]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
8fcad8b761f14b5686644317d3da018d9bc326e0
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name) \
56 static ssize_t name##_show(struct device *d, \
57 struct device_attribute *attr, char *b) \
58 { \
59 struct zram *zram = dev_to_zram(d); \
60 \
61 deprecated_attr_warn(__stringify(name)); \
62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
63 (u64)atomic64_read(&zram->stats.name)); \
64 } \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69 return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
80 {
81 return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86 {
87 meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92 {
93 meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
103 {
104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline bool is_partial_io(struct bio_vec *bvec)
110 {
111 return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
117 static inline bool valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
119 {
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return false;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return false;
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return false;
133
134 /* I/O request is valid */
135 return true;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147 {
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158 }
159
160 static bool page_zero_filled(void *ptr)
161 {
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
169 return false;
170 }
171
172 return true;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 u32 val;
194 struct zram *zram = dev_to_zram(dev);
195
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
199
200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205 {
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 struct zram *zram = dev_to_zram(dev);
215
216 deprecated_attr_warn("orig_data_size");
217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
226
227 deprecated_attr_warn("mem_used_total");
228 down_read(&zram->init_lock);
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
231 val = zs_get_total_pages(meta->mem_pool);
232 }
233 up_read(&zram->init_lock);
234
235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240 {
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
244 deprecated_attr_warn("mem_limit");
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254 {
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272 {
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
276 deprecated_attr_warn("mem_used_max");
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287 {
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
301 }
302 up_read(&zram->init_lock);
303
304 return len;
305 }
306
307 /*
308 * We switched to per-cpu streams and this attr is not needed anymore.
309 * However, we will keep it around for some time, because:
310 * a) we may revert per-cpu streams in the future
311 * b) it's visible to user space and we need to follow our 2 years
312 * retirement rule; but we already have a number of 'soon to be
313 * altered' attrs, so max_comp_streams need to wait for the next
314 * layoff cycle.
315 */
316 static ssize_t max_comp_streams_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
320 }
321
322 static ssize_t max_comp_streams_store(struct device *dev,
323 struct device_attribute *attr, const char *buf, size_t len)
324 {
325 return len;
326 }
327
328 static ssize_t comp_algorithm_show(struct device *dev,
329 struct device_attribute *attr, char *buf)
330 {
331 size_t sz;
332 struct zram *zram = dev_to_zram(dev);
333
334 down_read(&zram->init_lock);
335 sz = zcomp_available_show(zram->compressor, buf);
336 up_read(&zram->init_lock);
337
338 return sz;
339 }
340
341 static ssize_t comp_algorithm_store(struct device *dev,
342 struct device_attribute *attr, const char *buf, size_t len)
343 {
344 struct zram *zram = dev_to_zram(dev);
345 size_t sz;
346
347 if (!zcomp_available_algorithm(buf))
348 return -EINVAL;
349
350 down_write(&zram->init_lock);
351 if (init_done(zram)) {
352 up_write(&zram->init_lock);
353 pr_info("Can't change algorithm for initialized device\n");
354 return -EBUSY;
355 }
356 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
357
358 /* ignore trailing newline */
359 sz = strlen(zram->compressor);
360 if (sz > 0 && zram->compressor[sz - 1] == '\n')
361 zram->compressor[sz - 1] = 0x00;
362
363 up_write(&zram->init_lock);
364 return len;
365 }
366
367 static ssize_t compact_store(struct device *dev,
