]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35
36 #include "zram_drv.h"
37
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47
48 static inline void deprecated_attr_warn(const char *name)
49 {
50 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
51 task_pid_nr(current),
52 current->comm,
53 name,
54 "See zram documentation.");
55 }
56
57 #define ZRAM_ATTR_RO(name) \
58 static ssize_t name##_show(struct device *d, \
59 struct device_attribute *attr, char *b) \
60 { \
61 struct zram *zram = dev_to_zram(d); \
62 \
63 deprecated_attr_warn(__stringify(name)); \
64 return scnprintf(b, PAGE_SIZE, "%llu\n", \
65 (u64)atomic64_read(&zram->stats.name)); \
66 } \
67 static DEVICE_ATTR_RO(name);
68
69 static inline bool init_done(struct zram *zram)
70 {
71 return zram->disksize;
72 }
73
74 static inline struct zram *dev_to_zram(struct device *dev)
75 {
76 return (struct zram *)dev_to_disk(dev)->private_data;
77 }
78
79 /* flag operations require table entry bit_spin_lock() being held */
80 static int zram_test_flag(struct zram_meta *meta, u32 index,
81 enum zram_pageflags flag)
82 {
83 return meta->table[index].value & BIT(flag);
84 }
85
86 static void zram_set_flag(struct zram_meta *meta, u32 index,
87 enum zram_pageflags flag)
88 {
89 meta->table[index].value |= BIT(flag);
90 }
91
92 static void zram_clear_flag(struct zram_meta *meta, u32 index,
93 enum zram_pageflags flag)
94 {
95 meta->table[index].value &= ~BIT(flag);
96 }
97
98 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
99 {
100 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
101 }
102
103 static void zram_set_obj_size(struct zram_meta *meta,
104 u32 index, size_t size)
105 {
106 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
107
108 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
109 }
110
111 static inline bool is_partial_io(struct bio_vec *bvec)
112 {
113 return bvec->bv_len != PAGE_SIZE;
114 }
115
116 static void zram_revalidate_disk(struct zram *zram)
117 {
118 revalidate_disk(zram->disk);
119 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
120 zram->disk->queue->backing_dev_info->capabilities |=
121 BDI_CAP_STABLE_WRITES;
122 }
123
124 /*
125 * Check if request is within bounds and aligned on zram logical blocks.
126 */
127 static inline bool valid_io_request(struct zram *zram,
128 sector_t start, unsigned int size)
129 {
130 u64 end, bound;
131
132 /* unaligned request */
133 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
134 return false;
135 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
136 return false;
137
138 end = start + (size >> SECTOR_SHIFT);
139 bound = zram->disksize >> SECTOR_SHIFT;
140 /* out of range range */
141 if (unlikely(start >= bound || end > bound || start > end))
142 return false;
143
144 /* I/O request is valid */
145 return true;
146 }
147
148 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
149 {
150 if (*offset + bvec->bv_len >= PAGE_SIZE)
151 (*index)++;
152 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
153 }
154
155 static inline void update_used_max(struct zram *zram,
156 const unsigned long pages)
157 {
158 unsigned long old_max, cur_max;
159
160 old_max = atomic_long_read(&zram->stats.max_used_pages);
161
162 do {
163 cur_max = old_max;
164 if (pages > cur_max)
165 old_max = atomic_long_cmpxchg(
166 &zram->stats.max_used_pages, cur_max, pages);
167 } while (old_max != cur_max);
168 }
169
170 static bool page_zero_filled(void *ptr)
171 {
172 unsigned int pos;
173 unsigned long *page;
174
175 page = (unsigned long *)ptr;
176
177 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
178 if (page[pos])
179 return false;
180 }
181
182 return true;
183 }
184
185 static void handle_zero_page(struct bio_vec *bvec)
186 {
187 struct page *page = bvec->bv_page;
188 void *user_mem;
189
190 user_mem = kmap_atomic(page);
191 if (is_partial_io(bvec))
192 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
193 else
194 clear_page(user_mem);
195 kunmap_atomic(user_mem);
196
197 flush_dcache_page(page);
198 }
199
200 static ssize_t initstate_show(struct device *dev,
201 struct device_attribute *attr, char *buf)
202 {
203 u32 val;
204 struct zram *zram = dev_to_zram(dev);
205
206 down_read(&zram->init_lock);
207 val = init_done(zram);
208 up_read(&zram->init_lock);
209
210 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
211 }
212
213 static ssize_t disksize_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215 {
216 struct zram *zram = dev_to_zram(dev);
217
