]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/block/zram/zram_drv.c
40743972eaf7d4d038fe72c0ed12f45caeace023
[mirror_ubuntu-jammy-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 #define ZRAM_ATTR_RO(name) \
47 static ssize_t zram_attr_##name##_show(struct device *d, \
48 struct device_attribute *attr, char *b) \
49 { \
50 struct zram *zram = dev_to_zram(d); \
51 return scnprintf(b, PAGE_SIZE, "%llu\n", \
52 (u64)atomic64_read(&zram->stats.name)); \
53 } \
54 static struct device_attribute dev_attr_##name = \
55 __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56
57 static inline int init_done(struct zram *zram)
58 {
59 return zram->meta != NULL;
60 }
61
62 static inline struct zram *dev_to_zram(struct device *dev)
63 {
64 return (struct zram *)dev_to_disk(dev)->private_data;
65 }
66
67 static ssize_t disksize_show(struct device *dev,
68 struct device_attribute *attr, char *buf)
69 {
70 struct zram *zram = dev_to_zram(dev);
71
72 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
73 }
74
75 static ssize_t initstate_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
77 {
78 u32 val;
79 struct zram *zram = dev_to_zram(dev);
80
81 down_read(&zram->init_lock);
82 val = init_done(zram);
83 up_read(&zram->init_lock);
84
85 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
86 }
87
88 static ssize_t orig_data_size_show(struct device *dev,
89 struct device_attribute *attr, char *buf)
90 {
91 struct zram *zram = dev_to_zram(dev);
92
93 return scnprintf(buf, PAGE_SIZE, "%llu\n",
94 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
95 }
96
97 static ssize_t mem_used_total_show(struct device *dev,
98 struct device_attribute *attr, char *buf)
99 {
100 u64 val = 0;
101 struct zram *zram = dev_to_zram(dev);
102 struct zram_meta *meta = zram->meta;
103
104 down_read(&zram->init_lock);
105 if (init_done(zram))
106 val = zs_get_total_size_bytes(meta->mem_pool);
107 up_read(&zram->init_lock);
108
109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
110 }
111
112 static ssize_t max_comp_streams_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114 {
115 int val;
116 struct zram *zram = dev_to_zram(dev);
117
118 down_read(&zram->init_lock);
119 val = zram->max_comp_streams;
120 up_read(&zram->init_lock);
121
122 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124
125 static ssize_t max_comp_streams_store(struct device *dev,
126 struct device_attribute *attr, const char *buf, size_t len)
127 {
128 int num;
129 struct zram *zram = dev_to_zram(dev);
130 int ret;
131
132 ret = kstrtoint(buf, 0, &num);
133 if (ret < 0)
134 return ret;
135 if (num < 1)
136 return -EINVAL;
137
138 down_write(&zram->init_lock);
139 if (init_done(zram)) {
140 if (!zcomp_set_max_streams(zram->comp, num)) {
141 pr_info("Cannot change max compression streams\n");
142 ret = -EINVAL;
143 goto out;
144 }
145 }
146
147 zram->max_comp_streams = num;
148 ret = len;
149 out:
150 up_write(&zram->init_lock);
151 return ret;
152 }
153
154 static ssize_t comp_algorithm_show(struct device *dev,
155 struct device_attribute *attr, char *buf)
156 {
157 size_t sz;
158 struct zram *zram = dev_to_zram(dev);
159
160 down_read(&zram->init_lock);
161 sz = zcomp_available_show(zram->compressor, buf);
162 up_read(&zram->init_lock);
163
164 return sz;
165 }
166
167 static ssize_t comp_algorithm_store(struct device *dev,
168 struct device_attribute *attr, const char *buf, size_t len)
169 {
170 struct zram *zram = dev_to_zram(dev);
171 down_write(&zram->init_lock);
172 if (init_done(zram)) {
173 up_write(&zram->init_lock);
174 pr_info("Can't change algorithm for initialized device\n");
175 return -EBUSY;
176 }
177 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
178 up_write(&zram->init_lock);
179 return len;
180 }
181
182 /* flag operations needs meta->tb_lock */
183 static int zram_test_flag(struct zram_meta *meta, u32 index,
184 enum zram_pageflags flag)
185 {
186 return meta->table[index].flags & BIT(flag);
187 }
188
189 static void zram_set_flag(struct zram_meta *meta, u32 index,
190 enum zram_pageflags flag)
191 {
192 meta->table[index].flags |= BIT(flag);
193 }
194
195 static void zram_clear_flag(struct zram_meta *meta, u32 index,
196 enum zram_pageflags flag)
197 {
198 meta->table[index].flags &= ~BIT(flag);
199 }
200
201 static inline int is_partial_io(struct bio_vec *bvec)
202 {
203 return bvec->bv_len != PAGE_SIZE;
204 }
205
206 /*
207 * Check if request is within bounds and aligned on zram logical blocks.
