]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/char/epca.c
HID: waltop: add support for Waltop Slim Tablet 12.1 inch
[mirror_ubuntu-bionic-kernel.git] / drivers / char / epca.c
1 /*
2 Copyright (C) 1996 Digi International.
3
4 For technical support please email digiLinux@dgii.com or
5 call Digi tech support at (612) 912-3456
6
7 ** This driver is no longer supported by Digi **
8
9 Much of this design and code came from epca.c which was
10 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
11 modified by David Nugent, Christoph Lameter, Mike McLagan.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 /* See README.epca for change history --DAT*/
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/sched.h>
34 #include <linux/serial.h>
35 #include <linux/delay.h>
36 #include <linux/ctype.h>
37 #include <linux/tty.h>
38 #include <linux/tty_flip.h>
39 #include <linux/smp_lock.h>
40 #include <linux/ioport.h>
41 #include <linux/interrupt.h>
42 #include <linux/uaccess.h>
43 #include <linux/io.h>
44 #include <linux/spinlock.h>
45 #include <linux/pci.h>
46 #include "digiPCI.h"
47
48
49 #include "digi1.h"
50 #include "digiFep1.h"
51 #include "epca.h"
52 #include "epcaconfig.h"
53
54 #define VERSION "1.3.0.1-LK2.6"
55
56 /* This major needs to be submitted to Linux to join the majors list */
57 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
58
59
60 #define MAXCARDS 7
61 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
62
63 #define PFX "epca: "
64
65 static int nbdevs, num_cards, liloconfig;
66 static int digi_poller_inhibited = 1 ;
67
68 static int setup_error_code;
69 static int invalid_lilo_config;
70
71 /*
72 * The ISA boards do window flipping into the same spaces so its only sane with
73 * a single lock. It's still pretty efficient. This lock guards the hardware
74 * and the tty_port lock guards the kernel side stuff like use counts. Take
75 * this lock inside the port lock if you must take both.
76 */
77 static DEFINE_SPINLOCK(epca_lock);
78
79 /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted
80 to 7 below. */
81 static struct board_info boards[MAXBOARDS];
82
83 static struct tty_driver *pc_driver;
84 static struct tty_driver *pc_info;
85
86 /* ------------------ Begin Digi specific structures -------------------- */
87
88 /*
89 * digi_channels represents an array of structures that keep track of each
90 * channel of the Digi product. Information such as transmit and receive
91 * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored
92 * here. This structure is NOT used to overlay the cards physical channel
93 * structure.
94 */
95 static struct channel digi_channels[MAX_ALLOC];
96
97 /*
98 * card_ptr is an array used to hold the address of the first channel structure
99 * of each card. This array will hold the addresses of various channels located
100 * in digi_channels.
101 */
102 static struct channel *card_ptr[MAXCARDS];
103
104 static struct timer_list epca_timer;
105
106 /*
107 * Begin generic memory functions. These functions will be alias (point at)
108 * more specific functions dependent on the board being configured.
109 */
110 static void memwinon(struct board_info *b, unsigned int win);
111 static void memwinoff(struct board_info *b, unsigned int win);
112 static void globalwinon(struct channel *ch);
113 static void rxwinon(struct channel *ch);
114 static void txwinon(struct channel *ch);
115 static void memoff(struct channel *ch);
116 static void assertgwinon(struct channel *ch);
117 static void assertmemoff(struct channel *ch);
118
119 /* ---- Begin more 'specific' memory functions for cx_like products --- */
120
121 static void pcxem_memwinon(struct board_info *b, unsigned int win);
122 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
123 static void pcxem_globalwinon(struct channel *ch);
124 static void pcxem_rxwinon(struct channel *ch);
125 static void pcxem_txwinon(struct channel *ch);
126 static void pcxem_memoff(struct channel *ch);
127
128 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
129
130 static void pcxe_memwinon(struct board_info *b, unsigned int win);
131 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
132 static void pcxe_globalwinon(struct channel *ch);
133 static void pcxe_rxwinon(struct channel *ch);
134 static void pcxe_txwinon(struct channel *ch);
135 static void pcxe_memoff(struct channel *ch);
136
137 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
138 /* Note : pc64xe and pcxi share the same windowing routines */
139
140 static void pcxi_memwinon(struct board_info *b, unsigned int win);
141 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
142 static void pcxi_globalwinon(struct channel *ch);
143 static void pcxi_rxwinon(struct channel *ch);
144 static void pcxi_txwinon(struct channel *ch);
145 static void pcxi_memoff(struct channel *ch);
146
147 /* - Begin 'specific' do nothing memory functions needed for some cards - */
148
149 static void dummy_memwinon(struct board_info *b, unsigned int win);
150 static void dummy_memwinoff(struct board_info *b, unsigned int win);
151 static void dummy_globalwinon(struct channel *ch);
152 static void dummy_rxwinon(struct channel *ch);
153 static void dummy_txwinon(struct channel *ch);
154 static void dummy_memoff(struct channel *ch);
155 static void dummy_assertgwinon(struct channel *ch);
156 static void dummy_assertmemoff(struct channel *ch);
157
158 static struct channel *verifyChannel(struct tty_struct *);
159 static void pc_sched_event(struct channel *, int);
160 static void epca_error(int, char *);
161 static void pc_close(struct tty_struct *, struct file *);
162 static void shutdown(struct channel *, struct tty_struct *tty);
163 static void pc_hangup(struct tty_struct *);
164 static int pc_write_room(struct tty_struct *);
165 static int pc_chars_in_buffer(struct tty_struct *);
166 static void pc_flush_buffer(struct tty_struct *);
167 static void pc_flush_chars(struct tty_struct *);
168 static int pc_open(struct tty_struct *, struct file *);
169 static void post_fep_init(unsigned int crd);
170 static void epcapoll(unsigned long);
171 static void doevent(int);
172 static void fepcmd(struct channel *, int, int, int, int, int);
173 static unsigned termios2digi_h(struct channel *ch, unsigned);
174 static unsigned termios2digi_i(struct channel *ch, unsigned);
175 static unsigned termios2digi_c(struct channel *ch, unsigned);
176 static void epcaparam(struct tty_struct *, struct channel *);
177 static void receive_data(struct channel *, struct tty_struct *tty);
178 static int pc_ioctl(struct tty_struct *, struct file *,
179 unsigned int, unsigned long);
180 static int info_ioctl(struct tty_struct *, struct file *,
181 unsigned int, unsigned long);
182 static void pc_set_termios(struct tty_struct *, struct ktermios *);
183 static void do_softint(struct work_struct *work);
184 static void pc_stop(struct tty_struct *);
185 static void pc_start(struct tty_struct *);
186 static void pc_throttle(struct tty_struct *tty);
187 static void pc_unthrottle(struct tty_struct *tty);
188 static int pc_send_break(struct tty_struct *tty, int msec);
189 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
190
191 static int pc_write(struct tty_struct *, const unsigned char *, int);
192 static int pc_init(void);
193 static int init_PCI(void);
194
195 /*
196 * Table of functions for each board to handle memory. Mantaining parallelism
197 * is a *very* good idea here. The idea is for the runtime code to blindly call
198 * these functions, not knowing/caring about the underlying hardware. This
199 * stuff should contain no conditionals; if more functionality is needed a
200 * different entry should be established. These calls are the interface calls
201 * and are the only functions that should be accessed. Anyone caught making
202 * direct calls deserves what they get.
203 */
204 static void memwinon(struct board_info *b, unsigned int win)
205 {
206 b->memwinon(b, win);
207 }
208
209 static void memwinoff(struct board_info *b, unsigned int win)
210 {
211 b->memwinoff(b, win);
212 }
213
214 static void globalwinon(struct channel *ch)
215 {
216 ch->board->globalwinon(ch);
217 }
218
219 static void rxwinon(struct channel *ch)
220 {
221 ch->board->rxwinon(ch);
222 }
223
224 static void txwinon(struct channel *ch)
225 {
226 ch->board->txwinon(ch);
227 }
228
229 static void memoff(struct channel *ch)
230 {
231 ch->board->memoff(ch);
232 }
233 static void assertgwinon(struct channel *ch)
234 {
235 ch->board->assertgwinon(ch);
236 }
237
238 static void assertmemoff(struct channel *ch)
239 {
240 ch->board->assertmemoff(ch);
241 }
242
243 /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */
244 static void pcxem_memwinon(struct board_info *b, unsigned int win)
245 {
246 outb_p(FEPWIN | win, b->port + 1);
247 }
248
249 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
250 {
251 outb_p(0, b->port + 1);
252 }
253
254 static void pcxem_globalwinon(struct channel *ch)
255 {
256 outb_p(FEPWIN, (int)ch->board->port + 1);
257 }
258
259 static void pcxem_rxwinon(struct channel *ch)
260 {
261 outb_p(ch->rxwin, (int)ch->board->port + 1);
262 }
263
264 static void pcxem_txwinon(struct channel *ch)
265 {
266 outb_p(ch->txwin, (int)ch->board->port + 1);
267 }
268
269 static void pcxem_memoff(struct channel *ch)
270 {
271 outb_p(0, (int)ch->board->port + 1);
272 }
273
274 /* ----------------- Begin pcxe memory window stuff ------------------ */
275 static void pcxe_memwinon(struct board_info *b, unsigned int win)
276 {
277 outb_p(FEPWIN | win, b->port + 1);
278 }
279
280 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
281 {
282 outb_p(inb(b->port) & ~FEPMEM, b->port + 1);
283 outb_p(0, b->port + 1);
284 }
285
286 static void pcxe_globalwinon(struct channel *ch)
287 {
288 outb_p(FEPWIN, (int)ch->board->port + 1);
289 }
290
291 static void pcxe_rxwinon(struct channel *ch)
292 {
293 outb_p(ch->rxwin, (int)ch->board->port + 1);
294 }
295
296 static void pcxe_txwinon(struct channel *ch)
297 {
298 outb_p(ch->txwin, (int)ch->board->port + 1);
299 }
300
301 static void pcxe_memoff(struct channel *ch)
302 {
303 outb_p(0, (int)ch->board->port);
304 outb_p(0, (int)ch->board->port + 1);
305 }
306
307 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
308 static void pcxi_memwinon(struct board_info *b, unsigned int win)
309 {
310 outb_p(inb(b->port) | FEPMEM, b->port);
311 }
312
313 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
314 {
315 outb_p(inb(b->port) & ~FEPMEM, b->port);
316 }
317
318 static void pcxi_globalwinon(struct channel *ch)
319 {
320 outb_p(FEPMEM, ch->board->port);
321 }
322
323 static void pcxi_rxwinon(struct channel *ch)
324 {
325 outb_p(FEPMEM, ch->board->port);
326 }
327
328 static void pcxi_txwinon(struct channel *ch)
329 {
330 outb_p(FEPMEM, ch->board->port);
331 }
332
333 static void pcxi_memoff(struct channel *ch)
334 {
335 outb_p(0, ch->board->port);
336 }
337
338 static void pcxi_assertgwinon(struct channel *ch)
339 {
340 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
341 }
342
343 static void pcxi_assertmemoff(struct channel *ch)
344 {
345 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
346 }
347
348 /*
349 * Not all of the cards need specific memory windowing routines. Some cards
350 * (Such as PCI) needs no windowing routines at all. We provide these do
351 * nothing routines so that the same code base can be used. The driver will
352 * ALWAYS call a windowing routine if it thinks it needs to; regardless of the
353 * card. However, dependent on the card the routine may or may not do anything.
