]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/epca.c
[MFD] Fix gcc4 build errors in ucb1x00-core.c
[mirror_ubuntu-artful-kernel.git] / drivers / char / epca.c
1 /*
2
3
4 Copyright (C) 1996 Digi International.
5
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
8
9 ** This driver is no longer supported by Digi **
10
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
31
32
33 #include <linux/config.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/serial.h>
39 #include <linux/delay.h>
40 #include <linux/ctype.h>
41 #include <linux/tty.h>
42 #include <linux/tty_flip.h>
43 #include <linux/slab.h>
44 #include <linux/ioport.h>
45 #include <linux/interrupt.h>
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include "digiPCI.h"
51
52
53 #include "digi1.h"
54 #include "digiFep1.h"
55 #include "epca.h"
56 #include "epcaconfig.h"
57
58 /* ---------------------- Begin defines ------------------------ */
59
60 #define VERSION "1.3.0.1-LK2.6"
61
62 /* This major needs to be submitted to Linux to join the majors list */
63
64 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
65
66
67 #define MAXCARDS 7
68 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
69
70 #define PFX "epca: "
71
72 /* ----------------- Begin global definitions ------------------- */
73
74 static int nbdevs, num_cards, liloconfig;
75 static int digi_poller_inhibited = 1 ;
76
77 static int setup_error_code;
78 static int invalid_lilo_config;
79
80 /* The ISA boards do window flipping into the same spaces so its only sane
81 with a single lock. It's still pretty efficient */
82
83 static spinlock_t epca_lock = SPIN_LOCK_UNLOCKED;
84
85 /* -----------------------------------------------------------------------
86 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
87 7 below.
88 --------------------------------------------------------------------------*/
89 static struct board_info boards[MAXBOARDS];
90
91
92 /* ------------- Begin structures used for driver registeration ---------- */
93
94 static struct tty_driver *pc_driver;
95 static struct tty_driver *pc_info;
96
97 /* ------------------ Begin Digi specific structures -------------------- */
98
99 /* ------------------------------------------------------------------------
100 digi_channels represents an array of structures that keep track of
101 each channel of the Digi product. Information such as transmit and
102 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
103 are stored here. This structure is NOT used to overlay the cards
104 physical channel structure.
105 -------------------------------------------------------------------------- */
106
107 static struct channel digi_channels[MAX_ALLOC];
108
109 /* ------------------------------------------------------------------------
110 card_ptr is an array used to hold the address of the
111 first channel structure of each card. This array will hold
112 the addresses of various channels located in digi_channels.
113 -------------------------------------------------------------------------- */
114 static struct channel *card_ptr[MAXCARDS];
115
116 static struct timer_list epca_timer;
117
118 /* ---------------------- Begin function prototypes --------------------- */
119
120 /* ----------------------------------------------------------------------
121 Begin generic memory functions. These functions will be alias
122 (point at) more specific functions dependent on the board being
123 configured.
124 ----------------------------------------------------------------------- */
125
126 static void memwinon(struct board_info *b, unsigned int win);
127 static void memwinoff(struct board_info *b, unsigned int win);
128 static void globalwinon(struct channel *ch);
129 static void rxwinon(struct channel *ch);
130 static void txwinon(struct channel *ch);
131 static void memoff(struct channel *ch);
132 static void assertgwinon(struct channel *ch);
133 static void assertmemoff(struct channel *ch);
134
135 /* ---- Begin more 'specific' memory functions for cx_like products --- */
136
137 static void pcxem_memwinon(struct board_info *b, unsigned int win);
138 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxem_globalwinon(struct channel *ch);
140 static void pcxem_rxwinon(struct channel *ch);
141 static void pcxem_txwinon(struct channel *ch);
142 static void pcxem_memoff(struct channel *ch);
143
144 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
145
146 static void pcxe_memwinon(struct board_info *b, unsigned int win);
147 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
148 static void pcxe_globalwinon(struct channel *ch);
149 static void pcxe_rxwinon(struct channel *ch);
150 static void pcxe_txwinon(struct channel *ch);
151 static void pcxe_memoff(struct channel *ch);
152
153 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
154 /* Note : pc64xe and pcxi share the same windowing routines */
155
156 static void pcxi_memwinon(struct board_info *b, unsigned int win);
157 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
158 static void pcxi_globalwinon(struct channel *ch);
159 static void pcxi_rxwinon(struct channel *ch);
160 static void pcxi_txwinon(struct channel *ch);
161 static void pcxi_memoff(struct channel *ch);
162
163 /* - Begin 'specific' do nothing memory functions needed for some cards - */
164
165 static void dummy_memwinon(struct board_info *b, unsigned int win);
166 static void dummy_memwinoff(struct board_info *b, unsigned int win);
167 static void dummy_globalwinon(struct channel *ch);
168 static void dummy_rxwinon(struct channel *ch);
169 static void dummy_txwinon(struct channel *ch);
170 static void dummy_memoff(struct channel *ch);
171 static void dummy_assertgwinon(struct channel *ch);
172 static void dummy_assertmemoff(struct channel *ch);
173
174 /* ------------------- Begin declare functions ----------------------- */
175
176 static struct channel *verifyChannel(struct tty_struct *);
177 static void pc_sched_event(struct channel *, int);
178 static void epca_error(int, char *);
179 static void pc_close(struct tty_struct *, struct file *);
180 static void shutdown(struct channel *);
181 static void pc_hangup(struct tty_struct *);
182 static void pc_put_char(struct tty_struct *, unsigned char);
183 static int pc_write_room(struct tty_struct *);
184 static int pc_chars_in_buffer(struct tty_struct *);
185 static void pc_flush_buffer(struct tty_struct *);
186 static void pc_flush_chars(struct tty_struct *);
187 static int block_til_ready(struct tty_struct *, struct file *,
188 struct channel *);
189 static int pc_open(struct tty_struct *, struct file *);
190 static void post_fep_init(unsigned int crd);
191 static void epcapoll(unsigned long);
192 static void doevent(int);
193 static void fepcmd(struct channel *, int, int, int, int, int);
194 static unsigned termios2digi_h(struct channel *ch, unsigned);
195 static unsigned termios2digi_i(struct channel *ch, unsigned);
196 static unsigned termios2digi_c(struct channel *ch, unsigned);
197 static void epcaparam(struct tty_struct *, struct channel *);
198 static void receive_data(struct channel *);
199 static int pc_ioctl(struct tty_struct *, struct file *,
200 unsigned int, unsigned long);
201 static int info_ioctl(struct tty_struct *, struct file *,
202 unsigned int, unsigned long);
203 static void pc_set_termios(struct tty_struct *, struct termios *);
204 static void do_softint(void *);
205 static void pc_stop(struct tty_struct *);
206 static void pc_start(struct tty_struct *);
207 static void pc_throttle(struct tty_struct * tty);
208 static void pc_unthrottle(struct tty_struct *tty);
209 static void digi_send_break(struct channel *ch, int msec);
210 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
211 void epca_setup(char *, int *);
212
213 static int get_termio(struct tty_struct *, struct termio __user *);
214 static int pc_write(struct tty_struct *, const unsigned char *, int);
215 static int pc_init(void);
216 static int init_PCI(void);
217
218
219 /* ------------------------------------------------------------------
220 Table of functions for each board to handle memory. Mantaining
221 parallelism is a *very* good idea here. The idea is for the
222 runtime code to blindly call these functions, not knowing/caring
223 about the underlying hardware. This stuff should contain no
224 conditionals; if more functionality is needed a different entry
225 should be established. These calls are the interface calls and
226 are the only functions that should be accessed. Anyone caught
227 making direct calls deserves what they get.
228 -------------------------------------------------------------------- */
229
230 static void memwinon(struct board_info *b, unsigned int win)
231 {
232 (b->memwinon)(b, win);
233 }
234
235 static void memwinoff(struct board_info *b, unsigned int win)
236 {
237 (b->memwinoff)(b, win);
238 }
239
240 static void globalwinon(struct channel *ch)
241 {
242 (ch->board->globalwinon)(ch);
243 }
244
245 static void rxwinon(struct channel *ch)
246 {
247 (ch->board->rxwinon)(ch);
248 }
249
250 static void txwinon(struct channel *ch)
251 {
252 (ch->board->txwinon)(ch);
253 }
254
255 static void memoff(struct channel *ch)
256 {
257 (ch->board->memoff)(ch);
258 }
259 static void assertgwinon(struct channel *ch)
260 {
261 (ch->board->assertgwinon)(ch);
262 }
263
264 static void assertmemoff(struct channel *ch)
265 {
266 (ch->board->assertmemoff)(ch);
267 }
268
269 /* ---------------------------------------------------------
270 PCXEM windowing is the same as that used in the PCXR
271 and CX series cards.
272 ------------------------------------------------------------ */
273
274 static void pcxem_memwinon(struct board_info *b, unsigned int win)
275 {
276 outb_p(FEPWIN|win, b->port + 1);
277 }
278
279 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
280 {
281 outb_p(0, b->port + 1);
282 }
283
284 static void pcxem_globalwinon(struct channel *ch)
285 {
286 outb_p( FEPWIN, (int)ch->board->port + 1);
287 }
288
289 static void pcxem_rxwinon(struct channel *ch)
290 {
291 outb_p(ch->rxwin, (int)ch->board->port + 1);
292 }
293
294 static void pcxem_txwinon(struct channel *ch)
295 {
296 outb_p(ch->txwin, (int)ch->board->port + 1);
297 }
298
299 static void pcxem_memoff(struct channel *ch)
300 {
301 outb_p(0, (int)ch->board->port + 1);
302 }
303
304 /* ----------------- Begin pcxe memory window stuff ------------------ */
305
306 static void pcxe_memwinon(struct board_info *b, unsigned int win)
307 {
308 outb_p(FEPWIN | win, b->port + 1);
309 }
310
311 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
312 {
313 outb_p(inb(b->port) & ~FEPMEM,
314 b->port + 1);
315 outb_p(0, b->port + 1);
316 }
317
318 static void pcxe_globalwinon(struct channel *ch)
319 {
320 outb_p( FEPWIN, (int)ch->board->port + 1);
321 }
322
323 static void pcxe_rxwinon(struct channel *ch)
324 {
325 outb_p(ch->rxwin, (int)ch->board->port + 1);
326 }
327
328 static void pcxe_txwinon(struct channel *ch)
329 {
330 outb_p(ch->txwin, (int)ch->board->port + 1);
331 }
332
333 static void pcxe_memoff(struct channel *ch)
334 {
335 outb_p(0, (int)ch->board->port);
336 outb_p(0, (int)ch->board->port + 1);
337 }
338
339 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
340
341 static void pcxi_memwinon(struct board_info *b, unsigned int win)
342 {
343 outb_p(inb(b->port) | FEPMEM, b->port);
344 }
345
346 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
347 {
348 outb_p(inb(b->port) & ~FEPMEM, b->port);
349 }
350
351 static void pcxi_globalwinon(struct channel *ch)
352 {
353 outb_p(FEPMEM, ch->board->port);
354 }
355
356 static void pcxi_rxwinon(struct channel *ch)
357 {
358 outb_p(FEPMEM, ch->board->port);
359 }
360
361 static void pcxi_txwinon(struct channel *ch)
362 {
363 outb_p(FEPMEM, ch->board->port);
364 }
365
366 static void pcxi_memoff(struct channel *ch)
367 {
368 outb_p(0, ch->board->port);
369 }
370
371 static void pcxi_assertgwinon(struct channel *ch)
372 {
373 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
374 }
375
376 static void pcxi_assertmemoff(struct channel *ch)
377 {
378 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
379 }
380
381
382 /* ----------------------------------------------------------------------
383 Not all of the cards need specific memory windowing routines. Some
384 cards (Such as PCI) needs no windowing routines at all. We provide
385 these do nothing routines so that the same code base can be used.
386 The driver will ALWAYS call a windowing routine if it thinks it needs
387 to; regardless of the card. However, dependent on the card the routine
388 may or may not do anything.
389 ---------------------------------------------------------------------------*/
390
391 static void dummy_memwinon(struct board_info *b, unsigned int win)
392 {
393 }
394
395 static void dummy_memwinoff(struct board_info *b, unsigned int win)
396 {
397 }
398
399 static void dummy_globalwinon(struct channel *ch)
400 {
401 }
402
403 static void dummy_rxwinon(struct channel *ch)
404 {
405 }
406
407 static void dummy_txwinon(struct channel *ch)
408 {
409 }
410
411 static void dummy_memoff(struct channel *ch)
412 {
413 }
414
415 static void dummy_assertgwinon(struct channel *ch)
416 {
417 }
418
419 static void dummy_assertmemoff(struct channel *ch)
420 {
421 }
422
423 /* ----------------- Begin verifyChannel function ----------------------- */
424 static struct channel *verifyChannel(struct tty_struct *tty)
425 { /* Begin verifyChannel */
426 /* --------------------------------------------------------------------
427 This routine basically provides a sanity check. It insures that
428 the channel returned is within the proper range of addresses as
429 well as properly initialized. If some bogus info gets passed in
430 through tty->driver_data this should catch it.
