]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
zram: report every added and removed device
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32
33 #include "zram_drv.h"
34
35 static DEFINE_IDR(zram_index_idr);
36 static int zram_major;
37 static const char *default_compressor = "lzo";
38
39 /* Module params (documentation at end) */
40 static unsigned int num_devices = 1;
41
42 static inline void deprecated_attr_warn(const char *name)
43 {
44 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
45 task_pid_nr(current),
46 current->comm,
47 name,
48 "See zram documentation.");
49 }
50
51 #define ZRAM_ATTR_RO(name) \
52 static ssize_t name##_show(struct device *d, \
53 struct device_attribute *attr, char *b) \
54 { \
55 struct zram *zram = dev_to_zram(d); \
56 \
57 deprecated_attr_warn(__stringify(name)); \
58 return scnprintf(b, PAGE_SIZE, "%llu\n", \
59 (u64)atomic64_read(&zram->stats.name)); \
60 } \
61 static DEVICE_ATTR_RO(name);
62
63 static inline bool init_done(struct zram *zram)
64 {
65 return zram->disksize;
66 }
67
68 static inline struct zram *dev_to_zram(struct device *dev)
69 {
70 return (struct zram *)dev_to_disk(dev)->private_data;
71 }
72
73 /* flag operations needs meta->tb_lock */
74 static int zram_test_flag(struct zram_meta *meta, u32 index,
75 enum zram_pageflags flag)
76 {
77 return meta->table[index].value & BIT(flag);
78 }
79
80 static void zram_set_flag(struct zram_meta *meta, u32 index,
81 enum zram_pageflags flag)
82 {
83 meta->table[index].value |= BIT(flag);
84 }
85
86 static void zram_clear_flag(struct zram_meta *meta, u32 index,
87 enum zram_pageflags flag)
88 {
89 meta->table[index].value &= ~BIT(flag);
90 }
91
92 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
93 {
94 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
95 }
96
97 static void zram_set_obj_size(struct zram_meta *meta,
98 u32 index, size_t size)
99 {
100 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
101
102 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
103 }
104
105 static inline int is_partial_io(struct bio_vec *bvec)
106 {
107 return bvec->bv_len != PAGE_SIZE;
108 }
109
110 /*
111 * Check if request is within bounds and aligned on zram logical blocks.
112 */
113 static inline int valid_io_request(struct zram *zram,
114 sector_t start, unsigned int size)
115 {
116 u64 end, bound;
117
118 /* unaligned request */
119 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
120 return 0;
121 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
122 return 0;
123
124 end = start + (size >> SECTOR_SHIFT);
125 bound = zram->disksize >> SECTOR_SHIFT;
126 /* out of range range */
127 if (unlikely(start >= bound || end > bound || start > end))
128 return 0;
129
130 /* I/O request is valid */
131 return 1;
132 }
133
134 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
135 {
136 if (*offset + bvec->bv_len >= PAGE_SIZE)
137 (*index)++;
138 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
139 }
140
141 static inline void update_used_max(struct zram *zram,
142 const unsigned long pages)
143 {
144 unsigned long old_max, cur_max;
145
146 old_max = atomic_long_read(&zram->stats.max_used_pages);
147
148 do {
149 cur_max = old_max;
150 if (pages > cur_max)
151 old_max = atomic_long_cmpxchg(
152 &zram->stats.max_used_pages, cur_max, pages);
153 } while (old_max != cur_max);
154 }
155
156 static int page_zero_filled(void *ptr)
157 {
158 unsigned int pos;
159 unsigned long *page;
160
161 page = (unsigned long *)ptr;
162
163 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
164 if (page[pos])
165 return 0;
166 }
167
168 return 1;
169 }
170
171 static void handle_zero_page(struct bio_vec *bvec)
172 {
173 struct page *page = bvec->bv_page;
174 void *user_mem;
175
176 user_mem = kmap_atomic(page);
177 if (is_partial_io(bvec))
178 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
179 else
180 clear_page(user_mem);
181 kunmap_atomic(user_mem);
182
183 flush_dcache_page(page);
184 }
185
186 static ssize_t initstate_show(struct device *dev,
187 struct device_attribute *attr, char *buf)
188 {
189 u32 val;
190 struct zram *zram = dev_to_zram(dev);
191
192 down_read(&zram->init_lock);
193 val = init_done(zram);
194 up_read(&zram->init_lock);
195
196 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
197 }
198