218 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
219 }
220
221 static ssize_t orig_data_size_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 struct zram *zram = dev_to_zram(dev);
225
226 deprecated_attr_warn("orig_data_size");
227 return scnprintf(buf, PAGE_SIZE, "%llu\n",
228 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
229 }
230
231 static ssize_t mem_used_total_show(struct device *dev,
232 struct device_attribute *attr, char *buf)
233 {
234 u64 val = 0;
235 struct zram *zram = dev_to_zram(dev);
236
237 deprecated_attr_warn("mem_used_total");
238 down_read(&zram->init_lock);
239 if (init_done(zram)) {
240 struct zram_meta *meta = zram->meta;
241 val = zs_get_total_pages(meta->mem_pool);
242 }
243 up_read(&zram->init_lock);
244
245 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
246 }
247
248 static ssize_t mem_limit_show(struct device *dev,
249 struct device_attribute *attr, char *buf)
250 {
251 u64 val;
252 struct zram *zram = dev_to_zram(dev);
253
254 deprecated_attr_warn("mem_limit");
255 down_read(&zram->init_lock);
256 val = zram->limit_pages;
257 up_read(&zram->init_lock);
258
259 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
260 }
261
262 static ssize_t mem_limit_store(struct device *dev,
263 struct device_attribute *attr, const char *buf, size_t len)
264 {
265 u64 limit;
266 char *tmp;
267 struct zram *zram = dev_to_zram(dev);
268
269 limit = memparse(buf, &tmp);
270 if (buf == tmp) /* no chars parsed, invalid input */
271 return -EINVAL;
272
273 down_write(&zram->init_lock);
274 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
275 up_write(&zram->init_lock);
276
277 return len;
278 }
279
280 static ssize_t mem_used_max_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282 {
283 u64 val = 0;
284 struct zram *zram = dev_to_zram(dev);
285
286 deprecated_attr_warn("mem_used_max");
287 down_read(&zram->init_lock);
288 if (init_done(zram))
289 val = atomic_long_read(&zram->stats.max_used_pages);
290 up_read(&zram->init_lock);
291
292 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
293 }
294
295 static ssize_t mem_used_max_store(struct device *dev,
296 struct device_attribute *attr, const char *buf, size_t len)
297 {
298 int err;
299 unsigned long val;
300 struct zram *zram = dev_to_zram(dev);
301
302 err = kstrtoul(buf, 10, &val);
303 if (err || val != 0)
304 return -EINVAL;
305
306 down_read(&zram->init_lock);
307 if (init_done(zram)) {
308 struct zram_meta *meta = zram->meta;
309 atomic_long_set(&zram->stats.max_used_pages,
310 zs_get_total_pages(meta->mem_pool));
311 }
312 up_read(&zram->init_lock);
313
314 return len;
315 }
316
317 /*
318 * We switched to per-cpu streams and this attr is not needed anymore.
319 * However, we will keep it around for some time, because:
320 * a) we may revert per-cpu streams in the future
321 * b) it's visible to user space and we need to follow our 2 years
322 * retirement rule; but we already have a number of 'soon to be
323 * altered' attrs, so max_comp_streams need to wait for the next
324 * layoff cycle.
325 */
326 static ssize_t max_comp_streams_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
330 }
331
332 static ssize_t max_comp_streams_store(struct device *dev,
333 struct device_attribute *attr, const char *buf, size_t len)
334 {
335 return len;
336 }
337
338 static ssize_t comp_algorithm_show(struct device *dev,
339 struct device_attribute *attr, char *buf)
340 {
341 size_t sz;
342 struct zram *zram = dev_to_zram(dev);
343
344 down_read(&zram->init_lock);
345 sz = zcomp_available_show(zram->compressor, buf);
346 up_read(&zram->init_lock);
347
348 return sz;
349 }
350
351 static ssize_t comp_algorithm_store(struct device *dev,
352 struct device_attribute *attr, const char *buf, size_t len)
353 {
354 struct zram *zram = dev_to_zram(dev);
355 char compressor[CRYPTO_MAX_ALG_NAME];
356 size_t sz;
357
358 strlcpy(compressor, buf, sizeof(compressor));
359 /* ignore trailing newline */
360 sz = strlen(compressor);
361 if (sz > 0 && compressor[sz - 1] == '\n')
362 compressor[sz - 1] = 0x00;
363
364 if (!zcomp_available_algorithm(compressor))
365 return -EINVAL;
366
367 down_write(&zram->init_lock);
368 if (init_done(zram)) {
369 up_write(&zram->init_lock);
370 pr_info("Can't change algorithm for initialized device\n");
371 return -EBUSY;
372 }
373
374 strlcpy(zram->compressor, compressor, sizeof(compressor));
375 up_write(&zram->init_lock);
376 return len;
377 }
378
379 static ssize_t compact_store(struct device *dev,