431 --------------------------------------------------------------------- */
432 if (tty) {
433 struct channel *ch = (struct channel *)tty->driver_data;
434 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
435 if (ch->magic == EPCA_MAGIC)
436 return ch;
437 }
438 }
439 return NULL;
440
441 } /* End verifyChannel */
442
443 /* ------------------ Begin pc_sched_event ------------------------- */
444
445 static void pc_sched_event(struct channel *ch, int event)
446 {
447 /* ----------------------------------------------------------------------
448 We call this to schedule interrupt processing on some event. The
449 kernel sees our request and calls the related routine in OUR driver.
450 -------------------------------------------------------------------------*/
451 ch->event |= 1 << event;
452 schedule_work(&ch->tqueue);
453 } /* End pc_sched_event */
454
455 /* ------------------ Begin epca_error ------------------------- */
456
457 static void epca_error(int line, char *msg)
458 {
459 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
460 }
461
462 /* ------------------ Begin pc_close ------------------------- */
463 static void pc_close(struct tty_struct * tty, struct file * filp)
464 {
465 struct channel *ch;
466 unsigned long flags;
467 /* ---------------------------------------------------------
468 verifyChannel returns the channel from the tty struct
469 if it is valid. This serves as a sanity check.
470 ------------------------------------------------------------- */
471 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
472 spin_lock_irqsave(&epca_lock, flags);
473 if (tty_hung_up_p(filp)) {
474 spin_unlock_irqrestore(&epca_lock, flags);
475 return;
476 }
477 /* Check to see if the channel is open more than once */
478 if (ch->count-- > 1) {
479 /* Begin channel is open more than once */
480 /* -------------------------------------------------------------
481 Return without doing anything. Someone might still be using
482 the channel.
483 ---------------------------------------------------------------- */
484 spin_unlock_irqrestore(&epca_lock, flags);
485 return;
486 } /* End channel is open more than once */
487
488 /* Port open only once go ahead with shutdown & reset */
489 if (ch->count < 0)
490 BUG();
491
492 /* ---------------------------------------------------------------
493 Let the rest of the driver know the channel is being closed.
494 This becomes important if an open is attempted before close
495 is finished.
496 ------------------------------------------------------------------ */
497 ch->asyncflags |= ASYNC_CLOSING;
498 tty->closing = 1;
499
500 spin_unlock_irqrestore(&epca_lock, flags);
501
502 if (ch->asyncflags & ASYNC_INITIALIZED) {
503 /* Setup an event to indicate when the transmit buffer empties */
504 setup_empty_event(tty, ch);
505 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
506 }
507 if (tty->driver->flush_buffer)
508 tty->driver->flush_buffer(tty);
509
510 tty_ldisc_flush(tty);
511 shutdown(ch);
512
513 spin_lock_irqsave(&epca_lock, flags);
514 tty->closing = 0;
515 ch->event = 0;
516 ch->tty = NULL;
517 spin_unlock_irqrestore(&epca_lock, flags);
518
519 if (ch->blocked_open) { /* Begin if blocked_open */
520 if (ch->close_delay)
521 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
522 wake_up_interruptible(&ch->open_wait);
523 } /* End if blocked_open */
524 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
525 ASYNC_CLOSING);
526 wake_up_interruptible(&ch->close_wait);
527 } /* End if ch != NULL */
528 } /* End pc_close */
529
530 /* ------------------ Begin shutdown ------------------------- */
531
532 static void shutdown(struct channel *ch)
533 { /* Begin shutdown */
534
535 unsigned long flags;
536 struct tty_struct *tty;
537 struct board_chan __iomem *bc;
538
539 if (!(ch->asyncflags & ASYNC_INITIALIZED))
540 return;
541
542 spin_lock_irqsave(&epca_lock, flags);
543
544 globalwinon(ch);
545 bc = ch->brdchan;
546
547 /* ------------------------------------------------------------------
548 In order for an event to be generated on the receipt of data the
549 idata flag must be set. Since we are shutting down, this is not
550 necessary clear this flag.
551 --------------------------------------------------------------------- */
552
553 if (bc)
554 writeb(0, &bc->idata);
555 tty = ch->tty;
556
557 /* ----------------------------------------------------------------
558 If we're a modem control device and HUPCL is on, drop RTS & DTR.
559 ------------------------------------------------------------------ */
560
561 if (tty->termios->c_cflag & HUPCL) {
562 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
563 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
564 }
565 memoff(ch);
566
567 /* ------------------------------------------------------------------
568 The channel has officialy been closed. The next time it is opened
569 it will have to reinitialized. Set a flag to indicate this.
570 ---------------------------------------------------------------------- */
571
572 /* Prevent future Digi programmed interrupts from coming active */
573
574 ch->asyncflags &= ~ASYNC_INITIALIZED;
575 spin_unlock_irqrestore(&epca_lock, flags);
576
577 } /* End shutdown */
578
579 /* ------------------ Begin pc_hangup ------------------------- */
580
581 static void pc_hangup(struct tty_struct *tty)
582 { /* Begin pc_hangup */
583 struct channel *ch;
584
585 /* ---------------------------------------------------------
586 verifyChannel returns the channel from the tty struct
587 if it is valid. This serves as a sanity check.
588 ------------------------------------------------------------- */
589
590 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
591 unsigned long flags;
592
593 if (tty->driver->flush_buffer)
594 tty->driver->flush_buffer(tty);
595 tty_ldisc_flush(tty);
596 shutdown(ch);
597
598 spin_lock_irqsave(&epca_lock, flags);
599 ch->tty = NULL;
600 ch->event = 0;
601 ch->count = 0;
602 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
603 spin_unlock_irqrestore(&epca_lock, flags);
604 wake_up_interruptible(&ch->open_wait);
605 } /* End if ch != NULL */
606
607 } /* End pc_hangup */
608
609 /* ------------------ Begin pc_write ------------------------- */
610
611 static int pc_write(struct tty_struct * tty,
612 const unsigned char *buf, int bytesAvailable)
613 { /* Begin pc_write */
614 unsigned int head, tail;
615 int dataLen;
616 int size;
617 int amountCopied;
618 struct channel *ch;
619 unsigned long flags;
620 int remain;
621 struct board_chan __iomem *bc;
622
623 /* ----------------------------------------------------------------
624 pc_write is primarily called directly by the kernel routine
625 tty_write (Though it can also be called by put_char) found in
626 tty_io.c. pc_write is passed a line discipline buffer where
627 the data to be written out is stored. The line discipline
628 implementation itself is done at the kernel level and is not
629 brought into the driver.
630 ------------------------------------------------------------------- */
631
632 /* ---------------------------------------------------------
633 verifyChannel returns the channel from the tty struct
634 if it is valid. This serves as a sanity check.
635 ------------------------------------------------------------- */
636
637 if ((ch = verifyChannel(tty)) == NULL)
638 return 0;
639
640 /* Make a pointer to the channel data structure found on the board. */
641
642 bc = ch->brdchan;
643 size = ch->txbufsize;
644 amountCopied = 0;
645
646 spin_lock_irqsave(&epca_lock, flags);
647 globalwinon(ch);
648
649 head = readw(&bc->tin) & (size - 1);
650 tail = readw(&bc->tout);
651
652 if (tail != readw(&bc->tout))
653 tail = readw(&bc->tout);
654 tail &= (size - 1);
655
656 /* If head >= tail, head has not wrapped around. */
657 if (head >= tail) { /* Begin head has not wrapped */
658 /* ---------------------------------------------------------------
659 remain (much like dataLen above) represents the total amount of
660 space available on the card for data. Here dataLen represents
661 the space existing between the head pointer and the end of
662 buffer. This is important because a memcpy cannot be told to
663 automatically wrap around when it hits the buffer end.
664 ------------------------------------------------------------------ */
665 dataLen = size - head;
666 remain = size - (head - tail) - 1;
667 } else { /* Begin head has wrapped around */
668
669 remain = tail - head - 1;
670 dataLen = remain;
671
672 } /* End head has wrapped around */
673 /* -------------------------------------------------------------------
674 Check the space on the card. If we have more data than
675 space; reduce the amount of data to fit the space.
676 ---------------------------------------------------------------------- */
677 bytesAvailable = min(remain, bytesAvailable);
678 txwinon(ch);
679 while (bytesAvailable > 0)
680 { /* Begin while there is data to copy onto card */
681
682 /* -----------------------------------------------------------------
683 If head is not wrapped, the below will make sure the first
684 data copy fills to the end of card buffer.
685 ------------------------------------------------------------------- */
686
687 dataLen = min(bytesAvailable, dataLen);
688 memcpy_toio(ch->txptr + head, buf, dataLen);
689 buf += dataLen;
690 head += dataLen;
691 amountCopied += dataLen;
692 bytesAvailable -= dataLen;
693
694 if (head >= size) {
695 head = 0;
696 dataLen = tail;
697 }
698 } /* End while there is data to copy onto card */
699 ch->statusflags |= TXBUSY;
700 globalwinon(ch);
701 writew(head, &bc->tin);
702
703 if ((ch->statusflags & LOWWAIT) == 0) {
704 ch->statusflags |= LOWWAIT;
705 writeb(1, &bc->ilow);
706 }
707 memoff(ch);
708 spin_unlock_irqrestore(&epca_lock, flags);
709 return(amountCopied);
710
711 } /* End pc_write */
712
713 /* ------------------ Begin pc_put_char ------------------------- */
714
715 static void pc_put_char(struct tty_struct *tty, unsigned char c)
716 { /* Begin pc_put_char */
717 pc_write(tty, &c, 1);
718 } /* End pc_put_char */
719
720 /* ------------------ Begin pc_write_room ------------------------- */
721
722 static int pc_write_room(struct tty_struct *tty)
723 { /* Begin pc_write_room */
724
725 int remain;
726 struct channel *ch;
727 unsigned long flags;
728 unsigned int head, tail;
729 struct board_chan __iomem *bc;
730
731 remain = 0;
732
733 /* ---------------------------------------------------------
734 verifyChannel returns the channel from the tty struct
735 if it is valid. This serves as a sanity check.
736 ------------------------------------------------------------- */
737
738 if ((ch = verifyChannel(tty)) != NULL) {
739 spin_lock_irqsave(&epca_lock, flags);
740 globalwinon(ch);
741
742 bc = ch->brdchan;
743 head = readw(&bc->tin) & (ch->txbufsize - 1);
744 tail = readw(&bc->tout);
745
746 if (tail != readw(&bc->tout))
747 tail = readw(&bc->tout);
748 /* Wrap tail if necessary */
749 tail &= (ch->txbufsize - 1);
750
751 if ((remain = tail - head - 1) < 0 )
752 remain += ch->txbufsize;
753
754 if (remain && (ch->statusflags & LOWWAIT) == 0) {
755 ch->statusflags |= LOWWAIT;
756 writeb(1, &bc->ilow);
757 }
758 memoff(ch);
759 spin_unlock_irqrestore(&epca_lock, flags);
760 }
761 /* Return how much room is left on card */
762 return remain;
763
764 } /* End pc_write_room */
765
766 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
767
768 static int pc_chars_in_buffer(struct tty_struct *tty)
769 { /* Begin pc_chars_in_buffer */
770
771 int chars;
772 unsigned int ctail, head, tail;
773 int remain;
774 unsigned long flags;
775 struct channel *ch;
776 struct board_chan __iomem *bc;
777
778 /* ---------------------------------------------------------
779 verifyChannel returns the channel from the tty struct
780 if it is valid. This serves as a sanity check.
781 ------------------------------------------------------------- */
782
783 if ((ch = verifyChannel(tty)) == NULL)
784 return(0);
785
786 spin_lock_irqsave(&epca_lock, flags);
787 globalwinon(ch);
788
789 bc = ch->brdchan;
790 tail = readw(&bc->tout);
791 head = readw(&bc->tin);
792 ctail = readw(&ch->mailbox->cout);
793
794 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
795 chars = 0;
796 else { /* Begin if some space on the card has been used */
797 head = readw(&bc->tin) & (ch->txbufsize - 1);
798 tail &= (ch->txbufsize - 1);
799 /* --------------------------------------------------------------
800 The logic here is basically opposite of the above pc_write_room
801 here we are finding the amount of bytes in the buffer filled.
802 Not the amount of bytes empty.
803 ------------------------------------------------------------------- */
804 if ((remain = tail - head - 1) < 0 )
805 remain += ch->txbufsize;
806 chars = (int)(ch->txbufsize - remain);
807 /* -------------------------------------------------------------
808 Make it possible to wakeup anything waiting for output
809 in tty_ioctl.c, etc.
810
811 If not already set. Setup an event to indicate when the
812 transmit buffer empties
813 ----------------------------------------------------------------- */
814 if (!(ch->statusflags & EMPTYWAIT))
815 setup_empty_event(tty,ch);
816
817 } /* End if some space on the card has been used */
818 memoff(ch);
819 spin_unlock_irqrestore(&epca_lock, flags);
820 /* Return number of characters residing on card. */
821 return(chars);
822
823 } /* End pc_chars_in_buffer */
824
825 /* ------------------ Begin pc_flush_buffer ---------------------- */
826
827 static void pc_flush_buffer(struct tty_struct *tty)
828 { /* Begin pc_flush_buffer */
829
830 unsigned int tail;
831 unsigned long flags;
832 struct channel *ch;
833 struct board_chan __iomem *bc;
834 /* ---------------------------------------------------------
835 verifyChannel returns the channel from the tty struct
836 if it is valid. This serves as a sanity check.