368 struct device_attribute *attr, const char *buf, size_t len)
369 {
370 struct zram *zram = dev_to_zram(dev);
371 struct zram_meta *meta;
372
373 down_read(&zram->init_lock);
374 if (!init_done(zram)) {
375 up_read(&zram->init_lock);
376 return -EINVAL;
377 }
378
379 meta = zram->meta;
380 zs_compact(meta->mem_pool);
381 up_read(&zram->init_lock);
382
383 return len;
384 }
385
386 static ssize_t io_stat_show(struct device *dev,
387 struct device_attribute *attr, char *buf)
388 {
389 struct zram *zram = dev_to_zram(dev);
390 ssize_t ret;
391
392 down_read(&zram->init_lock);
393 ret = scnprintf(buf, PAGE_SIZE,
394 "%8llu %8llu %8llu %8llu\n",
395 (u64)atomic64_read(&zram->stats.failed_reads),
396 (u64)atomic64_read(&zram->stats.failed_writes),
397 (u64)atomic64_read(&zram->stats.invalid_io),
398 (u64)atomic64_read(&zram->stats.notify_free));
399 up_read(&zram->init_lock);
400
401 return ret;
402 }
403
404 static ssize_t mm_stat_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
406 {
407 struct zram *zram = dev_to_zram(dev);
408 struct zs_pool_stats pool_stats;
409 u64 orig_size, mem_used = 0;
410 long max_used;
411 ssize_t ret;
412
413 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
414
415 down_read(&zram->init_lock);
416 if (init_done(zram)) {
417 mem_used = zs_get_total_pages(zram->meta->mem_pool);
418 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
419 }
420
421 orig_size = atomic64_read(&zram->stats.pages_stored);
422 max_used = atomic_long_read(&zram->stats.max_used_pages);
423
424 ret = scnprintf(buf, PAGE_SIZE,
425 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
426 orig_size << PAGE_SHIFT,
427 (u64)atomic64_read(&zram->stats.compr_data_size),
428 mem_used << PAGE_SHIFT,
429 zram->limit_pages << PAGE_SHIFT,
430 max_used << PAGE_SHIFT,
431 (u64)atomic64_read(&zram->stats.zero_pages),
432 pool_stats.pages_compacted);
433 up_read(&zram->init_lock);
434
435 return ret;
436 }
437
438 static ssize_t debug_stat_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 int version = 1;
442 struct zram *zram = dev_to_zram(dev);
443 ssize_t ret;
444
445 down_read(&zram->init_lock);
446 ret = scnprintf(buf, PAGE_SIZE,
447 "version: %d\n%8llu\n",
448 version,
449 (u64)atomic64_read(&zram->stats.writestall));
450 up_read(&zram->init_lock);
451
452 return ret;
453 }
454
455 static DEVICE_ATTR_RO(io_stat);
456 static DEVICE_ATTR_RO(mm_stat);
457 static DEVICE_ATTR_RO(debug_stat);
458 ZRAM_ATTR_RO(num_reads);
459 ZRAM_ATTR_RO(num_writes);
460 ZRAM_ATTR_RO(failed_reads);
461 ZRAM_ATTR_RO(failed_writes);
462 ZRAM_ATTR_RO(invalid_io);
463 ZRAM_ATTR_RO(notify_free);
464 ZRAM_ATTR_RO(zero_pages);
465 ZRAM_ATTR_RO(compr_data_size);
466
467 static inline bool zram_meta_get(struct zram *zram)
468 {
469 if (atomic_inc_not_zero(&zram->refcount))
470 return true;
471 return false;
472 }
473
474 static inline void zram_meta_put(struct zram *zram)
475 {
476 atomic_dec(&zram->refcount);
477 }
478
479 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
480 {
481 size_t num_pages = disksize >> PAGE_SHIFT;
482 size_t index;
483
484 /* Free all pages that are still in this zram device */
485 for (index = 0; index < num_pages; index++) {
486 unsigned long handle = meta->table[index].handle;
487
488 if (!handle)
489 continue;
490
491 zs_free(meta->mem_pool, handle);
492 }
493
494 zs_destroy_pool(meta->mem_pool);
495 vfree(meta->table);
496 kfree(meta);
497 }
498
499 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
500 {
501 size_t num_pages;
502 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
503
504 if (!meta)
505 return NULL;
506
507 num_pages = disksize >> PAGE_SHIFT;
508 meta->table = vzalloc(num_pages * sizeof(*meta->table));
509 if (!meta->table) {
510 pr_err("Error allocating zram address table\n");
511 goto out_error;
512 }
513
514 meta->mem_pool = zs_create_pool(pool_name);
515 if (!meta->mem_pool) {
516 pr_err("Error creating memory pool\n");
517 goto out_error;
518 }
519
520 return meta;
521
522 out_error:
523 vfree(meta->table);
524 kfree(meta);
525 return NULL;
526 }
527
528 /*
529 * To protect concurrent access to the same index entry,
530 * caller should hold this table index entry's bit_spinlock to
531 * indicate this index entry is accessing.
532 */
533 static void zram_free_page(struct zram *zram, size_t index)
534 {
535 struct zram_meta *meta = zram->meta;
536 unsigned long handle = meta->table[index].handle;
537
538 if (unlikely(!handle)) {
539 /*
540 * No memory is allocated for zero filled pages.
541 * Simply clear zero page flag.