354 */
355 static void dummy_memwinon(struct board_info *b, unsigned int win)
356 {
357 }
358
359 static void dummy_memwinoff(struct board_info *b, unsigned int win)
360 {
361 }
362
363 static void dummy_globalwinon(struct channel *ch)
364 {
365 }
366
367 static void dummy_rxwinon(struct channel *ch)
368 {
369 }
370
371 static void dummy_txwinon(struct channel *ch)
372 {
373 }
374
375 static void dummy_memoff(struct channel *ch)
376 {
377 }
378
379 static void dummy_assertgwinon(struct channel *ch)
380 {
381 }
382
383 static void dummy_assertmemoff(struct channel *ch)
384 {
385 }
386
387 static struct channel *verifyChannel(struct tty_struct *tty)
388 {
389 /*
390 * This routine basically provides a sanity check. It insures that the
391 * channel returned is within the proper range of addresses as well as
392 * properly initialized. If some bogus info gets passed in
393 * through tty->driver_data this should catch it.
394 */
395 if (tty) {
396 struct channel *ch = tty->driver_data;
397 if (ch >= &digi_channels[0] && ch < &digi_channels[nbdevs]) {
398 if (ch->magic == EPCA_MAGIC)
399 return ch;
400 }
401 }
402 return NULL;
403 }
404
405 static void pc_sched_event(struct channel *ch, int event)
406 {
407 /*
408 * We call this to schedule interrupt processing on some event. The
409 * kernel sees our request and calls the related routine in OUR driver.
410 */
411 ch->event |= 1 << event;
412 schedule_work(&ch->tqueue);
413 }
414
415 static void epca_error(int line, char *msg)
416 {
417 printk(KERN_ERR "epca_error (Digi): line = %d %s\n", line, msg);
418 }
419
420 static void pc_close(struct tty_struct *tty, struct file *filp)
421 {
422 struct channel *ch;
423 struct tty_port *port;
424 /*
425 * verifyChannel returns the channel from the tty struct if it is
426 * valid. This serves as a sanity check.
427 */
428 ch = verifyChannel(tty);
429 if (ch == NULL)
430 return;
431 port = &ch->port;
432
433 if (tty_port_close_start(port, tty, filp) == 0)
434 return;
435
436 pc_flush_buffer(tty);
437 shutdown(ch, tty);
438
439 tty_port_close_end(port, tty);
440 ch->event = 0; /* FIXME: review ch->event locking */
441 tty_port_tty_set(port, NULL);
442 }
443
444 static void shutdown(struct channel *ch, struct tty_struct *tty)
445 {
446 unsigned long flags;
447 struct board_chan __iomem *bc;
448 struct tty_port *port = &ch->port;
449
450 if (!(port->flags & ASYNC_INITIALIZED))
451 return;
452
453 spin_lock_irqsave(&epca_lock, flags);
454
455 globalwinon(ch);
456 bc = ch->brdchan;
457
458 /*
459 * In order for an event to be generated on the receipt of data the
460 * idata flag must be set. Since we are shutting down, this is not
461 * necessary clear this flag.
462 */
463 if (bc)
464 writeb(0, &bc->idata);
465
466 /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */
467 if (tty->termios->c_cflag & HUPCL) {
468 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
469 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
470 }
471 memoff(ch);
472
473 /*
474 * The channel has officialy been closed. The next time it is opened it
475 * will have to reinitialized. Set a flag to indicate this.
476 */
477 /* Prevent future Digi programmed interrupts from coming active */
478 port->flags &= ~ASYNC_INITIALIZED;
479 spin_unlock_irqrestore(&epca_lock, flags);
480 }
481
482 static void pc_hangup(struct tty_struct *tty)
483 {
484 struct channel *ch;
485
486 /*
487 * verifyChannel returns the channel from the tty struct if it is
488 * valid. This serves as a sanity check.
489 */
490 ch = verifyChannel(tty);
491 if (ch != NULL) {
492 pc_flush_buffer(tty);
493 tty_ldisc_flush(tty);
494 shutdown(ch, tty);
495
496 ch->event = 0; /* FIXME: review locking of ch->event */
497 tty_port_hangup(&ch->port);
498 }
499 }
500
501 static int pc_write(struct tty_struct *tty,
502 const unsigned char *buf, int bytesAvailable)
503 {
504 unsigned int head, tail;
505 int dataLen;
506 int size;
507 int amountCopied;
508 struct channel *ch;
509 unsigned long flags;
510 int remain;
511 struct board_chan __iomem *bc;
512
513 /*
514 * pc_write is primarily called directly by the kernel routine
515 * tty_write (Though it can also be called by put_char) found in
516 * tty_io.c. pc_write is passed a line discipline buffer where the data
517 * to be written out is stored. The line discipline implementation
518 * itself is done at the kernel level and is not brought into the
519 * driver.
520 */
521
522 /*
523 * verifyChannel returns the channel from the tty struct if it is
524 * valid. This serves as a sanity check.
525 */
526 ch = verifyChannel(tty);
527 if (ch == NULL)
528 return 0;
529
530 /* Make a pointer to the channel data structure found on the board. */
531 bc = ch->brdchan;
532 size = ch->txbufsize;
533 amountCopied = 0;
534
535 spin_lock_irqsave(&epca_lock, flags);
536 globalwinon(ch);
537
538 head = readw(&bc->tin) & (size - 1);
539 tail = readw(&bc->tout);
540
541 if (tail != readw(&bc->tout))
542 tail = readw(&bc->tout);
543 tail &= (size - 1);
544
545 if (head >= tail) {
546 /* head has not wrapped */
547 /*
548 * remain (much like dataLen above) represents the total amount
549 * of space available on the card for data. Here dataLen
550 * represents the space existing between the head pointer and
551 * the end of buffer. This is important because a memcpy cannot
552 * be told to automatically wrap around when it hits the buffer
553 * end.
554 */
555 dataLen = size - head;
556 remain = size - (head - tail) - 1;
557 } else {
558 /* head has wrapped around */
559 remain = tail - head - 1;
560 dataLen = remain;
561 }
562 /*
563 * Check the space on the card. If we have more data than space; reduce
564 * the amount of data to fit the space.
565 */
566 bytesAvailable = min(remain, bytesAvailable);
567 txwinon(ch);
568 while (bytesAvailable > 0) {
569 /* there is data to copy onto card */
570
571 /*
572 * If head is not wrapped, the below will make sure the first
573 * data copy fills to the end of card buffer.
574 */
575 dataLen = min(bytesAvailable, dataLen);
576 memcpy_toio(ch->txptr + head, buf, dataLen);
577 buf += dataLen;
578 head += dataLen;
579 amountCopied += dataLen;
580 bytesAvailable -= dataLen;
581
582 if (head >= size) {
583 head = 0;
584 dataLen = tail;
585 }
586 }
587 ch->statusflags |= TXBUSY;
588 globalwinon(ch);
589 writew(head, &bc->tin);
590
591 if ((ch->statusflags & LOWWAIT) == 0) {
592 ch->statusflags |= LOWWAIT;
593 writeb(1, &bc->ilow);
594 }
595 memoff(ch);
596 spin_unlock_irqrestore(&epca_lock, flags);
597 return amountCopied;
598 }
599
600 static int pc_write_room(struct tty_struct *tty)
601 {
602 int remain = 0;
603 struct channel *ch;
604 unsigned long flags;
605 unsigned int head, tail;
606 struct board_chan __iomem *bc;
607 /*
608 * verifyChannel returns the channel from the tty struct if it is
609 * valid. This serves as a sanity check.
610 */
611 ch = verifyChannel(tty);
612 if (ch != NULL) {
613 spin_lock_irqsave(&epca_lock, flags);
614 globalwinon(ch);
615
616 bc = ch->brdchan;
617 head = readw(&bc->tin) & (ch->txbufsize - 1);
618 tail = readw(&bc->tout);
619
620 if (tail != readw(&bc->tout))
621 tail = readw(&bc->tout);
622 /* Wrap tail if necessary */
623 tail &= (ch->txbufsize - 1);
624 remain = tail - head - 1;
625 if (remain < 0)
626 remain += ch->txbufsize;
627
628 if (remain && (ch->statusflags & LOWWAIT) == 0) {
629 ch->statusflags |= LOWWAIT;
630 writeb(1, &bc->ilow);
631 }
632 memoff(ch);
633 spin_unlock_irqrestore(&epca_lock, flags);
634 }
635 /* Return how much room is left on card */
636 return remain;
637 }
638
639 static int pc_chars_in_buffer(struct tty_struct *tty)
640 {
641 int chars;
642 unsigned int ctail, head, tail;
643 int remain;
644 unsigned long flags;
645 struct channel *ch;
646 struct board_chan __iomem *bc;
647 /*
648 * verifyChannel returns the channel from the tty struct if it is
649 * valid. This serves as a sanity check.
650 */
651 ch = verifyChannel(tty);
652 if (ch == NULL)
653 return 0;
654
655 spin_lock_irqsave(&epca_lock, flags);
656 globalwinon(ch);
657
658 bc = ch->brdchan;
659 tail = readw(&bc->tout);
660 head = readw(&bc->tin);
661 ctail = readw(&ch->mailbox->cout);
662
663 if (tail == head && readw(&ch->mailbox->cin) == ctail &&
664 readb(&bc->tbusy) == 0)
665 chars = 0;
666 else { /* Begin if some space on the card has been used */
667 head = readw(&bc->tin) & (ch->txbufsize - 1);
668 tail &= (ch->txbufsize - 1);
669 /*
670 * The logic here is basically opposite of the above
671 * pc_write_room here we are finding the amount of bytes in the
672 * buffer filled. Not the amount of bytes empty.
673 */
674 remain = tail - head - 1;
675 if (remain < 0)
676 remain += ch->txbufsize;
677 chars = (int)(ch->txbufsize - remain);
678 /*
679 * Make it possible to wakeup anything waiting for output in
680 * tty_ioctl.c, etc.
681 *
682 * If not already set. Setup an event to indicate when the
683 * transmit buffer empties.
684 */
685 if (!(ch->statusflags & EMPTYWAIT))
686 setup_empty_event(tty, ch);
687 } /* End if some space on the card has been used */
688 memoff(ch);
689 spin_unlock_irqrestore(&epca_lock, flags);
690 /* Return number of characters residing on card. */
691 return chars;
692 }
693
694 static void pc_flush_buffer(struct tty_struct *tty)
695 {
696 unsigned int tail;
697 unsigned long flags;
698 struct channel *ch;
699 struct board_chan __iomem *bc;
700 /*
701 * verifyChannel returns the channel from the tty struct if it is
702 * valid. This serves as a sanity check.
703 */
704 ch = verifyChannel(tty);
705 if (ch == NULL)
706 return;
707
708 spin_lock_irqsave(&epca_lock, flags);
709 globalwinon(ch);
710 bc = ch->brdchan;
711 tail = readw(&bc->tout);
712 /* Have FEP move tout pointer; effectively flushing transmit buffer */
713 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
714 memoff(ch);
715 spin_unlock_irqrestore(&epca_lock, flags);
716 tty_wakeup(tty);
717 }
718
719 static void pc_flush_chars(struct tty_struct *tty)
720 {
721 struct channel *ch;
722 /*
723 * verifyChannel returns the channel from the tty struct if it is
724 * valid. This serves as a sanity check.
725 */
726 ch = verifyChannel(tty);
727 if (ch != NULL) {
728 unsigned long flags;
729 spin_lock_irqsave(&epca_lock, flags);
730 /*
731 * If not already set and the transmitter is busy setup an
732 * event to indicate when the transmit empties.
