]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/bluetooth/hci_intel.c
scsi: cxlflash: Cleanup prints
[mirror_ubuntu-zesty-kernel.git] / drivers / bluetooth / hci_intel.c
1 /*
2 *
3 * Bluetooth HCI UART driver for Intel devices
4 *
5 * Copyright (C) 2015 Intel Corporation
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btintel.h"
42
43 #define STATE_BOOTLOADER 0
44 #define STATE_DOWNLOADING 1
45 #define STATE_FIRMWARE_LOADED 2
46 #define STATE_FIRMWARE_FAILED 3
47 #define STATE_BOOTING 4
48 #define STATE_LPM_ENABLED 5
49 #define STATE_TX_ACTIVE 6
50 #define STATE_SUSPENDED 7
51 #define STATE_LPM_TRANSACTION 8
52
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61
62 #define LPM_SUSPEND_DELAY_MS 1000
63
64 struct hci_lpm_pkt {
65 __u8 opcode;
66 __u8 dlen;
67 __u8 data[0];
68 } __packed;
69
70 struct intel_device {
71 struct list_head list;
72 struct platform_device *pdev;
73 struct gpio_desc *reset;
74 struct hci_uart *hu;
75 struct mutex hu_lock;
76 int irq;
77 };
78
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81
82 struct intel_data {
83 struct sk_buff *rx_skb;
84 struct sk_buff_head txq;
85 struct work_struct busy_work;
86 struct hci_uart *hu;
87 unsigned long flags;
88 };
89
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 switch (speed) {
93 case 9600:
94 return 0x00;
95 case 19200:
96 return 0x01;
97 case 38400:
98 return 0x02;
99 case 57600:
100 return 0x03;
101 case 115200:
102 return 0x04;
103 case 230400:
104 return 0x05;
105 case 460800:
106 return 0x06;
107 case 921600:
108 return 0x07;
109 case 1843200:
110 return 0x08;
111 case 3250000:
112 return 0x09;
113 case 2000000:
114 return 0x0a;
115 case 3000000:
116 return 0x0b;
117 default:
118 return 0xff;
119 }
120 }
121
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 struct intel_data *intel = hu->priv;
125 int err;
126
127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 TASK_INTERRUPTIBLE,
129 msecs_to_jiffies(1000));
130
131 if (err == -EINTR) {
132 bt_dev_err(hu->hdev, "Device boot interrupted");
133 return -EINTR;
134 }
135
136 if (err) {
137 bt_dev_err(hu->hdev, "Device boot timeout");
138 return -ETIMEDOUT;
139 }
140
141 return err;
142 }
143
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 struct intel_data *intel = hu->priv;
148 int err;
149
150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 TASK_INTERRUPTIBLE,
152 msecs_to_jiffies(1000));
153
154 if (err == -EINTR) {
155 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 return -EINTR;
157 }
158
159 if (err) {
160 bt_dev_err(hu->hdev, "LPM transaction timeout");
161 return -ETIMEDOUT;
162 }
163
164 return err;
165 }
166
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 struct intel_data *intel = hu->priv;
171 struct sk_buff *skb;
172
173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 test_bit(STATE_SUSPENDED, &intel->flags))
175 return 0;
176
177 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 return -EAGAIN;
179
180 bt_dev_dbg(hu->hdev, "Suspending");
181
182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 if (!skb) {
184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 return -ENOMEM;
186 }
187
188 memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190
191 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel->txq, skb);
195 hci_uart_tx_wakeup(hu);
196
197 intel_wait_lpm_transaction(hu);
198 /* Even in case of failure, continue and test the suspended flag */
199
200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 bt_dev_err(hu->hdev, "Device suspend error");
204 return -EINVAL;
205 }
206
207 bt_dev_dbg(hu->hdev, "Suspended");
208
209 hci_uart_set_flow_control(hu, true);
210
211 return 0;
212 }