542 */
543 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
544 zram_clear_flag(meta, index, ZRAM_ZERO);
545 atomic64_dec(&zram->stats.zero_pages);
546 }
547 return;
548 }
549
550 zs_free(meta->mem_pool, handle);
551
552 atomic64_sub(zram_get_obj_size(meta, index),
553 &zram->stats.compr_data_size);
554 atomic64_dec(&zram->stats.pages_stored);
555
556 meta->table[index].handle = 0;
557 zram_set_obj_size(meta, index, 0);
558 }
559
560 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
561 {
562 int ret = 0;
563 unsigned char *cmem;
564 struct zram_meta *meta = zram->meta;
565 unsigned long handle;
566 size_t size;
567
568 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
569 handle = meta->table[index].handle;
570 size = zram_get_obj_size(meta, index);
571
572 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
573 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
574 clear_page(mem);
575 return 0;
576 }
577
578 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
579 if (size == PAGE_SIZE)
580 copy_page(mem, cmem);
581 else
582 ret = zcomp_decompress(zram->comp, cmem, size, mem);
583 zs_unmap_object(meta->mem_pool, handle);
584 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
585
586 /* Should NEVER happen. Return bio error if it does. */
587 if (unlikely(ret)) {
588 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
589 return ret;
590 }
591
592 return 0;
593 }
594
595 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
596 u32 index, int offset)
597 {
598 int ret;
599 struct page *page;
600 unsigned char *user_mem, *uncmem = NULL;
601 struct zram_meta *meta = zram->meta;
602 page = bvec->bv_page;
603
604 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
605 if (unlikely(!meta->table[index].handle) ||
606 zram_test_flag(meta, index, ZRAM_ZERO)) {
607 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
608 handle_zero_page(bvec);
609 return 0;
610 }
611 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
612
613 if (is_partial_io(bvec))
614 /* Use a temporary buffer to decompress the page */
615 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
616
617 user_mem = kmap_atomic(page);
618 if (!is_partial_io(bvec))
619 uncmem = user_mem;
620
621 if (!uncmem) {
622 pr_err("Unable to allocate temp memory\n");
623 ret = -ENOMEM;
624 goto out_cleanup;
625 }
626
627 ret = zram_decompress_page(zram, uncmem, index);
628 /* Should NEVER happen. Return bio error if it does. */
629 if (unlikely(ret))
630 goto out_cleanup;
631
632 if (is_partial_io(bvec))
633 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
634 bvec->bv_len);
635
636 flush_dcache_page(page);
637 ret = 0;
638 out_cleanup:
639 kunmap_atomic(user_mem);
640 if (is_partial_io(bvec))
641 kfree(uncmem);
642 return ret;
643 }
644
645 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
646 int offset)
647 {
648 int ret = 0;
649 size_t clen;
650 unsigned long handle = 0;
651 struct page *page;
652 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
653 struct zram_meta *meta = zram->meta;
654 struct zcomp_strm *zstrm = NULL;
655 unsigned long alloced_pages;
656
657 page = bvec->bv_page;
658 if (is_partial_io(bvec)) {
659 /*
660 * This is a partial IO. We need to read the full page
661 * before to write the changes.
662 */
663 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
664 if (!uncmem) {
665 ret = -ENOMEM;
666 goto out;
667 }
668 ret = zram_decompress_page(zram, uncmem, index);
669 if (ret)
670 goto out;
671 }
672
673 compress_again:
674 user_mem = kmap_atomic(page);
675 if (is_partial_io(bvec)) {
676 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
677 bvec->bv_len);
678 kunmap_atomic(user_mem);
679 user_mem = NULL;
680 } else {
681 uncmem = user_mem;
682 }
683
684 if (page_zero_filled(uncmem)) {
685 if (user_mem)
686 kunmap_atomic(user_mem);
687 /* Free memory associated with this sector now. */
688 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
689 zram_free_page(zram, index);
690 zram_set_flag(meta, index, ZRAM_ZERO);
691 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
692
693 atomic64_inc(&zram->stats.zero_pages);
694 ret = 0;
695 goto out;
696 }
697
698 zstrm = zcomp_strm_find(zram->comp);
699 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
700 if (!is_partial_io(bvec)) {
701 kunmap_atomic(user_mem);
702 user_mem = NULL;
703 uncmem = NULL;
704 }
705
706 if (unlikely(ret)) {
707 pr_err("Compression failed! err=%d\n", ret);
708 goto out;
709 }
710
711 src = zstrm->buffer;
712 if (unlikely(clen > max_zpage_size)) {
713 clen = PAGE_SIZE;
714 if (is_partial_io(bvec))
715 src = uncmem;
716 }
717
718 /*
719 * handle allocation has 2 paths:
720 * a) fast path is executed with preemption disabled (for
721 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
722 * since we can't sleep;
723 * b) slow path enables preemption and attempts to allocate
724 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
725 * put per-cpu compression stream and, thus, to re-do
726 * the compression once handle is allocated.
727 *
728 * if we have a 'non-null' handle here then we are coming
729 * from the slow path and handle has already been allocated.
