]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
Merge branch 'x86-acpi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47 return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49
50 static ssize_t disksize_show(struct device *dev,
51 struct device_attribute *attr, char *buf)
52 {
53 struct zram *zram = dev_to_zram(dev);
54
55 return sprintf(buf, "%llu\n", zram->disksize);
56 }
57
58 static ssize_t initstate_show(struct device *dev,
59 struct device_attribute *attr, char *buf)
60 {
61 struct zram *zram = dev_to_zram(dev);
62
63 return sprintf(buf, "%u\n", zram->init_done);
64 }
65
66 static ssize_t num_reads_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68 {
69 struct zram *zram = dev_to_zram(dev);
70
71 return sprintf(buf, "%llu\n",
72 (u64)atomic64_read(&zram->stats.num_reads));
73 }
74
75 static ssize_t num_writes_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
77 {
78 struct zram *zram = dev_to_zram(dev);
79
80 return sprintf(buf, "%llu\n",
81 (u64)atomic64_read(&zram->stats.num_writes));
82 }
83
84 static ssize_t invalid_io_show(struct device *dev,
85 struct device_attribute *attr, char *buf)
86 {
87 struct zram *zram = dev_to_zram(dev);
88
89 return sprintf(buf, "%llu\n",
90 (u64)atomic64_read(&zram->stats.invalid_io));
91 }
92
93 static ssize_t notify_free_show(struct device *dev,
94 struct device_attribute *attr, char *buf)
95 {
96 struct zram *zram = dev_to_zram(dev);
97
98 return sprintf(buf, "%llu\n",
99 (u64)atomic64_read(&zram->stats.notify_free));
100 }
101
102 static ssize_t zero_pages_show(struct device *dev,
103 struct device_attribute *attr, char *buf)
104 {
105 struct zram *zram = dev_to_zram(dev);
106
107 return sprintf(buf, "%u\n", atomic_read(&zram->stats.pages_zero));
108 }
109
110 static ssize_t orig_data_size_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct zram *zram = dev_to_zram(dev);
114
115 return sprintf(buf, "%llu\n",
116 (u64)(atomic_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
117 }
118
119 static ssize_t compr_data_size_show(struct device *dev,
120 struct device_attribute *attr, char *buf)
121 {
122 struct zram *zram = dev_to_zram(dev);
123
124 return sprintf(buf, "%llu\n",
125 (u64)atomic64_read(&zram->stats.compr_size));
126 }
127
128 static ssize_t mem_used_total_show(struct device *dev,
129 struct device_attribute *attr, char *buf)
130 {
131 u64 val = 0;
132 struct zram *zram = dev_to_zram(dev);
133 struct zram_meta *meta = zram->meta;
134
135 down_read(&zram->init_lock);
136 if (zram->init_done)
137 val = zs_get_total_size_bytes(meta->mem_pool);
138 up_read(&zram->init_lock);
139
140 return sprintf(buf, "%llu\n", val);
141 }
142
143 /* flag operations needs meta->tb_lock */
144 static int zram_test_flag(struct zram_meta *meta, u32 index,
145 enum zram_pageflags flag)
146 {
147 return meta->table[index].flags & BIT(flag);
148 }
149
150 static void zram_set_flag(struct zram_meta *meta, u32 index,
151 enum zram_pageflags flag)
152 {
153 meta->table[index].flags |= BIT(flag);
154 }
155
156 static void zram_clear_flag(struct zram_meta *meta, u32 index,
157 enum zram_pageflags flag)
158 {
159 meta->table[index].flags &= ~BIT(flag);
160 }
161
162 static inline int is_partial_io(struct bio_vec *bvec)
163 {
164 return bvec->bv_len != PAGE_SIZE;
165 }
166
167 /*
168 * Check if request is within bounds and aligned on zram logical blocks.