380 struct device_attribute *attr, const char *buf, size_t len)
381 {
382 struct zram *zram = dev_to_zram(dev);
383 struct zram_meta *meta;
384
385 down_read(&zram->init_lock);
386 if (!init_done(zram)) {
387 up_read(&zram->init_lock);
388 return -EINVAL;
389 }
390
391 meta = zram->meta;
392 zs_compact(meta->mem_pool);
393 up_read(&zram->init_lock);
394
395 return len;
396 }
397
398 static ssize_t io_stat_show(struct device *dev,
399 struct device_attribute *attr, char *buf)
400 {
401 struct zram *zram = dev_to_zram(dev);
402 ssize_t ret;
403
404 down_read(&zram->init_lock);
405 ret = scnprintf(buf, PAGE_SIZE,
406 "%8llu %8llu %8llu %8llu\n",
407 (u64)atomic64_read(&zram->stats.failed_reads),
408 (u64)atomic64_read(&zram->stats.failed_writes),
409 (u64)atomic64_read(&zram->stats.invalid_io),
410 (u64)atomic64_read(&zram->stats.notify_free));
411 up_read(&zram->init_lock);
412
413 return ret;
414 }
415
416 static ssize_t mm_stat_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
418 {
419 struct zram *zram = dev_to_zram(dev);
420 struct zs_pool_stats pool_stats;
421 u64 orig_size, mem_used = 0;
422 long max_used;
423 ssize_t ret;
424
425 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
426
427 down_read(&zram->init_lock);
428 if (init_done(zram)) {
429 mem_used = zs_get_total_pages(zram->meta->mem_pool);
430 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
431 }
432
433 orig_size = atomic64_read(&zram->stats.pages_stored);
434 max_used = atomic_long_read(&zram->stats.max_used_pages);
435
436 ret = scnprintf(buf, PAGE_SIZE,
437 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
438 orig_size << PAGE_SHIFT,
439 (u64)atomic64_read(&zram->stats.compr_data_size),
440 mem_used << PAGE_SHIFT,
441 zram->limit_pages << PAGE_SHIFT,
442 max_used << PAGE_SHIFT,
443 (u64)atomic64_read(&zram->stats.zero_pages),
444 pool_stats.pages_compacted);
445 up_read(&zram->init_lock);
446
447 return ret;
448 }
449
450 static ssize_t debug_stat_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 int version = 1;
454 struct zram *zram = dev_to_zram(dev);
455 ssize_t ret;
456
457 down_read(&zram->init_lock);
458 ret = scnprintf(buf, PAGE_SIZE,
459 "version: %d\n%8llu\n",
460 version,
461 (u64)atomic64_read(&zram->stats.writestall));
462 up_read(&zram->init_lock);
463
464 return ret;
465 }
466
467 static DEVICE_ATTR_RO(io_stat);
468 static DEVICE_ATTR_RO(mm_stat);
469 static DEVICE_ATTR_RO(debug_stat);
470 ZRAM_ATTR_RO(num_reads);
471 ZRAM_ATTR_RO(num_writes);
472 ZRAM_ATTR_RO(failed_reads);
473 ZRAM_ATTR_RO(failed_writes);
474 ZRAM_ATTR_RO(invalid_io);
475 ZRAM_ATTR_RO(notify_free);
476 ZRAM_ATTR_RO(zero_pages);
477 ZRAM_ATTR_RO(compr_data_size);
478
479 static inline bool zram_meta_get(struct zram *zram)
480 {
481 if (atomic_inc_not_zero(&zram->refcount))
482 return true;
483 return false;
484 }
485
486 static inline void zram_meta_put(struct zram *zram)
487 {
488 atomic_dec(&zram->refcount);
489 }
490
491 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
492 {
493 size_t num_pages = disksize >> PAGE_SHIFT;
494 size_t index;
495
496 /* Free all pages that are still in this zram device */
497 for (index = 0; index < num_pages; index++) {
498 unsigned long handle = meta->table[index].handle;
499
500 if (!handle)
501 continue;
502
503 zs_free(meta->mem_pool, handle);
504 }
505
506 zs_destroy_pool(meta->mem_pool);
507 vfree(meta->table);
508 kfree(meta);
509 }
510
511 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
512 {
513 size_t num_pages;
514 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
515
516 if (!meta)
517 return NULL;
518
519 num_pages = disksize >> PAGE_SHIFT;
520 meta->table = vzalloc(num_pages * sizeof(*meta->table));
521 if (!meta->table) {
522 pr_err("Error allocating zram address table\n");
523 goto out_error;
524 }
525
526 meta->mem_pool = zs_create_pool(pool_name);
527 if (!meta->mem_pool) {
528 pr_err("Error creating memory pool\n");
529 goto out_error;
530 }
531
532 return meta;
533
534 out_error:
535 vfree(meta->table);
536 kfree(meta);
537 return NULL;
538 }
539
540 /*
541 * To protect concurrent access to the same index entry,
542 * caller should hold this table index entry's bit_spinlock to
543 * indicate this index entry is accessing.
544 */
545 static void zram_free_page(struct zram *zram, size_t index)
546 {
547 struct zram_meta *meta = zram->meta;
548 unsigned long handle = meta->table[index].handle;
549
550 if (unlikely(!handle)) {
551 /*
552 * No memory is allocated for zero filled pages.
553 * Simply clear zero page flag.
