]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35
36 #include "zram_drv.h"
37
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47
48 static void zram_free_page(struct zram *zram, size_t index);
49
50 static inline bool init_done(struct zram *zram)
51 {
52 return zram->disksize;
53 }
54
55 static inline struct zram *dev_to_zram(struct device *dev)
56 {
57 return (struct zram *)dev_to_disk(dev)->private_data;
58 }
59
60 static unsigned long zram_get_handle(struct zram *zram, u32 index)
61 {
62 return zram->table[index].handle;
63 }
64
65 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66 {
67 zram->table[index].handle = handle;
68 }
69
70 /* flag operations require table entry bit_spin_lock() being held */
71 static int zram_test_flag(struct zram *zram, u32 index,
72 enum zram_pageflags flag)
73 {
74 return zram->table[index].value & BIT(flag);
75 }
76
77 static void zram_set_flag(struct zram *zram, u32 index,
78 enum zram_pageflags flag)
79 {
80 zram->table[index].value |= BIT(flag);
81 }
82
83 static void zram_clear_flag(struct zram *zram, u32 index,
84 enum zram_pageflags flag)
85 {
86 zram->table[index].value &= ~BIT(flag);
87 }
88
89 static inline void zram_set_element(struct zram *zram, u32 index,
90 unsigned long element)
91 {
92 zram->table[index].element = element;
93 }
94
95 static unsigned long zram_get_element(struct zram *zram, u32 index)
96 {
97 return zram->table[index].element;
98 }
99
100 static size_t zram_get_obj_size(struct zram *zram, u32 index)
101 {
102 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
103 }
104
105 static void zram_set_obj_size(struct zram *zram,
106 u32 index, size_t size)
107 {
108 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
109
110 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
111 }
112
113 #if PAGE_SIZE != 4096
114 static inline bool is_partial_io(struct bio_vec *bvec)
115 {
116 return bvec->bv_len != PAGE_SIZE;
117 }
118 #else
119 static inline bool is_partial_io(struct bio_vec *bvec)
120 {
121 return false;
122 }
123 #endif
124
125 static void zram_revalidate_disk(struct zram *zram)
126 {
127 revalidate_disk(zram->disk);
128 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
129 zram->disk->queue->backing_dev_info->capabilities |=
130 BDI_CAP_STABLE_WRITES;
131 }
132
133 /*
134 * Check if request is within bounds and aligned on zram logical blocks.
135 */
136 static inline bool valid_io_request(struct zram *zram,
137 sector_t start, unsigned int size)
138 {
139 u64 end, bound;
140
141 /* unaligned request */
142 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
143 return false;
144 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
145 return false;
146
147 end = start + (size >> SECTOR_SHIFT);
148 bound = zram->disksize >> SECTOR_SHIFT;
149 /* out of range range */
150 if (unlikely(start >= bound || end > bound || start > end))
151 return false;
152
153 /* I/O request is valid */
154 return true;
155 }
156
157 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158 {
159 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
160 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161 }
162
163 static inline void update_used_max(struct zram *zram,
164 const unsigned long pages)
165 {
166 unsigned long old_max, cur_max;
167
168 old_max = atomic_long_read(&zram->stats.max_used_pages);
169
170 do {
171 cur_max = old_max;
172 if (pages > cur_max)
173 old_max = atomic_long_cmpxchg(
174 &zram->stats.max_used_pages, cur_max, pages);
175 } while (old_max != cur_max);
176 }
177
178 static inline void zram_fill_page(char *ptr, unsigned long len,
179 unsigned long value)
180 {
181 int i;
182 unsigned long *page = (unsigned long *)ptr;
183
184 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
185
186 if (likely(value == 0)) {
187 memset(ptr, 0, len);
188 } else {
189 for (i = 0; i < len / sizeof(*page); i++)
190 page[i] = value;
191 }
192 }
193
194 static bool page_same_filled(void *ptr, unsigned long *element)
195 {
196 unsigned int pos;
197 unsigned long *page;
198 unsigned long val;
199
200 page = (unsigned long *)ptr;
201 val = page[0];
202
203 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
204 if (val != page[pos])
205 return false;
206 }
207
208 *element = val;
209
210 return true;
211 }
212
213 static ssize_t initstate_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215 {
216 u32 val;
217 struct zram *zram = dev_to_zram(dev);
218
219 down_read(&zram->init_lock);
220 val = init_done(zram);
221 up_read(&zram->init_lock);
222
223 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
224 }
225
226 static ssize_t disksize_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228 {
229 struct zram *zram = dev_to_zram(dev);
230
231 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
232 }
233
234 static ssize_t mem_limit_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236 {
237 u64 limit;
238 char *tmp;
239 struct zram *zram = dev_to_zram(dev);
240
241 limit = memparse(buf, &tmp);
242 if (buf == tmp) /* no chars parsed, invalid input */
243 return -EINVAL;
244
245 down_write(&zram->init_lock);
246 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
247 up_write(&zram->init_lock);
248
249 return len;
250 }
251
252 static ssize_t mem_used_max_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254 {
255 int err;
256 unsigned long val;
257 struct zram *zram = dev_to_zram(dev);
258
259 err = kstrtoul(buf, 10, &val);
260 if (err || val != 0)
261 return -EINVAL;
262
263 down_read(&zram->init_lock);
264 if (init_done(zram)) {
265 atomic_long_set(&zram->stats.max_used_pages,
266 zs_get_total_pages(zram->mem_pool));
267 }
268 up_read(&zram->init_lock);
269
270 return len;
271 }
272
273 /*
274 * We switched to per-cpu streams and this attr is not needed anymore.
