]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/xsysace.c
block: convert to pos and nr_sectors accessors
[mirror_ubuntu-bionic-kernel.git] / drivers / block / xsysace.c
1 /*
2 * Xilinx SystemACE device driver
3 *
4 * Copyright 2007 Secret Lab Technologies Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 */
10
11 /*
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
17 *
18 * This driver is a block device driver for the SystemACE.
19 *
20 * Initialization:
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
27 *
28 * Processing:
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
37 *
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42 * cleared.
43 * 3. release the lock.
44 *
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
49 *
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
57 *
58 * A state has two options when yielding execution:
59 * 1. ace_fsm_yield()
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
70 *
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
75 *
76 * To Do:
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
79 */
80
81 #undef DEBUG
82
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/ata.h>
93 #include <linux/hdreg.h>
94 #include <linux/platform_device.h>
95 #if defined(CONFIG_OF)
96 #include <linux/of_device.h>
97 #include <linux/of_platform.h>
98 #endif
99
100 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
101 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
102 MODULE_LICENSE("GPL");
103
104 /* SystemACE register definitions */
105 #define ACE_BUSMODE (0x00)
106
107 #define ACE_STATUS (0x04)
108 #define ACE_STATUS_CFGLOCK (0x00000001)
109 #define ACE_STATUS_MPULOCK (0x00000002)
110 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
111 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
112 #define ACE_STATUS_CFDETECT (0x00000010)
113 #define ACE_STATUS_DATABUFRDY (0x00000020)
114 #define ACE_STATUS_DATABUFMODE (0x00000040)
115 #define ACE_STATUS_CFGDONE (0x00000080)
116 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
117 #define ACE_STATUS_CFGMODEPIN (0x00000200)
118 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
119 #define ACE_STATUS_CFBSY (0x00020000)
120 #define ACE_STATUS_CFRDY (0x00040000)
121 #define ACE_STATUS_CFDWF (0x00080000)
122 #define ACE_STATUS_CFDSC (0x00100000)
123 #define ACE_STATUS_CFDRQ (0x00200000)
124 #define ACE_STATUS_CFCORR (0x00400000)
125 #define ACE_STATUS_CFERR (0x00800000)
126
127 #define ACE_ERROR (0x08)
128 #define ACE_CFGLBA (0x0c)
129 #define ACE_MPULBA (0x10)
130
131 #define ACE_SECCNTCMD (0x14)
132 #define ACE_SECCNTCMD_RESET (0x0100)
133 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
134 #define ACE_SECCNTCMD_READ_DATA (0x0300)
135 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
136 #define ACE_SECCNTCMD_ABORT (0x0600)
137
138 #define ACE_VERSION (0x16)
139 #define ACE_VERSION_REVISION_MASK (0x00FF)
140 #define ACE_VERSION_MINOR_MASK (0x0F00)
141 #define ACE_VERSION_MAJOR_MASK (0xF000)
142
143 #define ACE_CTRL (0x18)
144 #define ACE_CTRL_FORCELOCKREQ (0x0001)
145 #define ACE_CTRL_LOCKREQ (0x0002)
146 #define ACE_CTRL_FORCECFGADDR (0x0004)
147 #define ACE_CTRL_FORCECFGMODE (0x0008)
148 #define ACE_CTRL_CFGMODE (0x0010)
149 #define ACE_CTRL_CFGSTART (0x0020)
150 #define ACE_CTRL_CFGSEL (0x0040)
151 #define ACE_CTRL_CFGRESET (0x0080)
152 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
153 #define ACE_CTRL_ERRORIRQ (0x0200)
154 #define ACE_CTRL_CFGDONEIRQ (0x0400)
155 #define ACE_CTRL_RESETIRQ (0x0800)
156 #define ACE_CTRL_CFGPROG (0x1000)
157 #define ACE_CTRL_CFGADDR_MASK (0xe000)
158
159 #define ACE_FATSTAT (0x1c)
160
161 #define ACE_NUM_MINORS 16
162 #define ACE_SECTOR_SIZE (512)
163 #define ACE_FIFO_SIZE (32)
164 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
165
166 #define ACE_BUS_WIDTH_8 0
167 #define ACE_BUS_WIDTH_16 1
168
169 struct ace_reg_ops;
170
171 struct ace_device {
172 /* driver state data */
173 int id;
174 int media_change;
175 int users;
176 struct list_head list;
177
178 /* finite state machine data */
179 struct tasklet_struct fsm_tasklet;
180 uint fsm_task; /* Current activity (ACE_TASK_*) */
181 uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
182 uint fsm_continue_flag; /* cleared to exit FSM mainloop */
183 uint fsm_iter_num;
184 struct timer_list stall_timer;
185
186 /* Transfer state/result, use for both id and block request */