169 */
170 static inline int valid_io_request(struct zram *zram, struct bio *bio)
171 {
172 u64 start, end, bound;
173
174 /* unaligned request */
175 if (unlikely(bio->bi_iter.bi_sector &
176 (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
177 return 0;
178 if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
179 return 0;
180
181 start = bio->bi_iter.bi_sector;
182 end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
183 bound = zram->disksize >> SECTOR_SHIFT;
184 /* out of range range */
185 if (unlikely(start >= bound || end > bound || start > end))
186 return 0;
187
188 /* I/O request is valid */
189 return 1;
190 }
191
192 static void zram_meta_free(struct zram_meta *meta)
193 {
194 zs_destroy_pool(meta->mem_pool);
195 kfree(meta->compress_workmem);
196 free_pages((unsigned long)meta->compress_buffer, 1);
197 vfree(meta->table);
198 kfree(meta);
199 }
200
201 static struct zram_meta *zram_meta_alloc(u64 disksize)
202 {
203 size_t num_pages;
204 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
205 if (!meta)
206 goto out;
207
208 meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
209 if (!meta->compress_workmem)
210 goto free_meta;
211
212 meta->compress_buffer =
213 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
214 if (!meta->compress_buffer) {
215 pr_err("Error allocating compressor buffer space\n");
216 goto free_workmem;
217 }
218
219 num_pages = disksize >> PAGE_SHIFT;
220 meta->table = vzalloc(num_pages * sizeof(*meta->table));
221 if (!meta->table) {
222 pr_err("Error allocating zram address table\n");
223 goto free_buffer;
224 }
225
226 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
227 if (!meta->mem_pool) {
228 pr_err("Error creating memory pool\n");
229 goto free_table;
230 }
231
232 rwlock_init(&meta->tb_lock);
233 mutex_init(&meta->buffer_lock);
234 return meta;
235
236 free_table:
237 vfree(meta->table);
238 free_buffer:
239 free_pages((unsigned long)meta->compress_buffer, 1);
240 free_workmem:
241 kfree(meta->compress_workmem);
242 free_meta:
243 kfree(meta);
244 meta = NULL;
245 out:
246 return meta;
247 }
248
249 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
250 {
251 if (*offset + bvec->bv_len >= PAGE_SIZE)
252 (*index)++;
253 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
254 }
255
256 static int page_zero_filled(void *ptr)
257 {
258 unsigned int pos;
259 unsigned long *page;
260
261 page = (unsigned long *)ptr;
262
263 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
264 if (page[pos])
265 return 0;
266 }
267
268 return 1;
269 }
270
271 static void handle_zero_page(struct bio_vec *bvec)
272 {
273 struct page *page = bvec->bv_page;
274 void *user_mem;
275
276 user_mem = kmap_atomic(page);
277 if (is_partial_io(bvec))
278 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
279 else
280 clear_page(user_mem);
281 kunmap_atomic(user_mem);
282
283 flush_dcache_page(page);
284 }
285
286 /* NOTE: caller should hold meta->tb_lock with write-side */
287 static void zram_free_page(struct zram *zram, size_t index)
288 {
289 struct zram_meta *meta = zram->meta;
290 unsigned long handle = meta->table[index].handle;
291 u16 size = meta->table[index].size;
292
293 if (unlikely(!handle)) {
294 /*
295 * No memory is allocated for zero filled pages.
296 * Simply clear zero page flag.
297 */
298 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
299 zram_clear_flag(meta, index, ZRAM_ZERO);
300 atomic_dec(&zram->stats.pages_zero);
301 }
302 return;
303 }
304
305 if (unlikely(size > max_zpage_size))
306 atomic_dec(&zram->stats.bad_compress);
307
308 zs_free(meta->mem_pool, handle);
309
310 if (size <= PAGE_SIZE / 2)
311 atomic_dec(&zram->stats.good_compress);
312
313 atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
314 atomic_dec(&zram->stats.pages_stored);
315
316 meta->table[index].handle = 0;
317 meta->table[index].size = 0;
318 }
319
320 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
321 {
322 int ret = LZO_E_OK;
323 size_t clen = PAGE_SIZE;
324 unsigned char *cmem;
325 struct zram_meta *meta = zram->meta;
326 unsigned long handle;
327 u16 size;
328
329 read_lock(&meta->tb_lock);
330 handle = meta->table[index].handle;
331 size = meta->table[index].size;
332
333 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