275 * However, we will keep it around for some time, because:
276 * a) we may revert per-cpu streams in the future
277 * b) it's visible to user space and we need to follow our 2 years
278 * retirement rule; but we already have a number of 'soon to be
279 * altered' attrs, so max_comp_streams need to wait for the next
280 * layoff cycle.
281 */
282 static ssize_t max_comp_streams_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
284 {
285 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
286 }
287
288 static ssize_t max_comp_streams_store(struct device *dev,
289 struct device_attribute *attr, const char *buf, size_t len)
290 {
291 return len;
292 }
293
294 static ssize_t comp_algorithm_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296 {
297 size_t sz;
298 struct zram *zram = dev_to_zram(dev);
299
300 down_read(&zram->init_lock);
301 sz = zcomp_available_show(zram->compressor, buf);
302 up_read(&zram->init_lock);
303
304 return sz;
305 }
306
307 static ssize_t comp_algorithm_store(struct device *dev,
308 struct device_attribute *attr, const char *buf, size_t len)
309 {
310 struct zram *zram = dev_to_zram(dev);
311 char compressor[CRYPTO_MAX_ALG_NAME];
312 size_t sz;
313
314 strlcpy(compressor, buf, sizeof(compressor));
315 /* ignore trailing newline */
316 sz = strlen(compressor);
317 if (sz > 0 && compressor[sz - 1] == '\n')
318 compressor[sz - 1] = 0x00;
319
320 if (!zcomp_available_algorithm(compressor))
321 return -EINVAL;
322
323 down_write(&zram->init_lock);
324 if (init_done(zram)) {
325 up_write(&zram->init_lock);
326 pr_info("Can't change algorithm for initialized device\n");
327 return -EBUSY;
328 }
329
330 strlcpy(zram->compressor, compressor, sizeof(compressor));
331 up_write(&zram->init_lock);
332 return len;
333 }
334
335 static ssize_t compact_store(struct device *dev,
336 struct device_attribute *attr, const char *buf, size_t len)
337 {
338 struct zram *zram = dev_to_zram(dev);
339
340 down_read(&zram->init_lock);
341 if (!init_done(zram)) {
342 up_read(&zram->init_lock);
343 return -EINVAL;
344 }
345
346 zs_compact(zram->mem_pool);
347 up_read(&zram->init_lock);
348
349 return len;
350 }
351
352 static ssize_t io_stat_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
354 {
355 struct zram *zram = dev_to_zram(dev);
356 ssize_t ret;
357
358 down_read(&zram->init_lock);
359 ret = scnprintf(buf, PAGE_SIZE,
360 "%8llu %8llu %8llu %8llu\n",
361 (u64)atomic64_read(&zram->stats.failed_reads),
362 (u64)atomic64_read(&zram->stats.failed_writes),
363 (u64)atomic64_read(&zram->stats.invalid_io),
364 (u64)atomic64_read(&zram->stats.notify_free));
365 up_read(&zram->init_lock);
366
367 return ret;
368 }
369
370 static ssize_t mm_stat_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct zram *zram = dev_to_zram(dev);
374 struct zs_pool_stats pool_stats;
375 u64 orig_size, mem_used = 0;
376 long max_used;
377 ssize_t ret;
378
379 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
380
381 down_read(&zram->init_lock);
382 if (init_done(zram)) {
383 mem_used = zs_get_total_pages(zram->mem_pool);
384 zs_pool_stats(zram->mem_pool, &pool_stats);
385 }
386
387 orig_size = atomic64_read(&zram->stats.pages_stored);
388 max_used = atomic_long_read(&zram->stats.max_used_pages);
389
390 ret = scnprintf(buf, PAGE_SIZE,
391 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
392 orig_size << PAGE_SHIFT,
393 (u64)atomic64_read(&zram->stats.compr_data_size),
394 mem_used << PAGE_SHIFT,
395 zram->limit_pages << PAGE_SHIFT,
396 max_used << PAGE_SHIFT,
397 (u64)atomic64_read(&zram->stats.same_pages),
398 pool_stats.pages_compacted);
399 up_read(&zram->init_lock);
400
401 return ret;
402 }
403
404 static ssize_t debug_stat_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
406 {
407 int version = 1;
408 struct zram *zram = dev_to_zram(dev);
409 ssize_t ret;
410
411 down_read(&zram->init_lock);
412 ret = scnprintf(buf, PAGE_SIZE,
413 "version: %d\n%8llu\n",
414 version,
415 (u64)atomic64_read(&zram->stats.writestall));
416 up_read(&zram->init_lock);
417
418 return ret;
419 }
420
421 static DEVICE_ATTR_RO(io_stat);
422 static DEVICE_ATTR_RO(mm_stat);
423 static DEVICE_ATTR_RO(debug_stat);
424
425 static void zram_slot_lock(struct zram *zram, u32 index)
