistent) {
388 struct page *indirect_page;
389
390 /* Fetch a pre-allocated page to use for indirect grefs */
391 BUG_ON(list_empty(&rinfo->indirect_pages));
392 indirect_page = list_first_entry(&rinfo->indirect_pages,
393 struct page, lru);
394 list_del(&indirect_page->lru);
395 gnt_list_entry->page = indirect_page;
396 }
397 grant_foreign_access(gnt_list_entry, info);
398
399 return gnt_list_entry;
400 }
401
402 static const char *op_name(int op)
403 {
404 static const char *const names[] = {
405 [BLKIF_OP_READ] = "read",
406 [BLKIF_OP_WRITE] = "write",
407 [BLKIF_OP_WRITE_BARRIER] = "barrier",
408 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
409 [BLKIF_OP_DISCARD] = "discard" };
410
411 if (op < 0 || op >= ARRAY_SIZE(names))
412 return "unknown";
413
414 if (!names[op])
415 return "reserved";
416
417 return names[op];
418 }
419 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
420 {
421 unsigned int end = minor + nr;
422 int rc;
423
424 if (end > nr_minors) {
425 unsigned long *bitmap, *old;
426
427 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
428 GFP_KERNEL);
429 if (bitmap == NULL)
430 return -ENOMEM;
431
432 spin_lock(&minor_lock);
433 if (end > nr_minors) {
434 old = minors;
435 memcpy(bitmap, minors,
436 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
437 minors = bitmap;
438 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
439 } else
440 old = bitmap;
441 spin_unlock(&minor_lock);
442 kfree(old);
443 }
444
445 spin_lock(&minor_lock);
446 if (find_next_bit(minors, end, minor) >= end) {
447 bitmap_set(minors, minor, nr);
448 rc = 0;
449 } else
450 rc = -EBUSY;
451 spin_unlock(&minor_lock);
452
453 return rc;
454 }
455
456 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
457 {
458 unsigned int end = minor + nr;
459
460 BUG_ON(end > nr_minors);
461 spin_lock(&minor_lock);
462 bitmap_clear(minors, minor, nr);
463 spin_unlock(&minor_lock);
464 }
465
466 static void blkif_restart_queue_callback(void *arg)
467 {
468 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
469 schedule_work(&rinfo->work);
470 }
471
472 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
473 {
474 /* We don't have real geometry info, but let's at least return
475 values consistent with the size of the device */
476 sector_t nsect = get_capacity(bd->bd_disk);
477 sector_t cylinders = nsect;
478
479 hg->heads = 0xff;
480 hg->sectors = 0x3f;
481 sector_div(cylinders, hg->heads * hg->sectors);
482 hg->cylinders = cylinders;
483 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
484 hg->cylinders = 0xffff;
485 return 0;
486 }
487
488 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
489 unsigned command, unsigned long argument)
490 {
491 struct blkfront_info *info = bdev->bd_disk->private_data;
492 int i;
493
494 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
495 command, (long)argument);
496
497 switch (command) {
498 case CDROMMULTISESSION:
499 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
500 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
501 if (put_user(0, (char __user *)(argument + i)))
502 return -EFAULT;
503 return 0;
504
505 case CDROM_GET_CAPABILITY: {
506 struct gendisk *gd = info->gd;
507 if (gd->flags & GENHD_FL_CD)
508 return 0;
509 return -EINVAL;
510 }
511
512 default:
513 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
514 command);*/
515 return -EINVAL; /* same return as native Linux */
516 }
517
518 return 0;
519 }
520
521 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
522 struct request *req,
523 struct blkif_request **ring_req)
524 {
525 unsigned long id;
526
527 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
528 rinfo->ring.req_prod_pvt++;
529
530 id = get_id_from_freelist(rinfo);
531 rinfo->shadow[id].request = req;
532 rinfo->shadow[id].status = REQ_WAITING;
533 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
534
535 (*ring_req)->u.rw.id = id;
536
537 return id;
538 }
539
540 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
541 {
542 struct blkfront_info *info = rinfo->dev_info;
543 struct blkif_request *ring_req;
544 unsigned long id;
545
546 /* Fill out a communications ring structure. */
547 id = blkif_ring_get_request(rinfo, req, &ring_req);
548
549 ring_req->operation = BLKIF_OP_DISCARD;
550 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
551 ring_req->u.discard.id = id;
552 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
553 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
554 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
555 else
556 ring_req->u.discard.flag = 0;
557
558 /* Keep a private copy so we can reissue requests when recovering. */
559 rinfo->shadow[id].req = *ring_req;
560
561 return 0;
562 }
563
564 struct setup_rw_req {
565 unsigned int grant_idx;
566 struct blkif_request_segment *segments;
567 struct blkfront_ring_info *rinfo;
568 struct blkif_request *ring_req;
569 grant_ref_t gref_head;
570 unsigned int id;
571 /* Only used when persistent grant is used and it's a read request */
572 bool need_copy;
573 unsigned int bvec_off;
574 char *bvec_data;
575
576 bool require_extra_req;
577 struct blkif_request *extra_ring_req;
578 };
579
580 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
581 unsigned int len, void *data)
582 {
583 struct setup_rw_req *setup = data;
584 int n, ref;
585 struct grant *gnt_list_entry;
586 unsigned int fsect, lsect;
587 /* Convenient aliases */
588 unsigned int grant_idx = setup->grant_idx;
589 struct blkif_request *ring_req = setup->ring_req;
590 struct blkfront_ring_info *rinfo = setup->rinfo;
591 /*
592 * We always use the shadow of the first request to store the list
593 * of grant associated to the block I/O request. This made the
594 * completion more easy to handle even if the block I/O request is
595 * split.
596 */
597 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
598
599 if (unlikely(setup->require_extra_req &&
600 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
601 /*
602 * We are using the second request, setup grant_idx
603 * to be the index of the segment array.
604 */
605 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
606 ring_req = setup->extra_ring_req;
607 }
608
609 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
610 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
611 if (setup->segments)
612 kunmap_atomic(setup->segments);
613
614 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
615 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
616 shadow->indirect_grants[n] = gnt_list_entry;
617 setup->segments = kmap_atomic(gnt_list_entry->page);
618 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
619 }
620
621 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
622 ref = gnt_list_entry->gref;
623 /*
624 * All the grants are stored in the shadow of the first
625 * request. Therefore we have to use the global index.
626 */
627 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
628
629 if (setup->need_copy) {
630 void *shared_data;
631
632 shared_data = kmap_atomic(gnt_list_entry->page);
633 /*
634 * this does not wipe data stored outside the
635 * range sg->offset..sg->offset+sg->length.
636 * Therefore, blkback *could* see data from
637 * previous requests. This is OK as long as
638 * persistent grants are shared with just one
639 * domain. It may need refactoring if this
640 * changes
641 */
642 memcpy(shared_data + offset,
643 setup->bvec_data + setup->bvec_off,
644 len);
645
646 kunmap_atomic(shared_data);
647 setup->bvec_off += len;
648 }
649
650 fsect = offset >> 9;
651 lsect = fsect + (len >> 9) - 1;
652 if (ring_req->operation != BLKIF_OP_INDIRECT) {
653 ring_req->u.rw.seg[grant_idx] =
654 (struct blkif_request_segment) {
655 .gref = ref,
656 .first_sect = fsect,
657 .last_sect = lsect };
658 } else {
659 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
660 (struct blkif_request_segment) {
661 .gref = ref,
662 .first_sect = fsect,
663 .last_sect = lsect };
664 }
665
666 (setup->grant_idx)++;
667 }
668
669 static void blkif_setup_extra_req(struct blkif_request *first,
670 struct blkif_request *second)
671 {
672 uint16_t nr_segments = first->u.rw.nr_segments;
673
674 /*
675 * The second request is only present when the first request uses
676 * all its segments. It's always the continuity of the first one.
677 */
678 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
679
680 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
681 second->u.rw.sector_number = first->u.rw.sector_number +
682 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
683
684 second->u.rw.handle = first->u.rw.handle;
685 second->operation = first->operation;
686 }
687
688 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
689 {
690 struct blkfront_info *info = rinfo->dev_info;
691 struct blkif_request *ring_req, *extra_ring_req = NULL;
692 unsigned long id, extra_id = NO_ASSOCIATED_ID;
693 bool require_extra_req = false;
694 int i;
695 struct setup_rw_req setup = {
696 .grant_idx = 0,
697 .segments = NULL,
698 .rinfo = rinfo,
699 .need_copy = rq_data_dir(req) && info->feature_persistent,
700 };
701
702 /*
703 * Used to store if we are able to queue the request by just using
704 * existing persistent grants, or if we have to get new grants,
705 * as there are not sufficiently many free.