213
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 struct intel_data *intel = hu->priv;
217 struct sk_buff *skb;
218
219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 !test_bit(STATE_SUSPENDED, &intel->flags))
221 return 0;
222
223 bt_dev_dbg(hu->hdev, "Resuming");
224
225 hci_uart_set_flow_control(hu, false);
226
227 skb = bt_skb_alloc(0, GFP_KERNEL);
228 if (!skb) {
229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 return -ENOMEM;
231 }
232
233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234
235 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel->txq, skb);
239 hci_uart_tx_wakeup(hu);
240
241 intel_wait_lpm_transaction(hu);
242 /* Even in case of failure, continue and test the suspended flag */
243
244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 bt_dev_err(hu->hdev, "Device resume error");
248 return -EINVAL;
249 }
250
251 bt_dev_dbg(hu->hdev, "Resumed");
252
253 return 0;
254 }
255 #endif /* CONFIG_PM */
256
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 struct intel_data *intel = hu->priv;
261 struct sk_buff *skb;
262
263 hci_uart_set_flow_control(hu, false);
264
265 clear_bit(STATE_SUSPENDED, &intel->flags);
266
267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 if (!skb) {
269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 return -ENOMEM;
271 }
272
273 memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 sizeof(lpm_resume_ack));
275 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276
277 /* LPM flow is a priority, enqueue packet at list head */
278 skb_queue_head(&intel->txq, skb);
279 hci_uart_tx_wakeup(hu);
280
281 bt_dev_dbg(hu->hdev, "Resumed by controller");
282
283 return 0;
284 }
285
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288 struct intel_device *idev = dev_id;
289
290 dev_info(&idev->pdev->dev, "hci_intel irq\n");
291
292 mutex_lock(&idev->hu_lock);
293 if (idev->hu)
294 intel_lpm_host_wake(idev->hu);
295 mutex_unlock(&idev->hu_lock);
296
297 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 pm_runtime_get(&idev->pdev->dev);
299 pm_runtime_mark_last_busy(&idev->pdev->dev);
300 pm_runtime_put_autosuspend(&idev->pdev->dev);
301
302 return IRQ_HANDLED;
303 }
304
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307 struct list_head *p;
308 int err = -ENODEV;
309
310 if (!hu->tty->dev)
311 return err;
312
313 mutex_lock(&intel_device_list_lock);
314
315 list_for_each(p, &intel_device_list) {
316 struct intel_device *idev = list_entry(p, struct intel_device,
317 list);
318
319 /* tty device and pdev device should share the same parent
320 * which is the UART port.
321 */
322 if (hu->tty->dev->parent != idev->pdev->dev.parent)
323 continue;
324
325 if (!idev->reset) {
326 err = -ENOTSUPP;
327 break;
328 }
329
330 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
331 hu, dev_name(&idev->pdev->dev), powered);
332
333 gpiod_set_value(idev->reset, powered);
334
335 /* Provide to idev a hu reference which is used to run LPM
336 * transactions (lpm suspend/resume) from PM callbacks.
337 * hu needs to be protected against concurrent removing during
338 * these PM ops.
339 */
340 mutex_lock(&idev->hu_lock);
341 idev->hu = powered ? hu : NULL;
342 mutex_unlock(&idev->hu_lock);
343
344 if (idev->irq < 0)
345 break;
346
347 if (powered && device_can_wakeup(&idev->pdev->dev)) {
348 err = devm_request_threaded_irq(&idev->pdev->dev,
349 idev->irq, NULL,
350 intel_irq,
351 IRQF_ONESHOT,
352 "bt-host-wake", idev);
353 if (err) {
354 BT_ERR("hu %p, unable to allocate irq-%d",
355 hu, idev->irq);
356 break;
357 }
358
359 device_wakeup_enable(&idev->pdev->dev);
360
361 pm_runtime_set_active(&idev->pdev->dev);
