]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
db94572b35c41e6226f47cd96b8375878aa0fdaa
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 #define ZRAM_ATTR_RO(name) \
47 static ssize_t name##_show(struct device *d, \
48 struct device_attribute *attr, char *b) \
49 { \
50 struct zram *zram = dev_to_zram(d); \
51 return scnprintf(b, PAGE_SIZE, "%llu\n", \
52 (u64)atomic64_read(&zram->stats.name)); \
53 } \
54 static DEVICE_ATTR_RO(name);
55
56 static inline bool init_done(struct zram *zram)
57 {
58 return zram->disksize;
59 }
60
61 static inline struct zram *dev_to_zram(struct device *dev)
62 {
63 return (struct zram *)dev_to_disk(dev)->private_data;
64 }
65
66 static ssize_t disksize_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68 {
69 struct zram *zram = dev_to_zram(dev);
70
71 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
72 }
73
74 static ssize_t initstate_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
76 {
77 u32 val;
78 struct zram *zram = dev_to_zram(dev);
79
80 down_read(&zram->init_lock);
81 val = init_done(zram);
82 up_read(&zram->init_lock);
83
84 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
85 }
86
87 static ssize_t orig_data_size_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89 {
90 struct zram *zram = dev_to_zram(dev);
91
92 return scnprintf(buf, PAGE_SIZE, "%llu\n",
93 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
94 }
95
96 static ssize_t mem_used_total_show(struct device *dev,
97 struct device_attribute *attr, char *buf)
98 {
99 u64 val = 0;
100 struct zram *zram = dev_to_zram(dev);
101
102 down_read(&zram->init_lock);
103 if (init_done(zram)) {
104 struct zram_meta *meta = zram->meta;
105 val = zs_get_total_pages(meta->mem_pool);
106 }
107 up_read(&zram->init_lock);
108
109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
110 }
111
112 static ssize_t max_comp_streams_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114 {
115 int val;
116 struct zram *zram = dev_to_zram(dev);
117
118 down_read(&zram->init_lock);
119 val = zram->max_comp_streams;
120 up_read(&zram->init_lock);
121
122 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124
125 static ssize_t mem_limit_show(struct device *dev,
126 struct device_attribute *attr, char *buf)
127 {
128 u64 val;
129 struct zram *zram = dev_to_zram(dev);
130
131 down_read(&zram->init_lock);
132 val = zram->limit_pages;
133 up_read(&zram->init_lock);
134
135 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136 }
137
138 static ssize_t mem_limit_store(struct device *dev,
139 struct device_attribute *attr, const char *buf, size_t len)
140 {
141 u64 limit;
142 char *tmp;
143 struct zram *zram = dev_to_zram(dev);
144
145 limit = memparse(buf, &tmp);
146 if (buf == tmp) /* no chars parsed, invalid input */
147 return -EINVAL;
148
149 down_write(&zram->init_lock);
150 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151 up_write(&zram->init_lock);
152
153 return len;
154 }
155
156 static ssize_t mem_used_max_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158 {
159 u64 val = 0;
160 struct zram *zram = dev_to_zram(dev);
161
162 down_read(&zram->init_lock);
163 if (init_done(zram))
164 val = atomic_long_read(&zram->stats.max_used_pages);
165 up_read(&zram->init_lock);
166
167 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168 }
169
170 static ssize_t mem_used_max_store(struct device *dev,
171 struct device_attribute *attr, const char *buf, size_t len)
172 {
173 int err;
174 unsigned long val;
175 struct zram *zram = dev_to_zram(dev);
176
177 err = kstrtoul(buf, 10, &val);
178 if (err || val != 0)
179 return -EINVAL;
180
181 down_read(&zram->init_lock);
182 if (init_done(zram)) {
183 struct zram_meta *meta = zram->meta;
184 atomic_long_set(&zram->stats.max_used_pages,
185 zs_get_total_pages(meta->mem_pool));
186 }
187 up_read(&zram->init_lock);
188
189 return len;
190 }
191
192 static ssize_t max_comp_streams_store(struct device *dev,
193 struct device_attribute *attr, const char *buf, size_t len)
194 {
195 int num;
196 struct zram *zram = dev_to_zram(dev);
197 int ret;
198
199 ret = kstrtoint(buf, 0, &num);
200 if (ret < 0)
201 return ret;
202 if (num < 1)
203 return -EINVAL;
204
205 down_write(&zram->init_lock);
206 if (init_done(zram)) {
207 if (!zcomp_set_max_streams(zram->comp, num)) {
208 pr_info("Cannot change max compression streams\n");
209 ret = -EINVAL;
210 goto out;
211 }
212 }
213
214 zram->max_comp_streams = num;
215 ret = len;
216 out:
217 up_write(&zram->init_lock);
218 return ret;
219 }
220
221 static ssize_t comp_algorithm_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 size_t sz;