199 static ssize_t disksize_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct zram *zram = dev_to_zram(dev);
203
204 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
205 }
206
207 static ssize_t orig_data_size_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
209 {
210 struct zram *zram = dev_to_zram(dev);
211
212 deprecated_attr_warn("orig_data_size");
213 return scnprintf(buf, PAGE_SIZE, "%llu\n",
214 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
215 }
216
217 static ssize_t mem_used_total_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 u64 val = 0;
221 struct zram *zram = dev_to_zram(dev);
222
223 deprecated_attr_warn("mem_used_total");
224 down_read(&zram->init_lock);
225 if (init_done(zram)) {
226 struct zram_meta *meta = zram->meta;
227 val = zs_get_total_pages(meta->mem_pool);
228 }
229 up_read(&zram->init_lock);
230
231 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
232 }
233
234 static ssize_t mem_limit_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 u64 val;
238 struct zram *zram = dev_to_zram(dev);
239
240 deprecated_attr_warn("mem_limit");
241 down_read(&zram->init_lock);
242 val = zram->limit_pages;
243 up_read(&zram->init_lock);
244
245 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
246 }
247
248 static ssize_t mem_limit_store(struct device *dev,
249 struct device_attribute *attr, const char *buf, size_t len)
250 {
251 u64 limit;
252 char *tmp;
253 struct zram *zram = dev_to_zram(dev);
254
255 limit = memparse(buf, &tmp);
256 if (buf == tmp) /* no chars parsed, invalid input */
257 return -EINVAL;
258
259 down_write(&zram->init_lock);
260 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 up_write(&zram->init_lock);
262
263 return len;
264 }
265
266 static ssize_t mem_used_max_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
268 {
269 u64 val = 0;
270 struct zram *zram = dev_to_zram(dev);
271
272 deprecated_attr_warn("mem_used_max");
273 down_read(&zram->init_lock);
274 if (init_done(zram))
275 val = atomic_long_read(&zram->stats.max_used_pages);
276 up_read(&zram->init_lock);
277
278 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
279 }
280
281 static ssize_t mem_used_max_store(struct device *dev,
282 struct device_attribute *attr, const char *buf, size_t len)
283 {
284 int err;
285 unsigned long val;
286 struct zram *zram = dev_to_zram(dev);
287
288 err = kstrtoul(buf, 10, &val);
289 if (err || val != 0)
290 return -EINVAL;
291
292 down_read(&zram->init_lock);
293 if (init_done(zram)) {
294 struct zram_meta *meta = zram->meta;
295 atomic_long_set(&zram->stats.max_used_pages,
296 zs_get_total_pages(meta->mem_pool));
297 }
298 up_read(&zram->init_lock);
299
300 return len;
301 }
302
303 static ssize_t max_comp_streams_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 int val;
307 struct zram *zram = dev_to_zram(dev);
308
309 down_read(&zram->init_lock);
310 val = zram->max_comp_streams;
311 up_read(&zram->init_lock);
312
313 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
314 }
315
316 static ssize_t max_comp_streams_store(struct device *dev,
317 struct device_attribute *attr, const char *buf, size_t len)
318 {
319 int num;
320 struct zram *zram = dev_to_zram(dev);
321 int ret;
322
323 ret = kstrtoint(buf, 0, &num);
324 if (ret < 0)
325 return ret;
326 if (num < 1)
327 return -EINVAL;
328
329 down_write(&zram->init_lock);
330 if (init_done(zram)) {
331 if (!zcomp_set_max_streams(zram->comp, num)) {
332 pr_info("Cannot change max compression streams\n");
333 ret = -EINVAL;
334 goto out;
335 }
336 }
337
338 zram->max_comp_streams = num;
339 ret = len;
340 out:
341 up_write(&zram->init_lock);
342 return ret;
343 }
344
345 static ssize_t comp_algorithm_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 size_t sz;
349 struct zram *zram = dev_to_zram(dev);
350
351 down_read(&zram->init_lock);
352 sz = zcomp_available_show(zram->compressor, buf);
353 up_read(&zram->init_lock);
354
355 return sz;
356 }
357
358 static ssize_t comp_algorithm_store(struct device *dev,
359 struct device_attribute *attr, const char *buf, size_t len)
360 {
361 struct zram *zram = dev_to_zram(dev);
362 down_write(&zram->init_lock);
363 if (init_done(zram)) {
364 up_write(&zram->init_lock);
365 pr_info("Can't change algorithm for initialized device\n");
366 return -EBUSY;
367 }