362 pm_runtime_use_autosuspend(&idev->pdev->dev);
363 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
364 LPM_SUSPEND_DELAY_MS);
365 pm_runtime_enable(&idev->pdev->dev);
366 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
367 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
368 device_wakeup_disable(&idev->pdev->dev);
369
370 pm_runtime_disable(&idev->pdev->dev);
371 }
372 }
373
374 mutex_unlock(&intel_device_list_lock);
375
376 return err;
377 }
378
379 static void intel_busy_work(struct work_struct *work)
380 {
381 struct list_head *p;
382 struct intel_data *intel = container_of(work, struct intel_data,
383 busy_work);
384
385 if (!intel->hu->tty->dev)
386 return;
387
388 /* Link is busy, delay the suspend */
389 mutex_lock(&intel_device_list_lock);
390 list_for_each(p, &intel_device_list) {
391 struct intel_device *idev = list_entry(p, struct intel_device,
392 list);
393
394 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
395 pm_runtime_get(&idev->pdev->dev);
396 pm_runtime_mark_last_busy(&idev->pdev->dev);
397 pm_runtime_put_autosuspend(&idev->pdev->dev);
398 break;
399 }
400 }
401 mutex_unlock(&intel_device_list_lock);
402 }
403
404 static int intel_open(struct hci_uart *hu)
405 {
406 struct intel_data *intel;
407
408 BT_DBG("hu %p", hu);
409
410 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
411 if (!intel)
412 return -ENOMEM;
413
414 skb_queue_head_init(&intel->txq);
415 INIT_WORK(&intel->busy_work, intel_busy_work);
416
417 intel->hu = hu;
418
419 hu->priv = intel;
420
421 if (!intel_set_power(hu, true))
422 set_bit(STATE_BOOTING, &intel->flags);
423
424 return 0;
425 }
426
427 static int intel_close(struct hci_uart *hu)
428 {
429 struct intel_data *intel = hu->priv;
430
431 BT_DBG("hu %p", hu);
432
433 cancel_work_sync(&intel->busy_work);
434
435 intel_set_power(hu, false);
436
437 skb_queue_purge(&intel->txq);
438 kfree_skb(intel->rx_skb);
439 kfree(intel);
440
441 hu->priv = NULL;
442 return 0;
443 }
444
445 static int intel_flush(struct hci_uart *hu)
446 {
447 struct intel_data *intel = hu->priv;
448
449 BT_DBG("hu %p", hu);
450
451 skb_queue_purge(&intel->txq);
452
453 return 0;
454 }
455
456 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
457 {
458 struct sk_buff *skb;
459 struct hci_event_hdr *hdr;
460 struct hci_ev_cmd_complete *evt;
461
462 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
463 if (!skb)
464 return -ENOMEM;
465
466 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
467 hdr->evt = HCI_EV_CMD_COMPLETE;
468 hdr->plen = sizeof(*evt) + 1;
469
470 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
471 evt->ncmd = 0x01;
472 evt->opcode = cpu_to_le16(opcode);
473
474 *skb_put(skb, 1) = 0x00;
475
476 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
477
478 return hci_recv_frame(hdev, skb);
479 }
480
481 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
482 {
483 struct intel_data *intel = hu->priv;
484 struct hci_dev *hdev = hu->hdev;
485 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
486 struct sk_buff *skb;
487 int err;
488
489 /* This can be the first command sent to the chip, check
490 * that the controller is ready.
491 */
492 err = intel_wait_booting(hu);
493
494 clear_bit(STATE_BOOTING, &intel->flags);
495
496 /* In case of timeout, try to continue anyway */
497 if (err && err != -ETIMEDOUT)
498 return err;
499
500 bt_dev_info(hdev, "Change controller speed to %d", speed);
501
502 speed_cmd[3] = intel_convert_speed(speed);
503 if (speed_cmd[3] == 0xff) {
504 bt_dev_err(hdev, "Unsupported speed");
505 return -EINVAL;
506 }
507
508 /* Device will not accept speed change if Intel version has not been
509 * previously requested.