730 */
731 if (!handle)
732 handle = zs_malloc(meta->mem_pool, clen,
733 __GFP_KSWAPD_RECLAIM |
734 __GFP_NOWARN |
735 __GFP_HIGHMEM);
736 if (!handle) {
737 zcomp_strm_release(zram->comp, zstrm);
738 zstrm = NULL;
739
740 atomic64_inc(&zram->stats.writestall);
741
742 handle = zs_malloc(meta->mem_pool, clen,
743 GFP_NOIO | __GFP_HIGHMEM);
744 if (handle)
745 goto compress_again;
746
747 pr_err("Error allocating memory for compressed page: %u, size=%zu\n",
748 index, clen);
749 ret = -ENOMEM;
750 goto out;
751 }
752
753 alloced_pages = zs_get_total_pages(meta->mem_pool);
754 update_used_max(zram, alloced_pages);
755
756 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
757 zs_free(meta->mem_pool, handle);
758 ret = -ENOMEM;
759 goto out;
760 }
761
762 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
763
764 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
765 src = kmap_atomic(page);
766 copy_page(cmem, src);
767 kunmap_atomic(src);
768 } else {
769 memcpy(cmem, src, clen);
770 }
771
772 zcomp_strm_release(zram->comp, zstrm);
773 zstrm = NULL;
774 zs_unmap_object(meta->mem_pool, handle);
775
776 /*
777 * Free memory associated with this sector
778 * before overwriting unused sectors.
779 */
780 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
781 zram_free_page(zram, index);
782
783 meta->table[index].handle = handle;
784 zram_set_obj_size(meta, index, clen);
785 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
786
787 /* Update stats */
788 atomic64_add(clen, &zram->stats.compr_data_size);
789 atomic64_inc(&zram->stats.pages_stored);
790 out:
791 if (zstrm)
792 zcomp_strm_release(zram->comp, zstrm);
793 if (is_partial_io(bvec))
794 kfree(uncmem);
795 return ret;
796 }
797
798 /*
799 * zram_bio_discard - handler on discard request
800 * @index: physical block index in PAGE_SIZE units
801 * @offset: byte offset within physical block
802 */
803 static void zram_bio_discard(struct zram *zram, u32 index,
804 int offset, struct bio *bio)
805 {
806 size_t n = bio->bi_iter.bi_size;
807 struct zram_meta *meta = zram->meta;
808
809 /*
810 * zram manages data in physical block size units. Because logical block
811 * size isn't identical with physical block size on some arch, we
812 * could get a discard request pointing to a specific offset within a
813 * certain physical block. Although we can handle this request by
814 * reading that physiclal block and decompressing and partially zeroing
815 * and re-compressing and then re-storing it, this isn't reasonable
816 * because our intent with a discard request is to save memory. So
817 * skipping this logical block is appropriate here.
818 */
819 if (offset) {
820 if (n <= (PAGE_SIZE - offset))
821 return;
822
823 n -= (PAGE_SIZE - offset);
824 index++;
825 }
826
827 while (n >= PAGE_SIZE) {
828 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
829 zram_free_page(zram, index);
830 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
831 atomic64_inc(&zram->stats.notify_free);
832 index++;
833 n -= PAGE_SIZE;
834 }
835 }
836
837 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
838 int offset, int rw)
839 {
840 unsigned long start_time = jiffies;
841 int ret;
842
843 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
844 &zram->disk->part0);
845
846 if (rw == READ) {
847 atomic64_inc(&zram->stats.num_reads);
848 ret = zram_bvec_read(zram, bvec, index, offset);
849 } else {
850 atomic64_inc(&zram->stats.num_writes);
851 ret = zram_bvec_write(zram, bvec, index, offset);
852 }
853
854 generic_end_io_acct(rw, &zram->disk->part0, start_time);
855
856 if (unlikely(ret)) {
857 if (rw == READ)
858 atomic64_inc(&zram->stats.failed_reads);
859 else
860 atomic64_inc(&zram->stats.failed_writes);
861 }
862
863 return ret;
864 }
865
866 static void __zram_make_request(struct zram *zram, struct bio *bio)
867 {
868 int offset, rw;
869 u32 index;
870 struct bio_vec bvec;
871 struct bvec_iter iter;
872
873 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
874 offset = (bio->bi_iter.bi_sector &
875 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
876
877 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
878 zram_bio_discard(zram, index, offset, bio);
879 bio_endio(bio);
880 return;
881 }
882
883 rw = bio_data_dir(bio);
884 bio_for_each_segment(bvec, bio, iter) {
885 int max_transfer_size = PAGE_SIZE - offset;
886
887 if (bvec.bv_len > max_transfer_size) {
888 /*
889 * zram_bvec_rw() can only make operation on a single
890 * zram page. Split the bio vector.