368 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
369 up_write(&zram->init_lock);
370 return len;
371 }
372
373 static ssize_t compact_store(struct device *dev,
374 struct device_attribute *attr, const char *buf, size_t len)
375 {
376 unsigned long nr_migrated;
377 struct zram *zram = dev_to_zram(dev);
378 struct zram_meta *meta;
379
380 down_read(&zram->init_lock);
381 if (!init_done(zram)) {
382 up_read(&zram->init_lock);
383 return -EINVAL;
384 }
385
386 meta = zram->meta;
387 nr_migrated = zs_compact(meta->mem_pool);
388 atomic64_add(nr_migrated, &zram->stats.num_migrated);
389 up_read(&zram->init_lock);
390
391 return len;
392 }
393
394 static ssize_t io_stat_show(struct device *dev,
395 struct device_attribute *attr, char *buf)
396 {
397 struct zram *zram = dev_to_zram(dev);
398 ssize_t ret;
399
400 down_read(&zram->init_lock);
401 ret = scnprintf(buf, PAGE_SIZE,
402 "%8llu %8llu %8llu %8llu\n",
403 (u64)atomic64_read(&zram->stats.failed_reads),
404 (u64)atomic64_read(&zram->stats.failed_writes),
405 (u64)atomic64_read(&zram->stats.invalid_io),
406 (u64)atomic64_read(&zram->stats.notify_free));
407 up_read(&zram->init_lock);
408
409 return ret;
410 }
411
412 static ssize_t mm_stat_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
414 {
415 struct zram *zram = dev_to_zram(dev);
416 u64 orig_size, mem_used = 0;
417 long max_used;
418 ssize_t ret;
419
420 down_read(&zram->init_lock);
421 if (init_done(zram))
422 mem_used = zs_get_total_pages(zram->meta->mem_pool);
423
424 orig_size = atomic64_read(&zram->stats.pages_stored);
425 max_used = atomic_long_read(&zram->stats.max_used_pages);
426
427 ret = scnprintf(buf, PAGE_SIZE,
428 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
429 orig_size << PAGE_SHIFT,
430 (u64)atomic64_read(&zram->stats.compr_data_size),
431 mem_used << PAGE_SHIFT,
432 zram->limit_pages << PAGE_SHIFT,
433 max_used << PAGE_SHIFT,
434 (u64)atomic64_read(&zram->stats.zero_pages),
435 (u64)atomic64_read(&zram->stats.num_migrated));
436 up_read(&zram->init_lock);
437
438 return ret;
439 }
440
441 static DEVICE_ATTR_RO(io_stat);
442 static DEVICE_ATTR_RO(mm_stat);
443 ZRAM_ATTR_RO(num_reads);
444 ZRAM_ATTR_RO(num_writes);
445 ZRAM_ATTR_RO(failed_reads);
446 ZRAM_ATTR_RO(failed_writes);
447 ZRAM_ATTR_RO(invalid_io);
448 ZRAM_ATTR_RO(notify_free);
449 ZRAM_ATTR_RO(zero_pages);
450 ZRAM_ATTR_RO(compr_data_size);
451
452 static inline bool zram_meta_get(struct zram *zram)
453 {
454 if (atomic_inc_not_zero(&zram->refcount))
455 return true;
456 return false;
457 }
458
459 static inline void zram_meta_put(struct zram *zram)
460 {
461 atomic_dec(&zram->refcount);
462 }
463
464 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
465 {
466 size_t num_pages = disksize >> PAGE_SHIFT;
467 size_t index;
468
469 /* Free all pages that are still in this zram device */
470 for (index = 0; index < num_pages; index++) {
471 unsigned long handle = meta->table[index].handle;
472
473 if (!handle)
474 continue;
475
476 zs_free(meta->mem_pool, handle);
477 }
478
479 zs_destroy_pool(meta->mem_pool);
480 vfree(meta->table);
481 kfree(meta);
482 }
483
484 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
485 {
486 size_t num_pages;
487 char pool_name[8];
488 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
489
490 if (!meta)
491 return NULL;
492
493 num_pages = disksize >> PAGE_SHIFT;
494 meta->table = vzalloc(num_pages * sizeof(*meta->table));
495 if (!meta->table) {
496 pr_err("Error allocating zram address table\n");
497 goto out_error;
498 }
499
500 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
501 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
502 if (!meta->mem_pool) {
503 pr_err("Error creating memory pool\n");
504 goto out_error;
505 }
506
507 return meta;
508
509 out_error:
510 vfree(meta->table);
511 kfree(meta);
512 return NULL;
513 }
514
515 /*
516 * To protect concurrent access to the same index entry,
517 * caller should hold this table index entry's bit_spinlock to
518 * indicate this index entry is accessing.
519 */
520 static void zram_free_page(struct zram *zram, size_t index)
521 {
522 struct zram_meta *meta = zram->meta;
523 unsigned long handle = meta->table[index].handle;
524
525 if (unlikely(!handle)) {
526 /*
527 * No memory is allocated for zero filled pages.
528 * Simply clear zero page flag.