225 struct zram *zram = dev_to_zram(dev);
226
227 down_read(&zram->init_lock);
228 sz = zcomp_available_show(zram->compressor, buf);
229 up_read(&zram->init_lock);
230
231 return sz;
232 }
233
234 static ssize_t comp_algorithm_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236 {
237 struct zram *zram = dev_to_zram(dev);
238 down_write(&zram->init_lock);
239 if (init_done(zram)) {
240 up_write(&zram->init_lock);
241 pr_info("Can't change algorithm for initialized device\n");
242 return -EBUSY;
243 }
244 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
245 up_write(&zram->init_lock);
246 return len;
247 }
248
249 /* flag operations needs meta->tb_lock */
250 static int zram_test_flag(struct zram_meta *meta, u32 index,
251 enum zram_pageflags flag)
252 {
253 return meta->table[index].value & BIT(flag);
254 }
255
256 static void zram_set_flag(struct zram_meta *meta, u32 index,
257 enum zram_pageflags flag)
258 {
259 meta->table[index].value |= BIT(flag);
260 }
261
262 static void zram_clear_flag(struct zram_meta *meta, u32 index,
263 enum zram_pageflags flag)
264 {
265 meta->table[index].value &= ~BIT(flag);
266 }
267
268 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
269 {
270 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
271 }
272
273 static void zram_set_obj_size(struct zram_meta *meta,
274 u32 index, size_t size)
275 {
276 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
277
278 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
279 }
280
281 static inline int is_partial_io(struct bio_vec *bvec)
282 {
283 return bvec->bv_len != PAGE_SIZE;
284 }
285
286 /*
287 * Check if request is within bounds and aligned on zram logical blocks.
288 */
289 static inline int valid_io_request(struct zram *zram,
290 sector_t start, unsigned int size)
291 {
292 u64 end, bound;
293
294 /* unaligned request */
295 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
296 return 0;
297 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
298 return 0;
299
300 end = start + (size >> SECTOR_SHIFT);
301 bound = zram->disksize >> SECTOR_SHIFT;
302 /* out of range range */
303 if (unlikely(start >= bound || end > bound || start > end))
304 return 0;
305
306 /* I/O request is valid */
307 return 1;
308 }
309
310 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
311 {
312 size_t num_pages = disksize >> PAGE_SHIFT;
313 size_t index;
314
315 /* Free all pages that are still in this zram device */
316 for (index = 0; index < num_pages; index++) {
317 unsigned long handle = meta->table[index].handle;
318
319 if (!handle)
320 continue;
321
322 zs_free(meta->mem_pool, handle);
323 }
324
325 zs_destroy_pool(meta->mem_pool);
326 vfree(meta->table);
327 kfree(meta);
328 }
329
330 static struct zram_meta *zram_meta_alloc(u64 disksize)
331 {
332 size_t num_pages;
333 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
334
335 if (!meta)
336 return NULL;
337
338 num_pages = disksize >> PAGE_SHIFT;
339 meta->table = vzalloc(num_pages * sizeof(*meta->table));
340 if (!meta->table) {
341 pr_err("Error allocating zram address table\n");
342 goto out_error;
343 }
344
345 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
346 if (!meta->mem_pool) {
347 pr_err("Error creating memory pool\n");
348 goto out_error;
349 }
350
351 return meta;
352
353 out_error:
354 vfree(meta->table);
355 kfree(meta);
356 return NULL;
357 }
358
359 static inline bool zram_meta_get(struct zram *zram)
360 {
361 if (atomic_inc_not_zero(&zram->refcount))
362 return true;
363 return false;
364 }
365
366 static inline void zram_meta_put(struct zram *zram)
367 {
368 atomic_dec(&zram->refcount);
369 }
370
371 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
372 {
373 if (*offset + bvec->bv_len >= PAGE_SIZE)
374 (*index)++;
375 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
376 }
377
378 static int page_zero_filled(void *ptr)
379 {
380 unsigned int pos;
381 unsigned long *page;
382
383 page = (unsigned long *)ptr;
384
385 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
386 if (page[pos])
387 return 0;
388 }
389
390 return 1;
391 }
392
393 static void handle_zero_page(struct bio_vec *bvec)
394 {
395 struct page *page = bvec->bv_page;
396 void *user_mem;
397
398 user_mem = kmap_atomic(page);
399 if (is_partial_io(bvec))
400 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
401 else
402 clear_page(user_mem);
403 kunmap_atomic(user_mem);
404
405 flush_dcache_page(page);
406 }
407
408
409 /*
410 * To protect concurrent access to the same index entry,
411 * caller should hold this table index entry's bit_spinlock to
412 * indicate this index entry is accessing.