891 */
892 struct bio_vec bv;
893
894 bv.bv_page = bvec.bv_page;
895 bv.bv_len = max_transfer_size;
896 bv.bv_offset = bvec.bv_offset;
897
898 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
899 goto out;
900
901 bv.bv_len = bvec.bv_len - max_transfer_size;
902 bv.bv_offset += max_transfer_size;
903 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
904 goto out;
905 } else
906 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
907 goto out;
908
909 update_position(&index, &offset, &bvec);
910 }
911
912 bio_endio(bio);
913 return;
914
915 out:
916 bio_io_error(bio);
917 }
918
919 /*
920 * Handler function for all zram I/O requests.
921 */
922 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
923 {
924 struct zram *zram = queue->queuedata;
925
926 if (unlikely(!zram_meta_get(zram)))
927 goto error;
928
929 blk_queue_split(queue, &bio, queue->bio_split);
930
931 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
932 bio->bi_iter.bi_size)) {
933 atomic64_inc(&zram->stats.invalid_io);
934 goto put_zram;
935 }
936
937 __zram_make_request(zram, bio);
938 zram_meta_put(zram);
939 return BLK_QC_T_NONE;
940 put_zram:
941 zram_meta_put(zram);
942 error:
943 bio_io_error(bio);
944 return BLK_QC_T_NONE;
945 }
946
947 static void zram_slot_free_notify(struct block_device *bdev,
948 unsigned long index)
949 {
950 struct zram *zram;
951 struct zram_meta *meta;
952
953 zram = bdev->bd_disk->private_data;
954 meta = zram->meta;
955
956 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
957 zram_free_page(zram, index);
958 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
959 atomic64_inc(&zram->stats.notify_free);
960 }
961
962 static int zram_rw_page(struct block_device *bdev, sector_t sector,
963 struct page *page, int rw)
964 {
965 int offset, err = -EIO;
966 u32 index;
967 struct zram *zram;
968 struct bio_vec bv;
969
970 zram = bdev->bd_disk->private_data;
971 if (unlikely(!zram_meta_get(zram)))
972 goto out;
973
974 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
975 atomic64_inc(&zram->stats.invalid_io);
976 err = -EINVAL;
977 goto put_zram;
978 }
979
980 index = sector >> SECTORS_PER_PAGE_SHIFT;
981 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
982
983 bv.bv_page = page;
984 bv.bv_len = PAGE_SIZE;
985 bv.bv_offset = 0;
986
987 err = zram_bvec_rw(zram, &bv, index, offset, rw);
988 put_zram:
989 zram_meta_put(zram);
990 out:
991 /*
992 * If I/O fails, just return error(ie, non-zero) without
993 * calling page_endio.
994 * It causes resubmit the I/O with bio request by upper functions
995 * of rw_page(e.g., swap_readpage, __swap_writepage) and
996 * bio->bi_end_io does things to handle the error
997 * (e.g., SetPageError, set_page_dirty and extra works).
998 */
999 if (err == 0)
1000 page_endio(page, rw, 0);
1001 return err;
1002 }
1003
1004 static void zram_reset_device(struct zram *zram)
1005 {
1006 struct zram_meta *meta;
1007 struct zcomp *comp;
1008 u64 disksize;
1009
1010 down_write(&zram->init_lock);
1011
1012 zram->limit_pages = 0;
1013
1014 if (!init_done(zram)) {
1015 up_write(&zram->init_lock);
1016 return;
1017 }
1018
1019 meta = zram->meta;
1020 comp = zram->comp;
1021 disksize = zram->disksize;
1022 /*
1023 * Refcount will go down to 0 eventually and r/w handler
1024 * cannot handle further I/O so it will bail out by
1025 * check zram_meta_get.
1026 */
1027 zram_meta_put(zram);
1028 /*
1029 * We want to free zram_meta in process context to avoid
1030 * deadlock between reclaim path and any other locks.
