]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/char/ipmi/ipmi_msghandler.c
Merge tag 'renesas-fixes-for-v4.10' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t intf,
60 struct ipmi_smi_msg *msg);
61
62 static int initialized;
63
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70
71 #define MAX_EVENTS_IN_QUEUE 25
72
73 /*
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer. This is in milliseconds.
76 */
77 #define MAX_MSG_TIMEOUT 60000
78
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME 1000
81
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
84
85 /*
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
90 */
91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
92
93 /*
94 * The main "user" data structure.
95 */
96 struct ipmi_user {
97 struct list_head link;
98
99 /* Set to false when the user is destroyed. */
100 bool valid;
101
102 struct kref refcount;
103
104 /* The upper layer that handles receive messages. */
105 struct ipmi_user_hndl *handler;
106 void *handler_data;
107
108 /* The interface this user is bound to. */
109 ipmi_smi_t intf;
110
111 /* Does this interface receive IPMI events? */
112 bool gets_events;
113 };
114
115 struct cmd_rcvr {
116 struct list_head link;
117
118 ipmi_user_t user;
119 unsigned char netfn;
120 unsigned char cmd;
121 unsigned int chans;
122
123 /*
124 * This is used to form a linked lised during mass deletion.
125 * Since this is in an RCU list, we cannot use the link above
126 * or change any data until the RCU period completes. So we
127 * use this next variable during mass deletion so we can have
128 * a list and don't have to wait and restart the search on
129 * every individual deletion of a command.
130 */
131 struct cmd_rcvr *next;
132 };
133
134 struct seq_table {
135 unsigned int inuse : 1;
136 unsigned int broadcast : 1;
137
138 unsigned long timeout;
139 unsigned long orig_timeout;
140 unsigned int retries_left;
141
142 /*
143 * To verify on an incoming send message response that this is
144 * the message that the response is for, we keep a sequence id
145 * and increment it every time we send a message.
146 */
147 long seqid;
148
149 /*
150 * This is held so we can properly respond to the message on a
151 * timeout, and it is used to hold the temporary data for
152 * retransmission, too.
153 */
154 struct ipmi_recv_msg *recv_msg;
155 };
156
157 /*
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
160 */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) \
162 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
163
164 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
165 do { \
166 seq = (((msgid) >> 26) & 0x3f); \
167 seqid = ((msgid) & 0x3ffffff); \
168 } while (0)
169
170 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
171
172 struct ipmi_channel {
173 unsigned char medium;
174 unsigned char protocol;
175
176 /*
177 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
178 * but may be changed by the user.
179 */
180 unsigned char address;
181
182 /*
183 * My LUN. This should generally stay the SMS LUN, but just in
184 * case...
185 */
186 unsigned char lun;
187 };
188
189 #ifdef CONFIG_PROC_FS
190 struct ipmi_proc_entry {
191 char *name;
192 struct ipmi_proc_entry *next;
193 };
194 #endif
195
196 struct bmc_device {
197 struct platform_device pdev;
198 struct ipmi_device_id id;
199 unsigned char guid[16];
200 int guid_set;
201 char name[16];
202 struct kref usecount;
203 };
204 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
205
206 /*
207 * Various statistics for IPMI, these index stats[] in the ipmi_smi
208 * structure.
209 */
210 enum ipmi_stat_indexes {
211 /* Commands we got from the user that were invalid. */
212 IPMI_STAT_sent_invalid_commands = 0,
213
214 /* Commands we sent to the MC. */
215 IPMI_STAT_sent_local_commands,
216
217 /* Responses from the MC that were delivered to a user. */
218 IPMI_STAT_handled_local_responses,
219
220 /* Responses from the MC that were not delivered to a user. */
221 IPMI_STAT_unhandled_local_responses,
222
223 /* Commands we sent out to the IPMB bus. */
224 IPMI_STAT_sent_ipmb_commands,
225
226 /* Commands sent on the IPMB that had errors on the SEND CMD */
227 IPMI_STAT_sent_ipmb_command_errs,
228
229 /* Each retransmit increments this count. */
230 IPMI_STAT_retransmitted_ipmb_commands,
231
232 /*
233 * When a message times out (runs out of retransmits) this is
234 * incremented.
235 */
236 IPMI_STAT_timed_out_ipmb_commands,
237
238 /*
239 * This is like above, but for broadcasts. Broadcasts are
240 * *not* included in the above count (they are expected to
241 * time out).
242 */
243 IPMI_STAT_timed_out_ipmb_broadcasts,
244
245 /* Responses I have sent to the IPMB bus. */
246 IPMI_STAT_sent_ipmb_responses,
247
248 /* The response was delivered to the user. */
249 IPMI_STAT_handled_ipmb_responses,
250
251 /* The response had invalid data in it. */
252 IPMI_STAT_invalid_ipmb_responses,
253
254 /* The response didn't have anyone waiting for it. */
255 IPMI_STAT_unhandled_ipmb_responses,
256
257 /* Commands we sent out to the IPMB bus. */
258 IPMI_STAT_sent_lan_commands,
259
260 /* Commands sent on the IPMB that had errors on the SEND CMD */
261 IPMI_STAT_sent_lan_command_errs,
262
263 /* Each retransmit increments this count. */
264 IPMI_STAT_retransmitted_lan_commands,
265
266 /*
267 * When a message times out (runs out of retransmits) this is
268 * incremented.
269 */
270 IPMI_STAT_timed_out_lan_commands,
271
272 /* Responses I have sent to the IPMB bus. */
273 IPMI_STAT_sent_lan_responses,
274
275 /* The response was delivered to the user. */
276 IPMI_STAT_handled_lan_responses,
277
278 /* The response had invalid data in it. */
279 IPMI_STAT_invalid_lan_responses,
280
281 /* The response didn't have anyone waiting for it. */
282 IPMI_STAT_unhandled_lan_responses,
283
284 /* The command was delivered to the user. */
285 IPMI_STAT_handled_commands,
286
287 /* The command had invalid data in it. */
288 IPMI_STAT_invalid_commands,
289
290 /* The command didn't have anyone waiting for it. */
291 IPMI_STAT_unhandled_commands,
292
293 /* Invalid data in an event. */
294 IPMI_STAT_invalid_events,
295
296 /* Events that were received with the proper format. */
297 IPMI_STAT_events,
298
299 /* Retransmissions on IPMB that failed. */
300 IPMI_STAT_dropped_rexmit_ipmb_commands,
301
302 /* Retransmissions on LAN that failed. */
303 IPMI_STAT_dropped_rexmit_lan_commands,
304
305 /* This *must* remain last, add new values above this. */
306 IPMI_NUM_STATS
307 };
308
309
310 #define IPMI_IPMB_NUM_SEQ 64
311 #define IPMI_MAX_CHANNELS 16
312 struct ipmi_smi {
313 /* What interface number are we? */
314 int intf_num;
315
316 struct kref refcount;
317
318 /* Set when the interface is being unregistered. */
319 bool in_shutdown;
320
321 /* Used for a list of interfaces. */
322 struct list_head link;
323
324 /*
325 * The list of upper layers that are using me. seq_lock
326 * protects this.
327 */
328 struct list_head users;
329
330 /* Information to supply to users. */
331 unsigned char ipmi_version_major;
332 unsigned char ipmi_version_minor;
333
334 /* Used for wake ups at startup. */
335 wait_queue_head_t waitq;
336
337 struct bmc_device *bmc;
338 char *my_dev_name;
339
340 /*
341 * This is the lower-layer's sender routine. Note that you
342 * must either be holding the ipmi_interfaces_mutex or be in
343 * an umpreemptible region to use this. You must fetch the
344 * value into a local variable and make sure it is not NULL.
345 */
346 const struct ipmi_smi_handlers *handlers;
347 void *send_info;
348
349 #ifdef CONFIG_PROC_FS
350 /* A list of proc entries for this interface. */
351 struct mutex proc_entry_lock;
352 struct ipmi_proc_entry *proc_entries;
353 #endif
354
355 /* Driver-model device for the system interface. */
356 struct device *si_dev;
357
358 /*
359 * A table of sequence numbers for this interface. We use the
360 * sequence numbers for IPMB messages that go out of the
361 * interface to match them up with their responses. A routine
362 * is called periodically to time the items in this list.
363 */
364 spinlock_t seq_lock;
365 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
366 int curr_seq;
367
368 /*
369 * Messages queued for delivery. If delivery fails (out of memory
370 * for instance), They will stay in here to be processed later in a
371 * periodic timer interrupt. The tasklet is for handling received
372 * messages directly from the handler.
373 */
374 spinlock_t waiting_rcv_msgs_lock;
375 struct list_head waiting_rcv_msgs;
376 atomic_t watchdog_pretimeouts_to_deliver;
377 struct tasklet_struct recv_tasklet;
378
379 spinlock_t xmit_msgs_lock;
380 struct list_head xmit_msgs;
381 struct ipmi_smi_msg *curr_msg;
382 struct list_head hp_xmit_msgs;
383
384 /*
385 * The list of command receivers that are registered for commands
386 * on this interface.
387 */
388 struct mutex cmd_rcvrs_mutex;
389 struct list_head cmd_rcvrs;
390
391 /*
392 * Events that were queues because no one was there to receive
393 * them.
394 */
395 spinlock_t events_lock; /* For dealing with event stuff. */
396 struct list_head waiting_events;
397 unsigned int waiting_events_count; /* How many events in queue? */
398 char delivering_events;
399 char event_msg_printed;
400 atomic_t event_waiters;
401 unsigned int ticks_to_req_ev;
402 int last_needs_timer;
403
404 /*
405 * The event receiver for my BMC, only really used at panic
406 * shutdown as a place to store this.
407 */
408 unsigned char event_receiver;
409 unsigned char event_receiver_lun;
410 unsigned char local_sel_device;
411 unsigned char local_event_generator;
412
413 /* For handling of maintenance mode. */
414 int maintenance_mode;
415 bool maintenance_mode_enable;
416 int auto_maintenance_timeout;
417 spinlock_t maintenance_mode_lock; /* Used in a timer... */
418
419 /*
420 * A cheap hack, if this is non-null and a message to an
421 * interface comes in with a NULL user, call this routine with
422 * it. Note that the message will still be freed by the
423 * caller. This only works on the system interface.
424 */
425 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
426
427 /*
428 * When we are scanning the channels for an SMI, this will
429 * tell which channel we are scanning.
430 */
431 int curr_channel;
432
433 /* Channel information */
434 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
435
436 /* Proc FS stuff. */
437 struct proc_dir_entry *proc_dir;
438 char proc_dir_name[10];
439
440 atomic_t stats[IPMI_NUM_STATS];
441
442 /*
443 * run_to_completion duplicate of smb_info, smi_info
444 * and ipmi_serial_info structures. Used to decrease numbers of
445 * parameters passed by "low" level IPMI code.
446 */
447 int run_to_completion;
448 };
449 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
450
451 /**
452 * The driver model view of the IPMI messaging driver.
453 */
454 static struct platform_driver ipmidriver = {
455 .driver = {
456 .name = "ipmi",
457 .bus = &platform_bus_type
458 }
459 };
460 static DEFINE_MUTEX(ipmidriver_mutex);
461
462 static LIST_HEAD(ipmi_interfaces);
463 static DEFINE_MUTEX(ipmi_interfaces_mutex);
464
465 /*
466 * List of watchers that want to know when smi's are added and deleted.
467 */
468 static LIST_HEAD(smi_watchers);
469 static DEFINE_MUTEX(smi_watchers_mutex);
470
471 #define ipmi_inc_stat(intf, stat) \
472 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
473 #define ipmi_get_stat(intf, stat) \
474 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
475
476 static const char * const addr_src_to_str[] = {
477 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
478 "device-tree"
479 };
480
481 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
482 {
483 if (src >= SI_LAST)
484 src = 0; /* Invalid */
485 return addr_src_to_str[src];
486 }
487 EXPORT_SYMBOL(ipmi_addr_src_to_str);
488
489 static int is_lan_addr(struct ipmi_addr *addr)
490 {
491 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
492 }
493
494 static int is_ipmb_addr(struct ipmi_addr *addr)
495 {
496 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
497 }
498
499 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
500 {
501 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
502 }
503
504 static void free_recv_msg_list(struct list_head *q)
505 {
506 struct ipmi_recv_msg *msg, *msg2;
507
508 list_for_each_entry_safe(msg, msg2, q, link) {
509 list_del(&msg->link);
510 ipmi_free_recv_msg(msg);
511 }
512 }
513
514 static void free_smi_msg_list(struct list_head *q)
515 {
516 struct ipmi_smi_msg *msg, *msg2;
517
518 list_for_each_entry_safe(msg, msg2, q, link) {
519 list_del(&msg->link);
520 ipmi_free_smi_msg(msg);
521 }
522 }
523
524 static void clean_up_interface_data(ipmi_smi_t intf)
525 {
526 int i;
527 struct cmd_rcvr *rcvr, *rcvr2;
528 struct list_head list;
529
530 tasklet_kill(&intf->recv_tasklet);
531
532 free_smi_msg_list(&intf->waiting_rcv_msgs);
533 free_recv_msg_list(&intf->waiting_events);
534
535 /*
536 * Wholesale remove all the entries from the list in the
537 * interface and wait for RCU to know that none are in use.
538 */
539 mutex_lock(&intf->cmd_rcvrs_mutex);
540 INIT_LIST_HEAD(&list);
541 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
542 mutex_unlock(&intf->cmd_rcvrs_mutex);
543
544 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
545 kfree(rcvr);
546
547 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
548 if ((intf->seq_table[i].inuse)
549 && (intf->seq_table[i].recv_msg))
550 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
551 }
552 }
553
554 static void intf_free(struct kref *ref)
555 {
556 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
557
558 clean_up_interface_data(intf);
559 kfree(intf);
560 }
561
562 struct watcher_entry {
563 int intf_num;
564 ipmi_smi_t intf;
565 struct list_head link;
566 };
567
568 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
569 {
570 ipmi_smi_t intf;
571 LIST_HEAD(to_deliver);
572 struct watcher_entry *e, *e2;
573
574 mutex_lock(&smi_watchers_mutex);
575
576 mutex_lock(&ipmi_interfaces_mutex);
577
578 /* Build a list of things to deliver. */
579 list_for_each_entry(intf, &ipmi_interfaces, link) {
580 if (intf->intf_num == -1)
581 continue;
582 e = kmalloc(sizeof(*e), GFP_KERNEL);
583 if (!e)
584 goto out_err;
585 kref_get(&intf->refcount);
586 e->intf = intf;
587 e->intf_num = intf->intf_num;
588 list_add_tail(&e->link, &to_deliver);
589 }
590
591 /* We will succeed, so add it to the list. */
592 list_add(&watcher->link, &smi_watchers);
593
594 mutex_unlock(&ipmi_interfaces_mutex);
595
596 list_for_each_entry_safe(e, e2, &to_deliver, link) {
597 list_del(&e->link);
598 watcher->new_smi(e->intf_num, e->intf->si_dev);
599 kref_put(&e->intf->refcount, intf_free);
600 kfree(e);
601 }
602
603 mutex_unlock(&smi_watchers_mutex);
604
605 return 0;
606
607 out_err:
608 mutex_unlock(&ipmi_interfaces_mutex);
609 mutex_unlock(&smi_watchers_mutex);
610 list_for_each_entry_safe(e, e2, &to_deliver, link) {
611 list_del(&e->link);
612 kref_put(&e->intf->refcount, intf_free);
613 kfree(e);
614 }
615 return -ENOMEM;
616 }
617 EXPORT_SYMBOL(ipmi_smi_watcher_register);
618
619 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
620 {
621 mutex_lock(&smi_watchers_mutex);
622 list_del(&(watcher->link));
623 mutex_unlock(&smi_watchers_mutex);
624 return 0;
625 }
626 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
627
628 /*
629 * Must be called with smi_watchers_mutex held.