837 ------------------------------------------------------------- */
838 if ((ch = verifyChannel(tty)) == NULL)
839 return;
840
841 spin_lock_irqsave(&epca_lock, flags);
842 globalwinon(ch);
843 bc = ch->brdchan;
844 tail = readw(&bc->tout);
845 /* Have FEP move tout pointer; effectively flushing transmit buffer */
846 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
847 memoff(ch);
848 spin_unlock_irqrestore(&epca_lock, flags);
849 wake_up_interruptible(&tty->write_wait);
850 tty_wakeup(tty);
851 } /* End pc_flush_buffer */
852
853 /* ------------------ Begin pc_flush_chars ---------------------- */
854
855 static void pc_flush_chars(struct tty_struct *tty)
856 { /* Begin pc_flush_chars */
857 struct channel * ch;
858 /* ---------------------------------------------------------
859 verifyChannel returns the channel from the tty struct
860 if it is valid. This serves as a sanity check.
861 ------------------------------------------------------------- */
862 if ((ch = verifyChannel(tty)) != NULL) {
863 unsigned long flags;
864 spin_lock_irqsave(&epca_lock, flags);
865 /* ----------------------------------------------------------------
866 If not already set and the transmitter is busy setup an event
867 to indicate when the transmit empties.
868 ------------------------------------------------------------------- */
869 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
870 setup_empty_event(tty,ch);
871 spin_unlock_irqrestore(&epca_lock, flags);
872 }
873 } /* End pc_flush_chars */
874
875 /* ------------------ Begin block_til_ready ---------------------- */
876
877 static int block_til_ready(struct tty_struct *tty,
878 struct file *filp, struct channel *ch)
879 { /* Begin block_til_ready */
880 DECLARE_WAITQUEUE(wait,current);
881 int retval, do_clocal = 0;
882 unsigned long flags;
883
884 if (tty_hung_up_p(filp)) {
885 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
886 retval = -EAGAIN;
887 else
888 retval = -ERESTARTSYS;
889 return(retval);
890 }
891
892 /* -----------------------------------------------------------------
893 If the device is in the middle of being closed, then block
894 until it's done, and then try again.
895 -------------------------------------------------------------------- */
896 if (ch->asyncflags & ASYNC_CLOSING) {
897 interruptible_sleep_on(&ch->close_wait);
898
899 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
900 return -EAGAIN;
901 else
902 return -ERESTARTSYS;
903 }
904
905 if (filp->f_flags & O_NONBLOCK) {
906 /* -----------------------------------------------------------------
907 If non-blocking mode is set, then make the check up front
908 and then exit.
909 -------------------------------------------------------------------- */
910 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
911 return 0;
912 }
913 if (tty->termios->c_cflag & CLOCAL)
914 do_clocal = 1;
915 /* Block waiting for the carrier detect and the line to become free */
916
917 retval = 0;
918 add_wait_queue(&ch->open_wait, &wait);
919
920 spin_lock_irqsave(&epca_lock, flags);
921 /* We dec count so that pc_close will know when to free things */
922 if (!tty_hung_up_p(filp))
923 ch->count--;
924 ch->blocked_open++;
925 while(1)
926 { /* Begin forever while */
927 set_current_state(TASK_INTERRUPTIBLE);
928 if (tty_hung_up_p(filp) ||
929 !(ch->asyncflags & ASYNC_INITIALIZED))
930 {
931 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
932 retval = -EAGAIN;
933 else
934 retval = -ERESTARTSYS;
935 break;
936 }
937 if (!(ch->asyncflags & ASYNC_CLOSING) &&
938 (do_clocal || (ch->imodem & ch->dcd)))
939 break;
940 if (signal_pending(current)) {
941 retval = -ERESTARTSYS;
942 break;
943 }
944 spin_unlock_irqrestore(&epca_lock, flags);
945 /* ---------------------------------------------------------------
946 Allow someone else to be scheduled. We will occasionally go
947 through this loop until one of the above conditions change.
948 The below schedule call will allow other processes to enter and
949 prevent this loop from hogging the cpu.
950 ------------------------------------------------------------------ */
951 schedule();
952 spin_lock_irqsave(&epca_lock, flags);
953
954 } /* End forever while */
955
956 current->state = TASK_RUNNING;
957 remove_wait_queue(&ch->open_wait, &wait);
958 if (!tty_hung_up_p(filp))
959 ch->count++;
960 ch->blocked_open--;
961
962 spin_unlock_irqrestore(&epca_lock, flags);
963
964 if (retval)
965 return retval;
966
967 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
968 return 0;
969 } /* End block_til_ready */
970
971 /* ------------------ Begin pc_open ---------------------- */
972
973 static int pc_open(struct tty_struct *tty, struct file * filp)
974 { /* Begin pc_open */
975
976 struct channel *ch;
977 unsigned long flags;
978 int line, retval, boardnum;
979 struct board_chan __iomem *bc;
980 unsigned int head;
981
982 line = tty->index;
983 if (line < 0 || line >= nbdevs)
984 return -ENODEV;
985
986 ch = &digi_channels[line];
987 boardnum = ch->boardnum;
988
989 /* Check status of board configured in system. */
990
991 /* -----------------------------------------------------------------
992 I check to see if the epca_setup routine detected an user error.
993 It might be better to put this in pc_init, but for the moment it
994 goes here.
995 ---------------------------------------------------------------------- */
996
997 if (invalid_lilo_config) {
998 if (setup_error_code & INVALID_BOARD_TYPE)
999 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
1000 if (setup_error_code & INVALID_NUM_PORTS)
1001 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1002 if (setup_error_code & INVALID_MEM_BASE)
1003 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1004 if (setup_error_code & INVALID_PORT_BASE)
1005 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1006 if (setup_error_code & INVALID_BOARD_STATUS)
1007 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1008 if (setup_error_code & INVALID_ALTPIN)
1009 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1010 tty->driver_data = NULL; /* Mark this device as 'down' */
1011 return -ENODEV;
1012 }
1013 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1014 tty->driver_data = NULL; /* Mark this device as 'down' */
1015 return(-ENODEV);
1016 }
1017
1018 if ((bc = ch->brdchan) == 0) {
1019 tty->driver_data = NULL;
1020 return -ENODEV;
1021 }
1022
1023 spin_lock_irqsave(&epca_lock, flags);
1024 /* ------------------------------------------------------------------
1025 Every time a channel is opened, increment a counter. This is
1026 necessary because we do not wish to flush and shutdown the channel
1027 until the last app holding the channel open, closes it.
1028 --------------------------------------------------------------------- */
1029 ch->count++;
1030 /* ----------------------------------------------------------------
1031 Set a kernel structures pointer to our local channel
1032 structure. This way we can get to it when passed only
1033 a tty struct.
1034 ------------------------------------------------------------------ */
1035 tty->driver_data = ch;
1036 /* ----------------------------------------------------------------
1037 If this is the first time the channel has been opened, initialize
1038 the tty->termios struct otherwise let pc_close handle it.
1039 -------------------------------------------------------------------- */
1040 globalwinon(ch);
1041 ch->statusflags = 0;
1042
1043 /* Save boards current modem status */
1044 ch->imodem = readb(&bc->mstat);
1045
1046 /* ----------------------------------------------------------------
1047 Set receive head and tail ptrs to each other. This indicates
1048 no data available to read.
1049 ----------------------------------------------------------------- */
1050 head = readw(&bc->rin);
1051 writew(head, &bc->rout);
1052
1053 /* Set the channels associated tty structure */
1054 ch->tty = tty;
1055
1056 /* -----------------------------------------------------------------
1057 The below routine generally sets up parity, baud, flow control
1058 issues, etc.... It effect both control flags and input flags.
1059 -------------------------------------------------------------------- */
1060 epcaparam(tty,ch);
1061 ch->asyncflags |= ASYNC_INITIALIZED;
1062 memoff(ch);
1063 spin_unlock_irqrestore(&epca_lock, flags);
1064
1065 retval = block_til_ready(tty, filp, ch);
1066 if (retval)
1067 return retval;
1068 /* -------------------------------------------------------------
1069 Set this again in case a hangup set it to zero while this
1070 open() was waiting for the line...
1071 --------------------------------------------------------------- */
1072 spin_lock_irqsave(&epca_lock, flags);
1073 ch->tty = tty;
1074 globalwinon(ch);
1075 /* Enable Digi Data events */
1076 writeb(1, &bc->idata);
1077 memoff(ch);
1078 spin_unlock_irqrestore(&epca_lock, flags);
1079 return 0;
1080 } /* End pc_open */
1081
1082 static int __init epca_module_init(void)
1083 { /* Begin init_module */
1084 return pc_init();
1085 }
1086
1087 module_init(epca_module_init);
1088
1089 static struct pci_driver epca_driver;
1090
1091 static void __exit epca_module_exit(void)
1092 {
1093 int count, crd;
1094 struct board_info *bd;
1095 struct channel *ch;
1096
1097 del_timer_sync(&epca_timer);
1098
1099 if ((tty_unregister_driver(pc_driver)) ||
1100 (tty_unregister_driver(pc_info)))
1101 {
1102 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1103 return;
1104 }
1105 put_tty_driver(pc_driver);
1106 put_tty_driver(pc_info);
1107
1108 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1109 bd = &boards[crd];
1110 if (!bd)
1111 { /* Begin sanity check */
1112 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1113 return;
1114 } /* End sanity check */
1115 ch = card_ptr[crd];
1116 for (count = 0; count < bd->numports; count++, ch++)
1117 { /* Begin for each port */
1118 if (ch) {
1119 if (ch->tty)
1120 tty_hangup(ch->tty);
1121 kfree(ch->tmp_buf);
1122 }
1123 } /* End for each port */
1124 } /* End for each card */
1125 pci_unregister_driver (&epca_driver);
1126 }
1127
1128 module_exit(epca_module_exit);
1129
1130 static struct tty_operations pc_ops = {
1131 .open = pc_open,
1132 .close = pc_close,
1133 .write = pc_write,
1134 .write_room = pc_write_room,
1135 .flush_buffer = pc_flush_buffer,
1136 .chars_in_buffer = pc_chars_in_buffer,
1137 .flush_chars = pc_flush_chars,
1138 .put_char = pc_put_char,
1139 .ioctl = pc_ioctl,
1140 .set_termios = pc_set_termios,
1141 .stop = pc_stop,
1142 .start = pc_start,
1143 .throttle = pc_throttle,
1144 .unthrottle = pc_unthrottle,
1145 .hangup = pc_hangup,
1146 };
1147
1148 static int info_open(struct tty_struct *tty, struct file * filp)
1149 {
1150 return 0;
1151 }
1152
1153 static struct tty_operations info_ops = {
1154 .open = info_open,
1155 .ioctl = info_ioctl,
1156 };
1157
1158 /* ------------------ Begin pc_init ---------------------- */
1159
1160 static int __init pc_init(void)
1161 { /* Begin pc_init */
1162 int crd;
1163 struct board_info *bd;
1164 unsigned char board_id = 0;
1165
1166 int pci_boards_found, pci_count;
1167
1168 pci_count = 0;
1169
1170 pc_driver = alloc_tty_driver(MAX_ALLOC);
1171 if (!pc_driver)
1172 return -ENOMEM;
1173
1174 pc_info = alloc_tty_driver(MAX_ALLOC);
1175 if (!pc_info) {
1176 put_tty_driver(pc_driver);
1177 return -ENOMEM;
1178 }
1179
1180 /* -----------------------------------------------------------------------
1181 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1182 board structure defined by digiConfig into drivers board structure.
1183 Note : If LILO has ran epca_setup then epca_setup will handle defining
1184 num_cards as well as copying the data into the board structure.
1185 -------------------------------------------------------------------------- */
1186 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1187
1188 nbdevs = NBDEVS;
1189 num_cards = NUMCARDS;
1190 memcpy((void *)&boards, (void *)&static_boards,
1191 (sizeof(struct board_info) * NUMCARDS));
1192 } /* End driver has been configured via. epcaconfig */
1193
1194 /* -----------------------------------------------------------------
1195 Note : If lilo was used to configure the driver and the
1196 ignore epcaconfig option was choosen (digiepca=2) then
1197 nbdevs and num_cards will equal 0 at this point. This is
1198 okay; PCI cards will still be picked up if detected.
1199 --------------------------------------------------------------------- */
1200
1201 /* -----------------------------------------------------------
1202 Set up interrupt, we will worry about memory allocation in
1203 post_fep_init.