426 {
427 bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
428 }
429
430 static void zram_slot_unlock(struct zram *zram, u32 index)
431 {
432 bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
433 }
434
435 static bool zram_same_page_read(struct zram *zram, u32 index,
436 struct page *page,
437 unsigned int offset, unsigned int len)
438 {
439 zram_slot_lock(zram, index);
440 if (unlikely(!zram_get_handle(zram, index) ||
441 zram_test_flag(zram, index, ZRAM_SAME))) {
442 void *mem;
443
444 zram_slot_unlock(zram, index);
445 mem = kmap_atomic(page);
446 zram_fill_page(mem + offset, len,
447 zram_get_element(zram, index));
448 kunmap_atomic(mem);
449 return true;
450 }
451 zram_slot_unlock(zram, index);
452
453 return false;
454 }
455
456 static bool zram_same_page_write(struct zram *zram, u32 index,
457 struct page *page)
458 {
459 unsigned long element;
460 void *mem = kmap_atomic(page);
461
462 if (page_same_filled(mem, &element)) {
463 kunmap_atomic(mem);
464 /* Free memory associated with this sector now. */
465 zram_slot_lock(zram, index);
466 zram_free_page(zram, index);
467 zram_set_flag(zram, index, ZRAM_SAME);
468 zram_set_element(zram, index, element);
469 zram_slot_unlock(zram, index);
470
471 atomic64_inc(&zram->stats.same_pages);
472 atomic64_inc(&zram->stats.pages_stored);
473 return true;
474 }
475 kunmap_atomic(mem);
476
477 return false;
478 }
479
480 static void zram_meta_free(struct zram *zram, u64 disksize)
481 {
482 size_t num_pages = disksize >> PAGE_SHIFT;
483 size_t index;
484
485 /* Free all pages that are still in this zram device */
486 for (index = 0; index < num_pages; index++)
487 zram_free_page(zram, index);
488
489 zs_destroy_pool(zram->mem_pool);
490 vfree(zram->table);
491 }
492
493 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
494 {
495 size_t num_pages;
496
497 num_pages = disksize >> PAGE_SHIFT;
498 zram->table = vzalloc(num_pages * sizeof(*zram->table));
499 if (!zram->table)
500 return false;
501
502 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
503 if (!zram->mem_pool) {
504 vfree(zram->table);
505 return false;
506 }
507
508 return true;
509 }
510
511 /*
512 * To protect concurrent access to the same index entry,
513 * caller should hold this table index entry's bit_spinlock to
514 * indicate this index entry is accessing.
515 */
516 static void zram_free_page(struct zram *zram, size_t index)
517 {
518 unsigned long handle = zram_get_handle(zram, index);
519
520 /*
521 * No memory is allocated for same element filled pages.
522 * Simply clear same page flag.
523 */
524 if (zram_test_flag(zram, index, ZRAM_SAME)) {
525 zram_clear_flag(zram, index, ZRAM_SAME);
526 zram_set_element(zram, index, 0);
527 atomic64_dec(&zram->stats.same_pages);
528 atomic64_dec(&zram->stats.pages_stored);
529 return;
530 }
531
532 if (!handle)
533 return;
534
535 zs_free(zram->mem_pool, handle);
536
537 atomic64_sub(zram_get_obj_size(zram, index),
538 &zram->stats.compr_data_size);
539 atomic64_dec(&zram->stats.pages_stored);
540
541 zram_set_handle(zram, index, 0);
542 zram_set_obj_size(zram, index, 0);
543 }
544
545 static int zram_decompress_page(struct zram *zram, struct page *page, u32 index)
546 {
547 int ret;
548 unsigned long handle;
549 unsigned int size;
550 void *src, *dst;
551
552 if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
553 return 0;
554
555 zram_slot_lock(zram, index);
556 handle = zram_get_handle(zram, index);
557 size = zram_get_obj_size(zram, index);
558
559 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
560 if (size == PAGE_SIZE) {
561 dst = kmap_atomic(page);
562 memcpy(dst, src, PAGE_SIZE);
563 kunmap_atomic(dst);
564 ret = 0;
565 } else {
566 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
567
568 dst = kmap_atomic(page);
569 ret = zcomp_decompress(zstrm, src, size, dst);
570 kunmap_atomic(dst);
571 zcomp_stream_put(zram->comp);
572 }
573 zs_unmap_object(zram->mem_pool, handle);
574 zram_slot_unlock(zram, index);
575
576 /* Should NEVER happen. Return bio error if it does. */
577 if (unlikely(ret))
578 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
579
580 return ret;
581 }
582
583 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
584 u32 index, int offset)