554 */
555 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
556 zram_clear_flag(meta, index, ZRAM_ZERO);
557 atomic64_dec(&zram->stats.zero_pages);
558 }
559 return;
560 }
561
562 zs_free(meta->mem_pool, handle);
563
564 atomic64_sub(zram_get_obj_size(meta, index),
565 &zram->stats.compr_data_size);
566 atomic64_dec(&zram->stats.pages_stored);
567
568 meta->table[index].handle = 0;
569 zram_set_obj_size(meta, index, 0);
570 }
571
572 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
573 {
574 int ret = 0;
575 unsigned char *cmem;
576 struct zram_meta *meta = zram->meta;
577 unsigned long handle;
578 unsigned int size;
579
580 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
581 handle = meta->table[index].handle;
582 size = zram_get_obj_size(meta, index);
583
584 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
585 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
586 clear_page(mem);
587 return 0;
588 }
589
590 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
591 if (size == PAGE_SIZE) {
592 copy_page(mem, cmem);
593 } else {
594 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
595
596 ret = zcomp_decompress(zstrm, cmem, size, mem);
597 zcomp_stream_put(zram->comp);
598 }
599 zs_unmap_object(meta->mem_pool, handle);
600 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
601
602 /* Should NEVER happen. Return bio error if it does. */
603 if (unlikely(ret)) {
604 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
605 return ret;
606 }
607
608 return 0;
609 }
610
611 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
612 u32 index, int offset)
613 {
614 int ret;
615 struct page *page;
616 unsigned char *user_mem, *uncmem = NULL;
617 struct zram_meta *meta = zram->meta;
618 page = bvec->bv_page;
619
620 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
621 if (unlikely(!meta->table[index].handle) ||
622 zram_test_flag(meta, index, ZRAM_ZERO)) {
623 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
624 handle_zero_page(bvec);
625 return 0;
626 }
627 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
628
629 if (is_partial_io(bvec))
630 /* Use a temporary buffer to decompress the page */
631 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
632
633 user_mem = kmap_atomic(page);
634 if (!is_partial_io(bvec))
635 uncmem = user_mem;
636
637 if (!uncmem) {
638 pr_err("Unable to allocate temp memory\n");
639 ret = -ENOMEM;
640 goto out_cleanup;
641 }
642
643 ret = zram_decompress_page(zram, uncmem, index);
644 /* Should NEVER happen. Return bio error if it does. */
645 if (unlikely(ret))
646 goto out_cleanup;
647
648 if (is_partial_io(bvec))
649 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
650 bvec->bv_len);
651
652 flush_dcache_page(page);
653 ret = 0;
654 out_cleanup:
655 kunmap_atomic(user_mem);
656 if (is_partial_io(bvec))
657 kfree(uncmem);
658 return ret;
659 }
660
661 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
662 int offset)
663 {
664 int ret = 0;
665 unsigned int clen;
666 unsigned long handle = 0;
667 struct page *page;
668 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
669 struct zram_meta *meta = zram->meta;
670 struct zcomp_strm *zstrm = NULL;
671 unsigned long alloced_pages;
672
673 page = bvec->bv_page;
674 if (is_partial_io(bvec)) {
675 /*
676 * This is a partial IO. We need to read the full page
677 * before to write the changes.
678 */
679 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
680 if (!uncmem) {
681 ret = -ENOMEM;
682 goto out;
683 }
684 ret = zram_decompress_page(zram, uncmem, index);
685 if (ret)
686 goto out;
687 }
688
689 compress_again:
690 user_mem = kmap_atomic(page);
691 if (is_partial_io(bvec)) {
692 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
693 bvec->bv_len);
694 kunmap_atomic(user_mem);
695 user_mem = NULL;
696 } else {
697 uncmem = user_mem;
698 }
699
700 if (page_zero_filled(uncmem)) {
701 if (user_mem)
702 kunmap_atomic(user_mem);
703 /* Free memory associated with this sector now. */
704 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
705 zram_free_page(zram, index);
706 zram_set_flag(meta, index, ZRAM_ZERO);
707 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
708
709 atomic64_inc(&zram->stats.zero_pages);
710 ret = 0;
711 goto out;
712 }
713
714 zstrm = zcomp_stream_get(zram->comp);
715 ret = zcomp_compress(zstrm, uncmem, &clen);
716 if (!is_partial_io(bvec)) {
717 kunmap_atomic(user_mem);
718 user_mem = NULL;
719 uncmem = NULL;
720 }
721
722 if (unlikely(ret)) {
723 pr_err("Compression failed! err=%d\n", ret);
724 goto out;
725 }
726
727 src = zstrm->buffer;
728 if (unlikely(clen > max_zpage_size)) {
729 clen = PAGE_SIZE;
730 if (is_partial_io(bvec))
731 src = uncmem;
732 }
733
734 /*
735 * handle allocation has 2 paths:
736 * a) fast path is executed with preemption disabled (for
737 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
738 * since we can't sleep;
739 * b) slow path enables preemption and attempts to allocate
740 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
741 * put per-cpu compression stream and, thus, to re-do
742 * the compression once handle is allocated.
743 *
744 * if we have a 'non-null' handle here then we are coming
745 * from the slow path and handle has already been allocated.
746 */
747 if (!handle)
748 handle = zs_malloc(meta->mem_pool, clen,
749 __GFP_KSWAPD_RECLAIM |
750 __GFP_NOWARN |
751 __GFP_HIGHMEM |
752 __GFP_MOVABLE);
753 if (!handle) {
754 zcomp_stream_put(zram->comp);
755 zstrm = NULL;
756
757 atomic64_inc(&zram->stats.writestall);
758
759 handle = zs_malloc(meta->mem_pool, clen,
760 GFP_NOIO | __GFP_HIGHMEM |
761 __GFP_MOVABLE);
762 if (handle)
763 goto compress_again;
764
765 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
766 index, clen);
767 ret = -ENOMEM;
768 goto out;
769 }
770
771 alloced_pages = zs_get_total_pages(meta->mem_pool);
772 update_used_max(zram, alloced_pages);
773
774 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
775 zs_free(meta->mem_pool, handle);
776 ret = -ENOMEM;
777 goto out;
778 }
779
780 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
781
782 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
783 src = kmap_atomic(page);
784 copy_page(cmem, src);
785 kunmap_atomic(src);
786 } else {
787 memcpy(cmem, src, clen);
788 }
789
790 zcomp_stream_put(zram->comp);
791 zstrm = NULL;
792 zs_unmap_object(meta->mem_pool, handle);
793
794 /*
795 * Free memory associated with this sector
796 * before overwriting unused sectors.