187 struct request *req; /* request being processed */
188 void *data_ptr; /* pointer to I/O buffer */
189 int data_count; /* number of buffers remaining */
190 int data_result; /* Result of transfer; 0 := success */
191
192 int id_req_count; /* count of id requests */
193 int id_result;
194 struct completion id_completion; /* used when id req finishes */
195 int in_irq;
196
197 /* Details of hardware device */
198 resource_size_t physaddr;
199 void __iomem *baseaddr;
200 int irq;
201 int bus_width; /* 0 := 8 bit; 1 := 16 bit */
202 struct ace_reg_ops *reg_ops;
203 int lock_count;
204
205 /* Block device data structures */
206 spinlock_t lock;
207 struct device *dev;
208 struct request_queue *queue;
209 struct gendisk *gd;
210
211 /* Inserted CF card parameters */
212 u16 cf_id[ATA_ID_WORDS];
213 };
214
215 static int ace_major;
216
217 /* ---------------------------------------------------------------------
218 * Low level register access
219 */
220
221 struct ace_reg_ops {
222 u16(*in) (struct ace_device * ace, int reg);
223 void (*out) (struct ace_device * ace, int reg, u16 val);
224 void (*datain) (struct ace_device * ace);
225 void (*dataout) (struct ace_device * ace);
226 };
227
228 /* 8 Bit bus width */
229 static u16 ace_in_8(struct ace_device *ace, int reg)
230 {
231 void __iomem *r = ace->baseaddr + reg;
232 return in_8(r) | (in_8(r + 1) << 8);
233 }
234
235 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
236 {
237 void __iomem *r = ace->baseaddr + reg;
238 out_8(r, val);
239 out_8(r + 1, val >> 8);
240 }
241
242 static void ace_datain_8(struct ace_device *ace)
243 {
244 void __iomem *r = ace->baseaddr + 0x40;
245 u8 *dst = ace->data_ptr;
246 int i = ACE_FIFO_SIZE;
247 while (i--)
248 *dst++ = in_8(r++);
249 ace->data_ptr = dst;
250 }
251
252 static void ace_dataout_8(struct ace_device *ace)
253 {
254 void __iomem *r = ace->baseaddr + 0x40;
255 u8 *src = ace->data_ptr;
256 int i = ACE_FIFO_SIZE;
257 while (i--)
258 out_8(r++, *src++);
259 ace->data_ptr = src;
260 }
261
262 static struct ace_reg_ops ace_reg_8_ops = {
263 .in = ace_in_8,
264 .out = ace_out_8,
265 .datain = ace_datain_8,
266 .dataout = ace_dataout_8,
267 };
268
269 /* 16 bit big endian bus attachment */
270 static u16 ace_in_be16(struct ace_device *ace, int reg)
271 {
272 return in_be16(ace->baseaddr + reg);
273 }
274
275 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
276 {
277 out_be16(ace->baseaddr + reg, val);
278 }
279
280 static void ace_datain_be16(struct ace_device *ace)
281 {
282 int i = ACE_FIFO_SIZE / 2;
283 u16 *dst = ace->data_ptr;
284 while (i--)
285 *dst++ = in_le16(ace->baseaddr + 0x40);
286 ace->data_ptr = dst;
287 }
288
289 static void ace_dataout_be16(struct ace_device *ace)
290 {
291 int i = ACE_FIFO_SIZE / 2;
292 u16 *src = ace->data_ptr;
293 while (i--)
294 out_le16(ace->baseaddr + 0x40, *src++);
295 ace->data_ptr = src;
296 }
297
298 /* 16 bit little endian bus attachment */
299 static u16 ace_in_le16(struct ace_device *ace, int reg)
300 {
301 return in_le16(ace->baseaddr + reg);
302 }
303
304 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
305 {
306 out_le16(ace->baseaddr + reg, val);
307 }
308
309 static void ace_datain_le16(struct ace_device *ace)
310 {
311 int i = ACE_FIFO_SIZE / 2;
312 u16 *dst = ace->data_ptr;
313 while (i--)
314 *dst++ = in_be16(ace->baseaddr + 0x40);
315 ace->data_ptr = dst;
316 }
317
318 static void ace_dataout_le16(struct ace_device *ace)
319 {
320 int i = ACE_FIFO_SIZE / 2;
321 u16 *src = ace->data_ptr;
322 while (i--)
323 out_be16(ace->baseaddr + 0x40, *src++);
324 ace->data_ptr = src;
325 }
326
327 static struct ace_reg_ops ace_reg_be16_ops = {
328 .in = ace_in_be16,
329 .out = ace_out_be16,
330 .datain = ace_datain_be16,
331 .dataout = ace_dataout_be16,
332 };
333
334 static struct ace_reg_ops ace_reg_le16_ops = {
335 .in = ace_in_le16,
336 .out = ace_out_le16,
337 .datain = ace_datain_le16,
338 .dataout = ace_dataout_le16,
339 };
340
341 static inline u16 ace_in(struct ace_device *ace, int reg)
342 {
343 return ace->reg_ops->in(ace, reg);
344 }
345
346 static inline u32 ace_in32(struct ace_device *ace, int reg)
347 {
348 return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
349 }
350
351 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
352 {
353 ace->reg_ops->out(ace, reg, val);
354 }
355
356 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
357 {
358 ace_out(ace, reg, val);