1031 */
1032 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1033
1034 /* Reset stats */
1035 memset(&zram->stats, 0, sizeof(zram->stats));
1036 zram->disksize = 0;
1037
1038 set_capacity(zram->disk, 0);
1039 part_stat_set_all(&zram->disk->part0, 0);
1040
1041 up_write(&zram->init_lock);
1042 /* I/O operation under all of CPU are done so let's free */
1043 zram_meta_free(meta, disksize);
1044 zcomp_destroy(comp);
1045 }
1046
1047 static ssize_t disksize_store(struct device *dev,
1048 struct device_attribute *attr, const char *buf, size_t len)
1049 {
1050 u64 disksize;
1051 struct zcomp *comp;
1052 struct zram_meta *meta;
1053 struct zram *zram = dev_to_zram(dev);
1054 int err;
1055
1056 disksize = memparse(buf, NULL);
1057 if (!disksize)
1058 return -EINVAL;
1059
1060 disksize = PAGE_ALIGN(disksize);
1061 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1062 if (!meta)
1063 return -ENOMEM;
1064
1065 comp = zcomp_create(zram->compressor);
1066 if (IS_ERR(comp)) {
1067 pr_err("Cannot initialise %s compressing backend\n",
1068 zram->compressor);
1069 err = PTR_ERR(comp);
1070 goto out_free_meta;
1071 }
1072
1073 down_write(&zram->init_lock);
1074 if (init_done(zram)) {
1075 pr_info("Cannot change disksize for initialized device\n");
1076 err = -EBUSY;
1077 goto out_destroy_comp;
1078 }
1079
1080 init_waitqueue_head(&zram->io_done);
1081 atomic_set(&zram->refcount, 1);
1082 zram->meta = meta;
1083 zram->comp = comp;
1084 zram->disksize = disksize;
1085 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1086 up_write(&zram->init_lock);
1087
1088 /*
1089 * Revalidate disk out of the init_lock to avoid lockdep splat.
1090 * It's okay because disk's capacity is protected by init_lock
1091 * so that revalidate_disk always sees up-to-date capacity.
1092 */
1093 revalidate_disk(zram->disk);
1094
1095 return len;
1096
1097 out_destroy_comp:
1098 up_write(&zram->init_lock);
1099 zcomp_destroy(comp);
1100 out_free_meta:
1101 zram_meta_free(meta, disksize);
1102 return err;
1103 }
1104
1105 static ssize_t reset_store(struct device *dev,
1106 struct device_attribute *attr, const char *buf, size_t len)
1107 {
1108 int ret;
1109 unsigned short do_reset;
1110 struct zram *zram;
1111 struct block_device *bdev;
1112
1113 ret = kstrtou16(buf, 10, &do_reset);
1114 if (ret)
1115 return ret;
1116
1117 if (!do_reset)
1118 return -EINVAL;
1119
1120 zram = dev_to_zram(dev);
1121 bdev = bdget_disk(zram->disk, 0);
1122 if (!bdev)
1123 return -ENOMEM;
1124
1125 mutex_lock(&bdev->bd_mutex);
1126 /* Do not reset an active device or claimed device */
1127 if (bdev->bd_openers || zram->claim) {
1128 mutex_unlock(&bdev->bd_mutex);
1129 bdput(bdev);
1130 return -EBUSY;
1131 }
1132
1133 /* From now on, anyone can't open /dev/zram[0-9] */
1134 zram->claim = true;
1135 mutex_unlock(&bdev->bd_mutex);
1136
1137 /* Make sure all the pending I/O are finished */
1138 fsync_bdev(bdev);
1139 zram_reset_device(zram);
1140 revalidate_disk(zram->disk);
1141 bdput(bdev);
1142
1143 mutex_lock(&bdev->bd_mutex);
1144 zram->claim = false;
1145 mutex_unlock(&bdev->bd_mutex);
1146
1147 return len;
1148 }
1149
1150 static int zram_open(struct block_device *bdev, fmode_t mode)
1151 {
1152 int ret = 0;
1153 struct zram *zram;
1154
1155 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1156
1157 zram = bdev->bd_disk->private_data;
1158 /* zram was claimed to reset so open request fails */
1159 if (zram->claim)
1160 ret = -EBUSY;
1161
1162 return ret;
1163 }
1164
1165 static const struct block_device_operations zram_devops = {
1166 .open = zram_open,
1167 .swap_slot_free_notify = zram_slot_free_notify,
1168 .rw_page = zram_rw_page,
1169 .owner = THIS_MODULE
1170 };
1171
1172 static DEVICE_ATTR_WO(compact);
1173 static DEVICE_ATTR_RW(disksize);
1174 static DEVICE_ATTR_RO(initstate);
1175 static DEVICE_ATTR_WO(reset);
1176 static DEVICE_ATTR_RO(orig_data_size);
1177 static DEVICE_ATTR_RO(mem_used_total);
1178 static DEVICE_ATTR_RW(mem_limit);
1179 static DEVICE_ATTR_RW(mem_used_max);
1180 static DEVICE_ATTR_RW(max_comp_streams);
1181 static DEVICE_ATTR_RW(comp_algorithm);
1182
1183 static struct attribute *zram_disk_attrs[] = {
1184 &dev_attr_disksize.attr,
1185 &dev_attr_initstate.attr,
1186 &dev_attr_reset.attr,
1187 &dev_attr_num_reads.attr,
1188 &dev_attr_num_writes.attr,
1189 &dev_attr_failed_reads.attr,
1190 &dev_attr_failed_writes.attr,
1191 &dev_attr_compact.attr,
1192 &dev_attr_invalid_io.attr,
1193 &dev_attr_notify_free.attr,
1194 &dev_attr_zero_pages.attr,
1195 &dev_attr_orig_data_size.attr,
1196 &dev_attr_compr_data_size.attr,
1197 &dev_attr_mem_used_total.attr,
1198 &dev_attr_mem_limit.attr,
1199 &dev_attr_mem_used_max.attr,
1200 &dev_attr_max_comp_streams.attr,
1201 &dev_attr_comp_algorithm.attr,
1202 &dev_attr_io_stat.attr,
1203 &dev_attr_mm_stat.attr,
1204 &dev_attr_debug_stat.attr,
1205 NULL,
1206 };
1207
1208 static struct attribute_group zram_disk_attr_group = {
1209 .attrs = zram_disk_attrs,
1210 };
1211
1212 /*
1213 * Allocate and initialize new zram device. the function returns
1214 * '>= 0' device_id upon success, and negative value otherwise.
