]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
zram: use crypto api to check alg availability
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name) \
56 static ssize_t name##_show(struct device *d, \
57 struct device_attribute *attr, char *b) \
58 { \
59 struct zram *zram = dev_to_zram(d); \
60 \
61 deprecated_attr_warn(__stringify(name)); \
62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
63 (u64)atomic64_read(&zram->stats.name)); \
64 } \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69 return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
80 {
81 return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86 {
87 meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92 {
93 meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
103 {
104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline bool is_partial_io(struct bio_vec *bvec)
110 {
111 return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
117 static inline bool valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
119 {
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return false;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return false;
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return false;
133
134 /* I/O request is valid */
135 return true;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147 {
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158 }
159
160 static bool page_zero_filled(void *ptr)
161 {
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
169 return false;
170 }
171
172 return true;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 u32 val;
194 struct zram *zram = dev_to_zram(dev);
195
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
199
200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205 {
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 struct zram *zram = dev_to_zram(dev);
215
216 deprecated_attr_warn("orig_data_size");
217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
226
227 deprecated_attr_warn("mem_used_total");
228 down_read(&zram->init_lock);
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
231 val = zs_get_total_pages(meta->mem_pool);
232 }
233 up_read(&zram->init_lock);
234
235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240 {
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
244 deprecated_attr_warn("mem_limit");
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254 {
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272 {
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
276 deprecated_attr_warn("mem_used_max");
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287 {
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
301 }
302 up_read(&zram->init_lock);
303
304 return len;
305 }
306
307 /*
308 * We switched to per-cpu streams and this attr is not needed anymore.
309 * However, we will keep it around for some time, because:
310 * a) we may revert per-cpu streams in the future
311 * b) it's visible to user space and we need to follow our 2 years
312 * retirement rule; but we already have a number of 'soon to be
313 * altered' attrs, so max_comp_streams need to wait for the next
314 * layoff cycle.
315 */
316 static ssize_t max_comp_streams_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
320 }
321
322 static ssize_t max_comp_streams_store(struct device *dev,
323 struct device_attribute *attr, const char *buf, size_t len)
324 {
325 return len;
326 }
327
328 static ssize_t comp_algorithm_show(struct device *dev,
329 struct device_attribute *attr, char *buf)
330 {
331 size_t sz;
332 struct zram *zram = dev_to_zram(dev);
333
334 down_read(&zram->init_lock);
335 sz = zcomp_available_show(zram->compressor, buf);
336 up_read(&zram->init_lock);
337
338 return sz;
339 }
340
341 static ssize_t comp_algorithm_store(struct device *dev,
342 struct device_attribute *attr, const char *buf, size_t len)
343 {
344 struct zram *zram = dev_to_zram(dev);
345 char compressor[CRYPTO_MAX_ALG_NAME];
346 size_t sz;
347
348 strlcpy(compressor, buf, sizeof(compressor));
349 /* ignore trailing newline */
350 sz = strlen(compressor);
351 if (sz > 0 && compressor[sz - 1] == '\n')
352 compressor[sz - 1] = 0x00;
353
354 if (!zcomp_available_algorithm(compressor))
355 return -EINVAL;
356
357 down_write(&zram->init_lock);
358 if (init_done(zram)) {
359 up_write(&zram->init_lock);
360 pr_info("Can't change algorithm for initialized device\n");
361 return -EBUSY;
362 }
363
364 strlcpy(zram->compressor, compressor, sizeof(compressor));
365 up_write(&zram->init_lock);
366 return len;
367 }
368