706 */
707 struct scatterlist *sg;
708 int num_sg, max_grefs, num_grant;
709
710 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
711 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
712 /*
713 * If we are using indirect segments we need to account
714 * for the indirect grefs used in the request.
715 */
716 max_grefs += INDIRECT_GREFS(max_grefs);
717
718 /*
719 * We have to reserve 'max_grefs' grants because persistent
720 * grants are shared by all rings.
721 */
722 if (max_grefs > 0)
723 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
724 gnttab_request_free_callback(
725 &rinfo->callback,
726 blkif_restart_queue_callback,
727 rinfo,
728 max_grefs);
729 return 1;
730 }
731
732 /* Fill out a communications ring structure. */
733 id = blkif_ring_get_request(rinfo, req, &ring_req);
734
735 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
736 num_grant = 0;
737 /* Calculate the number of grant used */
738 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
739 num_grant += gnttab_count_grant(sg->offset, sg->length);
740
741 require_extra_req = info->max_indirect_segments == 0 &&
742 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
743 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
744
745 rinfo->shadow[id].num_sg = num_sg;
746 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
747 likely(!require_extra_req)) {
748 /*
749 * The indirect operation can only be a BLKIF_OP_READ or
750 * BLKIF_OP_WRITE
751 */
752 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
753 ring_req->operation = BLKIF_OP_INDIRECT;
754 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
755 BLKIF_OP_WRITE : BLKIF_OP_READ;
756 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
757 ring_req->u.indirect.handle = info->handle;
758 ring_req->u.indirect.nr_segments = num_grant;
759 } else {
760 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
761 ring_req->u.rw.handle = info->handle;
762 ring_req->operation = rq_data_dir(req) ?
763 BLKIF_OP_WRITE : BLKIF_OP_READ;
764 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
765 /*
766 * Ideally we can do an unordered flush-to-disk.
767 * In case the backend onlysupports barriers, use that.
768 * A barrier request a superset of FUA, so we can
769 * implement it the same way. (It's also a FLUSH+FUA,
770 * since it is guaranteed ordered WRT previous writes.)
771 */
772 if (info->feature_flush && info->feature_fua)
773 ring_req->operation =
774 BLKIF_OP_WRITE_BARRIER;
775 else if (info->feature_flush)
776 ring_req->operation =
777 BLKIF_OP_FLUSH_DISKCACHE;
778 else
779 ring_req->operation = 0;
780 }
781 ring_req->u.rw.nr_segments = num_grant;
782 if (unlikely(require_extra_req)) {
783 extra_id = blkif_ring_get_request(rinfo, req,
784 &extra_ring_req);
785 /*
786 * Only the first request contains the scatter-gather
787 * list.
788 */
789 rinfo->shadow[extra_id].num_sg = 0;
790
791 blkif_setup_extra_req(ring_req, extra_ring_req);
792
793 /* Link the 2 requests together */
794 rinfo->shadow[extra_id].associated_id = id;
795 rinfo->shadow[id].associated_id = extra_id;
796 }
797 }
798
799 setup.ring_req = ring_req;
800 setup.id = id;
801
802 setup.require_extra_req = require_extra_req;
803 if (unlikely(require_extra_req))
804 setup.extra_ring_req = extra_ring_req;
805
806 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
807 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
808
809 if (setup.need_copy) {
810 setup.bvec_off = sg->offset;
811 setup.bvec_data = kmap_atomic(sg_page(sg));
812 }
813
814 gnttab_foreach_grant_in_range(sg_page(sg),
815 sg->offset,
816 sg->length,
817 blkif_setup_rw_req_grant,
818 &setup);
819
820 if (setup.need_copy)
821 kunmap_atomic(setup.bvec_data);
822 }
823 if (setup.segments)
824 kunmap_atomic(setup.segments);
825
826 /* Keep a private copy so we can reissue requests when recovering. */
827 rinfo->shadow[id].req = *ring_req;
828 if (unlikely(require_extra_req))
829 rinfo->shadow[extra_id].req = *extra_ring_req;
830
831 if (max_grefs > 0)
832 gnttab_free_grant_references(setup.gref_head);
833
834 return 0;
835 }
836
837 /*
838 * Generate a Xen blkfront IO request from a blk layer request. Reads
839 * and writes are handled as expected.
840 *
841 * @req: a request struct
842 */
843 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
844 {
845 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
846 return 1;
847
848 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
849 req_op(req) == REQ_OP_SECURE_ERASE))
850 return blkif_queue_discard_req(req, rinfo);
851 else
852 return blkif_queue_rw_req(req, rinfo);
853 }
854
855 static inline void flush_requests(struct blkfront_ring_info *rinfo)
856 {
857 int notify;
858
859 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
860
861 if (notify)
862 notify_remote_via_irq(rinfo->irq);
863 }
864
865 static inline bool blkif_request_flush_invalid(struct request *req,
866 struct blkfront_info *info)
867 {
868 return (blk_rq_is_passthrough(req) ||
869 ((req_op(req) == REQ_OP_FLUSH) &&
870 !info->feature_flush) ||
871 ((req->cmd_flags & REQ_FUA) &&
872 !info->feature_fua));
873 }
874
875 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
876 const struct blk_mq_queue_data *qd)
877 {
878 unsigned long flags;
879 int qid = hctx->queue_num;
880 struct blkfront_info *info = hctx->queue->queuedata;
881 struct blkfront_ring_info *rinfo = NULL;
882
883 BUG_ON(info->nr_rings <= qid);
884 rinfo = &info->rinfo[qid];
885 blk_mq_start_request(qd->rq);
886 spin_lock_irqsave(&rinfo->ring_lock, flags);
887 if (RING_FULL(&rinfo->ring))
888 goto out_busy;
889
890 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
891 goto out_err;
892
893 if (blkif_queue_request(qd->rq, rinfo))
894 goto out_busy;
895
896 flush_requests(rinfo);
897 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
898 return BLK_MQ_RQ_QUEUE_OK;
899
900 out_err:
901 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
902 return BLK_MQ_RQ_QUEUE_ERROR;
903
904 out_busy:
905 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
906 blk_mq_stop_hw_queue(hctx);
907 return BLK_MQ_RQ_QUEUE_BUSY;
908 }
909
910 static const struct blk_mq_ops blkfront_mq_ops = {
911 .queue_rq = blkif_queue_rq,
912 };
913
914 static void blkif_set_queue_limits(struct blkfront_info *info)
915 {
916 struct request_queue *rq = info->rq;
917 struct gendisk *gd = info->gd;
918 unsigned int segments = info->max_indirect_segments ? :
919 BLKIF_MAX_SEGMENTS_PER_REQUEST;
920
921 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
922
923 if (info->feature_discard) {
924 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
925 blk_queue_max_discard_sectors(rq, get_capacity(gd));
926 rq->limits.discard_granularity = info->discard_granularity;
927 rq->limits.discard_alignment = info->discard_alignment;
928 if (info->feature_secdiscard)
929 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq);
930 }
931
932 /* Hard sector size and max sectors impersonate the equiv. hardware. */
933 blk_queue_logical_block_size(rq, info->sector_size);
934 blk_queue_physical_block_size(rq, info->physical_sector_size);
935 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
936
937 /* Each segment in a request is up to an aligned page in size. */
938 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
939 blk_queue_max_segment_size(rq, PAGE_SIZE);
940
941 /* Ensure a merged request will fit in a single I/O ring slot. */
942 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
943
944 /* Make sure buffer addresses are sector-aligned. */
945 blk_queue_dma_alignment(rq, 511);
946
947 /* Make sure we don't use bounce buffers. */
948 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
949 }
950
951 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
952 unsigned int physical_sector_size)
953 {
954 struct request_queue *rq;
955 struct blkfront_info *info = gd->private_data;
956
957 memset(&info->tag_set, 0, sizeof(info->tag_set));
958 info->tag_set.ops = &blkfront_mq_ops;
959 info->tag_set.nr_hw_queues = info->nr_rings;
960 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
961 /*
962 * When indirect descriptior is not supported, the I/O request
963 * will be split between multiple request in the ring.
964 * To avoid problems when sending the request, divide by
965 * 2 the depth of the queue.