1215 */
1216 static int zram_add(void)
1217 {
1218 struct zram *zram;
1219 struct request_queue *queue;
1220 int ret, device_id;
1221
1222 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1223 if (!zram)
1224 return -ENOMEM;
1225
1226 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1227 if (ret < 0)
1228 goto out_free_dev;
1229 device_id = ret;
1230
1231 init_rwsem(&zram->init_lock);
1232
1233 queue = blk_alloc_queue(GFP_KERNEL);
1234 if (!queue) {
1235 pr_err("Error allocating disk queue for device %d\n",
1236 device_id);
1237 ret = -ENOMEM;
1238 goto out_free_idr;
1239 }
1240
1241 blk_queue_make_request(queue, zram_make_request);
1242
1243 /* gendisk structure */
1244 zram->disk = alloc_disk(1);
1245 if (!zram->disk) {
1246 pr_err("Error allocating disk structure for device %d\n",
1247 device_id);
1248 ret = -ENOMEM;
1249 goto out_free_queue;
1250 }
1251
1252 zram->disk->major = zram_major;
1253 zram->disk->first_minor = device_id;
1254 zram->disk->fops = &zram_devops;
1255 zram->disk->queue = queue;
1256 zram->disk->queue->queuedata = zram;
1257 zram->disk->private_data = zram;
1258 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1259
1260 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1261 set_capacity(zram->disk, 0);
1262 /* zram devices sort of resembles non-rotational disks */
1263 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1264 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1265 /*
1266 * To ensure that we always get PAGE_SIZE aligned
1267 * and n*PAGE_SIZED sized I/O requests.
1268 */
1269 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1270 blk_queue_logical_block_size(zram->disk->queue,
1271 ZRAM_LOGICAL_BLOCK_SIZE);
1272 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1273 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1274 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1275 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1276 /*
1277 * zram_bio_discard() will clear all logical blocks if logical block
1278 * size is identical with physical block size(PAGE_SIZE). But if it is
1279 * different, we will skip discarding some parts of logical blocks in
1280 * the part of the request range which isn't aligned to physical block
1281 * size. So we can't ensure that all discarded logical blocks are
1282 * zeroed.
1283 */
1284 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1285 zram->disk->queue->limits.discard_zeroes_data = 1;
1286 else
1287 zram->disk->queue->limits.discard_zeroes_data = 0;
1288 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1289
1290 add_disk(zram->disk);
1291
1292 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1293 &zram_disk_attr_group);
1294 if (ret < 0) {
1295 pr_err("Error creating sysfs group for device %d\n",
1296 device_id);
1297 goto out_free_disk;
1298 }
1299 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1300 zram->meta = NULL;
1301
1302 pr_info("Added device: %s\n", zram->disk->disk_name);
1303 return device_id;
1304
1305 out_free_disk:
1306 del_gendisk(zram->disk);
1307 put_disk(zram->disk);
1308 out_free_queue:
1309 blk_cleanup_queue(queue);
1310 out_free_idr:
1311 idr_remove(&zram_index_idr, device_id);
1312 out_free_dev:
1313 kfree(zram);
1314 return ret;
1315 }
1316
1317 static int zram_remove(struct zram *zram)
1318 {
1319 struct block_device *bdev;
1320
1321 bdev = bdget_disk(zram->disk, 0);
1322 if (!bdev)
1323 return -ENOMEM;
1324
1325 mutex_lock(&bdev->bd_mutex);
1326 if (bdev->bd_openers || zram->claim) {
1327 mutex_unlock(&bdev->bd_mutex);
1328 bdput(bdev);
1329 return -EBUSY;
1330 }
1331
1332 zram->claim = true;
1333 mutex_unlock(&bdev->bd_mutex);
1334
1335 /*
1336 * Remove sysfs first, so no one will perform a disksize
1337 * store while we destroy the devices. This also helps during
1338 * hot_remove -- zram_reset_device() is the last holder of
1339 * ->init_lock, no later/concurrent disksize_store() or any
1340 * other sysfs handlers are possible.