510 */
511 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
512 if (IS_ERR(skb)) {
513 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
514 PTR_ERR(skb));
515 return PTR_ERR(skb);
516 }
517 kfree_skb(skb);
518
519 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
520 if (!skb) {
521 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
522 return -ENOMEM;
523 }
524
525 memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
526 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
527
528 hci_uart_set_flow_control(hu, true);
529
530 skb_queue_tail(&intel->txq, skb);
531 hci_uart_tx_wakeup(hu);
532
533 /* wait 100ms to change baudrate on controller side */
534 msleep(100);
535
536 hci_uart_set_baudrate(hu, speed);
537 hci_uart_set_flow_control(hu, false);
538
539 return 0;
540 }
541
542 static int intel_setup(struct hci_uart *hu)
543 {
544 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
545 0x00, 0x08, 0x04, 0x00 };
546 struct intel_data *intel = hu->priv;
547 struct hci_dev *hdev = hu->hdev;
548 struct sk_buff *skb;
549 struct intel_version ver;
550 struct intel_boot_params *params;
551 struct list_head *p;
552 const struct firmware *fw;
553 const u8 *fw_ptr;
554 char fwname[64];
555 u32 frag_len;
556 ktime_t calltime, delta, rettime;
557 unsigned long long duration;
558 unsigned int init_speed, oper_speed;
559 int speed_change = 0;
560 int err;
561
562 bt_dev_dbg(hdev, "start intel_setup");
563
564 hu->hdev->set_diag = btintel_set_diag;
565 hu->hdev->set_bdaddr = btintel_set_bdaddr;
566
567 calltime = ktime_get();
568
569 if (hu->init_speed)
570 init_speed = hu->init_speed;
571 else
572 init_speed = hu->proto->init_speed;
573
574 if (hu->oper_speed)
575 oper_speed = hu->oper_speed;
576 else
577 oper_speed = hu->proto->oper_speed;
578
579 if (oper_speed && init_speed && oper_speed != init_speed)
580 speed_change = 1;
581
582 /* Check that the controller is ready */
583 err = intel_wait_booting(hu);
584
585 clear_bit(STATE_BOOTING, &intel->flags);
586
587 /* In case of timeout, try to continue anyway */
588 if (err && err != -ETIMEDOUT)
589 return err;
590
591 set_bit(STATE_BOOTLOADER, &intel->flags);
592
593 /* Read the Intel version information to determine if the device
594 * is in bootloader mode or if it already has operational firmware
595 * loaded.
596 */
597 err = btintel_read_version(hdev, &ver);
598 if (err)
599 return err;
600
601 /* The hardware platform number has a fixed value of 0x37 and
602 * for now only accept this single value.
603 */
604 if (ver.hw_platform != 0x37) {
605 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
606 ver.hw_platform);
607 return -EINVAL;
608 }
609
610 /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
611 * supported by this firmware loading method. This check has been
612 * put in place to ensure correct forward compatibility options
613 * when newer hardware variants come along.
614 */
615 if (ver.hw_variant != 0x0b) {
616 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
617 ver.hw_variant);
618 return -EINVAL;
619 }
620
621 btintel_version_info(hdev, &ver);
622
623 /* The firmware variant determines if the device is in bootloader
624 * mode or is running operational firmware. The value 0x06 identifies
625 * the bootloader and the value 0x23 identifies the operational
626 * firmware.
627 *
628 * When the operational firmware is already present, then only
629 * the check for valid Bluetooth device address is needed. This
630 * determines if the device will be added as configured or
631 * unconfigured controller.
632 *
633 * It is not possible to use the Secure Boot Parameters in this
634 * case since that command is only available in bootloader mode.
635 */
636 if (ver.fw_variant == 0x23) {
637 clear_bit(STATE_BOOTLOADER, &intel->flags);
638 btintel_check_bdaddr(hdev);
639 return 0;
640 }
641
642 /* If the device is not in bootloader mode, then the only possible
643 * choice is to return an error and abort the device initialization.
644 */
645 if (ver.fw_variant != 0x06) {
646 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
647 ver.fw_variant);
648 return -ENODEV;
649 }
650
651 /* Read the secure boot parameters to identify the operating
652 * details of the bootloader.
653 */
654 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
655 if (IS_ERR(skb)) {
656 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
657 PTR_ERR(skb));
658 return PTR_ERR(skb);
659 }
660
661 if (skb->len != sizeof(*params)) {
662 bt_dev_err(hdev, "Intel boot parameters size mismatch");
663 kfree_skb(skb);
664 return -EILSEQ;
665 }
666
667 params = (struct intel_boot_params *)skb->data;
668 if (params->status) {
669 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
670 params->status);
671 err = -bt_to_errno(params->status);
672 kfree_skb(skb);
673 return err;
674 }
675
676 bt_dev_info(hdev, "Device revision is %u",
677 le16_to_cpu(params->dev_revid));
678
679 bt_dev_info(hdev, "Secure boot is %s",
680 params->secure_boot ? "enabled" : "disabled");
681
682 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
683 params->min_fw_build_nn, params->min_fw_build_cw,
684 2000 + params->min_fw_build_yy);
685
686 /* It is required that every single firmware fragment is acknowledged
687 * with a command complete event. If the boot parameters indicate
688 * that this bootloader does not send them, then abort the setup.