585 {
586 int ret;
587 struct page *page;
588
589 page = bvec->bv_page;
590 if (is_partial_io(bvec)) {
591 /* Use a temporary buffer to decompress the page */
592 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
593 if (!page)
594 return -ENOMEM;
595 }
596
597 ret = zram_decompress_page(zram, page, index);
598 if (unlikely(ret))
599 goto out;
600
601 if (is_partial_io(bvec)) {
602 void *dst = kmap_atomic(bvec->bv_page);
603 void *src = kmap_atomic(page);
604
605 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
606 kunmap_atomic(src);
607 kunmap_atomic(dst);
608 }
609 out:
610 if (is_partial_io(bvec))
611 __free_page(page);
612
613 return ret;
614 }
615
616 static int zram_compress(struct zram *zram, struct zcomp_strm **zstrm,
617 struct page *page,
618 unsigned long *out_handle, unsigned int *out_comp_len)
619 {
620 int ret;
621 unsigned int comp_len;
622 void *src;
623 unsigned long alloced_pages;
624 unsigned long handle = 0;
625
626 compress_again:
627 src = kmap_atomic(page);
628 ret = zcomp_compress(*zstrm, src, &comp_len);
629 kunmap_atomic(src);
630
631 if (unlikely(ret)) {
632 pr_err("Compression failed! err=%d\n", ret);
633 if (handle)
634 zs_free(zram->mem_pool, handle);
635 return ret;
636 }
637
638 if (unlikely(comp_len > max_zpage_size))
639 comp_len = PAGE_SIZE;
640
641 /*
642 * handle allocation has 2 paths:
643 * a) fast path is executed with preemption disabled (for
644 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
645 * since we can't sleep;
646 * b) slow path enables preemption and attempts to allocate
647 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
648 * put per-cpu compression stream and, thus, to re-do
649 * the compression once handle is allocated.
650 *
651 * if we have a 'non-null' handle here then we are coming
652 * from the slow path and handle has already been allocated.
653 */
654 if (!handle)
655 handle = zs_malloc(zram->mem_pool, comp_len,
656 __GFP_KSWAPD_RECLAIM |
657 __GFP_NOWARN |
658 __GFP_HIGHMEM |
659 __GFP_MOVABLE);
660 if (!handle) {
661 zcomp_stream_put(zram->comp);
662 atomic64_inc(&zram->stats.writestall);
663 handle = zs_malloc(zram->mem_pool, comp_len,
664 GFP_NOIO | __GFP_HIGHMEM |
665 __GFP_MOVABLE);
666 *zstrm = zcomp_stream_get(zram->comp);
667 if (handle)
668 goto compress_again;
669 return -ENOMEM;
670 }
671
672 alloced_pages = zs_get_total_pages(zram->mem_pool);
673 update_used_max(zram, alloced_pages);
674
675 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
676 zs_free(zram->mem_pool, handle);
677 return -ENOMEM;
678 }
679
680 *out_handle = handle;
681 *out_comp_len = comp_len;
682 return 0;
683 }
684
685 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index)
686 {
687 int ret;
688 unsigned long handle;
689 unsigned int comp_len;
690 void *src, *dst;
691 struct zcomp_strm *zstrm;
692 struct page *page = bvec->bv_page;
693
694 if (zram_same_page_write(zram, index, page))
695 return 0;
696
697 zstrm = zcomp_stream_get(zram->comp);
698 ret = zram_compress(zram, &zstrm, page, &handle, &comp_len);
699 if (ret) {
700 zcomp_stream_put(zram->comp);
701 return ret;
702 }
703
704 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
705
706 src = zstrm->buffer;
707 if (comp_len == PAGE_SIZE)
708 src = kmap_atomic(page);
709 memcpy(dst, src, comp_len);
710 if (comp_len == PAGE_SIZE)
711 kunmap_atomic(src);
712
713 zcomp_stream_put(zram->comp);
714 zs_unmap_object(zram->mem_pool, handle);
715
716 /*
717 * Free memory associated with this sector
718 * before overwriting unused sectors.
719 */
720 zram_slot_lock(zram, index);
721 zram_free_page(zram, index);
722 zram_set_handle(zram, index, handle);
723 zram_set_obj_size(zram, index, comp_len);
724 zram_slot_unlock(zram, index);
725
726 /* Update stats */
727 atomic64_add(comp_len, &zram->stats.compr_data_size);
728 atomic64_inc(&zram->stats.pages_stored);
729 return 0;
730 }
731
732 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
733 u32 index, int offset)
734 {
735 int ret;
736 struct page *page = NULL;
737 void *src;
738 struct bio_vec vec;
739
740 vec = *bvec;
741 if (is_partial_io(bvec)) {
742 void *dst;
743 /*
744 * This is a partial IO. We need to read the full page
745 * before to write the changes.