1204 --------------------------------------------------------------- */
1205
1206
1207 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1208
1209 /* ------------------------------------------------------------------
1210 NOTE : This code assumes that the number of ports found in
1211 the boards array is correct. This could be wrong if
1212 the card in question is PCI (And therefore has no ports
1213 entry in the boards structure.) The rest of the
1214 information will be valid for PCI because the beginning
1215 of pc_init scans for PCI and determines i/o and base
1216 memory addresses. I am not sure if it is possible to
1217 read the number of ports supported by the card prior to
1218 it being booted (Since that is the state it is in when
1219 pc_init is run). Because it is not possible to query the
1220 number of supported ports until after the card has booted;
1221 we are required to calculate the card_ptrs as the card is
1222 is initialized (Inside post_fep_init). The negative thing
1223 about this approach is that digiDload's call to GET_INFO
1224 will have a bad port value. (Since this is called prior
1225 to post_fep_init.)
1226
1227 --------------------------------------------------------------------- */
1228
1229 pci_boards_found = 0;
1230 if(num_cards < MAXBOARDS)
1231 pci_boards_found += init_PCI();
1232 num_cards += pci_boards_found;
1233
1234 pc_driver->owner = THIS_MODULE;
1235 pc_driver->name = "ttyD";
1236 pc_driver->devfs_name = "tts/D";
1237 pc_driver->major = DIGI_MAJOR;
1238 pc_driver->minor_start = 0;
1239 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1240 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1241 pc_driver->init_termios = tty_std_termios;
1242 pc_driver->init_termios.c_iflag = 0;
1243 pc_driver->init_termios.c_oflag = 0;
1244 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1245 pc_driver->init_termios.c_lflag = 0;
1246 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1247 tty_set_operations(pc_driver, &pc_ops);
1248
1249 pc_info->owner = THIS_MODULE;
1250 pc_info->name = "digi_ctl";
1251 pc_info->major = DIGIINFOMAJOR;
1252 pc_info->minor_start = 0;
1253 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1254 pc_info->subtype = SERIAL_TYPE_INFO;
1255 pc_info->init_termios = tty_std_termios;
1256 pc_info->init_termios.c_iflag = 0;
1257 pc_info->init_termios.c_oflag = 0;
1258 pc_info->init_termios.c_lflag = 0;
1259 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1260 pc_info->flags = TTY_DRIVER_REAL_RAW;
1261 tty_set_operations(pc_info, &info_ops);
1262
1263
1264 for (crd = 0; crd < num_cards; crd++)
1265 { /* Begin for each card */
1266
1267 /* ------------------------------------------------------------------
1268 This is where the appropriate memory handlers for the hardware is
1269 set. Everything at runtime blindly jumps through these vectors.
1270 ---------------------------------------------------------------------- */
1271
1272 /* defined in epcaconfig.h */
1273 bd = &boards[crd];
1274
1275 switch (bd->type)
1276 { /* Begin switch on bd->type {board type} */
1277 case PCXEM:
1278 case EISAXEM:
1279 bd->memwinon = pcxem_memwinon ;
1280 bd->memwinoff = pcxem_memwinoff ;
1281 bd->globalwinon = pcxem_globalwinon ;
1282 bd->txwinon = pcxem_txwinon ;
1283 bd->rxwinon = pcxem_rxwinon ;
1284 bd->memoff = pcxem_memoff ;
1285 bd->assertgwinon = dummy_assertgwinon;
1286 bd->assertmemoff = dummy_assertmemoff;
1287 break;
1288
1289 case PCIXEM:
1290 case PCIXRJ:
1291 case PCIXR:
1292 bd->memwinon = dummy_memwinon;
1293 bd->memwinoff = dummy_memwinoff;
1294 bd->globalwinon = dummy_globalwinon;
1295 bd->txwinon = dummy_txwinon;
1296 bd->rxwinon = dummy_rxwinon;
1297 bd->memoff = dummy_memoff;
1298 bd->assertgwinon = dummy_assertgwinon;
1299 bd->assertmemoff = dummy_assertmemoff;
1300 break;
1301
1302 case PCXE:
1303 case PCXEVE:
1304
1305 bd->memwinon = pcxe_memwinon;
1306 bd->memwinoff = pcxe_memwinoff;
1307 bd->globalwinon = pcxe_globalwinon;
1308 bd->txwinon = pcxe_txwinon;
1309 bd->rxwinon = pcxe_rxwinon;
1310 bd->memoff = pcxe_memoff;
1311 bd->assertgwinon = dummy_assertgwinon;
1312 bd->assertmemoff = dummy_assertmemoff;
1313 break;
1314
1315 case PCXI:
1316 case PC64XE:
1317
1318 bd->memwinon = pcxi_memwinon;
1319 bd->memwinoff = pcxi_memwinoff;
1320 bd->globalwinon = pcxi_globalwinon;
1321 bd->txwinon = pcxi_txwinon;
1322 bd->rxwinon = pcxi_rxwinon;
1323 bd->memoff = pcxi_memoff;
1324 bd->assertgwinon = pcxi_assertgwinon;
1325 bd->assertmemoff = pcxi_assertmemoff;
1326 break;
1327
1328 default:
1329 break;
1330
1331 } /* End switch on bd->type */
1332
1333 /* ---------------------------------------------------------------
1334 Some cards need a memory segment to be defined for use in
1335 transmit and receive windowing operations. These boards
1336 are listed in the below switch. In the case of the XI the
1337 amount of memory on the board is variable so the memory_seg
1338 is also variable. This code determines what they segment
1339 should be.
1340 ----------------------------------------------------------------- */
1341
1342 switch (bd->type)
1343 { /* Begin switch on bd->type {board type} */
1344
1345 case PCXE:
1346 case PCXEVE:
1347 case PC64XE:
1348 bd->memory_seg = 0xf000;
1349 break;
1350
1351 case PCXI:
1352 board_id = inb((int)bd->port);
1353 if ((board_id & 0x1) == 0x1)
1354 { /* Begin it's an XI card */
1355
1356 /* Is it a 64K board */
1357 if ((board_id & 0x30) == 0)
1358 bd->memory_seg = 0xf000;
1359
1360 /* Is it a 128K board */
1361 if ((board_id & 0x30) == 0x10)
1362 bd->memory_seg = 0xe000;
1363
1364 /* Is is a 256K board */
1365 if ((board_id & 0x30) == 0x20)
1366 bd->memory_seg = 0xc000;
1367
1368 /* Is it a 512K board */
1369 if ((board_id & 0x30) == 0x30)
1370 bd->memory_seg = 0x8000;
1371
1372 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1373 break;
1374
1375 } /* End switch on bd->type */
1376
1377 } /* End for each card */
1378
1379 if (tty_register_driver(pc_driver))
1380 panic("Couldn't register Digi PC/ driver");
1381
1382 if (tty_register_driver(pc_info))
1383 panic("Couldn't register Digi PC/ info ");
1384
1385 /* -------------------------------------------------------------------
1386 Start up the poller to check for events on all enabled boards
1387 ---------------------------------------------------------------------- */
1388
1389 init_timer(&epca_timer);
1390 epca_timer.function = epcapoll;
1391 mod_timer(&epca_timer, jiffies + HZ/25);
1392 return 0;
1393
1394 } /* End pc_init */
1395
1396 /* ------------------ Begin post_fep_init ---------------------- */
1397
1398 static void post_fep_init(unsigned int crd)
1399 { /* Begin post_fep_init */
1400
1401 int i;
1402 void __iomem *memaddr;
1403 struct global_data __iomem *gd;
1404 struct board_info *bd;
1405 struct board_chan __iomem *bc;
1406 struct channel *ch;
1407 int shrinkmem = 0, lowwater ;
1408
1409 /* -------------------------------------------------------------
1410 This call is made by the user via. the ioctl call DIGI_INIT.
1411 It is responsible for setting up all the card specific stuff.
1412 ---------------------------------------------------------------- */
1413 bd = &boards[crd];
1414
1415 /* -----------------------------------------------------------------
1416 If this is a PCI board, get the port info. Remember PCI cards
1417 do not have entries into the epcaconfig.h file, so we can't get
1418 the number of ports from it. Unfortunetly, this means that anyone
1419 doing a DIGI_GETINFO before the board has booted will get an invalid
1420 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1421 after DIGI_INIT has been called will return the proper values.
1422 ------------------------------------------------------------------- */
1423
1424 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1425 /* --------------------------------------------------------------------
1426 Below we use XEMPORTS as a memory offset regardless of which PCI
1427 card it is. This is because all of the supported PCI cards have
1428 the same memory offset for the channel data. This will have to be
1429 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1430 states that the port offset is 0xC22 as opposed to 0xC02. This is
1431 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1432 On the PCI cards the number of ports is determined by reading a
1433 ID PROM located in the box attached to the card. The card can then
1434 determine the index the id to determine the number of ports available.
1435 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1436 if the box in question is a XEM or CX)).
1437 ------------------------------------------------------------------------ */
1438 /* PCI cards are already remapped at this point ISA are not */
1439 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1440 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1441 nbdevs += (bd->numports);
1442 } else {
1443 /* Fix up the mappings for ISA/EISA etc */
1444 /* FIXME: 64K - can we be smarter ? */
1445 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1446 }
1447
1448 if (crd != 0)
1449 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1450 else
1451 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1452
1453 ch = card_ptr[crd];
1454 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1455
1456 memaddr = bd->re_map_membase;
1457
1458 /* -----------------------------------------------------------------
1459 The below assignment will set bc to point at the BEGINING of
1460 the cards channel structures. For 1 card there will be between
1461 8 and 64 of these structures.
1462 -------------------------------------------------------------------- */
1463
1464 bc = memaddr + CHANSTRUCT;
1465
1466 /* -------------------------------------------------------------------
1467 The below assignment will set gd to point at the BEGINING of
1468 global memory address 0xc00. The first data in that global
1469 memory actually starts at address 0xc1a. The command in
1470 pointer begins at 0xd10.
1471 ---------------------------------------------------------------------- */
1472
1473 gd = memaddr + GLOBAL;
1474
1475 /* --------------------------------------------------------------------
1476 XEPORTS (address 0xc22) points at the number of channels the
1477 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1478 ----------------------------------------------------------------------- */
1479
1480 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1481 shrinkmem = 1;
1482 if (bd->type < PCIXEM)
1483 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1484 return;
1485 memwinon(bd, 0);
1486
1487 /* --------------------------------------------------------------------
1488 Remember ch is the main drivers channels structure, while bc is
1489 the cards channel structure.
1490 ------------------------------------------------------------------------ */
1491
1492 /* For every port on the card do ..... */
1493
1494 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1495 unsigned long flags;
1496 u16 tseg, rseg;
1497
1498 ch->brdchan = bc;
1499 ch->mailbox = gd;
1500 INIT_WORK(&ch->tqueue, do_softint, ch);
1501 ch->board = &boards[crd];
1502
1503 spin_lock_irqsave(&epca_lock, flags);
1504 switch (bd->type) {
1505 /* ----------------------------------------------------------------
1506 Since some of the boards use different bitmaps for their
1507 control signals we cannot hard code these values and retain
1508 portability. We virtualize this data here.