733 */
734 if ((ch->statusflags & TXBUSY) &&
735 !(ch->statusflags & EMPTYWAIT))
736 setup_empty_event(tty, ch);
737 spin_unlock_irqrestore(&epca_lock, flags);
738 }
739 }
740
741 static int epca_carrier_raised(struct tty_port *port)
742 {
743 struct channel *ch = container_of(port, struct channel, port);
744 if (ch->imodem & ch->dcd)
745 return 1;
746 return 0;
747 }
748
749 static void epca_dtr_rts(struct tty_port *port, int onoff)
750 {
751 }
752
753 static int pc_open(struct tty_struct *tty, struct file *filp)
754 {
755 struct channel *ch;
756 struct tty_port *port;
757 unsigned long flags;
758 int line, retval, boardnum;
759 struct board_chan __iomem *bc;
760 unsigned int head;
761
762 line = tty->index;
763 if (line < 0 || line >= nbdevs)
764 return -ENODEV;
765
766 ch = &digi_channels[line];
767 port = &ch->port;
768 boardnum = ch->boardnum;
769
770 /* Check status of board configured in system. */
771
772 /*
773 * I check to see if the epca_setup routine detected a user error. It
774 * might be better to put this in pc_init, but for the moment it goes
775 * here.
776 */
777 if (invalid_lilo_config) {
778 if (setup_error_code & INVALID_BOARD_TYPE)
779 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
780 if (setup_error_code & INVALID_NUM_PORTS)
781 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
782 if (setup_error_code & INVALID_MEM_BASE)
783 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
784 if (setup_error_code & INVALID_PORT_BASE)
785 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
786 if (setup_error_code & INVALID_BOARD_STATUS)
787 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
788 if (setup_error_code & INVALID_ALTPIN)
789 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
790 tty->driver_data = NULL; /* Mark this device as 'down' */
791 return -ENODEV;
792 }
793 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
794 tty->driver_data = NULL; /* Mark this device as 'down' */
795 return(-ENODEV);
796 }
797
798 bc = ch->brdchan;
799 if (bc == NULL) {
800 tty->driver_data = NULL;
801 return -ENODEV;
802 }
803
804 spin_lock_irqsave(&port->lock, flags);
805 /*
806 * Every time a channel is opened, increment a counter. This is
807 * necessary because we do not wish to flush and shutdown the channel
808 * until the last app holding the channel open, closes it.
809 */
810 port->count++;
811 /*
812 * Set a kernel structures pointer to our local channel structure. This
813 * way we can get to it when passed only a tty struct.
814 */
815 tty->driver_data = ch;
816 port->tty = tty;
817 /*
818 * If this is the first time the channel has been opened, initialize
819 * the tty->termios struct otherwise let pc_close handle it.
820 */
821 spin_lock(&epca_lock);
822 globalwinon(ch);
823 ch->statusflags = 0;
824
825 /* Save boards current modem status */
826 ch->imodem = readb(&bc->mstat);
827
828 /*
829 * Set receive head and tail ptrs to each other. This indicates no data
830 * available to read.
831 */
832 head = readw(&bc->rin);
833 writew(head, &bc->rout);
834
835 /* Set the channels associated tty structure */
836
837 /*
838 * The below routine generally sets up parity, baud, flow control
839 * issues, etc.... It effect both control flags and input flags.
840 */
841 epcaparam(tty, ch);
842 memoff(ch);
843 spin_unlock(&epca_lock);
844 port->flags |= ASYNC_INITIALIZED;
845 spin_unlock_irqrestore(&port->lock, flags);
846
847 retval = tty_port_block_til_ready(port, tty, filp);
848 if (retval)
849 return retval;
850 /*
851 * Set this again in case a hangup set it to zero while this open() was
852 * waiting for the line...
853 */
854 spin_lock_irqsave(&port->lock, flags);
855 port->tty = tty;
856 spin_lock(&epca_lock);
857 globalwinon(ch);
858 /* Enable Digi Data events */
859 writeb(1, &bc->idata);
860 memoff(ch);
861 spin_unlock(&epca_lock);
862 spin_unlock_irqrestore(&port->lock, flags);
863 return 0;
864 }
865
866 static int __init epca_module_init(void)
867 {
868 return pc_init();
869 }
870 module_init(epca_module_init);
871
872 static struct pci_driver epca_driver;
873
874 static void __exit epca_module_exit(void)
875 {
876 int count, crd;
877 struct board_info *bd;
878 struct channel *ch;
879
880 del_timer_sync(&epca_timer);
881
882 if (tty_unregister_driver(pc_driver) ||
883 tty_unregister_driver(pc_info)) {
884 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
885 return;
886 }
887 put_tty_driver(pc_driver);
888 put_tty_driver(pc_info);
889
890 for (crd = 0; crd < num_cards; crd++) {
891 bd = &boards[crd];
892 if (!bd) { /* sanity check */
893 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
894 return;
895 }
896 ch = card_ptr[crd];
897 for (count = 0; count < bd->numports; count++, ch++) {
898 struct tty_struct *tty = tty_port_tty_get(&ch->port);
899 if (tty) {
900 tty_hangup(tty);
901 tty_kref_put(tty);
902 }
903 }
904 }
905 pci_unregister_driver(&epca_driver);
906 }
907 module_exit(epca_module_exit);
908
909 static const struct tty_operations pc_ops = {
910 .open = pc_open,
911 .close = pc_close,
912 .write = pc_write,
913 .write_room = pc_write_room,
914 .flush_buffer = pc_flush_buffer,
915 .chars_in_buffer = pc_chars_in_buffer,
916 .flush_chars = pc_flush_chars,
917 .ioctl = pc_ioctl,
918 .set_termios = pc_set_termios,
919 .stop = pc_stop,
920 .start = pc_start,
921 .throttle = pc_throttle,
922 .unthrottle = pc_unthrottle,
923 .hangup = pc_hangup,
924 .break_ctl = pc_send_break
925 };
926
927 static const struct tty_port_operations epca_port_ops = {
928 .carrier_raised = epca_carrier_raised,
929 .dtr_rts = epca_dtr_rts,
930 };
931
932 static int info_open(struct tty_struct *tty, struct file *filp)
933 {
934 return 0;
935 }
936
937 static const struct tty_operations info_ops = {
938 .open = info_open,
939 .ioctl = info_ioctl,
940 };
941
942 static int __init pc_init(void)
943 {
944 int crd;
945 struct board_info *bd;
946 unsigned char board_id = 0;
947 int err = -ENOMEM;
948
949 int pci_boards_found, pci_count;
950
951 pci_count = 0;
952
953 pc_driver = alloc_tty_driver(MAX_ALLOC);
954 if (!pc_driver)
955 goto out1;
956
957 pc_info = alloc_tty_driver(MAX_ALLOC);
958 if (!pc_info)
959 goto out2;
960
961 /*
962 * If epca_setup has not been ran by LILO set num_cards to defaults;
963 * copy board structure defined by digiConfig into drivers board
964 * structure. Note : If LILO has ran epca_setup then epca_setup will
965 * handle defining num_cards as well as copying the data into the board
966 * structure.
967 */
968 if (!liloconfig) {
969 /* driver has been configured via. epcaconfig */
970 nbdevs = NBDEVS;
971 num_cards = NUMCARDS;
972 memcpy(&boards, &static_boards,
973 sizeof(struct board_info) * NUMCARDS);
974 }
975
976 /*
977 * Note : If lilo was used to configure the driver and the ignore
978 * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards
979 * will equal 0 at this point. This is okay; PCI cards will still be
980 * picked up if detected.
981 */
982
983 /*
984 * Set up interrupt, we will worry about memory allocation in
985 * post_fep_init.
986 */
987 printk(KERN_INFO "DIGI epca driver version %s loaded.\n", VERSION);
988
989 /*
990 * NOTE : This code assumes that the number of ports found in the
991 * boards array is correct. This could be wrong if the card in question
992 * is PCI (And therefore has no ports entry in the boards structure.)
993 * The rest of the information will be valid for PCI because the
994 * beginning of pc_init scans for PCI and determines i/o and base
995 * memory addresses. I am not sure if it is possible to read the number
996 * of ports supported by the card prior to it being booted (Since that
997 * is the state it is in when pc_init is run). Because it is not
998 * possible to query the number of supported ports until after the card
999 * has booted; we are required to calculate the card_ptrs as the card
1000 * is initialized (Inside post_fep_init). The negative thing about this
1001 * approach is that digiDload's call to GET_INFO will have a bad port
1002 * value. (Since this is called prior to post_fep_init.)
1003 */
1004 pci_boards_found = 0;
1005 if (num_cards < MAXBOARDS)
1006 pci_boards_found += init_PCI();
1007 num_cards += pci_boards_found;
1008
1009 pc_driver->owner = THIS_MODULE;
1010 pc_driver->name = "ttyD";
1011 pc_driver->major = DIGI_MAJOR;
1012 pc_driver->minor_start = 0;
1013 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1014 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1015 pc_driver->init_termios = tty_std_termios;
1016 pc_driver->init_termios.c_iflag = 0;
1017 pc_driver->init_termios.c_oflag = 0;
1018 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1019 pc_driver->init_termios.c_lflag = 0;
1020 pc_driver->init_termios.c_ispeed = 9600;
1021 pc_driver->init_termios.c_ospeed = 9600;
1022 pc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_HARDWARE_BREAK;
1023 tty_set_operations(pc_driver, &pc_ops);
1024
1025 pc_info->owner = THIS_MODULE;
1026 pc_info->name = "digi_ctl";
1027 pc_info->major = DIGIINFOMAJOR;
1028 pc_info->minor_start = 0;
1029 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1030 pc_info->subtype = SERIAL_TYPE_INFO;
1031 pc_info->init_termios = tty_std_termios;
1032 pc_info->init_termios.c_iflag = 0;
1033 pc_info->init_termios.c_oflag = 0;
1034 pc_info->init_termios.c_lflag = 0;
1035 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1036 pc_info->init_termios.c_ispeed = 9600;
1037 pc_info->init_termios.c_ospeed = 9600;
1038 pc_info->flags = TTY_DRIVER_REAL_RAW;
1039 tty_set_operations(pc_info, &info_ops);
1040
1041
1042 for (crd = 0; crd < num_cards; crd++) {
1043 /*
1044 * This is where the appropriate memory handlers for the
1045 * hardware is set. Everything at runtime blindly jumps through
1046 * these vectors.