966 */
967 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
968 } else
969 info->tag_set.queue_depth = BLK_RING_SIZE(info);
970 info->tag_set.numa_node = NUMA_NO_NODE;
971 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
972 info->tag_set.cmd_size = 0;
973 info->tag_set.driver_data = info;
974
975 if (blk_mq_alloc_tag_set(&info->tag_set))
976 return -EINVAL;
977 rq = blk_mq_init_queue(&info->tag_set);
978 if (IS_ERR(rq)) {
979 blk_mq_free_tag_set(&info->tag_set);
980 return PTR_ERR(rq);
981 }
982
983 rq->queuedata = info;
984 info->rq = gd->queue = rq;
985 info->gd = gd;
986 info->sector_size = sector_size;
987 info->physical_sector_size = physical_sector_size;
988 blkif_set_queue_limits(info);
989
990 return 0;
991 }
992
993 static const char *flush_info(struct blkfront_info *info)
994 {
995 if (info->feature_flush && info->feature_fua)
996 return "barrier: enabled;";
997 else if (info->feature_flush)
998 return "flush diskcache: enabled;";
999 else
1000 return "barrier or flush: disabled;";
1001 }
1002
1003 static void xlvbd_flush(struct blkfront_info *info)
1004 {
1005 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1006 info->feature_fua ? true : false);
1007 pr_info("blkfront: %s: %s %s %s %s %s\n",
1008 info->gd->disk_name, flush_info(info),
1009 "persistent grants:", info->feature_persistent ?
1010 "enabled;" : "disabled;", "indirect descriptors:",
1011 info->max_indirect_segments ? "enabled;" : "disabled;");
1012 }
1013
1014 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1015 {
1016 int major;
1017 major = BLKIF_MAJOR(vdevice);
1018 *minor = BLKIF_MINOR(vdevice);
1019 switch (major) {
1020 case XEN_IDE0_MAJOR:
1021 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1022 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1023 EMULATED_HD_DISK_MINOR_OFFSET;
1024 break;
1025 case XEN_IDE1_MAJOR:
1026 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1027 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1028 EMULATED_HD_DISK_MINOR_OFFSET;
1029 break;
1030 case XEN_SCSI_DISK0_MAJOR:
1031 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1032 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1033 break;
1034 case XEN_SCSI_DISK1_MAJOR:
1035 case XEN_SCSI_DISK2_MAJOR:
1036 case XEN_SCSI_DISK3_MAJOR:
1037 case XEN_SCSI_DISK4_MAJOR:
1038 case XEN_SCSI_DISK5_MAJOR:
1039 case XEN_SCSI_DISK6_MAJOR:
1040 case XEN_SCSI_DISK7_MAJOR:
1041 *offset = (*minor / PARTS_PER_DISK) +
1042 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1043 EMULATED_SD_DISK_NAME_OFFSET;
1044 *minor = *minor +
1045 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1046 EMULATED_SD_DISK_MINOR_OFFSET;
1047 break;
1048 case XEN_SCSI_DISK8_MAJOR:
1049 case XEN_SCSI_DISK9_MAJOR:
1050 case XEN_SCSI_DISK10_MAJOR:
1051 case XEN_SCSI_DISK11_MAJOR:
1052 case XEN_SCSI_DISK12_MAJOR:
1053 case XEN_SCSI_DISK13_MAJOR:
1054 case XEN_SCSI_DISK14_MAJOR:
1055 case XEN_SCSI_DISK15_MAJOR:
1056 *offset = (*minor / PARTS_PER_DISK) +
1057 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1058 EMULATED_SD_DISK_NAME_OFFSET;
1059 *minor = *minor +
1060 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1061 EMULATED_SD_DISK_MINOR_OFFSET;
1062 break;
1063 case XENVBD_MAJOR:
1064 *offset = *minor / PARTS_PER_DISK;
1065 break;
1066 default:
1067 printk(KERN_WARNING "blkfront: your disk configuration is "
1068 "incorrect, please use an xvd device instead\n");
1069 return -ENODEV;
1070 }
1071 return 0;
1072 }
1073
1074 static char *encode_disk_name(char *ptr, unsigned int n)
1075 {
1076 if (n >= 26)
1077 ptr = encode_disk_name(ptr, n / 26 - 1);
1078 *ptr = 'a' + n % 26;
1079 return ptr + 1;
1080 }
1081
1082 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1083 struct blkfront_info *info,
1084 u16 vdisk_info, u16 sector_size,
1085 unsigned int physical_sector_size)
1086 {
1087 struct gendisk *gd;
1088 int nr_minors = 1;
1089 int err;
1090 unsigned int offset;
1091 int minor;
1092 int nr_parts;
1093 char *ptr;
1094
1095 BUG_ON(info->gd != NULL);
1096 BUG_ON(info->rq != NULL);
1097
1098 if ((info->vdevice>>EXT_SHIFT) > 1) {
1099 /* this is above the extended range; something is wrong */
1100 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1101 return -ENODEV;
1102 }
1103
1104 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1105 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1106 if (err)
1107 return err;
1108 nr_parts = PARTS_PER_DISK;
1109 } else {
1110 minor = BLKIF_MINOR_EXT(info->vdevice);
1111 nr_parts = PARTS_PER_EXT_DISK;
1112 offset = minor / nr_parts;
1113 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1114 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1115 "emulated IDE disks,\n\t choose an xvd device name"
1116 "from xvde on\n", info->vdevice);
1117 }
1118 if (minor >> MINORBITS) {
1119 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1120 info->vdevice, minor);
1121 return -ENODEV;
1122 }
1123
1124 if ((minor % nr_parts) == 0)
1125 nr_minors = nr_parts;
1126
1127 err = xlbd_reserve_minors(minor, nr_minors);
1128 if (err)
1129 goto out;
1130 err = -ENODEV;
1131
1132 gd = alloc_disk(nr_minors);
1133 if (gd == NULL)
1134 goto release;
1135
1136 strcpy(gd->disk_name, DEV_NAME);
1137 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1138 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1139 if (nr_minors > 1)
1140 *ptr = 0;
1141 else
1142 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1143 "%d", minor & (nr_parts - 1));
1144
1145 gd->major = XENVBD_MAJOR;
1146 gd->first_minor = minor;
1147 gd->fops = &xlvbd_block_fops;
1148 gd->private_data = info;
1149 set_capacity(gd, capacity);
1150
1151 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1152 del_gendisk(gd);
1153 goto release;
1154 }
1155
1156 xlvbd_flush(info);
1157
1158 if (vdisk_info & VDISK_READONLY)
1159 set_disk_ro(gd, 1);
1160
1161 if (vdisk_info & VDISK_REMOVABLE)
1162 gd->flags |= GENHD_FL_REMOVABLE;
1163
1164 if (vdisk_info & VDISK_CDROM)
1165 gd->flags |= GENHD_FL_CD;
1166
1167 return 0;
1168
1169 release:
1170 xlbd_release_minors(minor, nr_minors);
1171 out:
1172 return err;
1173 }
1174
1175 static void xlvbd_release_gendisk(struct blkfront_info *info)
1176 {
1177 unsigned int minor, nr_minors, i;
1178
1179 if (info->rq == NULL)
1180 return;
1181
1182 /* No more blkif_request(). */
1183 blk_mq_stop_hw_queues(info->rq);
1184
1185 for (i = 0; i < info->nr_rings; i++) {
1186 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1187
1188 /* No more gnttab callback work. */
1189 gnttab_cancel_free_callback(&rinfo->callback);
1190
1191 /* Flush gnttab callback work. Must be done with no locks held. */
1192 flush_work(&rinfo->work);
1193 }
1194
1195 del_gendisk(info->gd);
1196
1197 minor = info->gd->first_minor;
1198 nr_minors = info->gd->minors;
1199 xlbd_release_minors(minor, nr_minors);
1200
1201 blk_cleanup_queue(info->rq);
1202 blk_mq_free_tag_set(&info->tag_set);
1203 info->rq = NULL;
1204
1205 put_disk(info->gd);
1206 info->gd = NULL;
1207 }
1208
1209 /* Already hold rinfo->ring_lock. */
1210 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1211 {
1212 if (!RING_FULL(&rinfo->ring))
1213 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1214 }
1215
1216 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1217 {
1218 unsigned long flags;
1219
1220 spin_lock_irqsave(&rinfo->ring_lock, flags);
1221 kick_pending_request_queues_locked(rinfo);
1222 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1223 }
1224
1225 static void blkif_restart_queue(struct work_struct *work)
1226 {
1227 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1228
1229 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1230 kick_pending_request_queues(rinfo);
1231 }
1232
1233 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1234 {
1235 struct grant *persistent_gnt, *n;
1236 struct blkfront_info *info = rinfo->dev_info;
1237 int i, j, segs;
1238
1239 /*
1240 * Remove indirect pages, this only happens when using indirect
1241 * descriptors but not persistent grants
1242 */
1243 if (!list_empty(&rinfo->indirect_pages)) {
1244 struct page *indirect_page, *n;
1245
1246 BUG_ON(info->feature_persistent);
1247 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1248 list_del(&indirect_page->lru);
1249 __free_page(indirect_page);
1250 }
1251 }
1252