746 */
747 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
748 if (!page)
749 return -ENOMEM;
750
751 ret = zram_decompress_page(zram, page, index);
752 if (ret)
753 goto out;
754
755 src = kmap_atomic(bvec->bv_page);
756 dst = kmap_atomic(page);
757 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
758 kunmap_atomic(dst);
759 kunmap_atomic(src);
760
761 vec.bv_page = page;
762 vec.bv_len = PAGE_SIZE;
763 vec.bv_offset = 0;
764 }
765
766 ret = __zram_bvec_write(zram, &vec, index);
767 out:
768 if (is_partial_io(bvec))
769 __free_page(page);
770 return ret;
771 }
772
773 /*
774 * zram_bio_discard - handler on discard request
775 * @index: physical block index in PAGE_SIZE units
776 * @offset: byte offset within physical block
777 */
778 static void zram_bio_discard(struct zram *zram, u32 index,
779 int offset, struct bio *bio)
780 {
781 size_t n = bio->bi_iter.bi_size;
782
783 /*
784 * zram manages data in physical block size units. Because logical block
785 * size isn't identical with physical block size on some arch, we
786 * could get a discard request pointing to a specific offset within a
787 * certain physical block. Although we can handle this request by
788 * reading that physiclal block and decompressing and partially zeroing
789 * and re-compressing and then re-storing it, this isn't reasonable
790 * because our intent with a discard request is to save memory. So
791 * skipping this logical block is appropriate here.
792 */
793 if (offset) {
794 if (n <= (PAGE_SIZE - offset))
795 return;
796
797 n -= (PAGE_SIZE - offset);
798 index++;
799 }
800
801 while (n >= PAGE_SIZE) {
802 zram_slot_lock(zram, index);
803 zram_free_page(zram, index);
804 zram_slot_unlock(zram, index);
805 atomic64_inc(&zram->stats.notify_free);
806 index++;
807 n -= PAGE_SIZE;
808 }
809 }
810
811 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
812 int offset, bool is_write)
813 {
814 unsigned long start_time = jiffies;
815 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
816 int ret;
817
818 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
819 &zram->disk->part0);
820
821 if (!is_write) {
822 atomic64_inc(&zram->stats.num_reads);
823 ret = zram_bvec_read(zram, bvec, index, offset);
824 flush_dcache_page(bvec->bv_page);
825 } else {
826 atomic64_inc(&zram->stats.num_writes);
827 ret = zram_bvec_write(zram, bvec, index, offset);
828 }
829
830 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
831
832 if (unlikely(ret)) {
833 if (!is_write)
834 atomic64_inc(&zram->stats.failed_reads);
835 else
836 atomic64_inc(&zram->stats.failed_writes);
837 }
838
839 return ret;
840 }
841
842 static void __zram_make_request(struct zram *zram, struct bio *bio)
843 {
844 int offset;
845 u32 index;
846 struct bio_vec bvec;
847 struct bvec_iter iter;
848
849 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
850 offset = (bio->bi_iter.bi_sector &
851 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
852
853 switch (bio_op(bio)) {
854 case REQ_OP_DISCARD:
855 case REQ_OP_WRITE_ZEROES:
856 zram_bio_discard(zram, index, offset, bio);
857 bio_endio(bio);
858 return;
859 default:
860 break;
861 }
862
863 bio_for_each_segment(bvec, bio, iter) {
864 struct bio_vec bv = bvec;
865 unsigned int unwritten = bvec.bv_len;
866
867 do {
868 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
869 unwritten);
870 if (zram_bvec_rw(zram, &bv, index, offset,
871 op_is_write(bio_op(bio))) < 0)
872 goto out;
873
874 bv.bv_offset += bv.bv_len;
875 unwritten -= bv.bv_len;
876
877 update_position(&index, &offset, &bv);
878 } while (unwritten);
879 }
880
881 bio_endio(bio);
882 return;
883
884 out:
885 bio_io_error(bio);
886 }
887
888 /*
889 * Handler function for all zram I/O requests.
890 */
891 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
892 {
893 struct zram *zram = queue->queuedata;
894
895 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
896 bio->bi_iter.bi_size)) {
897 atomic64_inc(&zram->stats.invalid_io);
898 goto error;
899 }
900
901 __zram_make_request(zram, bio);
902 return BLK_QC_T_NONE;
903
904 error:
905 bio_io_error(bio);
906 return BLK_QC_T_NONE;
907 }
908
909 static void zram_slot_free_notify(struct block_device *bdev,
910 unsigned long index)
911 {
912 struct zram *zram;
913
914 zram = bdev->bd_disk->private_data;
915
916 zram_slot_lock(zram, index);
917 zram_free_page(zram, index);
918 zram_slot_unlock(zram, index);
919 atomic64_inc(&zram->stats.notify_free);
920 }
921
922 static int zram_rw_page(struct block_device *bdev, sector_t sector,
923 struct page *page, bool is_write)
924 {
925 int offset, err = -EIO;
926 u32 index;
927 struct zram *zram;
928 struct bio_vec bv;
929
930 zram = bdev->bd_disk->private_data;
931
932 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
933 atomic64_inc(&zram->stats.invalid_io);
934 err = -EINVAL;
935 goto out;
936 }
937
938 index = sector >> SECTORS_PER_PAGE_SHIFT;
939 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
940
941 bv.bv_page = page;
942 bv.bv_len = PAGE_SIZE;
943 bv.bv_offset = 0;
944
945 err = zram_bvec_rw(zram, &bv, index, offset, is_write);
946 out:
947 /*
948 * If I/O fails, just return error(ie, non-zero) without
949 * calling page_endio.