1509 ------------------------------------------------------------------- */
1510 case EISAXEM:
1511 case PCXEM:
1512 case PCIXEM:
1513 case PCIXRJ:
1514 case PCIXR:
1515 ch->m_rts = 0x02 ;
1516 ch->m_dcd = 0x80 ;
1517 ch->m_dsr = 0x20 ;
1518 ch->m_cts = 0x10 ;
1519 ch->m_ri = 0x40 ;
1520 ch->m_dtr = 0x01 ;
1521 break;
1522
1523 case PCXE:
1524 case PCXEVE:
1525 case PCXI:
1526 case PC64XE:
1527 ch->m_rts = 0x02 ;
1528 ch->m_dcd = 0x08 ;
1529 ch->m_dsr = 0x10 ;
1530 ch->m_cts = 0x20 ;
1531 ch->m_ri = 0x40 ;
1532 ch->m_dtr = 0x80 ;
1533 break;
1534
1535 } /* End switch bd->type */
1536
1537 if (boards[crd].altpin) {
1538 ch->dsr = ch->m_dcd;
1539 ch->dcd = ch->m_dsr;
1540 ch->digiext.digi_flags |= DIGI_ALTPIN;
1541 }
1542 else {
1543 ch->dcd = ch->m_dcd;
1544 ch->dsr = ch->m_dsr;
1545 }
1546
1547 ch->boardnum = crd;
1548 ch->channelnum = i;
1549 ch->magic = EPCA_MAGIC;
1550 ch->tty = NULL;
1551
1552 if (shrinkmem) {
1553 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1554 shrinkmem = 0;
1555 }
1556
1557 tseg = readw(&bc->tseg);
1558 rseg = readw(&bc->rseg);
1559
1560 switch (bd->type) {
1561
1562 case PCIXEM:
1563 case PCIXRJ:
1564 case PCIXR:
1565 /* Cover all the 2MEG cards */
1566 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1567 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1568 ch->txwin = FEPWIN | (tseg >> 11);
1569 ch->rxwin = FEPWIN | (rseg >> 11);
1570 break;
1571
1572 case PCXEM:
1573 case EISAXEM:
1574 /* Cover all the 32K windowed cards */
1575 /* Mask equal to window size - 1 */
1576 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1577 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1578 ch->txwin = FEPWIN | (tseg >> 11);
1579 ch->rxwin = FEPWIN | (rseg >> 11);
1580 break;
1581
1582 case PCXEVE:
1583 case PCXE:
1584 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1585 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1586 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1587 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1588 break;
1589
1590 case PCXI:
1591 case PC64XE:
1592 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1593 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1594 ch->txwin = ch->rxwin = 0;
1595 break;
1596
1597 } /* End switch bd->type */
1598
1599 ch->txbufhead = 0;
1600 ch->txbufsize = readw(&bc->tmax) + 1;
1601
1602 ch->rxbufhead = 0;
1603 ch->rxbufsize = readw(&bc->rmax) + 1;
1604
1605 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1606
1607 /* Set transmitter low water mark */
1608 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1609
1610 /* Set receiver low water mark */
1611
1612 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1613
1614 /* Set receiver high water mark */
1615
1616 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1617
1618 writew(100, &bc->edelay);
1619 writeb(1, &bc->idata);
1620
1621 ch->startc = readb(&bc->startc);
1622 ch->stopc = readb(&bc->stopc);
1623 ch->startca = readb(&bc->startca);
1624 ch->stopca = readb(&bc->stopca);
1625
1626 ch->fepcflag = 0;
1627 ch->fepiflag = 0;
1628 ch->fepoflag = 0;
1629 ch->fepstartc = 0;
1630 ch->fepstopc = 0;
1631 ch->fepstartca = 0;
1632 ch->fepstopca = 0;
1633
1634 ch->close_delay = 50;
1635 ch->count = 0;
1636 ch->blocked_open = 0;
1637 init_waitqueue_head(&ch->open_wait);
1638 init_waitqueue_head(&ch->close_wait);
1639
1640 spin_unlock_irqrestore(&epca_lock, flags);
1641
1642 ch->tmp_buf = kmalloc(ch->txbufsize,GFP_KERNEL);
1643 if (!ch->tmp_buf) {
1644 printk(KERN_ERR "POST FEP INIT : kmalloc failed for port 0x%x\n",i);
1645 release_region((int)bd->port, 4);
1646 while(i-- > 0)
1647 kfree((ch--)->tmp_buf);
1648 return;
1649 } else
1650 memset((void *)ch->tmp_buf,0,ch->txbufsize);
1651 } /* End for each port */
1652
1653 printk(KERN_INFO
1654 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1655 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1656 memwinoff(bd, 0);
1657
1658 } /* End post_fep_init */
1659
1660 /* --------------------- Begin epcapoll ------------------------ */
1661
1662 static void epcapoll(unsigned long ignored)
1663 { /* Begin epcapoll */
1664
1665 unsigned long flags;
1666 int crd;
1667 volatile unsigned int head, tail;
1668 struct channel *ch;
1669 struct board_info *bd;
1670
1671 /* -------------------------------------------------------------------
1672 This routine is called upon every timer interrupt. Even though
1673 the Digi series cards are capable of generating interrupts this
1674 method of non-looping polling is more efficient. This routine
1675 checks for card generated events (Such as receive data, are transmit
1676 buffer empty) and acts on those events.
1677 ----------------------------------------------------------------------- */
1678
1679 for (crd = 0; crd < num_cards; crd++)
1680 { /* Begin for each card */
1681
1682 bd = &boards[crd];
1683 ch = card_ptr[crd];
1684
1685 if ((bd->status == DISABLED) || digi_poller_inhibited)
1686 continue; /* Begin loop next interation */
1687
1688 /* -----------------------------------------------------------
1689 assertmemoff is not needed here; indeed it is an empty subroutine.
1690 It is being kept because future boards may need this as well as
1691 some legacy boards.
1692 ---------------------------------------------------------------- */
1693
1694 spin_lock_irqsave(&epca_lock, flags);
1695
1696 assertmemoff(ch);
1697
1698 globalwinon(ch);
1699
1700 /* ---------------------------------------------------------------
1701 In this case head and tail actually refer to the event queue not
1702 the transmit or receive queue.
1703 ------------------------------------------------------------------- */
1704
1705 head = readw(&ch->mailbox->ein);
1706 tail = readw(&ch->mailbox->eout);
1707
1708 /* If head isn't equal to tail we have an event */
1709
1710 if (head != tail)
1711 doevent(crd);
1712 memoff(ch);
1713
1714 spin_unlock_irqrestore(&epca_lock, flags);
1715
1716 } /* End for each card */
1717 mod_timer(&epca_timer, jiffies + (HZ / 25));
1718 } /* End epcapoll */
1719
1720 /* --------------------- Begin doevent ------------------------ */
1721
1722 static void doevent(int crd)
1723 { /* Begin doevent */
1724
1725 void __iomem *eventbuf;
1726 struct channel *ch, *chan0;
1727 static struct tty_struct *tty;
1728 struct board_info *bd;
1729 struct board_chan __iomem *bc;
1730 unsigned int tail, head;
1731 int event, channel;
1732 int mstat, lstat;
1733
1734 /* -------------------------------------------------------------------
1735 This subroutine is called by epcapoll when an event is detected
1736 in the event queue. This routine responds to those events.
1737 --------------------------------------------------------------------- */
1738 bd = &boards[crd];
1739
1740 chan0 = card_ptr[crd];
1741 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1742 assertgwinon(chan0);
1743 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1744 { /* Begin while something in event queue */
1745 assertgwinon(chan0);
1746 eventbuf = bd->re_map_membase + tail + ISTART;
1747 /* Get the channel the event occurred on */
1748 channel = readb(eventbuf);
1749 /* Get the actual event code that occurred */
1750 event = readb(eventbuf + 1);
1751 /* ----------------------------------------------------------------
1752 The two assignments below get the current modem status (mstat)
1753 and the previous modem status (lstat). These are useful becuase
1754 an event could signal a change in modem signals itself.
1755 ------------------------------------------------------------------- */
1756 mstat = readb(eventbuf + 2);
1757 lstat = readb(eventbuf + 3);
1758
1759 ch = chan0 + channel;
1760 if ((unsigned)channel >= bd->numports || !ch) {
1761 if (channel >= bd->numports)
1762 ch = chan0;
1763 bc = ch->brdchan;
1764 goto next;
1765 }
1766
1767 if ((bc = ch->brdchan) == NULL)
1768 goto next;
1769
1770 if (event & DATA_IND) { /* Begin DATA_IND */
1771 receive_data(ch);
1772 assertgwinon(ch);
1773 } /* End DATA_IND */
1774 /* else *//* Fix for DCD transition missed bug */
1775 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1776 /* A modem signal change has been indicated */
1777 ch->imodem = mstat;
1778 if (ch->asyncflags & ASYNC_CHECK_CD) {
1779 if (mstat & ch->dcd) /* We are now receiving dcd */
1780 wake_up_interruptible(&ch->open_wait);
1781 else
1782 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1783 }
1784 } /* End MODEMCHG_IND */
1785 tty = ch->tty;
1786 if (tty) { /* Begin if valid tty */
1787 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1788 /* A break has been indicated */
1789 tty->flip.count++;
1790 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
1791 *tty->flip.char_buf_ptr++ = 0;
1792 tty_schedule_flip(tty);
1793 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1794 if (ch->statusflags & LOWWAIT)
1795 { /* Begin if LOWWAIT */
1796 ch->statusflags &= ~LOWWAIT;
1797 tty_wakeup(tty);
1798 wake_up_interruptible(&tty->write_wait);
1799 } /* End if LOWWAIT */
1800 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1801 /* This event is generated by setup_empty_event */
1802 ch->statusflags &= ~TXBUSY;
1803 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1804 ch->statusflags &= ~EMPTYWAIT;
1805 tty_wakeup(tty);
1806 wake_up_interruptible(&tty->write_wait);
1807 } /* End if EMPTYWAIT */
1808 } /* End EMPTYTX_IND */
1809 } /* End if valid tty */
1810 next:
1811 globalwinon(ch);
1812 BUG_ON(!bc);
1813 writew(1, &bc->idata);
1814 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1815 globalwinon(chan0);
1816 } /* End while something in event queue */
1817 } /* End doevent */
1818
1819 /* --------------------- Begin fepcmd ------------------------ */
1820
1821 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1822 int byte2, int ncmds, int bytecmd)
1823 { /* Begin fepcmd */
1824 unchar __iomem *memaddr;
1825 unsigned int head, cmdTail, cmdStart, cmdMax;
1826 long count;
1827 int n;
1828
1829 /* This is the routine in which commands may be passed to the card. */
1830
1831 if (ch->board->status == DISABLED)
1832 return;
1833 assertgwinon(ch);
1834 /* Remember head (As well as max) is just an offset not a base addr */
1835 head = readw(&ch->mailbox->cin);
1836 /* cmdStart is a base address */
1837 cmdStart = readw(&ch->mailbox->cstart);
1838 /* ------------------------------------------------------------------
1839 We do the addition below because we do not want a max pointer
1840 relative to cmdStart. We want a max pointer that points at the
1841 physical end of the command queue.
1842 -------------------------------------------------------------------- */
1843 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1844 memaddr = ch->board->re_map_membase;
1845
1846 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1847 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1848 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1849 return;
1850 }
1851 if (bytecmd) {
1852 writeb(cmd, memaddr + head + cmdStart + 0);
1853 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1854 /* Below word_or_byte is bits to set */
1855 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1856 /* Below byte2 is bits to reset */
1857 writeb(byte2, memaddr + head + cmdStart + 3);
1858 } else {
1859 writeb(cmd, memaddr + head + cmdStart + 0);
1860 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1861 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1862 }
1863 head = (head + 4) & (cmdMax - cmdStart - 4);
1864 writew(head, &ch->mailbox->cin);
1865 count = FEPTIMEOUT;
1866
1867 for (;;) { /* Begin forever loop */
1868 count--;
1869 if (count == 0) {
1870 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1871 return;
1872 }
1873 head = readw(&ch->mailbox->cin);
1874 cmdTail = readw(&ch->mailbox->cout);
1875 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1876 /* ----------------------------------------------------------
1877 Basically this will break when the FEP acknowledges the
1878 command by incrementing cmdTail (Making it equal to head).
1879 ------------------------------------------------------------- */
1880 if (n <= ncmds * (sizeof(short) * 4))
1881 break; /* Well nearly forever :-) */
1882 } /* End forever loop */
1883 } /* End fepcmd */
1884
1885 /* ---------------------------------------------------------------------
1886 Digi products use fields in their channels structures that are very
1887 similar to the c_cflag and c_iflag fields typically found in UNIX
1888 termios structures. The below three routines allow mappings
1889 between these hardware "flags" and their respective Linux flags.
1890 ------------------------------------------------------------------------- */
1891
1892 /* --------------------- Begin termios2digi_h -------------------- */
1893
1894 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1895 { /* Begin termios2digi_h */
1896 unsigned res = 0;
1897
1898 if (cflag & CRTSCTS) {
1899 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1900 res |= ((ch->m_cts) | (ch->m_rts));
1901 }
1902
1903 if (ch->digiext.digi_flags & RTSPACE)
1904 res |= ch->m_rts;
1905
1906 if (ch->digiext.digi_flags & DTRPACE)
1907 res |= ch->m_dtr;
1908
1909 if (ch->digiext.digi_flags & CTSPACE)
1910 res |= ch->m_cts;
1911
1912 if (ch->digiext.digi_flags & DSRPACE)
1913 res |= ch->dsr;
1914
1915 if (ch->digiext.digi_flags & DCDPACE)
1916 res |= ch->dcd;
1917
1918 if (res & (ch->m_rts))
1919 ch->digiext.digi_flags |= RTSPACE;
1920
1921 if (res & (ch->m_cts))
1922 ch->digiext.digi_flags |= CTSPACE;
1923
1924 return res;
1925
1926 } /* End termios2digi_h */
1927
1928 /* --------------------- Begin termios2digi_i -------------------- */
1929 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1930 { /* Begin termios2digi_i */
1931
1932 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1933 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1934 if (ch->digiext.digi_flags & DIGI_AIXON)
1935 res |= IAIXON;
1936 return res;
1937
1938 } /* End termios2digi_i */
1939
1940 /* --------------------- Begin termios2digi_c -------------------- */
1941
1942 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1943 { /* Begin termios2digi_c */
1944
1945 unsigned res = 0;
1946 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1947 ch->digiext.digi_flags |= DIGI_FAST;
1948 /* -------------------------------------------------------------
1949 HUPCL bit is used by FEP to indicate fast baud
1950 table is to be used.
1951 ----------------------------------------------------------------- */
1952 res |= FEP_HUPCL;
1953 } /* End detected CBAUDEX */
1954 else ch->digiext.digi_flags &= ~DIGI_FAST;
1955 /* -------------------------------------------------------------------
1956 CBAUD has bit position 0x1000 set these days to indicate Linux
1957 baud rate remap. Digi hardware can't handle the bit assignment.
1958 (We use a different bit assignment for high speed.). Clear this
1959 bit out.
1960 ---------------------------------------------------------------------- */
1961 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1962 /* -------------------------------------------------------------
1963 This gets a little confusing. The Digi cards have their own
1964 representation of c_cflags controling baud rate. For the most
1965 part this is identical to the Linux implementation. However;
1966 Digi supports one rate (76800) that Linux doesn't. This means
1967 that the c_cflag entry that would normally mean 76800 for Digi
1968 actually means 115200 under Linux. Without the below mapping,
1969 a stty 115200 would only drive the board at 76800. Since
1970 the rate 230400 is also found after 76800, the same problem afflicts
1971 us when we choose a rate of 230400. Without the below modificiation
1972 stty 230400 would actually give us 115200.