1047 */
1048
1049 /* defined in epcaconfig.h */
1050 bd = &boards[crd];
1051
1052 switch (bd->type) {
1053 case PCXEM:
1054 case EISAXEM:
1055 bd->memwinon = pcxem_memwinon;
1056 bd->memwinoff = pcxem_memwinoff;
1057 bd->globalwinon = pcxem_globalwinon;
1058 bd->txwinon = pcxem_txwinon;
1059 bd->rxwinon = pcxem_rxwinon;
1060 bd->memoff = pcxem_memoff;
1061 bd->assertgwinon = dummy_assertgwinon;
1062 bd->assertmemoff = dummy_assertmemoff;
1063 break;
1064
1065 case PCIXEM:
1066 case PCIXRJ:
1067 case PCIXR:
1068 bd->memwinon = dummy_memwinon;
1069 bd->memwinoff = dummy_memwinoff;
1070 bd->globalwinon = dummy_globalwinon;
1071 bd->txwinon = dummy_txwinon;
1072 bd->rxwinon = dummy_rxwinon;
1073 bd->memoff = dummy_memoff;
1074 bd->assertgwinon = dummy_assertgwinon;
1075 bd->assertmemoff = dummy_assertmemoff;
1076 break;
1077
1078 case PCXE:
1079 case PCXEVE:
1080 bd->memwinon = pcxe_memwinon;
1081 bd->memwinoff = pcxe_memwinoff;
1082 bd->globalwinon = pcxe_globalwinon;
1083 bd->txwinon = pcxe_txwinon;
1084 bd->rxwinon = pcxe_rxwinon;
1085 bd->memoff = pcxe_memoff;
1086 bd->assertgwinon = dummy_assertgwinon;
1087 bd->assertmemoff = dummy_assertmemoff;
1088 break;
1089
1090 case PCXI:
1091 case PC64XE:
1092 bd->memwinon = pcxi_memwinon;
1093 bd->memwinoff = pcxi_memwinoff;
1094 bd->globalwinon = pcxi_globalwinon;
1095 bd->txwinon = pcxi_txwinon;
1096 bd->rxwinon = pcxi_rxwinon;
1097 bd->memoff = pcxi_memoff;
1098 bd->assertgwinon = pcxi_assertgwinon;
1099 bd->assertmemoff = pcxi_assertmemoff;
1100 break;
1101
1102 default:
1103 break;
1104 }
1105
1106 /*
1107 * Some cards need a memory segment to be defined for use in
1108 * transmit and receive windowing operations. These boards are
1109 * listed in the below switch. In the case of the XI the amount
1110 * of memory on the board is variable so the memory_seg is also
1111 * variable. This code determines what they segment should be.
1112 */
1113 switch (bd->type) {
1114 case PCXE:
1115 case PCXEVE:
1116 case PC64XE:
1117 bd->memory_seg = 0xf000;
1118 break;
1119
1120 case PCXI:
1121 board_id = inb((int)bd->port);
1122 if ((board_id & 0x1) == 0x1) {
1123 /* it's an XI card */
1124 /* Is it a 64K board */
1125 if ((board_id & 0x30) == 0)
1126 bd->memory_seg = 0xf000;
1127
1128 /* Is it a 128K board */
1129 if ((board_id & 0x30) == 0x10)
1130 bd->memory_seg = 0xe000;
1131
1132 /* Is is a 256K board */
1133 if ((board_id & 0x30) == 0x20)
1134 bd->memory_seg = 0xc000;
1135
1136 /* Is it a 512K board */
1137 if ((board_id & 0x30) == 0x30)
1138 bd->memory_seg = 0x8000;
1139 } else
1140 printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n", (int)bd->port);
1141 break;
1142 }
1143 }
1144
1145 err = tty_register_driver(pc_driver);
1146 if (err) {
1147 printk(KERN_ERR "Couldn't register Digi PC/ driver");
1148 goto out3;
1149 }
1150
1151 err = tty_register_driver(pc_info);
1152 if (err) {
1153 printk(KERN_ERR "Couldn't register Digi PC/ info ");
1154 goto out4;
1155 }
1156
1157 /* Start up the poller to check for events on all enabled boards */
1158 init_timer(&epca_timer);
1159 epca_timer.function = epcapoll;
1160 mod_timer(&epca_timer, jiffies + HZ/25);
1161 return 0;
1162
1163 out4:
1164 tty_unregister_driver(pc_driver);
1165 out3:
1166 put_tty_driver(pc_info);
1167 out2:
1168 put_tty_driver(pc_driver);
1169 out1:
1170 return err;
1171 }
1172
1173 static void post_fep_init(unsigned int crd)
1174 {
1175 int i;
1176 void __iomem *memaddr;
1177 struct global_data __iomem *gd;
1178 struct board_info *bd;
1179 struct board_chan __iomem *bc;
1180 struct channel *ch;
1181 int shrinkmem = 0, lowwater;
1182
1183 /*
1184 * This call is made by the user via. the ioctl call DIGI_INIT. It is
1185 * responsible for setting up all the card specific stuff.
1186 */
1187 bd = &boards[crd];
1188
1189 /*
1190 * If this is a PCI board, get the port info. Remember PCI cards do not
1191 * have entries into the epcaconfig.h file, so we can't get the number
1192 * of ports from it. Unfortunetly, this means that anyone doing a
1193 * DIGI_GETINFO before the board has booted will get an invalid number
1194 * of ports returned (It should return 0). Calls to DIGI_GETINFO after
1195 * DIGI_INIT has been called will return the proper values.
1196 */
1197 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1198 /*
1199 * Below we use XEMPORTS as a memory offset regardless of which
1200 * PCI card it is. This is because all of the supported PCI
1201 * cards have the same memory offset for the channel data. This
1202 * will have to be changed if we ever develop a PCI/XE card.
1203 * NOTE : The FEP manual states that the port offset is 0xC22
1204 * as opposed to 0xC02. This is only true for PC/XE, and PC/XI
1205 * cards; not for the XEM, or CX series. On the PCI cards the
1206 * number of ports is determined by reading a ID PROM located
1207 * in the box attached to the card. The card can then determine
1208 * the index the id to determine the number of ports available.
1209 * (FYI - The id should be located at 0x1ac (And may use up to
1210 * 4 bytes if the box in question is a XEM or CX)).
1211 */
1212 /* PCI cards are already remapped at this point ISA are not */
1213 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1214 epcaassert(bd->numports <= 64, "PCI returned a invalid number of ports");
1215 nbdevs += (bd->numports);
1216 } else {
1217 /* Fix up the mappings for ISA/EISA etc */
1218 /* FIXME: 64K - can we be smarter ? */
1219 bd->re_map_membase = ioremap_nocache(bd->membase, 0x10000);
1220 }
1221
1222 if (crd != 0)
1223 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1224 else
1225 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1226
1227 ch = card_ptr[crd];
1228 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1229
1230 memaddr = bd->re_map_membase;
1231
1232 /*
1233 * The below assignment will set bc to point at the BEGINING of the
1234 * cards channel structures. For 1 card there will be between 8 and 64
1235 * of these structures.
1236 */
1237 bc = memaddr + CHANSTRUCT;
1238
1239 /*
1240 * The below assignment will set gd to point at the BEGINING of global
1241 * memory address 0xc00. The first data in that global memory actually
1242 * starts at address 0xc1a. The command in pointer begins at 0xd10.
1243 */
1244 gd = memaddr + GLOBAL;
1245
1246 /*
1247 * XEPORTS (address 0xc22) points at the number of channels the card
1248 * supports. (For 64XE, XI, XEM, and XR use 0xc02)
1249 */
1250 if ((bd->type == PCXEVE || bd->type == PCXE) &&
1251 (readw(memaddr + XEPORTS) < 3))
1252 shrinkmem = 1;
1253 if (bd->type < PCIXEM)
1254 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1255 return;
1256 memwinon(bd, 0);
1257
1258 /*
1259 * Remember ch is the main drivers channels structure, while bc is the
1260 * cards channel structure.
1261 */
1262 for (i = 0; i < bd->numports; i++, ch++, bc++) {
1263 unsigned long flags;
1264 u16 tseg, rseg;
1265
1266 tty_port_init(&ch->port);
1267 ch->port.ops = &epca_port_ops;
1268 ch->brdchan = bc;
1269 ch->mailbox = gd;
1270 INIT_WORK(&ch->tqueue, do_softint);
1271 ch->board = &boards[crd];
1272
1273 spin_lock_irqsave(&epca_lock, flags);
1274 switch (bd->type) {
1275 /*
1276 * Since some of the boards use different bitmaps for
1277 * their control signals we cannot hard code these
1278 * values and retain portability. We virtualize this
1279 * data here.
1280 */
1281 case EISAXEM:
1282 case PCXEM:
1283 case PCIXEM:
1284 case PCIXRJ:
1285 case PCIXR:
1286 ch->m_rts = 0x02;
1287 ch->m_dcd = 0x80;
1288 ch->m_dsr = 0x20;
1289 ch->m_cts = 0x10;
1290 ch->m_ri = 0x40;
1291 ch->m_dtr = 0x01;
1292 break;
1293
1294 case PCXE:
1295 case PCXEVE:
1296 case PCXI:
1297 case PC64XE:
1298 ch->m_rts = 0x02;
1299 ch->m_dcd = 0x08;
1300 ch->m_dsr = 0x10;
1301 ch->m_cts = 0x20;
1302 ch->m_ri = 0x40;
1303 ch->m_dtr = 0x80;
1304 break;
1305 }
1306
1307 if (boards[crd].altpin) {
1308 ch->dsr = ch->m_dcd;
1309 ch->dcd = ch->m_dsr;
1310 ch->digiext.digi_flags |= DIGI_ALTPIN;
1311 } else {
1312 ch->dcd = ch->m_dcd;
1313 ch->dsr = ch->m_dsr;
1314 }
1315
1316 ch->boardnum = crd;
1317 ch->channelnum = i;
1318 ch->magic = EPCA_MAGIC;
1319 tty_port_tty_set(&ch->port, NULL);
1320
1321 if (shrinkmem) {
1322 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1323 shrinkmem = 0;
1324 }
1325
1326 tseg = readw(&bc->tseg);
1327 rseg = readw(&bc->rseg);
1328
1329 switch (bd->type) {
1330 case PCIXEM:
1331 case PCIXRJ:
1332 case PCIXR:
1333 /* Cover all the 2MEG cards */
1334 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1335 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1336 ch->txwin = FEPWIN | (tseg >> 11);
1337 ch->rxwin = FEPWIN | (rseg >> 11);
1338 break;
1339
1340 case PCXEM:
1341 case EISAXEM:
1342 /* Cover all the 32K windowed cards */
1343 /* Mask equal to window size - 1 */
1344 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1345 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1346 ch->txwin = FEPWIN | (tseg >> 11);
1347 ch->rxwin = FEPWIN | (rseg >> 11);
1348 break;
1349
1350 case PCXEVE:
1351 case PCXE:
1352 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4)
1353 & 0x1fff);
1354 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1355 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4)
1356 & 0x1fff);
1357 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >> 9);
1358 break;
1359
1360 case PCXI:
1361 case PC64XE:
1362 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1363 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1364 ch->txwin = ch->rxwin = 0;
1365 break;
1366 }
1367
1368 ch->txbufhead = 0;
1369 ch->txbufsize = readw(&bc->tmax) + 1;
1370
1371 ch->rxbufhead = 0;
1372 ch->rxbufsize = readw(&bc->rmax) + 1;
1373
1374 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1375
1376 /* Set transmitter low water mark */
1377 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1378
1379 /* Set receiver low water mark */
1380 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1381
1382 /* Set receiver high water mark */
1383 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1384
1385 writew(100, &bc->edelay);
1386 writeb(1, &bc->idata);
1387
1388 ch->startc = readb(&bc->startc);
1389 ch->stopc = readb(&bc->stopc);
1390 ch->startca = readb(&bc->startca);
1391 ch->stopca = readb(&bc->stopca);
1392
1393 ch->fepcflag = 0;
1394 ch->fepiflag = 0;
1395 ch->fepoflag = 0;
1396 ch->fepstartc = 0;
1397 ch->fepstopc = 0;
1398 ch->fepstartca = 0;
1399 ch->fepstopca = 0;
1400
1401 ch->port.close_delay = 50;
1402
1403 spin_unlock_irqrestore(&epca_lock, flags);
1404 }
1405
1406 printk(KERN_INFO
1407 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1408 VERSION, board_desc[bd->type], (long)bd->port,
1409 (long)bd->membase, bd->numports);
1410 memwinoff(bd, 0);
1411 }
1412
1413 static void epcapoll(unsigned long ignored)
1414 {
1415 unsigned long flags;
1416 int crd;
1417 unsigned int head, tail;
1418 struct channel *ch;
1419 struct board_info *bd;
1420
1421 /*
1422 * This routine is called upon every timer interrupt. Even though the
1423 * Digi series cards are capable of generating interrupts this method
1424 * of non-looping polling is more efficient. This routine checks for
1425 * card generated events (Such as receive data, are transmit buffer
1426 * empty) and acts on those events.