950 * It causes resubmit the I/O with bio request by upper functions
951 * of rw_page(e.g., swap_readpage, __swap_writepage) and
952 * bio->bi_end_io does things to handle the error
953 * (e.g., SetPageError, set_page_dirty and extra works).
954 */
955 if (err == 0)
956 page_endio(page, is_write, 0);
957 return err;
958 }
959
960 static void zram_reset_device(struct zram *zram)
961 {
962 struct zcomp *comp;
963 u64 disksize;
964
965 down_write(&zram->init_lock);
966
967 zram->limit_pages = 0;
968
969 if (!init_done(zram)) {
970 up_write(&zram->init_lock);
971 return;
972 }
973
974 comp = zram->comp;
975 disksize = zram->disksize;
976 zram->disksize = 0;
977
978 set_capacity(zram->disk, 0);
979 part_stat_set_all(&zram->disk->part0, 0);
980
981 up_write(&zram->init_lock);
982 /* I/O operation under all of CPU are done so let's free */
983 zram_meta_free(zram, disksize);
984 memset(&zram->stats, 0, sizeof(zram->stats));
985 zcomp_destroy(comp);
986 }
987
988 static ssize_t disksize_store(struct device *dev,
989 struct device_attribute *attr, const char *buf, size_t len)
990 {
991 u64 disksize;
992 struct zcomp *comp;
993 struct zram *zram = dev_to_zram(dev);
994 int err;
995
996 disksize = memparse(buf, NULL);
997 if (!disksize)
998 return -EINVAL;
999
1000 down_write(&zram->init_lock);
1001 if (init_done(zram)) {
1002 pr_info("Cannot change disksize for initialized device\n");
1003 err = -EBUSY;
1004 goto out_unlock;
1005 }
1006
1007 disksize = PAGE_ALIGN(disksize);
1008 if (!zram_meta_alloc(zram, disksize)) {
1009 err = -ENOMEM;
1010 goto out_unlock;
1011 }
1012
1013 comp = zcomp_create(zram->compressor);
1014 if (IS_ERR(comp)) {
1015 pr_err("Cannot initialise %s compressing backend\n",
1016 zram->compressor);
1017 err = PTR_ERR(comp);
1018 goto out_free_meta;
1019 }
1020
1021 zram->comp = comp;
1022 zram->disksize = disksize;
1023 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1024 zram_revalidate_disk(zram);
1025 up_write(&zram->init_lock);
1026
1027 return len;
1028
1029 out_free_meta:
1030 zram_meta_free(zram, disksize);
1031 out_unlock:
1032 up_write(&zram->init_lock);
1033 return err;
1034 }
1035
1036 static ssize_t reset_store(struct device *dev,
1037 struct device_attribute *attr, const char *buf, size_t len)
1038 {
1039 int ret;
1040 unsigned short do_reset;
1041 struct zram *zram;
1042 struct block_device *bdev;
1043
1044 ret = kstrtou16(buf, 10, &do_reset);
1045 if (ret)
1046 return ret;
1047
1048 if (!do_reset)
1049 return -EINVAL;
1050
1051 zram = dev_to_zram(dev);
1052 bdev = bdget_disk(zram->disk, 0);
1053 if (!bdev)
1054 return -ENOMEM;
1055
1056 mutex_lock(&bdev->bd_mutex);
1057 /* Do not reset an active device or claimed device */
1058 if (bdev->bd_openers || zram->claim) {
1059 mutex_unlock(&bdev->bd_mutex);
1060 bdput(bdev);
1061 return -EBUSY;
1062 }
1063
1064 /* From now on, anyone can't open /dev/zram[0-9] */
1065 zram->claim = true;
1066 mutex_unlock(&bdev->bd_mutex);
1067
1068 /* Make sure all the pending I/O are finished */
1069 fsync_bdev(bdev);
1070 zram_reset_device(zram);
1071 zram_revalidate_disk(zram);
1072 bdput(bdev);
1073
1074 mutex_lock(&bdev->bd_mutex);
1075 zram->claim = false;
1076 mutex_unlock(&bdev->bd_mutex);
1077
1078 return len;
1079 }
1080
1081 static int zram_open(struct block_device *bdev, fmode_t mode)
1082 {
1083 int ret = 0;
1084 struct zram *zram;
1085
1086 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1087
1088 zram = bdev->bd_disk->private_data;
1089 /* zram was claimed to reset so open request fails */
1090 if (zram->claim)
1091 ret = -EBUSY;
1092
1093 return ret;
1094 }
1095
1096 static const struct block_device_operations zram_devops = {
1097 .open = zram_open,
1098 .swap_slot_free_notify = zram_slot_free_notify,
1099 .rw_page = zram_rw_page,
1100 .owner = THIS_MODULE
1101 };
1102
1103 static DEVICE_ATTR_WO(compact);
1104 static DEVICE_ATTR_RW(disksize);
1105 static DEVICE_ATTR_RO(initstate);
1106 static DEVICE_ATTR_WO(reset);
1107 static DEVICE_ATTR_WO(mem_limit);
1108 static DEVICE_ATTR_WO(mem_used_max);
1109 static DEVICE_ATTR_RW(max_comp_streams);
1110 static DEVICE_ATTR_RW(comp_algorithm);
1111
1112 static struct attribute *zram_disk_attrs[] = {
1113 &dev_attr_disksize.attr,
1114 &dev_attr_initstate.attr,
1115 &dev_attr_reset.attr,
1116 &dev_attr_compact.attr,
1117 &dev_attr_mem_limit.attr,