208 */
209 static inline int valid_io_request(struct zram *zram, struct bio *bio)
210 {
211 u64 start, end, bound;
212
213 /* unaligned request */
214 if (unlikely(bio->bi_iter.bi_sector &
215 (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
216 return 0;
217 if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
218 return 0;
219
220 start = bio->bi_iter.bi_sector;
221 end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
222 bound = zram->disksize >> SECTOR_SHIFT;
223 /* out of range range */
224 if (unlikely(start >= bound || end > bound || start > end))
225 return 0;
226
227 /* I/O request is valid */
228 return 1;
229 }
230
231 static void zram_meta_free(struct zram_meta *meta)
232 {
233 zs_destroy_pool(meta->mem_pool);
234 vfree(meta->table);
235 kfree(meta);
236 }
237
238 static struct zram_meta *zram_meta_alloc(u64 disksize)
239 {
240 size_t num_pages;
241 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
242 if (!meta)
243 goto out;
244
245 num_pages = disksize >> PAGE_SHIFT;
246 meta->table = vzalloc(num_pages * sizeof(*meta->table));
247 if (!meta->table) {
248 pr_err("Error allocating zram address table\n");
249 goto free_meta;
250 }
251
252 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
253 if (!meta->mem_pool) {
254 pr_err("Error creating memory pool\n");
255 goto free_table;
256 }
257
258 rwlock_init(&meta->tb_lock);
259 return meta;
260
261 free_table:
262 vfree(meta->table);
263 free_meta:
264 kfree(meta);
265 meta = NULL;
266 out:
267 return meta;
268 }
269
270 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
271 {
272 if (*offset + bvec->bv_len >= PAGE_SIZE)
273 (*index)++;
274 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
275 }
276
277 static int page_zero_filled(void *ptr)
278 {
279 unsigned int pos;
280 unsigned long *page;
281
282 page = (unsigned long *)ptr;
283
284 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
285 if (page[pos])
286 return 0;
287 }
288
289 return 1;
290 }
291
292 static void handle_zero_page(struct bio_vec *bvec)
293 {
294 struct page *page = bvec->bv_page;
295 void *user_mem;
296
297 user_mem = kmap_atomic(page);
298 if (is_partial_io(bvec))
299 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
300 else
301 clear_page(user_mem);
302 kunmap_atomic(user_mem);
303
304 flush_dcache_page(page);
305 }
306
307 /* NOTE: caller should hold meta->tb_lock with write-side */
308 static void zram_free_page(struct zram *zram, size_t index)
309 {
310 struct zram_meta *meta = zram->meta;
311 unsigned long handle = meta->table[index].handle;
312
313 if (unlikely(!handle)) {
314 /*
315 * No memory is allocated for zero filled pages.
316 * Simply clear zero page flag.