1427 */
1428 for (crd = 0; crd < num_cards; crd++) {
1429 bd = &boards[crd];
1430 ch = card_ptr[crd];
1431
1432 if ((bd->status == DISABLED) || digi_poller_inhibited)
1433 continue;
1434
1435 /*
1436 * assertmemoff is not needed here; indeed it is an empty
1437 * subroutine. It is being kept because future boards may need
1438 * this as well as some legacy boards.
1439 */
1440 spin_lock_irqsave(&epca_lock, flags);
1441
1442 assertmemoff(ch);
1443
1444 globalwinon(ch);
1445
1446 /*
1447 * In this case head and tail actually refer to the event queue
1448 * not the transmit or receive queue.
1449 */
1450 head = readw(&ch->mailbox->ein);
1451 tail = readw(&ch->mailbox->eout);
1452
1453 /* If head isn't equal to tail we have an event */
1454 if (head != tail)
1455 doevent(crd);
1456 memoff(ch);
1457
1458 spin_unlock_irqrestore(&epca_lock, flags);
1459 } /* End for each card */
1460 mod_timer(&epca_timer, jiffies + (HZ / 25));
1461 }
1462
1463 static void doevent(int crd)
1464 {
1465 void __iomem *eventbuf;
1466 struct channel *ch, *chan0;
1467 static struct tty_struct *tty;
1468 struct board_info *bd;
1469 struct board_chan __iomem *bc;
1470 unsigned int tail, head;
1471 int event, channel;
1472 int mstat, lstat;
1473
1474 /*
1475 * This subroutine is called by epcapoll when an event is detected
1476 * in the event queue. This routine responds to those events.
1477 */
1478 bd = &boards[crd];
1479
1480 chan0 = card_ptr[crd];
1481 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1482 assertgwinon(chan0);
1483 while ((tail = readw(&chan0->mailbox->eout)) !=
1484 (head = readw(&chan0->mailbox->ein))) {
1485 /* Begin while something in event queue */
1486 assertgwinon(chan0);
1487 eventbuf = bd->re_map_membase + tail + ISTART;
1488 /* Get the channel the event occurred on */
1489 channel = readb(eventbuf);
1490 /* Get the actual event code that occurred */
1491 event = readb(eventbuf + 1);
1492 /*
1493 * The two assignments below get the current modem status
1494 * (mstat) and the previous modem status (lstat). These are
1495 * useful becuase an event could signal a change in modem
1496 * signals itself.
1497 */
1498 mstat = readb(eventbuf + 2);
1499 lstat = readb(eventbuf + 3);
1500
1501 ch = chan0 + channel;
1502 if ((unsigned)channel >= bd->numports || !ch) {
1503 if (channel >= bd->numports)
1504 ch = chan0;
1505 bc = ch->brdchan;
1506 goto next;
1507 }
1508
1509 bc = ch->brdchan;
1510 if (bc == NULL)
1511 goto next;
1512
1513 tty = tty_port_tty_get(&ch->port);
1514 if (event & DATA_IND) { /* Begin DATA_IND */
1515 receive_data(ch, tty);
1516 assertgwinon(ch);
1517 } /* End DATA_IND */
1518 /* else *//* Fix for DCD transition missed bug */
1519 if (event & MODEMCHG_IND) {
1520 /* A modem signal change has been indicated */
1521 ch->imodem = mstat;
1522 if (test_bit(ASYNCB_CHECK_CD, &ch->port.flags)) {
1523 /* We are now receiving dcd */
1524 if (mstat & ch->dcd)
1525 wake_up_interruptible(&ch->port.open_wait);
1526 else /* No dcd; hangup */
1527 pc_sched_event(ch, EPCA_EVENT_HANGUP);
1528 }
1529 }
1530 if (tty) {
1531 if (event & BREAK_IND) {
1532 /* A break has been indicated */
1533 tty_insert_flip_char(tty, 0, TTY_BREAK);
1534 tty_schedule_flip(tty);
1535 } else if (event & LOWTX_IND) {
1536 if (ch->statusflags & LOWWAIT) {
1537 ch->statusflags &= ~LOWWAIT;
1538 tty_wakeup(tty);
1539 }
1540 } else if (event & EMPTYTX_IND) {
1541 /* This event is generated by
1542 setup_empty_event */
1543 ch->statusflags &= ~TXBUSY;
1544 if (ch->statusflags & EMPTYWAIT) {
1545 ch->statusflags &= ~EMPTYWAIT;
1546 tty_wakeup(tty);
1547 }
1548 }
1549 tty_kref_put(tty);
1550 }
1551 next:
1552 globalwinon(ch);
1553 BUG_ON(!bc);
1554 writew(1, &bc->idata);
1555 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1556 globalwinon(chan0);
1557 } /* End while something in event queue */
1558 }
1559
1560 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1561 int byte2, int ncmds, int bytecmd)
1562 {
1563 unchar __iomem *memaddr;
1564 unsigned int head, cmdTail, cmdStart, cmdMax;
1565 long count;
1566 int n;
1567
1568 /* This is the routine in which commands may be passed to the card. */
1569
1570 if (ch->board->status == DISABLED)
1571 return;
1572 assertgwinon(ch);
1573 /* Remember head (As well as max) is just an offset not a base addr */
1574 head = readw(&ch->mailbox->cin);
1575 /* cmdStart is a base address */
1576 cmdStart = readw(&ch->mailbox->cstart);
1577 /*
1578 * We do the addition below because we do not want a max pointer
1579 * relative to cmdStart. We want a max pointer that points at the
1580 * physical end of the command queue.
1581 */
1582 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1583 memaddr = ch->board->re_map_membase;
1584
1585 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1586 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n",
1587 __LINE__, cmd, head);
1588 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n",
1589 __LINE__, cmdMax, cmdStart);
1590 return;
1591 }
1592 if (bytecmd) {
1593 writeb(cmd, memaddr + head + cmdStart + 0);
1594 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1595 /* Below word_or_byte is bits to set */
1596 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1597 /* Below byte2 is bits to reset */
1598 writeb(byte2, memaddr + head + cmdStart + 3);
1599 } else {
1600 writeb(cmd, memaddr + head + cmdStart + 0);
1601 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1602 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1603 }
1604 head = (head + 4) & (cmdMax - cmdStart - 4);
1605 writew(head, &ch->mailbox->cin);
1606 count = FEPTIMEOUT;
1607
1608 for (;;) {
1609 count--;
1610 if (count == 0) {
1611 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1612 return;
1613 }
1614 head = readw(&ch->mailbox->cin);
1615 cmdTail = readw(&ch->mailbox->cout);
1616 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1617 /*
1618 * Basically this will break when the FEP acknowledges the
1619 * command by incrementing cmdTail (Making it equal to head).
1620 */
1621 if (n <= ncmds * (sizeof(short) * 4))
1622 break;
1623 }
1624 }
1625
1626 /*
1627 * Digi products use fields in their channels structures that are very similar
1628 * to the c_cflag and c_iflag fields typically found in UNIX termios
1629 * structures. The below three routines allow mappings between these hardware
1630 * "flags" and their respective Linux flags.
1631 */
1632 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1633 {
1634 unsigned res = 0;
1635
1636 if (cflag & CRTSCTS) {
1637 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1638 res |= ((ch->m_cts) | (ch->m_rts));
1639 }
1640
1641 if (ch->digiext.digi_flags & RTSPACE)
1642 res |= ch->m_rts;
1643
1644 if (ch->digiext.digi_flags & DTRPACE)
1645 res |= ch->m_dtr;
1646
1647 if (ch->digiext.digi_flags & CTSPACE)
1648 res |= ch->m_cts;
1649
1650 if (ch->digiext.digi_flags & DSRPACE)
1651 res |= ch->dsr;
1652
1653 if (ch->digiext.digi_flags & DCDPACE)
1654 res |= ch->dcd;
1655
1656 if (res & (ch->m_rts))
1657 ch->digiext.digi_flags |= RTSPACE;
1658
1659 if (res & (ch->m_cts))
1660 ch->digiext.digi_flags |= CTSPACE;
1661
1662 return res;
1663 }
1664
1665 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1666 {
1667 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1668 INPCK | ISTRIP | IXON | IXANY | IXOFF);
1669 if (ch->digiext.digi_flags & DIGI_AIXON)
1670 res |= IAIXON;
1671 return res;
1672 }
1673
1674 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1675 {
1676 unsigned res = 0;
1677 if (cflag & CBAUDEX) {
1678 ch->digiext.digi_flags |= DIGI_FAST;
1679 /*
1680 * HUPCL bit is used by FEP to indicate fast baud table is to
1681 * be used.
1682 */
1683 res |= FEP_HUPCL;
1684 } else
1685 ch->digiext.digi_flags &= ~DIGI_FAST;
1686 /*
1687 * CBAUD has bit position 0x1000 set these days to indicate Linux
1688 * baud rate remap. Digi hardware can't handle the bit assignment.
1689 * (We use a different bit assignment for high speed.). Clear this
1690 * bit out.
1691 */
1692 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1693 /*
1694 * This gets a little confusing. The Digi cards have their own
1695 * representation of c_cflags controlling baud rate. For the most part
1696 * this is identical to the Linux implementation. However; Digi
1697 * supports one rate (76800) that Linux doesn't. This means that the
1698 * c_cflag entry that would normally mean 76800 for Digi actually means
1699 * 115200 under Linux. Without the below mapping, a stty 115200 would
1700 * only drive the board at 76800. Since the rate 230400 is also found
1701 * after 76800, the same problem afflicts us when we choose a rate of
1702 * 230400. Without the below modificiation stty 230400 would actually
1703 * give us 115200.
1704 *
1705 * There are two additional differences. The Linux value for CLOCAL
1706 * (0x800; 0004000) has no meaning to the Digi hardware. Also in later
1707 * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000)
1708 * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be
1709 * checked for a screened out prior to termios2digi_c returning. Since
1710 * CLOCAL isn't used by the board this can be ignored as long as the
1711 * returned value is used only by Digi hardware.
1712 */
1713 if (cflag & CBAUDEX) {
1714 /*
1715 * The below code is trying to guarantee that only baud rates
1716 * 115200 and 230400 are remapped. We use exclusive or because
1717 * the various baud rates share common bit positions and
1718 * therefore can't be tested for easily.
1719 */
1720 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1721 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1722 res += 1;
1723 }
1724 return res;
1725 }
1726
1727 /* Caller must hold the locks */
1728 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1729 {
1730 unsigned int cmdHead;
1731 struct ktermios *ts;
1732 struct board_chan __iomem *bc;
1733 unsigned mval, hflow, cflag, iflag;
1734
1735 bc = ch->brdchan;
1736 epcaassert(bc != NULL, "bc out of range");
1737
1738 assertgwinon(ch);
1739 ts = tty->termios;
1740 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
1741 cmdHead = readw(&bc->rin);
1742 writew(cmdHead, &bc->rout);
1743 cmdHead = readw(&bc->tin);
1744 /* Changing baud in mid-stream transmission can be wonderful */
1745 /*
1746 * Flush current transmit buffer by setting cmdTail pointer
1747 * (tout) to cmdHead pointer (tin). Hopefully the transmit
1748 * buffer is empty.