529 */
530 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
531 zram_clear_flag(meta, index, ZRAM_ZERO);
532 atomic64_dec(&zram->stats.zero_pages);
533 }
534 return;
535 }
536
537 zs_free(meta->mem_pool, handle);
538
539 atomic64_sub(zram_get_obj_size(meta, index),
540 &zram->stats.compr_data_size);
541 atomic64_dec(&zram->stats.pages_stored);
542
543 meta->table[index].handle = 0;
544 zram_set_obj_size(meta, index, 0);
545 }
546
547 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
548 {
549 int ret = 0;
550 unsigned char *cmem;
551 struct zram_meta *meta = zram->meta;
552 unsigned long handle;
553 size_t size;
554
555 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
556 handle = meta->table[index].handle;
557 size = zram_get_obj_size(meta, index);
558
559 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
560 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
561 clear_page(mem);
562 return 0;
563 }
564
565 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
566 if (size == PAGE_SIZE)
567 copy_page(mem, cmem);
568 else
569 ret = zcomp_decompress(zram->comp, cmem, size, mem);
570 zs_unmap_object(meta->mem_pool, handle);
571 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
572
573 /* Should NEVER happen. Return bio error if it does. */
574 if (unlikely(ret)) {
575 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
576 return ret;
577 }
578
579 return 0;
580 }
581
582 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
583 u32 index, int offset)
584 {
585 int ret;
586 struct page *page;
587 unsigned char *user_mem, *uncmem = NULL;
588 struct zram_meta *meta = zram->meta;
589 page = bvec->bv_page;
590
591 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
592 if (unlikely(!meta->table[index].handle) ||
593 zram_test_flag(meta, index, ZRAM_ZERO)) {
594 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
595 handle_zero_page(bvec);
596 return 0;
597 }
598 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
599
600 if (is_partial_io(bvec))
601 /* Use a temporary buffer to decompress the page */
602 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
603
604 user_mem = kmap_atomic(page);
605 if (!is_partial_io(bvec))
606 uncmem = user_mem;
607
608 if (!uncmem) {
609 pr_info("Unable to allocate temp memory\n");
610 ret = -ENOMEM;
611 goto out_cleanup;
612 }
613
614 ret = zram_decompress_page(zram, uncmem, index);
615 /* Should NEVER happen. Return bio error if it does. */
616 if (unlikely(ret))
617 goto out_cleanup;
618
619 if (is_partial_io(bvec))
620 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
621 bvec->bv_len);
622
623 flush_dcache_page(page);
624 ret = 0;
625 out_cleanup:
626 kunmap_atomic(user_mem);
627 if (is_partial_io(bvec))
628 kfree(uncmem);
629 return ret;
630 }
631
632 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
633 int offset)
634 {
635 int ret = 0;
636 size_t clen;
637 unsigned long handle;
638 struct page *page;
639 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
640 struct zram_meta *meta = zram->meta;
641 struct zcomp_strm *zstrm;
642 bool locked = false;
643 unsigned long alloced_pages;
644
645 page = bvec->bv_page;
646 if (is_partial_io(bvec)) {
647 /*
648 * This is a partial IO. We need to read the full page
649 * before to write the changes.
650 */
651 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
652 if (!uncmem) {
653 ret = -ENOMEM;
654 goto out;
655 }
656 ret = zram_decompress_page(zram, uncmem, index);
657 if (ret)
658 goto out;
659 }
660
661 zstrm = zcomp_strm_find(zram->comp);
662 locked = true;
663 user_mem = kmap_atomic(page);
664
665 if (is_partial_io(bvec)) {
666 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
667 bvec->bv_len);
668 kunmap_atomic(user_mem);
669 user_mem = NULL;
670 } else {
671 uncmem = user_mem;
672 }
673
674 if (page_zero_filled(uncmem)) {
675 if (user_mem)
676 kunmap_atomic(user_mem);
677 /* Free memory associated with this sector now. */
678 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
679 zram_free_page(zram, index);
680 zram_set_flag(meta, index, ZRAM_ZERO);
681 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
682
683 atomic64_inc(&zram->stats.zero_pages);
684 ret = 0;
685 goto out;
686 }
687
688 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
689 if (!is_partial_io(bvec)) {
690 kunmap_atomic(user_mem);
691 user_mem = NULL;
692 uncmem = NULL;
693 }
694
695 if (unlikely(ret)) {
696 pr_err("Compression failed! err=%d\n", ret);
697 goto out;
698 }
699 src = zstrm->buffer;
700 if (unlikely(clen > max_zpage_size)) {
701 clen = PAGE_SIZE;
702 if (is_partial_io(bvec))
703 src = uncmem;
704 }
705
706 handle = zs_malloc(meta->mem_pool, clen);
707 if (!handle) {
708 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
709 index, clen);
710 ret = -ENOMEM;
711 goto out;
712 }
713
714 alloced_pages = zs_get_total_pages(meta->mem_pool);
715 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
716 zs_free(meta->mem_pool, handle);
717 ret = -ENOMEM;
718 goto out;
719 }
720
721 update_used_max(zram, alloced_pages);
722
723 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
724
725 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
726 src = kmap_atomic(page);
727 copy_page(cmem, src);
728 kunmap_atomic(src);
729 } else {
730 memcpy(cmem, src, clen);
731 }
732
733 zcomp_strm_release(zram->comp, zstrm);
734 locked = false;
735 zs_unmap_object(meta->mem_pool, handle);
736
737 /*
738 * Free memory associated with this sector
739 * before overwriting unused sectors.