317 */
318 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
319 zram_clear_flag(meta, index, ZRAM_ZERO);
320 atomic64_dec(&zram->stats.zero_pages);
321 }
322 return;
323 }
324
325 zs_free(meta->mem_pool, handle);
326
327 atomic64_sub(meta->table[index].size, &zram->stats.compr_data_size);
328 atomic64_dec(&zram->stats.pages_stored);
329
330 meta->table[index].handle = 0;
331 meta->table[index].size = 0;
332 }
333
334 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
335 {
336 int ret = 0;
337 unsigned char *cmem;
338 struct zram_meta *meta = zram->meta;
339 unsigned long handle;
340 size_t size;
341
342 read_lock(&meta->tb_lock);
343 handle = meta->table[index].handle;
344 size = meta->table[index].size;
345
346 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
347 read_unlock(&meta->tb_lock);
348 clear_page(mem);
349 return 0;
350 }
351
352 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
353 if (size == PAGE_SIZE)
354 copy_page(mem, cmem);
355 else
356 ret = zcomp_decompress(zram->comp, cmem, size, mem);
357 zs_unmap_object(meta->mem_pool, handle);
358 read_unlock(&meta->tb_lock);
359
360 /* Should NEVER happen. Return bio error if it does. */
361 if (unlikely(ret)) {
362 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
363 atomic64_inc(&zram->stats.failed_reads);
364 return ret;
365 }
366
367 return 0;
368 }
369
370 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
371 u32 index, int offset, struct bio *bio)
372 {
373 int ret;
374 struct page *page;
375 unsigned char *user_mem, *uncmem = NULL;
376 struct zram_meta *meta = zram->meta;
377 page = bvec->bv_page;
378
379 read_lock(&meta->tb_lock);
380 if (unlikely(!meta->table[index].handle) ||
381 zram_test_flag(meta, index, ZRAM_ZERO)) {
382 read_unlock(&meta->tb_lock);
383 handle_zero_page(bvec);
384 return 0;
385 }
386 read_unlock(&meta->tb_lock);
387
388 if (is_partial_io(bvec))
389 /* Use a temporary buffer to decompress the page */
390 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
391
392 user_mem = kmap_atomic(page);
393 if (!is_partial_io(bvec))
394 uncmem = user_mem;
395
396 if (!uncmem) {
397 pr_info("Unable to allocate temp memory\n");
398 ret = -ENOMEM;
399 goto out_cleanup;
400 }
401
402 ret = zram_decompress_page(zram, uncmem, index);
403 /* Should NEVER happen. Return bio error if it does. */
404 if (unlikely(ret))
405 goto out_cleanup;
406
407 if (is_partial_io(bvec))
408 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
409 bvec->bv_len);
410
411 flush_dcache_page(page);
412 ret = 0;
413 out_cleanup:
414 kunmap_atomic(user_mem);
415 if (is_partial_io(bvec))
416 kfree(uncmem);
417 return ret;
418 }
419
420 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
421 int offset)
422 {
423 int ret = 0;
424 size_t clen;
425 unsigned long handle;
426 struct page *page;
427 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
428 struct zram_meta *meta = zram->meta;
429 struct zcomp_strm *zstrm;
430 bool locked = false;
431
432 page = bvec->bv_page;
433 if (is_partial_io(bvec)) {
434 /*
435 * This is a partial IO. We need to read the full page
436 * before to write the changes.
437 */
438 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
439 if (!uncmem) {
440 ret = -ENOMEM;
441 goto out;
442 }
443 ret = zram_decompress_page(zram, uncmem, index);
444 if (ret)
445 goto out;
446 }
447
448 zstrm = zcomp_strm_find(zram->comp);
449 locked = true;
450 user_mem = kmap_atomic(page);
451
452 if (is_partial_io(bvec)) {
453 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
454 bvec->bv_len);
455 kunmap_atomic(user_mem);
456 user_mem = NULL;
457 } else {
458 uncmem = user_mem;
459 }
460
461 if (page_zero_filled(uncmem)) {
462 kunmap_atomic(user_mem);
463 /* Free memory associated with this sector now. */
464 write_lock(&zram->meta->tb_lock);
465 zram_free_page(zram, index);
466 zram_set_flag(meta, index, ZRAM_ZERO);
467 write_unlock(&zram->meta->tb_lock);
468
469 atomic64_inc(&zram->stats.zero_pages);
470 ret = 0;
471 goto out;
472 }
473
474 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
475 if (!is_partial_io(bvec)) {
476 kunmap_atomic(user_mem);
477 user_mem = NULL;
478 uncmem = NULL;
479 }
480
481 if (unlikely(ret)) {
482 pr_err("Compression failed! err=%d\n", ret);
483 goto out;
484 }
485 src = zstrm->buffer;
486 if (unlikely(clen > max_zpage_size)) {
487 clen = PAGE_SIZE;
488 if (is_partial_io(bvec))
489 src = uncmem;
490 }
491
492 handle = zs_malloc(meta->mem_pool, clen);
493 if (!handle) {
494 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
495 index, clen);
496 ret = -ENOMEM;
497 goto out;
498 }
499 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
500
501 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
502 src = kmap_atomic(page);
503 copy_page(cmem, src);
504 kunmap_atomic(src);
505 } else {
506 memcpy(cmem, src, clen);
507 }
508
509 zcomp_strm_release(zram->comp, zstrm);
510 locked = false;
511 zs_unmap_object(meta->mem_pool, handle);
512
513 /*
514 * Free memory associated with this sector
515 * before overwriting unused sectors.