413 */
414 static void zram_free_page(struct zram *zram, size_t index)
415 {
416 struct zram_meta *meta = zram->meta;
417 unsigned long handle = meta->table[index].handle;
418
419 if (unlikely(!handle)) {
420 /*
421 * No memory is allocated for zero filled pages.
422 * Simply clear zero page flag.
423 */
424 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
425 zram_clear_flag(meta, index, ZRAM_ZERO);
426 atomic64_dec(&zram->stats.zero_pages);
427 }
428 return;
429 }
430
431 zs_free(meta->mem_pool, handle);
432
433 atomic64_sub(zram_get_obj_size(meta, index),
434 &zram->stats.compr_data_size);
435 atomic64_dec(&zram->stats.pages_stored);
436
437 meta->table[index].handle = 0;
438 zram_set_obj_size(meta, index, 0);
439 }
440
441 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
442 {
443 int ret = 0;
444 unsigned char *cmem;
445 struct zram_meta *meta = zram->meta;
446 unsigned long handle;
447 size_t size;
448
449 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
450 handle = meta->table[index].handle;
451 size = zram_get_obj_size(meta, index);
452
453 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
454 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
455 clear_page(mem);
456 return 0;
457 }
458
459 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
460 if (size == PAGE_SIZE)
461 copy_page(mem, cmem);
462 else
463 ret = zcomp_decompress(zram->comp, cmem, size, mem);
464 zs_unmap_object(meta->mem_pool, handle);
465 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
466
467 /* Should NEVER happen. Return bio error if it does. */
468 if (unlikely(ret)) {
469 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
470 return ret;
471 }
472
473 return 0;
474 }
475
476 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
477 u32 index, int offset)
478 {
479 int ret;
480 struct page *page;
481 unsigned char *user_mem, *uncmem = NULL;
482 struct zram_meta *meta = zram->meta;
483 page = bvec->bv_page;
484
485 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
486 if (unlikely(!meta->table[index].handle) ||
487 zram_test_flag(meta, index, ZRAM_ZERO)) {
488 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
489 handle_zero_page(bvec);
490 return 0;
491 }
492 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
493
494 if (is_partial_io(bvec))
495 /* Use a temporary buffer to decompress the page */
496 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
497
498 user_mem = kmap_atomic(page);
499 if (!is_partial_io(bvec))
500 uncmem = user_mem;
501
502 if (!uncmem) {
503 pr_info("Unable to allocate temp memory\n");
504 ret = -ENOMEM;
505 goto out_cleanup;
506 }
507
508 ret = zram_decompress_page(zram, uncmem, index);
509 /* Should NEVER happen. Return bio error if it does. */
510 if (unlikely(ret))
511 goto out_cleanup;
512
513 if (is_partial_io(bvec))
514 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
515 bvec->bv_len);
516
517 flush_dcache_page(page);
518 ret = 0;
519 out_cleanup:
520 kunmap_atomic(user_mem);
521 if (is_partial_io(bvec))
522 kfree(uncmem);
523 return ret;
524 }
525
526 static inline void update_used_max(struct zram *zram,
527 const unsigned long pages)
528 {
529 int old_max, cur_max;
530
531 old_max = atomic_long_read(&zram->stats.max_used_pages);
532
533 do {
534 cur_max = old_max;
535 if (pages > cur_max)
536 old_max = atomic_long_cmpxchg(
537 &zram->stats.max_used_pages, cur_max, pages);
538 } while (old_max != cur_max);
539 }
540
541 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
542 int offset)
543 {
544 int ret = 0;
545 size_t clen;
546 unsigned long handle;
547 struct page *page;
548 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
549 struct zram_meta *meta = zram->meta;
550 struct zcomp_strm *zstrm;
551 bool locked = false;
552 unsigned long alloced_pages;
553
554 page = bvec->bv_page;
555 if (is_partial_io(bvec)) {
556 /*
557 * This is a partial IO. We need to read the full page
558 * before to write the changes.