740 */
741 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
742 zram_free_page(zram, index);
743
744 meta->table[index].handle = handle;
745 zram_set_obj_size(meta, index, clen);
746 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
747
748 /* Update stats */
749 atomic64_add(clen, &zram->stats.compr_data_size);
750 atomic64_inc(&zram->stats.pages_stored);
751 out:
752 if (locked)
753 zcomp_strm_release(zram->comp, zstrm);
754 if (is_partial_io(bvec))
755 kfree(uncmem);
756 return ret;
757 }
758
759 /*
760 * zram_bio_discard - handler on discard request
761 * @index: physical block index in PAGE_SIZE units
762 * @offset: byte offset within physical block
763 */
764 static void zram_bio_discard(struct zram *zram, u32 index,
765 int offset, struct bio *bio)
766 {
767 size_t n = bio->bi_iter.bi_size;
768 struct zram_meta *meta = zram->meta;
769
770 /*
771 * zram manages data in physical block size units. Because logical block
772 * size isn't identical with physical block size on some arch, we
773 * could get a discard request pointing to a specific offset within a
774 * certain physical block. Although we can handle this request by
775 * reading that physiclal block and decompressing and partially zeroing
776 * and re-compressing and then re-storing it, this isn't reasonable
777 * because our intent with a discard request is to save memory. So
778 * skipping this logical block is appropriate here.
779 */
780 if (offset) {
781 if (n <= (PAGE_SIZE - offset))
782 return;
783
784 n -= (PAGE_SIZE - offset);
785 index++;
786 }
787
788 while (n >= PAGE_SIZE) {
789 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
790 zram_free_page(zram, index);
791 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
792 atomic64_inc(&zram->stats.notify_free);
793 index++;
794 n -= PAGE_SIZE;
795 }
796 }
797
798 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
799 int offset, int rw)
800 {
801 unsigned long start_time = jiffies;
802 int ret;
803
804 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
805 &zram->disk->part0);
806
807 if (rw == READ) {
808 atomic64_inc(&zram->stats.num_reads);
809 ret = zram_bvec_read(zram, bvec, index, offset);
810 } else {
811 atomic64_inc(&zram->stats.num_writes);
812 ret = zram_bvec_write(zram, bvec, index, offset);
813 }
814
815 generic_end_io_acct(rw, &zram->disk->part0, start_time);
816
817 if (unlikely(ret)) {
818 if (rw == READ)
819 atomic64_inc(&zram->stats.failed_reads);
820 else
821 atomic64_inc(&zram->stats.failed_writes);
822 }
823
824 return ret;
825 }
826
827 static void __zram_make_request(struct zram *zram, struct bio *bio)
828 {
829 int offset, rw;
830 u32 index;
831 struct bio_vec bvec;
832 struct bvec_iter iter;
833
834 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
835 offset = (bio->bi_iter.bi_sector &
836 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
837
838 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
839 zram_bio_discard(zram, index, offset, bio);
840 bio_endio(bio, 0);
841 return;
842 }
843
844 rw = bio_data_dir(bio);
845 bio_for_each_segment(bvec, bio, iter) {
846 int max_transfer_size = PAGE_SIZE - offset;
847
848 if (bvec.bv_len > max_transfer_size) {
849 /*
850 * zram_bvec_rw() can only make operation on a single
851 * zram page. Split the bio vector.
852 */
853 struct bio_vec bv;
854
855 bv.bv_page = bvec.bv_page;
856 bv.bv_len = max_transfer_size;
857 bv.bv_offset = bvec.bv_offset;
858
859 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
860 goto out;
861
862 bv.bv_len = bvec.bv_len - max_transfer_size;
863 bv.bv_offset += max_transfer_size;
864 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
865 goto out;
866 } else
867 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
868 goto out;
869
870 update_position(&index, &offset, &bvec);
871 }
872
873 set_bit(BIO_UPTODATE, &bio->bi_flags);
874 bio_endio(bio, 0);
875 return;
876
877 out:
878 bio_io_error(bio);
879 }
880
881 /*
882 * Handler function for all zram I/O requests.