369 static ssize_t compact_store(struct device *dev,
370 struct device_attribute *attr, const char *buf, size_t len)
371 {
372 struct zram *zram = dev_to_zram(dev);
373 struct zram_meta *meta;
374
375 down_read(&zram->init_lock);
376 if (!init_done(zram)) {
377 up_read(&zram->init_lock);
378 return -EINVAL;
379 }
380
381 meta = zram->meta;
382 zs_compact(meta->mem_pool);
383 up_read(&zram->init_lock);
384
385 return len;
386 }
387
388 static ssize_t io_stat_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 struct zram *zram = dev_to_zram(dev);
392 ssize_t ret;
393
394 down_read(&zram->init_lock);
395 ret = scnprintf(buf, PAGE_SIZE,
396 "%8llu %8llu %8llu %8llu\n",
397 (u64)atomic64_read(&zram->stats.failed_reads),
398 (u64)atomic64_read(&zram->stats.failed_writes),
399 (u64)atomic64_read(&zram->stats.invalid_io),
400 (u64)atomic64_read(&zram->stats.notify_free));
401 up_read(&zram->init_lock);
402
403 return ret;
404 }
405
406 static ssize_t mm_stat_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
408 {
409 struct zram *zram = dev_to_zram(dev);
410 struct zs_pool_stats pool_stats;
411 u64 orig_size, mem_used = 0;
412 long max_used;
413 ssize_t ret;
414
415 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
416
417 down_read(&zram->init_lock);
418 if (init_done(zram)) {
419 mem_used = zs_get_total_pages(zram->meta->mem_pool);
420 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
421 }
422
423 orig_size = atomic64_read(&zram->stats.pages_stored);
424 max_used = atomic_long_read(&zram->stats.max_used_pages);
425
426 ret = scnprintf(buf, PAGE_SIZE,
427 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
428 orig_size << PAGE_SHIFT,
429 (u64)atomic64_read(&zram->stats.compr_data_size),
430 mem_used << PAGE_SHIFT,
431 zram->limit_pages << PAGE_SHIFT,
432 max_used << PAGE_SHIFT,
433 (u64)atomic64_read(&zram->stats.zero_pages),
434 pool_stats.pages_compacted);
435 up_read(&zram->init_lock);
436
437 return ret;
438 }
439
440 static ssize_t debug_stat_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
442 {
443 int version = 1;
444 struct zram *zram = dev_to_zram(dev);
445 ssize_t ret;
446
447 down_read(&zram->init_lock);
448 ret = scnprintf(buf, PAGE_SIZE,
449 "version: %d\n%8llu\n",
450 version,
451 (u64)atomic64_read(&zram->stats.writestall));
452 up_read(&zram->init_lock);
453
454 return ret;
455 }
456
457 static DEVICE_ATTR_RO(io_stat);
458 static DEVICE_ATTR_RO(mm_stat);
459 static DEVICE_ATTR_RO(debug_stat);
460 ZRAM_ATTR_RO(num_reads);
461 ZRAM_ATTR_RO(num_writes);
462 ZRAM_ATTR_RO(failed_reads);
463 ZRAM_ATTR_RO(failed_writes);
464 ZRAM_ATTR_RO(invalid_io);
465 ZRAM_ATTR_RO(notify_free);
466 ZRAM_ATTR_RO(zero_pages);
467 ZRAM_ATTR_RO(compr_data_size);
468
469 static inline bool zram_meta_get(struct zram *zram)
470 {
471 if (atomic_inc_not_zero(&zram->refcount))
472 return true;
473 return false;
474 }
475
476 static inline void zram_meta_put(struct zram *zram)
477 {
478 atomic_dec(&zram->refcount);
479 }
480
481 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
482 {
483 size_t num_pages = disksize >> PAGE_SHIFT;
484 size_t index;
485
486 /* Free all pages that are still in this zram device */
487 for (index = 0; index < num_pages; index++) {
488 unsigned long handle = meta->table[index].handle;
489
490 if (!handle)
491 continue;
492
493 zs_free(meta->mem_pool, handle);
494 }
495
496 zs_destroy_pool(meta->mem_pool);
497 vfree(meta->table);
498 kfree(meta);
499 }
500
501 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
502 {
503 size_t num_pages;
504 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
505
506 if (!meta)
507 return NULL;
508
509 num_pages = disksize >> PAGE_SHIFT;
510 meta->table = vzalloc(num_pages * sizeof(*meta->table));
511 if (!meta->table) {
512 pr_err("Error allocating zram address table\n");
513 goto out_error;
514 }
515
516 meta->mem_pool = zs_create_pool(pool_name);
517 if (!meta->mem_pool) {
518 pr_err("Error creating memory pool\n");
519 goto out_error;
520 }
521
522 return meta;
523
524 out_error:
525 vfree(meta->table);
526 kfree(meta);
527 return NULL;
528 }
529
530 /*
531 * To protect concurrent access to the same index entry,
532 * caller should hold this table index entry's bit_spinlock to
533 * indicate this index entry is accessing.
534 */
535 static void zram_free_page(struct zram *zram, size_t index)
536 {
537 struct zram_meta *meta = zram->meta;
538 unsigned long handle = meta->table[index].handle;
539
540 if (unlikely(!handle)) {
541 /*
542 * No memory is allocated for zero filled pages.
543 * Simply clear zero page flag.