516 */
517 write_lock(&zram->meta->tb_lock);
518 zram_free_page(zram, index);
519
520 meta->table[index].handle = handle;
521 meta->table[index].size = clen;
522 write_unlock(&zram->meta->tb_lock);
523
524 /* Update stats */
525 atomic64_add(clen, &zram->stats.compr_data_size);
526 atomic64_inc(&zram->stats.pages_stored);
527 out:
528 if (locked)
529 zcomp_strm_release(zram->comp, zstrm);
530 if (is_partial_io(bvec))
531 kfree(uncmem);
532 if (ret)
533 atomic64_inc(&zram->stats.failed_writes);
534 return ret;
535 }
536
537 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
538 int offset, struct bio *bio)
539 {
540 int ret;
541 int rw = bio_data_dir(bio);
542
543 if (rw == READ) {
544 atomic64_inc(&zram->stats.num_reads);
545 ret = zram_bvec_read(zram, bvec, index, offset, bio);
546 } else {
547 atomic64_inc(&zram->stats.num_writes);
548 ret = zram_bvec_write(zram, bvec, index, offset);
549 }
550
551 return ret;
552 }
553
554 /*
555 * zram_bio_discard - handler on discard request
556 * @index: physical block index in PAGE_SIZE units
557 * @offset: byte offset within physical block
558 */
559 static void zram_bio_discard(struct zram *zram, u32 index,
560 int offset, struct bio *bio)
561 {
562 size_t n = bio->bi_iter.bi_size;
563
564 /*
565 * zram manages data in physical block size units. Because logical block
566 * size isn't identical with physical block size on some arch, we
567 * could get a discard request pointing to a specific offset within a
568 * certain physical block. Although we can handle this request by
569 * reading that physiclal block and decompressing and partially zeroing
570 * and re-compressing and then re-storing it, this isn't reasonable
571 * because our intent with a discard request is to save memory. So
572 * skipping this logical block is appropriate here.
573 */
574 if (offset) {
575 if (n <= (PAGE_SIZE - offset))
576 return;
577
578 n -= (PAGE_SIZE - offset);
579 index++;
580 }
581
582 while (n >= PAGE_SIZE) {
583 /*
584 * Discard request can be large so the lock hold times could be
585 * lengthy. So take the lock once per page.
586 */
587 write_lock(&zram->meta->tb_lock);
588 zram_free_page(zram, index);
589 write_unlock(&zram->meta->tb_lock);
590 index++;
591 n -= PAGE_SIZE;
592 }
593 }
594
595 static void zram_reset_device(struct zram *zram, bool reset_capacity)
596 {
597 size_t index;
598 struct zram_meta *meta;
599
600 down_write(&zram->init_lock);
601 if (!init_done(zram)) {
602 up_write(&zram->init_lock);
603 return;
604 }
605
606 meta = zram->meta;
607 /* Free all pages that are still in this zram device */
608 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
609 unsigned long handle = meta->table[index].handle;
610 if (!handle)
611 continue;
612
613 zs_free(meta->mem_pool, handle);
614 }
615
616 zcomp_destroy(zram->comp);
617 zram->max_comp_streams = 1;
618
619 zram_meta_free(zram->meta);
620 zram->meta = NULL;
621 /* Reset stats */
622 memset(&zram->stats, 0, sizeof(zram->stats));
623
624 zram->disksize = 0;
625 if (reset_capacity)
626 set_capacity(zram->disk, 0);
627
628 up_write(&zram->init_lock);
629
630 /*
631 * Revalidate disk out of the init_lock to avoid lockdep splat.