883 */
884 static void zram_make_request(struct request_queue *queue, struct bio *bio)
885 {
886 struct zram *zram = queue->queuedata;
887
888 if (unlikely(!zram_meta_get(zram)))
889 goto error;
890
891 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
892 bio->bi_iter.bi_size)) {
893 atomic64_inc(&zram->stats.invalid_io);
894 goto put_zram;
895 }
896
897 __zram_make_request(zram, bio);
898 zram_meta_put(zram);
899 return;
900 put_zram:
901 zram_meta_put(zram);
902 error:
903 bio_io_error(bio);
904 }
905
906 static void zram_slot_free_notify(struct block_device *bdev,
907 unsigned long index)
908 {
909 struct zram *zram;
910 struct zram_meta *meta;
911
912 zram = bdev->bd_disk->private_data;
913 meta = zram->meta;
914
915 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
916 zram_free_page(zram, index);
917 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
918 atomic64_inc(&zram->stats.notify_free);
919 }
920
921 static int zram_rw_page(struct block_device *bdev, sector_t sector,
922 struct page *page, int rw)
923 {
924 int offset, err = -EIO;
925 u32 index;
926 struct zram *zram;
927 struct bio_vec bv;
928
929 zram = bdev->bd_disk->private_data;
930 if (unlikely(!zram_meta_get(zram)))
931 goto out;
932
933 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
934 atomic64_inc(&zram->stats.invalid_io);
935 err = -EINVAL;
936 goto put_zram;
937 }
938
939 index = sector >> SECTORS_PER_PAGE_SHIFT;
940 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
941
942 bv.bv_page = page;
943 bv.bv_len = PAGE_SIZE;
944 bv.bv_offset = 0;
945
946 err = zram_bvec_rw(zram, &bv, index, offset, rw);
947 put_zram:
948 zram_meta_put(zram);
949 out:
950 /*
951 * If I/O fails, just return error(ie, non-zero) without
952 * calling page_endio.
953 * It causes resubmit the I/O with bio request by upper functions
954 * of rw_page(e.g., swap_readpage, __swap_writepage) and
955 * bio->bi_end_io does things to handle the error
956 * (e.g., SetPageError, set_page_dirty and extra works).
957 */
958 if (err == 0)
959 page_endio(page, rw, 0);
960 return err;
961 }
962
963 static void zram_reset_device(struct zram *zram)
964 {
965 struct zram_meta *meta;
966 struct zcomp *comp;
967 u64 disksize;
968
969 down_write(&zram->init_lock);
970
971 zram->limit_pages = 0;
972
973 if (!init_done(zram)) {
974 up_write(&zram->init_lock);
975 return;
976 }
977
978 meta = zram->meta;
979 comp = zram->comp;
980 disksize = zram->disksize;
981 /*
982 * Refcount will go down to 0 eventually and r/w handler
983 * cannot handle further I/O so it will bail out by
984 * check zram_meta_get.
985 */
986 zram_meta_put(zram);
987 /*
988 * We want to free zram_meta in process context to avoid
989 * deadlock between reclaim path and any other locks.
990 */
991 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
992
993 /* Reset stats */
994 memset(&zram->stats, 0, sizeof(zram->stats));
995 zram->disksize = 0;
996 zram->max_comp_streams = 1;
997
998 set_capacity(zram->disk, 0);
999 part_stat_set_all(&zram->disk->part0, 0);
1000
1001 up_write(&zram->init_lock);
1002 /* I/O operation under all of CPU are done so let's free */
1003 zram_meta_free(meta, disksize);
1004 zcomp_destroy(comp);
1005 }
1006
1007 static ssize_t disksize_store(struct device *dev,
1008 struct device_attribute *attr, const char *buf, size_t len)
1009 {
1010 u64 disksize;
1011 struct zcomp *comp;
1012 struct zram_meta *meta;
1013 struct zram *zram = dev_to_zram(dev);
1014 int err;
1015
1016 disksize = memparse(buf, NULL);
1017 if (!disksize)
1018 return -EINVAL;
1019
1020 disksize = PAGE_ALIGN(disksize);
1021 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
1022 if (!meta)
1023 return -ENOMEM;
1024
1025 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1026 if (IS_ERR(comp)) {
1027 pr_info("Cannot initialise %s compressing backend\n",
1028 zram->compressor);
1029 err = PTR_ERR(comp);
1030 goto out_free_meta;
1031 }
1032
1033 down_write(&zram->init_lock);
1034 if (init_done(zram)) {
1035 pr_info("Cannot change disksize for initialized device\n");
1036 err = -EBUSY;
1037 goto out_destroy_comp;
1038 }
1039
1040 init_waitqueue_head(&zram->io_done);
1041 atomic_set(&zram->refcount, 1);
1042 zram->meta = meta;
1043 zram->comp = comp;
1044 zram->disksize = disksize;
1045 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1046 up_write(&zram->init_lock);
1047
1048 /*
1049 * Revalidate disk out of the init_lock to avoid lockdep splat.