544 */
545 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546 zram_clear_flag(meta, index, ZRAM_ZERO);
547 atomic64_dec(&zram->stats.zero_pages);
548 }
549 return;
550 }
551
552 zs_free(meta->mem_pool, handle);
553
554 atomic64_sub(zram_get_obj_size(meta, index),
555 &zram->stats.compr_data_size);
556 atomic64_dec(&zram->stats.pages_stored);
557
558 meta->table[index].handle = 0;
559 zram_set_obj_size(meta, index, 0);
560 }
561
562 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
563 {
564 int ret = 0;
565 unsigned char *cmem;
566 struct zram_meta *meta = zram->meta;
567 unsigned long handle;
568 unsigned int size;
569
570 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
571 handle = meta->table[index].handle;
572 size = zram_get_obj_size(meta, index);
573
574 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
575 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
576 clear_page(mem);
577 return 0;
578 }
579
580 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
581 if (size == PAGE_SIZE) {
582 copy_page(mem, cmem);
583 } else {
584 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
585
586 ret = zcomp_decompress(zstrm, cmem, size, mem);
587 zcomp_stream_put(zram->comp);
588 }
589 zs_unmap_object(meta->mem_pool, handle);
590 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
591
592 /* Should NEVER happen. Return bio error if it does. */
593 if (unlikely(ret)) {
594 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
595 return ret;
596 }
597
598 return 0;
599 }
600
601 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
602 u32 index, int offset)
603 {
604 int ret;
605 struct page *page;
606 unsigned char *user_mem, *uncmem = NULL;
607 struct zram_meta *meta = zram->meta;
608 page = bvec->bv_page;
609
610 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
611 if (unlikely(!meta->table[index].handle) ||
612 zram_test_flag(meta, index, ZRAM_ZERO)) {
613 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
614 handle_zero_page(bvec);
615 return 0;
616 }
617 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
618
619 if (is_partial_io(bvec))
620 /* Use a temporary buffer to decompress the page */
621 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
622
623 user_mem = kmap_atomic(page);
624 if (!is_partial_io(bvec))
625 uncmem = user_mem;
626
627 if (!uncmem) {
628 pr_err("Unable to allocate temp memory\n");
629 ret = -ENOMEM;
630 goto out_cleanup;
631 }
632
633 ret = zram_decompress_page(zram, uncmem, index);
634 /* Should NEVER happen. Return bio error if it does. */
635 if (unlikely(ret))
636 goto out_cleanup;
637
638 if (is_partial_io(bvec))
639 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
640 bvec->bv_len);
641
642 flush_dcache_page(page);
643 ret = 0;
644 out_cleanup:
645 kunmap_atomic(user_mem);
646 if (is_partial_io(bvec))
647 kfree(uncmem);
648 return ret;
649 }
650
651 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
652 int offset)
653 {
654 int ret = 0;
655 unsigned int clen;
656 unsigned long handle = 0;
657 struct page *page;
658 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
659 struct zram_meta *meta = zram->meta;
660 struct zcomp_strm *zstrm = NULL;
661 unsigned long alloced_pages;
662
663 page = bvec->bv_page;
664 if (is_partial_io(bvec)) {
665 /*
666 * This is a partial IO. We need to read the full page
667 * before to write the changes.
668 */
669 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
670 if (!uncmem) {
671 ret = -ENOMEM;
672 goto out;
673 }
674 ret = zram_decompress_page(zram, uncmem, index);
675 if (ret)
676 goto out;
677 }
678
679 compress_again:
680 user_mem = kmap_atomic(page);
681 if (is_partial_io(bvec)) {
682 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
683 bvec->bv_len);
684 kunmap_atomic(user_mem);
685 user_mem = NULL;
686 } else {
687 uncmem = user_mem;
688 }
689
690 if (page_zero_filled(uncmem)) {
691 if (user_mem)
692 kunmap_atomic(user_mem);
693 /* Free memory associated with this sector now. */
694 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
695 zram_free_page(zram, index);
696 zram_set_flag(meta, index, ZRAM_ZERO);
697 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
698
699 atomic64_inc(&zram->stats.zero_pages);
700 ret = 0;
701 goto out;
702 }
703
704 zstrm = zcomp_stream_get(zram->comp);
705 ret = zcomp_compress(zstrm, uncmem, &clen);
706 if (!is_partial_io(bvec)) {
707 kunmap_atomic(user_mem);
708 user_mem = NULL;
709 uncmem = NULL;
710 }
711
712 if (unlikely(ret)) {
713 pr_err("Compression failed! err=%d\n", ret);
714 goto out;
715 }
716
717 src = zstrm->buffer;
718 if (unlikely(clen > max_zpage_size)) {
719 clen = PAGE_SIZE;
720 if (is_partial_io(bvec))
721 src = uncmem;
722 }
723
724 /*
725 * handle allocation has 2 paths:
726 * a) fast path is executed with preemption disabled (for
727 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
728 * since we can't sleep;
729 * b) slow path enables preemption and attempts to allocate
730 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
731 * put per-cpu compression stream and, thus, to re-do
732 * the compression once handle is allocated.