797 */
798 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
799 zram_free_page(zram, index);
800
801 meta->table[index].handle = handle;
802 zram_set_obj_size(meta, index, clen);
803 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
804
805 /* Update stats */
806 atomic64_add(clen, &zram->stats.compr_data_size);
807 atomic64_inc(&zram->stats.pages_stored);
808 out:
809 if (zstrm)
810 zcomp_stream_put(zram->comp);
811 if (is_partial_io(bvec))
812 kfree(uncmem);
813 return ret;
814 }
815
816 /*
817 * zram_bio_discard - handler on discard request
818 * @index: physical block index in PAGE_SIZE units
819 * @offset: byte offset within physical block
820 */
821 static void zram_bio_discard(struct zram *zram, u32 index,
822 int offset, struct bio *bio)
823 {
824 size_t n = bio->bi_iter.bi_size;
825 struct zram_meta *meta = zram->meta;
826
827 /*
828 * zram manages data in physical block size units. Because logical block
829 * size isn't identical with physical block size on some arch, we
830 * could get a discard request pointing to a specific offset within a
831 * certain physical block. Although we can handle this request by
832 * reading that physiclal block and decompressing and partially zeroing
833 * and re-compressing and then re-storing it, this isn't reasonable
834 * because our intent with a discard request is to save memory. So
835 * skipping this logical block is appropriate here.
836 */
837 if (offset) {
838 if (n <= (PAGE_SIZE - offset))
839 return;
840
841 n -= (PAGE_SIZE - offset);
842 index++;
843 }
844
845 while (n >= PAGE_SIZE) {
846 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
847 zram_free_page(zram, index);
848 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
849 atomic64_inc(&zram->stats.notify_free);
850 index++;
851 n -= PAGE_SIZE;
852 }
853 }
854
855 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
856 int offset, bool is_write)
857 {
858 unsigned long start_time = jiffies;
859 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
860 int ret;
861
862 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
863 &zram->disk->part0);
864
865 if (!is_write) {
866 atomic64_inc(&zram->stats.num_reads);
867 ret = zram_bvec_read(zram, bvec, index, offset);
868 } else {
869 atomic64_inc(&zram->stats.num_writes);
870 ret = zram_bvec_write(zram, bvec, index, offset);
871 }
872
873 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
874
875 if (unlikely(ret)) {
876 if (!is_write)
877 atomic64_inc(&zram->stats.failed_reads);
878 else
879 atomic64_inc(&zram->stats.failed_writes);
880 }
881
882 return ret;
883 }
884
885 static void __zram_make_request(struct zram *zram, struct bio *bio)
886 {
887 int offset;
888 u32 index;
889 struct bio_vec bvec;
890 struct bvec_iter iter;
891
892 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
893 offset = (bio->bi_iter.bi_sector &
894 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
895
896 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
897 zram_bio_discard(zram, index, offset, bio);
898 bio_endio(bio);
899 return;
900 }
901
902 bio_for_each_segment(bvec, bio, iter) {
903 int max_transfer_size = PAGE_SIZE - offset;
904
905 if (bvec.bv_len > max_transfer_size) {
906 /*
907 * zram_bvec_rw() can only make operation on a single
908 * zram page. Split the bio vector.
909 */
910 struct bio_vec bv;
911
912 bv.bv_page = bvec.bv_page;
913 bv.bv_len = max_transfer_size;
914 bv.bv_offset = bvec.bv_offset;
915
916 if (zram_bvec_rw(zram, &bv, index, offset,
917 op_is_write(bio_op(bio))) < 0)
918 goto out;
919
920 bv.bv_len = bvec.bv_len - max_transfer_size;
921 bv.bv_offset += max_transfer_size;
922 if (zram_bvec_rw(zram, &bv, index + 1, 0,
923 op_is_write(bio_op(bio))) < 0)
924 goto out;
925 } else
926 if (zram_bvec_rw(zram, &bvec, index, offset,
927 op_is_write(bio_op(bio))) < 0)
928 goto out;
929
930 update_position(&index, &offset, &bvec);
931 }
932
933 bio_endio(bio);
934 return;
935
936 out:
937 bio_io_error(bio);
938 }
939
940 /*
941 * Handler function for all zram I/O requests.
942 */
943 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
944 {
945 struct zram *zram = queue->queuedata;
946
947 if (unlikely(!zram_meta_get(zram)))
948 goto error;
949
950 blk_queue_split(queue, &bio, queue->bio_split);
951
952 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
953 bio->bi_iter.bi_size)) {
954 atomic64_inc(&zram->stats.invalid_io);
955 goto put_zram;
956 }
957
958 __zram_make_request(zram, bio);
959 zram_meta_put(zram);
960 return BLK_QC_T_NONE;
961 put_zram:
962 zram_meta_put(zram);
963 error:
964 bio_io_error(bio);
965 return BLK_QC_T_NONE;
966 }
967
968 static void zram_slot_free_notify(struct block_device *bdev,
969 unsigned long index)
970 {
971 struct zram *zram;
972 struct zram_meta *meta;
973
974 zram = bdev->bd_disk->private_data;
975 meta = zram->meta;
976
977 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
978 zram_free_page(zram, index);
979 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
980 atomic64_inc(&zram->stats.notify_free);
981 }
982
983 static int zram_rw_page(struct block_device *bdev, sector_t sector,
984 struct page *page, bool is_write)
985 {
986 int offset, err = -EIO;
987 u32 index;
988 struct zram *zram;
989 struct bio_vec bv;
990
991 zram = bdev->bd_disk->private_data;
992 if (unlikely(!zram_meta_get(zram)))
993 goto out;
994
995 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
996 atomic64_inc(&zram->stats.invalid_io);
997 err = -EINVAL;
998 goto put_zram;
999 }
1000
1001 index = sector >> SECTORS_PER_PAGE_SHIFT;
1002 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
1003
1004 bv.bv_page = page;
1005 bv.bv_len = PAGE_SIZE;
1006 bv.bv_offset = 0;
1007
1008 err = zram_bvec_rw(zram, &bv, index, offset, is_write);
1009 put_zram:
1010 zram_meta_put(zram);
1011 out:
1012 /*
1013 * If I/O fails, just return error(ie, non-zero) without
1014 * calling page_endio.