1749 */
1750 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
1751 mval = 0;
1752 } else { /* Begin CBAUD not detected */
1753 /*
1754 * c_cflags have changed but that change had nothing to do with
1755 * BAUD. Propagate the change to the card.
1756 */
1757 cflag = termios2digi_c(ch, ts->c_cflag);
1758 if (cflag != ch->fepcflag) {
1759 ch->fepcflag = cflag;
1760 /* Set baud rate, char size, stop bits, parity */
1761 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
1762 }
1763 /*
1764 * If the user has not forced CLOCAL and if the device is not a
1765 * CALLOUT device (Which is always CLOCAL) we set flags such
1766 * that the driver will wait on carrier detect.
1767 */
1768 if (ts->c_cflag & CLOCAL)
1769 clear_bit(ASYNCB_CHECK_CD, &ch->port.flags);
1770 else
1771 set_bit(ASYNCB_CHECK_CD, &ch->port.flags);
1772 mval = ch->m_dtr | ch->m_rts;
1773 } /* End CBAUD not detected */
1774 iflag = termios2digi_i(ch, ts->c_iflag);
1775 /* Check input mode flags */
1776 if (iflag != ch->fepiflag) {
1777 ch->fepiflag = iflag;
1778 /*
1779 * Command sets channels iflag structure on the board. Such
1780 * things as input soft flow control, handling of parity
1781 * errors, and break handling are all set here.
1782 *
1783 * break handling, parity handling, input stripping,
1784 * flow control chars
1785 */
1786 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
1787 }
1788 /*
1789 * Set the board mint value for this channel. This will cause hardware
1790 * events to be generated each time the DCD signal (Described in mint)
1791 * changes.
1792 */
1793 writeb(ch->dcd, &bc->mint);
1794 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
1795 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
1796 writeb(0, &bc->mint);
1797 ch->imodem = readb(&bc->mstat);
1798 hflow = termios2digi_h(ch, ts->c_cflag);
1799 if (hflow != ch->hflow) {
1800 ch->hflow = hflow;
1801 /*
1802 * Hard flow control has been selected but the board is not
1803 * using it. Activate hard flow control now.
1804 */
1805 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
1806 }
1807 mval ^= ch->modemfake & (mval ^ ch->modem);
1808
1809 if (ch->omodem ^ mval) {
1810 ch->omodem = mval;
1811 /*
1812 * The below command sets the DTR and RTS mstat structure. If
1813 * hard flow control is NOT active these changes will drive the
1814 * output of the actual DTR and RTS lines. If hard flow control
1815 * is active, the changes will be saved in the mstat structure
1816 * and only asserted when hard flow control is turned off.
1817 */
1818
1819 /* First reset DTR & RTS; then set them */
1820 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
1821 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
1822 }
1823 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
1824 ch->fepstartc = ch->startc;
1825 ch->fepstopc = ch->stopc;
1826 /*
1827 * The XON / XOFF characters have changed; propagate these
1828 * changes to the card.
1829 */
1830 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
1831 }
1832 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
1833 ch->fepstartca = ch->startca;
1834 ch->fepstopca = ch->stopca;
1835 /*
1836 * Similar to the above, this time the auxilarly XON / XOFF
1837 * characters have changed; propagate these changes to the card.
1838 */
1839 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
1840 }
1841 }
1842
1843 /* Caller holds lock */
1844 static void receive_data(struct channel *ch, struct tty_struct *tty)
1845 {
1846 unchar *rptr;
1847 struct ktermios *ts = NULL;
1848 struct board_chan __iomem *bc;
1849 int dataToRead, wrapgap, bytesAvailable;
1850 unsigned int tail, head;
1851 unsigned int wrapmask;
1852
1853 /*
1854 * This routine is called by doint when a receive data event has taken
1855 * place.
1856 */
1857 globalwinon(ch);
1858 if (ch->statusflags & RXSTOPPED)
1859 return;
1860 if (tty)
1861 ts = tty->termios;
1862 bc = ch->brdchan;
1863 BUG_ON(!bc);
1864 wrapmask = ch->rxbufsize - 1;
1865
1866 /*
1867 * Get the head and tail pointers to the receiver queue. Wrap the head
1868 * pointer if it has reached the end of the buffer.
1869 */
1870 head = readw(&bc->rin);
1871 head &= wrapmask;
1872 tail = readw(&bc->rout) & wrapmask;
1873
1874 bytesAvailable = (head - tail) & wrapmask;
1875 if (bytesAvailable == 0)
1876 return;
1877
1878 /* If CREAD bit is off or device not open, set TX tail to head */
1879 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
1880 writew(head, &bc->rout);
1881 return;
1882 }
1883
1884 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
1885 return;
1886
1887 if (readb(&bc->orun)) {
1888 writeb(0, &bc->orun);
1889 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",
1890 tty->name);
1891 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
1892 }
1893 rxwinon(ch);
1894 while (bytesAvailable > 0) {
1895 /* Begin while there is data on the card */
1896 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
1897 /*
1898 * Even if head has wrapped around only report the amount of
1899 * data to be equal to the size - tail. Remember memcpy can't
1900 * automaticly wrap around the receive buffer.
1901 */
1902 dataToRead = (wrapgap < bytesAvailable) ? wrapgap
1903 : bytesAvailable;
1904 /* Make sure we don't overflow the buffer */
1905 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
1906 if (dataToRead == 0)
1907 break;
1908 /*
1909 * Move data read from our card into the line disciplines
1910 * buffer for translation if necessary.
1911 */
1912 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
1913 tail = (tail + dataToRead) & wrapmask;
1914 bytesAvailable -= dataToRead;
1915 } /* End while there is data on the card */
1916 globalwinon(ch);
1917 writew(tail, &bc->rout);
1918 /* Must be called with global data */
1919 tty_schedule_flip(tty);
1920 }
1921
1922 static int info_ioctl(struct tty_struct *tty, struct file *file,
1923 unsigned int cmd, unsigned long arg)
1924 {
1925 switch (cmd) {
1926 case DIGI_GETINFO:
1927 {
1928 struct digi_info di;
1929 int brd;
1930
1931 if (get_user(brd, (unsigned int __user *)arg))
1932 return -EFAULT;
1933 if (brd < 0 || brd >= num_cards || num_cards == 0)
1934 return -ENODEV;
1935
1936 memset(&di, 0, sizeof(di));
1937
1938 di.board = brd;
1939 di.status = boards[brd].status;
1940 di.type = boards[brd].type ;
1941 di.numports = boards[brd].numports ;
1942 /* Legacy fixups - just move along nothing to see */
1943 di.port = (unsigned char *)boards[brd].port ;
1944 di.membase = (unsigned char *)boards[brd].membase ;
1945
1946 if (copy_to_user((void __user *)arg, &di, sizeof(di)))
1947 return -EFAULT;
1948 break;
1949
1950 }
1951
1952 case DIGI_POLLER:
1953 {
1954 int brd = arg & 0xff000000 >> 16;
1955 unsigned char state = arg & 0xff;
1956
1957 if (brd < 0 || brd >= num_cards) {
1958 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
1959 return -ENODEV;
1960 }
1961 digi_poller_inhibited = state;
1962 break;
1963 }
1964
1965 case DIGI_INIT:
1966 {
1967 /*
1968 * This call is made by the apps to complete the
1969 * initialization of the board(s). This routine is
1970 * responsible for setting the card to its initial
1971 * state and setting the drivers control fields to the
1972 * sutianle settings for the card in question.
1973 */
1974 int crd;
1975 for (crd = 0; crd < num_cards; crd++)
1976 post_fep_init(crd);
1977 break;
1978 }
1979 default:
1980 return -ENOTTY;
1981 }
1982 return 0;
1983 }
1984
1985 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
1986 {
1987 struct channel *ch = tty->driver_data;
1988 struct board_chan __iomem *bc;
1989 unsigned int mstat, mflag = 0;
1990 unsigned long flags;
1991
1992 if (ch)
1993 bc = ch->brdchan;
1994 else
1995 return -EINVAL;
1996
1997 spin_lock_irqsave(&epca_lock, flags);
1998 globalwinon(ch);
1999 mstat = readb(&bc->mstat);
2000 memoff(ch);
2001 spin_unlock_irqrestore(&epca_lock, flags);
2002
2003 if (mstat & ch->m_dtr)
2004 mflag |= TIOCM_DTR;
2005 if (mstat & ch->m_rts)
2006 mflag |= TIOCM_RTS;
2007 if (mstat & ch->m_cts)
2008 mflag |= TIOCM_CTS;
2009 if (mstat & ch->dsr)
2010 mflag |= TIOCM_DSR;
2011 if (mstat & ch->m_ri)
2012 mflag |= TIOCM_RI;
2013 if (mstat & ch->dcd)
2014 mflag |= TIOCM_CD;
2015 return mflag;
2016 }
2017
2018 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2019 unsigned int set, unsigned int clear)
2020 {
2021 struct channel *ch = tty->driver_data;
2022 unsigned long flags;
2023
2024 if (!ch)
2025 return -EINVAL;
2026
2027 spin_lock_irqsave(&epca_lock, flags);
2028 /*
2029 * I think this modemfake stuff is broken. It doesn't correctly reflect
2030 * the behaviour desired by the TIOCM* ioctls. Therefore this is
2031 * probably broken.
2032 */
2033 if (set & TIOCM_RTS) {
2034 ch->modemfake |= ch->m_rts;
2035 ch->modem |= ch->m_rts;
2036 }
2037 if (set & TIOCM_DTR) {
2038 ch->modemfake |= ch->m_dtr;
2039 ch->modem |= ch->m_dtr;
2040 }
2041 if (clear & TIOCM_RTS) {
2042 ch->modemfake |= ch->m_rts;
2043 ch->modem &= ~ch->m_rts;
2044 }
2045 if (clear & TIOCM_DTR) {
2046 ch->modemfake |= ch->m_dtr;
2047 ch->modem &= ~ch->m_dtr;
2048 }
2049 globalwinon(ch);
2050 /*
2051 * The below routine generally sets up parity, baud, flow control
2052 * issues, etc.... It effect both control flags and input flags.