1973
1974 There are two additional differences. The Linux value for CLOCAL
1975 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1976 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1977 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1978 should be checked for a screened out prior to termios2digi_c
1979 returning. Since CLOCAL isn't used by the board this can be
1980 ignored as long as the returned value is used only by Digi hardware.
1981 ----------------------------------------------------------------- */
1982 if (cflag & CBAUDEX) {
1983 /* -------------------------------------------------------------
1984 The below code is trying to guarantee that only baud rates
1985 115200 and 230400 are remapped. We use exclusive or because
1986 the various baud rates share common bit positions and therefore
1987 can't be tested for easily.
1988 ----------------------------------------------------------------- */
1989
1990
1991 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1992 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1993 res += 1;
1994 }
1995 return res;
1996
1997 } /* End termios2digi_c */
1998
1999 /* --------------------- Begin epcaparam ----------------------- */
2000
2001 /* Caller must hold the locks */
2002 static void epcaparam(struct tty_struct *tty, struct channel *ch)
2003 { /* Begin epcaparam */
2004
2005 unsigned int cmdHead;
2006 struct termios *ts;
2007 struct board_chan __iomem *bc;
2008 unsigned mval, hflow, cflag, iflag;
2009
2010 bc = ch->brdchan;
2011 epcaassert(bc !=0, "bc out of range");
2012
2013 assertgwinon(ch);
2014 ts = tty->termios;
2015 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2016 cmdHead = readw(&bc->rin);
2017 writew(cmdHead, &bc->rout);
2018 cmdHead = readw(&bc->tin);
2019 /* Changing baud in mid-stream transmission can be wonderful */
2020 /* ---------------------------------------------------------------
2021 Flush current transmit buffer by setting cmdTail pointer (tout)
2022 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2023 ----------------------------------------------------------------- */
2024 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2025 mval = 0;
2026 } else { /* Begin CBAUD not detected */
2027 /* -------------------------------------------------------------------
2028 c_cflags have changed but that change had nothing to do with BAUD.
2029 Propagate the change to the card.
2030 ---------------------------------------------------------------------- */
2031 cflag = termios2digi_c(ch, ts->c_cflag);
2032 if (cflag != ch->fepcflag) {
2033 ch->fepcflag = cflag;
2034 /* Set baud rate, char size, stop bits, parity */
2035 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2036 }
2037 /* ----------------------------------------------------------------
2038 If the user has not forced CLOCAL and if the device is not a
2039 CALLOUT device (Which is always CLOCAL) we set flags such that
2040 the driver will wait on carrier detect.
2041 ------------------------------------------------------------------- */
2042 if (ts->c_cflag & CLOCAL)
2043 ch->asyncflags &= ~ASYNC_CHECK_CD;
2044 else
2045 ch->asyncflags |= ASYNC_CHECK_CD;
2046 mval = ch->m_dtr | ch->m_rts;
2047 } /* End CBAUD not detected */
2048 iflag = termios2digi_i(ch, ts->c_iflag);
2049 /* Check input mode flags */
2050 if (iflag != ch->fepiflag) {
2051 ch->fepiflag = iflag;
2052 /* ---------------------------------------------------------------
2053 Command sets channels iflag structure on the board. Such things
2054 as input soft flow control, handling of parity errors, and
2055 break handling are all set here.
2056 ------------------------------------------------------------------- */
2057 /* break handling, parity handling, input stripping, flow control chars */
2058 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2059 }
2060 /* ---------------------------------------------------------------
2061 Set the board mint value for this channel. This will cause hardware
2062 events to be generated each time the DCD signal (Described in mint)
2063 changes.
2064 ------------------------------------------------------------------- */
2065 writeb(ch->dcd, &bc->mint);
2066 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2067 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2068 writeb(0, &bc->mint);
2069 ch->imodem = readb(&bc->mstat);
2070 hflow = termios2digi_h(ch, ts->c_cflag);
2071 if (hflow != ch->hflow) {
2072 ch->hflow = hflow;
2073 /* --------------------------------------------------------------
2074 Hard flow control has been selected but the board is not
2075 using it. Activate hard flow control now.
2076 ----------------------------------------------------------------- */
2077 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2078 }
2079 mval ^= ch->modemfake & (mval ^ ch->modem);
2080
2081 if (ch->omodem ^ mval) {
2082 ch->omodem = mval;
2083 /* --------------------------------------------------------------
2084 The below command sets the DTR and RTS mstat structure. If
2085 hard flow control is NOT active these changes will drive the
2086 output of the actual DTR and RTS lines. If hard flow control
2087 is active, the changes will be saved in the mstat structure and
2088 only asserted when hard flow control is turned off.
2089 ----------------------------------------------------------------- */
2090
2091 /* First reset DTR & RTS; then set them */
2092 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2093 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2094 }
2095 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2096 ch->fepstartc = ch->startc;
2097 ch->fepstopc = ch->stopc;
2098 /* ------------------------------------------------------------
2099 The XON / XOFF characters have changed; propagate these
2100 changes to the card.
2101 --------------------------------------------------------------- */
2102 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2103 }
2104 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2105 ch->fepstartca = ch->startca;
2106 ch->fepstopca = ch->stopca;
2107 /* ---------------------------------------------------------------
2108 Similar to the above, this time the auxilarly XON / XOFF
2109 characters have changed; propagate these changes to the card.
2110 ------------------------------------------------------------------ */
2111 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2112 }
2113 } /* End epcaparam */
2114
2115 /* --------------------- Begin receive_data ----------------------- */
2116 /* Caller holds lock */
2117 static void receive_data(struct channel *ch)
2118 { /* Begin receive_data */
2119
2120 unchar *rptr;
2121 struct termios *ts = NULL;
2122 struct tty_struct *tty;
2123 struct board_chan __iomem *bc;
2124 int dataToRead, wrapgap, bytesAvailable;
2125 unsigned int tail, head;
2126 unsigned int wrapmask;
2127 int rc;
2128
2129 /* ---------------------------------------------------------------
2130 This routine is called by doint when a receive data event
2131 has taken place.
2132 ------------------------------------------------------------------- */
2133
2134 globalwinon(ch);
2135 if (ch->statusflags & RXSTOPPED)
2136 return;
2137 tty = ch->tty;
2138 if (tty)
2139 ts = tty->termios;
2140 bc = ch->brdchan;
2141 BUG_ON(!bc);
2142 wrapmask = ch->rxbufsize - 1;
2143
2144 /* ---------------------------------------------------------------------
2145 Get the head and tail pointers to the receiver queue. Wrap the
2146 head pointer if it has reached the end of the buffer.
2147 ------------------------------------------------------------------------ */
2148 head = readw(&bc->rin);
2149 head &= wrapmask;
2150 tail = readw(&bc->rout) & wrapmask;
2151
2152 bytesAvailable = (head - tail) & wrapmask;
2153 if (bytesAvailable == 0)
2154 return;
2155
2156 /* ------------------------------------------------------------------
2157 If CREAD bit is off or device not open, set TX tail to head
2158 --------------------------------------------------------------------- */
2159
2160 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2161 writew(head, &bc->rout);
2162 return;
2163 }
2164
2165 if (tty->flip.count == TTY_FLIPBUF_SIZE)
2166 return;
2167
2168 if (readb(&bc->orun)) {
2169 writeb(0, &bc->orun);
2170 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2171 }
2172 rxwinon(ch);
2173 rptr = tty->flip.char_buf_ptr;
2174 rc = tty->flip.count;
2175 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2176 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2177 /* ---------------------------------------------------------------
2178 Even if head has wrapped around only report the amount of
2179 data to be equal to the size - tail. Remember memcpy can't
2180 automaticly wrap around the receive buffer.
2181 ----------------------------------------------------------------- */
2182 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2183 /* --------------------------------------------------------------
2184 Make sure we don't overflow the buffer
2185 ----------------------------------------------------------------- */
2186 if ((rc + dataToRead) > TTY_FLIPBUF_SIZE)
2187 dataToRead = TTY_FLIPBUF_SIZE - rc;
2188 if (dataToRead == 0)
2189 break;
2190 /* ---------------------------------------------------------------
2191 Move data read from our card into the line disciplines buffer
2192 for translation if necessary.
2193 ------------------------------------------------------------------ */
2194 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2195 rc += dataToRead;
2196 rptr += dataToRead;
2197 tail = (tail + dataToRead) & wrapmask;
2198 bytesAvailable -= dataToRead;
2199 } /* End while there is data on the card */
2200 tty->flip.count = rc;
2201 tty->flip.char_buf_ptr = rptr;
2202 globalwinon(ch);
2203 writew(tail, &bc->rout);
2204 /* Must be called with global data */
2205 tty_schedule_flip(ch->tty);
2206 return;
2207 } /* End receive_data */
2208
2209 static int info_ioctl(struct tty_struct *tty, struct file * file,
2210 unsigned int cmd, unsigned long arg)
2211 {
2212 switch (cmd)
2213 { /* Begin switch cmd */
2214 case DIGI_GETINFO:
2215 { /* Begin case DIGI_GETINFO */
2216 struct digi_info di ;
2217 int brd;
2218
2219 if(get_user(brd, (unsigned int __user *)arg))
2220 return -EFAULT;
2221 if (brd < 0 || brd >= num_cards || num_cards == 0)
2222 return -ENODEV;
2223
2224 memset(&di, 0, sizeof(di));
2225
2226 di.board = brd ;
2227 di.status = boards[brd].status;
2228 di.type = boards[brd].type ;
2229 di.numports = boards[brd].numports ;
2230 /* Legacy fixups - just move along nothing to see */
2231 di.port = (unsigned char *)boards[brd].port ;
2232 di.membase = (unsigned char *)boards[brd].membase ;
2233
2234 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2235 return -EFAULT;
2236 break;
2237
2238 } /* End case DIGI_GETINFO */
2239
2240 case DIGI_POLLER:
2241 { /* Begin case DIGI_POLLER */
2242
2243 int brd = arg & 0xff000000 >> 16 ;
2244 unsigned char state = arg & 0xff ;
2245
2246 if (brd < 0 || brd >= num_cards) {
2247 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2248 return (-ENODEV);
2249 }
2250 digi_poller_inhibited = state ;
2251 break ;
2252 } /* End case DIGI_POLLER */
2253
2254 case DIGI_INIT:
2255 { /* Begin case DIGI_INIT */
2256 /* ------------------------------------------------------------
2257 This call is made by the apps to complete the initilization
2258 of the board(s). This routine is responsible for setting
2259 the card to its initial state and setting the drivers control
2260 fields to the sutianle settings for the card in question.
2261 ---------------------------------------------------------------- */
2262 int crd ;
2263 for (crd = 0; crd < num_cards; crd++)
2264 post_fep_init (crd);
2265 break ;
2266 } /* End case DIGI_INIT */
2267 default:
2268 return -ENOTTY;
2269 } /* End switch cmd */
2270 return (0) ;
2271 }
2272 /* --------------------- Begin pc_ioctl ----------------------- */
2273
2274 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2275 {
2276 struct channel *ch = (struct channel *) tty->driver_data;
2277 struct board_chan __iomem *bc;
2278 unsigned int mstat, mflag = 0;
2279 unsigned long flags;
2280
2281 if (ch)
2282 bc = ch->brdchan;
2283 else
2284 return -EINVAL;
2285
2286 spin_lock_irqsave(&epca_lock, flags);
2287 globalwinon(ch);
2288 mstat = readb(&bc->mstat);
2289 memoff(ch);
2290 spin_unlock_irqrestore(&epca_lock, flags);
2291
2292 if (mstat & ch->m_dtr)
2293 mflag |= TIOCM_DTR;
2294 if (mstat & ch->m_rts)
2295 mflag |= TIOCM_RTS;
2296 if (mstat & ch->m_cts)
2297 mflag |= TIOCM_CTS;
2298 if (mstat & ch->dsr)
2299 mflag |= TIOCM_DSR;
2300 if (mstat & ch->m_ri)
2301 mflag |= TIOCM_RI;
2302 if (mstat & ch->dcd)
2303 mflag |= TIOCM_CD;
2304 return mflag;
2305 }
2306
2307 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2308 unsigned int set, unsigned int clear)
2309 {
2310 struct channel *ch = (struct channel *) tty->driver_data;
2311 unsigned long flags;
2312
2313 if (!ch)
2314 return -EINVAL;
2315
2316 spin_lock_irqsave(&epca_lock, flags);
2317 /*
2318 * I think this modemfake stuff is broken. It doesn't
2319 * correctly reflect the behaviour desired by the TIOCM*
2320 * ioctls. Therefore this is probably broken.