1015 * It causes resubmit the I/O with bio request by upper functions
1016 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1017 * bio->bi_end_io does things to handle the error
1018 * (e.g., SetPageError, set_page_dirty and extra works).
1019 */
1020 if (err == 0)
1021 page_endio(page, is_write, 0);
1022 return err;
1023 }
1024
1025 static void zram_reset_device(struct zram *zram)
1026 {
1027 struct zram_meta *meta;
1028 struct zcomp *comp;
1029 u64 disksize;
1030
1031 down_write(&zram->init_lock);
1032
1033 zram->limit_pages = 0;
1034
1035 if (!init_done(zram)) {
1036 up_write(&zram->init_lock);
1037 return;
1038 }
1039
1040 meta = zram->meta;
1041 comp = zram->comp;
1042 disksize = zram->disksize;
1043 /*
1044 * Refcount will go down to 0 eventually and r/w handler
1045 * cannot handle further I/O so it will bail out by
1046 * check zram_meta_get.
1047 */
1048 zram_meta_put(zram);
1049 /*
1050 * We want to free zram_meta in process context to avoid
1051 * deadlock between reclaim path and any other locks.
1052 */
1053 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1054
1055 /* Reset stats */
1056 memset(&zram->stats, 0, sizeof(zram->stats));
1057 zram->disksize = 0;
1058
1059 set_capacity(zram->disk, 0);
1060 part_stat_set_all(&zram->disk->part0, 0);
1061
1062 up_write(&zram->init_lock);
1063 /* I/O operation under all of CPU are done so let's free */
1064 zram_meta_free(meta, disksize);
1065 zcomp_destroy(comp);
1066 }
1067
1068 static ssize_t disksize_store(struct device *dev,
1069 struct device_attribute *attr, const char *buf, size_t len)
1070 {
1071 u64 disksize;
1072 struct zcomp *comp;
1073 struct zram_meta *meta;
1074 struct zram *zram = dev_to_zram(dev);
1075 int err;
1076
1077 disksize = memparse(buf, NULL);
1078 if (!disksize)
1079 return -EINVAL;
1080
1081 disksize = PAGE_ALIGN(disksize);
1082 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1083 if (!meta)
1084 return -ENOMEM;
1085
1086 comp = zcomp_create(zram->compressor);
1087 if (IS_ERR(comp)) {
1088 pr_err("Cannot initialise %s compressing backend\n",
1089 zram->compressor);
1090 err = PTR_ERR(comp);
1091 goto out_free_meta;
1092 }
1093
1094 down_write(&zram->init_lock);
1095 if (init_done(zram)) {
1096 pr_info("Cannot change disksize for initialized device\n");
1097 err = -EBUSY;
1098 goto out_destroy_comp;
1099 }
1100
1101 init_waitqueue_head(&zram->io_done);
1102 atomic_set(&zram->refcount, 1);
1103 zram->meta = meta;
1104 zram->comp = comp;
1105 zram->disksize = disksize;
1106 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1107 zram_revalidate_disk(zram);
1108 up_write(&zram->init_lock);
1109
1110 return len;
1111
1112 out_destroy_comp:
1113 up_write(&zram->init_lock);
1114 zcomp_destroy(comp);
1115 out_free_meta:
1116 zram_meta_free(meta, disksize);
1117 return err;
1118 }
1119
1120 static ssize_t reset_store(struct device *dev,
1121 struct device_attribute *attr, const char *buf, size_t len)
1122 {
1123 int ret;
1124 unsigned short do_reset;
1125 struct zram *zram;
1126 struct block_device *bdev;
1127
1128 ret = kstrtou16(buf, 10, &do_reset);
1129 if (ret)
1130 return ret;
1131
1132 if (!do_reset)
1133 return -EINVAL;
1134
1135 zram = dev_to_zram(dev);
1136 bdev = bdget_disk(zram->disk, 0);
1137 if (!bdev)
1138 return -ENOMEM;
1139
1140 mutex_lock(&bdev->bd_mutex);
1141 /* Do not reset an active device or claimed device */
1142 if (bdev->bd_openers || zram->claim) {
1143 mutex_unlock(&bdev->bd_mutex);
1144 bdput(bdev);
1145 return -EBUSY;
1146 }
1147
1148 /* From now on, anyone can't open /dev/zram[0-9] */
1149 zram->claim = true;
1150 mutex_unlock(&bdev->bd_mutex);
1151
1152 /* Make sure all the pending I/O are finished */
1153 fsync_bdev(bdev);
1154 zram_reset_device(zram);
1155 zram_revalidate_disk(zram);
1156 bdput(bdev);
1157
1158 mutex_lock(&bdev->bd_mutex);
1159 zram->claim = false;
1160 mutex_unlock(&bdev->bd_mutex);
1161
1162 return len;
1163 }
1164
1165 static int zram_open(struct block_device *bdev, fmode_t mode)
1166 {
1167 int ret = 0;
1168 struct zram *zram;
1169
1170 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1171