630 */
631 static void
632 call_smi_watchers(int i, struct device *dev)
633 {
634 struct ipmi_smi_watcher *w;
635
636 list_for_each_entry(w, &smi_watchers, link) {
637 if (try_module_get(w->owner)) {
638 w->new_smi(i, dev);
639 module_put(w->owner);
640 }
641 }
642 }
643
644 static int
645 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
646 {
647 if (addr1->addr_type != addr2->addr_type)
648 return 0;
649
650 if (addr1->channel != addr2->channel)
651 return 0;
652
653 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
654 struct ipmi_system_interface_addr *smi_addr1
655 = (struct ipmi_system_interface_addr *) addr1;
656 struct ipmi_system_interface_addr *smi_addr2
657 = (struct ipmi_system_interface_addr *) addr2;
658 return (smi_addr1->lun == smi_addr2->lun);
659 }
660
661 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
662 struct ipmi_ipmb_addr *ipmb_addr1
663 = (struct ipmi_ipmb_addr *) addr1;
664 struct ipmi_ipmb_addr *ipmb_addr2
665 = (struct ipmi_ipmb_addr *) addr2;
666
667 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
668 && (ipmb_addr1->lun == ipmb_addr2->lun));
669 }
670
671 if (is_lan_addr(addr1)) {
672 struct ipmi_lan_addr *lan_addr1
673 = (struct ipmi_lan_addr *) addr1;
674 struct ipmi_lan_addr *lan_addr2
675 = (struct ipmi_lan_addr *) addr2;
676
677 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
678 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
679 && (lan_addr1->session_handle
680 == lan_addr2->session_handle)
681 && (lan_addr1->lun == lan_addr2->lun));
682 }
683
684 return 1;
685 }
686
687 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
688 {
689 if (len < sizeof(struct ipmi_system_interface_addr))
690 return -EINVAL;
691
692 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
693 if (addr->channel != IPMI_BMC_CHANNEL)
694 return -EINVAL;
695 return 0;
696 }
697
698 if ((addr->channel == IPMI_BMC_CHANNEL)
699 || (addr->channel >= IPMI_MAX_CHANNELS)
700 || (addr->channel < 0))
701 return -EINVAL;
702
703 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
704 if (len < sizeof(struct ipmi_ipmb_addr))
705 return -EINVAL;
706 return 0;
707 }
708
709 if (is_lan_addr(addr)) {
710 if (len < sizeof(struct ipmi_lan_addr))
711 return -EINVAL;
712 return 0;
713 }
714
715 return -EINVAL;
716 }
717 EXPORT_SYMBOL(ipmi_validate_addr);
718
719 unsigned int ipmi_addr_length(int addr_type)
720 {
721 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
722 return sizeof(struct ipmi_system_interface_addr);
723
724 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
725 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
726 return sizeof(struct ipmi_ipmb_addr);
727
728 if (addr_type == IPMI_LAN_ADDR_TYPE)
729 return sizeof(struct ipmi_lan_addr);
730
731 return 0;
732 }
733 EXPORT_SYMBOL(ipmi_addr_length);
734
735 static void deliver_response(struct ipmi_recv_msg *msg)
736 {
737 if (!msg->user) {
738 ipmi_smi_t intf = msg->user_msg_data;
739
740 /* Special handling for NULL users. */
741 if (intf->null_user_handler) {
742 intf->null_user_handler(intf, msg);
743 ipmi_inc_stat(intf, handled_local_responses);
744 } else {
745 /* No handler, so give up. */
746 ipmi_inc_stat(intf, unhandled_local_responses);
747 }
748 ipmi_free_recv_msg(msg);
749 } else if (!oops_in_progress) {
750 /*
751 * If we are running in the panic context, calling the
752 * receive handler doesn't much meaning and has a deadlock
753 * risk. At this moment, simply skip it in that case.
754 */
755
756 ipmi_user_t user = msg->user;
757 user->handler->ipmi_recv_hndl(msg, user->handler_data);
758 }
759 }
760
761 static void
762 deliver_err_response(struct ipmi_recv_msg *msg, int err)
763 {
764 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
765 msg->msg_data[0] = err;
766 msg->msg.netfn |= 1; /* Convert to a response. */
767 msg->msg.data_len = 1;
768 msg->msg.data = msg->msg_data;
769 deliver_response(msg);
770 }
771
772 /*
773 * Find the next sequence number not being used and add the given
774 * message with the given timeout to the sequence table. This must be
775 * called with the interface's seq_lock held.
776 */
777 static int intf_next_seq(ipmi_smi_t intf,
778 struct ipmi_recv_msg *recv_msg,
779 unsigned long timeout,
780 int retries,
781 int broadcast,
782 unsigned char *seq,
783 long *seqid)
784 {
785 int rv = 0;
786 unsigned int i;
787
788 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
789 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
790 if (!intf->seq_table[i].inuse)
791 break;
792 }
793
794 if (!intf->seq_table[i].inuse) {
795 intf->seq_table[i].recv_msg = recv_msg;
796
797 /*
798 * Start with the maximum timeout, when the send response
799 * comes in we will start the real timer.
800 */
801 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
802 intf->seq_table[i].orig_timeout = timeout;
803 intf->seq_table[i].retries_left = retries;
804 intf->seq_table[i].broadcast = broadcast;
805 intf->seq_table[i].inuse = 1;
806 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
807 *seq = i;
808 *seqid = intf->seq_table[i].seqid;
809 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
810 need_waiter(intf);
811 } else {
812 rv = -EAGAIN;
813 }
814
815 return rv;
816 }
817
818 /*
819 * Return the receive message for the given sequence number and
820 * release the sequence number so it can be reused. Some other data
821 * is passed in to be sure the message matches up correctly (to help
822 * guard against message coming in after their timeout and the
823 * sequence number being reused).
824 */
825 static int intf_find_seq(ipmi_smi_t intf,
826 unsigned char seq,
827 short channel,
828 unsigned char cmd,
829 unsigned char netfn,
830 struct ipmi_addr *addr,
831 struct ipmi_recv_msg **recv_msg)
832 {
833 int rv = -ENODEV;
834 unsigned long flags;
835
836 if (seq >= IPMI_IPMB_NUM_SEQ)
837 return -EINVAL;
838
839 spin_lock_irqsave(&(intf->seq_lock), flags);
840 if (intf->seq_table[seq].inuse) {
841 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
842
843 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
844 && (msg->msg.netfn == netfn)
845 && (ipmi_addr_equal(addr, &(msg->addr)))) {
846 *recv_msg = msg;
847 intf->seq_table[seq].inuse = 0;
848 rv = 0;
849 }
850 }
851 spin_unlock_irqrestore(&(intf->seq_lock), flags);
852
853 return rv;
854 }
855
856
857 /* Start the timer for a specific sequence table entry. */
858 static int intf_start_seq_timer(ipmi_smi_t intf,
859 long msgid)
860 {
861 int rv = -ENODEV;
862 unsigned long flags;
863 unsigned char seq;
864 unsigned long seqid;
865
866
867 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
868
869 spin_lock_irqsave(&(intf->seq_lock), flags);
870 /*
871 * We do this verification because the user can be deleted
872 * while a message is outstanding.
873 */
874 if ((intf->seq_table[seq].inuse)
875 && (intf->seq_table[seq].seqid == seqid)) {
876 struct seq_table *ent = &(intf->seq_table[seq]);
877 ent->timeout = ent->orig_timeout;
878 rv = 0;
879 }
880 spin_unlock_irqrestore(&(intf->seq_lock), flags);
881
882 return rv;
883 }
884
885 /* Got an error for the send message for a specific sequence number. */
886 static int intf_err_seq(ipmi_smi_t intf,
887 long msgid,
888 unsigned int err)
889 {
890 int rv = -ENODEV;
891 unsigned long flags;
892 unsigned char seq;
893 unsigned long seqid;
894 struct ipmi_recv_msg *msg = NULL;
895
896
897 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
898
899 spin_lock_irqsave(&(intf->seq_lock), flags);
900 /*
901 * We do this verification because the user can be deleted
902 * while a message is outstanding.
903 */
904 if ((intf->seq_table[seq].inuse)
905 && (intf->seq_table[seq].seqid == seqid)) {
906 struct seq_table *ent = &(intf->seq_table[seq]);
907
908 ent->inuse = 0;
909 msg = ent->recv_msg;
910 rv = 0;
911 }
912 spin_unlock_irqrestore(&(intf->seq_lock), flags);
913
914 if (msg)
915 deliver_err_response(msg, err);
916
917 return rv;
918 }
919
920
921 int ipmi_create_user(unsigned int if_num,
922 struct ipmi_user_hndl *handler,
923 void *handler_data,
924 ipmi_user_t *user)
925 {
926 unsigned long flags;
927 ipmi_user_t new_user;
928 int rv = 0;
929 ipmi_smi_t intf;
930
931 /*
932 * There is no module usecount here, because it's not
933 * required. Since this can only be used by and called from
934 * other modules, they will implicitly use this module, and
935 * thus this can't be removed unless the other modules are
936 * removed.
937 */
938
939 if (handler == NULL)
940 return -EINVAL;
941
942 /*
943 * Make sure the driver is actually initialized, this handles
944 * problems with initialization order.
945 */
946 if (!initialized) {
947 rv = ipmi_init_msghandler();
948 if (rv)
949 return rv;
950
951 /*
952 * The init code doesn't return an error if it was turned
953 * off, but it won't initialize. Check that.
954 */
955 if (!initialized)
956 return -ENODEV;
957 }
958
959 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
960 if (!new_user)
961 return -ENOMEM;
962
963 mutex_lock(&ipmi_interfaces_mutex);
964 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
965 if (intf->intf_num == if_num)
966 goto found;
967 }
968 /* Not found, return an error */
969 rv = -EINVAL;
970 goto out_kfree;
971
972 found:
973 /* Note that each existing user holds a refcount to the interface. */
974 kref_get(&intf->refcount);
975
976 kref_init(&new_user->refcount);
977 new_user->handler = handler;
978 new_user->handler_data = handler_data;
979 new_user->intf = intf;
980 new_user->gets_events = false;
981
982 if (!try_module_get(intf->handlers->owner)) {
983 rv = -ENODEV;
984 goto out_kref;
985 }
986
987 if (intf->handlers->inc_usecount) {
988 rv = intf->handlers->inc_usecount(intf->send_info);
989 if (rv) {
990 module_put(intf->handlers->owner);
991 goto out_kref;
992 }
993 }
994
995 /*
996 * Hold the lock so intf->handlers is guaranteed to be good
997 * until now
998 */
999 mutex_unlock(&ipmi_interfaces_mutex);
1000
1001 new_user->valid = true;
1002 spin_lock_irqsave(&intf->seq_lock, flags);
1003 list_add_rcu(&new_user->link, &intf->users);
1004 spin_unlock_irqrestore(&intf->seq_lock, flags);
1005 if (handler->ipmi_watchdog_pretimeout) {
1006 /* User wants pretimeouts, so make sure to watch for them. */
1007 if (atomic_inc_return(&intf->event_waiters) == 1)
1008 need_waiter(intf);
1009 }
1010 *user = new_user;
1011 return 0;
1012
1013 out_kref:
1014 kref_put(&intf->refcount, intf_free);
1015 out_kfree:
1016 mutex_unlock(&ipmi_interfaces_mutex);
1017 kfree(new_user);
1018 return rv;
1019 }
1020 EXPORT_SYMBOL(ipmi_create_user);
1021
1022 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1023 {
1024 int rv = 0;
1025 ipmi_smi_t intf;
1026 const struct ipmi_smi_handlers *handlers;
1027
1028 mutex_lock(&ipmi_interfaces_mutex);
1029 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1030 if (intf->intf_num == if_num)
1031 goto found;
1032 }
1033 /* Not found, return an error */
1034 rv = -EINVAL;
1035 mutex_unlock(&ipmi_interfaces_mutex);
1036 return rv;
1037
1038 found:
1039 handlers = intf->handlers;
1040 rv = -ENOSYS;
1041 if (handlers->get_smi_info)
1042 rv = handlers->get_smi_info(intf->send_info, data);
1043 mutex_unlock(&ipmi_interfaces_mutex);
1044
1045 return rv;
1046 }
1047 EXPORT_SYMBOL(ipmi_get_smi_info);
1048
1049 static void free_user(struct kref *ref)
1050 {
1051 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1052 kfree(user);
1053 }
1054
1055 int ipmi_destroy_user(ipmi_user_t user)
1056 {
1057 ipmi_smi_t intf = user->intf;
1058 int i;
1059 unsigned long flags;
1060 struct cmd_rcvr *rcvr;
1061 struct cmd_rcvr *rcvrs = NULL;
1062
1063 user->valid = false;
1064
1065 if (user->handler->ipmi_watchdog_pretimeout)
1066 atomic_dec(&intf->event_waiters);
1067
1068 if (user->gets_events)
1069 atomic_dec(&intf->event_waiters);
1070
1071 /* Remove the user from the interface's sequence table. */
1072 spin_lock_irqsave(&intf->seq_lock, flags);
1073 list_del_rcu(&user->link);
1074
1075 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1076 if (intf->seq_table[i].inuse
1077 && (intf->seq_table[i].recv_msg->user == user)) {
1078 intf->seq_table[i].inuse = 0;
1079 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1080 }
1081 }
1082 spin_unlock_irqrestore(&intf->seq_lock, flags);
1083
1084 /*
1085 * Remove the user from the command receiver's table. First
1086 * we build a list of everything (not using the standard link,
1087 * since other things may be using it till we do
1088 * synchronize_rcu()) then free everything in that list.