1050 * It's okay because disk's capacity is protected by init_lock
1051 * so that revalidate_disk always sees up-to-date capacity.
1052 */
1053 revalidate_disk(zram->disk);
1054
1055 return len;
1056
1057 out_destroy_comp:
1058 up_write(&zram->init_lock);
1059 zcomp_destroy(comp);
1060 out_free_meta:
1061 zram_meta_free(meta, disksize);
1062 return err;
1063 }
1064
1065 static ssize_t reset_store(struct device *dev,
1066 struct device_attribute *attr, const char *buf, size_t len)
1067 {
1068 int ret;
1069 unsigned short do_reset;
1070 struct zram *zram;
1071 struct block_device *bdev;
1072
1073 zram = dev_to_zram(dev);
1074 bdev = bdget_disk(zram->disk, 0);
1075
1076 if (!bdev)
1077 return -ENOMEM;
1078
1079 mutex_lock(&bdev->bd_mutex);
1080 /* Do not reset an active device! */
1081 if (bdev->bd_openers) {
1082 ret = -EBUSY;
1083 goto out;
1084 }
1085
1086 ret = kstrtou16(buf, 10, &do_reset);
1087 if (ret)
1088 goto out;
1089
1090 if (!do_reset) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 /* Make sure all pending I/O is finished */
1096 fsync_bdev(bdev);
1097 zram_reset_device(zram);
1098
1099 mutex_unlock(&bdev->bd_mutex);
1100 revalidate_disk(zram->disk);
1101 bdput(bdev);
1102
1103 return len;
1104
1105 out:
1106 mutex_unlock(&bdev->bd_mutex);
1107 bdput(bdev);
1108 return ret;
1109 }
1110
1111 static const struct block_device_operations zram_devops = {
1112 .swap_slot_free_notify = zram_slot_free_notify,
1113 .rw_page = zram_rw_page,
1114 .owner = THIS_MODULE
1115 };
1116
1117 static DEVICE_ATTR_WO(compact);
1118 static DEVICE_ATTR_RW(disksize);
1119 static DEVICE_ATTR_RO(initstate);
1120 static DEVICE_ATTR_WO(reset);
1121 static DEVICE_ATTR_RO(orig_data_size);
1122 static DEVICE_ATTR_RO(mem_used_total);
1123 static DEVICE_ATTR_RW(mem_limit);
1124 static DEVICE_ATTR_RW(mem_used_max);
1125 static DEVICE_ATTR_RW(max_comp_streams);
1126 static DEVICE_ATTR_RW(comp_algorithm);
1127
1128 static struct attribute *zram_disk_attrs[] = {
1129 &dev_attr_disksize.attr,
1130 &dev_attr_initstate.attr,
1131 &dev_attr_reset.attr,
1132 &dev_attr_num_reads.attr,
1133 &dev_attr_num_writes.attr,
1134 &dev_attr_failed_reads.attr,
1135 &dev_attr_failed_writes.attr,
1136 &dev_attr_compact.attr,
1137 &dev_attr_invalid_io.attr,
1138 &dev_attr_notify_free.attr,
1139 &dev_attr_zero_pages.attr,
1140 &dev_attr_orig_data_size.attr,
1141 &dev_attr_compr_data_size.attr,
1142 &dev_attr_mem_used_total.attr,
1143 &dev_attr_mem_limit.attr,
1144 &dev_attr_mem_used_max.attr,
1145 &dev_attr_max_comp_streams.attr,
1146 &dev_attr_comp_algorithm.attr,
1147 &dev_attr_io_stat.attr,
1148 &dev_attr_mm_stat.attr,
1149 NULL,
1150 };
1151
1152 static struct attribute_group zram_disk_attr_group = {
1153 .attrs = zram_disk_attrs,
1154 };
1155
1156 static int zram_add(int device_id)
1157 {
1158 struct zram *zram;
1159 struct request_queue *queue;
1160 int ret;
1161
1162 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1163 if (!zram)
1164 return -ENOMEM;
1165
1166 ret = idr_alloc(&zram_index_idr, zram, device_id,
1167 device_id + 1, GFP_KERNEL);
1168 if (ret < 0)
1169 goto out_free_dev;
1170
1171 init_rwsem(&zram->init_lock);
1172
1173 queue = blk_alloc_queue(GFP_KERNEL);
1174 if (!queue) {
1175 pr_err("Error allocating disk queue for device %d\n",
1176 device_id);
1177 ret = -ENOMEM;
1178 goto out_free_idr;
1179 }
1180
1181 blk_queue_make_request(queue, zram_make_request);
1182
1183 /* gendisk structure */
1184 zram->disk = alloc_disk(1);
1185 if (!zram->disk) {
1186 pr_warn("Error allocating disk structure for device %d\n",
1187 device_id);
1188 ret = -ENOMEM;
1189 goto out_free_queue;
1190 }
1191
1192 zram->disk->major = zram_major;
1193 zram->disk->first_minor = device_id;
1194 zram->disk->fops = &zram_devops;
1195 zram->disk->queue = queue;
1196 zram->disk->queue->queuedata = zram;
1197 zram->disk->private_data = zram;
1198 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1199
1200 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1201 set_capacity(zram->disk, 0);
1202 /* zram devices sort of resembles non-rotational disks */
1203 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1204 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1205 /*
1206 * To ensure that we always get PAGE_SIZE aligned
1207 * and n*PAGE_SIZED sized I/O requests.