733 *
734 * if we have a 'non-null' handle here then we are coming
735 * from the slow path and handle has already been allocated.
736 */
737 if (!handle)
738 handle = zs_malloc(meta->mem_pool, clen,
739 __GFP_KSWAPD_RECLAIM |
740 __GFP_NOWARN |
741 __GFP_HIGHMEM);
742 if (!handle) {
743 zcomp_stream_put(zram->comp);
744 zstrm = NULL;
745
746 atomic64_inc(&zram->stats.writestall);
747
748 handle = zs_malloc(meta->mem_pool, clen,
749 GFP_NOIO | __GFP_HIGHMEM);
750 if (handle)
751 goto compress_again;
752
753 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
754 index, clen);
755 ret = -ENOMEM;
756 goto out;
757 }
758
759 alloced_pages = zs_get_total_pages(meta->mem_pool);
760 update_used_max(zram, alloced_pages);
761
762 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
763 zs_free(meta->mem_pool, handle);
764 ret = -ENOMEM;
765 goto out;
766 }
767
768 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
769
770 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
771 src = kmap_atomic(page);
772 copy_page(cmem, src);
773 kunmap_atomic(src);
774 } else {
775 memcpy(cmem, src, clen);
776 }
777
778 zcomp_stream_put(zram->comp);
779 zstrm = NULL;
780 zs_unmap_object(meta->mem_pool, handle);
781
782 /*
783 * Free memory associated with this sector
784 * before overwriting unused sectors.
785 */
786 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
787 zram_free_page(zram, index);
788
789 meta->table[index].handle = handle;
790 zram_set_obj_size(meta, index, clen);
791 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
792
793 /* Update stats */
794 atomic64_add(clen, &zram->stats.compr_data_size);
795 atomic64_inc(&zram->stats.pages_stored);
796 out:
797 if (zstrm)
798 zcomp_stream_put(zram->comp);
799 if (is_partial_io(bvec))
800 kfree(uncmem);
801 return ret;
802 }
803
804 /*
805 * zram_bio_discard - handler on discard request
806 * @index: physical block index in PAGE_SIZE units
807 * @offset: byte offset within physical block
808 */
809 static void zram_bio_discard(struct zram *zram, u32 index,
810 int offset, struct bio *bio)
811 {
812 size_t n = bio->bi_iter.bi_size;
813 struct zram_meta *meta = zram->meta;
814
815 /*
816 * zram manages data in physical block size units. Because logical block
817 * size isn't identical with physical block size on some arch, we
818 * could get a discard request pointing to a specific offset within a
819 * certain physical block. Although we can handle this request by
820 * reading that physiclal block and decompressing and partially zeroing
821 * and re-compressing and then re-storing it, this isn't reasonable
822 * because our intent with a discard request is to save memory. So
823 * skipping this logical block is appropriate here.
824 */
825 if (offset) {
826 if (n <= (PAGE_SIZE - offset))
827 return;
828
829 n -= (PAGE_SIZE - offset);
830 index++;
831 }
832
833 while (n >= PAGE_SIZE) {
834 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
835 zram_free_page(zram, index);
836 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
837 atomic64_inc(&zram->stats.notify_free);
838 index++;
839 n -= PAGE_SIZE;
840 }
841 }
842
843 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
844 int offset, int rw)
845 {
846 unsigned long start_time = jiffies;
847 int ret;
848
849 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
850 &zram->disk->part0);
851
852 if (rw == READ) {
853 atomic64_inc(&zram->stats.num_reads);
854 ret = zram_bvec_read(zram, bvec, index, offset);
855 } else {
856 atomic64_inc(&zram->stats.num_writes);
857 ret = zram_bvec_write(zram, bvec, index, offset);
858 }
859
860 generic_end_io_acct(rw, &zram->disk->part0, start_time);
861
862 if (unlikely(ret)) {
863 if (rw == READ)
864 atomic64_inc(&zram->stats.failed_reads);
865 else
866 atomic64_inc(&zram->stats.failed_writes);
867 }
868
869 return ret;
870 }
871
872 static void __zram_make_request(struct zram *zram, struct bio *bio)
873 {
874 int offset, rw;
875 u32 index;
876 struct bio_vec bvec;
877 struct bvec_iter iter;
878
879 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
880 offset = (bio->bi_iter.bi_sector &
881 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
882
883 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
884 zram_bio_discard(zram, index, offset, bio);
885 bio_endio(bio);
886 return;
887 }
888
889 rw = bio_data_dir(bio);
890 bio_for_each_segment(bvec, bio, iter) {
891 int max_transfer_size = PAGE_SIZE - offset;
892
893 if (bvec.bv_len > max_transfer_size) {
894 /*
895 * zram_bvec_rw() can only make operation on a single
896 * zram page. Split the bio vector.