334 read_unlock(&meta->tb_lock);
335 clear_page(mem);
336 return 0;
337 }
338
339 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
340 if (size == PAGE_SIZE)
341 copy_page(mem, cmem);
342 else
343 ret = lzo1x_decompress_safe(cmem, size, mem, &clen);
344 zs_unmap_object(meta->mem_pool, handle);
345 read_unlock(&meta->tb_lock);
346
347 /* Should NEVER happen. Return bio error if it does. */
348 if (unlikely(ret != LZO_E_OK)) {
349 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
350 atomic64_inc(&zram->stats.failed_reads);
351 return ret;
352 }
353
354 return 0;
355 }
356
357 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
358 u32 index, int offset, struct bio *bio)
359 {
360 int ret;
361 struct page *page;
362 unsigned char *user_mem, *uncmem = NULL;
363 struct zram_meta *meta = zram->meta;
364 page = bvec->bv_page;
365
366 read_lock(&meta->tb_lock);
367 if (unlikely(!meta->table[index].handle) ||
368 zram_test_flag(meta, index, ZRAM_ZERO)) {
369 read_unlock(&meta->tb_lock);
370 handle_zero_page(bvec);
371 return 0;
372 }
373 read_unlock(&meta->tb_lock);
374
375 if (is_partial_io(bvec))
376 /* Use a temporary buffer to decompress the page */
377 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
378
379 user_mem = kmap_atomic(page);
380 if (!is_partial_io(bvec))
381 uncmem = user_mem;
382
383 if (!uncmem) {
384 pr_info("Unable to allocate temp memory\n");
385 ret = -ENOMEM;
386 goto out_cleanup;
387 }
388
389 ret = zram_decompress_page(zram, uncmem, index);
390 /* Should NEVER happen. Return bio error if it does. */
391 if (unlikely(ret != LZO_E_OK))
392 goto out_cleanup;
393
394 if (is_partial_io(bvec))
395 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
396 bvec->bv_len);
397
398 flush_dcache_page(page);
399 ret = 0;
400 out_cleanup:
401 kunmap_atomic(user_mem);
402 if (is_partial_io(bvec))
403 kfree(uncmem);
404 return ret;
405 }
406
407 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
408 int offset)
409 {
410 int ret = 0;
411 size_t clen;
412 unsigned long handle;
413 struct page *page;
414 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
415 struct zram_meta *meta = zram->meta;
416 bool locked = false;
417
418 page = bvec->bv_page;
419 src = meta->compress_buffer;
420
421 if (is_partial_io(bvec)) {
422 /*
423 * This is a partial IO. We need to read the full page
424 * before to write the changes.
425 */
426 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
427 if (!uncmem) {
428 ret = -ENOMEM;
429 goto out;
430 }
431 ret = zram_decompress_page(zram, uncmem, index);
432 if (ret)
433 goto out;
434 }
435
436 mutex_lock(&meta->buffer_lock);
437 locked = true;
438 user_mem = kmap_atomic(page);
439
440 if (is_partial_io(bvec)) {
441 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
442 bvec->bv_len);
443 kunmap_atomic(user_mem);
444 user_mem = NULL;
445 } else {
446 uncmem = user_mem;
447 }
448
449 if (page_zero_filled(uncmem)) {
450 kunmap_atomic(user_mem);
451 /* Free memory associated with this sector now. */
452 write_lock(&zram->meta->tb_lock);
453 zram_free_page(zram, index);
454 zram_set_flag(meta, index, ZRAM_ZERO);
455 write_unlock(&zram->meta->tb_lock);
456
457 atomic_inc(&zram->stats.pages_zero);
458 ret = 0;
459 goto out;
460 }
461
462 ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
463 meta->compress_workmem);
464 if (!is_partial_io(bvec)) {
465 kunmap_atomic(user_mem);
466 user_mem = NULL;
467 uncmem = NULL;
468 }
469
470 if (unlikely(ret != LZO_E_OK)) {
471 pr_err("Compression failed! err=%d\n", ret);
472 goto out;
473 }
474
475 if (unlikely(clen > max_zpage_size)) {
476 atomic_inc(&zram->stats.bad_compress);
477 clen = PAGE_SIZE;
478 src = NULL;
479 if (is_partial_io(bvec))
480 src = uncmem;
481 }
482
483 handle = zs_malloc(meta->mem_pool, clen);
484 if (!handle) {
485 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
486 index, clen);
487 ret = -ENOMEM;
488 goto out;
489 }
490 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
491
492 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
493 src = kmap_atomic(page);
494 copy_page(cmem, src);
495 kunmap_atomic(src);
496 } else {
497 memcpy(cmem, src, clen);
498 }
499
500 zs_unmap_object(meta->mem_pool, handle);
501
502 /*
503 * Free memory associated with this sector
504 * before overwriting unused sectors.