1341 */
1342 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1343 &zram_disk_attr_group);
1344
1345 /* Make sure all the pending I/O are finished */
1346 fsync_bdev(bdev);
1347 zram_reset_device(zram);
1348 bdput(bdev);
1349
1350 pr_info("Removed device: %s\n", zram->disk->disk_name);
1351
1352 blk_cleanup_queue(zram->disk->queue);
1353 del_gendisk(zram->disk);
1354 put_disk(zram->disk);
1355 kfree(zram);
1356 return 0;
1357 }
1358
1359 /* zram-control sysfs attributes */
1360 static ssize_t hot_add_show(struct class *class,
1361 struct class_attribute *attr,
1362 char *buf)
1363 {
1364 int ret;
1365
1366 mutex_lock(&zram_index_mutex);
1367 ret = zram_add();
1368 mutex_unlock(&zram_index_mutex);
1369
1370 if (ret < 0)
1371 return ret;
1372 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1373 }
1374
1375 static ssize_t hot_remove_store(struct class *class,
1376 struct class_attribute *attr,
1377 const char *buf,
1378 size_t count)
1379 {
1380 struct zram *zram;
1381 int ret, dev_id;
1382
1383 /* dev_id is gendisk->first_minor, which is `int' */
1384 ret = kstrtoint(buf, 10, &dev_id);
1385 if (ret)
1386 return ret;
1387 if (dev_id < 0)
1388 return -EINVAL;
1389
1390 mutex_lock(&zram_index_mutex);
1391
1392 zram = idr_find(&zram_index_idr, dev_id);
1393 if (zram) {
1394 ret = zram_remove(zram);
1395 idr_remove(&zram_index_idr, dev_id);
1396 } else {
1397 ret = -ENODEV;
1398 }
1399
1400 mutex_unlock(&zram_index_mutex);
1401 return ret ? ret : count;
1402 }
1403
1404 static struct class_attribute zram_control_class_attrs[] = {
1405 __ATTR_RO(hot_add),
1406 __ATTR_WO(hot_remove),
1407 __ATTR_NULL,
1408 };
1409
1410 static struct class zram_control_class = {
1411 .name = "zram-control",
1412 .owner = THIS_MODULE,
1413 .class_attrs = zram_control_class_attrs,
1414 };
1415
1416 static int zram_remove_cb(int id, void *ptr, void *data)
1417 {
1418 zram_remove(ptr);
1419 return 0;
1420 }
1421
1422 static void destroy_devices(void)
1423 {
1424 class_unregister(&zram_control_class);
1425 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1426 idr_destroy(&zram_index_idr);
1427 unregister_blkdev(zram_major, "zram");
1428 }
1429
1430 static int __init zram_init(void)
1431 {
1432 int ret;
1433
1434 ret = class_register(&zram_control_class);
1435 if (ret) {
1436 pr_err("Unable to register zram-control class\n");
1437 return ret;
1438 }
1439
1440 zram_major = register_blkdev(0, "zram");
1441 if (zram_major <= 0) {
1442 pr_err("Unable to get major number\n");
1443 class_unregister(&zram_control_class);
1444 return -EBUSY;
1445 }
1446
1447 while (num_devices != 0) {
1448 mutex_lock(&zram_index_mutex);
1449 ret = zram_add();
1450 mutex_unlock(&zram_index_mutex);
1451 if (ret < 0)
1452 goto out_error;
1453 num_devices--;
1454 }
1455
1456 return 0;
1457
1458 out_error:
1459 destroy_devices();
1460 return ret;
1461 }
1462
1463 static void __exit zram_exit(void)
1464 {
1465 destroy_devices();
1466 }
1467
1468 module_init(zram_init);
1469 module_exit(zram_exit);
1470
1471 module_param(num_devices, uint, 0);
1472 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1473
1474 MODULE_LICENSE("Dual BSD/GPL");
1475 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1476 MODULE_DESCRIPTION("Compressed RAM Block Device");