359 ace_out(ace, reg + 2, val >> 16);
360 }
361
362 /* ---------------------------------------------------------------------
363 * Debug support functions
364 */
365
366 #if defined(DEBUG)
367 static void ace_dump_mem(void *base, int len)
368 {
369 const char *ptr = base;
370 int i, j;
371
372 for (i = 0; i < len; i += 16) {
373 printk(KERN_INFO "%.8x:", i);
374 for (j = 0; j < 16; j++) {
375 if (!(j % 4))
376 printk(" ");
377 printk("%.2x", ptr[i + j]);
378 }
379 printk(" ");
380 for (j = 0; j < 16; j++)
381 printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
382 printk("\n");
383 }
384 }
385 #else
386 static inline void ace_dump_mem(void *base, int len)
387 {
388 }
389 #endif
390
391 static void ace_dump_regs(struct ace_device *ace)
392 {
393 dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
394 KERN_INFO " status:%.8x mpu_lba:%.8x busmode:%4x\n"
395 KERN_INFO " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
396 ace_in32(ace, ACE_CTRL),
397 ace_in(ace, ACE_SECCNTCMD),
398 ace_in(ace, ACE_VERSION),
399 ace_in32(ace, ACE_STATUS),
400 ace_in32(ace, ACE_MPULBA),
401 ace_in(ace, ACE_BUSMODE),
402 ace_in32(ace, ACE_ERROR),
403 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
404 }
405
406 void ace_fix_driveid(u16 *id)
407 {
408 #if defined(__BIG_ENDIAN)
409 int i;
410
411 /* All half words have wrong byte order; swap the bytes */
412 for (i = 0; i < ATA_ID_WORDS; i++, id++)
413 *id = le16_to_cpu(*id);
414 #endif
415 }
416
417 /* ---------------------------------------------------------------------
418 * Finite State Machine (FSM) implementation
419 */
420
421 /* FSM tasks; used to direct state transitions */
422 #define ACE_TASK_IDLE 0
423 #define ACE_TASK_IDENTIFY 1
424 #define ACE_TASK_READ 2
425 #define ACE_TASK_WRITE 3
426 #define ACE_FSM_NUM_TASKS 4
427
428 /* FSM state definitions */
429 #define ACE_FSM_STATE_IDLE 0
430 #define ACE_FSM_STATE_REQ_LOCK 1
431 #define ACE_FSM_STATE_WAIT_LOCK 2
432 #define ACE_FSM_STATE_WAIT_CFREADY 3
433 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
434 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
435 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
436 #define ACE_FSM_STATE_REQ_PREPARE 7
437 #define ACE_FSM_STATE_REQ_TRANSFER 8
438 #define ACE_FSM_STATE_REQ_COMPLETE 9
439 #define ACE_FSM_STATE_ERROR 10
440 #define ACE_FSM_NUM_STATES 11
441
442 /* Set flag to exit FSM loop and reschedule tasklet */
443 static inline void ace_fsm_yield(struct ace_device *ace)
444 {
445 dev_dbg(ace->dev, "ace_fsm_yield()\n");
446 tasklet_schedule(&ace->fsm_tasklet);
447 ace->fsm_continue_flag = 0;
448 }
449
450 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
451 static inline void ace_fsm_yieldirq(struct ace_device *ace)
452 {
453 dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
454
455 if (ace->irq == NO_IRQ)
456 /* No IRQ assigned, so need to poll */
457 tasklet_schedule(&ace->fsm_tasklet);
458 ace->fsm_continue_flag = 0;
459 }
460
461 /* Get the next read/write request; ending requests that we don't handle */
462 struct request *ace_get_next_request(struct request_queue * q)
463 {
464 struct request *req;
465
466 while ((req = elv_next_request(q)) != NULL) {
467 if (blk_fs_request(req))
468 break;
469 __blk_end_request_cur(req, -EIO);
470 }
471 return req;
472 }
473
474 static void ace_fsm_dostate(struct ace_device *ace)
475 {
476 struct request *req;
477 u32 status;
478 u16 val;
479 int count;
480
481 #if defined(DEBUG)
482 dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
483 ace->fsm_state, ace->id_req_count);
484 #endif
485
486 /* Verify that there is actually a CF in the slot. If not, then
487 * bail out back to the idle state and wake up all the waiters */
488 status = ace_in32(ace, ACE_STATUS);
489 if ((status & ACE_STATUS_CFDETECT) == 0) {
490 ace->fsm_state = ACE_FSM_STATE_IDLE;
491 ace->media_change = 1;
492 set_capacity(ace->gd, 0);
493 dev_info(ace->dev, "No CF in slot\n");
494
495 /* Drop all pending requests */
496 while ((req = elv_next_request(ace->queue)) != NULL)
497 __blk_end_request_cur(req, -EIO);
498
499 /* Drop back to IDLE state and notify waiters */
500 ace->fsm_state = ACE_FSM_STATE_IDLE;
501 ace->id_result = -EIO;
502 while (ace->id_req_count) {
503 complete(&ace->id_completion);
504 ace->id_req_count--;
505 }
506 }
507
508 switch (ace->fsm_state) {
509 case ACE_FSM_STATE_IDLE:
510 /* See if there is anything to do */