1253 /* Remove all persistent grants. */
1254 if (!list_empty(&rinfo->grants)) {
1255 list_for_each_entry_safe(persistent_gnt, n,
1256 &rinfo->grants, node) {
1257 list_del(&persistent_gnt->node);
1258 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1259 gnttab_end_foreign_access(persistent_gnt->gref,
1260 0, 0UL);
1261 rinfo->persistent_gnts_c--;
1262 }
1263 if (info->feature_persistent)
1264 __free_page(persistent_gnt->page);
1265 kfree(persistent_gnt);
1266 }
1267 }
1268 BUG_ON(rinfo->persistent_gnts_c != 0);
1269
1270 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1271 /*
1272 * Clear persistent grants present in requests already
1273 * on the shared ring
1274 */
1275 if (!rinfo->shadow[i].request)
1276 goto free_shadow;
1277
1278 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1279 rinfo->shadow[i].req.u.indirect.nr_segments :
1280 rinfo->shadow[i].req.u.rw.nr_segments;
1281 for (j = 0; j < segs; j++) {
1282 persistent_gnt = rinfo->shadow[i].grants_used[j];
1283 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1284 if (info->feature_persistent)
1285 __free_page(persistent_gnt->page);
1286 kfree(persistent_gnt);
1287 }
1288
1289 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1290 /*
1291 * If this is not an indirect operation don't try to
1292 * free indirect segments
1293 */
1294 goto free_shadow;
1295
1296 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1297 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1298 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1299 __free_page(persistent_gnt->page);
1300 kfree(persistent_gnt);
1301 }
1302
1303 free_shadow:
1304 kfree(rinfo->shadow[i].grants_used);
1305 rinfo->shadow[i].grants_used = NULL;
1306 kfree(rinfo->shadow[i].indirect_grants);
1307 rinfo->shadow[i].indirect_grants = NULL;
1308 kfree(rinfo->shadow[i].sg);
1309 rinfo->shadow[i].sg = NULL;
1310 }
1311
1312 /* No more gnttab callback work. */
1313 gnttab_cancel_free_callback(&rinfo->callback);
1314
1315 /* Flush gnttab callback work. Must be done with no locks held. */
1316 flush_work(&rinfo->work);
1317
1318 /* Free resources associated with old device channel. */
1319 for (i = 0; i < info->nr_ring_pages; i++) {
1320 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1321 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1322 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1323 }
1324 }
1325 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1326 rinfo->ring.sring = NULL;
1327
1328 if (rinfo->irq)
1329 unbind_from_irqhandler(rinfo->irq, rinfo);
1330 rinfo->evtchn = rinfo->irq = 0;
1331 }
1332
1333 static void blkif_free(struct blkfront_info *info, int suspend)
1334 {
1335 unsigned int i;
1336
1337 /* Prevent new requests being issued until we fix things up. */
1338 info->connected = suspend ?
1339 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1340 /* No more blkif_request(). */
1341 if (info->rq)
1342 blk_mq_stop_hw_queues(info->rq);
1343
1344 for (i = 0; i < info->nr_rings; i++)
1345 blkif_free_ring(&info->rinfo[i]);
1346
1347 kfree(info->rinfo);
1348 info->rinfo = NULL;
1349 info->nr_rings = 0;
1350 }
1351
1352 struct copy_from_grant {
1353 const struct blk_shadow *s;
1354 unsigned int grant_idx;
1355 unsigned int bvec_offset;
1356 char *bvec_data;
1357 };
1358
1359 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1360 unsigned int len, void *data)
1361 {
1362 struct copy_from_grant *info = data;
1363 char *shared_data;
1364 /* Convenient aliases */
1365 const struct blk_shadow *s = info->s;
1366
1367 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1368
1369 memcpy(info->bvec_data + info->bvec_offset,
1370 shared_data + offset, len);
1371
1372 info->bvec_offset += len;
1373 info->grant_idx++;
1374
1375 kunmap_atomic(shared_data);
1376 }
1377
1378 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1379 {
1380 switch (rsp)
1381 {
1382 case BLKIF_RSP_OKAY:
1383 return REQ_DONE;
1384 case BLKIF_RSP_EOPNOTSUPP:
1385 return REQ_EOPNOTSUPP;
1386 case BLKIF_RSP_ERROR:
1387 /* Fallthrough. */
1388 default:
1389 return REQ_ERROR;
1390 }
1391 }
1392
1393 /*
1394 * Get the final status of the block request based on two ring response
1395 */
1396 static int blkif_get_final_status(enum blk_req_status s1,
1397 enum blk_req_status s2)
1398 {
1399 BUG_ON(s1 == REQ_WAITING);
1400 BUG_ON(s2 == REQ_WAITING);
1401
1402 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1403 return BLKIF_RSP_ERROR;
1404 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1405 return BLKIF_RSP_EOPNOTSUPP;
1406 return BLKIF_RSP_OKAY;
1407 }
1408
1409 static bool blkif_completion(unsigned long *id,
1410 struct blkfront_ring_info *rinfo,
1411 struct blkif_response *bret)
1412 {
1413 int i = 0;
1414 struct scatterlist *sg;
1415 int num_sg, num_grant;
1416 struct blkfront_info *info = rinfo->dev_info;
1417 struct blk_shadow *s = &rinfo->shadow[*id];
1418 struct copy_from_grant data = {
1419 .grant_idx = 0,
1420 };
1421
1422 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1423 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1424
1425 /* The I/O request may be split in two. */
1426 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1427 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1428
1429 /* Keep the status of the current response in shadow. */
1430 s->status = blkif_rsp_to_req_status(bret->status);
1431
1432 /* Wait the second response if not yet here. */
1433 if (s2->status == REQ_WAITING)
1434 return 0;
1435
1436 bret->status = blkif_get_final_status(s->status,
1437 s2->status);
1438
1439 /*
1440 * All the grants is stored in the first shadow in order
1441 * to make the completion code simpler.
1442 */
1443 num_grant += s2->req.u.rw.nr_segments;
1444
1445 /*
1446 * The two responses may not come in order. Only the
1447 * first request will store the scatter-gather list.
1448 */
1449 if (s2->num_sg != 0) {
1450 /* Update "id" with the ID of the first response. */
1451 *id = s->associated_id;
1452 s = s2;
1453 }
1454
1455 /*
1456 * We don't need anymore the second request, so recycling
1457 * it now.
1458 */
1459 if (add_id_to_freelist(rinfo, s->associated_id))
1460 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1461 info->gd->disk_name, s->associated_id);
1462 }
1463
1464 data.s = s;
1465 num_sg = s->num_sg;
1466
1467 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1468 for_each_sg(s->sg, sg, num_sg, i) {
1469 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1470
1471 data.bvec_offset = sg->offset;
1472 data.bvec_data = kmap_atomic(sg_page(sg));
1473
1474 gnttab_foreach_grant_in_range(sg_page(sg),
1475 sg->offset,
1476 sg->length,
1477 blkif_copy_from_grant,
1478 &data);
1479
1480 kunmap_atomic(data.bvec_data);
1481 }
1482 }
1483 /* Add the persistent grant into the list of free grants */
1484 for (i = 0; i < num_grant; i++) {
1485 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1486 /*
1487 * If the grant is still mapped by the backend (the
1488 * backend has chosen to make this grant persistent)
1489 * we add it at the head of the list, so it will be
1490 * reused first.
1491 */
1492 if (!info->feature_persistent)
1493 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1494 s->grants_used[i]->gref);
1495 list_add(&s->grants_used[i]->node, &rinfo->grants);
1496 rinfo->persistent_gnts_c++;
1497 } else {
1498 /*
1499 * If the grant is not mapped by the backend we end the
1500 * foreign access and add it to the tail of the list,
1501 * so it will not be picked again unless we run out of
1502 * persistent grants.
1503 */
1504 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1505 s->grants_used[i]->gref = GRANT_INVALID_REF;
1506 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1507 }
1508 }
1509 if (s->req.operation == BLKIF_OP_INDIRECT) {
1510 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1511 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1512 if (!info->feature_persistent)
1513 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1514 s->indirect_grants[i]->gref);
1515 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1516 rinfo->persistent_gnts_c++;
1517 } else {
1518 struct page *indirect_page;
1519
1520 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1521 /*
1522 * Add the used indirect page back to the list of
1523 * available pages for indirect grefs.