505 */
506 write_lock(&zram->meta->tb_lock);
507 zram_free_page(zram, index);
508
509 meta->table[index].handle = handle;
510 meta->table[index].size = clen;
511 write_unlock(&zram->meta->tb_lock);
512
513 /* Update stats */
514 atomic64_add(clen, &zram->stats.compr_size);
515 atomic_inc(&zram->stats.pages_stored);
516 if (clen <= PAGE_SIZE / 2)
517 atomic_inc(&zram->stats.good_compress);
518
519 out:
520 if (locked)
521 mutex_unlock(&meta->buffer_lock);
522 if (is_partial_io(bvec))
523 kfree(uncmem);
524
525 if (ret)
526 atomic64_inc(&zram->stats.failed_writes);
527 return ret;
528 }
529
530 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
531 int offset, struct bio *bio, int rw)
532 {
533 int ret;
534
535 if (rw == READ)
536 ret = zram_bvec_read(zram, bvec, index, offset, bio);
537 else
538 ret = zram_bvec_write(zram, bvec, index, offset);
539
540 return ret;
541 }
542
543 static void zram_reset_device(struct zram *zram, bool reset_capacity)
544 {
545 size_t index;
546 struct zram_meta *meta;
547
548 down_write(&zram->init_lock);
549 if (!zram->init_done) {
550 up_write(&zram->init_lock);
551 return;
552 }
553
554 meta = zram->meta;
555 zram->init_done = 0;
556
557 /* Free all pages that are still in this zram device */
558 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
559 unsigned long handle = meta->table[index].handle;
560 if (!handle)
561 continue;
562
563 zs_free(meta->mem_pool, handle);
564 }
565
566 zram_meta_free(zram->meta);
567 zram->meta = NULL;
568 /* Reset stats */
569 memset(&zram->stats, 0, sizeof(zram->stats));
570
571 zram->disksize = 0;
572 if (reset_capacity)
573 set_capacity(zram->disk, 0);
574 up_write(&zram->init_lock);
575 }
576
577 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
578 {
579 if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
580 pr_info(
581 "There is little point creating a zram of greater than "
582 "twice the size of memory since we expect a 2:1 compression "
583 "ratio. Note that zram uses about 0.1%% of the size of "
584 "the disk when not in use so a huge zram is "
585 "wasteful.\n"
586 "\tMemory Size: %lu kB\n"
587 "\tSize you selected: %llu kB\n"
588 "Continuing anyway ...\n",
589 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
590 );
591 }
592
593 /* zram devices sort of resembles non-rotational disks */
594 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
595
596 zram->meta = meta;
597 zram->init_done = 1;
598
599 pr_debug("Initialization done!\n");
600 }
601
602 static ssize_t disksize_store(struct device *dev,
603 struct device_attribute *attr, const char *buf, size_t len)
604 {
605 u64 disksize;
606 struct zram_meta *meta;
607 struct zram *zram = dev_to_zram(dev);
608
609 disksize = memparse(buf, NULL);
610 if (!disksize)
611 return -EINVAL;
612
613 disksize = PAGE_ALIGN(disksize);
614 meta = zram_meta_alloc(disksize);
615 if (!meta)
616 return -ENOMEM;
617 down_write(&zram->init_lock);
618 if (zram->init_done) {
619 up_write(&zram->init_lock);
620 zram_meta_free(meta);
621 pr_info("Cannot change disksize for initialized device\n");
622 return -EBUSY;
623 }
624
625 zram->disksize = disksize;
626 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
627 zram_init_device(zram, meta);
628 up_write(&zram->init_lock);
629
630 return len;
631 }
632
633 static ssize_t reset_store(struct device *dev,
634 struct device_attribute *attr, const char *buf, size_t len)
635 {
636 int ret;
637 unsigned short do_reset;
638 struct zram *zram;
639 struct block_device *bdev;
640
641 zram = dev_to_zram(dev);
642 bdev = bdget_disk(zram->disk, 0);
643
644 if (!bdev)
645 return -ENOMEM;
646
647 /* Do not reset an active device! */
648 if (bdev->bd_holders) {
649 ret = -EBUSY;
650 goto out;
651 }
652
653 ret = kstrtou16(buf, 10, &do_reset);
654 if (ret)
655 goto out;
656
657 if (!do_reset) {
658 ret = -EINVAL;
659 goto out;
660 }
661
662 /* Make sure all pending I/O is finished */
663 fsync_bdev(bdev);
664 bdput(bdev);
665
666 zram_reset_device(zram, true);
667 return len;
668
669 out:
670 bdput(bdev);
671 return ret;
672 }
673
674 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
675 {
676 int offset;
677 u32 index;
678 struct bio_vec bvec;
679 struct bvec_iter iter;
680
681 switch (rw) {
682 case READ:
683 atomic64_inc(&zram->stats.num_reads);
684 break;
685 case WRITE:
686 atomic64_inc(&zram->stats.num_writes);
687 break;
688 }
689