1208 */
1209 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1210 blk_queue_logical_block_size(zram->disk->queue,
1211 ZRAM_LOGICAL_BLOCK_SIZE);
1212 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1213 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1214 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1215 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1216 /*
1217 * zram_bio_discard() will clear all logical blocks if logical block
1218 * size is identical with physical block size(PAGE_SIZE). But if it is
1219 * different, we will skip discarding some parts of logical blocks in
1220 * the part of the request range which isn't aligned to physical block
1221 * size. So we can't ensure that all discarded logical blocks are
1222 * zeroed.
1223 */
1224 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1225 zram->disk->queue->limits.discard_zeroes_data = 1;
1226 else
1227 zram->disk->queue->limits.discard_zeroes_data = 0;
1228 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1229
1230 add_disk(zram->disk);
1231
1232 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1233 &zram_disk_attr_group);
1234 if (ret < 0) {
1235 pr_warn("Error creating sysfs group");
1236 goto out_free_disk;
1237 }
1238 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1239 zram->meta = NULL;
1240 zram->max_comp_streams = 1;
1241
1242 pr_info("Added device: %s\n", zram->disk->disk_name);
1243 return 0;
1244
1245 out_free_disk:
1246 del_gendisk(zram->disk);
1247 put_disk(zram->disk);
1248 out_free_queue:
1249 blk_cleanup_queue(queue);
1250 out_free_idr:
1251 idr_remove(&zram_index_idr, device_id);
1252 out_free_dev:
1253 kfree(zram);
1254 return ret;
1255 }
1256
1257 static void zram_remove(struct zram *zram)
1258 {
1259 pr_info("Removed device: %s\n", zram->disk->disk_name);
1260 /*
1261 * Remove sysfs first, so no one will perform a disksize
1262 * store while we destroy the devices
1263 */
1264 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1265 &zram_disk_attr_group);
1266
1267 zram_reset_device(zram);
1268 idr_remove(&zram_index_idr, zram->disk->first_minor);
1269 blk_cleanup_queue(zram->disk->queue);
1270 del_gendisk(zram->disk);
1271 put_disk(zram->disk);
1272 kfree(zram);
1273 }
1274
1275 static int zram_remove_cb(int id, void *ptr, void *data)
1276 {
1277 zram_remove(ptr);
1278 return 0;
1279 }
1280
1281 static void destroy_devices(void)
1282 {
1283 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1284 idr_destroy(&zram_index_idr);
1285 unregister_blkdev(zram_major, "zram");
1286 }
1287
1288 static int __init zram_init(void)
1289 {
1290 int ret, dev_id;
1291
1292 zram_major = register_blkdev(0, "zram");
1293 if (zram_major <= 0) {
1294 pr_warn("Unable to get major number\n");
1295 return -EBUSY;
1296 }
1297
1298 for (dev_id = 0; dev_id < num_devices; dev_id++) {
1299 ret = zram_add(dev_id);
1300 if (ret != 0)
1301 goto out_error;
1302 }
1303
1304 return 0;
1305
1306 out_error:
1307 destroy_devices();
1308 return ret;
1309 }
1310
1311 static void __exit zram_exit(void)
1312 {
1313 destroy_devices();
1314 }
1315
1316 module_init(zram_init);
1317 module_exit(zram_exit);
1318
1319 module_param(num_devices, uint, 0);
1320 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1321
1322 MODULE_LICENSE("Dual BSD/GPL");
1323 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1324 MODULE_DESCRIPTION("Compressed RAM Block Device");