2053 */
2054 epcaparam(tty, ch);
2055 memoff(ch);
2056 spin_unlock_irqrestore(&epca_lock, flags);
2057 return 0;
2058 }
2059
2060 static int pc_ioctl(struct tty_struct *tty, struct file *file,
2061 unsigned int cmd, unsigned long arg)
2062 {
2063 digiflow_t dflow;
2064 unsigned long flags;
2065 unsigned int mflag, mstat;
2066 unsigned char startc, stopc;
2067 struct board_chan __iomem *bc;
2068 struct channel *ch = tty->driver_data;
2069 void __user *argp = (void __user *)arg;
2070
2071 if (ch)
2072 bc = ch->brdchan;
2073 else
2074 return -EINVAL;
2075 switch (cmd) {
2076 case TIOCMODG:
2077 mflag = pc_tiocmget(tty, file);
2078 if (put_user(mflag, (unsigned long __user *)argp))
2079 return -EFAULT;
2080 break;
2081 case TIOCMODS:
2082 if (get_user(mstat, (unsigned __user *)argp))
2083 return -EFAULT;
2084 return pc_tiocmset(tty, file, mstat, ~mstat);
2085 case TIOCSDTR:
2086 spin_lock_irqsave(&epca_lock, flags);
2087 ch->omodem |= ch->m_dtr;
2088 globalwinon(ch);
2089 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2090 memoff(ch);
2091 spin_unlock_irqrestore(&epca_lock, flags);
2092 break;
2093
2094 case TIOCCDTR:
2095 spin_lock_irqsave(&epca_lock, flags);
2096 ch->omodem &= ~ch->m_dtr;
2097 globalwinon(ch);
2098 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2099 memoff(ch);
2100 spin_unlock_irqrestore(&epca_lock, flags);
2101 break;
2102 case DIGI_GETA:
2103 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2104 return -EFAULT;
2105 break;
2106 case DIGI_SETAW:
2107 case DIGI_SETAF:
2108 lock_kernel();
2109 if (cmd == DIGI_SETAW) {
2110 /* Setup an event to indicate when the transmit
2111 buffer empties */
2112 spin_lock_irqsave(&epca_lock, flags);
2113 setup_empty_event(tty, ch);
2114 spin_unlock_irqrestore(&epca_lock, flags);
2115 tty_wait_until_sent(tty, 0);
2116 } else {
2117 /* ldisc lock already held in ioctl */
2118 if (tty->ldisc->ops->flush_buffer)
2119 tty->ldisc->ops->flush_buffer(tty);
2120 }
2121 unlock_kernel();
2122 /* Fall Thru */
2123 case DIGI_SETA:
2124 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2125 return -EFAULT;
2126
2127 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2128 ch->dcd = ch->m_dsr;
2129 ch->dsr = ch->m_dcd;
2130 } else {
2131 ch->dcd = ch->m_dcd;
2132 ch->dsr = ch->m_dsr;
2133 }
2134
2135 spin_lock_irqsave(&epca_lock, flags);
2136 globalwinon(ch);
2137
2138 /*
2139 * The below routine generally sets up parity, baud, flow
2140 * control issues, etc.... It effect both control flags and
2141 * input flags.
2142 */
2143 epcaparam(tty, ch);
2144 memoff(ch);
2145 spin_unlock_irqrestore(&epca_lock, flags);
2146 break;
2147
2148 case DIGI_GETFLOW:
2149 case DIGI_GETAFLOW:
2150 spin_lock_irqsave(&epca_lock, flags);
2151 globalwinon(ch);
2152 if (cmd == DIGI_GETFLOW) {
2153 dflow.startc = readb(&bc->startc);
2154 dflow.stopc = readb(&bc->stopc);
2155 } else {
2156 dflow.startc = readb(&bc->startca);
2157 dflow.stopc = readb(&bc->stopca);
2158 }
2159 memoff(ch);
2160 spin_unlock_irqrestore(&epca_lock, flags);
2161
2162 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2163 return -EFAULT;
2164 break;
2165
2166 case DIGI_SETAFLOW:
2167 case DIGI_SETFLOW:
2168 if (cmd == DIGI_SETFLOW) {
2169 startc = ch->startc;
2170 stopc = ch->stopc;
2171 } else {
2172 startc = ch->startca;
2173 stopc = ch->stopca;
2174 }
2175
2176 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2177 return -EFAULT;
2178
2179 if (dflow.startc != startc || dflow.stopc != stopc) {
2180 /* Begin if setflow toggled */
2181 spin_lock_irqsave(&epca_lock, flags);
2182 globalwinon(ch);
2183
2184 if (cmd == DIGI_SETFLOW) {
2185 ch->fepstartc = ch->startc = dflow.startc;
2186 ch->fepstopc = ch->stopc = dflow.stopc;
2187 fepcmd(ch, SONOFFC, ch->fepstartc,
2188 ch->fepstopc, 0, 1);
2189 } else {
2190 ch->fepstartca = ch->startca = dflow.startc;
2191 ch->fepstopca = ch->stopca = dflow.stopc;
2192 fepcmd(ch, SAUXONOFFC, ch->fepstartca,
2193 ch->fepstopca, 0, 1);
2194 }
2195
2196 if (ch->statusflags & TXSTOPPED)
2197 pc_start(tty);
2198
2199 memoff(ch);
2200 spin_unlock_irqrestore(&epca_lock, flags);
2201 } /* End if setflow toggled */
2202 break;
2203 default:
2204 return -ENOIOCTLCMD;
2205 }
2206 return 0;
2207 }
2208
2209 static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
2210 {
2211 struct channel *ch;
2212 unsigned long flags;
2213 /*
2214 * verifyChannel returns the channel from the tty struct if it is
2215 * valid. This serves as a sanity check.
2216 */
2217 ch = verifyChannel(tty);
2218
2219 if (ch != NULL) { /* Begin if channel valid */
2220 spin_lock_irqsave(&epca_lock, flags);
2221 globalwinon(ch);
2222 epcaparam(tty, ch);
2223 memoff(ch);
2224 spin_unlock_irqrestore(&epca_lock, flags);
2225
2226 if ((old_termios->c_cflag & CRTSCTS) &&
2227 ((tty->termios->c_cflag & CRTSCTS) == 0))
2228 tty->hw_stopped = 0;
2229
2230 if (!(old_termios->c_cflag & CLOCAL) &&
2231 (tty->termios->c_cflag & CLOCAL))
2232 wake_up_interruptible(&ch->port.open_wait);
2233
2234 } /* End if channel valid */
2235 }
2236
2237 static void do_softint(struct work_struct *work)
2238 {
2239 struct channel *ch = container_of(work, struct channel, tqueue);
2240 /* Called in response to a modem change event */
2241 if (ch && ch->magic == EPCA_MAGIC) {
2242 struct tty_struct *tty = tty_port_tty_get(&ch->port);
2243
2244 if (tty && tty->driver_data) {
2245 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) {
2246 tty_hangup(tty);
2247 wake_up_interruptible(&ch->port.open_wait);
2248 clear_bit(ASYNCB_NORMAL_ACTIVE,
2249 &ch->port.flags);
2250 }
2251 }
2252 tty_kref_put(tty);
2253 }
2254 }
2255
2256 /*
2257 * pc_stop and pc_start provide software flow control to the routine and the
2258 * pc_ioctl routine.
2259 */
2260 static void pc_stop(struct tty_struct *tty)
2261 {
2262 struct channel *ch;
2263 unsigned long flags;
2264 /*
2265 * verifyChannel returns the channel from the tty struct if it is
2266 * valid. This serves as a sanity check.
2267 */
2268 ch = verifyChannel(tty);
2269 if (ch != NULL) {
2270 spin_lock_irqsave(&epca_lock, flags);
2271 if ((ch->statusflags & TXSTOPPED) == 0) {
2272 /* Begin if transmit stop requested */
2273 globalwinon(ch);
2274 /* STOP transmitting now !! */
2275 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2276 ch->statusflags |= TXSTOPPED;
2277 memoff(ch);
2278 } /* End if transmit stop requested */
2279 spin_unlock_irqrestore(&epca_lock, flags);
2280 }
2281 }
2282
2283 static void pc_start(struct tty_struct *tty)
2284 {
2285 struct channel *ch;
2286 /*
2287 * verifyChannel returns the channel from the tty struct if it is
2288 * valid. This serves as a sanity check.
2289 */
2290 ch = verifyChannel(tty);
2291 if (ch != NULL) {
2292 unsigned long flags;
2293 spin_lock_irqsave(&epca_lock, flags);
2294 /* Just in case output was resumed because of a change
2295 in Digi-flow */
2296 if (ch->statusflags & TXSTOPPED) {
2297 /* Begin transmit resume requested */
2298 struct board_chan __iomem *bc;
2299 globalwinon(ch);
2300 bc = ch->brdchan;
2301 if (ch->statusflags & LOWWAIT)
2302 writeb(1, &bc->ilow);
2303 /* Okay, you can start transmitting again... */
2304 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2305 ch->statusflags &= ~TXSTOPPED;
2306 memoff(ch);
2307 } /* End transmit resume requested */
2308 spin_unlock_irqrestore(&epca_lock, flags);
2309 }
2310 }
2311
2312 /*
2313 * The below routines pc_throttle and pc_unthrottle are used to slow (And
2314 * resume) the receipt of data into the kernels receive buffers. The exact
2315 * occurrence of this depends on the size of the kernels receive buffer and
2316 * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for
2317 * more details.
2318 */
2319 static void pc_throttle(struct tty_struct *tty)
2320 {
2321 struct channel *ch;
2322 unsigned long flags;
2323 /*
2324 * verifyChannel returns the channel from the tty struct if it is
2325 * valid. This serves as a sanity check.
2326 */
2327 ch = verifyChannel(tty);
2328 if (ch != NULL) {
2329 spin_lock_irqsave(&epca_lock, flags);
2330 if ((ch->statusflags & RXSTOPPED) == 0) {
2331 globalwinon(ch);
2332 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2333 ch->statusflags |= RXSTOPPED;
2334 memoff(ch);
2335 }
2336 spin_unlock_irqrestore(&epca_lock, flags);
2337 }
2338 }
2339
2340 static void pc_unthrottle(struct tty_struct *tty)
2341 {
2342 struct channel *ch;
2343 unsigned long flags;
2344 /*
2345 * verifyChannel returns the channel from the tty struct if it is
2346 * valid. This serves as a sanity check.
2347 */
2348 ch = verifyChannel(tty);
2349 if (ch != NULL) {
2350 /* Just in case output was resumed because of a change
2351 in Digi-flow */
2352 spin_lock_irqsave(&epca_lock, flags);
2353 if (ch->statusflags & RXSTOPPED) {
2354 globalwinon(ch);
2355 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2356 ch->statusflags &= ~RXSTOPPED;
2357 memoff(ch);
2358 }
2359 spin_unlock_irqrestore(&epca_lock, flags);
2360 }
2361 }
2362
2363 static int pc_send_break(struct tty_struct *tty, int msec)
2364 {
2365 struct channel *ch = tty->driver_data;
2366 unsigned long flags;
2367
2368 if (msec == -1)
2369 msec = 0xFFFF;
2370 else if (msec > 0xFFFE)
2371 msec = 0xFFFE;
2372 else if (msec < 1)
2373 msec = 1;
2374
2375 spin_lock_irqsave(&epca_lock, flags);
2376 globalwinon(ch);
2377 /*
2378 * Maybe I should send an infinite break here, schedule() for msec
2379 * amount of time, and then stop the break. This way, the user can't
2380 * screw up the FEP by causing digi_send_break() to be called (i.e. via
2381 * an ioctl()) more than once in msec amount of time.
2382 * Try this for now...
2383 */
2384 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2385 memoff(ch);
2386 spin_unlock_irqrestore(&epca_lock, flags);
2387 return 0;
2388 }
2389
2390 /* Caller MUST hold the lock */
2391 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2392 {
2393 struct board_chan __iomem *bc = ch->brdchan;
2394
2395 globalwinon(ch);
2396 ch->statusflags |= EMPTYWAIT;
2397 /*
2398 * When set the iempty flag request a event to be generated when the
2399 * transmit buffer is empty (If there is no BREAK in progress).
2400 */
2401 writeb(1, &bc->iempty);
2402 memoff(ch);
2403 }
2404
2405 #ifndef MODULE
2406 static void __init epca_setup(char *str, int *ints)
2407 {
2408 struct board_info board;
2409 int index, loop, last;
2410 char *temp, *t2;
2411 unsigned len;
2412
2413 /*
2414 * If this routine looks a little strange it is because it is only
2415 * called if a LILO append command is given to boot the kernel with
2416 * parameters. In this way, we can provide the user a method of
2417 * changing his board configuration without rebuilding the kernel.