2321 */
2322 if (set & TIOCM_RTS) {
2323 ch->modemfake |= ch->m_rts;
2324 ch->modem |= ch->m_rts;
2325 }
2326 if (set & TIOCM_DTR) {
2327 ch->modemfake |= ch->m_dtr;
2328 ch->modem |= ch->m_dtr;
2329 }
2330 if (clear & TIOCM_RTS) {
2331 ch->modemfake |= ch->m_rts;
2332 ch->modem &= ~ch->m_rts;
2333 }
2334 if (clear & TIOCM_DTR) {
2335 ch->modemfake |= ch->m_dtr;
2336 ch->modem &= ~ch->m_dtr;
2337 }
2338 globalwinon(ch);
2339 /* --------------------------------------------------------------
2340 The below routine generally sets up parity, baud, flow control
2341 issues, etc.... It effect both control flags and input flags.
2342 ------------------------------------------------------------------ */
2343 epcaparam(tty,ch);
2344 memoff(ch);
2345 spin_unlock_irqrestore(&epca_lock, flags);
2346 return 0;
2347 }
2348
2349 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2350 unsigned int cmd, unsigned long arg)
2351 { /* Begin pc_ioctl */
2352
2353 digiflow_t dflow;
2354 int retval;
2355 unsigned long flags;
2356 unsigned int mflag, mstat;
2357 unsigned char startc, stopc;
2358 struct board_chan __iomem *bc;
2359 struct channel *ch = (struct channel *) tty->driver_data;
2360 void __user *argp = (void __user *)arg;
2361
2362 if (ch)
2363 bc = ch->brdchan;
2364 else
2365 return -EINVAL;
2366
2367 /* -------------------------------------------------------------------
2368 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2369 in /usr/src/linux/drivers/char for a good example. In particular
2370 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2371 ---------------------------------------------------------------------- */
2372
2373 switch (cmd)
2374 { /* Begin switch cmd */
2375
2376 case TCGETS:
2377 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2378 return -EFAULT;
2379 return 0;
2380 case TCGETA:
2381 return get_termio(tty, argp);
2382 case TCSBRK: /* SVID version: non-zero arg --> no break */
2383 retval = tty_check_change(tty);
2384 if (retval)
2385 return retval;
2386 /* Setup an event to indicate when the transmit buffer empties */
2387 spin_lock_irqsave(&epca_lock, flags);
2388 setup_empty_event(tty,ch);
2389 spin_unlock_irqrestore(&epca_lock, flags);
2390 tty_wait_until_sent(tty, 0);
2391 if (!arg)
2392 digi_send_break(ch, HZ/4); /* 1/4 second */
2393 return 0;
2394 case TCSBRKP: /* support for POSIX tcsendbreak() */
2395 retval = tty_check_change(tty);
2396 if (retval)
2397 return retval;
2398
2399 /* Setup an event to indicate when the transmit buffer empties */
2400 spin_lock_irqsave(&epca_lock, flags);
2401 setup_empty_event(tty,ch);
2402 spin_unlock_irqrestore(&epca_lock, flags);
2403 tty_wait_until_sent(tty, 0);
2404 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2405 return 0;
2406 case TIOCGSOFTCAR:
2407 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2408 return -EFAULT;
2409 return 0;
2410 case TIOCSSOFTCAR:
2411 {
2412 unsigned int value;
2413
2414 if (get_user(value, (unsigned __user *)argp))
2415 return -EFAULT;
2416 tty->termios->c_cflag =
2417 ((tty->termios->c_cflag & ~CLOCAL) |
2418 (value ? CLOCAL : 0));
2419 return 0;
2420 }
2421 case TIOCMODG:
2422 mflag = pc_tiocmget(tty, file);
2423 if (put_user(mflag, (unsigned long __user *)argp))
2424 return -EFAULT;
2425 break;
2426 case TIOCMODS:
2427 if (get_user(mstat, (unsigned __user *)argp))
2428 return -EFAULT;
2429 return pc_tiocmset(tty, file, mstat, ~mstat);
2430 case TIOCSDTR:
2431 spin_lock_irqsave(&epca_lock, flags);
2432 ch->omodem |= ch->m_dtr;
2433 globalwinon(ch);
2434 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2435 memoff(ch);
2436 spin_unlock_irqrestore(&epca_lock, flags);
2437 break;
2438
2439 case TIOCCDTR:
2440 spin_lock_irqsave(&epca_lock, flags);
2441 ch->omodem &= ~ch->m_dtr;
2442 globalwinon(ch);
2443 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2444 memoff(ch);
2445 spin_unlock_irqrestore(&epca_lock, flags);
2446 break;
2447 case DIGI_GETA:
2448 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2449 return -EFAULT;
2450 break;
2451 case DIGI_SETAW:
2452 case DIGI_SETAF:
2453 if (cmd == DIGI_SETAW) {
2454 /* Setup an event to indicate when the transmit buffer empties */
2455 spin_lock_irqsave(&epca_lock, flags);
2456 setup_empty_event(tty,ch);
2457 spin_unlock_irqrestore(&epca_lock, flags);
2458 tty_wait_until_sent(tty, 0);
2459 } else {
2460 /* ldisc lock already held in ioctl */
2461 if (tty->ldisc.flush_buffer)
2462 tty->ldisc.flush_buffer(tty);
2463 }
2464 /* Fall Thru */
2465 case DIGI_SETA:
2466 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2467 return -EFAULT;
2468
2469 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2470 ch->dcd = ch->m_dsr;
2471 ch->dsr = ch->m_dcd;
2472 } else {
2473 ch->dcd = ch->m_dcd;
2474 ch->dsr = ch->m_dsr;
2475 }
2476
2477 spin_lock_irqsave(&epca_lock, flags);
2478 globalwinon(ch);
2479
2480 /* -----------------------------------------------------------------
2481 The below routine generally sets up parity, baud, flow control
2482 issues, etc.... It effect both control flags and input flags.
2483 ------------------------------------------------------------------- */
2484
2485 epcaparam(tty,ch);
2486 memoff(ch);
2487 spin_unlock_irqrestore(&epca_lock, flags);
2488 break;
2489
2490 case DIGI_GETFLOW:
2491 case DIGI_GETAFLOW:
2492 spin_lock_irqsave(&epca_lock, flags);
2493 globalwinon(ch);
2494 if (cmd == DIGI_GETFLOW) {
2495 dflow.startc = readb(&bc->startc);
2496 dflow.stopc = readb(&bc->stopc);
2497 } else {
2498 dflow.startc = readb(&bc->startca);
2499 dflow.stopc = readb(&bc->stopca);
2500 }
2501 memoff(ch);
2502 spin_unlock_irqrestore(&epca_lock, flags);
2503
2504 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2505 return -EFAULT;
2506 break;
2507
2508 case DIGI_SETAFLOW:
2509 case DIGI_SETFLOW:
2510 if (cmd == DIGI_SETFLOW) {
2511 startc = ch->startc;
2512 stopc = ch->stopc;
2513 } else {
2514 startc = ch->startca;
2515 stopc = ch->stopca;
2516 }
2517
2518 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2519 return -EFAULT;
2520
2521 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2522 spin_lock_irqsave(&epca_lock, flags);
2523 globalwinon(ch);
2524
2525 if (cmd == DIGI_SETFLOW) {
2526 ch->fepstartc = ch->startc = dflow.startc;
2527 ch->fepstopc = ch->stopc = dflow.stopc;
2528 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2529 } else {
2530 ch->fepstartca = ch->startca = dflow.startc;
2531 ch->fepstopca = ch->stopca = dflow.stopc;
2532 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2533 }
2534
2535 if (ch->statusflags & TXSTOPPED)
2536 pc_start(tty);
2537
2538 memoff(ch);
2539 spin_unlock_irqrestore(&epca_lock, flags);
2540 } /* End if setflow toggled */
2541 break;
2542 default:
2543 return -ENOIOCTLCMD;
2544 } /* End switch cmd */
2545 return 0;
2546 } /* End pc_ioctl */
2547
2548 /* --------------------- Begin pc_set_termios ----------------------- */
2549
2550 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2551 { /* Begin pc_set_termios */
2552
2553 struct channel *ch;
2554 unsigned long flags;
2555 /* ---------------------------------------------------------
2556 verifyChannel returns the channel from the tty struct
2557 if it is valid. This serves as a sanity check.
2558 ------------------------------------------------------------- */
2559 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2560 spin_lock_irqsave(&epca_lock, flags);
2561 globalwinon(ch);
2562 epcaparam(tty, ch);
2563 memoff(ch);
2564 spin_unlock_irqrestore(&epca_lock, flags);
2565
2566 if ((old_termios->c_cflag & CRTSCTS) &&
2567 ((tty->termios->c_cflag & CRTSCTS) == 0))
2568 tty->hw_stopped = 0;
2569
2570 if (!(old_termios->c_cflag & CLOCAL) &&
2571 (tty->termios->c_cflag & CLOCAL))
2572 wake_up_interruptible(&ch->open_wait);
2573
2574 } /* End if channel valid */
2575
2576 } /* End pc_set_termios */
2577
2578 /* --------------------- Begin do_softint ----------------------- */
2579
2580 static void do_softint(void *private_)
2581 { /* Begin do_softint */
2582 struct channel *ch = (struct channel *) private_;
2583 /* Called in response to a modem change event */
2584 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2585 struct tty_struct *tty = ch->tty;
2586
2587 if (tty && tty->driver_data) {
2588 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2589 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2590 wake_up_interruptible(&ch->open_wait);
2591 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2592 } /* End if clear_bit */
2593 }
2594 } /* End EPCA_MAGIC */
2595 } /* End do_softint */
2596
2597 /* ------------------------------------------------------------
2598 pc_stop and pc_start provide software flow control to the
2599 routine and the pc_ioctl routine.
2600 ---------------------------------------------------------------- */
2601
2602 /* --------------------- Begin pc_stop ----------------------- */
2603
2604 static void pc_stop(struct tty_struct *tty)
2605 { /* Begin pc_stop */
2606
2607 struct channel *ch;
2608 unsigned long flags;
2609 /* ---------------------------------------------------------
2610 verifyChannel returns the channel from the tty struct
2611 if it is valid. This serves as a sanity check.
2612 ------------------------------------------------------------- */
2613 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2614 spin_lock_irqsave(&epca_lock, flags);
2615 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2616 globalwinon(ch);
2617 /* STOP transmitting now !! */
2618 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2619 ch->statusflags |= TXSTOPPED;
2620 memoff(ch);
2621 } /* End if transmit stop requested */
2622 spin_unlock_irqrestore(&epca_lock, flags);
2623 } /* End if valid channel */
2624 } /* End pc_stop */
2625
2626 /* --------------------- Begin pc_start ----------------------- */
2627
2628 static void pc_start(struct tty_struct *tty)
2629 { /* Begin pc_start */
2630 struct channel *ch;
2631 /* ---------------------------------------------------------
2632 verifyChannel returns the channel from the tty struct
2633 if it is valid. This serves as a sanity check.
2634 ------------------------------------------------------------- */
2635 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2636 unsigned long flags;
2637 spin_lock_irqsave(&epca_lock, flags);
2638 /* Just in case output was resumed because of a change in Digi-flow */
2639 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2640 struct board_chan __iomem *bc;
2641 globalwinon(ch);
2642 bc = ch->brdchan;
2643 if (ch->statusflags & LOWWAIT)
2644 writeb(1, &bc->ilow);
2645 /* Okay, you can start transmitting again... */
2646 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2647 ch->statusflags &= ~TXSTOPPED;
2648 memoff(ch);
2649 } /* End transmit resume requested */
2650 spin_unlock_irqrestore(&epca_lock, flags);
2651 } /* End if channel valid */
2652 } /* End pc_start */
2653
2654 /* ------------------------------------------------------------------
2655 The below routines pc_throttle and pc_unthrottle are used
2656 to slow (And resume) the receipt of data into the kernels
2657 receive buffers. The exact occurrence of this depends on the
2658 size of the kernels receive buffer and what the 'watermarks'
2659 are set to for that buffer. See the n_ttys.c file for more
2660 details.
2661 ______________________________________________________________________ */
2662 /* --------------------- Begin throttle ----------------------- */
2663
2664 static void pc_throttle(struct tty_struct * tty)
2665 { /* Begin pc_throttle */
2666 struct channel *ch;
2667 unsigned long flags;
2668 /* ---------------------------------------------------------
2669 verifyChannel returns the channel from the tty struct
2670 if it is valid. This serves as a sanity check.
2671 ------------------------------------------------------------- */
2672 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2673 spin_lock_irqsave(&epca_lock, flags);
2674 if ((ch->statusflags & RXSTOPPED) == 0) {
2675 globalwinon(ch);
2676 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2677 ch->statusflags |= RXSTOPPED;
2678 memoff(ch);
2679 }
2680 spin_unlock_irqrestore(&epca_lock, flags);
2681 } /* End if channel valid */
2682 } /* End pc_throttle */
2683
2684 /* --------------------- Begin unthrottle ----------------------- */
2685
2686 static void pc_unthrottle(struct tty_struct *tty)
2687 { /* Begin pc_unthrottle */
2688 struct channel *ch;
2689 unsigned long flags;
2690 /* ---------------------------------------------------------
2691 verifyChannel returns the channel from the tty struct
2692 if it is valid. This serves as a sanity check.