511 if (ace->id_req_count || ace_get_next_request(ace->queue)) {
512 ace->fsm_iter_num++;
513 ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
514 mod_timer(&ace->stall_timer, jiffies + HZ);
515 if (!timer_pending(&ace->stall_timer))
516 add_timer(&ace->stall_timer);
517 break;
518 }
519 del_timer(&ace->stall_timer);
520 ace->fsm_continue_flag = 0;
521 break;
522
523 case ACE_FSM_STATE_REQ_LOCK:
524 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
525 /* Already have the lock, jump to next state */
526 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
527 break;
528 }
529
530 /* Request the lock */
531 val = ace_in(ace, ACE_CTRL);
532 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
533 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
534 break;
535
536 case ACE_FSM_STATE_WAIT_LOCK:
537 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
538 /* got the lock; move to next state */
539 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
540 break;
541 }
542
543 /* wait a bit for the lock */
544 ace_fsm_yield(ace);
545 break;
546
547 case ACE_FSM_STATE_WAIT_CFREADY:
548 status = ace_in32(ace, ACE_STATUS);
549 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
550 (status & ACE_STATUS_CFBSY)) {
551 /* CF card isn't ready; it needs to be polled */
552 ace_fsm_yield(ace);
553 break;
554 }
555
556 /* Device is ready for command; determine what to do next */
557 if (ace->id_req_count)
558 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
559 else
560 ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
561 break;
562
563 case ACE_FSM_STATE_IDENTIFY_PREPARE:
564 /* Send identify command */
565 ace->fsm_task = ACE_TASK_IDENTIFY;
566 ace->data_ptr = ace->cf_id;
567 ace->data_count = ACE_BUF_PER_SECTOR;
568 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
569
570 /* As per datasheet, put config controller in reset */
571 val = ace_in(ace, ACE_CTRL);
572 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
573
574 /* irq handler takes over from this point; wait for the
575 * transfer to complete */
576 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
577 ace_fsm_yieldirq(ace);
578 break;
579
580 case ACE_FSM_STATE_IDENTIFY_TRANSFER:
581 /* Check that the sysace is ready to receive data */
582 status = ace_in32(ace, ACE_STATUS);
583 if (status & ACE_STATUS_CFBSY) {
584 dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
585 ace->fsm_task, ace->fsm_iter_num,
586 ace->data_count);
587 ace_fsm_yield(ace);
588 break;
589 }
590 if (!(status & ACE_STATUS_DATABUFRDY)) {
591 ace_fsm_yield(ace);
592 break;
593 }
594
595 /* Transfer the next buffer */
596 ace->reg_ops->datain(ace);
597 ace->data_count--;
598
599 /* If there are still buffers to be transfers; jump out here */
600 if (ace->data_count != 0) {
601 ace_fsm_yieldirq(ace);
602 break;
603 }
604
605 /* transfer finished; kick state machine */
606 dev_dbg(ace->dev, "identify finished\n");
607 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
608 break;
609
610 case ACE_FSM_STATE_IDENTIFY_COMPLETE:
611 ace_fix_driveid(ace->cf_id);
612 ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */
613
614 if (ace->data_result) {
615 /* Error occured, disable the disk */
616 ace->media_change = 1;
617 set_capacity(ace->gd, 0);
618 dev_err(ace->dev, "error fetching CF id (%i)\n",
619 ace->data_result);
620 } else {
621 ace->media_change = 0;
622
623 /* Record disk parameters */
624 set_capacity(ace->gd,
625 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
626 dev_info(ace->dev, "capacity: %i sectors\n",
627 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
628 }
629
630 /* We're done, drop to IDLE state and notify waiters */
631 ace->fsm_state = ACE_FSM_STATE_IDLE;
632 ace->id_result = ace->data_result;
633 while (ace->id_req_count) {
634 complete(&ace->id_completion);
635 ace->id_req_count--;
636 }
637 break;
638
639 case ACE_FSM_STATE_REQ_PREPARE:
640 req = ace_get_next_request(ace->queue);
641 if (!req) {
642 ace->fsm_state = ACE_FSM_STATE_IDLE;
643 break;
644 }
645
646 /* Okay, it's a data request, set it up for transfer */
647 dev_dbg(ace->dev,
648 "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
649 (unsigned long long)blk_rq_pos(req),
650 blk_rq_sectors(req), blk_rq_cur_sectors(req),
651 rq_data_dir(req));
652
653 ace->req = req;
654 ace->data_ptr = req->buffer;
655 ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
656 ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