559 */
560 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
561 if (!uncmem) {
562 ret = -ENOMEM;
563 goto out;
564 }
565 ret = zram_decompress_page(zram, uncmem, index);
566 if (ret)
567 goto out;
568 }
569
570 zstrm = zcomp_strm_find(zram->comp);
571 locked = true;
572 user_mem = kmap_atomic(page);
573
574 if (is_partial_io(bvec)) {
575 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
576 bvec->bv_len);
577 kunmap_atomic(user_mem);
578 user_mem = NULL;
579 } else {
580 uncmem = user_mem;
581 }
582
583 if (page_zero_filled(uncmem)) {
584 if (user_mem)
585 kunmap_atomic(user_mem);
586 /* Free memory associated with this sector now. */
587 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
588 zram_free_page(zram, index);
589 zram_set_flag(meta, index, ZRAM_ZERO);
590 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
591
592 atomic64_inc(&zram->stats.zero_pages);
593 ret = 0;
594 goto out;
595 }
596
597 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
598 if (!is_partial_io(bvec)) {
599 kunmap_atomic(user_mem);
600 user_mem = NULL;
601 uncmem = NULL;
602 }
603
604 if (unlikely(ret)) {
605 pr_err("Compression failed! err=%d\n", ret);
606 goto out;
607 }
608 src = zstrm->buffer;
609 if (unlikely(clen > max_zpage_size)) {
610 clen = PAGE_SIZE;
611 if (is_partial_io(bvec))
612 src = uncmem;
613 }
614
615 handle = zs_malloc(meta->mem_pool, clen);
616 if (!handle) {
617 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
618 index, clen);
619 ret = -ENOMEM;
620 goto out;
621 }
622
623 alloced_pages = zs_get_total_pages(meta->mem_pool);
624 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
625 zs_free(meta->mem_pool, handle);
626 ret = -ENOMEM;
627 goto out;
628 }
629
630 update_used_max(zram, alloced_pages);
631
632 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
633
634 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
635 src = kmap_atomic(page);
636 copy_page(cmem, src);
637 kunmap_atomic(src);
638 } else {
639 memcpy(cmem, src, clen);
640 }
641
642 zcomp_strm_release(zram->comp, zstrm);
643 locked = false;
644 zs_unmap_object(meta->mem_pool, handle);
645
646 /*
647 * Free memory associated with this sector
648 * before overwriting unused sectors.