2693 ------------------------------------------------------------- */
2694 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2695 /* Just in case output was resumed because of a change in Digi-flow */
2696 spin_lock_irqsave(&epca_lock, flags);
2697 if (ch->statusflags & RXSTOPPED) {
2698 globalwinon(ch);
2699 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2700 ch->statusflags &= ~RXSTOPPED;
2701 memoff(ch);
2702 }
2703 spin_unlock_irqrestore(&epca_lock, flags);
2704 } /* End if channel valid */
2705 } /* End pc_unthrottle */
2706
2707 /* --------------------- Begin digi_send_break ----------------------- */
2708
2709 void digi_send_break(struct channel *ch, int msec)
2710 { /* Begin digi_send_break */
2711 unsigned long flags;
2712
2713 spin_lock_irqsave(&epca_lock, flags);
2714 globalwinon(ch);
2715 /* --------------------------------------------------------------------
2716 Maybe I should send an infinite break here, schedule() for
2717 msec amount of time, and then stop the break. This way,
2718 the user can't screw up the FEP by causing digi_send_break()
2719 to be called (i.e. via an ioctl()) more than once in msec amount
2720 of time. Try this for now...
2721 ------------------------------------------------------------------------ */
2722 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2723 memoff(ch);
2724 spin_unlock_irqrestore(&epca_lock, flags);
2725 } /* End digi_send_break */
2726
2727 /* --------------------- Begin setup_empty_event ----------------------- */
2728
2729 /* Caller MUST hold the lock */
2730
2731 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2732 { /* Begin setup_empty_event */
2733
2734 struct board_chan __iomem *bc = ch->brdchan;
2735
2736 globalwinon(ch);
2737 ch->statusflags |= EMPTYWAIT;
2738 /* ------------------------------------------------------------------
2739 When set the iempty flag request a event to be generated when the
2740 transmit buffer is empty (If there is no BREAK in progress).
2741 --------------------------------------------------------------------- */
2742 writeb(1, &bc->iempty);
2743 memoff(ch);
2744 } /* End setup_empty_event */
2745
2746 /* --------------------- Begin get_termio ----------------------- */
2747
2748 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2749 { /* Begin get_termio */
2750 return kernel_termios_to_user_termio(termio, tty->termios);
2751 } /* End get_termio */
2752
2753 /* ---------------------- Begin epca_setup -------------------------- */
2754 void epca_setup(char *str, int *ints)
2755 { /* Begin epca_setup */
2756 struct board_info board;
2757 int index, loop, last;
2758 char *temp, *t2;
2759 unsigned len;
2760
2761 /* ----------------------------------------------------------------------
2762 If this routine looks a little strange it is because it is only called
2763 if a LILO append command is given to boot the kernel with parameters.
2764 In this way, we can provide the user a method of changing his board
2765 configuration without rebuilding the kernel.
2766 ----------------------------------------------------------------------- */
2767 if (!liloconfig)
2768 liloconfig = 1;
2769
2770 memset(&board, 0, sizeof(board));
2771
2772 /* Assume the data is int first, later we can change it */
2773 /* I think that array position 0 of ints holds the number of args */
2774 for (last = 0, index = 1; index <= ints[0]; index++)
2775 switch(index)
2776 { /* Begin parse switch */
2777 case 1:
2778 board.status = ints[index];
2779 /* ---------------------------------------------------------
2780 We check for 2 (As opposed to 1; because 2 is a flag
2781 instructing the driver to ignore epcaconfig.) For this
2782 reason we check for 2.
2783 ------------------------------------------------------------ */
2784 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2785 nbdevs = 0;
2786 num_cards = 0;
2787 return;
2788 } /* End ignore epcaconfig as well as lilo cmd line */
2789
2790 if (board.status > 2) {
2791 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2792 invalid_lilo_config = 1;
2793 setup_error_code |= INVALID_BOARD_STATUS;
2794 return;
2795 }
2796 last = index;
2797 break;
2798 case 2:
2799 board.type = ints[index];
2800 if (board.type >= PCIXEM) {
2801 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2802 invalid_lilo_config = 1;
2803 setup_error_code |= INVALID_BOARD_TYPE;
2804 return;
2805 }
2806 last = index;
2807 break;
2808 case 3:
2809 board.altpin = ints[index];
2810 if (board.altpin > 1) {
2811 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2812 invalid_lilo_config = 1;
2813 setup_error_code |= INVALID_ALTPIN;
2814 return;
2815 }
2816 last = index;
2817 break;
2818
2819 case 4:
2820 board.numports = ints[index];
2821 if (board.numports < 2 || board.numports > 256) {
2822 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2823 invalid_lilo_config = 1;
2824 setup_error_code |= INVALID_NUM_PORTS;
2825 return;
2826 }
2827 nbdevs += board.numports;
2828 last = index;
2829 break;
2830
2831 case 5:
2832 board.port = ints[index];
2833 if (ints[index] <= 0) {
2834 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2835 invalid_lilo_config = 1;
2836 setup_error_code |= INVALID_PORT_BASE;
2837 return;
2838 }
2839 last = index;
2840 break;
2841
2842 case 6:
2843 board.membase = ints[index];
2844 if (ints[index] <= 0) {
2845 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2846 invalid_lilo_config = 1;
2847 setup_error_code |= INVALID_MEM_BASE;
2848 return;
2849 }
2850 last = index;
2851 break;
2852
2853 default:
2854 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2855 return;
2856
2857 } /* End parse switch */
2858
2859 while (str && *str) { /* Begin while there is a string arg */
2860 /* find the next comma or terminator */
2861 temp = str;
2862 /* While string is not null, and a comma hasn't been found */
2863 while (*temp && (*temp != ','))
2864 temp++;
2865 if (!*temp)
2866 temp = NULL;
2867 else
2868 *temp++ = 0;
2869 /* Set index to the number of args + 1 */
2870 index = last + 1;
2871
2872 switch(index)
2873 {
2874 case 1:
2875 len = strlen(str);
2876 if (strncmp("Disable", str, len) == 0)
2877 board.status = 0;
2878 else if (strncmp("Enable", str, len) == 0)
2879 board.status = 1;
2880 else {
2881 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2882 invalid_lilo_config = 1;
2883 setup_error_code |= INVALID_BOARD_STATUS;
2884 return;
2885 }
2886 last = index;
2887 break;
2888
2889 case 2:
2890 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2891 if (strcmp(board_desc[loop], str) == 0)
2892 break;
2893 /* ---------------------------------------------------------------
2894 If the index incremented above refers to a legitamate board
2895 type set it here.
2896 ------------------------------------------------------------------*/
2897 if (index < EPCA_NUM_TYPES)
2898 board.type = loop;
2899 else {
2900 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2901 invalid_lilo_config = 1;
2902 setup_error_code |= INVALID_BOARD_TYPE;
2903 return;
2904 }
2905 last = index;
2906 break;
2907
2908 case 3:
2909 len = strlen(str);
2910 if (strncmp("Disable", str, len) == 0)
2911 board.altpin = 0;
2912 else if (strncmp("Enable", str, len) == 0)
2913 board.altpin = 1;
2914 else {
2915 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2916 invalid_lilo_config = 1;
2917 setup_error_code |= INVALID_ALTPIN;
2918 return;
2919 }
2920 last = index;
2921 break;
2922
2923 case 4:
2924 t2 = str;
2925 while (isdigit(*t2))
2926 t2++;
2927
2928 if (*t2) {
2929 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2930 invalid_lilo_config = 1;
2931 setup_error_code |= INVALID_NUM_PORTS;
2932 return;
2933 }
2934
2935 /* ------------------------------------------------------------
2936 There is not a man page for simple_strtoul but the code can be
2937 found in vsprintf.c. The first argument is the string to
2938 translate (To an unsigned long obviously), the second argument
2939 can be the address of any character variable or a NULL. If a
2940 variable is given, the end pointer of the string will be stored
2941 in that variable; if a NULL is given the end pointer will
2942 not be returned. The last argument is the base to use. If
2943 a 0 is indicated, the routine will attempt to determine the
2944 proper base by looking at the values prefix (A '0' for octal,
2945 a 'x' for hex, etc ... If a value is given it will use that
2946 value as the base.
2947 ---------------------------------------------------------------- */
2948 board.numports = simple_strtoul(str, NULL, 0);
2949 nbdevs += board.numports;
2950 last = index;
2951 break;
2952
2953 case 5:
2954 t2 = str;
2955 while (isxdigit(*t2))
2956 t2++;
2957
2958 if (*t2) {
2959 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2960 invalid_lilo_config = 1;
2961 setup_error_code |= INVALID_PORT_BASE;
2962 return;
2963 }
2964
2965 board.port = simple_strtoul(str, NULL, 16);
2966 last = index;
2967 break;
2968
2969 case 6:
2970 t2 = str;
2971 while (isxdigit(*t2))
2972 t2++;
2973
2974 if (*t2) {
2975 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2976 invalid_lilo_config = 1;
2977 setup_error_code |= INVALID_MEM_BASE;
2978 return;
2979 }
2980 board.membase = simple_strtoul(str, NULL, 16);
2981 last = index;
2982 break;
2983 default:
2984 printk(KERN_ERR "epca: Too many string parms\n");
2985 return;
2986 }
2987 str = temp;
2988 } /* End while there is a string arg */
2989
2990 if (last < 6) {
2991 printk(KERN_ERR "epca: Insufficient parms specified\n");
2992 return;
2993 }
2994
2995 /* I should REALLY validate the stuff here */
2996 /* Copies our local copy of board into boards */
2997 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2998 /* Does this get called once per lilo arg are what ? */
2999 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
3000 num_cards, board_desc[board.type],
3001 board.numports, (int)board.port, (unsigned int) board.membase);
3002 num_cards++;
3003 } /* End epca_setup */
3004
3005
3006 /* ------------------------ Begin init_PCI --------------------------- */
3007
3008 enum epic_board_types {
3009 brd_xr = 0,
3010 brd_xem,
3011 brd_cx,
3012 brd_xrj,
3013 };
3014
3015
3016 /* indexed directly by epic_board_types enum */
3017 static struct {
3018 unsigned char board_type;
3019 unsigned bar_idx; /* PCI base address region */
3020 } epca_info_tbl[] = {
3021 { PCIXR, 0, },
3022 { PCIXEM, 0, },
3023 { PCICX, 0, },
3024 { PCIXRJ, 2, },
3025 };
3026
3027 static int __devinit epca_init_one (struct pci_dev *pdev,
3028 const struct pci_device_id *ent)
3029 {
3030 static int board_num = -1;
3031 int board_idx, info_idx = ent->driver_data;
3032 unsigned long addr;
3033
3034 if (pci_enable_device(pdev))
3035 return -EIO;
3036
3037 board_num++;
3038 board_idx = board_num + num_cards;
3039 if (board_idx >= MAXBOARDS)
3040 goto err_out;
3041
3042 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3043 if (!addr) {
3044 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3045 epca_info_tbl[info_idx].bar_idx);
3046 goto err_out;
3047 }
3048
3049 boards[board_idx].status = ENABLED;
3050 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3051 boards[board_idx].numports = 0x0;
3052 boards[board_idx].port = addr + PCI_IO_OFFSET;
3053 boards[board_idx].membase = addr;
3054
3055 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3056 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3057 0x200000, addr + PCI_IO_OFFSET);
3058 goto err_out;
3059 }
3060
3061 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3062 if (!boards[board_idx].re_map_port) {
3063 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3064 0x200000, addr + PCI_IO_OFFSET);
3065 goto err_out_free_pciio;
3066 }
3067
3068 if (!request_mem_region (addr, 0x200000, "epca")) {
3069 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3070 0x200000, addr);
3071 goto err_out_free_iounmap;
3072 }
3073
3074 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3075 if (!boards[board_idx].re_map_membase) {
3076 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3077 0x200000, addr + PCI_IO_OFFSET);
3078 goto err_out_free_memregion;
3079 }
3080
3081 /* --------------------------------------------------------------
3082 I don't know what the below does, but the hardware guys say
3083 its required on everything except PLX (In this case XRJ).
3084 ---------------------------------------------------------------- */
3085 if (info_idx != brd_xrj) {
3086 pci_write_config_byte(pdev, 0x40, 0);
3087 pci_write_config_byte(pdev, 0x46, 0);
3088 }
3089
3090 return 0;
3091
3092 err_out_free_memregion:
3093 release_mem_region (addr, 0x200000);
3094 err_out_free_iounmap:
3095 iounmap (boards[board_idx].re_map_port);
3096 err_out_free_pciio:
3097 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3098 err_out:
3099 return -ENODEV;
3100 }
3101
3102
3103 static struct pci_device_id epca_pci_tbl[] = {
3104 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3105 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3106 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3107 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3108 { 0, }
3109 };
3110
3111 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3112
3113 int __init init_PCI (void)
3114 { /* Begin init_PCI */
3115 memset (&epca_driver, 0, sizeof (epca_driver));
3116 epca_driver.name = "epca";
3117 epca_driver.id_table = epca_pci_tbl;
3118 epca_driver.probe = epca_init_one;
3119
3120 return pci_register_driver(&epca_driver);
3121 }
3122
3123 MODULE_LICENSE("GPL");