632 * It's okay because disk's capacity is protected by init_lock
633 * so that revalidate_disk always sees up-to-date capacity.
634 */
635 if (reset_capacity)
636 revalidate_disk(zram->disk);
637 }
638
639 static ssize_t disksize_store(struct device *dev,
640 struct device_attribute *attr, const char *buf, size_t len)
641 {
642 u64 disksize;
643 struct zcomp *comp;
644 struct zram_meta *meta;
645 struct zram *zram = dev_to_zram(dev);
646 int err;
647
648 disksize = memparse(buf, NULL);
649 if (!disksize)
650 return -EINVAL;
651
652 disksize = PAGE_ALIGN(disksize);
653 meta = zram_meta_alloc(disksize);
654 if (!meta)
655 return -ENOMEM;
656
657 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
658 if (IS_ERR(comp)) {
659 pr_info("Cannot initialise %s compressing backend\n",
660 zram->compressor);
661 err = PTR_ERR(comp);
662 goto out_free_meta;
663 }
664
665 down_write(&zram->init_lock);
666 if (init_done(zram)) {
667 pr_info("Cannot change disksize for initialized device\n");
668 err = -EBUSY;
669 goto out_destroy_comp;
670 }
671
672 zram->meta = meta;
673 zram->comp = comp;
674 zram->disksize = disksize;
675 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
676 up_write(&zram->init_lock);
677
678 /*
679 * Revalidate disk out of the init_lock to avoid lockdep splat.
680 * It's okay because disk's capacity is protected by init_lock
681 * so that revalidate_disk always sees up-to-date capacity.
682 */
683 revalidate_disk(zram->disk);
684
685 return len;
686
687 out_destroy_comp:
688 up_write(&zram->init_lock);
689 zcomp_destroy(comp);
690 out_free_meta:
691 zram_meta_free(meta);
692 return err;
693 }
694
695 static ssize_t reset_store(struct device *dev,
696 struct device_attribute *attr, const char *buf, size_t len)
697 {
698 int ret;
699 unsigned short do_reset;
700 struct zram *zram;
701 struct block_device *bdev;
702
703 zram = dev_to_zram(dev);
704 bdev = bdget_disk(zram->disk, 0);
705
706 if (!bdev)
707 return -ENOMEM;
708
709 /* Do not reset an active device! */
710 if (bdev->bd_holders) {
711 ret = -EBUSY;
712 goto out;
713 }
714
715 ret = kstrtou16(buf, 10, &do_reset);
716 if (ret)
717 goto out;
718
719 if (!do_reset) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 /* Make sure all pending I/O is finished */
725 fsync_bdev(bdev);
726 bdput(bdev);
727
728 zram_reset_device(zram, true);
729 return len;
730
731 out:
732 bdput(bdev);
733 return ret;
734 }
735
736 static void __zram_make_request(struct zram *zram, struct bio *bio)
737 {
738 int offset;
739 u32 index;
740 struct bio_vec bvec;
741 struct bvec_iter iter;
742
743 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
744 offset = (bio->bi_iter.bi_sector &
745 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
746
747 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
748 zram_bio_discard(zram, index, offset, bio);
749 bio_endio(bio, 0);
750 return;
751 }
752
753 bio_for_each_segment(bvec, bio, iter) {
754 int max_transfer_size = PAGE_SIZE - offset;
755
756 if (bvec.bv_len > max_transfer_size) {
757 /*
758 * zram_bvec_rw() can only make operation on a single
759 * zram page. Split the bio vector.