649 */
650 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
651 zram_free_page(zram, index);
652
653 meta->table[index].handle = handle;
654 zram_set_obj_size(meta, index, clen);
655 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
656
657 /* Update stats */
658 atomic64_add(clen, &zram->stats.compr_data_size);
659 atomic64_inc(&zram->stats.pages_stored);
660 out:
661 if (locked)
662 zcomp_strm_release(zram->comp, zstrm);
663 if (is_partial_io(bvec))
664 kfree(uncmem);
665 return ret;
666 }
667
668 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
669 int offset, int rw)
670 {
671 int ret;
672
673 if (rw == READ) {
674 atomic64_inc(&zram->stats.num_reads);
675 ret = zram_bvec_read(zram, bvec, index, offset);
676 } else {
677 atomic64_inc(&zram->stats.num_writes);
678 ret = zram_bvec_write(zram, bvec, index, offset);
679 }
680
681 if (unlikely(ret)) {
682 if (rw == READ)
683 atomic64_inc(&zram->stats.failed_reads);
684 else
685 atomic64_inc(&zram->stats.failed_writes);
686 }
687
688 return ret;
689 }
690
691 /*
692 * zram_bio_discard - handler on discard request
693 * @index: physical block index in PAGE_SIZE units
694 * @offset: byte offset within physical block
695 */
696 static void zram_bio_discard(struct zram *zram, u32 index,
697 int offset, struct bio *bio)
698 {
699 size_t n = bio->bi_iter.bi_size;
700 struct zram_meta *meta = zram->meta;
701
702 /*
703 * zram manages data in physical block size units. Because logical block
704 * size isn't identical with physical block size on some arch, we
705 * could get a discard request pointing to a specific offset within a
706 * certain physical block. Although we can handle this request by
707 * reading that physiclal block and decompressing and partially zeroing
708 * and re-compressing and then re-storing it, this isn't reasonable
709 * because our intent with a discard request is to save memory. So
710 * skipping this logical block is appropriate here.
711 */
712 if (offset) {
713 if (n <= (PAGE_SIZE - offset))
714 return;
715
716 n -= (PAGE_SIZE - offset);
717 index++;
718 }
719
720 while (n >= PAGE_SIZE) {
721 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
722 zram_free_page(zram, index);
723 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
724 atomic64_inc(&zram->stats.notify_free);
725 index++;
726 n -= PAGE_SIZE;
727 }
728 }
729
730 static void zram_reset_device(struct zram *zram)
731 {
732 struct zram_meta *meta;
733 struct zcomp *comp;
734 u64 disksize;
735
736 down_write(&zram->init_lock);
737
738 zram->limit_pages = 0;
739
740 if (!init_done(zram)) {
741 up_write(&zram->init_lock);
742 return;
743 }
744
745 meta = zram->meta;
746 comp = zram->comp;
747 disksize = zram->disksize;
748 /*
749 * Refcount will go down to 0 eventually and r/w handler
750 * cannot handle further I/O so it will bail out by
751 * check zram_meta_get.
752 */
753 zram_meta_put(zram);
754 /*
755 * We want to free zram_meta in process context to avoid
756 * deadlock between reclaim path and any other locks.
757 */
758 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
759
760 /* Reset stats */
761 memset(&zram->stats, 0, sizeof(zram->stats));
762 zram->disksize = 0;
763 zram->max_comp_streams = 1;
764 set_capacity(zram->disk, 0);
765
766 up_write(&zram->init_lock);
767 /* I/O operation under all of CPU are done so let's free */
768 zram_meta_free(meta, disksize);
769 zcomp_destroy(comp);
770 }
771
772 static ssize_t disksize_store(struct device *dev,
773 struct device_attribute *attr, const char *buf, size_t len)
774 {
775 u64 disksize;
776 struct zcomp *comp;
777 struct zram_meta *meta;
778 struct zram *zram = dev_to_zram(dev);
779 int err;
780
781 disksize = memparse(buf, NULL);
782 if (!disksize)
783 return -EINVAL;
784
785 disksize = PAGE_ALIGN(disksize);
786 meta = zram_meta_alloc(disksize);
787 if (!meta)
788 return -ENOMEM;
789
790 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
791 if (IS_ERR(comp)) {
792 pr_info("Cannot initialise %s compressing backend\n",
793 zram->compressor);
794 err = PTR_ERR(comp);
795 goto out_free_meta;
796 }
797
798 down_write(&zram->init_lock);
799 if (init_done(zram)) {
800 pr_info("Cannot change disksize for initialized device\n");
801 err = -EBUSY;
802 goto out_destroy_comp;
803 }
804
805 init_waitqueue_head(&zram->io_done);
806 atomic_set(&zram->refcount, 1);
807 zram->meta = meta;
808 zram->comp = comp;
809 zram->disksize = disksize;
810 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
811 up_write(&zram->init_lock);
812
813 /*
814 * Revalidate disk out of the init_lock to avoid lockdep splat.
815 * It's okay because disk's capacity is protected by init_lock
816 * so that revalidate_disk always sees up-to-date capacity.