657
658 count = blk_rq_sectors(req);
659 if (rq_data_dir(req)) {
660 /* Kick off write request */
661 dev_dbg(ace->dev, "write data\n");
662 ace->fsm_task = ACE_TASK_WRITE;
663 ace_out(ace, ACE_SECCNTCMD,
664 count | ACE_SECCNTCMD_WRITE_DATA);
665 } else {
666 /* Kick off read request */
667 dev_dbg(ace->dev, "read data\n");
668 ace->fsm_task = ACE_TASK_READ;
669 ace_out(ace, ACE_SECCNTCMD,
670 count | ACE_SECCNTCMD_READ_DATA);
671 }
672
673 /* As per datasheet, put config controller in reset */
674 val = ace_in(ace, ACE_CTRL);
675 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
676
677 /* Move to the transfer state. The systemace will raise
678 * an interrupt once there is something to do
679 */
680 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
681 if (ace->fsm_task == ACE_TASK_READ)
682 ace_fsm_yieldirq(ace); /* wait for data ready */
683 break;
684
685 case ACE_FSM_STATE_REQ_TRANSFER:
686 /* Check that the sysace is ready to receive data */
687 status = ace_in32(ace, ACE_STATUS);
688 if (status & ACE_STATUS_CFBSY) {
689 dev_dbg(ace->dev,
690 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
691 ace->fsm_task, ace->fsm_iter_num,
692 blk_rq_cur_sectors(ace->req) * 16,
693 ace->data_count, ace->in_irq);
694 ace_fsm_yield(ace); /* need to poll CFBSY bit */
695 break;
696 }
697 if (!(status & ACE_STATUS_DATABUFRDY)) {
698 dev_dbg(ace->dev,
699 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
700 ace->fsm_task, ace->fsm_iter_num,
701 blk_rq_cur_sectors(ace->req) * 16,
702 ace->data_count, ace->in_irq);
703 ace_fsm_yieldirq(ace);
704 break;
705 }
706
707 /* Transfer the next buffer */
708 if (ace->fsm_task == ACE_TASK_WRITE)
709 ace->reg_ops->dataout(ace);
710 else
711 ace->reg_ops->datain(ace);
712 ace->data_count--;
713
714 /* If there are still buffers to be transfers; jump out here */
715 if (ace->data_count != 0) {
716 ace_fsm_yieldirq(ace);
717 break;
718 }
719
720 /* bio finished; is there another one? */
721 if (__blk_end_request(ace->req, 0,
722 blk_rq_cur_bytes(ace->req))) {
723 /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
724 * blk_rq_sectors(ace->req),
725 * blk_rq_cur_sectors(ace->req));
726 */
727 ace->data_ptr = ace->req->buffer;
728 ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
729 ace_fsm_yieldirq(ace);
730 break;
731 }
732
733 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
734 break;
735
736 case ACE_FSM_STATE_REQ_COMPLETE:
737 ace->req = NULL;
738
739 /* Finished request; go to idle state */
740 ace->fsm_state = ACE_FSM_STATE_IDLE;
741 break;
742
743 default:
744 ace->fsm_state = ACE_FSM_STATE_IDLE;
745 break;
746 }
747 }
748
749 static void ace_fsm_tasklet(unsigned long data)
750 {
751 struct ace_device *ace = (void *)data;
752 unsigned long flags;
753
754 spin_lock_irqsave(&ace->lock, flags);
755
756 /* Loop over state machine until told to stop */
757 ace->fsm_continue_flag = 1;
758 while (ace->fsm_continue_flag)
759 ace_fsm_dostate(ace);
760
761 spin_unlock_irqrestore(&ace->lock, flags);
762 }
763
764 static void ace_stall_timer(unsigned long data)
765 {
766 struct ace_device *ace = (void *)data;
767 unsigned long flags;
768
769 dev_warn(ace->dev,
770 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
771 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
772 ace->data_count);
773 spin_lock_irqsave(&ace->lock, flags);
774
775 /* Rearm the stall timer *before* entering FSM (which may then
776 * delete the timer) */
777 mod_timer(&ace->stall_timer, jiffies + HZ);
778
779 /* Loop over state machine until told to stop */
780 ace->fsm_continue_flag = 1;
781 while (ace->fsm_continue_flag)
782 ace_fsm_dostate(ace);
783
784 spin_unlock_irqrestore(&ace->lock, flags);
785 }
786
787 /* ---------------------------------------------------------------------
788 * Interrupt handling routines
789 */
790 static int ace_interrupt_checkstate(struct ace_device *ace)
791 {
792 u32 sreg = ace_in32(ace, ACE_STATUS);
793 u16 creg = ace_in(ace, ACE_CTRL);
794
795 /* Check for error occurance */
796 if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
797 (creg & ACE_CTRL_ERRORIRQ)) {
798 dev_err(ace->dev, "transfer failure\n");
799 ace_dump_regs(ace);
800 return -EIO;
801 }
802
803 return 0;
804 }
805
806 static irqreturn_t ace_interrupt(int irq, void *dev_id)
807 {
808 u16 creg;
809 struct ace_device *ace = dev_id;
810
811 /* be safe and get the lock */