1118 &dev_attr_mem_used_max.attr,
1119 &dev_attr_max_comp_streams.attr,
1120 &dev_attr_comp_algorithm.attr,
1121 &dev_attr_io_stat.attr,
1122 &dev_attr_mm_stat.attr,
1123 &dev_attr_debug_stat.attr,
1124 NULL,
1125 };
1126
1127 static const struct attribute_group zram_disk_attr_group = {
1128 .attrs = zram_disk_attrs,
1129 };
1130
1131 /*
1132 * Allocate and initialize new zram device. the function returns
1133 * '>= 0' device_id upon success, and negative value otherwise.
1134 */
1135 static int zram_add(void)
1136 {
1137 struct zram *zram;
1138 struct request_queue *queue;
1139 int ret, device_id;
1140
1141 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1142 if (!zram)
1143 return -ENOMEM;
1144
1145 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1146 if (ret < 0)
1147 goto out_free_dev;
1148 device_id = ret;
1149
1150 init_rwsem(&zram->init_lock);
1151
1152 queue = blk_alloc_queue(GFP_KERNEL);
1153 if (!queue) {
1154 pr_err("Error allocating disk queue for device %d\n",
1155 device_id);
1156 ret = -ENOMEM;
1157 goto out_free_idr;
1158 }
1159
1160 blk_queue_make_request(queue, zram_make_request);
1161
1162 /* gendisk structure */
1163 zram->disk = alloc_disk(1);
1164 if (!zram->disk) {
1165 pr_err("Error allocating disk structure for device %d\n",
1166 device_id);
1167 ret = -ENOMEM;
1168 goto out_free_queue;
1169 }
1170
1171 zram->disk->major = zram_major;
1172 zram->disk->first_minor = device_id;
1173 zram->disk->fops = &zram_devops;
1174 zram->disk->queue = queue;
1175 zram->disk->queue->queuedata = zram;
1176 zram->disk->private_data = zram;
1177 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1178
1179 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1180 set_capacity(zram->disk, 0);
1181 /* zram devices sort of resembles non-rotational disks */
1182 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1183 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1184 /*
1185 * To ensure that we always get PAGE_SIZE aligned
1186 * and n*PAGE_SIZED sized I/O requests.
1187 */
1188 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1189 blk_queue_logical_block_size(zram->disk->queue,
1190 ZRAM_LOGICAL_BLOCK_SIZE);
1191 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1192 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1193 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1194 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1195 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1196
1197 /*
1198 * zram_bio_discard() will clear all logical blocks if logical block
1199 * size is identical with physical block size(PAGE_SIZE). But if it is
1200 * different, we will skip discarding some parts of logical blocks in
1201 * the part of the request range which isn't aligned to physical block
1202 * size. So we can't ensure that all discarded logical blocks are
1203 * zeroed.
1204 */
1205 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1206 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1207
1208 add_disk(zram->disk);
1209
1210 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1211 &zram_disk_attr_group);
1212 if (ret < 0) {
1213 pr_err("Error creating sysfs group for device %d\n",
1214 device_id);
1215 goto out_free_disk;
1216 }
1217 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1218
1219 pr_info("Added device: %s\n", zram->disk->disk_name);
1220 return device_id;
1221
1222 out_free_disk:
1223 del_gendisk(zram->disk);
1224 put_disk(zram->disk);
1225 out_free_queue:
1226 blk_cleanup_queue(queue);
1227 out_free_idr:
1228 idr_remove(&zram_index_idr, device_id);
1229 out_free_dev:
1230 kfree(zram);
1231 return ret;
1232 }
1233
1234 static int zram_remove(struct zram *zram)
1235 {
1236 struct block_device *bdev;
1237
1238 bdev = bdget_disk(zram->disk, 0);
1239 if (!bdev)
1240 return -ENOMEM;
1241
1242 mutex_lock(&bdev->bd_mutex);
1243 if (bdev->bd_openers || zram->claim) {
1244 mutex_unlock(&bdev->bd_mutex);
1245 bdput(bdev);
1246 return -EBUSY;
1247 }
1248
1249 zram->claim = true;
1250 mutex_unlock(&bdev->bd_mutex);
1251
1252 /*
1253 * Remove sysfs first, so no one will perform a disksize
1254 * store while we destroy the devices. This also helps during
1255 * hot_remove -- zram_reset_device() is the last holder of
1256 * ->init_lock, no later/concurrent disksize_store() or any
1257 * other sysfs handlers are possible.