1172 zram = bdev->bd_disk->private_data;
1173 /* zram was claimed to reset so open request fails */
1174 if (zram->claim)
1175 ret = -EBUSY;
1176
1177 return ret;
1178 }
1179
1180 static const struct block_device_operations zram_devops = {
1181 .open = zram_open,
1182 .swap_slot_free_notify = zram_slot_free_notify,
1183 .rw_page = zram_rw_page,
1184 .owner = THIS_MODULE
1185 };
1186
1187 static DEVICE_ATTR_WO(compact);
1188 static DEVICE_ATTR_RW(disksize);
1189 static DEVICE_ATTR_RO(initstate);
1190 static DEVICE_ATTR_WO(reset);
1191 static DEVICE_ATTR_RO(orig_data_size);
1192 static DEVICE_ATTR_RO(mem_used_total);
1193 static DEVICE_ATTR_RW(mem_limit);
1194 static DEVICE_ATTR_RW(mem_used_max);
1195 static DEVICE_ATTR_RW(max_comp_streams);
1196 static DEVICE_ATTR_RW(comp_algorithm);
1197
1198 static struct attribute *zram_disk_attrs[] = {
1199 &dev_attr_disksize.attr,
1200 &dev_attr_initstate.attr,
1201 &dev_attr_reset.attr,
1202 &dev_attr_num_reads.attr,
1203 &dev_attr_num_writes.attr,
1204 &dev_attr_failed_reads.attr,
1205 &dev_attr_failed_writes.attr,
1206 &dev_attr_compact.attr,
1207 &dev_attr_invalid_io.attr,
1208 &dev_attr_notify_free.attr,
1209 &dev_attr_zero_pages.attr,
1210 &dev_attr_orig_data_size.attr,
1211 &dev_attr_compr_data_size.attr,
1212 &dev_attr_mem_used_total.attr,
1213 &dev_attr_mem_limit.attr,
1214 &dev_attr_mem_used_max.attr,
1215 &dev_attr_max_comp_streams.attr,
1216 &dev_attr_comp_algorithm.attr,
1217 &dev_attr_io_stat.attr,
1218 &dev_attr_mm_stat.attr,
1219 &dev_attr_debug_stat.attr,
1220 NULL,
1221 };
1222
1223 static struct attribute_group zram_disk_attr_group = {
1224 .attrs = zram_disk_attrs,
1225 };
1226
1227 /*
1228 * Allocate and initialize new zram device. the function returns
1229 * '>= 0' device_id upon success, and negative value otherwise.
1230 */
1231 static int zram_add(void)
1232 {
1233 struct zram *zram;
1234 struct request_queue *queue;
1235 int ret, device_id;
1236
1237 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1238 if (!zram)
1239 return -ENOMEM;
1240
1241 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1242 if (ret < 0)
1243 goto out_free_dev;
1244 device_id = ret;
1245
1246 init_rwsem(&zram->init_lock);
1247
1248 queue = blk_alloc_queue(GFP_KERNEL);
1249 if (!queue) {
1250 pr_err("Error allocating disk queue for device %d\n",
1251 device_id);
1252 ret = -ENOMEM;
1253 goto out_free_idr;
1254 }
1255
1256 blk_queue_make_request(queue, zram_make_request);
1257
1258 /* gendisk structure */
1259 zram->disk = alloc_disk(1);
1260 if (!zram->disk) {
1261 pr_err("Error allocating disk structure for device %d\n",
1262 device_id);
1263 ret = -ENOMEM;
1264 goto out_free_queue;
1265 }
1266
1267 zram->disk->major = zram_major;
1268 zram->disk->first_minor = device_id;
1269 zram->disk->fops = &zram_devops;
1270 zram->disk->queue = queue;
1271 zram->disk->queue->queuedata = zram;
1272 zram->disk->private_data = zram;
1273 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1274
1275 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1276 set_capacity(zram->disk, 0);
1277 /* zram devices sort of resembles non-rotational disks */
1278 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1279 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1280 /*
1281 * To ensure that we always get PAGE_SIZE aligned
1282 * and n*PAGE_SIZED sized I/O requests.
1283 */
1284 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1285 blk_queue_logical_block_size(zram->disk->queue,
1286 ZRAM_LOGICAL_BLOCK_SIZE);
1287 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1288 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1289 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1290 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1291 /*
1292 * zram_bio_discard() will clear all logical blocks if logical block
1293 * size is identical with physical block size(PAGE_SIZE). But if it is
1294 * different, we will skip discarding some parts of logical blocks in
1295 * the part of the request range which isn't aligned to physical block
1296 * size. So we can't ensure that all discarded logical blocks are
1297 * zeroed.