1524 */
1525 if (!info->feature_persistent) {
1526 indirect_page = s->indirect_grants[i]->page;
1527 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1528 }
1529 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1530 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1531 }
1532 }
1533 }
1534
1535 return 1;
1536 }
1537
1538 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1539 {
1540 struct request *req;
1541 struct blkif_response *bret;
1542 RING_IDX i, rp;
1543 unsigned long flags;
1544 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1545 struct blkfront_info *info = rinfo->dev_info;
1546 int error;
1547
1548 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1549 return IRQ_HANDLED;
1550
1551 spin_lock_irqsave(&rinfo->ring_lock, flags);
1552 again:
1553 rp = rinfo->ring.sring->rsp_prod;
1554 rmb(); /* Ensure we see queued responses up to 'rp'. */
1555
1556 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1557 unsigned long id;
1558
1559 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1560 id = bret->id;
1561 /*
1562 * The backend has messed up and given us an id that we would
1563 * never have given to it (we stamp it up to BLK_RING_SIZE -
1564 * look in get_id_from_freelist.
1565 */
1566 if (id >= BLK_RING_SIZE(info)) {
1567 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1568 info->gd->disk_name, op_name(bret->operation), id);
1569 /* We can't safely get the 'struct request' as
1570 * the id is busted. */
1571 continue;
1572 }
1573 req = rinfo->shadow[id].request;
1574
1575 if (bret->operation != BLKIF_OP_DISCARD) {
1576 /*
1577 * We may need to wait for an extra response if the
1578 * I/O request is split in 2
1579 */
1580 if (!blkif_completion(&id, rinfo, bret))
1581 continue;
1582 }
1583
1584 if (add_id_to_freelist(rinfo, id)) {
1585 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1586 info->gd->disk_name, op_name(bret->operation), id);
1587 continue;
1588 }
1589
1590 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1591 switch (bret->operation) {
1592 case BLKIF_OP_DISCARD:
1593 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1594 struct request_queue *rq = info->rq;
1595 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1596 info->gd->disk_name, op_name(bret->operation));
1597 error = -EOPNOTSUPP;
1598 info->feature_discard = 0;
1599 info->feature_secdiscard = 0;
1600 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1601 queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1602 }
1603 blk_mq_complete_request(req, error);
1604 break;
1605 case BLKIF_OP_FLUSH_DISKCACHE:
1606 case BLKIF_OP_WRITE_BARRIER:
1607 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1608 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1609 info->gd->disk_name, op_name(bret->operation));
1610 error = -EOPNOTSUPP;
1611 }
1612 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1613 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1614 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1615 info->gd->disk_name, op_name(bret->operation));
1616 error = -EOPNOTSUPP;
1617 }
1618 if (unlikely(error)) {
1619 if (error == -EOPNOTSUPP)
1620 error = 0;
1621 info->feature_fua = 0;
1622 info->feature_flush = 0;
1623 xlvbd_flush(info);
1624 }
1625 /* fall through */
1626 case BLKIF_OP_READ:
1627 case BLKIF_OP_WRITE:
1628 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1629 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1630 "request: %x\n", bret->status);
1631
1632 blk_mq_complete_request(req, error);
1633 break;
1634 default:
1635 BUG();
1636 }
1637 }
1638
1639 rinfo->ring.rsp_cons = i;
1640
1641 if (i != rinfo->ring.req_prod_pvt) {
1642 int more_to_do;
1643 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1644 if (more_to_do)
1645 goto again;
1646 } else
1647 rinfo->ring.sring->rsp_event = i + 1;
1648
1649 kick_pending_request_queues_locked(rinfo);
1650
1651 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1652
1653 return IRQ_HANDLED;
1654 }
1655
1656
1657 static int setup_blkring(struct xenbus_device *dev,
1658 struct blkfront_ring_info *rinfo)
1659 {
1660 struct blkif_sring *sring;
1661 int err, i;
1662 struct blkfront_info *info = rinfo->dev_info;
1663 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1664 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1665
1666 for (i = 0; i < info->nr_ring_pages; i++)
1667 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1668
1669 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1670 get_order(ring_size));
1671 if (!sring) {
1672 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1673 return -ENOMEM;
1674 }
1675 SHARED_RING_INIT(sring);
1676 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1677
1678 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1679 if (err < 0) {
1680 free_pages((unsigned long)sring, get_order(ring_size));
1681 rinfo->ring.sring = NULL;
1682 goto fail;
1683 }
1684 for (i = 0; i < info->nr_ring_pages; i++)
1685 rinfo->ring_ref[i] = gref[i];
1686
1687 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1688 if (err)
1689 goto fail;
1690
1691 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1692 "blkif", rinfo);
1693 if (err <= 0) {
1694 xenbus_dev_fatal(dev, err,
1695 "bind_evtchn_to_irqhandler failed");
1696 goto fail;
1697 }
1698 rinfo->irq = err;
1699
1700 return 0;
1701 fail:
1702 blkif_free(info, 0);
1703 return err;
1704 }
1705
1706 /*
1707 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1708 * ring buffer may have multi pages depending on ->nr_ring_pages.
1709 */
1710 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1711 struct blkfront_ring_info *rinfo, const char *dir)
1712 {
1713 int err;
1714 unsigned int i;
1715 const char *message = NULL;
1716 struct blkfront_info *info = rinfo->dev_info;
1717
1718 if (info->nr_ring_pages == 1) {
1719 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1720 if (err) {
1721 message = "writing ring-ref";
1722 goto abort_transaction;
1723 }
1724 } else {
1725 for (i = 0; i < info->nr_ring_pages; i++) {
1726 char ring_ref_name[RINGREF_NAME_LEN];
1727
1728 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1729 err = xenbus_printf(xbt, dir, ring_ref_name,
1730 "%u", rinfo->ring_ref[i]);
1731 if (err) {
1732 message = "writing ring-ref";
1733 goto abort_transaction;
1734 }
1735 }
1736 }
1737
1738 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1739 if (err) {
1740 message = "writing event-channel";
1741 goto abort_transaction;
1742 }
1743
1744 return 0;
1745
1746 abort_transaction:
1747 xenbus_transaction_end(xbt, 1);
1748 if (message)
1749 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1750
1751 return err;
1752 }
1753
1754 /* Common code used when first setting up, and when resuming. */
1755 static int talk_to_blkback(struct xenbus_device *dev,
1756 struct blkfront_info *info)
1757 {
1758 const char *message = NULL;
1759 struct xenbus_transaction xbt;
1760 int err;
1761 unsigned int i, max_page_order;
1762 unsigned int ring_page_order;
1763
1764 max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1765 "max-ring-page-order", 0);
1766 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1767 info->nr_ring_pages = 1 << ring_page_order;
1768
1769 for (i = 0; i < info->nr_rings; i++) {
1770 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1771
1772 /* Create shared ring, alloc event channel. */
1773 err = setup_blkring(dev, rinfo);
1774 if (err)
1775 goto destroy_blkring;
1776 }
1777
1778 again:
1779 err = xenbus_transaction_start(&xbt);
1780 if (err) {
1781 xenbus_dev_fatal(dev, err, "starting transaction");
1782 goto destroy_blkring;
1783 }
1784
1785 if (info->nr_ring_pages > 1) {
1786 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1787 ring_page_order);
1788 if (err) {
1789 message = "writing ring-page-order";
1790 goto abort_transaction;
1791 }
1792 }
1793
1794 /* We already got the number of queues/rings in _probe */
1795 if (info->nr_rings == 1) {
1796 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1797 if (err)
1798 goto destroy_blkring;
1799 } else {
1800 char *path;
1801 size_t pathsize;
1802
1803 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1804 info->nr_rings);
1805 if (err) {
1806 message = "writing multi-queue-num-queues";
1807 goto abort_transaction;
1808 }
1809
1810 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1811 path = kmalloc(pathsize, GFP_KERNEL);
1812 if (!path) {
1813 err = -ENOMEM;
1814 message = "ENOMEM while writing ring references";
1815 goto abort_transaction;
1816 }
1817
1818 for (i = 0; i < info->nr_rings; i++) {
1819 memset(path, 0, pathsize);
1820 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1821 err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1822 if (err) {
1823 kfree(path);
1824 goto destroy_blkring;
1825 }
1826 }
1827 kfree(path);
1828 }
1829 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1830 XEN_IO_PROTO_ABI_NATIVE);
1831 if (err) {
1832 message = "writing protocol";
1833 goto abort_transaction;
1834 }
1835 err = xenbus_printf(xbt, dev->nodename,
1836 "feature-persistent", "%u", 1);
1837 if (err)
1838 dev_warn(&dev->dev,
1839 "writing persistent grants feature to xenbus");
1840
1841 err = xenbus_transaction_end(xbt, 0);
1842 if (err) {
1843 if (err == -EAGAIN)
1844 goto again;
1845 xenbus_dev_fatal(dev, err, "completing transaction");
1846 goto destroy_blkring;
1847 }
1848
1849 for (i = 0; i < info->nr_rings; i++) {
1850 unsigned int j;
1851 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1852
1853 for (j = 0; j < BLK_RING_SIZE(info); j++)
1854 rinfo->shadow[j].req.u.rw.id = j + 1;
1855 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1856 }
1857 xenbus_switch_state(dev, XenbusStateInitialised);
1858
1859 return 0;
1860
1861 abort_transaction:
1862 xenbus_transaction_end(xbt, 1);
1863 if (message)
1864 xenbus_dev_fatal(dev, err, "%s", message);
1865 destroy_blkring:
1866 blkif_free(info, 0);
1867
1868 kfree(info);
1869 dev_set_drvdata(&dev->dev, NULL);
1870
1871 return err;
1872 }
1873
1874 static int negotiate_mq(struct blkfront_info *info)
1875 {
1876 unsigned int backend_max_queues;
1877 unsigned int i;
1878
1879 BUG_ON(info->nr_rings);
1880
1881 /* Check if backend supports multiple queues. */
1882 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1883 "multi-queue-max-queues", 1);
1884 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1885 /* We need at least one ring. */
1886 if (!info->nr_rings)
1887 info->nr_rings = 1;
1888
1889 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1890 if (!info->rinfo) {
1891 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1892 return -ENOMEM;
1893 }
1894
1895 for (i = 0; i < info->nr_rings; i++) {
1896 struct blkfront_ring_info *rinfo;
1897
1898 rinfo = &info->rinfo[i];
1899 INIT_LIST_HEAD(&rinfo->indirect_pages);
1900 INIT_LIST_HEAD(&rinfo->grants);
1901 rinfo->dev_info = info;
1902 INIT_WORK(&rinfo->work, blkif_restart_queue);
1903 spin_lock_init(&rinfo->ring_lock);
1904 }
1905 return 0;
1906 }
1907 /**
1908 * Entry point to this code when a new device is created. Allocate the basic
1909 * structures and the ring buffer for communication with the backend, and
1910 * inform the backend of the appropriate details for those. Switch to
1911 * Initialised state.