1089 */
1090 mutex_lock(&intf->cmd_rcvrs_mutex);
1091 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1092 if (rcvr->user == user) {
1093 list_del_rcu(&rcvr->link);
1094 rcvr->next = rcvrs;
1095 rcvrs = rcvr;
1096 }
1097 }
1098 mutex_unlock(&intf->cmd_rcvrs_mutex);
1099 synchronize_rcu();
1100 while (rcvrs) {
1101 rcvr = rcvrs;
1102 rcvrs = rcvr->next;
1103 kfree(rcvr);
1104 }
1105
1106 mutex_lock(&ipmi_interfaces_mutex);
1107 if (intf->handlers) {
1108 module_put(intf->handlers->owner);
1109 if (intf->handlers->dec_usecount)
1110 intf->handlers->dec_usecount(intf->send_info);
1111 }
1112 mutex_unlock(&ipmi_interfaces_mutex);
1113
1114 kref_put(&intf->refcount, intf_free);
1115
1116 kref_put(&user->refcount, free_user);
1117
1118 return 0;
1119 }
1120 EXPORT_SYMBOL(ipmi_destroy_user);
1121
1122 void ipmi_get_version(ipmi_user_t user,
1123 unsigned char *major,
1124 unsigned char *minor)
1125 {
1126 *major = user->intf->ipmi_version_major;
1127 *minor = user->intf->ipmi_version_minor;
1128 }
1129 EXPORT_SYMBOL(ipmi_get_version);
1130
1131 int ipmi_set_my_address(ipmi_user_t user,
1132 unsigned int channel,
1133 unsigned char address)
1134 {
1135 if (channel >= IPMI_MAX_CHANNELS)
1136 return -EINVAL;
1137 user->intf->channels[channel].address = address;
1138 return 0;
1139 }
1140 EXPORT_SYMBOL(ipmi_set_my_address);
1141
1142 int ipmi_get_my_address(ipmi_user_t user,
1143 unsigned int channel,
1144 unsigned char *address)
1145 {
1146 if (channel >= IPMI_MAX_CHANNELS)
1147 return -EINVAL;
1148 *address = user->intf->channels[channel].address;
1149 return 0;
1150 }
1151 EXPORT_SYMBOL(ipmi_get_my_address);
1152
1153 int ipmi_set_my_LUN(ipmi_user_t user,
1154 unsigned int channel,
1155 unsigned char LUN)
1156 {
1157 if (channel >= IPMI_MAX_CHANNELS)
1158 return -EINVAL;
1159 user->intf->channels[channel].lun = LUN & 0x3;
1160 return 0;
1161 }
1162 EXPORT_SYMBOL(ipmi_set_my_LUN);
1163
1164 int ipmi_get_my_LUN(ipmi_user_t user,
1165 unsigned int channel,
1166 unsigned char *address)
1167 {
1168 if (channel >= IPMI_MAX_CHANNELS)
1169 return -EINVAL;
1170 *address = user->intf->channels[channel].lun;
1171 return 0;
1172 }
1173 EXPORT_SYMBOL(ipmi_get_my_LUN);
1174
1175 int ipmi_get_maintenance_mode(ipmi_user_t user)
1176 {
1177 int mode;
1178 unsigned long flags;
1179
1180 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1181 mode = user->intf->maintenance_mode;
1182 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1183
1184 return mode;
1185 }
1186 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1187
1188 static void maintenance_mode_update(ipmi_smi_t intf)
1189 {
1190 if (intf->handlers->set_maintenance_mode)
1191 intf->handlers->set_maintenance_mode(
1192 intf->send_info, intf->maintenance_mode_enable);
1193 }
1194
1195 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1196 {
1197 int rv = 0;
1198 unsigned long flags;
1199 ipmi_smi_t intf = user->intf;
1200
1201 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1202 if (intf->maintenance_mode != mode) {
1203 switch (mode) {
1204 case IPMI_MAINTENANCE_MODE_AUTO:
1205 intf->maintenance_mode_enable
1206 = (intf->auto_maintenance_timeout > 0);
1207 break;
1208
1209 case IPMI_MAINTENANCE_MODE_OFF:
1210 intf->maintenance_mode_enable = false;
1211 break;
1212
1213 case IPMI_MAINTENANCE_MODE_ON:
1214 intf->maintenance_mode_enable = true;
1215 break;
1216
1217 default:
1218 rv = -EINVAL;
1219 goto out_unlock;
1220 }
1221 intf->maintenance_mode = mode;
1222
1223 maintenance_mode_update(intf);
1224 }
1225 out_unlock:
1226 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1227
1228 return rv;
1229 }
1230 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1231
1232 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1233 {
1234 unsigned long flags;
1235 ipmi_smi_t intf = user->intf;
1236 struct ipmi_recv_msg *msg, *msg2;
1237 struct list_head msgs;
1238
1239 INIT_LIST_HEAD(&msgs);
1240
1241 spin_lock_irqsave(&intf->events_lock, flags);
1242 if (user->gets_events == val)
1243 goto out;
1244
1245 user->gets_events = val;
1246
1247 if (val) {
1248 if (atomic_inc_return(&intf->event_waiters) == 1)
1249 need_waiter(intf);
1250 } else {
1251 atomic_dec(&intf->event_waiters);
1252 }
1253
1254 if (intf->delivering_events)
1255 /*
1256 * Another thread is delivering events for this, so
1257 * let it handle any new events.
1258 */
1259 goto out;
1260
1261 /* Deliver any queued events. */
1262 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1263 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1264 list_move_tail(&msg->link, &msgs);
1265 intf->waiting_events_count = 0;
1266 if (intf->event_msg_printed) {
1267 printk(KERN_WARNING PFX "Event queue no longer"
1268 " full\n");
1269 intf->event_msg_printed = 0;
1270 }
1271
1272 intf->delivering_events = 1;
1273 spin_unlock_irqrestore(&intf->events_lock, flags);
1274
1275 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1276 msg->user = user;
1277 kref_get(&user->refcount);
1278 deliver_response(msg);
1279 }
1280
1281 spin_lock_irqsave(&intf->events_lock, flags);
1282 intf->delivering_events = 0;
1283 }
1284
1285 out:
1286 spin_unlock_irqrestore(&intf->events_lock, flags);
1287
1288 return 0;
1289 }
1290 EXPORT_SYMBOL(ipmi_set_gets_events);
1291
1292 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1293 unsigned char netfn,
1294 unsigned char cmd,
1295 unsigned char chan)
1296 {
1297 struct cmd_rcvr *rcvr;
1298
1299 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1300 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1301 && (rcvr->chans & (1 << chan)))
1302 return rcvr;
1303 }
1304 return NULL;
1305 }
1306
1307 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1308 unsigned char netfn,
1309 unsigned char cmd,
1310 unsigned int chans)
1311 {
1312 struct cmd_rcvr *rcvr;
1313
1314 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1315 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1316 && (rcvr->chans & chans))
1317 return 0;
1318 }
1319 return 1;
1320 }
1321
1322 int ipmi_register_for_cmd(ipmi_user_t user,
1323 unsigned char netfn,
1324 unsigned char cmd,
1325 unsigned int chans)
1326 {
1327 ipmi_smi_t intf = user->intf;
1328 struct cmd_rcvr *rcvr;
1329 int rv = 0;
1330
1331
1332 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1333 if (!rcvr)
1334 return -ENOMEM;
1335 rcvr->cmd = cmd;
1336 rcvr->netfn = netfn;
1337 rcvr->chans = chans;
1338 rcvr->user = user;
1339
1340 mutex_lock(&intf->cmd_rcvrs_mutex);
1341 /* Make sure the command/netfn is not already registered. */
1342 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1343 rv = -EBUSY;
1344 goto out_unlock;
1345 }
1346
1347 if (atomic_inc_return(&intf->event_waiters) == 1)
1348 need_waiter(intf);
1349
1350 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1351
1352 out_unlock:
1353 mutex_unlock(&intf->cmd_rcvrs_mutex);
1354 if (rv)
1355 kfree(rcvr);
1356
1357 return rv;
1358 }
1359 EXPORT_SYMBOL(ipmi_register_for_cmd);
1360
1361 int ipmi_unregister_for_cmd(ipmi_user_t user,
1362 unsigned char netfn,
1363 unsigned char cmd,
1364 unsigned int chans)
1365 {
1366 ipmi_smi_t intf = user->intf;
1367 struct cmd_rcvr *rcvr;
1368 struct cmd_rcvr *rcvrs = NULL;
1369 int i, rv = -ENOENT;
1370
1371 mutex_lock(&intf->cmd_rcvrs_mutex);
1372 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1373 if (((1 << i) & chans) == 0)
1374 continue;
1375 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1376 if (rcvr == NULL)
1377 continue;
1378 if (rcvr->user == user) {
1379 rv = 0;
1380 rcvr->chans &= ~chans;
1381 if (rcvr->chans == 0) {
1382 list_del_rcu(&rcvr->link);
1383 rcvr->next = rcvrs;
1384 rcvrs = rcvr;
1385 }
1386 }
1387 }
1388 mutex_unlock(&intf->cmd_rcvrs_mutex);
1389 synchronize_rcu();
1390 while (rcvrs) {
1391 atomic_dec(&intf->event_waiters);
1392 rcvr = rcvrs;
1393 rcvrs = rcvr->next;
1394 kfree(rcvr);
1395 }
1396 return rv;
1397 }
1398 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1399
1400 static unsigned char
1401 ipmb_checksum(unsigned char *data, int size)
1402 {
1403 unsigned char csum = 0;
1404
1405 for (; size > 0; size--, data++)
1406 csum += *data;
1407
1408 return -csum;
1409 }
1410
1411 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1412 struct kernel_ipmi_msg *msg,
1413 struct ipmi_ipmb_addr *ipmb_addr,
1414 long msgid,
1415 unsigned char ipmb_seq,
1416 int broadcast,
1417 unsigned char source_address,
1418 unsigned char source_lun)
1419 {
1420 int i = broadcast;
1421
1422 /* Format the IPMB header data. */
1423 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1424 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1425 smi_msg->data[2] = ipmb_addr->channel;
1426 if (broadcast)
1427 smi_msg->data[3] = 0;
1428 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1429 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1430 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1431 smi_msg->data[i+6] = source_address;
1432 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1433 smi_msg->data[i+8] = msg->cmd;
1434
1435 /* Now tack on the data to the message. */
1436 if (msg->data_len > 0)
1437 memcpy(&(smi_msg->data[i+9]), msg->data,
1438 msg->data_len);
1439 smi_msg->data_size = msg->data_len + 9;
1440
1441 /* Now calculate the checksum and tack it on. */
1442 smi_msg->data[i+smi_msg->data_size]
1443 = ipmb_checksum(&(smi_msg->data[i+6]),
1444 smi_msg->data_size-6);
1445
1446 /*
1447 * Add on the checksum size and the offset from the
1448 * broadcast.
1449 */
1450 smi_msg->data_size += 1 + i;
1451
1452 smi_msg->msgid = msgid;
1453 }
1454
1455 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1456 struct kernel_ipmi_msg *msg,
1457 struct ipmi_lan_addr *lan_addr,
1458 long msgid,
1459 unsigned char ipmb_seq,
1460 unsigned char source_lun)
1461 {
1462 /* Format the IPMB header data. */
1463 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1464 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1465 smi_msg->data[2] = lan_addr->channel;
1466 smi_msg->data[3] = lan_addr->session_handle;
1467 smi_msg->data[4] = lan_addr->remote_SWID;
1468 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1469 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1470 smi_msg->data[7] = lan_addr->local_SWID;
1471 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1472 smi_msg->data[9] = msg->cmd;
1473
1474 /* Now tack on the data to the message. */
1475 if (msg->data_len > 0)
1476 memcpy(&(smi_msg->data[10]), msg->data,
1477 msg->data_len);
1478 smi_msg->data_size = msg->data_len + 10;
1479
1480 /* Now calculate the checksum and tack it on. */
1481 smi_msg->data[smi_msg->data_size]
1482 = ipmb_checksum(&(smi_msg->data[7]),
1483 smi_msg->data_size-7);
1484
1485 /*
1486 * Add on the checksum size and the offset from the
1487 * broadcast.
1488 */
1489 smi_msg->data_size += 1;
1490
1491 smi_msg->msgid = msgid;
1492 }
1493
1494 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1495 struct ipmi_smi_msg *smi_msg,
1496 int priority)
1497 {
1498 if (intf->curr_msg) {
1499 if (priority > 0)
1500 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1501 else
1502 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1503 smi_msg = NULL;
1504 } else {
1505 intf->curr_msg = smi_msg;
1506 }
1507
1508 return smi_msg;
1509 }
1510
1511
1512 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1513 struct ipmi_smi_msg *smi_msg, int priority)
1514 {
1515 int run_to_completion = intf->run_to_completion;
1516
1517 if (run_to_completion) {
1518 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1519 } else {
1520 unsigned long flags;
1521
1522 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1523 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1524 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1525 }
1526
1527 if (smi_msg)
1528 handlers->sender(intf->send_info, smi_msg);
1529 }
1530
1531 /*
1532 * Separate from ipmi_request so that the user does not have to be
1533 * supplied in certain circumstances (mainly at panic time). If
1534 * messages are supplied, they will be freed, even if an error
1535 * occurs.
1536 */
1537 static int i_ipmi_request(ipmi_user_t user,
1538 ipmi_smi_t intf,
1539 struct ipmi_addr *addr,
1540 long msgid,
1541 struct kernel_ipmi_msg *msg,
1542 void *user_msg_data,
1543 void *supplied_smi,
1544 struct ipmi_recv_msg *supplied_recv,
1545 int priority,
1546 unsigned char source_address,
1547 unsigned char source_lun,
1548 int retries,
1549 unsigned int retry_time_ms)
1550 {
1551 int rv = 0;
1552 struct ipmi_smi_msg *smi_msg;
1553 struct ipmi_recv_msg *recv_msg;
1554 unsigned long flags;
1555
1556
1557 if (supplied_recv)
1558 recv_msg = supplied_recv;
1559 else {
1560 recv_msg = ipmi_alloc_recv_msg();
1561 if (recv_msg == NULL)
1562 return -ENOMEM;
1563 }
1564 recv_msg->user_msg_data = user_msg_data;
1565
1566 if (supplied_smi)
1567 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1568 else {
1569 smi_msg = ipmi_alloc_smi_msg();
1570 if (smi_msg == NULL) {
1571 ipmi_free_recv_msg(recv_msg);
1572 return -ENOMEM;
1573 }
1574 }
1575
1576 rcu_read_lock();
1577 if (intf->in_shutdown) {
1578 rv = -ENODEV;
1579 goto out_err;
1580 }
1581
1582 recv_msg->user = user;
1583 if (user)
1584 kref_get(&user->refcount);
1585 recv_msg->msgid = msgid;
1586 /*
1587 * Store the message to send in the receive message so timeout
1588 * responses can get the proper response data.
1589 */
1590 recv_msg->msg = *msg;
1591
1592 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1593 struct ipmi_system_interface_addr *smi_addr;
1594
1595 if (msg->netfn & 1) {
1596 /* Responses are not allowed to the SMI. */
1597 rv = -EINVAL;
1598 goto out_err;
1599 }
1600
1601 smi_addr = (struct ipmi_system_interface_addr *) addr;
1602 if (smi_addr->lun > 3) {
1603 ipmi_inc_stat(intf, sent_invalid_commands);
1604 rv = -EINVAL;
1605 goto out_err;
1606 }
1607
1608 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1609
1610 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1611 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1612 || (msg->cmd == IPMI_GET_MSG_CMD)
1613 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1614 /*
1615 * We don't let the user do these, since we manage
1616 * the sequence numbers.
1617 */
1618 ipmi_inc_stat(intf, sent_invalid_commands);
1619 rv = -EINVAL;
1620 goto out_err;
1621 }
1622
1623 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1624 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1625 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1626 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1627 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1628 intf->auto_maintenance_timeout
1629 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1630 if (!intf->maintenance_mode
1631 && !intf->maintenance_mode_enable) {
1632 intf->maintenance_mode_enable = true;
1633 maintenance_mode_update(intf);
1634 }
1635 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1636 flags);
1637 }
1638
1639 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1640 ipmi_inc_stat(intf, sent_invalid_commands);
1641 rv = -EMSGSIZE;
1642 goto out_err;
1643 }
1644
1645 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1646 smi_msg->data[1] = msg->cmd;
1647 smi_msg->msgid = msgid;
1648 smi_msg->user_data = recv_msg;
1649 if (msg->data_len > 0)
1650 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1651 smi_msg->data_size = msg->data_len + 2;
1652 ipmi_inc_stat(intf, sent_local_commands);
1653 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1654 struct ipmi_ipmb_addr *ipmb_addr;
1655 unsigned char ipmb_seq;
1656 long seqid;
1657 int broadcast = 0;
1658
1659 if (addr->channel >= IPMI_MAX_CHANNELS) {
1660 ipmi_inc_stat(intf, sent_invalid_commands);
1661 rv = -EINVAL;
1662 goto out_err;
1663 }
1664
1665 if (intf->channels[addr->channel].medium
1666 != IPMI_CHANNEL_MEDIUM_IPMB) {
1667 ipmi_inc_stat(intf, sent_invalid_commands);
1668 rv = -EINVAL;
1669 goto out_err;
1670 }
1671
1672 if (retries < 0) {
1673 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1674 retries = 0; /* Don't retry broadcasts. */
1675 else
1676 retries = 4;
1677 }
1678 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1679 /*
1680 * Broadcasts add a zero at the beginning of the
1681 * message, but otherwise is the same as an IPMB
1682 * address.