897 */
898 struct bio_vec bv;
899
900 bv.bv_page = bvec.bv_page;
901 bv.bv_len = max_transfer_size;
902 bv.bv_offset = bvec.bv_offset;
903
904 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
905 goto out;
906
907 bv.bv_len = bvec.bv_len - max_transfer_size;
908 bv.bv_offset += max_transfer_size;
909 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
910 goto out;
911 } else
912 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
913 goto out;
914
915 update_position(&index, &offset, &bvec);
916 }
917
918 bio_endio(bio);
919 return;
920
921 out:
922 bio_io_error(bio);
923 }
924
925 /*
926 * Handler function for all zram I/O requests.
927 */
928 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
929 {
930 struct zram *zram = queue->queuedata;
931
932 if (unlikely(!zram_meta_get(zram)))
933 goto error;
934
935 blk_queue_split(queue, &bio, queue->bio_split);
936
937 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
938 bio->bi_iter.bi_size)) {
939 atomic64_inc(&zram->stats.invalid_io);
940 goto put_zram;
941 }
942
943 __zram_make_request(zram, bio);
944 zram_meta_put(zram);
945 return BLK_QC_T_NONE;
946 put_zram:
947 zram_meta_put(zram);
948 error:
949 bio_io_error(bio);
950 return BLK_QC_T_NONE;
951 }
952
953 static void zram_slot_free_notify(struct block_device *bdev,
954 unsigned long index)
955 {
956 struct zram *zram;
957 struct zram_meta *meta;
958
959 zram = bdev->bd_disk->private_data;
960 meta = zram->meta;
961
962 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
963 zram_free_page(zram, index);
964 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
965 atomic64_inc(&zram->stats.notify_free);
966 }
967
968 static int zram_rw_page(struct block_device *bdev, sector_t sector,
969 struct page *page, int rw)
970 {
971 int offset, err = -EIO;
972 u32 index;
973 struct zram *zram;
974 struct bio_vec bv;
975
976 zram = bdev->bd_disk->private_data;
977 if (unlikely(!zram_meta_get(zram)))
978 goto out;
979
980 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
981 atomic64_inc(&zram->stats.invalid_io);
982 err = -EINVAL;
983 goto put_zram;
984 }
985
986 index = sector >> SECTORS_PER_PAGE_SHIFT;
987 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
988
989 bv.bv_page = page;
990 bv.bv_len = PAGE_SIZE;
991 bv.bv_offset = 0;
992
993 err = zram_bvec_rw(zram, &bv, index, offset, rw);
994 put_zram:
995 zram_meta_put(zram);
996 out:
997 /*
998 * If I/O fails, just return error(ie, non-zero) without
999 * calling page_endio.
1000 * It causes resubmit the I/O with bio request by upper functions
1001 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1002 * bio->bi_end_io does things to handle the error
1003 * (e.g., SetPageError, set_page_dirty and extra works).
1004 */
1005 if (err == 0)
1006 page_endio(page, rw, 0);
1007 return err;
1008 }
1009
1010 static void zram_reset_device(struct zram *zram)
1011 {
1012 struct zram_meta *meta;
1013 struct zcomp *comp;
1014 u64 disksize;
1015
1016 down_write(&zram->init_lock);
1017
1018 zram->limit_pages = 0;
1019
1020 if (!init_done(zram)) {
1021 up_write(&zram->init_lock);
1022 return;
1023 }
1024
1025 meta = zram->meta;
1026 comp = zram->comp;
1027 disksize = zram->disksize;
1028 /*
1029 * Refcount will go down to 0 eventually and r/w handler
1030 * cannot handle further I/O so it will bail out by
1031 * check zram_meta_get.
1032 */
1033 zram_meta_put(zram);
1034 /*
1035 * We want to free zram_meta in process context to avoid
1036 * deadlock between reclaim path and any other locks.