1912 */
1913 static int blkfront_probe(struct xenbus_device *dev,
1914 const struct xenbus_device_id *id)
1915 {
1916 int err, vdevice;
1917 struct blkfront_info *info;
1918
1919 /* FIXME: Use dynamic device id if this is not set. */
1920 err = xenbus_scanf(XBT_NIL, dev->nodename,
1921 "virtual-device", "%i", &vdevice);
1922 if (err != 1) {
1923 /* go looking in the extended area instead */
1924 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1925 "%i", &vdevice);
1926 if (err != 1) {
1927 xenbus_dev_fatal(dev, err, "reading virtual-device");
1928 return err;
1929 }
1930 }
1931
1932 if (xen_hvm_domain()) {
1933 char *type;
1934 int len;
1935 /* no unplug has been done: do not hook devices != xen vbds */
1936 if (xen_has_pv_and_legacy_disk_devices()) {
1937 int major;
1938
1939 if (!VDEV_IS_EXTENDED(vdevice))
1940 major = BLKIF_MAJOR(vdevice);
1941 else
1942 major = XENVBD_MAJOR;
1943
1944 if (major != XENVBD_MAJOR) {
1945 printk(KERN_INFO
1946 "%s: HVM does not support vbd %d as xen block device\n",
1947 __func__, vdevice);
1948 return -ENODEV;
1949 }
1950 }
1951 /* do not create a PV cdrom device if we are an HVM guest */
1952 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1953 if (IS_ERR(type))
1954 return -ENODEV;
1955 if (strncmp(type, "cdrom", 5) == 0) {
1956 kfree(type);
1957 return -ENODEV;
1958 }
1959 kfree(type);
1960 }
1961 info = kzalloc(sizeof(*info), GFP_KERNEL);
1962 if (!info) {
1963 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1964 return -ENOMEM;
1965 }
1966
1967 info->xbdev = dev;
1968 err = negotiate_mq(info);
1969 if (err) {
1970 kfree(info);
1971 return err;
1972 }
1973
1974 mutex_init(&info->mutex);
1975 info->vdevice = vdevice;
1976 info->connected = BLKIF_STATE_DISCONNECTED;
1977
1978 /* Front end dir is a number, which is used as the id. */
1979 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1980 dev_set_drvdata(&dev->dev, info);
1981
1982 return 0;
1983 }
1984
1985 static void split_bio_end(struct bio *bio)
1986 {
1987 struct split_bio *split_bio = bio->bi_private;
1988
1989 if (atomic_dec_and_test(&split_bio->pending)) {
1990 split_bio->bio->bi_phys_segments = 0;
1991 split_bio->bio->bi_error = bio->bi_error;
1992 bio_endio(split_bio->bio);
1993 kfree(split_bio);
1994 }
1995 bio_put(bio);
1996 }
1997
1998 static int blkif_recover(struct blkfront_info *info)
1999 {
2000 unsigned int i, r_index;
2001 struct request *req, *n;
2002 int rc;
2003 struct bio *bio, *cloned_bio;
2004 unsigned int segs, offset;
2005 int pending, size;
2006 struct split_bio *split_bio;
2007
2008 blkfront_gather_backend_features(info);
2009 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2010 blkif_set_queue_limits(info);
2011 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2012 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2013
2014 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2015 struct blkfront_ring_info *rinfo = &info->rinfo[r_index];
2016
2017 rc = blkfront_setup_indirect(rinfo);
2018 if (rc)
2019 return rc;
2020 }
2021 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2022
2023 /* Now safe for us to use the shared ring */
2024 info->connected = BLKIF_STATE_CONNECTED;
2025
2026 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2027 struct blkfront_ring_info *rinfo;
2028
2029 rinfo = &info->rinfo[r_index];
2030 /* Kick any other new requests queued since we resumed */
2031 kick_pending_request_queues(rinfo);
2032 }
2033
2034 list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2035 /* Requeue pending requests (flush or discard) */
2036 list_del_init(&req->queuelist);
2037 BUG_ON(req->nr_phys_segments > segs);
2038 blk_mq_requeue_request(req, false);
2039 }
2040 blk_mq_start_stopped_hw_queues(info->rq, true);
2041 blk_mq_kick_requeue_list(info->rq);
2042
2043 while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2044 /* Traverse the list of pending bios and re-queue them */
2045 if (bio_segments(bio) > segs) {
2046 /*
2047 * This bio has more segments than what we can
2048 * handle, we have to split it.
2049 */
2050 pending = (bio_segments(bio) + segs - 1) / segs;
2051 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2052 BUG_ON(split_bio == NULL);
2053 atomic_set(&split_bio->pending, pending);
2054 split_bio->bio = bio;
2055 for (i = 0; i < pending; i++) {
2056 offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2057 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2058 (unsigned int)bio_sectors(bio) - offset);
2059 cloned_bio = bio_clone(bio, GFP_NOIO);
2060 BUG_ON(cloned_bio == NULL);
2061 bio_trim(cloned_bio, offset, size);
2062 cloned_bio->bi_private = split_bio;
2063 cloned_bio->bi_end_io = split_bio_end;
2064 submit_bio(cloned_bio);
2065 }
2066 /*
2067 * Now we have to wait for all those smaller bios to
2068 * end, so we can also end the "parent" bio.
2069 */
2070 continue;
2071 }
2072 /* We don't need to split this bio */
2073 submit_bio(bio);
2074 }
2075
2076 return 0;
2077 }
2078
2079 /**
2080 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2081 * driver restart. We tear down our blkif structure and recreate it, but
2082 * leave the device-layer structures intact so that this is transparent to the
2083 * rest of the kernel.
2084 */
2085 static int blkfront_resume(struct xenbus_device *dev)
2086 {
2087 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2088 int err = 0;
2089 unsigned int i, j;
2090
2091 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2092
2093 bio_list_init(&info->bio_list);
2094 INIT_LIST_HEAD(&info->requests);
2095 for (i = 0; i < info->nr_rings; i++) {
2096 struct blkfront_ring_info *rinfo = &info->rinfo[i];
2097 struct bio_list merge_bio;
2098 struct blk_shadow *shadow = rinfo->shadow;
2099
2100 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2101 /* Not in use? */
2102 if (!shadow[j].request)
2103 continue;
2104
2105 /*
2106 * Get the bios in the request so we can re-queue them.
2107 */
2108 if (req_op(shadow[i].request) == REQ_OP_FLUSH ||
2109 req_op(shadow[i].request) == REQ_OP_DISCARD ||
2110 req_op(shadow[i].request) == REQ_OP_SECURE_ERASE ||
2111 shadow[j].request->cmd_flags & REQ_FUA) {
2112 /*
2113 * Flush operations don't contain bios, so
2114 * we need to requeue the whole request
2115 *
2116 * XXX: but this doesn't make any sense for a
2117 * write with the FUA flag set..