1683 */
1684 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1685 broadcast = 1;
1686 }
1687
1688
1689 /* Default to 1 second retries. */
1690 if (retry_time_ms == 0)
1691 retry_time_ms = 1000;
1692
1693 /*
1694 * 9 for the header and 1 for the checksum, plus
1695 * possibly one for the broadcast.
1696 */
1697 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1698 ipmi_inc_stat(intf, sent_invalid_commands);
1699 rv = -EMSGSIZE;
1700 goto out_err;
1701 }
1702
1703 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1704 if (ipmb_addr->lun > 3) {
1705 ipmi_inc_stat(intf, sent_invalid_commands);
1706 rv = -EINVAL;
1707 goto out_err;
1708 }
1709
1710 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1711
1712 if (recv_msg->msg.netfn & 0x1) {
1713 /*
1714 * It's a response, so use the user's sequence
1715 * from msgid.
1716 */
1717 ipmi_inc_stat(intf, sent_ipmb_responses);
1718 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1719 msgid, broadcast,
1720 source_address, source_lun);
1721
1722 /*
1723 * Save the receive message so we can use it
1724 * to deliver the response.
1725 */
1726 smi_msg->user_data = recv_msg;
1727 } else {
1728 /* It's a command, so get a sequence for it. */
1729
1730 spin_lock_irqsave(&(intf->seq_lock), flags);
1731
1732 /*
1733 * Create a sequence number with a 1 second
1734 * timeout and 4 retries.
1735 */
1736 rv = intf_next_seq(intf,
1737 recv_msg,
1738 retry_time_ms,
1739 retries,
1740 broadcast,
1741 &ipmb_seq,
1742 &seqid);
1743 if (rv) {
1744 /*
1745 * We have used up all the sequence numbers,
1746 * probably, so abort.
1747 */
1748 spin_unlock_irqrestore(&(intf->seq_lock),
1749 flags);
1750 goto out_err;
1751 }
1752
1753 ipmi_inc_stat(intf, sent_ipmb_commands);
1754
1755 /*
1756 * Store the sequence number in the message,
1757 * so that when the send message response
1758 * comes back we can start the timer.
1759 */
1760 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1761 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1762 ipmb_seq, broadcast,
1763 source_address, source_lun);
1764
1765 /*
1766 * Copy the message into the recv message data, so we
1767 * can retransmit it later if necessary.
1768 */
1769 memcpy(recv_msg->msg_data, smi_msg->data,
1770 smi_msg->data_size);
1771 recv_msg->msg.data = recv_msg->msg_data;
1772 recv_msg->msg.data_len = smi_msg->data_size;
1773
1774 /*
1775 * We don't unlock until here, because we need
1776 * to copy the completed message into the
1777 * recv_msg before we release the lock.
1778 * Otherwise, race conditions may bite us. I
1779 * know that's pretty paranoid, but I prefer
1780 * to be correct.
1781 */
1782 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1783 }
1784 } else if (is_lan_addr(addr)) {
1785 struct ipmi_lan_addr *lan_addr;
1786 unsigned char ipmb_seq;
1787 long seqid;
1788
1789 if (addr->channel >= IPMI_MAX_CHANNELS) {
1790 ipmi_inc_stat(intf, sent_invalid_commands);
1791 rv = -EINVAL;
1792 goto out_err;
1793 }
1794
1795 if ((intf->channels[addr->channel].medium
1796 != IPMI_CHANNEL_MEDIUM_8023LAN)
1797 && (intf->channels[addr->channel].medium
1798 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1799 ipmi_inc_stat(intf, sent_invalid_commands);
1800 rv = -EINVAL;
1801 goto out_err;
1802 }
1803
1804 retries = 4;
1805
1806 /* Default to 1 second retries. */
1807 if (retry_time_ms == 0)
1808 retry_time_ms = 1000;
1809
1810 /* 11 for the header and 1 for the checksum. */
1811 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1812 ipmi_inc_stat(intf, sent_invalid_commands);
1813 rv = -EMSGSIZE;
1814 goto out_err;
1815 }
1816
1817 lan_addr = (struct ipmi_lan_addr *) addr;
1818 if (lan_addr->lun > 3) {
1819 ipmi_inc_stat(intf, sent_invalid_commands);
1820 rv = -EINVAL;
1821 goto out_err;
1822 }
1823
1824 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1825
1826 if (recv_msg->msg.netfn & 0x1) {
1827 /*
1828 * It's a response, so use the user's sequence
1829 * from msgid.
1830 */
1831 ipmi_inc_stat(intf, sent_lan_responses);
1832 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1833 msgid, source_lun);
1834
1835 /*
1836 * Save the receive message so we can use it
1837 * to deliver the response.
1838 */
1839 smi_msg->user_data = recv_msg;
1840 } else {
1841 /* It's a command, so get a sequence for it. */
1842
1843 spin_lock_irqsave(&(intf->seq_lock), flags);
1844
1845 /*
1846 * Create a sequence number with a 1 second
1847 * timeout and 4 retries.
1848 */
1849 rv = intf_next_seq(intf,
1850 recv_msg,
1851 retry_time_ms,
1852 retries,
1853 0,
1854 &ipmb_seq,
1855 &seqid);
1856 if (rv) {
1857 /*
1858 * We have used up all the sequence numbers,
1859 * probably, so abort.
1860 */
1861 spin_unlock_irqrestore(&(intf->seq_lock),
1862 flags);
1863 goto out_err;
1864 }
1865
1866 ipmi_inc_stat(intf, sent_lan_commands);
1867
1868 /*
1869 * Store the sequence number in the message,
1870 * so that when the send message response
1871 * comes back we can start the timer.
1872 */
1873 format_lan_msg(smi_msg, msg, lan_addr,
1874 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1875 ipmb_seq, source_lun);
1876
1877 /*
1878 * Copy the message into the recv message data, so we
1879 * can retransmit it later if necessary.
1880 */
1881 memcpy(recv_msg->msg_data, smi_msg->data,
1882 smi_msg->data_size);
1883 recv_msg->msg.data = recv_msg->msg_data;
1884 recv_msg->msg.data_len = smi_msg->data_size;
1885
1886 /*
1887 * We don't unlock until here, because we need
1888 * to copy the completed message into the
1889 * recv_msg before we release the lock.
1890 * Otherwise, race conditions may bite us. I
1891 * know that's pretty paranoid, but I prefer
1892 * to be correct.
1893 */
1894 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1895 }
1896 } else {
1897 /* Unknown address type. */
1898 ipmi_inc_stat(intf, sent_invalid_commands);
1899 rv = -EINVAL;
1900 goto out_err;
1901 }
1902
1903 #ifdef DEBUG_MSGING
1904 {
1905 int m;
1906 for (m = 0; m < smi_msg->data_size; m++)
1907 printk(" %2.2x", smi_msg->data[m]);
1908 printk("\n");
1909 }
1910 #endif
1911
1912 smi_send(intf, intf->handlers, smi_msg, priority);
1913 rcu_read_unlock();
1914
1915 return 0;
1916
1917 out_err:
1918 rcu_read_unlock();
1919 ipmi_free_smi_msg(smi_msg);
1920 ipmi_free_recv_msg(recv_msg);
1921 return rv;
1922 }
1923
1924 static int check_addr(ipmi_smi_t intf,
1925 struct ipmi_addr *addr,
1926 unsigned char *saddr,
1927 unsigned char *lun)
1928 {
1929 if (addr->channel >= IPMI_MAX_CHANNELS)
1930 return -EINVAL;
1931 *lun = intf->channels[addr->channel].lun;
1932 *saddr = intf->channels[addr->channel].address;
1933 return 0;
1934 }
1935
1936 int ipmi_request_settime(ipmi_user_t user,
1937 struct ipmi_addr *addr,
1938 long msgid,
1939 struct kernel_ipmi_msg *msg,
1940 void *user_msg_data,
1941 int priority,
1942 int retries,
1943 unsigned int retry_time_ms)
1944 {
1945 unsigned char saddr = 0, lun = 0;
1946 int rv;
1947
1948 if (!user)
1949 return -EINVAL;
1950 rv = check_addr(user->intf, addr, &saddr, &lun);
1951 if (rv)
1952 return rv;
1953 return i_ipmi_request(user,
1954 user->intf,
1955 addr,
1956 msgid,
1957 msg,
1958 user_msg_data,
1959 NULL, NULL,
1960 priority,
1961 saddr,
1962 lun,
1963 retries,
1964 retry_time_ms);
1965 }
1966 EXPORT_SYMBOL(ipmi_request_settime);
1967
1968 int ipmi_request_supply_msgs(ipmi_user_t user,
1969 struct ipmi_addr *addr,
1970 long msgid,
1971 struct kernel_ipmi_msg *msg,
1972 void *user_msg_data,
1973 void *supplied_smi,
1974 struct ipmi_recv_msg *supplied_recv,
1975 int priority)
1976 {
1977 unsigned char saddr = 0, lun = 0;
1978 int rv;
1979
1980 if (!user)
1981 return -EINVAL;
1982 rv = check_addr(user->intf, addr, &saddr, &lun);
1983 if (rv)
1984 return rv;
1985 return i_ipmi_request(user,
1986 user->intf,
1987 addr,
1988 msgid,
1989 msg,
1990 user_msg_data,
1991 supplied_smi,
1992 supplied_recv,
1993 priority,
1994 saddr,
1995 lun,
1996 -1, 0);
1997 }
1998 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1999
2000 #ifdef CONFIG_PROC_FS
2001 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2002 {
2003 ipmi_smi_t intf = m->private;
2004 int i;
2005
2006 seq_printf(m, "%x", intf->channels[0].address);
2007 for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2008 seq_printf(m, " %x", intf->channels[i].address);
2009 seq_putc(m, '\n');
2010
2011 return 0;
2012 }
2013
2014 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2015 {
2016 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2017 }
2018
2019 static const struct file_operations smi_ipmb_proc_ops = {
2020 .open = smi_ipmb_proc_open,
2021 .read = seq_read,
2022 .llseek = seq_lseek,
2023 .release = single_release,
2024 };
2025
2026 static int smi_version_proc_show(struct seq_file *m, void *v)
2027 {
2028 ipmi_smi_t intf = m->private;
2029
2030 seq_printf(m, "%u.%u\n",
2031 ipmi_version_major(&intf->bmc->id),
2032 ipmi_version_minor(&intf->bmc->id));
2033
2034 return 0;
2035 }
2036
2037 static int smi_version_proc_open(struct inode *inode, struct file *file)
2038 {
2039 return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2040 }
2041
2042 static const struct file_operations smi_version_proc_ops = {
2043 .open = smi_version_proc_open,
2044 .read = seq_read,
2045 .llseek = seq_lseek,
2046 .release = single_release,
2047 };
2048
2049 static int smi_stats_proc_show(struct seq_file *m, void *v)
2050 {
2051 ipmi_smi_t intf = m->private;
2052
2053 seq_printf(m, "sent_invalid_commands: %u\n",
2054 ipmi_get_stat(intf, sent_invalid_commands));
2055 seq_printf(m, "sent_local_commands: %u\n",
2056 ipmi_get_stat(intf, sent_local_commands));
2057 seq_printf(m, "handled_local_responses: %u\n",
2058 ipmi_get_stat(intf, handled_local_responses));
2059 seq_printf(m, "unhandled_local_responses: %u\n",
2060 ipmi_get_stat(intf, unhandled_local_responses));
2061 seq_printf(m, "sent_ipmb_commands: %u\n",
2062 ipmi_get_stat(intf, sent_ipmb_commands));
2063 seq_printf(m, "sent_ipmb_command_errs: %u\n",
2064 ipmi_get_stat(intf, sent_ipmb_command_errs));
2065 seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2066 ipmi_get_stat(intf, retransmitted_ipmb_commands));
2067 seq_printf(m, "timed_out_ipmb_commands: %u\n",
2068 ipmi_get_stat(intf, timed_out_ipmb_commands));
2069 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
2070 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2071 seq_printf(m, "sent_ipmb_responses: %u\n",
2072 ipmi_get_stat(intf, sent_ipmb_responses));
2073 seq_printf(m, "handled_ipmb_responses: %u\n",
2074 ipmi_get_stat(intf, handled_ipmb_responses));
2075 seq_printf(m, "invalid_ipmb_responses: %u\n",
2076 ipmi_get_stat(intf, invalid_ipmb_responses));
2077 seq_printf(m, "unhandled_ipmb_responses: %u\n",
2078 ipmi_get_stat(intf, unhandled_ipmb_responses));
2079 seq_printf(m, "sent_lan_commands: %u\n",
2080 ipmi_get_stat(intf, sent_lan_commands));
2081 seq_printf(m, "sent_lan_command_errs: %u\n",
2082 ipmi_get_stat(intf, sent_lan_command_errs));
2083 seq_printf(m, "retransmitted_lan_commands: %u\n",
2084 ipmi_get_stat(intf, retransmitted_lan_commands));
2085 seq_printf(m, "timed_out_lan_commands: %u\n",
2086 ipmi_get_stat(intf, timed_out_lan_commands));
2087 seq_printf(m, "sent_lan_responses: %u\n",
2088 ipmi_get_stat(intf, sent_lan_responses));
2089 seq_printf(m, "handled_lan_responses: %u\n",
2090 ipmi_get_stat(intf, handled_lan_responses));
2091 seq_printf(m, "invalid_lan_responses: %u\n",
2092 ipmi_get_stat(intf, invalid_lan_responses));
2093 seq_printf(m, "unhandled_lan_responses: %u\n",
2094 ipmi_get_stat(intf, unhandled_lan_responses));
2095 seq_printf(m, "handled_commands: %u\n",
2096 ipmi_get_stat(intf, handled_commands));
2097 seq_printf(m, "invalid_commands: %u\n",
2098 ipmi_get_stat(intf, invalid_commands));
2099 seq_printf(m, "unhandled_commands: %u\n",
2100 ipmi_get_stat(intf, unhandled_commands));
2101 seq_printf(m, "invalid_events: %u\n",
2102 ipmi_get_stat(intf, invalid_events));
2103 seq_printf(m, "events: %u\n",
2104 ipmi_get_stat(intf, events));
2105 seq_printf(m, "failed rexmit LAN msgs: %u\n",
2106 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2107 seq_printf(m, "failed rexmit IPMB msgs: %u\n",
2108 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2109 return 0;
2110 }
2111
2112 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2113 {
2114 return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2115 }
2116
2117 static const struct file_operations smi_stats_proc_ops = {
2118 .open = smi_stats_proc_open,
2119 .read = seq_read,
2120 .llseek = seq_lseek,
2121 .release = single_release,
2122 };
2123 #endif /* CONFIG_PROC_FS */
2124
2125 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2126 const struct file_operations *proc_ops,
2127 void *data)
2128 {
2129 int rv = 0;
2130 #ifdef CONFIG_PROC_FS
2131 struct proc_dir_entry *file;
2132 struct ipmi_proc_entry *entry;
2133
2134 /* Create a list element. */
2135 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2136 if (!entry)
2137 return -ENOMEM;
2138 entry->name = kstrdup(name, GFP_KERNEL);
2139 if (!entry->name) {
2140 kfree(entry);
2141 return -ENOMEM;
2142 }
2143
2144 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2145 if (!file) {
2146 kfree(entry->name);
2147 kfree(entry);
2148 rv = -ENOMEM;
2149 } else {
2150 mutex_lock(&smi->proc_entry_lock);
2151 /* Stick it on the list. */
2152 entry->next = smi->proc_entries;
2153 smi->proc_entries = entry;
2154 mutex_unlock(&smi->proc_entry_lock);
2155 }
2156 #endif /* CONFIG_PROC_FS */
2157
2158 return rv;
2159 }
2160 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2161
2162 static int add_proc_entries(ipmi_smi_t smi, int num)
2163 {
2164 int rv = 0;
2165
2166 #ifdef CONFIG_PROC_FS
2167 sprintf(smi->proc_dir_name, "%d", num);
2168 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2169 if (!smi->proc_dir)
2170 rv = -ENOMEM;
2171
2172 if (rv == 0)
2173 rv = ipmi_smi_add_proc_entry(smi, "stats",
2174 &smi_stats_proc_ops,
2175 smi);
2176
2177 if (rv == 0)
2178 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2179 &smi_ipmb_proc_ops,
2180 smi);
2181
2182 if (rv == 0)
2183 rv = ipmi_smi_add_proc_entry(smi, "version",