817 */
818 revalidate_disk(zram->disk);
819
820 return len;
821
822 out_destroy_comp:
823 up_write(&zram->init_lock);
824 zcomp_destroy(comp);
825 out_free_meta:
826 zram_meta_free(meta, disksize);
827 return err;
828 }
829
830 static ssize_t reset_store(struct device *dev,
831 struct device_attribute *attr, const char *buf, size_t len)
832 {
833 int ret;
834 unsigned short do_reset;
835 struct zram *zram;
836 struct block_device *bdev;
837
838 zram = dev_to_zram(dev);
839 bdev = bdget_disk(zram->disk, 0);
840
841 if (!bdev)
842 return -ENOMEM;
843
844 mutex_lock(&bdev->bd_mutex);
845 /* Do not reset an active device! */
846 if (bdev->bd_openers) {
847 ret = -EBUSY;
848 goto out;
849 }
850
851 ret = kstrtou16(buf, 10, &do_reset);
852 if (ret)
853 goto out;
854
855 if (!do_reset) {
856 ret = -EINVAL;
857 goto out;
858 }
859
860 /* Make sure all pending I/O is finished */
861 fsync_bdev(bdev);
862 zram_reset_device(zram);
863
864 mutex_unlock(&bdev->bd_mutex);
865 revalidate_disk(zram->disk);
866 bdput(bdev);
867
868 return len;
869
870 out:
871 mutex_unlock(&bdev->bd_mutex);
872 bdput(bdev);
873 return ret;
874 }
875
876 static void __zram_make_request(struct zram *zram, struct bio *bio)
877 {
878 int offset, rw;
879 u32 index;
880 struct bio_vec bvec;
881 struct bvec_iter iter;
882
883 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
884 offset = (bio->bi_iter.bi_sector &
885 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
886
887 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
888 zram_bio_discard(zram, index, offset, bio);
889 bio_endio(bio, 0);
890 return;
891 }
892
893 rw = bio_data_dir(bio);
894 bio_for_each_segment(bvec, bio, iter) {
895 int max_transfer_size = PAGE_SIZE - offset;
896
897 if (bvec.bv_len > max_transfer_size) {
898 /*
899 * zram_bvec_rw() can only make operation on a single
900 * zram page. Split the bio vector.
901 */
902 struct bio_vec bv;
903
904 bv.bv_page = bvec.bv_page;
905 bv.bv_len = max_transfer_size;
906 bv.bv_offset = bvec.bv_offset;
907
908 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
909 goto out;
910
911 bv.bv_len = bvec.bv_len - max_transfer_size;
912 bv.bv_offset += max_transfer_size;
913 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
914 goto out;
915 } else
916 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
917 goto out;
918
919 update_position(&index, &offset, &bvec);
920 }
921
922 set_bit(BIO_UPTODATE, &bio->bi_flags);
923 bio_endio(bio, 0);
924 return;
925
926 out:
927 bio_io_error(bio);
928 }
929
930 /*
931 * Handler function for all zram I/O requests.
932 */
933 static void zram_make_request(struct request_queue *queue, struct bio *bio)
934 {
935 struct zram *zram = queue->queuedata;
936
937 if (unlikely(!zram_meta_get(zram)))
938 goto error;
939
940 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
941 bio->bi_iter.bi_size)) {
942 atomic64_inc(&zram->stats.invalid_io);
943 goto put_zram;
944 }
945
946 __zram_make_request(zram, bio);
947 zram_meta_put(zram);
948 return;
949 put_zram:
950 zram_meta_put(zram);
951 error:
952 bio_io_error(bio);
953 }
954
955 static void zram_slot_free_notify(struct block_device *bdev,
956 unsigned long index)
957 {
958 struct zram *zram;
959 struct zram_meta *meta;
960
961 zram = bdev->bd_disk->private_data;
962 meta = zram->meta;
963
964 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
965 zram_free_page(zram, index);
966 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
967 atomic64_inc(&zram->stats.notify_free);
968 }
969
970 static int zram_rw_page(struct block_device *bdev, sector_t sector,
971 struct page *page, int rw)
972 {
973 int offset, err = -EIO;
974 u32 index;
975 struct zram *zram;
976 struct bio_vec bv;
977
978 zram = bdev->bd_disk->private_data;
979 if (unlikely(!zram_meta_get(zram)))
980 goto out;
981
982 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
983 atomic64_inc(&zram->stats.invalid_io);
984 err = -EINVAL;
985 goto put_zram;
986 }
987
988 index = sector >> SECTORS_PER_PAGE_SHIFT;
989 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
990
991 bv.bv_page = page;
992 bv.bv_len = PAGE_SIZE;
993 bv.bv_offset = 0;
994
995 err = zram_bvec_rw(zram, &bv, index, offset, rw);
996 put_zram:
997 zram_meta_put(zram);
998 out:
999 /*
1000 * If I/O fails, just return error(ie, non-zero) without
1001 * calling page_endio.