760 */
761 struct bio_vec bv;
762
763 bv.bv_page = bvec.bv_page;
764 bv.bv_len = max_transfer_size;
765 bv.bv_offset = bvec.bv_offset;
766
767 if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
768 goto out;
769
770 bv.bv_len = bvec.bv_len - max_transfer_size;
771 bv.bv_offset += max_transfer_size;
772 if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
773 goto out;
774 } else
775 if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
776 goto out;
777
778 update_position(&index, &offset, &bvec);
779 }
780
781 set_bit(BIO_UPTODATE, &bio->bi_flags);
782 bio_endio(bio, 0);
783 return;
784
785 out:
786 bio_io_error(bio);
787 }
788
789 /*
790 * Handler function for all zram I/O requests.
791 */
792 static void zram_make_request(struct request_queue *queue, struct bio *bio)
793 {
794 struct zram *zram = queue->queuedata;
795
796 down_read(&zram->init_lock);
797 if (unlikely(!init_done(zram)))
798 goto error;
799
800 if (!valid_io_request(zram, bio)) {
801 atomic64_inc(&zram->stats.invalid_io);
802 goto error;
803 }
804
805 __zram_make_request(zram, bio);
806 up_read(&zram->init_lock);
807
808 return;
809
810 error:
811 up_read(&zram->init_lock);
812 bio_io_error(bio);
813 }
814
815 static void zram_slot_free_notify(struct block_device *bdev,
816 unsigned long index)
817 {
818 struct zram *zram;
819 struct zram_meta *meta;
820
821 zram = bdev->bd_disk->private_data;
822 meta = zram->meta;
823
824 write_lock(&meta->tb_lock);
825 zram_free_page(zram, index);
826 write_unlock(&meta->tb_lock);
827 atomic64_inc(&zram->stats.notify_free);
828 }
829
830 static const struct block_device_operations zram_devops = {
831 .swap_slot_free_notify = zram_slot_free_notify,
832 .owner = THIS_MODULE
833 };
834
835 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
836 disksize_show, disksize_store);
837 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
838 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
839 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
840 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
841 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
842 max_comp_streams_show, max_comp_streams_store);
843 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
844 comp_algorithm_show, comp_algorithm_store);
845
846 ZRAM_ATTR_RO(num_reads);
847 ZRAM_ATTR_RO(num_writes);
848 ZRAM_ATTR_RO(failed_reads);
849 ZRAM_ATTR_RO(failed_writes);
850 ZRAM_ATTR_RO(invalid_io);
851 ZRAM_ATTR_RO(notify_free);
852 ZRAM_ATTR_RO(zero_pages);
853 ZRAM_ATTR_RO(compr_data_size);
854
855 static struct attribute *zram_disk_attrs[] = {
856 &dev_attr_disksize.attr,
857 &dev_attr_initstate.attr,
858 &dev_attr_reset.attr,
859 &dev_attr_num_reads.attr,
860 &dev_attr_num_writes.attr,
861 &dev_attr_failed_reads.attr,
862 &dev_attr_failed_writes.attr,
863 &dev_attr_invalid_io.attr,
864 &dev_attr_notify_free.attr,
865 &dev_attr_zero_pages.attr,
866 &dev_attr_orig_data_size.attr,
867 &dev_attr_compr_data_size.attr,
868 &dev_attr_mem_used_total.attr,
869 &dev_attr_max_comp_streams.attr,
870 &dev_attr_comp_algorithm.attr,
871 NULL,
872 };
873
874 static struct attribute_group zram_disk_attr_group = {
875 .attrs = zram_disk_attrs,
876 };
877
878 static int create_device(struct zram *zram, int device_id)
879 {
880 int ret = -ENOMEM;
881
882 init_rwsem(&zram->init_lock);
883
884 zram->queue = blk_alloc_queue(GFP_KERNEL);
885 if (!zram->queue) {
886 pr_err("Error allocating disk queue for device %d\n",
887 device_id);
888 goto out;
889 }
890
891 blk_queue_make_request(zram->queue, zram_make_request);
892 zram->queue->queuedata = zram;
893
894 /* gendisk structure */
895 zram->disk = alloc_disk(1);
896 if (!zram->disk) {
897 pr_warn("Error allocating disk structure for device %d\n",
898 device_id);
899 goto out_free_queue;
900 }
901
902 zram->disk->major = zram_major;
903 zram->disk->first_minor = device_id;
904 zram->disk->fops = &zram_devops;
905 zram->disk->queue = zram->queue;
906 zram->disk->private_data = zram;
907 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
908
909 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
910 set_capacity(zram->disk, 0);
911 /* zram devices sort of resembles non-rotational disks */
912 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
913 /*
914 * To ensure that we always get PAGE_SIZE aligned
915 * and n*PAGE_SIZED sized I/O requests.