1298 */
1299 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1300 zram->disk->queue->limits.discard_zeroes_data = 1;
1301 else
1302 zram->disk->queue->limits.discard_zeroes_data = 0;
1303 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1304
1305 add_disk(zram->disk);
1306
1307 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1308 &zram_disk_attr_group);
1309 if (ret < 0) {
1310 pr_err("Error creating sysfs group for device %d\n",
1311 device_id);
1312 goto out_free_disk;
1313 }
1314 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1315 zram->meta = NULL;
1316
1317 pr_info("Added device: %s\n", zram->disk->disk_name);
1318 return device_id;
1319
1320 out_free_disk:
1321 del_gendisk(zram->disk);
1322 put_disk(zram->disk);
1323 out_free_queue:
1324 blk_cleanup_queue(queue);
1325 out_free_idr:
1326 idr_remove(&zram_index_idr, device_id);
1327 out_free_dev:
1328 kfree(zram);
1329 return ret;
1330 }
1331
1332 static int zram_remove(struct zram *zram)
1333 {
1334 struct block_device *bdev;
1335
1336 bdev = bdget_disk(zram->disk, 0);
1337 if (!bdev)
1338 return -ENOMEM;
1339
1340 mutex_lock(&bdev->bd_mutex);
1341 if (bdev->bd_openers || zram->claim) {
1342 mutex_unlock(&bdev->bd_mutex);
1343 bdput(bdev);
1344 return -EBUSY;
1345 }
1346
1347 zram->claim = true;
1348 mutex_unlock(&bdev->bd_mutex);
1349
1350 /*
1351 * Remove sysfs first, so no one will perform a disksize
1352 * store while we destroy the devices. This also helps during
1353 * hot_remove -- zram_reset_device() is the last holder of
1354 * ->init_lock, no later/concurrent disksize_store() or any
1355 * other sysfs handlers are possible.
1356 */
1357 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1358 &zram_disk_attr_group);
1359
1360 /* Make sure all the pending I/O are finished */
1361 fsync_bdev(bdev);
1362 zram_reset_device(zram);
1363 bdput(bdev);
1364
1365 pr_info("Removed device: %s\n", zram->disk->disk_name);
1366
1367 blk_cleanup_queue(zram->disk->queue);
1368 del_gendisk(zram->disk);
1369 put_disk(zram->disk);
1370 kfree(zram);
1371 return 0;
1372 }
1373
1374 /* zram-control sysfs attributes */
1375 static ssize_t hot_add_show(struct class *class,
1376 struct class_attribute *attr,
1377 char *buf)
1378 {
1379 int ret;
1380
1381 mutex_lock(&zram_index_mutex);
1382 ret = zram_add();
1383 mutex_unlock(&zram_index_mutex);
1384
1385 if (ret < 0)
1386 return ret;
1387 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1388 }
1389
1390 static ssize_t hot_remove_store(struct class *class,
1391 struct class_attribute *attr,
1392 const char *buf,
1393 size_t count)
1394 {
1395 struct zram *zram;
1396 int ret, dev_id;
1397
1398 /* dev_id is gendisk->first_minor, which is `int' */
1399 ret = kstrtoint(buf, 10, &dev_id);
1400 if (ret)
1401 return ret;
1402 if (dev_id < 0)
1403 return -EINVAL;
1404
1405 mutex_lock(&zram_index_mutex);
1406
1407 zram = idr_find(&zram_index_idr, dev_id);
1408 if (zram) {
1409 ret = zram_remove(zram);
1410 if (!ret)
1411 idr_remove(&zram_index_idr, dev_id);
1412 } else {
1413 ret = -ENODEV;
1414 }
1415
1416 mutex_unlock(&zram_index_mutex);
1417 return ret ? ret : count;
1418 }
1419
1420 /*
1421 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1422 * sense that reading from this file does alter the state of your system -- it
1423 * creates a new un-initialized zram device and returns back this device's
1424 * device_id (or an error code if it fails to create a new device).
1425 */
1426 static struct class_attribute zram_control_class_attrs[] = {
1427 __ATTR(hot_add, 0400, hot_add_show, NULL),
1428 __ATTR_WO(hot_remove),
1429 __ATTR_NULL,
1430 };
1431
1432 static struct class zram_control_class = {
1433 .name = "zram-control",
1434 .owner = THIS_MODULE,
1435 .class_attrs = zram_control_class_attrs,
1436 };
1437
1438 static int zram_remove_cb(int id, void *ptr, void *data)
1439 {
1440 zram_remove(ptr);
1441 return 0;
1442 }
1443
1444 static void destroy_devices(void)
1445 {
1446 class_unregister(&zram_control_class);
1447 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1448 idr_destroy(&zram_index_idr);
1449 unregister_blkdev(zram_major, "zram");
1450 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1451 }
1452
1453 static int __init zram_init(void)
1454 {
1455 int ret;
1456
1457 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1458 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1459 if (ret < 0)
1460 return ret;
1461
1462 ret = class_register(&zram_control_class);
1463 if (ret) {
1464 pr_err("Unable to register zram-control class\n");
1465 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1466 return ret;
1467 }
1468
1469 zram_major = register_blkdev(0, "zram");
1470 if (zram_major <= 0) {
1471 pr_err("Unable to get major number\n");
1472 class_unregister(&zram_control_class);
1473 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1474 return -EBUSY;
1475 }
1476
1477 while (num_devices != 0) {
1478 mutex_lock(&zram_index_mutex);
1479 ret = zram_add();
1480 mutex_unlock(&zram_index_mutex);
1481 if (ret < 0)
1482 goto out_error;
1483 num_devices--;
1484 }
1485
1486 return 0;
1487
1488 out_error:
1489 destroy_devices();
1490 return ret;
1491 }
1492
1493 static void __exit zram_exit(void)
1494 {
1495 destroy_devices();
1496 }
1497
1498 module_init(zram_init);
1499 module_exit(zram_exit);
1500
1501 module_param(num_devices, uint, 0);
1502 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1503
1504 MODULE_LICENSE("Dual BSD/GPL");
1505 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1506 MODULE_DESCRIPTION("Compressed RAM Block Device");