1002 * It causes resubmit the I/O with bio request by upper functions
1003 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1004 * bio->bi_end_io does things to handle the error
1005 * (e.g., SetPageError, set_page_dirty and extra works).
1006 */
1007 if (err == 0)
1008 page_endio(page, rw, 0);
1009 return err;
1010 }
1011
1012 static const struct block_device_operations zram_devops = {
1013 .swap_slot_free_notify = zram_slot_free_notify,
1014 .rw_page = zram_rw_page,
1015 .owner = THIS_MODULE
1016 };
1017
1018 static DEVICE_ATTR_RW(disksize);
1019 static DEVICE_ATTR_RO(initstate);
1020 static DEVICE_ATTR_WO(reset);
1021 static DEVICE_ATTR_RO(orig_data_size);
1022 static DEVICE_ATTR_RO(mem_used_total);
1023 static DEVICE_ATTR_RW(mem_limit);
1024 static DEVICE_ATTR_RW(mem_used_max);
1025 static DEVICE_ATTR_RW(max_comp_streams);
1026 static DEVICE_ATTR_RW(comp_algorithm);
1027
1028 ZRAM_ATTR_RO(num_reads);
1029 ZRAM_ATTR_RO(num_writes);
1030 ZRAM_ATTR_RO(failed_reads);
1031 ZRAM_ATTR_RO(failed_writes);
1032 ZRAM_ATTR_RO(invalid_io);
1033 ZRAM_ATTR_RO(notify_free);
1034 ZRAM_ATTR_RO(zero_pages);
1035 ZRAM_ATTR_RO(compr_data_size);
1036
1037 static struct attribute *zram_disk_attrs[] = {
1038 &dev_attr_disksize.attr,
1039 &dev_attr_initstate.attr,
1040 &dev_attr_reset.attr,
1041 &dev_attr_num_reads.attr,
1042 &dev_attr_num_writes.attr,
1043 &dev_attr_failed_reads.attr,
1044 &dev_attr_failed_writes.attr,
1045 &dev_attr_invalid_io.attr,
1046 &dev_attr_notify_free.attr,
1047 &dev_attr_zero_pages.attr,
1048 &dev_attr_orig_data_size.attr,
1049 &dev_attr_compr_data_size.attr,
1050 &dev_attr_mem_used_total.attr,
1051 &dev_attr_mem_limit.attr,
1052 &dev_attr_mem_used_max.attr,
1053 &dev_attr_max_comp_streams.attr,
1054 &dev_attr_comp_algorithm.attr,
1055 NULL,
1056 };
1057
1058 static struct attribute_group zram_disk_attr_group = {
1059 .attrs = zram_disk_attrs,
1060 };
1061
1062 static int create_device(struct zram *zram, int device_id)
1063 {
1064 int ret = -ENOMEM;
1065
1066 init_rwsem(&zram->init_lock);
1067
1068 zram->queue = blk_alloc_queue(GFP_KERNEL);
1069 if (!zram->queue) {
1070 pr_err("Error allocating disk queue for device %d\n",
1071 device_id);
1072 goto out;
1073 }
1074
1075 blk_queue_make_request(zram->queue, zram_make_request);
1076 zram->queue->queuedata = zram;
1077
1078 /* gendisk structure */
1079 zram->disk = alloc_disk(1);
1080 if (!zram->disk) {
1081 pr_warn("Error allocating disk structure for device %d\n",
1082 device_id);
1083 goto out_free_queue;
1084 }
1085
1086 zram->disk->major = zram_major;
1087 zram->disk->first_minor = device_id;
1088 zram->disk->fops = &zram_devops;
1089 zram->disk->queue = zram->queue;
1090 zram->disk->private_data = zram;
1091 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1092
1093 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1094 set_capacity(zram->disk, 0);
1095 /* zram devices sort of resembles non-rotational disks */
1096 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1097 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1098 /*
1099 * To ensure that we always get PAGE_SIZE aligned
1100 * and n*PAGE_SIZED sized I/O requests.