2184 &smi_version_proc_ops,
2185 smi);
2186 #endif /* CONFIG_PROC_FS */
2187
2188 return rv;
2189 }
2190
2191 static void remove_proc_entries(ipmi_smi_t smi)
2192 {
2193 #ifdef CONFIG_PROC_FS
2194 struct ipmi_proc_entry *entry;
2195
2196 mutex_lock(&smi->proc_entry_lock);
2197 while (smi->proc_entries) {
2198 entry = smi->proc_entries;
2199 smi->proc_entries = entry->next;
2200
2201 remove_proc_entry(entry->name, smi->proc_dir);
2202 kfree(entry->name);
2203 kfree(entry);
2204 }
2205 mutex_unlock(&smi->proc_entry_lock);
2206 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2207 #endif /* CONFIG_PROC_FS */
2208 }
2209
2210 static int __find_bmc_guid(struct device *dev, void *data)
2211 {
2212 unsigned char *id = data;
2213 struct bmc_device *bmc = to_bmc_device(dev);
2214 return memcmp(bmc->guid, id, 16) == 0;
2215 }
2216
2217 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2218 unsigned char *guid)
2219 {
2220 struct device *dev;
2221
2222 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2223 if (dev)
2224 return to_bmc_device(dev);
2225 else
2226 return NULL;
2227 }
2228
2229 struct prod_dev_id {
2230 unsigned int product_id;
2231 unsigned char device_id;
2232 };
2233
2234 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2235 {
2236 struct prod_dev_id *id = data;
2237 struct bmc_device *bmc = to_bmc_device(dev);
2238
2239 return (bmc->id.product_id == id->product_id
2240 && bmc->id.device_id == id->device_id);
2241 }
2242
2243 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2244 struct device_driver *drv,
2245 unsigned int product_id, unsigned char device_id)
2246 {
2247 struct prod_dev_id id = {
2248 .product_id = product_id,
2249 .device_id = device_id,
2250 };
2251 struct device *dev;
2252
2253 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2254 if (dev)
2255 return to_bmc_device(dev);
2256 else
2257 return NULL;
2258 }
2259
2260 static ssize_t device_id_show(struct device *dev,
2261 struct device_attribute *attr,
2262 char *buf)
2263 {
2264 struct bmc_device *bmc = to_bmc_device(dev);
2265
2266 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2267 }
2268 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2269
2270 static ssize_t provides_device_sdrs_show(struct device *dev,
2271 struct device_attribute *attr,
2272 char *buf)
2273 {
2274 struct bmc_device *bmc = to_bmc_device(dev);
2275
2276 return snprintf(buf, 10, "%u\n",
2277 (bmc->id.device_revision & 0x80) >> 7);
2278 }
2279 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2280 NULL);
2281
2282 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2283 char *buf)
2284 {
2285 struct bmc_device *bmc = to_bmc_device(dev);
2286
2287 return snprintf(buf, 20, "%u\n",
2288 bmc->id.device_revision & 0x0F);
2289 }
2290 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2291
2292 static ssize_t firmware_revision_show(struct device *dev,
2293 struct device_attribute *attr,
2294 char *buf)
2295 {
2296 struct bmc_device *bmc = to_bmc_device(dev);
2297
2298 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2299 bmc->id.firmware_revision_2);
2300 }
2301 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2302
2303 static ssize_t ipmi_version_show(struct device *dev,
2304 struct device_attribute *attr,
2305 char *buf)
2306 {
2307 struct bmc_device *bmc = to_bmc_device(dev);
2308
2309 return snprintf(buf, 20, "%u.%u\n",
2310 ipmi_version_major(&bmc->id),
2311 ipmi_version_minor(&bmc->id));
2312 }
2313 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2314
2315 static ssize_t add_dev_support_show(struct device *dev,
2316 struct device_attribute *attr,
2317 char *buf)
2318 {
2319 struct bmc_device *bmc = to_bmc_device(dev);
2320
2321 return snprintf(buf, 10, "0x%02x\n",
2322 bmc->id.additional_device_support);
2323 }
2324 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2325 NULL);
2326
2327 static ssize_t manufacturer_id_show(struct device *dev,
2328 struct device_attribute *attr,
2329 char *buf)
2330 {
2331 struct bmc_device *bmc = to_bmc_device(dev);
2332
2333 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2334 }
2335 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2336
2337 static ssize_t product_id_show(struct device *dev,
2338 struct device_attribute *attr,
2339 char *buf)
2340 {
2341 struct bmc_device *bmc = to_bmc_device(dev);
2342
2343 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2344 }
2345 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2346
2347 static ssize_t aux_firmware_rev_show(struct device *dev,
2348 struct device_attribute *attr,
2349 char *buf)
2350 {
2351 struct bmc_device *bmc = to_bmc_device(dev);
2352
2353 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2354 bmc->id.aux_firmware_revision[3],
2355 bmc->id.aux_firmware_revision[2],
2356 bmc->id.aux_firmware_revision[1],
2357 bmc->id.aux_firmware_revision[0]);
2358 }
2359 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2360
2361 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2362 char *buf)
2363 {
2364 struct bmc_device *bmc = to_bmc_device(dev);
2365
2366 return snprintf(buf, 100, "%Lx%Lx\n",
2367 (long long) bmc->guid[0],
2368 (long long) bmc->guid[8]);
2369 }
2370 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2371
2372 static struct attribute *bmc_dev_attrs[] = {
2373 &dev_attr_device_id.attr,
2374 &dev_attr_provides_device_sdrs.attr,
2375 &dev_attr_revision.attr,
2376 &dev_attr_firmware_revision.attr,
2377 &dev_attr_ipmi_version.attr,
2378 &dev_attr_additional_device_support.attr,
2379 &dev_attr_manufacturer_id.attr,
2380 &dev_attr_product_id.attr,
2381 &dev_attr_aux_firmware_revision.attr,
2382 &dev_attr_guid.attr,
2383 NULL
2384 };
2385
2386 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2387 struct attribute *attr, int idx)
2388 {
2389 struct device *dev = kobj_to_dev(kobj);
2390 struct bmc_device *bmc = to_bmc_device(dev);
2391 umode_t mode = attr->mode;
2392
2393 if (attr == &dev_attr_aux_firmware_revision.attr)
2394 return bmc->id.aux_firmware_revision_set ? mode : 0;
2395 if (attr == &dev_attr_guid.attr)
2396 return bmc->guid_set ? mode : 0;
2397 return mode;
2398 }
2399
2400 static struct attribute_group bmc_dev_attr_group = {
2401 .attrs = bmc_dev_attrs,
2402 .is_visible = bmc_dev_attr_is_visible,
2403 };
2404
2405 static const struct attribute_group *bmc_dev_attr_groups[] = {
2406 &bmc_dev_attr_group,
2407 NULL
2408 };
2409
2410 static struct device_type bmc_device_type = {
2411 .groups = bmc_dev_attr_groups,
2412 };
2413
2414 static void
2415 release_bmc_device(struct device *dev)
2416 {
2417 kfree(to_bmc_device(dev));
2418 }
2419
2420 static void
2421 cleanup_bmc_device(struct kref *ref)
2422 {
2423 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2424
2425 platform_device_unregister(&bmc->pdev);
2426 }
2427
2428 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2429 {
2430 struct bmc_device *bmc = intf->bmc;
2431
2432 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2433 if (intf->my_dev_name) {
2434 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2435 kfree(intf->my_dev_name);
2436 intf->my_dev_name = NULL;
2437 }
2438
2439 mutex_lock(&ipmidriver_mutex);
2440 kref_put(&bmc->usecount, cleanup_bmc_device);
2441 intf->bmc = NULL;
2442 mutex_unlock(&ipmidriver_mutex);
2443 }
2444
2445 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2446 {
2447 int rv;
2448 struct bmc_device *bmc = intf->bmc;
2449 struct bmc_device *old_bmc;
2450
2451 mutex_lock(&ipmidriver_mutex);
2452
2453 /*
2454 * Try to find if there is an bmc_device struct
2455 * representing the interfaced BMC already
2456 */
2457 if (bmc->guid_set)
2458 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2459 else
2460 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2461 bmc->id.product_id,
2462 bmc->id.device_id);
2463
2464 /*
2465 * If there is already an bmc_device, free the new one,
2466 * otherwise register the new BMC device
2467 */
2468 if (old_bmc) {
2469 kfree(bmc);
2470 intf->bmc = old_bmc;
2471 bmc = old_bmc;
2472
2473 kref_get(&bmc->usecount);
2474 mutex_unlock(&ipmidriver_mutex);
2475
2476 printk(KERN_INFO
2477 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2478 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2479 bmc->id.manufacturer_id,
2480 bmc->id.product_id,
2481 bmc->id.device_id);
2482 } else {
2483 unsigned char orig_dev_id = bmc->id.device_id;
2484 int warn_printed = 0;
2485
2486 snprintf(bmc->name, sizeof(bmc->name),
2487 "ipmi_bmc.%4.4x", bmc->id.product_id);
2488 bmc->pdev.name = bmc->name;
2489
2490 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2491 bmc->id.product_id,
2492 bmc->id.device_id)) {
2493 if (!warn_printed) {
2494 printk(KERN_WARNING PFX
2495 "This machine has two different BMCs"
2496 " with the same product id and device"
2497 " id. This is an error in the"
2498 " firmware, but incrementing the"
2499 " device id to work around the problem."
2500 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2501 bmc->id.product_id, bmc->id.device_id);
2502 warn_printed = 1;
2503 }
2504 bmc->id.device_id++; /* Wraps at 255 */
2505 if (bmc->id.device_id == orig_dev_id) {
2506 printk(KERN_ERR PFX
2507 "Out of device ids!\n");
2508 break;
2509 }
2510 }
2511
2512 bmc->pdev.dev.driver = &ipmidriver.driver;
2513 bmc->pdev.id = bmc->id.device_id;
2514 bmc->pdev.dev.release = release_bmc_device;
2515 bmc->pdev.dev.type = &bmc_device_type;
2516 kref_init(&bmc->usecount);
2517
2518 rv = platform_device_register(&bmc->pdev);
2519 mutex_unlock(&ipmidriver_mutex);
2520 if (rv) {
2521 put_device(&bmc->pdev.dev);
2522 printk(KERN_ERR
2523 "ipmi_msghandler:"
2524 " Unable to register bmc device: %d\n",
2525 rv);
2526 /*
2527 * Don't go to out_err, you can only do that if
2528 * the device is registered already.
2529 */
2530 return rv;
2531 }
2532
2533 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2534 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2535 bmc->id.manufacturer_id,
2536 bmc->id.product_id,
2537 bmc->id.device_id);
2538 }
2539
2540 /*
2541 * create symlink from system interface device to bmc device
2542 * and back.
2543 */
2544 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2545 if (rv) {
2546 printk(KERN_ERR
2547 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2548 rv);
2549 goto out_err;
2550 }
2551
2552 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2553 if (!intf->my_dev_name) {
2554 rv = -ENOMEM;
2555 printk(KERN_ERR
2556 "ipmi_msghandler: allocate link from BMC: %d\n",
2557 rv);
2558 goto out_err;
2559 }
2560
2561 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2562 intf->my_dev_name);
2563 if (rv) {
2564 kfree(intf->my_dev_name);
2565 intf->my_dev_name = NULL;
2566 printk(KERN_ERR
2567 "ipmi_msghandler:"
2568 " Unable to create symlink to bmc: %d\n",
2569 rv);
2570 goto out_err;
2571 }
2572
2573 return 0;
2574
2575 out_err:
2576 ipmi_bmc_unregister(intf);
2577 return rv;
2578 }
2579
2580 static int
2581 send_guid_cmd(ipmi_smi_t intf, int chan)
2582 {
2583 struct kernel_ipmi_msg msg;
2584 struct ipmi_system_interface_addr si;
2585
2586 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2587 si.channel = IPMI_BMC_CHANNEL;
2588 si.lun = 0;
2589
2590 msg.netfn = IPMI_NETFN_APP_REQUEST;
2591 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2592 msg.data = NULL;
2593 msg.data_len = 0;
2594 return i_ipmi_request(NULL,
2595 intf,
2596 (struct ipmi_addr *) &si,
2597 0,
2598 &msg,
2599 intf,
2600 NULL,
2601 NULL,
2602 0,
2603 intf->channels[0].address,
2604 intf->channels[0].lun,
2605 -1, 0);
2606 }
2607
2608 static void
2609 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2610 {
2611 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2612 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2613 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2614 /* Not for me */
2615 return;
2616
2617 if (msg->msg.data[0] != 0) {
2618 /* Error from getting the GUID, the BMC doesn't have one. */
2619 intf->bmc->guid_set = 0;
2620 goto out;
2621 }
2622
2623 if (msg->msg.data_len < 17) {
2624 intf->bmc->guid_set = 0;
2625 printk(KERN_WARNING PFX
2626 "guid_handler: The GUID response from the BMC was too"
2627 " short, it was %d but should have been 17. Assuming"
2628 " GUID is not available.\n",
2629 msg->msg.data_len);
2630 goto out;
2631 }
2632
2633 memcpy(intf->bmc->guid, msg->msg.data, 16);
2634 intf->bmc->guid_set = 1;
2635 out:
2636 wake_up(&intf->waitq);
2637 }
2638
2639 static void
2640 get_guid(ipmi_smi_t intf)
2641 {
2642 int rv;
2643
2644 intf->bmc->guid_set = 0x2;
2645 intf->null_user_handler = guid_handler;
2646 rv = send_guid_cmd(intf, 0);
2647 if (rv)
2648 /* Send failed, no GUID available. */
2649 intf->bmc->guid_set = 0;
2650 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2651 intf->null_user_handler = NULL;
2652 }
2653
2654 static int
2655 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2656 {
2657 struct kernel_ipmi_msg msg;
2658 unsigned char data[1];
2659 struct ipmi_system_interface_addr si;
2660
2661 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2662 si.channel = IPMI_BMC_CHANNEL;
2663 si.lun = 0;
2664
2665 msg.netfn = IPMI_NETFN_APP_REQUEST;
2666 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2667 msg.data = data;
2668 msg.data_len = 1;
2669 data[0] = chan;
2670 return i_ipmi_request(NULL,
2671 intf,
2672 (struct ipmi_addr *) &si,
2673 0,
2674 &msg,
2675 intf,
2676 NULL,
2677 NULL,
2678 0,
2679 intf->channels[0].address,
2680 intf->channels[0].lun,
2681 -1, 0);
2682 }
2683
2684 static void
2685 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2686 {
2687 int rv = 0;
2688 int chan;
2689
2690 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2691 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2692 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2693 /* It's the one we want */
2694 if (msg->msg.data[0] != 0) {
2695 /* Got an error from the channel, just go on. */
2696
2697 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2698 /*
2699 * If the MC does not support this
2700 * command, that is legal. We just
2701 * assume it has one IPMB at channel
2702 * zero.