689 */
690 if (params->limited_cce != 0x00) {
691 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
692 params->limited_cce);
693 kfree_skb(skb);
694 return -EINVAL;
695 }
696
697 /* If the OTP has no valid Bluetooth device address, then there will
698 * also be no valid address for the operational firmware.
699 */
700 if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
701 bt_dev_info(hdev, "No device address configured");
702 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
703 }
704
705 /* With this Intel bootloader only the hardware variant and device
706 * revision information are used to select the right firmware.
707 *
708 * Currently this bootloader support is limited to hardware variant
709 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
710 */
711 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
712 le16_to_cpu(params->dev_revid));
713
714 err = request_firmware(&fw, fwname, &hdev->dev);
715 if (err < 0) {
716 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
717 err);
718 kfree_skb(skb);
719 return err;
720 }
721
722 bt_dev_info(hdev, "Found device firmware: %s", fwname);
723
724 /* Save the DDC file name for later */
725 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
726 le16_to_cpu(params->dev_revid));
727
728 kfree_skb(skb);
729
730 if (fw->size < 644) {
731 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
732 fw->size);
733 err = -EBADF;
734 goto done;
735 }
736
737 set_bit(STATE_DOWNLOADING, &intel->flags);
738
739 /* Start the firmware download transaction with the Init fragment
740 * represented by the 128 bytes of CSS header.
741 */
742 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
743 if (err < 0) {
744 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
745 goto done;
746 }
747
748 /* Send the 256 bytes of public key information from the firmware
749 * as the PKey fragment.
750 */
751 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
752 if (err < 0) {
753 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
754 err);
755 goto done;
756 }
757
758 /* Send the 256 bytes of signature information from the firmware
759 * as the Sign fragment.
760 */
761 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
762 if (err < 0) {
763 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
764 err);
765 goto done;
766 }
767
768 fw_ptr = fw->data + 644;
769 frag_len = 0;
770
771 while (fw_ptr - fw->data < fw->size) {
772 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
773
774 frag_len += sizeof(*cmd) + cmd->plen;
775
776 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
777 fw->size);
778
779 /* The parameter length of the secure send command requires
780 * a 4 byte alignment. It happens so that the firmware file
781 * contains proper Intel_NOP commands to align the fragments
782 * as needed.
783 *
784 * Send set of commands with 4 byte alignment from the
785 * firmware data buffer as a single Data fragement.
786 */
787 if (frag_len % 4)
788 continue;
789
790 /* Send each command from the firmware data buffer as
791 * a single Data fragment.
792 */
793 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
794 if (err < 0) {
795 bt_dev_err(hdev, "Failed to send firmware data (%d)",
796 err);
797 goto done;
798 }
799
800 fw_ptr += frag_len;
801 frag_len = 0;
802 }
803
804 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
805
806 bt_dev_info(hdev, "Waiting for firmware download to complete");
807
808 /* Before switching the device into operational mode and with that
809 * booting the loaded firmware, wait for the bootloader notification
810 * that all fragments have been successfully received.
811 *
812 * When the event processing receives the notification, then the
813 * STATE_DOWNLOADING flag will be cleared.
814 *
815 * The firmware loading should not take longer than 5 seconds
816 * and thus just timeout if that happens and fail the setup
817 * of this device.
818 */
819 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
820 TASK_INTERRUPTIBLE,
821 msecs_to_jiffies(5000));
822 if (err == -EINTR) {
823 bt_dev_err(hdev, "Firmware loading interrupted");
824 err = -EINTR;
825 goto done;
826 }
827
828 if (err) {
829 bt_dev_err(hdev, "Firmware loading timeout");
830 err = -ETIMEDOUT;
831 goto done;
832 }
833
834 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
835 bt_dev_err(hdev, "Firmware loading failed");
836 err = -ENOEXEC;
837 goto done;
838 }
839
840 rettime = ktime_get();
841 delta = ktime_sub(rettime, calltime);
842 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
843
844 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
845
846 done:
847 release_firmware(fw);
848
849 if (err < 0)
850 return err;
851
852 /* We need to restore the default speed before Intel reset */
853 if (speed_change) {
854 err = intel_set_baudrate(hu, init_speed);
855 if (err)
856 return err;
857 }
858
859 calltime = ktime_get();
860
861 set_bit(STATE_BOOTING, &intel->flags);
862
863 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
864 HCI_CMD_TIMEOUT);
865 if (IS_ERR(skb))
866 return PTR_ERR(skb);
867
868 kfree_skb(skb);
869
870 /* The bootloader will not indicate when the device is ready. This
871 * is done by the operational firmware sending bootup notification.