2118 */
2119 list_add(&shadow[j].request->queuelist, &info->requests);
2120 continue;
2121 }
2122 merge_bio.head = shadow[j].request->bio;
2123 merge_bio.tail = shadow[j].request->biotail;
2124 bio_list_merge(&info->bio_list, &merge_bio);
2125 shadow[j].request->bio = NULL;
2126 blk_mq_end_request(shadow[j].request, 0);
2127 }
2128 }
2129
2130 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2131
2132 err = negotiate_mq(info);
2133 if (err)
2134 return err;
2135
2136 err = talk_to_blkback(dev, info);
2137 if (!err)
2138 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2139
2140 /*
2141 * We have to wait for the backend to switch to
2142 * connected state, since we want to read which
2143 * features it supports.
2144 */
2145
2146 return err;
2147 }
2148
2149 static void blkfront_closing(struct blkfront_info *info)
2150 {
2151 struct xenbus_device *xbdev = info->xbdev;
2152 struct block_device *bdev = NULL;
2153
2154 mutex_lock(&info->mutex);
2155
2156 if (xbdev->state == XenbusStateClosing) {
2157 mutex_unlock(&info->mutex);
2158 return;
2159 }
2160
2161 if (info->gd)
2162 bdev = bdget_disk(info->gd, 0);
2163
2164 mutex_unlock(&info->mutex);
2165
2166 if (!bdev) {
2167 xenbus_frontend_closed(xbdev);
2168 return;
2169 }
2170
2171 mutex_lock(&bdev->bd_mutex);
2172
2173 if (bdev->bd_openers) {
2174 xenbus_dev_error(xbdev, -EBUSY,
2175 "Device in use; refusing to close");
2176 xenbus_switch_state(xbdev, XenbusStateClosing);
2177 } else {
2178 xlvbd_release_gendisk(info);
2179 xenbus_frontend_closed(xbdev);
2180 }
2181
2182 mutex_unlock(&bdev->bd_mutex);
2183 bdput(bdev);
2184 }
2185
2186 static void blkfront_setup_discard(struct blkfront_info *info)
2187 {
2188 int err;
2189 unsigned int discard_granularity;
2190 unsigned int discard_alignment;
2191
2192 info->feature_discard = 1;
2193 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2194 "discard-granularity", "%u", &discard_granularity,
2195 "discard-alignment", "%u", &discard_alignment,
2196 NULL);
2197 if (!err) {
2198 info->discard_granularity = discard_granularity;
2199 info->discard_alignment = discard_alignment;
2200 }
2201 info->feature_secdiscard =
2202 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2203 0);
2204 }
2205
2206 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2207 {
2208 unsigned int psegs, grants;
2209 int err, i;
2210 struct blkfront_info *info = rinfo->dev_info;
2211
2212 if (info->max_indirect_segments == 0) {
2213 if (!HAS_EXTRA_REQ)
2214 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2215 else {
2216 /*
2217 * When an extra req is required, the maximum
2218 * grants supported is related to the size of the
2219 * Linux block segment.
2220 */
2221 grants = GRANTS_PER_PSEG;
2222 }
2223 }
2224 else
2225 grants = info->max_indirect_segments;
2226 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2227
2228 err = fill_grant_buffer(rinfo,
2229 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2230 if (err)
2231 goto out_of_memory;
2232
2233 if (!info->feature_persistent && info->max_indirect_segments) {
2234 /*
2235 * We are using indirect descriptors but not persistent
2236 * grants, we need to allocate a set of pages that can be
2237 * used for mapping indirect grefs
2238 */
2239 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2240
2241 BUG_ON(!list_empty(&rinfo->indirect_pages));
2242 for (i = 0; i < num; i++) {
2243 struct page *indirect_page = alloc_page(GFP_NOIO);
2244 if (!indirect_page)
2245 goto out_of_memory;
2246 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2247 }
2248 }
2249
2250 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2251 rinfo->shadow[i].grants_used = kzalloc(
2252 sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2253 GFP_NOIO);
2254 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2255 if (info->max_indirect_segments)
2256 rinfo->shadow[i].indirect_grants = kzalloc(
2257 sizeof(rinfo->shadow[i].indirect_grants[0]) *
2258 INDIRECT_GREFS(grants),
2259 GFP_NOIO);
2260 if ((rinfo->shadow[i].grants_used == NULL) ||
2261 (rinfo->shadow[i].sg == NULL) ||
2262 (info->max_indirect_segments &&
2263 (rinfo->shadow[i].indirect_grants == NULL)))
2264 goto out_of_memory;
2265 sg_init_table(rinfo->shadow[i].sg, psegs);
2266 }
2267
2268
2269 return 0;
2270
2271 out_of_memory:
2272 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2273 kfree(rinfo->shadow[i].grants_used);
2274 rinfo->shadow[i].grants_used = NULL;
2275 kfree(rinfo->shadow[i].sg);
2276 rinfo->shadow[i].sg = NULL;
2277 kfree(rinfo->shadow[i].indirect_grants);
2278 rinfo->shadow[i].indirect_grants = NULL;
2279 }
2280 if (!list_empty(&rinfo->indirect_pages)) {
2281 struct page *indirect_page, *n;
2282 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2283 list_del(&indirect_page->lru);
2284 __free_page(indirect_page);
2285 }
2286 }
2287 return -ENOMEM;
2288 }
2289
2290 /*
2291 * Gather all backend feature-*
2292 */
2293 static void blkfront_gather_backend_features(struct blkfront_info *info)
2294 {
2295 unsigned int indirect_segments;
2296
2297 info->feature_flush = 0;
2298 info->feature_fua = 0;
2299
2300 /*
2301 * If there's no "feature-barrier" defined, then it means
2302 * we're dealing with a very old backend which writes
2303 * synchronously; nothing to do.
2304 *
2305 * If there are barriers, then we use flush.
2306 */
2307 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2308 info->feature_flush = 1;
2309 info->feature_fua = 1;
2310 }
2311
2312 /*
2313 * And if there is "feature-flush-cache" use that above
2314 * barriers.
2315 */
2316 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2317 0)) {
2318 info->feature_flush = 1;
2319 info->feature_fua = 0;
2320 }
2321
2322 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2323 blkfront_setup_discard(info);
2324
2325 info->feature_persistent =
2326 !!xenbus_read_unsigned(info->xbdev->otherend,
2327 "feature-persistent", 0);
2328
2329 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2330 "feature-max-indirect-segments", 0);
2331 if (indirect_segments > xen_blkif_max_segments)
2332 indirect_segments = xen_blkif_max_segments;
2333 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2334 indirect_segments = 0;
2335 info->max_indirect_segments = indirect_segments;
2336 }
2337
2338 /*
2339 * Invoked when the backend is finally 'ready' (and has told produced
2340 * the details about the physical device - #sectors, size, etc).
2341 */
2342 static void blkfront_connect(struct blkfront_info *info)
2343 {
2344 unsigned long long sectors;
2345 unsigned long sector_size;
2346 unsigned int physical_sector_size;
2347 unsigned int binfo;
2348 int err, i;
2349
2350 switch (info->connected) {
2351 case BLKIF_STATE_CONNECTED:
2352 /*
2353 * Potentially, the back-end may be signalling
2354 * a capacity change; update the capacity.
2355 */
2356 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2357 "sectors", "%Lu", &sectors);
2358 if (XENBUS_EXIST_ERR(err))
2359 return;
2360 printk(KERN_INFO "Setting capacity to %Lu\n",
2361 sectors);
2362 set_capacity(info->gd, sectors);
2363 revalidate_disk(info->gd);
2364
2365 return;
2366 case BLKIF_STATE_SUSPENDED:
2367 /*
2368 * If we are recovering from suspension, we need to wait
2369 * for the backend to announce it's features before
2370 * reconnecting, at least we need to know if the backend
2371 * supports indirect descriptors, and how many.
2372 */
2373 blkif_recover(info);
2374 return;
2375
2376 default:
2377 break;
2378 }
2379
2380 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2381 __func__, info->xbdev->otherend);
2382
2383 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2384 "sectors", "%llu", &sectors,
2385 "info", "%u", &binfo,
2386 "sector-size", "%lu", &sector_size,
2387 NULL);
2388 if (err) {
2389 xenbus_dev_fatal(info->xbdev, err,
2390 "reading backend fields at %s",
2391 info->xbdev->otherend);
2392 return;
2393 }
2394
2395 /*
2396 * physcial-sector-size is a newer field, so old backends may not
2397 * provide this. Assume physical sector size to be the same as
2398 * sector_size in that case.