1037 */
1038 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1039
1040 /* Reset stats */
1041 memset(&zram->stats, 0, sizeof(zram->stats));
1042 zram->disksize = 0;
1043
1044 set_capacity(zram->disk, 0);
1045 part_stat_set_all(&zram->disk->part0, 0);
1046
1047 up_write(&zram->init_lock);
1048 /* I/O operation under all of CPU are done so let's free */
1049 zram_meta_free(meta, disksize);
1050 zcomp_destroy(comp);
1051 }
1052
1053 static ssize_t disksize_store(struct device *dev,
1054 struct device_attribute *attr, const char *buf, size_t len)
1055 {
1056 u64 disksize;
1057 struct zcomp *comp;
1058 struct zram_meta *meta;
1059 struct zram *zram = dev_to_zram(dev);
1060 int err;
1061
1062 disksize = memparse(buf, NULL);
1063 if (!disksize)
1064 return -EINVAL;
1065
1066 disksize = PAGE_ALIGN(disksize);
1067 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1068 if (!meta)
1069 return -ENOMEM;
1070
1071 comp = zcomp_create(zram->compressor);
1072 if (IS_ERR(comp)) {
1073 pr_err("Cannot initialise %s compressing backend\n",
1074 zram->compressor);
1075 err = PTR_ERR(comp);
1076 goto out_free_meta;
1077 }
1078
1079 down_write(&zram->init_lock);
1080 if (init_done(zram)) {
1081 pr_info("Cannot change disksize for initialized device\n");
1082 err = -EBUSY;
1083 goto out_destroy_comp;
1084 }
1085
1086 init_waitqueue_head(&zram->io_done);
1087 atomic_set(&zram->refcount, 1);
1088 zram->meta = meta;
1089 zram->comp = comp;
1090 zram->disksize = disksize;
1091 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1092 up_write(&zram->init_lock);
1093
1094 /*
1095 * Revalidate disk out of the init_lock to avoid lockdep splat.
1096 * It's okay because disk's capacity is protected by init_lock
1097 * so that revalidate_disk always sees up-to-date capacity.
1098 */
1099 revalidate_disk(zram->disk);
1100
1101 return len;
1102
1103 out_destroy_comp:
1104 up_write(&zram->init_lock);
1105 zcomp_destroy(comp);
1106 out_free_meta:
1107 zram_meta_free(meta, disksize);
1108 return err;
1109 }
1110
1111 static ssize_t reset_store(struct device *dev,
1112 struct device_attribute *attr, const char *buf, size_t len)
1113 {
1114 int ret;
1115 unsigned short do_reset;
1116 struct zram *zram;
1117 struct block_device *bdev;
1118
1119 ret = kstrtou16(buf, 10, &do_reset);
1120 if (ret)
1121 return ret;
1122
1123 if (!do_reset)
1124 return -EINVAL;
1125
1126 zram = dev_to_zram(dev);
1127 bdev = bdget_disk(zram->disk, 0);
1128 if (!bdev)
1129 return -ENOMEM;
1130
1131 mutex_lock(&bdev->bd_mutex);
1132 /* Do not reset an active device or claimed device */
1133 if (bdev->bd_openers || zram->claim) {
1134 mutex_unlock(&bdev->bd_mutex);
1135 bdput(bdev);
1136 return -EBUSY;
1137 }
1138
1139 /* From now on, anyone can't open /dev/zram[0-9] */
1140 zram->claim = true;
1141 mutex_unlock(&bdev->bd_mutex);
1142
1143 /* Make sure all the pending I/O are finished */
1144 fsync_bdev(bdev);
1145 zram_reset_device(zram);
1146 revalidate_disk(zram->disk);
1147 bdput(bdev);
1148
1149 mutex_lock(&bdev->bd_mutex);
1150 zram->claim = false;
1151 mutex_unlock(&bdev->bd_mutex);
1152
1153 return len;
1154 }
1155
1156 static int zram_open(struct block_device *bdev, fmode_t mode)
1157 {
1158 int ret = 0;
1159 struct zram *zram;
1160
1161 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1162
1163 zram = bdev->bd_disk->private_data;
1164 /* zram was claimed to reset so open request fails */
1165 if (zram->claim)
1166 ret = -EBUSY;
1167
1168 return ret;
1169 }
1170
1171 static const struct block_device_operations zram_devops = {
1172 .open = zram_open,
1173 .swap_slot_free_notify = zram_slot_free_notify,
1174 .rw_page = zram_rw_page,
1175 .owner = THIS_MODULE
1176 };
1177
1178 static DEVICE_ATTR_WO(compact);
1179 static DEVICE_ATTR_RW(disksize);
1180 static DEVICE_ATTR_RO(initstate);
1181 static DEVICE_ATTR_WO(reset);
1182 static DEVICE_ATTR_RO(orig_data_size);
1183 static DEVICE_ATTR_RO(mem_used_total);
1184 static DEVICE_ATTR_RW(mem_limit);
1185 static DEVICE_ATTR_RW(mem_used_max);
1186 static DEVICE_ATTR_RW(max_comp_streams);
1187 static DEVICE_ATTR_RW(comp_algorithm);
1188
1189 static struct attribute *zram_disk_attrs[] = {
1190 &dev_attr_disksize.attr,
1191 &dev_attr_initstate.attr,
1192 &dev_attr_reset.attr,
1193 &dev_attr_num_reads.attr,
1194 &dev_attr_num_writes.attr,
1195 &dev_attr_failed_reads.attr,
1196 &dev_attr_failed_writes.attr,
1197 &dev_attr_compact.attr,
1198 &dev_attr_invalid_io.attr,
1199 &dev_attr_notify_free.attr,
1200 &dev_attr_zero_pages.attr,
1201 &dev_attr_orig_data_size.attr,
1202 &dev_attr_compr_data_size.attr,
1203 &dev_attr_mem_used_total.attr,
1204 &dev_attr_mem_limit.attr,
1205 &dev_attr_mem_used_max.attr,
1206 &dev_attr_max_comp_streams.attr,
1207 &dev_attr_comp_algorithm.attr,
1208 &dev_attr_io_stat.attr,
1209 &dev_attr_mm_stat.attr,
1210 &dev_attr_debug_stat.attr,
1211 NULL,
1212 };
1213
1214 static struct attribute_group zram_disk_attr_group = {
1215 .attrs = zram_disk_attrs,
1216 };
1217
1218 /*
1219 * Allocate and initialize new zram device. the function returns
1220 * '>= 0' device_id upon success, and negative value otherwise.