872 *
873 * Booting into operational firmware should not take longer than
874 * 1 second. However if that happens, then just fail the setup
875 * since something went wrong.
876 */
877 bt_dev_info(hdev, "Waiting for device to boot");
878
879 err = intel_wait_booting(hu);
880 if (err)
881 return err;
882
883 clear_bit(STATE_BOOTING, &intel->flags);
884
885 rettime = ktime_get();
886 delta = ktime_sub(rettime, calltime);
887 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
888
889 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
890
891 /* Enable LPM if matching pdev with wakeup enabled, set TX active
892 * until further LPM TX notification.
893 */
894 mutex_lock(&intel_device_list_lock);
895 list_for_each(p, &intel_device_list) {
896 struct intel_device *dev = list_entry(p, struct intel_device,
897 list);
898 if (!hu->tty->dev)
899 break;
900 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
901 if (device_may_wakeup(&dev->pdev->dev)) {
902 set_bit(STATE_LPM_ENABLED, &intel->flags);
903 set_bit(STATE_TX_ACTIVE, &intel->flags);
904 }
905 break;
906 }
907 }
908 mutex_unlock(&intel_device_list_lock);
909
910 /* Ignore errors, device can work without DDC parameters */
911 btintel_load_ddc_config(hdev, fwname);
912
913 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
914 if (IS_ERR(skb))
915 return PTR_ERR(skb);
916 kfree_skb(skb);
917
918 if (speed_change) {
919 err = intel_set_baudrate(hu, oper_speed);
920 if (err)
921 return err;
922 }
923
924 bt_dev_info(hdev, "Setup complete");
925
926 clear_bit(STATE_BOOTLOADER, &intel->flags);
927
928 return 0;
929 }
930
931 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
932 {
933 struct hci_uart *hu = hci_get_drvdata(hdev);
934 struct intel_data *intel = hu->priv;
935 struct hci_event_hdr *hdr;
936
937 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
938 !test_bit(STATE_BOOTING, &intel->flags))
939 goto recv;
940
941 hdr = (void *)skb->data;
942
943 /* When the firmware loading completes the device sends
944 * out a vendor specific event indicating the result of
945 * the firmware loading.
946 */
947 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
948 skb->data[2] == 0x06) {
949 if (skb->data[3] != 0x00)
950 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
951
952 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
953 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
954 smp_mb__after_atomic();
955 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
956 }
957
958 /* When switching to the operational firmware the device
959 * sends a vendor specific event indicating that the bootup
960 * completed.