2399 */
2400 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2401 "physical-sector-size",
2402 sector_size);
2403 blkfront_gather_backend_features(info);
2404 for (i = 0; i < info->nr_rings; i++) {
2405 err = blkfront_setup_indirect(&info->rinfo[i]);
2406 if (err) {
2407 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2408 info->xbdev->otherend);
2409 blkif_free(info, 0);
2410 break;
2411 }
2412 }
2413
2414 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2415 physical_sector_size);
2416 if (err) {
2417 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2418 info->xbdev->otherend);
2419 goto fail;
2420 }
2421
2422 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2423
2424 /* Kick pending requests. */
2425 info->connected = BLKIF_STATE_CONNECTED;
2426 for (i = 0; i < info->nr_rings; i++)
2427 kick_pending_request_queues(&info->rinfo[i]);
2428
2429 device_add_disk(&info->xbdev->dev, info->gd);
2430
2431 info->is_ready = 1;
2432 return;
2433
2434 fail:
2435 blkif_free(info, 0);
2436 return;
2437 }
2438
2439 /**
2440 * Callback received when the backend's state changes.
2441 */
2442 static void blkback_changed(struct xenbus_device *dev,
2443 enum xenbus_state backend_state)
2444 {
2445 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2446
2447 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2448
2449 switch (backend_state) {
2450 case XenbusStateInitWait:
2451 if (dev->state != XenbusStateInitialising)
2452 break;
2453 if (talk_to_blkback(dev, info))
2454 break;
2455 case XenbusStateInitialising:
2456 case XenbusStateInitialised:
2457 case XenbusStateReconfiguring:
2458 case XenbusStateReconfigured:
2459 case XenbusStateUnknown:
2460 break;
2461
2462 case XenbusStateConnected:
2463 /*
2464 * talk_to_blkback sets state to XenbusStateInitialised
2465 * and blkfront_connect sets it to XenbusStateConnected
2466 * (if connection went OK).
2467 *
2468 * If the backend (or toolstack) decides to poke at backend
2469 * state (and re-trigger the watch by setting the state repeatedly
2470 * to XenbusStateConnected (4)) we need to deal with this.
2471 * This is allowed as this is used to communicate to the guest
2472 * that the size of disk has changed!
2473 */
2474 if ((dev->state != XenbusStateInitialised) &&
2475 (dev->state != XenbusStateConnected)) {
2476 if (talk_to_blkback(dev, info))
2477 break;
2478 }
2479
2480 blkfront_connect(info);
2481 break;
2482
2483 case XenbusStateClosed:
2484 if (dev->state == XenbusStateClosed)
2485 break;
2486 /* Missed the backend's Closing state -- fallthrough */
2487 case XenbusStateClosing:
2488 if (info)
2489 blkfront_closing(info);
2490 break;
2491 }
2492 }
2493
2494 static int blkfront_remove(struct xenbus_device *xbdev)
2495 {
2496 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2497 struct block_device *bdev = NULL;
2498 struct gendisk *disk;
2499
2500 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2501
2502 blkif_free(info, 0);
2503
2504 mutex_lock(&info->mutex);
2505
2506 disk = info->gd;
2507 if (disk)
2508 bdev = bdget_disk(disk, 0);
2509
2510 info->xbdev = NULL;
2511 mutex_unlock(&info->mutex);
2512
2513 if (!bdev) {
2514 kfree(info);
2515 return 0;
2516 }
2517
2518 /*
2519 * The xbdev was removed before we reached the Closed
2520 * state. See if it's safe to remove the disk. If the bdev
2521 * isn't closed yet, we let release take care of it.
2522 */
2523
2524 mutex_lock(&bdev->bd_mutex);
2525 info = disk->private_data;
2526
2527 dev_warn(disk_to_dev(disk),
2528 "%s was hot-unplugged, %d stale handles\n",
2529 xbdev->nodename, bdev->bd_openers);
2530
2531 if (info && !bdev->bd_openers) {
2532 xlvbd_release_gendisk(info);
2533 disk->private_data = NULL;
2534 kfree(info);
2535 }
2536
2537 mutex_unlock(&bdev->bd_mutex);
2538 bdput(bdev);
2539
2540 return 0;
2541 }
2542
2543 static int blkfront_is_ready(struct xenbus_device *dev)
2544 {
2545 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2546
2547 return info->is_ready && info->xbdev;
2548 }
2549
2550 static int blkif_open(struct block_device *bdev, fmode_t mode)
2551 {
2552 struct gendisk *disk = bdev->bd_disk;
2553 struct blkfront_info *info;
2554 int err = 0;
2555
2556 mutex_lock(&blkfront_mutex);
2557
2558 info = disk->private_data;
2559 if (!info) {
2560 /* xbdev gone */
2561 err = -ERESTARTSYS;
2562 goto out;
2563 }
2564
2565 mutex_lock(&info->mutex);
2566
2567 if (!info->gd)
2568 /* xbdev is closed */
2569 err = -ERESTARTSYS;
2570
2571 mutex_unlock(&info->mutex);
2572
2573 out:
2574 mutex_unlock(&blkfront_mutex);
2575 return err;
2576 }
2577
2578 static void blkif_release(struct gendisk *disk, fmode_t mode)
2579 {
2580 struct blkfront_info *info = disk->private_data;
2581 struct block_device *bdev;
2582 struct xenbus_device *xbdev;
2583
2584 mutex_lock(&blkfront_mutex);
2585
2586 bdev = bdget_disk(disk, 0);
2587
2588 if (!bdev) {
2589 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2590 goto out_mutex;
2591 }
2592 if (bdev->bd_openers)
2593 goto out;
2594
2595 /*
2596 * Check if we have been instructed to close. We will have
2597 * deferred this request, because the bdev was still open.
2598 */
2599
2600 mutex_lock(&info->mutex);
2601 xbdev = info->xbdev;
2602
2603 if (xbdev && xbdev->state == XenbusStateClosing) {
2604 /* pending switch to state closed */
2605 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2606 xlvbd_release_gendisk(info);
2607 xenbus_frontend_closed(info->xbdev);
2608 }
2609
2610 mutex_unlock(&info->mutex);
2611
2612 if (!xbdev) {
2613 /* sudden device removal */
2614 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2615 xlvbd_release_gendisk(info);
2616 disk->private_data = NULL;
2617 kfree(info);
2618 }
2619
2620 out:
2621 bdput(bdev);
2622 out_mutex:
2623 mutex_unlock(&blkfront_mutex);
2624 }
2625
2626 static const struct block_device_operations xlvbd_block_fops =
2627 {
2628 .owner = THIS_MODULE,
2629 .open = blkif_open,
2630 .release = blkif_release,
2631 .getgeo = blkif_getgeo,
2632 .ioctl = blkif_ioctl,
2633 };
2634
2635
2636 static const struct xenbus_device_id blkfront_ids[] = {
2637 { "vbd" },
2638 { "" }
2639 };
2640
2641 static struct xenbus_driver blkfront_driver = {
2642 .ids = blkfront_ids,
2643 .probe = blkfront_probe,
2644 .remove = blkfront_remove,
2645 .resume = blkfront_resume,
2646 .otherend_changed = blkback_changed,
2647 .is_ready = blkfront_is_ready,
2648 };
2649
2650 static int __init xlblk_init(void)
2651 {
2652 int ret;
2653 int nr_cpus = num_online_cpus();
2654
2655 if (!xen_domain())
2656 return -ENODEV;
2657
2658 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2659 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2660
2661 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2662 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2663 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2664 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2665 }
2666
2667 if (xen_blkif_max_queues > nr_cpus) {
2668 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2669 xen_blkif_max_queues, nr_cpus);
2670 xen_blkif_max_queues = nr_cpus;
2671 }
2672
2673 if (!xen_has_pv_disk_devices())
2674 return -ENODEV;
2675
2676 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2677 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2678 XENVBD_MAJOR, DEV_NAME);
2679 return -ENODEV;
2680 }
2681
2682 ret = xenbus_register_frontend(&blkfront_driver);
2683 if (ret) {
2684 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2685 return ret;
2686 }
2687
2688 return 0;
2689 }
2690 module_init(xlblk_init);
2691
2692
2693 static void __exit xlblk_exit(void)
2694 {
2695 xenbus_unregister_driver(&blkfront_driver);
2696 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2697 kfree(minors);
2698 }
2699 module_exit(xlblk_exit);
2700
2701 MODULE_DESCRIPTION("Xen virtual block device frontend");
2702 MODULE_LICENSE("GPL");
2703 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2704 MODULE_ALIAS("xen:vbd");
2705 MODULE_ALIAS("xenblk");