2703 */
2704 intf->channels[0].medium
2705 = IPMI_CHANNEL_MEDIUM_IPMB;
2706 intf->channels[0].protocol
2707 = IPMI_CHANNEL_PROTOCOL_IPMB;
2708
2709 intf->curr_channel = IPMI_MAX_CHANNELS;
2710 wake_up(&intf->waitq);
2711 goto out;
2712 }
2713 goto next_channel;
2714 }
2715 if (msg->msg.data_len < 4) {
2716 /* Message not big enough, just go on. */
2717 goto next_channel;
2718 }
2719 chan = intf->curr_channel;
2720 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2721 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2722
2723 next_channel:
2724 intf->curr_channel++;
2725 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2726 wake_up(&intf->waitq);
2727 else
2728 rv = send_channel_info_cmd(intf, intf->curr_channel);
2729
2730 if (rv) {
2731 /* Got an error somehow, just give up. */
2732 printk(KERN_WARNING PFX
2733 "Error sending channel information for channel"
2734 " %d: %d\n", intf->curr_channel, rv);
2735
2736 intf->curr_channel = IPMI_MAX_CHANNELS;
2737 wake_up(&intf->waitq);
2738 }
2739 }
2740 out:
2741 return;
2742 }
2743
2744 static void ipmi_poll(ipmi_smi_t intf)
2745 {
2746 if (intf->handlers->poll)
2747 intf->handlers->poll(intf->send_info);
2748 /* In case something came in */
2749 handle_new_recv_msgs(intf);
2750 }
2751
2752 void ipmi_poll_interface(ipmi_user_t user)
2753 {
2754 ipmi_poll(user->intf);
2755 }
2756 EXPORT_SYMBOL(ipmi_poll_interface);
2757
2758 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2759 void *send_info,
2760 struct ipmi_device_id *device_id,
2761 struct device *si_dev,
2762 unsigned char slave_addr)
2763 {
2764 int i, j;
2765 int rv;
2766 ipmi_smi_t intf;
2767 ipmi_smi_t tintf;
2768 struct list_head *link;
2769
2770 /*
2771 * Make sure the driver is actually initialized, this handles
2772 * problems with initialization order.
2773 */
2774 if (!initialized) {
2775 rv = ipmi_init_msghandler();
2776 if (rv)
2777 return rv;
2778 /*
2779 * The init code doesn't return an error if it was turned
2780 * off, but it won't initialize. Check that.
2781 */
2782 if (!initialized)
2783 return -ENODEV;
2784 }
2785
2786 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2787 if (!intf)
2788 return -ENOMEM;
2789
2790 intf->ipmi_version_major = ipmi_version_major(device_id);
2791 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2792
2793 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2794 if (!intf->bmc) {
2795 kfree(intf);
2796 return -ENOMEM;
2797 }
2798 intf->intf_num = -1; /* Mark it invalid for now. */
2799 kref_init(&intf->refcount);
2800 intf->bmc->id = *device_id;
2801 intf->si_dev = si_dev;
2802 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2803 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2804 intf->channels[j].lun = 2;
2805 }
2806 if (slave_addr != 0)
2807 intf->channels[0].address = slave_addr;
2808 INIT_LIST_HEAD(&intf->users);
2809 intf->handlers = handlers;
2810 intf->send_info = send_info;
2811 spin_lock_init(&intf->seq_lock);
2812 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2813 intf->seq_table[j].inuse = 0;
2814 intf->seq_table[j].seqid = 0;
2815 }
2816 intf->curr_seq = 0;
2817 #ifdef CONFIG_PROC_FS
2818 mutex_init(&intf->proc_entry_lock);
2819 #endif
2820 spin_lock_init(&intf->waiting_rcv_msgs_lock);
2821 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2822 tasklet_init(&intf->recv_tasklet,
2823 smi_recv_tasklet,
2824 (unsigned long) intf);
2825 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2826 spin_lock_init(&intf->xmit_msgs_lock);
2827 INIT_LIST_HEAD(&intf->xmit_msgs);
2828 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2829 spin_lock_init(&intf->events_lock);
2830 atomic_set(&intf->event_waiters, 0);
2831 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2832 INIT_LIST_HEAD(&intf->waiting_events);
2833 intf->waiting_events_count = 0;
2834 mutex_init(&intf->cmd_rcvrs_mutex);
2835 spin_lock_init(&intf->maintenance_mode_lock);
2836 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2837 init_waitqueue_head(&intf->waitq);
2838 for (i = 0; i < IPMI_NUM_STATS; i++)
2839 atomic_set(&intf->stats[i], 0);
2840
2841 intf->proc_dir = NULL;
2842
2843 mutex_lock(&smi_watchers_mutex);
2844 mutex_lock(&ipmi_interfaces_mutex);
2845 /* Look for a hole in the numbers. */
2846 i = 0;
2847 link = &ipmi_interfaces;
2848 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2849 if (tintf->intf_num != i) {
2850 link = &tintf->link;
2851 break;
2852 }
2853 i++;
2854 }
2855 /* Add the new interface in numeric order. */
2856 if (i == 0)
2857 list_add_rcu(&intf->link, &ipmi_interfaces);
2858 else
2859 list_add_tail_rcu(&intf->link, link);
2860
2861 rv = handlers->start_processing(send_info, intf);
2862 if (rv)
2863 goto out;
2864
2865 get_guid(intf);
2866
2867 if ((intf->ipmi_version_major > 1)
2868 || ((intf->ipmi_version_major == 1)
2869 && (intf->ipmi_version_minor >= 5))) {
2870 /*
2871 * Start scanning the channels to see what is
2872 * available.
2873 */
2874 intf->null_user_handler = channel_handler;
2875 intf->curr_channel = 0;
2876 rv = send_channel_info_cmd(intf, 0);
2877 if (rv) {
2878 printk(KERN_WARNING PFX
2879 "Error sending channel information for channel"
2880 " 0, %d\n", rv);
2881 goto out;
2882 }
2883
2884 /* Wait for the channel info to be read. */
2885 wait_event(intf->waitq,
2886 intf->curr_channel >= IPMI_MAX_CHANNELS);
2887 intf->null_user_handler = NULL;
2888 } else {
2889 /* Assume a single IPMB channel at zero. */
2890 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2891 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2892 intf->curr_channel = IPMI_MAX_CHANNELS;
2893 }
2894
2895 rv = ipmi_bmc_register(intf, i);
2896
2897 if (rv == 0)
2898 rv = add_proc_entries(intf, i);
2899
2900 out:
2901 if (rv) {
2902 if (intf->proc_dir)
2903 remove_proc_entries(intf);
2904 intf->handlers = NULL;
2905 list_del_rcu(&intf->link);
2906 mutex_unlock(&ipmi_interfaces_mutex);
2907 mutex_unlock(&smi_watchers_mutex);
2908 synchronize_rcu();
2909 kref_put(&intf->refcount, intf_free);
2910 } else {
2911 /*
2912 * Keep memory order straight for RCU readers. Make
2913 * sure everything else is committed to memory before
2914 * setting intf_num to mark the interface valid.
2915 */
2916 smp_wmb();
2917 intf->intf_num = i;
2918 mutex_unlock(&ipmi_interfaces_mutex);
2919 /* After this point the interface is legal to use. */
2920 call_smi_watchers(i, intf->si_dev);
2921 mutex_unlock(&smi_watchers_mutex);
2922 }
2923
2924 return rv;
2925 }
2926 EXPORT_SYMBOL(ipmi_register_smi);
2927
2928 static void deliver_smi_err_response(ipmi_smi_t intf,
2929 struct ipmi_smi_msg *msg,
2930 unsigned char err)
2931 {
2932 msg->rsp[0] = msg->data[0] | 4;
2933 msg->rsp[1] = msg->data[1];
2934 msg->rsp[2] = err;
2935 msg->rsp_size = 3;
2936 /* It's an error, so it will never requeue, no need to check return. */
2937 handle_one_recv_msg(intf, msg);
2938 }
2939
2940 static void cleanup_smi_msgs(ipmi_smi_t intf)
2941 {
2942 int i;
2943 struct seq_table *ent;
2944 struct ipmi_smi_msg *msg;
2945 struct list_head *entry;
2946 struct list_head tmplist;
2947
2948 /* Clear out our transmit queues and hold the messages. */
2949 INIT_LIST_HEAD(&tmplist);
2950 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2951 list_splice_tail(&intf->xmit_msgs, &tmplist);
2952
2953 /* Current message first, to preserve order */
2954 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2955 /* Wait for the message to clear out. */
2956 schedule_timeout(1);
2957 }
2958
2959 /* No need for locks, the interface is down. */
2960
2961 /*
2962 * Return errors for all pending messages in queue and in the
2963 * tables waiting for remote responses.
2964 */
2965 while (!list_empty(&tmplist)) {
2966 entry = tmplist.next;
2967 list_del(entry);
2968 msg = list_entry(entry, struct ipmi_smi_msg, link);
2969 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2970 }
2971
2972 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2973 ent = &(intf->seq_table[i]);
2974 if (!ent->inuse)
2975 continue;
2976 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2977 }
2978 }
2979
2980 int ipmi_unregister_smi(ipmi_smi_t intf)
2981 {
2982 struct ipmi_smi_watcher *w;
2983 int intf_num = intf->intf_num;
2984 ipmi_user_t user;
2985
2986 mutex_lock(&smi_watchers_mutex);
2987 mutex_lock(&ipmi_interfaces_mutex);
2988 intf->intf_num = -1;
2989 intf->in_shutdown = true;
2990 list_del_rcu(&intf->link);
2991 mutex_unlock(&ipmi_interfaces_mutex);
2992 synchronize_rcu();
2993
2994 cleanup_smi_msgs(intf);
2995
2996 /* Clean up the effects of users on the lower-level software. */
2997 mutex_lock(&ipmi_interfaces_mutex);
2998 rcu_read_lock();
2999 list_for_each_entry_rcu(user, &intf->users, link) {
3000 module_put(intf->handlers->owner);
3001 if (intf->handlers->dec_usecount)
3002 intf->handlers->dec_usecount(intf->send_info);
3003 }
3004 rcu_read_unlock();
3005 intf->handlers = NULL;
3006 mutex_unlock(&ipmi_interfaces_mutex);
3007
3008 remove_proc_entries(intf);
3009 ipmi_bmc_unregister(intf);
3010
3011 /*
3012 * Call all the watcher interfaces to tell them that
3013 * an interface is gone.
3014 */
3015 list_for_each_entry(w, &smi_watchers, link)
3016 w->smi_gone(intf_num);
3017 mutex_unlock(&smi_watchers_mutex);
3018
3019 kref_put(&intf->refcount, intf_free);
3020 return 0;
3021 }
3022 EXPORT_SYMBOL(ipmi_unregister_smi);
3023
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
3025 struct ipmi_smi_msg *msg)
3026 {
3027 struct ipmi_ipmb_addr ipmb_addr;
3028 struct ipmi_recv_msg *recv_msg;
3029
3030 /*
3031 * This is 11, not 10, because the response must contain a
3032 * completion code.
3033 */
3034 if (msg->rsp_size < 11) {
3035 /* Message not big enough, just ignore it. */
3036 ipmi_inc_stat(intf, invalid_ipmb_responses);
3037 return 0;
3038 }
3039
3040 if (msg->rsp[2] != 0) {
3041 /* An error getting the response, just ignore it. */
3042 return 0;
3043 }
3044
3045 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3046 ipmb_addr.slave_addr = msg->rsp[6];
3047 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3048 ipmb_addr.lun = msg->rsp[7] & 3;
3049
3050 /*
3051 * It's a response from a remote entity. Look up the sequence
3052 * number and handle the response.
3053 */
3054 if (intf_find_seq(intf,
3055 msg->rsp[7] >> 2,
3056 msg->rsp[3] & 0x0f,
3057 msg->rsp[8],
3058 (msg->rsp[4] >> 2) & (~1),
3059 (struct ipmi_addr *) &(ipmb_addr),
3060 &recv_msg)) {
3061 /*
3062 * We were unable to find the sequence number,
3063 * so just nuke the message.
3064 */
3065 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3066 return 0;
3067 }
3068
3069 memcpy(recv_msg->msg_data,
3070 &(msg->rsp[9]),
3071 msg->rsp_size - 9);
3072 /*
3073 * The other fields matched, so no need to set them, except
3074 * for netfn, which needs to be the response that was
3075 * returned, not the request value.
3076 */
3077 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3078 recv_msg->msg.data = recv_msg->msg_data;
3079 recv_msg->msg.data_len = msg->rsp_size - 10;
3080 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3081 ipmi_inc_stat(intf, handled_ipmb_responses);
3082 deliver_response(recv_msg);
3083
3084 return 0;
3085 }
3086
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3088 struct ipmi_smi_msg *msg)
3089 {
3090 struct cmd_rcvr *rcvr;
3091 int rv = 0;
3092 unsigned char netfn;
3093 unsigned char cmd;
3094 unsigned char chan;
3095 ipmi_user_t user = NULL;
3096 struct ipmi_ipmb_addr *ipmb_addr;
3097 struct ipmi_recv_msg *recv_msg;
3098
3099 if (msg->rsp_size < 10) {
3100 /* Message not big enough, just ignore it. */
3101 ipmi_inc_stat(intf, invalid_commands);
3102 return 0;
3103 }
3104
3105 if (msg->rsp[2] != 0) {
3106 /* An error getting the response, just ignore it. */
3107 return 0;
3108 }
3109
3110 netfn = msg->rsp[4] >> 2;
3111 cmd = msg->rsp[8];
3112 chan = msg->rsp[3] & 0xf;
3113
3114 rcu_read_lock();
3115 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3116 if (rcvr) {
3117 user = rcvr->user;
3118 kref_get(&user->refcount);
3119 } else
3120 user = NULL;
3121 rcu_read_unlock();
3122
3123 if (user == NULL) {
3124 /* We didn't find a user, deliver an error response. */
3125 ipmi_inc_stat(intf, unhandled_commands);
3126
3127 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3128 msg->data[1] = IPMI_SEND_MSG_CMD;
3129 msg->data[2] = msg->rsp[3];
3130 msg->data[3] = msg->rsp[6];
3131 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3132 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3133 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3134 /* rqseq/lun */
3135 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3136 msg->data[8] = msg->rsp[8]; /* cmd */
3137 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3138 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3139 msg->data_size = 11;
3140
3141 #ifdef DEBUG_MSGING
3142 {
3143 int m;
3144 printk("Invalid command:");
3145 for (m = 0; m < msg->data_size; m++)
3146 printk(" %2.2x", msg->data[m]);
3147 printk("\n");
3148 }
3149 #endif
3150 rcu_read_lock();
3151 if (!intf->in_shutdown) {
3152 smi_send(intf, intf->handlers, msg, 0);
3153 /*
3154 * We used the message, so return the value
3155 * that causes it to not be freed or
3156 * queued.
3157 */
3158 rv = -1;
3159 }
3160 rcu_read_unlock();
3161 } else {
3162 /* Deliver the message to the user. */
3163 ipmi_inc_stat(intf, handled_commands);
3164
3165 recv_msg = ipmi_alloc_recv_msg();
3166 if (!recv_msg) {
3167 /*
3168 * We couldn't allocate memory for the
3169 * message, so requeue it for handling
3170 * later.
3171 */
3172 rv = 1;
3173 kref_put(&user->refcount, free_user);
3174 } else {
3175 /* Extract the source address from the data. */
3176 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3177 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3178 ipmb_addr->slave_addr = msg->rsp[6];
3179 ipmb_addr->lun = msg->rsp[7] & 3;
3180 ipmb_addr->channel = msg->rsp[3] & 0xf;
3181
3182 /*
3183 * Extract the rest of the message information
3184 * from the IPMB header.
3185 */
3186 recv_msg->user = user;
3187 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3188 recv_msg->msgid = msg->rsp[7] >> 2;
3189 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3190 recv_msg->msg.cmd = msg->rsp[8];
3191 recv_msg->msg.data = recv_msg->msg_data;
3192
3193 /*
3194 * We chop off 10, not 9 bytes because the checksum
3195 * at the end also needs to be removed.