1258 */
1259 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1260 &zram_disk_attr_group);
1261
1262 /* Make sure all the pending I/O are finished */
1263 fsync_bdev(bdev);
1264 zram_reset_device(zram);
1265 bdput(bdev);
1266
1267 pr_info("Removed device: %s\n", zram->disk->disk_name);
1268
1269 blk_cleanup_queue(zram->disk->queue);
1270 del_gendisk(zram->disk);
1271 put_disk(zram->disk);
1272 kfree(zram);
1273 return 0;
1274 }
1275
1276 /* zram-control sysfs attributes */
1277
1278 /*
1279 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1280 * sense that reading from this file does alter the state of your system -- it
1281 * creates a new un-initialized zram device and returns back this device's
1282 * device_id (or an error code if it fails to create a new device).
1283 */
1284 static ssize_t hot_add_show(struct class *class,
1285 struct class_attribute *attr,
1286 char *buf)
1287 {
1288 int ret;
1289
1290 mutex_lock(&zram_index_mutex);
1291 ret = zram_add();
1292 mutex_unlock(&zram_index_mutex);
1293
1294 if (ret < 0)
1295 return ret;
1296 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1297 }
1298 static CLASS_ATTR_RO(hot_add);
1299
1300 static ssize_t hot_remove_store(struct class *class,
1301 struct class_attribute *attr,
1302 const char *buf,
1303 size_t count)
1304 {
1305 struct zram *zram;
1306 int ret, dev_id;
1307
1308 /* dev_id is gendisk->first_minor, which is `int' */
1309 ret = kstrtoint(buf, 10, &dev_id);
1310 if (ret)
1311 return ret;
1312 if (dev_id < 0)
1313 return -EINVAL;
1314
1315 mutex_lock(&zram_index_mutex);
1316
1317 zram = idr_find(&zram_index_idr, dev_id);
1318 if (zram) {
1319 ret = zram_remove(zram);
1320 if (!ret)
1321 idr_remove(&zram_index_idr, dev_id);
1322 } else {
1323 ret = -ENODEV;
1324 }
1325
1326 mutex_unlock(&zram_index_mutex);
1327 return ret ? ret : count;
1328 }
1329 static CLASS_ATTR_WO(hot_remove);
1330
1331 static struct attribute *zram_control_class_attrs[] = {
1332 &class_attr_hot_add.attr,
1333 &class_attr_hot_remove.attr,
1334 NULL,
1335 };
1336 ATTRIBUTE_GROUPS(zram_control_class);
1337
1338 static struct class zram_control_class = {
1339 .name = "zram-control",
1340 .owner = THIS_MODULE,
1341 .class_groups = zram_control_class_groups,
1342 };
1343
1344 static int zram_remove_cb(int id, void *ptr, void *data)
1345 {
1346 zram_remove(ptr);
1347 return 0;
1348 }
1349
1350 static void destroy_devices(void)
1351 {
1352 class_unregister(&zram_control_class);
1353 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1354 idr_destroy(&zram_index_idr);
1355 unregister_blkdev(zram_major, "zram");
1356 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1357 }
1358
1359 static int __init zram_init(void)
1360 {
1361 int ret;
1362
1363 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1364 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1365 if (ret < 0)
1366 return ret;
1367
1368 ret = class_register(&zram_control_class);
1369 if (ret) {
1370 pr_err("Unable to register zram-control class\n");
1371 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1372 return ret;
1373 }
1374
1375 zram_major = register_blkdev(0, "zram");
1376 if (zram_major <= 0) {
1377 pr_err("Unable to get major number\n");
1378 class_unregister(&zram_control_class);
1379 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1380 return -EBUSY;
1381 }
1382
1383 while (num_devices != 0) {
1384 mutex_lock(&zram_index_mutex);
1385 ret = zram_add();
1386 mutex_unlock(&zram_index_mutex);
1387 if (ret < 0)
1388 goto out_error;
1389 num_devices--;
1390 }
1391
1392 return 0;
1393
1394 out_error:
1395 destroy_devices();
1396 return ret;
1397 }
1398
1399 static void __exit zram_exit(void)
1400 {
1401 destroy_devices();
1402 }
1403
1404 module_init(zram_init);
1405 module_exit(zram_exit);
1406
1407 module_param(num_devices, uint, 0);
1408 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1409
1410 MODULE_LICENSE("Dual BSD/GPL");
1411 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1412 MODULE_DESCRIPTION("Compressed RAM Block Device");