812 spin_lock(&ace->lock);
813 ace->in_irq = 1;
814
815 /* clear the interrupt */
816 creg = ace_in(ace, ACE_CTRL);
817 ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
818 ace_out(ace, ACE_CTRL, creg);
819
820 /* check for IO failures */
821 if (ace_interrupt_checkstate(ace))
822 ace->data_result = -EIO;
823
824 if (ace->fsm_task == 0) {
825 dev_err(ace->dev,
826 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
827 ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
828 ace_in(ace, ACE_SECCNTCMD));
829 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
830 ace->fsm_task, ace->fsm_state, ace->data_count);
831 }
832
833 /* Loop over state machine until told to stop */
834 ace->fsm_continue_flag = 1;
835 while (ace->fsm_continue_flag)
836 ace_fsm_dostate(ace);
837
838 /* done with interrupt; drop the lock */
839 ace->in_irq = 0;
840 spin_unlock(&ace->lock);
841
842 return IRQ_HANDLED;
843 }
844
845 /* ---------------------------------------------------------------------
846 * Block ops
847 */
848 static void ace_request(struct request_queue * q)
849 {
850 struct request *req;
851 struct ace_device *ace;
852
853 req = ace_get_next_request(q);
854
855 if (req) {
856 ace = req->rq_disk->private_data;
857 tasklet_schedule(&ace->fsm_tasklet);
858 }
859 }
860
861 static int ace_media_changed(struct gendisk *gd)
862 {
863 struct ace_device *ace = gd->private_data;
864 dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
865
866 return ace->media_change;
867 }
868
869 static int ace_revalidate_disk(struct gendisk *gd)
870 {
871 struct ace_device *ace = gd->private_data;
872 unsigned long flags;
873
874 dev_dbg(ace->dev, "ace_revalidate_disk()\n");
875
876 if (ace->media_change) {
877 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
878
879 spin_lock_irqsave(&ace->lock, flags);
880 ace->id_req_count++;
881 spin_unlock_irqrestore(&ace->lock, flags);
882
883 tasklet_schedule(&ace->fsm_tasklet);
884 wait_for_completion(&ace->id_completion);
885 }
886
887 dev_dbg(ace->dev, "revalidate complete\n");
888 return ace->id_result;
889 }
890
891 static int ace_open(struct block_device *bdev, fmode_t mode)
892 {
893 struct ace_device *ace = bdev->bd_disk->private_data;
894 unsigned long flags;
895
896 dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
897
898 spin_lock_irqsave(&ace->lock, flags);
899 ace->users++;
900 spin_unlock_irqrestore(&ace->lock, flags);
901
902 check_disk_change(bdev);
903 return 0;
904 }
905
906 static int ace_release(struct gendisk *disk, fmode_t mode)
907 {
908 struct ace_device *ace = disk->private_data;
909 unsigned long flags;
910 u16 val;
911
912 dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
913
914 spin_lock_irqsave(&ace->lock, flags);
915 ace->users--;
916 if (ace->users == 0) {
917 val = ace_in(ace, ACE_CTRL);
918 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
919 }
920 spin_unlock_irqrestore(&ace->lock, flags);
921 return 0;
922 }
923
924 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
925 {
926 struct ace_device *ace = bdev->bd_disk->private_data;
927 u16 *cf_id = ace->cf_id;
928
929 dev_dbg(ace->dev, "ace_getgeo()\n");
930
931 geo->heads = cf_id[ATA_ID_HEADS];
932 geo->sectors = cf_id[ATA_ID_SECTORS];
933 geo->cylinders = cf_id[ATA_ID_CYLS];
934
935 return 0;
936 }
937
938 static struct block_device_operations ace_fops = {
939 .owner = THIS_MODULE,
940 .open = ace_open,
941 .release = ace_release,
942 .media_changed = ace_media_changed,
943 .revalidate_disk = ace_revalidate_disk,
944 .getgeo = ace_getgeo,
945 };
946
947 /* --------------------------------------------------------------------
948 * SystemACE device setup/teardown code
949 */
950 static int __devinit ace_setup(struct ace_device *ace)
951 {
952 u16 version;
953 u16 val;
954 int rc;
955
956 dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
957 dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
958 (unsigned long long)ace->physaddr, ace->irq);
959
960 spin_lock_init(&ace->lock);
961 init_completion(&ace->id_completion);
962
963 /*
964 * Map the device
965 */
966 ace->baseaddr = ioremap(ace->physaddr, 0x80);
967 if (!ace->baseaddr)
968 goto err_ioremap;
969
970 /*
971 * Initialize the state machine tasklet and stall timer
972 */
973 tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
974 setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
975
976 /*
977 * Initialize the request queue
978 */