961 */
962 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
963 skb->data[2] == 0x02) {
964 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
965 smp_mb__after_atomic();
966 wake_up_bit(&intel->flags, STATE_BOOTING);
967 }
968 }
969 recv:
970 return hci_recv_frame(hdev, skb);
971 }
972
973 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
974 {
975 struct hci_uart *hu = hci_get_drvdata(hdev);
976 struct intel_data *intel = hu->priv;
977
978 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
979
980 if (value) {
981 set_bit(STATE_TX_ACTIVE, &intel->flags);
982 schedule_work(&intel->busy_work);
983 } else {
984 clear_bit(STATE_TX_ACTIVE, &intel->flags);
985 }
986 }
987
988 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
989 {
990 struct hci_lpm_pkt *lpm = (void *)skb->data;
991 struct hci_uart *hu = hci_get_drvdata(hdev);
992 struct intel_data *intel = hu->priv;
993
994 switch (lpm->opcode) {
995 case LPM_OP_TX_NOTIFY:
996 if (lpm->dlen < 1) {
997 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
998 break;
999 }
1000 intel_recv_lpm_notify(hdev, lpm->data[0]);
1001 break;
1002 case LPM_OP_SUSPEND_ACK:
1003 set_bit(STATE_SUSPENDED, &intel->flags);
1004 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1005 smp_mb__after_atomic();
1006 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1007 }
1008 break;
1009 case LPM_OP_RESUME_ACK:
1010 clear_bit(STATE_SUSPENDED, &intel->flags);
1011 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1012 smp_mb__after_atomic();
1013 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1014 }
1015 break;
1016 default:
1017 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1018 break;
1019 }
1020
1021 kfree_skb(skb);
1022
1023 return 0;
1024 }
1025
1026 #define INTEL_RECV_LPM \
1027 .type = HCI_LPM_PKT, \
1028 .hlen = HCI_LPM_HDR_SIZE, \
1029 .loff = 1, \
1030 .lsize = 1, \
1031 .maxlen = HCI_LPM_MAX_SIZE
1032
1033 static const struct h4_recv_pkt intel_recv_pkts[] = {
1034 { H4_RECV_ACL, .recv = hci_recv_frame },
1035 { H4_RECV_SCO, .recv = hci_recv_frame },
1036 { H4_RECV_EVENT, .recv = intel_recv_event },
1037 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
1038 };
1039
1040 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1041 {
1042 struct intel_data *intel = hu->priv;
1043
1044 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1045 return -EUNATCH;
1046
1047 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1048 intel_recv_pkts,
1049 ARRAY_SIZE(intel_recv_pkts));
1050 if (IS_ERR(intel->rx_skb)) {
1051 int err = PTR_ERR(intel->rx_skb);
1052 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1053 intel->rx_skb = NULL;
1054 return err;
1055 }
1056
1057 return count;
1058 }
1059
1060 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1061 {
1062 struct intel_data *intel = hu->priv;
1063 struct list_head *p;
1064
1065 BT_DBG("hu %p skb %p", hu, skb);
1066
1067 if (!hu->tty->dev)
1068 goto out_enqueue;
1069
1070 /* Be sure our controller is resumed and potential LPM transaction
1071 * completed before enqueuing any packet.
1072 */
1073 mutex_lock(&intel_device_list_lock);
1074 list_for_each(p, &intel_device_list) {
1075 struct intel_device *idev = list_entry(p, struct intel_device,
1076 list);
1077
1078 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1079 pm_runtime_get_sync(&idev->pdev->dev);
1080 pm_runtime_mark_last_busy(&idev->pdev->dev);
1081 pm_runtime_put_autosuspend(&idev->pdev->dev);
1082 break;
1083 }
1084 }
1085 mutex_unlock(&intel_device_list_lock);
1086 out_enqueue:
1087 skb_queue_tail(&intel->txq, skb);
1088
1089 return 0;
1090 }
1091
1092 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1093 {
1094 struct intel_data *intel = hu->priv;
1095 struct sk_buff *skb;
1096
1097 skb = skb_dequeue(&intel->txq);
1098 if (!skb)
1099 return skb;
1100
1101 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1102 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1103 struct hci_command_hdr *cmd = (void *)skb->data;
1104 __u16 opcode = le16_to_cpu(cmd->opcode);
1105
1106 /* When the 0xfc01 command is issued to boot into
1107 * the operational firmware, it will actually not
1108 * send a command complete event. To keep the flow
1109 * control working inject that event here.