1221 */
1222 static int zram_add(void)
1223 {
1224 struct zram *zram;
1225 struct request_queue *queue;
1226 int ret, device_id;
1227
1228 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1229 if (!zram)
1230 return -ENOMEM;
1231
1232 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1233 if (ret < 0)
1234 goto out_free_dev;
1235 device_id = ret;
1236
1237 init_rwsem(&zram->init_lock);
1238
1239 queue = blk_alloc_queue(GFP_KERNEL);
1240 if (!queue) {
1241 pr_err("Error allocating disk queue for device %d\n",
1242 device_id);
1243 ret = -ENOMEM;
1244 goto out_free_idr;
1245 }
1246
1247 blk_queue_make_request(queue, zram_make_request);
1248
1249 /* gendisk structure */
1250 zram->disk = alloc_disk(1);
1251 if (!zram->disk) {
1252 pr_err("Error allocating disk structure for device %d\n",
1253 device_id);
1254 ret = -ENOMEM;
1255 goto out_free_queue;
1256 }
1257
1258 zram->disk->major = zram_major;
1259 zram->disk->first_minor = device_id;
1260 zram->disk->fops = &zram_devops;
1261 zram->disk->queue = queue;
1262 zram->disk->queue->queuedata = zram;
1263 zram->disk->private_data = zram;
1264 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1265
1266 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1267 set_capacity(zram->disk, 0);
1268 /* zram devices sort of resembles non-rotational disks */
1269 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1270 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1271 /*
1272 * To ensure that we always get PAGE_SIZE aligned
1273 * and n*PAGE_SIZED sized I/O requests.
1274 */
1275 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1276 blk_queue_logical_block_size(zram->disk->queue,
1277 ZRAM_LOGICAL_BLOCK_SIZE);
1278 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1279 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1280 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1281 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1282 /*
1283 * zram_bio_discard() will clear all logical blocks if logical block
1284 * size is identical with physical block size(PAGE_SIZE). But if it is
1285 * different, we will skip discarding some parts of logical blocks in
1286 * the part of the request range which isn't aligned to physical block
1287 * size. So we can't ensure that all discarded logical blocks are
1288 * zeroed.
1289 */
1290 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1291 zram->disk->queue->limits.discard_zeroes_data = 1;
1292 else
1293 zram->disk->queue->limits.discard_zeroes_data = 0;
1294 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1295
1296 add_disk(zram->disk);
1297
1298 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1299 &zram_disk_attr_group);
1300 if (ret < 0) {
1301 pr_err("Error creating sysfs group for device %d\n",
1302 device_id);
1303 goto out_free_disk;
1304 }
1305 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1306 zram->meta = NULL;
1307
1308 pr_info("Added device: %s\n", zram->disk->disk_name);
1309 return device_id;
1310
1311 out_free_disk:
1312 del_gendisk(zram->disk);
1313 put_disk(zram->disk);
1314 out_free_queue:
1315 blk_cleanup_queue(queue);
1316 out_free_idr:
1317 idr_remove(&zram_index_idr, device_id);
1318 out_free_dev:
1319 kfree(zram);
1320 return ret;
1321 }
1322
1323 static int zram_remove(struct zram *zram)
1324 {
1325 struct block_device *bdev;
1326
1327 bdev = bdget_disk(zram->disk, 0);
1328 if (!bdev)
1329 return -ENOMEM;
1330
1331 mutex_lock(&bdev->bd_mutex);
1332 if (bdev->bd_openers || zram->claim) {
1333 mutex_unlock(&bdev->bd_mutex);
1334 bdput(bdev);
1335 return -EBUSY;
1336 }
1337
1338 zram->claim = true;
1339 mutex_unlock(&bdev->bd_mutex);
1340
1341 /*
1342 * Remove sysfs first, so no one will perform a disksize
1343 * store while we destroy the devices. This also helps during
1344 * hot_remove -- zram_reset_device() is the last holder of
1345 * ->init_lock, no later/concurrent disksize_store() or any
1346 * other sysfs handlers are possible.