690 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
691 offset = (bio->bi_iter.bi_sector &
692 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
693
694 bio_for_each_segment(bvec, bio, iter) {
695 int max_transfer_size = PAGE_SIZE - offset;
696
697 if (bvec.bv_len > max_transfer_size) {
698 /*
699 * zram_bvec_rw() can only make operation on a single
700 * zram page. Split the bio vector.
701 */
702 struct bio_vec bv;
703
704 bv.bv_page = bvec.bv_page;
705 bv.bv_len = max_transfer_size;
706 bv.bv_offset = bvec.bv_offset;
707
708 if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
709 goto out;
710
711 bv.bv_len = bvec.bv_len - max_transfer_size;
712 bv.bv_offset += max_transfer_size;
713 if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
714 goto out;
715 } else
716 if (zram_bvec_rw(zram, &bvec, index, offset, bio, rw)
717 < 0)
718 goto out;
719
720 update_position(&index, &offset, &bvec);
721 }
722
723 set_bit(BIO_UPTODATE, &bio->bi_flags);
724 bio_endio(bio, 0);
725 return;
726
727 out:
728 bio_io_error(bio);
729 }
730
731 /*
732 * Handler function for all zram I/O requests.
733 */
734 static void zram_make_request(struct request_queue *queue, struct bio *bio)
735 {
736 struct zram *zram = queue->queuedata;
737
738 down_read(&zram->init_lock);
739 if (unlikely(!zram->init_done))
740 goto error;
741
742 if (!valid_io_request(zram, bio)) {
743 atomic64_inc(&zram->stats.invalid_io);
744 goto error;
745 }
746
747 __zram_make_request(zram, bio, bio_data_dir(bio));
748 up_read(&zram->init_lock);
749
750 return;
751
752 error:
753 up_read(&zram->init_lock);
754 bio_io_error(bio);
755 }
756
757 static void zram_slot_free_notify(struct block_device *bdev,
758 unsigned long index)
759 {
760 struct zram *zram;
761 struct zram_meta *meta;
762
763 zram = bdev->bd_disk->private_data;
764 meta = zram->meta;
765
766 write_lock(&meta->tb_lock);
767 zram_free_page(zram, index);
768 write_unlock(&meta->tb_lock);
769 atomic64_inc(&zram->stats.notify_free);
770 }
771
772 static const struct block_device_operations zram_devops = {
773 .swap_slot_free_notify = zram_slot_free_notify,
774 .owner = THIS_MODULE
775 };
776
777 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
778 disksize_show, disksize_store);
779 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
780 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
781 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
782 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
783 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
784 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
785 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
786 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
787 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
788 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
789
790 static struct attribute *zram_disk_attrs[] = {
791 &dev_attr_disksize.attr,
792 &dev_attr_initstate.attr,
793 &dev_attr_reset.attr,
794 &dev_attr_num_reads.attr,
795 &dev_attr_num_writes.attr,
796 &dev_attr_invalid_io.attr,
797 &dev_attr_notify_free.attr,
798 &dev_attr_zero_pages.attr,
799 &dev_attr_orig_data_size.attr,
800 &dev_attr_compr_data_size.attr,
801 &dev_attr_mem_used_total.attr,
802 NULL,
803 };
804
805 static struct attribute_group zram_disk_attr_group = {
806 .attrs = zram_disk_attrs,
807 };
808
809 static int create_device(struct zram *zram, int device_id)
810 {
811 int ret = -ENOMEM;
812
813 init_rwsem(&zram->init_lock);
814
815 zram->queue = blk_alloc_queue(GFP_KERNEL);
816 if (!zram->queue) {
817 pr_err("Error allocating disk queue for device %d\n",
818 device_id);
819 goto out;
820 }
821
822 blk_queue_make_request(zram->queue, zram_make_request);
823 zram->queue->queuedata = zram;
824
825 /* gendisk structure */
826 zram->disk = alloc_disk(1);
827 if (!zram->disk) {
828 pr_warn("Error allocating disk structure for device %d\n",
829 device_id);
830 goto out_free_queue;
831 }
832
833 zram->disk->major = zram_major;
834 zram->disk->first_minor = device_id;
835 zram->disk->fops = &zram_devops;
836 zram->disk->queue = zram->queue;
837 zram->disk->private_data = zram;
838 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
839
840 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
841 set_capacity(zram->disk, 0);
842
843 /*
844 * To ensure that we always get PAGE_SIZE aligned
845 * and n*PAGE_SIZED sized I/O requests.