1110 */
1111 if (opcode == 0xfc01)
1112 inject_cmd_complete(hu->hdev, opcode);
1113 }
1114
1115 /* Prepend skb with frame type */
1116 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1117
1118 return skb;
1119 }
1120
1121 static const struct hci_uart_proto intel_proto = {
1122 .id = HCI_UART_INTEL,
1123 .name = "Intel",
1124 .manufacturer = 2,
1125 .init_speed = 115200,
1126 .oper_speed = 3000000,
1127 .open = intel_open,
1128 .close = intel_close,
1129 .flush = intel_flush,
1130 .setup = intel_setup,
1131 .set_baudrate = intel_set_baudrate,
1132 .recv = intel_recv,
1133 .enqueue = intel_enqueue,
1134 .dequeue = intel_dequeue,
1135 };
1136
1137 #ifdef CONFIG_ACPI
1138 static const struct acpi_device_id intel_acpi_match[] = {
1139 { "INT33E1", 0 },
1140 { },
1141 };
1142 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1143 #endif
1144
1145 #ifdef CONFIG_PM
1146 static int intel_suspend_device(struct device *dev)
1147 {
1148 struct intel_device *idev = dev_get_drvdata(dev);
1149
1150 mutex_lock(&idev->hu_lock);
1151 if (idev->hu)
1152 intel_lpm_suspend(idev->hu);
1153 mutex_unlock(&idev->hu_lock);
1154
1155 return 0;
1156 }
1157
1158 static int intel_resume_device(struct device *dev)
1159 {
1160 struct intel_device *idev = dev_get_drvdata(dev);
1161
1162 mutex_lock(&idev->hu_lock);
1163 if (idev->hu)
1164 intel_lpm_resume(idev->hu);
1165 mutex_unlock(&idev->hu_lock);
1166
1167 return 0;
1168 }
1169 #endif
1170
1171 #ifdef CONFIG_PM_SLEEP
1172 static int intel_suspend(struct device *dev)
1173 {
1174 struct intel_device *idev = dev_get_drvdata(dev);
1175
1176 if (device_may_wakeup(dev))
1177 enable_irq_wake(idev->irq);
1178
1179 return intel_suspend_device(dev);
1180 }
1181
1182 static int intel_resume(struct device *dev)
1183 {
1184 struct intel_device *idev = dev_get_drvdata(dev);
1185
1186 if (device_may_wakeup(dev))
1187 disable_irq_wake(idev->irq);
1188
1189 return intel_resume_device(dev);
1190 }
1191 #endif
1192
1193 static const struct dev_pm_ops intel_pm_ops = {
1194 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1195 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1196 };
1197
1198 static int intel_probe(struct platform_device *pdev)
1199 {
1200 struct intel_device *idev;
1201
1202 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1203 if (!idev)
1204 return -ENOMEM;
1205
1206 mutex_init(&idev->hu_lock);
1207
1208 idev->pdev = pdev;
1209
1210 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1211 if (IS_ERR(idev->reset)) {
1212 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1213 return PTR_ERR(idev->reset);
1214 }
1215
1216 idev->irq = platform_get_irq(pdev, 0);
1217 if (idev->irq < 0) {
1218 struct gpio_desc *host_wake;
1219
1220 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1221
1222 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1223 if (IS_ERR(host_wake)) {
1224 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1225 goto no_irq;
1226 }
1227
1228 idev->irq = gpiod_to_irq(host_wake);
1229 if (idev->irq < 0) {
1230 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1231 goto no_irq;
1232 }
1233 }
1234
1235 /* Only enable wake-up/irq when controller is powered */
1236 device_set_wakeup_capable(&pdev->dev, true);
1237 device_wakeup_disable(&pdev->dev);
1238
1239 no_irq:
1240 platform_set_drvdata(pdev, idev);
1241
1242 /* Place this instance on the device list */
1243 mutex_lock(&intel_device_list_lock);
1244 list_add_tail(&idev->list, &intel_device_list);
1245 mutex_unlock(&intel_device_list_lock);
1246
1247 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1248 desc_to_gpio(idev->reset), idev->irq);
1249
1250 return 0;
1251 }
1252
1253 static int intel_remove(struct platform_device *pdev)
1254 {
1255 struct intel_device *idev = platform_get_drvdata(pdev);
1256
1257 device_wakeup_disable(&pdev->dev);
1258
1259 mutex_lock(&intel_device_list_lock);
1260 list_del(&idev->list);
1261 mutex_unlock(&intel_device_list_lock);
1262
1263 dev_info(&pdev->dev, "unregistered.\n");
1264
1265 return 0;
1266 }
1267
1268 static struct platform_driver intel_driver = {
1269 .probe = intel_probe,
1270 .remove = intel_remove,
1271 .driver = {
1272 .name = "hci_intel",
1273 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1274 .pm = &intel_pm_ops,
1275 },
1276 };
1277
1278 int __init intel_init(void)
1279 {
1280 platform_driver_register(&intel_driver);
1281
1282 return hci_uart_register_proto(&intel_proto);
1283 }
1284
1285 int __exit intel_deinit(void)
1286 {
1287 platform_driver_unregister(&intel_driver);
1288
1289 return hci_uart_unregister_proto(&intel_proto);
1290 }