979 ace->queue = blk_init_queue(ace_request, &ace->lock);
980 if (ace->queue == NULL)
981 goto err_blk_initq;
982 blk_queue_hardsect_size(ace->queue, 512);
983
984 /*
985 * Allocate and initialize GD structure
986 */
987 ace->gd = alloc_disk(ACE_NUM_MINORS);
988 if (!ace->gd)
989 goto err_alloc_disk;
990
991 ace->gd->major = ace_major;
992 ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
993 ace->gd->fops = &ace_fops;
994 ace->gd->queue = ace->queue;
995 ace->gd->private_data = ace;
996 snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
997
998 /* set bus width */
999 if (ace->bus_width == ACE_BUS_WIDTH_16) {
1000 /* 0x0101 should work regardless of endianess */
1001 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1002
1003 /* read it back to determine endianess */
1004 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1005 ace->reg_ops = &ace_reg_le16_ops;
1006 else
1007 ace->reg_ops = &ace_reg_be16_ops;
1008 } else {
1009 ace_out_8(ace, ACE_BUSMODE, 0x00);
1010 ace->reg_ops = &ace_reg_8_ops;
1011 }
1012
1013 /* Make sure version register is sane */
1014 version = ace_in(ace, ACE_VERSION);
1015 if ((version == 0) || (version == 0xFFFF))
1016 goto err_read;
1017
1018 /* Put sysace in a sane state by clearing most control reg bits */
1019 ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1020 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1021
1022 /* Now we can hook up the irq handler */
1023 if (ace->irq != NO_IRQ) {
1024 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1025 if (rc) {
1026 /* Failure - fall back to polled mode */
1027 dev_err(ace->dev, "request_irq failed\n");
1028 ace->irq = NO_IRQ;
1029 }
1030 }
1031
1032 /* Enable interrupts */
1033 val = ace_in(ace, ACE_CTRL);
1034 val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1035 ace_out(ace, ACE_CTRL, val);
1036
1037 /* Print the identification */
1038 dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1039 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1040 dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1041 (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1042
1043 ace->media_change = 1;
1044 ace_revalidate_disk(ace->gd);
1045
1046 /* Make the sysace device 'live' */
1047 add_disk(ace->gd);
1048
1049 return 0;
1050
1051 err_read:
1052 put_disk(ace->gd);
1053 err_alloc_disk:
1054 blk_cleanup_queue(ace->queue);
1055 err_blk_initq:
1056 iounmap(ace->baseaddr);
1057 err_ioremap:
1058 dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1059 (unsigned long long) ace->physaddr);
1060 return -ENOMEM;
1061 }
1062
1063 static void __devexit ace_teardown(struct ace_device *ace)
1064 {
1065 if (ace->gd) {
1066 del_gendisk(ace->gd);
1067 put_disk(ace->gd);
1068 }
1069
1070 if (ace->queue)
1071 blk_cleanup_queue(ace->queue);
1072
1073 tasklet_kill(&ace->fsm_tasklet);
1074
1075 if (ace->irq != NO_IRQ)
1076 free_irq(ace->irq, ace);
1077
1078 iounmap(ace->baseaddr);
1079 }
1080
1081 static int __devinit
1082 ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1083 int irq, int bus_width)
1084 {
1085 struct ace_device *ace;
1086 int rc;
1087 dev_dbg(dev, "ace_alloc(%p)\n", dev);
1088
1089 if (!physaddr) {
1090 rc = -ENODEV;
1091 goto err_noreg;
1092 }
1093
1094 /* Allocate and initialize the ace device structure */
1095 ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1096 if (!ace) {
1097 rc = -ENOMEM;
1098 goto err_alloc;
1099 }
1100
1101 ace->dev = dev;
1102 ace->id = id;
1103 ace->physaddr = physaddr;
1104 ace->irq = irq;
1105 ace->bus_width = bus_width;
1106
1107 /* Call the setup code */
1108 rc = ace_setup(ace);
1109 if (rc)
1110 goto err_setup;
1111
1112 dev_set_drvdata(dev, ace);
1113 return 0;
1114
1115 err_setup:
1116 dev_set_drvdata(dev, NULL);
1117 kfree(ace);
1118 err_alloc:
1119 err_noreg:
1120 dev_err(dev, "could not initialize device, err=%i\n", rc);
1121 return rc;
1122 }
1123
1124 static void __devexit ace_free(struct device *dev)
1125 {
1126 struct ace_device *ace = dev_get_drvdata(dev);
1127 dev_dbg(dev, "ace_free(%p)\n", dev);
1128
1129 if (ace) {
1130 ace_teardown(ace);
1131 dev_set_drvdata(dev, NULL);
1132 kfree(ace);
1133 }
1134 }
1135
1136 /* ---------------------------------------------------------------------
1137 * Platform Bus Support
1138 */
1139
1140 static int __devinit ace_probe(struct platform_device *dev)
1141 {
1142 resource_size_t physaddr = 0;
1143 int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1144 int id = dev->id;