3196 */
3197 recv_msg->msg.data_len = msg->rsp_size - 10;
3198 memcpy(recv_msg->msg_data,
3199 &(msg->rsp[9]),
3200 msg->rsp_size - 10);
3201 deliver_response(recv_msg);
3202 }
3203 }
3204
3205 return rv;
3206 }
3207
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3209 struct ipmi_smi_msg *msg)
3210 {
3211 struct ipmi_lan_addr lan_addr;
3212 struct ipmi_recv_msg *recv_msg;
3213
3214
3215 /*
3216 * This is 13, not 12, because the response must contain a
3217 * completion code.
3218 */
3219 if (msg->rsp_size < 13) {
3220 /* Message not big enough, just ignore it. */
3221 ipmi_inc_stat(intf, invalid_lan_responses);
3222 return 0;
3223 }
3224
3225 if (msg->rsp[2] != 0) {
3226 /* An error getting the response, just ignore it. */
3227 return 0;
3228 }
3229
3230 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3231 lan_addr.session_handle = msg->rsp[4];
3232 lan_addr.remote_SWID = msg->rsp[8];
3233 lan_addr.local_SWID = msg->rsp[5];
3234 lan_addr.channel = msg->rsp[3] & 0x0f;
3235 lan_addr.privilege = msg->rsp[3] >> 4;
3236 lan_addr.lun = msg->rsp[9] & 3;
3237
3238 /*
3239 * It's a response from a remote entity. Look up the sequence
3240 * number and handle the response.
3241 */
3242 if (intf_find_seq(intf,
3243 msg->rsp[9] >> 2,
3244 msg->rsp[3] & 0x0f,
3245 msg->rsp[10],
3246 (msg->rsp[6] >> 2) & (~1),
3247 (struct ipmi_addr *) &(lan_addr),
3248 &recv_msg)) {
3249 /*
3250 * We were unable to find the sequence number,
3251 * so just nuke the message.
3252 */
3253 ipmi_inc_stat(intf, unhandled_lan_responses);
3254 return 0;
3255 }
3256
3257 memcpy(recv_msg->msg_data,
3258 &(msg->rsp[11]),
3259 msg->rsp_size - 11);
3260 /*
3261 * The other fields matched, so no need to set them, except
3262 * for netfn, which needs to be the response that was
3263 * returned, not the request value.
3264 */
3265 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3266 recv_msg->msg.data = recv_msg->msg_data;
3267 recv_msg->msg.data_len = msg->rsp_size - 12;
3268 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3269 ipmi_inc_stat(intf, handled_lan_responses);
3270 deliver_response(recv_msg);
3271
3272 return 0;
3273 }
3274
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3276 struct ipmi_smi_msg *msg)
3277 {
3278 struct cmd_rcvr *rcvr;
3279 int rv = 0;
3280 unsigned char netfn;
3281 unsigned char cmd;
3282 unsigned char chan;
3283 ipmi_user_t user = NULL;
3284 struct ipmi_lan_addr *lan_addr;
3285 struct ipmi_recv_msg *recv_msg;
3286
3287 if (msg->rsp_size < 12) {
3288 /* Message not big enough, just ignore it. */
3289 ipmi_inc_stat(intf, invalid_commands);
3290 return 0;
3291 }
3292
3293 if (msg->rsp[2] != 0) {
3294 /* An error getting the response, just ignore it. */
3295 return 0;
3296 }
3297
3298 netfn = msg->rsp[6] >> 2;
3299 cmd = msg->rsp[10];
3300 chan = msg->rsp[3] & 0xf;
3301
3302 rcu_read_lock();
3303 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3304 if (rcvr) {
3305 user = rcvr->user;
3306 kref_get(&user->refcount);
3307 } else
3308 user = NULL;
3309 rcu_read_unlock();
3310
3311 if (user == NULL) {
3312 /* We didn't find a user, just give up. */
3313 ipmi_inc_stat(intf, unhandled_commands);
3314
3315 /*
3316 * Don't do anything with these messages, just allow
3317 * them to be freed.
3318 */
3319 rv = 0;
3320 } else {
3321 /* Deliver the message to the user. */
3322 ipmi_inc_stat(intf, handled_commands);
3323
3324 recv_msg = ipmi_alloc_recv_msg();
3325 if (!recv_msg) {
3326 /*
3327 * We couldn't allocate memory for the
3328 * message, so requeue it for handling later.
3329 */
3330 rv = 1;
3331 kref_put(&user->refcount, free_user);
3332 } else {
3333 /* Extract the source address from the data. */
3334 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3335 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3336 lan_addr->session_handle = msg->rsp[4];
3337 lan_addr->remote_SWID = msg->rsp[8];
3338 lan_addr->local_SWID = msg->rsp[5];
3339 lan_addr->lun = msg->rsp[9] & 3;
3340 lan_addr->channel = msg->rsp[3] & 0xf;
3341 lan_addr->privilege = msg->rsp[3] >> 4;
3342
3343 /*
3344 * Extract the rest of the message information
3345 * from the IPMB header.
3346 */
3347 recv_msg->user = user;
3348 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3349 recv_msg->msgid = msg->rsp[9] >> 2;
3350 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3351 recv_msg->msg.cmd = msg->rsp[10];
3352 recv_msg->msg.data = recv_msg->msg_data;
3353
3354 /*
3355 * We chop off 12, not 11 bytes because the checksum
3356 * at the end also needs to be removed.
3357 */
3358 recv_msg->msg.data_len = msg->rsp_size - 12;
3359 memcpy(recv_msg->msg_data,
3360 &(msg->rsp[11]),
3361 msg->rsp_size - 12);
3362 deliver_response(recv_msg);
3363 }
3364 }
3365
3366 return rv;
3367 }
3368
3369 /*
3370 * This routine will handle "Get Message" command responses with
3371 * channels that use an OEM Medium. The message format belongs to
3372 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3373 * Chapter 22, sections 22.6 and 22.24 for more details.
3374 */
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3376 struct ipmi_smi_msg *msg)
3377 {
3378 struct cmd_rcvr *rcvr;
3379 int rv = 0;
3380 unsigned char netfn;
3381 unsigned char cmd;
3382 unsigned char chan;
3383 ipmi_user_t user = NULL;
3384 struct ipmi_system_interface_addr *smi_addr;
3385 struct ipmi_recv_msg *recv_msg;
3386
3387 /*
3388 * We expect the OEM SW to perform error checking
3389 * so we just do some basic sanity checks
3390 */
3391 if (msg->rsp_size < 4) {
3392 /* Message not big enough, just ignore it. */
3393 ipmi_inc_stat(intf, invalid_commands);
3394 return 0;
3395 }
3396
3397 if (msg->rsp[2] != 0) {
3398 /* An error getting the response, just ignore it. */
3399 return 0;
3400 }
3401
3402 /*
3403 * This is an OEM Message so the OEM needs to know how
3404 * handle the message. We do no interpretation.
3405 */
3406 netfn = msg->rsp[0] >> 2;
3407 cmd = msg->rsp[1];
3408 chan = msg->rsp[3] & 0xf;
3409
3410 rcu_read_lock();
3411 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3412 if (rcvr) {
3413 user = rcvr->user;
3414 kref_get(&user->refcount);
3415 } else
3416 user = NULL;
3417 rcu_read_unlock();
3418
3419 if (user == NULL) {
3420 /* We didn't find a user, just give up. */
3421 ipmi_inc_stat(intf, unhandled_commands);
3422
3423 /*
3424 * Don't do anything with these messages, just allow
3425 * them to be freed.
3426 */
3427
3428 rv = 0;
3429 } else {
3430 /* Deliver the message to the user. */
3431 ipmi_inc_stat(intf, handled_commands);
3432
3433 recv_msg = ipmi_alloc_recv_msg();
3434 if (!recv_msg) {
3435 /*
3436 * We couldn't allocate memory for the
3437 * message, so requeue it for handling
3438 * later.
3439 */
3440 rv = 1;
3441 kref_put(&user->refcount, free_user);
3442 } else {
3443 /*
3444 * OEM Messages are expected to be delivered via
3445 * the system interface to SMS software. We might
3446 * need to visit this again depending on OEM
3447 * requirements
3448 */
3449 smi_addr = ((struct ipmi_system_interface_addr *)
3450 &(recv_msg->addr));
3451 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3452 smi_addr->channel = IPMI_BMC_CHANNEL;
3453 smi_addr->lun = msg->rsp[0] & 3;
3454
3455 recv_msg->user = user;
3456 recv_msg->user_msg_data = NULL;
3457 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3458 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3459 recv_msg->msg.cmd = msg->rsp[1];
3460 recv_msg->msg.data = recv_msg->msg_data;
3461
3462 /*
3463 * The message starts at byte 4 which follows the
3464 * the Channel Byte in the "GET MESSAGE" command
3465 */
3466 recv_msg->msg.data_len = msg->rsp_size - 4;
3467 memcpy(recv_msg->msg_data,
3468 &(msg->rsp[4]),
3469 msg->rsp_size - 4);
3470 deliver_response(recv_msg);
3471 }
3472 }
3473
3474 return rv;
3475 }
3476
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3478 struct ipmi_smi_msg *msg)
3479 {
3480 struct ipmi_system_interface_addr *smi_addr;
3481
3482 recv_msg->msgid = 0;
3483 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3484 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3485 smi_addr->channel = IPMI_BMC_CHANNEL;
3486 smi_addr->lun = msg->rsp[0] & 3;
3487 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3488 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3489 recv_msg->msg.cmd = msg->rsp[1];
3490 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3491 recv_msg->msg.data = recv_msg->msg_data;
3492 recv_msg->msg.data_len = msg->rsp_size - 3;
3493 }
3494
3495 static int handle_read_event_rsp(ipmi_smi_t intf,
3496 struct ipmi_smi_msg *msg)
3497 {
3498 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3499 struct list_head msgs;
3500 ipmi_user_t user;
3501 int rv = 0;
3502 int deliver_count = 0;
3503 unsigned long flags;
3504
3505 if (msg->rsp_size < 19) {
3506 /* Message is too small to be an IPMB event. */
3507 ipmi_inc_stat(intf, invalid_events);
3508 return 0;
3509 }
3510
3511 if (msg->rsp[2] != 0) {
3512 /* An error getting the event, just ignore it. */
3513 return 0;
3514 }
3515
3516 INIT_LIST_HEAD(&msgs);
3517
3518 spin_lock_irqsave(&intf->events_lock, flags);
3519
3520 ipmi_inc_stat(intf, events);
3521
3522 /*
3523 * Allocate and fill in one message for every user that is
3524 * getting events.
3525 */
3526 rcu_read_lock();
3527 list_for_each_entry_rcu(user, &intf->users, link) {
3528 if (!user->gets_events)
3529 continue;
3530
3531 recv_msg = ipmi_alloc_recv_msg();
3532 if (!recv_msg) {
3533 rcu_read_unlock();
3534 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3535 link) {
3536 list_del(&recv_msg->link);
3537 ipmi_free_recv_msg(recv_msg);
3538 }
3539 /*
3540 * We couldn't allocate memory for the
3541 * message, so requeue it for handling
3542 * later.
3543 */
3544 rv = 1;
3545 goto out;
3546 }
3547
3548 deliver_count++;
3549
3550 copy_event_into_recv_msg(recv_msg, msg);
3551 recv_msg->user = user;
3552 kref_get(&user->refcount);
3553 list_add_tail(&(recv_msg->link), &msgs);
3554 }
3555 rcu_read_unlock();
3556
3557 if (deliver_count) {
3558 /* Now deliver all the messages. */
3559 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3560 list_del(&recv_msg->link);
3561 deliver_response(recv_msg);
3562 }
3563 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3564 /*
3565 * No one to receive the message, put it in queue if there's
3566 * not already too many things in the queue.
3567 */
3568 recv_msg = ipmi_alloc_recv_msg();
3569 if (!recv_msg) {
3570 /*
3571 * We couldn't allocate memory for the
3572 * message, so requeue it for handling
3573 * later.
3574 */
3575 rv = 1;
3576 goto out;
3577 }
3578
3579 copy_event_into_recv_msg(recv_msg, msg);
3580 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3581 intf->waiting_events_count++;
3582 } else if (!intf->event_msg_printed) {
3583 /*
3584 * There's too many things in the queue, discard this
3585 * message.
3586 */
3587 printk(KERN_WARNING PFX "Event queue full, discarding"
3588 " incoming events\n");
3589 intf->event_msg_printed = 1;
3590 }
3591
3592 out:
3593 spin_unlock_irqrestore(&(intf->events_lock), flags);
3594
3595 return rv;
3596 }
3597
3598 static int handle_bmc_rsp(ipmi_smi_t intf,
3599 struct ipmi_smi_msg *msg)
3600 {
3601 struct ipmi_recv_msg *recv_msg;
3602 struct ipmi_user *user;
3603
3604 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3605 if (recv_msg == NULL) {
3606 printk(KERN_WARNING
3607 "IPMI message received with no owner. This\n"
3608 "could be because of a malformed message, or\n"
3609 "because of a hardware error. Contact your\n"
3610 "hardware vender for assistance\n");
3611 return 0;
3612 }
3613
3614 user = recv_msg->user;
3615 /* Make sure the user still exists. */
3616 if (user && !user->valid) {
3617 /* The user for the message went away, so give up. */
3618 ipmi_inc_stat(intf, unhandled_local_responses);
3619 ipmi_free_recv_msg(recv_msg);
3620 } else {
3621 struct ipmi_system_interface_addr *smi_addr;
3622
3623 ipmi_inc_stat(intf, handled_local_responses);
3624 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3625 recv_msg->msgid = msg->msgid;
3626 smi_addr = ((struct ipmi_system_interface_addr *)
3627 &(recv_msg->addr));
3628 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3629 smi_addr->channel = IPMI_BMC_CHANNEL;
3630 smi_addr->lun = msg->rsp[0] & 3;
3631 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3632 recv_msg->msg.cmd = msg->rsp[1];
3633 memcpy(recv_msg->msg_data,
3634 &(msg->rsp[2]),
3635 msg->rsp_size - 2);
3636 recv_msg->msg.data = recv_msg->msg_data;
3637 recv_msg->msg.data_len = msg->rsp_size - 2;
3638 deliver_response(recv_msg);
3639 }
3640
3641 return 0;
3642 }
3643
3644 /*
3645 * Handle a received message. Return 1 if the message should be requeued,
3646 * 0 if the message should be freed, or -1 if the message should not
3647 * be freed or requeued.
3648 */
3649 static int handle_one_recv_msg(ipmi_smi_t intf,
3650 struct ipmi_smi_msg *msg)
3651 {
3652 int requeue;
3653 int chan;
3654
3655 #ifdef DEBUG_MSGING
3656 int m;
3657 printk("Recv:");
3658 for (m = 0; m < msg->rsp_size; m++)
3659 printk(" %2.2x", msg->rsp[m]);
3660 printk("\n");
3661 #endif
3662 if (msg->rsp_size < 2) {
3663 /* Message is too small to be correct. */
3664 printk(KERN_WARNING PFX "BMC returned to small a message"
3665 " for netfn %x cmd %x, got %d bytes\n",
3666 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3667
3668 /* Generate an error response for the message. */
3669 msg->rsp[0] = msg->data[0] | (1 << 2);
3670 msg->rsp[1] = msg->data[1];
3671 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3672 msg->rsp_size = 3;
3673 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3674 || (msg->rsp[1] != msg->data[1])) {
3675 /*
3676 * The NetFN and Command in the response is not even
3677 * marginally correct.