846 */
847 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
848 blk_queue_logical_block_size(zram->disk->queue,
849 ZRAM_LOGICAL_BLOCK_SIZE);
850 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
851 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
852
853 add_disk(zram->disk);
854
855 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
856 &zram_disk_attr_group);
857 if (ret < 0) {
858 pr_warn("Error creating sysfs group");
859 goto out_free_disk;
860 }
861
862 zram->init_done = 0;
863 return 0;
864
865 out_free_disk:
866 del_gendisk(zram->disk);
867 put_disk(zram->disk);
868 out_free_queue:
869 blk_cleanup_queue(zram->queue);
870 out:
871 return ret;
872 }
873
874 static void destroy_device(struct zram *zram)
875 {
876 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
877 &zram_disk_attr_group);
878
879 del_gendisk(zram->disk);
880 put_disk(zram->disk);
881
882 blk_cleanup_queue(zram->queue);
883 }
884
885 static int __init zram_init(void)
886 {
887 int ret, dev_id;
888
889 if (num_devices > max_num_devices) {
890 pr_warn("Invalid value for num_devices: %u\n",
891 num_devices);
892 ret = -EINVAL;
893 goto out;
894 }
895
896 zram_major = register_blkdev(0, "zram");
897 if (zram_major <= 0) {
898 pr_warn("Unable to get major number\n");
899 ret = -EBUSY;
900 goto out;
901 }
902
903 /* Allocate the device array and initialize each one */
904 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
905 if (!zram_devices) {
906 ret = -ENOMEM;
907 goto unregister;
908 }
909
910 for (dev_id = 0; dev_id < num_devices; dev_id++) {
911 ret = create_device(&zram_devices[dev_id], dev_id);
912 if (ret)
913 goto free_devices;
914 }
915
916 pr_info("Created %u device(s) ...\n", num_devices);
917
918 return 0;
919
920 free_devices:
921 while (dev_id)
922 destroy_device(&zram_devices[--dev_id]);
923 kfree(zram_devices);
924 unregister:
925 unregister_blkdev(zram_major, "zram");
926 out:
927 return ret;
928 }
929
930 static void __exit zram_exit(void)
931 {
932 int i;
933 struct zram *zram;
934
935 for (i = 0; i < num_devices; i++) {
936 zram = &zram_devices[i];
937
938 destroy_device(zram);
939 /*
940 * Shouldn't access zram->disk after destroy_device
941 * because destroy_device already released zram->disk.
942 */
943 zram_reset_device(zram, false);
944 }
945
946 unregister_blkdev(zram_major, "zram");
947
948 kfree(zram_devices);
949 pr_debug("Cleanup done!\n");
950 }
951
952 module_init(zram_init);
953 module_exit(zram_exit);
954
955 module_param(num_devices, uint, 0);
956 MODULE_PARM_DESC(num_devices, "Number of zram devices");
957
958 MODULE_LICENSE("Dual BSD/GPL");
959 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
960 MODULE_DESCRIPTION("Compressed RAM Block Device");