1347 */
1348 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1349 &zram_disk_attr_group);
1350
1351 /* Make sure all the pending I/O are finished */
1352 fsync_bdev(bdev);
1353 zram_reset_device(zram);
1354 bdput(bdev);
1355
1356 pr_info("Removed device: %s\n", zram->disk->disk_name);
1357
1358 blk_cleanup_queue(zram->disk->queue);
1359 del_gendisk(zram->disk);
1360 put_disk(zram->disk);
1361 kfree(zram);
1362 return 0;
1363 }
1364
1365 /* zram-control sysfs attributes */
1366 static ssize_t hot_add_show(struct class *class,
1367 struct class_attribute *attr,
1368 char *buf)
1369 {
1370 int ret;
1371
1372 mutex_lock(&zram_index_mutex);
1373 ret = zram_add();
1374 mutex_unlock(&zram_index_mutex);
1375
1376 if (ret < 0)
1377 return ret;
1378 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1379 }
1380
1381 static ssize_t hot_remove_store(struct class *class,
1382 struct class_attribute *attr,
1383 const char *buf,
1384 size_t count)
1385 {
1386 struct zram *zram;
1387 int ret, dev_id;
1388
1389 /* dev_id is gendisk->first_minor, which is `int' */
1390 ret = kstrtoint(buf, 10, &dev_id);
1391 if (ret)
1392 return ret;
1393 if (dev_id < 0)
1394 return -EINVAL;
1395
1396 mutex_lock(&zram_index_mutex);
1397
1398 zram = idr_find(&zram_index_idr, dev_id);
1399 if (zram) {
1400 ret = zram_remove(zram);
1401 idr_remove(&zram_index_idr, dev_id);
1402 } else {
1403 ret = -ENODEV;
1404 }
1405
1406 mutex_unlock(&zram_index_mutex);
1407 return ret ? ret : count;
1408 }
1409
1410 static struct class_attribute zram_control_class_attrs[] = {
1411 __ATTR_RO(hot_add),
1412 __ATTR_WO(hot_remove),
1413 __ATTR_NULL,
1414 };
1415
1416 static struct class zram_control_class = {
1417 .name = "zram-control",
1418 .owner = THIS_MODULE,
1419 .class_attrs = zram_control_class_attrs,
1420 };
1421
1422 static int zram_remove_cb(int id, void *ptr, void *data)
1423 {
1424 zram_remove(ptr);
1425 return 0;
1426 }
1427
1428 static void destroy_devices(void)
1429 {
1430 class_unregister(&zram_control_class);
1431 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1432 idr_destroy(&zram_index_idr);
1433 unregister_blkdev(zram_major, "zram");
1434 }
1435
1436 static int __init zram_init(void)
1437 {
1438 int ret;
1439
1440 ret = class_register(&zram_control_class);
1441 if (ret) {
1442 pr_err("Unable to register zram-control class\n");
1443 return ret;
1444 }
1445
1446 zram_major = register_blkdev(0, "zram");
1447 if (zram_major <= 0) {
1448 pr_err("Unable to get major number\n");
1449 class_unregister(&zram_control_class);
1450 return -EBUSY;
1451 }
1452
1453 while (num_devices != 0) {
1454 mutex_lock(&zram_index_mutex);
1455 ret = zram_add();
1456 mutex_unlock(&zram_index_mutex);
1457 if (ret < 0)
1458 goto out_error;
1459 num_devices--;
1460 }
1461
1462 return 0;
1463
1464 out_error:
1465 destroy_devices();
1466 return ret;
1467 }
1468
1469 static void __exit zram_exit(void)
1470 {
1471 destroy_devices();
1472 }
1473
1474 module_init(zram_init);
1475 module_exit(zram_exit);
1476
1477 module_param(num_devices, uint, 0);
1478 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1479
1480 MODULE_LICENSE("Dual BSD/GPL");
1481 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1482 MODULE_DESCRIPTION("Compressed RAM Block Device");