1101 */
1102 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1103 blk_queue_logical_block_size(zram->disk->queue,
1104 ZRAM_LOGICAL_BLOCK_SIZE);
1105 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1106 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1107 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1108 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1109 /*
1110 * zram_bio_discard() will clear all logical blocks if logical block
1111 * size is identical with physical block size(PAGE_SIZE). But if it is
1112 * different, we will skip discarding some parts of logical blocks in
1113 * the part of the request range which isn't aligned to physical block
1114 * size. So we can't ensure that all discarded logical blocks are
1115 * zeroed.
1116 */
1117 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1118 zram->disk->queue->limits.discard_zeroes_data = 1;
1119 else
1120 zram->disk->queue->limits.discard_zeroes_data = 0;
1121 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1122
1123 add_disk(zram->disk);
1124
1125 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1126 &zram_disk_attr_group);
1127 if (ret < 0) {
1128 pr_warn("Error creating sysfs group");
1129 goto out_free_disk;
1130 }
1131 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1132 zram->meta = NULL;
1133 zram->max_comp_streams = 1;
1134 return 0;
1135
1136 out_free_disk:
1137 del_gendisk(zram->disk);
1138 put_disk(zram->disk);
1139 out_free_queue:
1140 blk_cleanup_queue(zram->queue);
1141 out:
1142 return ret;
1143 }
1144
1145 static void destroy_devices(unsigned int nr)
1146 {
1147 struct zram *zram;
1148 unsigned int i;
1149
1150 for (i = 0; i < nr; i++) {
1151 zram = &zram_devices[i];
1152 /*
1153 * Remove sysfs first, so no one will perform a disksize
1154 * store while we destroy the devices
1155 */
1156 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1157 &zram_disk_attr_group);
1158
1159 zram_reset_device(zram);
1160
1161 del_gendisk(zram->disk);
1162 put_disk(zram->disk);
1163
1164 blk_cleanup_queue(zram->queue);
1165 }
1166
1167 kfree(zram_devices);
1168 unregister_blkdev(zram_major, "zram");
1169 pr_info("Destroyed %u device(s)\n", nr);
1170 }
1171
1172 static int __init zram_init(void)
1173 {
1174 int ret, dev_id;
1175
1176 if (num_devices > max_num_devices) {
1177 pr_warn("Invalid value for num_devices: %u\n",
1178 num_devices);
1179 return -EINVAL;
1180 }
1181
1182 zram_major = register_blkdev(0, "zram");
1183 if (zram_major <= 0) {
1184 pr_warn("Unable to get major number\n");
1185 return -EBUSY;
1186 }
1187
1188 /* Allocate the device array and initialize each one */
1189 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1190 if (!zram_devices) {
1191 unregister_blkdev(zram_major, "zram");
1192 return -ENOMEM;
1193 }
1194
1195 for (dev_id = 0; dev_id < num_devices; dev_id++) {
1196 ret = create_device(&zram_devices[dev_id], dev_id);
1197 if (ret)
1198 goto out_error;
1199 }
1200
1201 pr_info("Created %u device(s)\n", num_devices);
1202 return 0;
1203
1204 out_error:
1205 destroy_devices(dev_id);
1206 return ret;
1207 }
1208
1209 static void __exit zram_exit(void)
1210 {
1211 destroy_devices(num_devices);
1212 }
1213
1214 module_init(zram_init);
1215 module_exit(zram_exit);
1216
1217 module_param(num_devices, uint, 0);
1218 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1219
1220 MODULE_LICENSE("Dual BSD/GPL");
1221 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1222 MODULE_DESCRIPTION("Compressed RAM Block Device");