916 */
917 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
918 blk_queue_logical_block_size(zram->disk->queue,
919 ZRAM_LOGICAL_BLOCK_SIZE);
920 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
921 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
922 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
923 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
924 /*
925 * zram_bio_discard() will clear all logical blocks if logical block
926 * size is identical with physical block size(PAGE_SIZE). But if it is
927 * different, we will skip discarding some parts of logical blocks in
928 * the part of the request range which isn't aligned to physical block
929 * size. So we can't ensure that all discarded logical blocks are
930 * zeroed.
931 */
932 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
933 zram->disk->queue->limits.discard_zeroes_data = 1;
934 else
935 zram->disk->queue->limits.discard_zeroes_data = 0;
936 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
937
938 add_disk(zram->disk);
939
940 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
941 &zram_disk_attr_group);
942 if (ret < 0) {
943 pr_warn("Error creating sysfs group");
944 goto out_free_disk;
945 }
946 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
947 zram->meta = NULL;
948 zram->max_comp_streams = 1;
949 return 0;
950
951 out_free_disk:
952 del_gendisk(zram->disk);
953 put_disk(zram->disk);
954 out_free_queue:
955 blk_cleanup_queue(zram->queue);
956 out:
957 return ret;
958 }
959
960 static void destroy_device(struct zram *zram)
961 {
962 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
963 &zram_disk_attr_group);
964
965 del_gendisk(zram->disk);
966 put_disk(zram->disk);
967
968 blk_cleanup_queue(zram->queue);
969 }
970
971 static int __init zram_init(void)
972 {
973 int ret, dev_id;
974
975 if (num_devices > max_num_devices) {
976 pr_warn("Invalid value for num_devices: %u\n",
977 num_devices);
978 ret = -EINVAL;
979 goto out;
980 }
981
982 zram_major = register_blkdev(0, "zram");
983 if (zram_major <= 0) {
984 pr_warn("Unable to get major number\n");
985 ret = -EBUSY;
986 goto out;
987 }
988
989 /* Allocate the device array and initialize each one */
990 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
991 if (!zram_devices) {
992 ret = -ENOMEM;
993 goto unregister;
994 }
995
996 for (dev_id = 0; dev_id < num_devices; dev_id++) {
997 ret = create_device(&zram_devices[dev_id], dev_id);
998 if (ret)
999 goto free_devices;
1000 }
1001
1002 pr_info("Created %u device(s) ...\n", num_devices);
1003
1004 return 0;
1005
1006 free_devices:
1007 while (dev_id)
1008 destroy_device(&zram_devices[--dev_id]);
1009 kfree(zram_devices);
1010 unregister:
1011 unregister_blkdev(zram_major, "zram");
1012 out:
1013 return ret;
1014 }
1015
1016 static void __exit zram_exit(void)
1017 {
1018 int i;
1019 struct zram *zram;
1020
1021 for (i = 0; i < num_devices; i++) {
1022 zram = &zram_devices[i];
1023
1024 destroy_device(zram);
1025 /*
1026 * Shouldn't access zram->disk after destroy_device
1027 * because destroy_device already released zram->disk.
1028 */
1029 zram_reset_device(zram, false);
1030 }
1031
1032 unregister_blkdev(zram_major, "zram");
1033
1034 kfree(zram_devices);
1035 pr_debug("Cleanup done!\n");
1036 }
1037
1038 module_init(zram_init);
1039 module_exit(zram_exit);
1040
1041 module_param(num_devices, uint, 0);
1042 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1043
1044 MODULE_LICENSE("Dual BSD/GPL");
1045 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1046 MODULE_DESCRIPTION("Compressed RAM Block Device");