2418 */
2419 if (!liloconfig)
2420 liloconfig = 1;
2421
2422 memset(&board, 0, sizeof(board));
2423
2424 /* Assume the data is int first, later we can change it */
2425 /* I think that array position 0 of ints holds the number of args */
2426 for (last = 0, index = 1; index <= ints[0]; index++)
2427 switch (index) { /* Begin parse switch */
2428 case 1:
2429 board.status = ints[index];
2430 /*
2431 * We check for 2 (As opposed to 1; because 2 is a flag
2432 * instructing the driver to ignore epcaconfig.) For
2433 * this reason we check for 2.
2434 */
2435 if (board.status == 2) {
2436 /* Begin ignore epcaconfig as well as lilo cmd line */
2437 nbdevs = 0;
2438 num_cards = 0;
2439 return;
2440 } /* End ignore epcaconfig as well as lilo cmd line */
2441
2442 if (board.status > 2) {
2443 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n",
2444 board.status);
2445 invalid_lilo_config = 1;
2446 setup_error_code |= INVALID_BOARD_STATUS;
2447 return;
2448 }
2449 last = index;
2450 break;
2451 case 2:
2452 board.type = ints[index];
2453 if (board.type >= PCIXEM) {
2454 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2455 invalid_lilo_config = 1;
2456 setup_error_code |= INVALID_BOARD_TYPE;
2457 return;
2458 }
2459 last = index;
2460 break;
2461 case 3:
2462 board.altpin = ints[index];
2463 if (board.altpin > 1) {
2464 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2465 invalid_lilo_config = 1;
2466 setup_error_code |= INVALID_ALTPIN;
2467 return;
2468 }
2469 last = index;
2470 break;
2471
2472 case 4:
2473 board.numports = ints[index];
2474 if (board.numports < 2 || board.numports > 256) {
2475 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2476 invalid_lilo_config = 1;
2477 setup_error_code |= INVALID_NUM_PORTS;
2478 return;
2479 }
2480 nbdevs += board.numports;
2481 last = index;
2482 break;
2483
2484 case 5:
2485 board.port = ints[index];
2486 if (ints[index] <= 0) {
2487 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2488 invalid_lilo_config = 1;
2489 setup_error_code |= INVALID_PORT_BASE;
2490 return;
2491 }
2492 last = index;
2493 break;
2494
2495 case 6:
2496 board.membase = ints[index];
2497 if (ints[index] <= 0) {
2498 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",
2499 (unsigned int)board.membase);
2500 invalid_lilo_config = 1;
2501 setup_error_code |= INVALID_MEM_BASE;
2502 return;
2503 }
2504 last = index;
2505 break;
2506
2507 default:
2508 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2509 return;
2510
2511 } /* End parse switch */
2512
2513 while (str && *str) { /* Begin while there is a string arg */
2514 /* find the next comma or terminator */
2515 temp = str;
2516 /* While string is not null, and a comma hasn't been found */
2517 while (*temp && (*temp != ','))
2518 temp++;
2519 if (!*temp)
2520 temp = NULL;
2521 else
2522 *temp++ = 0;
2523 /* Set index to the number of args + 1 */
2524 index = last + 1;
2525
2526 switch (index) {
2527 case 1:
2528 len = strlen(str);
2529 if (strncmp("Disable", str, len) == 0)
2530 board.status = 0;
2531 else if (strncmp("Enable", str, len) == 0)
2532 board.status = 1;
2533 else {
2534 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2535 invalid_lilo_config = 1;
2536 setup_error_code |= INVALID_BOARD_STATUS;
2537 return;
2538 }
2539 last = index;
2540 break;
2541
2542 case 2:
2543 for (loop = 0; loop < EPCA_NUM_TYPES; loop++)
2544 if (strcmp(board_desc[loop], str) == 0)
2545 break;
2546 /*
2547 * If the index incremented above refers to a
2548 * legitamate board type set it here.
2549 */
2550 if (index < EPCA_NUM_TYPES)
2551 board.type = loop;
2552 else {
2553 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2554 invalid_lilo_config = 1;
2555 setup_error_code |= INVALID_BOARD_TYPE;
2556 return;
2557 }
2558 last = index;
2559 break;
2560
2561 case 3:
2562 len = strlen(str);
2563 if (strncmp("Disable", str, len) == 0)
2564 board.altpin = 0;
2565 else if (strncmp("Enable", str, len) == 0)
2566 board.altpin = 1;
2567 else {
2568 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2569 invalid_lilo_config = 1;
2570 setup_error_code |= INVALID_ALTPIN;
2571 return;
2572 }
2573 last = index;
2574 break;
2575
2576 case 4:
2577 t2 = str;
2578 while (isdigit(*t2))
2579 t2++;
2580
2581 if (*t2) {
2582 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2583 invalid_lilo_config = 1;
2584 setup_error_code |= INVALID_NUM_PORTS;
2585 return;
2586 }
2587
2588 /*
2589 * There is not a man page for simple_strtoul but the
2590 * code can be found in vsprintf.c. The first argument
2591 * is the string to translate (To an unsigned long
2592 * obviously), the second argument can be the address
2593 * of any character variable or a NULL. If a variable
2594 * is given, the end pointer of the string will be
2595 * stored in that variable; if a NULL is given the end
2596 * pointer will not be returned. The last argument is
2597 * the base to use. If a 0 is indicated, the routine
2598 * will attempt to determine the proper base by looking
2599 * at the values prefix (A '0' for octal, a 'x' for
2600 * hex, etc ... If a value is given it will use that
2601 * value as the base.
2602 */
2603 board.numports = simple_strtoul(str, NULL, 0);
2604 nbdevs += board.numports;
2605 last = index;
2606 break;
2607
2608 case 5:
2609 t2 = str;
2610 while (isxdigit(*t2))
2611 t2++;
2612
2613 if (*t2) {
2614 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2615 invalid_lilo_config = 1;
2616 setup_error_code |= INVALID_PORT_BASE;
2617 return;
2618 }
2619
2620 board.port = simple_strtoul(str, NULL, 16);
2621 last = index;
2622 break;
2623
2624 case 6:
2625 t2 = str;
2626 while (isxdigit(*t2))
2627 t2++;
2628
2629 if (*t2) {
2630 printk(KERN_ERR "epca_setup: Invalid memory base %s\n", str);
2631 invalid_lilo_config = 1;
2632 setup_error_code |= INVALID_MEM_BASE;
2633 return;
2634 }
2635 board.membase = simple_strtoul(str, NULL, 16);
2636 last = index;
2637 break;
2638 default:
2639 printk(KERN_ERR "epca: Too many string parms\n");
2640 return;
2641 }
2642 str = temp;
2643 } /* End while there is a string arg */
2644
2645 if (last < 6) {
2646 printk(KERN_ERR "epca: Insufficient parms specified\n");
2647 return;
2648 }
2649
2650 /* I should REALLY validate the stuff here */
2651 /* Copies our local copy of board into boards */
2652 memcpy((void *)&boards[num_cards], (void *)&board, sizeof(board));
2653 /* Does this get called once per lilo arg are what ? */
2654 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2655 num_cards, board_desc[board.type],
2656 board.numports, (int)board.port, (unsigned int) board.membase);
2657 num_cards++;
2658 }
2659
2660 static int __init epca_real_setup(char *str)
2661 {
2662 int ints[11];
2663
2664 epca_setup(get_options(str, 11, ints), ints);
2665 return 1;
2666 }
2667
2668 __setup("digiepca", epca_real_setup);
2669 #endif
2670
2671 enum epic_board_types {
2672 brd_xr = 0,
2673 brd_xem,
2674 brd_cx,
2675 brd_xrj,
2676 };
2677
2678 /* indexed directly by epic_board_types enum */
2679 static struct {
2680 unsigned char board_type;
2681 unsigned bar_idx; /* PCI base address region */
2682 } epca_info_tbl[] = {
2683 { PCIXR, 0, },
2684 { PCIXEM, 0, },
2685 { PCICX, 0, },
2686 { PCIXRJ, 2, },
2687 };
2688
2689 static int __devinit epca_init_one(struct pci_dev *pdev,
2690 const struct pci_device_id *ent)
2691 {
2692 static int board_num = -1;
2693 int board_idx, info_idx = ent->driver_data;
2694 unsigned long addr;
2695
2696 if (pci_enable_device(pdev))
2697 return -EIO;
2698
2699 board_num++;
2700 board_idx = board_num + num_cards;
2701 if (board_idx >= MAXBOARDS)
2702 goto err_out;
2703
2704 addr = pci_resource_start(pdev, epca_info_tbl[info_idx].bar_idx);
2705 if (!addr) {
2706 printk(KERN_ERR PFX "PCI region #%d not available (size 0)\n",
2707 epca_info_tbl[info_idx].bar_idx);
2708 goto err_out;
2709 }
2710
2711 boards[board_idx].status = ENABLED;
2712 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
2713 boards[board_idx].numports = 0x0;
2714 boards[board_idx].port = addr + PCI_IO_OFFSET;
2715 boards[board_idx].membase = addr;
2716
2717 if (!request_mem_region(addr + PCI_IO_OFFSET, 0x200000, "epca")) {
2718 printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2719 0x200000, addr + PCI_IO_OFFSET);
2720 goto err_out;
2721 }
2722
2723 boards[board_idx].re_map_port = ioremap_nocache(addr + PCI_IO_OFFSET,
2724 0x200000);
2725 if (!boards[board_idx].re_map_port) {
2726 printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2727 0x200000, addr + PCI_IO_OFFSET);
2728 goto err_out_free_pciio;
2729 }
2730
2731 if (!request_mem_region(addr, 0x200000, "epca")) {
2732 printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2733 0x200000, addr);
2734 goto err_out_free_iounmap;
2735 }
2736
2737 boards[board_idx].re_map_membase = ioremap_nocache(addr, 0x200000);
2738 if (!boards[board_idx].re_map_membase) {
2739 printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2740 0x200000, addr + PCI_IO_OFFSET);
2741 goto err_out_free_memregion;
2742 }
2743
2744 /*
2745 * I don't know what the below does, but the hardware guys say its
2746 * required on everything except PLX (In this case XRJ).
2747 */
2748 if (info_idx != brd_xrj) {
2749 pci_write_config_byte(pdev, 0x40, 0);
2750 pci_write_config_byte(pdev, 0x46, 0);
2751 }
2752
2753 return 0;
2754
2755 err_out_free_memregion:
2756 release_mem_region(addr, 0x200000);
2757 err_out_free_iounmap:
2758 iounmap(boards[board_idx].re_map_port);
2759 err_out_free_pciio:
2760 release_mem_region(addr + PCI_IO_OFFSET, 0x200000);
2761 err_out:
2762 return -ENODEV;
2763 }
2764
2765
2766 static struct pci_device_id epca_pci_tbl[] = {
2767 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
2768 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
2769 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
2770 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
2771 { 0, }
2772 };
2773
2774 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
2775
2776 static int __init init_PCI(void)
2777 {
2778 memset(&epca_driver, 0, sizeof(epca_driver));
2779 epca_driver.name = "epca";
2780 epca_driver.id_table = epca_pci_tbl;
2781 epca_driver.probe = epca_init_one;
2782
2783 return pci_register_driver(&epca_driver);
2784 }
2785
2786 MODULE_LICENSE("GPL");