1145 int irq = NO_IRQ;
1146 int i;
1147
1148 dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1149
1150 for (i = 0; i < dev->num_resources; i++) {
1151 if (dev->resource[i].flags & IORESOURCE_MEM)
1152 physaddr = dev->resource[i].start;
1153 if (dev->resource[i].flags & IORESOURCE_IRQ)
1154 irq = dev->resource[i].start;
1155 }
1156
1157 /* Call the bus-independant setup code */
1158 return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1159 }
1160
1161 /*
1162 * Platform bus remove() method
1163 */
1164 static int __devexit ace_remove(struct platform_device *dev)
1165 {
1166 ace_free(&dev->dev);
1167 return 0;
1168 }
1169
1170 static struct platform_driver ace_platform_driver = {
1171 .probe = ace_probe,
1172 .remove = __devexit_p(ace_remove),
1173 .driver = {
1174 .owner = THIS_MODULE,
1175 .name = "xsysace",
1176 },
1177 };
1178
1179 /* ---------------------------------------------------------------------
1180 * OF_Platform Bus Support
1181 */
1182
1183 #if defined(CONFIG_OF)
1184 static int __devinit
1185 ace_of_probe(struct of_device *op, const struct of_device_id *match)
1186 {
1187 struct resource res;
1188 resource_size_t physaddr;
1189 const u32 *id;
1190 int irq, bus_width, rc;
1191
1192 dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
1193
1194 /* device id */
1195 id = of_get_property(op->node, "port-number", NULL);
1196
1197 /* physaddr */
1198 rc = of_address_to_resource(op->node, 0, &res);
1199 if (rc) {
1200 dev_err(&op->dev, "invalid address\n");
1201 return rc;
1202 }
1203 physaddr = res.start;
1204
1205 /* irq */
1206 irq = irq_of_parse_and_map(op->node, 0);
1207
1208 /* bus width */
1209 bus_width = ACE_BUS_WIDTH_16;
1210 if (of_find_property(op->node, "8-bit", NULL))
1211 bus_width = ACE_BUS_WIDTH_8;
1212
1213 /* Call the bus-independant setup code */
1214 return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
1215 }
1216
1217 static int __devexit ace_of_remove(struct of_device *op)
1218 {
1219 ace_free(&op->dev);
1220 return 0;
1221 }
1222
1223 /* Match table for of_platform binding */
1224 static struct of_device_id ace_of_match[] __devinitdata = {
1225 { .compatible = "xlnx,opb-sysace-1.00.b", },
1226 { .compatible = "xlnx,opb-sysace-1.00.c", },
1227 { .compatible = "xlnx,xps-sysace-1.00.a", },
1228 { .compatible = "xlnx,sysace", },
1229 {},
1230 };
1231 MODULE_DEVICE_TABLE(of, ace_of_match);
1232
1233 static struct of_platform_driver ace_of_driver = {
1234 .owner = THIS_MODULE,
1235 .name = "xsysace",
1236 .match_table = ace_of_match,
1237 .probe = ace_of_probe,
1238 .remove = __devexit_p(ace_of_remove),
1239 .driver = {
1240 .name = "xsysace",
1241 },
1242 };
1243
1244 /* Registration helpers to keep the number of #ifdefs to a minimum */
1245 static inline int __init ace_of_register(void)
1246 {
1247 pr_debug("xsysace: registering OF binding\n");
1248 return of_register_platform_driver(&ace_of_driver);
1249 }
1250
1251 static inline void __exit ace_of_unregister(void)
1252 {
1253 of_unregister_platform_driver(&ace_of_driver);
1254 }
1255 #else /* CONFIG_OF */
1256 /* CONFIG_OF not enabled; do nothing helpers */
1257 static inline int __init ace_of_register(void) { return 0; }
1258 static inline void __exit ace_of_unregister(void) { }
1259 #endif /* CONFIG_OF */
1260
1261 /* ---------------------------------------------------------------------
1262 * Module init/exit routines
1263 */
1264 static int __init ace_init(void)
1265 {
1266 int rc;
1267
1268 ace_major = register_blkdev(ace_major, "xsysace");
1269 if (ace_major <= 0) {
1270 rc = -ENOMEM;
1271 goto err_blk;
1272 }
1273
1274 rc = ace_of_register();
1275 if (rc)
1276 goto err_of;
1277
1278 pr_debug("xsysace: registering platform binding\n");
1279 rc = platform_driver_register(&ace_platform_driver);
1280 if (rc)
1281 goto err_plat;
1282
1283 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1284 return 0;
1285
1286 err_plat:
1287 ace_of_unregister();
1288 err_of:
1289 unregister_blkdev(ace_major, "xsysace");
1290 err_blk:
1291 printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1292 return rc;
1293 }
1294
1295 static void __exit ace_exit(void)
1296 {
1297 pr_debug("Unregistering Xilinx SystemACE driver\n");
1298 platform_driver_unregister(&ace_platform_driver);
1299 ace_of_unregister();
1300 unregister_blkdev(ace_major, "xsysace");
1301 }
1302
1303 module_init(ace_init);
1304 module_exit(ace_exit);