3678 */
3679 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3680 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681 (msg->data[0] >> 2) | 1, msg->data[1],
3682 msg->rsp[0] >> 2, msg->rsp[1]);
3683
3684 /* Generate an error response for the message. */
3685 msg->rsp[0] = msg->data[0] | (1 << 2);
3686 msg->rsp[1] = msg->data[1];
3687 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3688 msg->rsp_size = 3;
3689 }
3690
3691 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3692 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3693 && (msg->user_data != NULL)) {
3694 /*
3695 * It's a response to a response we sent. For this we
3696 * deliver a send message response to the user.
3697 */
3698 struct ipmi_recv_msg *recv_msg = msg->user_data;
3699
3700 requeue = 0;
3701 if (msg->rsp_size < 2)
3702 /* Message is too small to be correct. */
3703 goto out;
3704
3705 chan = msg->data[2] & 0x0f;
3706 if (chan >= IPMI_MAX_CHANNELS)
3707 /* Invalid channel number */
3708 goto out;
3709
3710 if (!recv_msg)
3711 goto out;
3712
3713 /* Make sure the user still exists. */
3714 if (!recv_msg->user || !recv_msg->user->valid)
3715 goto out;
3716
3717 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3718 recv_msg->msg.data = recv_msg->msg_data;
3719 recv_msg->msg.data_len = 1;
3720 recv_msg->msg_data[0] = msg->rsp[2];
3721 deliver_response(recv_msg);
3722 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3723 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3724 /* It's from the receive queue. */
3725 chan = msg->rsp[3] & 0xf;
3726 if (chan >= IPMI_MAX_CHANNELS) {
3727 /* Invalid channel number */
3728 requeue = 0;
3729 goto out;
3730 }
3731
3732 /*
3733 * We need to make sure the channels have been initialized.
3734 * The channel_handler routine will set the "curr_channel"
3735 * equal to or greater than IPMI_MAX_CHANNELS when all the
3736 * channels for this interface have been initialized.
3737 */
3738 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3739 requeue = 0; /* Throw the message away */
3740 goto out;
3741 }
3742
3743 switch (intf->channels[chan].medium) {
3744 case IPMI_CHANNEL_MEDIUM_IPMB:
3745 if (msg->rsp[4] & 0x04) {
3746 /*
3747 * It's a response, so find the
3748 * requesting message and send it up.
3749 */
3750 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3751 } else {
3752 /*
3753 * It's a command to the SMS from some other
3754 * entity. Handle that.
3755 */
3756 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3757 }
3758 break;
3759
3760 case IPMI_CHANNEL_MEDIUM_8023LAN:
3761 case IPMI_CHANNEL_MEDIUM_ASYNC:
3762 if (msg->rsp[6] & 0x04) {
3763 /*
3764 * It's a response, so find the
3765 * requesting message and send it up.
3766 */
3767 requeue = handle_lan_get_msg_rsp(intf, msg);
3768 } else {
3769 /*
3770 * It's a command to the SMS from some other
3771 * entity. Handle that.
3772 */
3773 requeue = handle_lan_get_msg_cmd(intf, msg);
3774 }
3775 break;
3776
3777 default:
3778 /* Check for OEM Channels. Clients had better
3779 register for these commands. */
3780 if ((intf->channels[chan].medium
3781 >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3782 && (intf->channels[chan].medium
3783 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3784 requeue = handle_oem_get_msg_cmd(intf, msg);
3785 } else {
3786 /*
3787 * We don't handle the channel type, so just
3788 * free the message.
3789 */
3790 requeue = 0;
3791 }
3792 }
3793
3794 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3795 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3796 /* It's an asynchronous event. */
3797 requeue = handle_read_event_rsp(intf, msg);
3798 } else {
3799 /* It's a response from the local BMC. */
3800 requeue = handle_bmc_rsp(intf, msg);
3801 }
3802
3803 out:
3804 return requeue;
3805 }
3806
3807 /*
3808 * If there are messages in the queue or pretimeouts, handle them.
3809 */
3810 static void handle_new_recv_msgs(ipmi_smi_t intf)
3811 {
3812 struct ipmi_smi_msg *smi_msg;
3813 unsigned long flags = 0;
3814 int rv;
3815 int run_to_completion = intf->run_to_completion;
3816
3817 /* See if any waiting messages need to be processed. */
3818 if (!run_to_completion)
3819 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3820 while (!list_empty(&intf->waiting_rcv_msgs)) {
3821 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3822 struct ipmi_smi_msg, link);
3823 list_del(&smi_msg->link);
3824 if (!run_to_completion)
3825 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3826 flags);
3827 rv = handle_one_recv_msg(intf, smi_msg);
3828 if (!run_to_completion)
3829 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3830 if (rv > 0) {
3831 /*
3832 * To preserve message order, quit if we
3833 * can't handle a message. Add the message
3834 * back at the head, this is safe because this
3835 * tasklet is the only thing that pulls the
3836 * messages.
3837 */
3838 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
3839 break;
3840 } else {
3841 if (rv == 0)
3842 /* Message handled */
3843 ipmi_free_smi_msg(smi_msg);
3844 /* If rv < 0, fatal error, del but don't free. */
3845 }
3846 }
3847 if (!run_to_completion)
3848 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3849
3850 /*
3851 * If the pretimout count is non-zero, decrement one from it and
3852 * deliver pretimeouts to all the users.
3853 */
3854 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3855 ipmi_user_t user;
3856
3857 rcu_read_lock();
3858 list_for_each_entry_rcu(user, &intf->users, link) {
3859 if (user->handler->ipmi_watchdog_pretimeout)
3860 user->handler->ipmi_watchdog_pretimeout(
3861 user->handler_data);
3862 }
3863 rcu_read_unlock();
3864 }
3865 }
3866
3867 static void smi_recv_tasklet(unsigned long val)
3868 {
3869 unsigned long flags = 0; /* keep us warning-free. */
3870 ipmi_smi_t intf = (ipmi_smi_t) val;
3871 int run_to_completion = intf->run_to_completion;
3872 struct ipmi_smi_msg *newmsg = NULL;
3873
3874 /*
3875 * Start the next message if available.
3876 *
3877 * Do this here, not in the actual receiver, because we may deadlock
3878 * because the lower layer is allowed to hold locks while calling
3879 * message delivery.
3880 */
3881 if (!run_to_completion)
3882 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3883 if (intf->curr_msg == NULL && !intf->in_shutdown) {
3884 struct list_head *entry = NULL;
3885
3886 /* Pick the high priority queue first. */
3887 if (!list_empty(&intf->hp_xmit_msgs))
3888 entry = intf->hp_xmit_msgs.next;
3889 else if (!list_empty(&intf->xmit_msgs))
3890 entry = intf->xmit_msgs.next;
3891
3892 if (entry) {
3893 list_del(entry);
3894 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3895 intf->curr_msg = newmsg;
3896 }
3897 }
3898 if (!run_to_completion)
3899 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3900 if (newmsg)
3901 intf->handlers->sender(intf->send_info, newmsg);
3902
3903 handle_new_recv_msgs(intf);
3904 }
3905
3906 /* Handle a new message from the lower layer. */
3907 void ipmi_smi_msg_received(ipmi_smi_t intf,
3908 struct ipmi_smi_msg *msg)
3909 {
3910 unsigned long flags = 0; /* keep us warning-free. */
3911 int run_to_completion = intf->run_to_completion;
3912
3913 if ((msg->data_size >= 2)
3914 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3915 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3916 && (msg->user_data == NULL)) {
3917
3918 if (intf->in_shutdown)
3919 goto free_msg;
3920
3921 /*
3922 * This is the local response to a command send, start
3923 * the timer for these. The user_data will not be
3924 * NULL if this is a response send, and we will let
3925 * response sends just go through.
3926 */
3927
3928 /*
3929 * Check for errors, if we get certain errors (ones
3930 * that mean basically we can try again later), we
3931 * ignore them and start the timer. Otherwise we
3932 * report the error immediately.
3933 */
3934 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3935 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3936 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3937 && (msg->rsp[2] != IPMI_BUS_ERR)
3938 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3939 int chan = msg->rsp[3] & 0xf;
3940
3941 /* Got an error sending the message, handle it. */
3942 if (chan >= IPMI_MAX_CHANNELS)
3943 ; /* This shouldn't happen */
3944 else if ((intf->channels[chan].medium
3945 == IPMI_CHANNEL_MEDIUM_8023LAN)
3946 || (intf->channels[chan].medium
3947 == IPMI_CHANNEL_MEDIUM_ASYNC))
3948 ipmi_inc_stat(intf, sent_lan_command_errs);
3949 else
3950 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3951 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3952 } else
3953 /* The message was sent, start the timer. */
3954 intf_start_seq_timer(intf, msg->msgid);
3955
3956 free_msg:
3957 ipmi_free_smi_msg(msg);
3958 } else {
3959 /*
3960 * To preserve message order, we keep a queue and deliver from
3961 * a tasklet.
3962 */
3963 if (!run_to_completion)
3964 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3965 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3966 if (!run_to_completion)
3967 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3968 flags);
3969 }
3970
3971 if (!run_to_completion)
3972 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3973 /*
3974 * We can get an asynchronous event or receive message in addition
3975 * to commands we send.
3976 */
3977 if (msg == intf->curr_msg)
3978 intf->curr_msg = NULL;
3979 if (!run_to_completion)
3980 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3981
3982 if (run_to_completion)
3983 smi_recv_tasklet((unsigned long) intf);
3984 else
3985 tasklet_schedule(&intf->recv_tasklet);
3986 }
3987 EXPORT_SYMBOL(ipmi_smi_msg_received);
3988
3989 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3990 {
3991 if (intf->in_shutdown)
3992 return;
3993
3994 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3995 tasklet_schedule(&intf->recv_tasklet);
3996 }
3997 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3998
3999 static struct ipmi_smi_msg *
4000 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4001 unsigned char seq, long seqid)
4002 {
4003 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4004 if (!smi_msg)
4005 /*
4006 * If we can't allocate the message, then just return, we
4007 * get 4 retries, so this should be ok.
4008 */
4009 return NULL;
4010
4011 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4012 smi_msg->data_size = recv_msg->msg.data_len;
4013 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4014
4015 #ifdef DEBUG_MSGING
4016 {
4017 int m;
4018 printk("Resend: ");
4019 for (m = 0; m < smi_msg->data_size; m++)
4020 printk(" %2.2x", smi_msg->data[m]);
4021 printk("\n");
4022 }
4023 #endif
4024 return smi_msg;
4025 }
4026
4027 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4028 struct list_head *timeouts, long timeout_period,
4029 int slot, unsigned long *flags,
4030 unsigned int *waiting_msgs)
4031 {
4032 struct ipmi_recv_msg *msg;
4033 const struct ipmi_smi_handlers *handlers;
4034
4035 if (intf->in_shutdown)
4036 return;
4037
4038 if (!ent->inuse)
4039 return;
4040
4041 ent->timeout -= timeout_period;
4042 if (ent->timeout > 0) {
4043 (*waiting_msgs)++;
4044 return;
4045 }
4046
4047 if (ent->retries_left == 0) {
4048 /* The message has used all its retries. */
4049 ent->inuse = 0;
4050 msg = ent->recv_msg;
4051 list_add_tail(&msg->link, timeouts);
4052 if (ent->broadcast)
4053 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4054 else if (is_lan_addr(&ent->recv_msg->addr))
4055 ipmi_inc_stat(intf, timed_out_lan_commands);
4056 else
4057 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4058 } else {
4059 struct ipmi_smi_msg *smi_msg;
4060 /* More retries, send again. */
4061
4062 (*waiting_msgs)++;
4063
4064 /*
4065 * Start with the max timer, set to normal timer after
4066 * the message is sent.
4067 */
4068 ent->timeout = MAX_MSG_TIMEOUT;
4069 ent->retries_left--;
4070 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4071 ent->seqid);
4072 if (!smi_msg) {
4073 if (is_lan_addr(&ent->recv_msg->addr))
4074 ipmi_inc_stat(intf,
4075 dropped_rexmit_lan_commands);
4076 else
4077 ipmi_inc_stat(intf,
4078 dropped_rexmit_ipmb_commands);
4079 return;
4080 }
4081
4082 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4083
4084 /*
4085 * Send the new message. We send with a zero
4086 * priority. It timed out, I doubt time is that
4087 * critical now, and high priority messages are really
4088 * only for messages to the local MC, which don't get
4089 * resent.
4090 */
4091 handlers = intf->handlers;
4092 if (handlers) {
4093 if (is_lan_addr(&ent->recv_msg->addr))
4094 ipmi_inc_stat(intf,
4095 retransmitted_lan_commands);
4096 else
4097 ipmi_inc_stat(intf,
4098 retransmitted_ipmb_commands);
4099
4100 smi_send(intf, handlers, smi_msg, 0);
4101 } else
4102 ipmi_free_smi_msg(smi_msg);
4103
4104 spin_lock_irqsave(&intf->seq_lock, *flags);
4105 }
4106 }
4107
4108 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4109 {
4110 struct list_head timeouts;
4111 struct ipmi_recv_msg *msg, *msg2;
4112 unsigned long flags;
4113 int i;
4114 unsigned int waiting_msgs = 0;
4115
4116 /*
4117 * Go through the seq table and find any messages that
4118 * have timed out, putting them in the timeouts
4119 * list.
4120 */
4121 INIT_LIST_HEAD(&timeouts);
4122 spin_lock_irqsave(&intf->seq_lock, flags);
4123 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4124 check_msg_timeout(intf, &(intf->seq_table[i]),
4125 &timeouts, timeout_period, i,
4126 &flags, &waiting_msgs);
4127 spin_unlock_irqrestore(&intf->seq_lock, flags);
4128
4129 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4130 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4131
4132 /*
4133 * Maintenance mode handling. Check the timeout
4134 * optimistically before we claim the lock. It may
4135 * mean a timeout gets missed occasionally, but that
4136 * only means the timeout gets extended by one period
4137 * in that case. No big deal, and it avoids the lock
4138 * most of the time.
4139 */
4140 if (intf->auto_maintenance_timeout > 0) {
4141 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4142 if (intf->auto_maintenance_timeout > 0) {
4143 intf->auto_maintenance_timeout
4144 -= timeout_period;
4145 if (!intf->maintenance_mode
4146 && (intf->auto_maintenance_timeout <= 0)) {
4147 intf->maintenance_mode_enable = false;
4148 maintenance_mode_update(intf);
4149 }
4150 }
4151 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4152 flags);
4153 }
4154
4155 tasklet_schedule(&intf->recv_tasklet);
4156
4157 return waiting_msgs;
4158 }
4159
4160 static void ipmi_request_event(ipmi_smi_t intf)
4161 {
4162 /* No event requests when in maintenance mode. */
4163 if (intf->maintenance_mode_enable)
4164 return;
4165
4166 if (!intf->in_shutdown)
4167 intf->handlers->request_events(intf->send_info);
4168 }
4169
4170 static struct timer_list ipmi_timer;
4171
4172 static atomic_t stop_operation;
4173
4174 static void ipmi_timeout(unsigned long data)
4175 {
4176 ipmi_smi_t intf;
4177 int nt = 0;
4178
4179 if (atomic_read(&stop_operation))
4180 return;
4181
4182 rcu_read_lock();
4183 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4184 int lnt = 0;
4185
4186 if (atomic_read(&intf->event_waiters)) {
4187 intf->ticks_to_req_ev--;
4188 if (intf->ticks_to_req_ev == 0) {
4189 ipmi_request_event(intf);
4190 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4191 }
4192 lnt++;
4193 }
4194
4195 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4196
4197 lnt = !!lnt;
4198 if (lnt != intf->last_needs_timer &&
4199 intf->handlers->set_need_watch)
4200 intf->handlers->set_need_watch(intf->send_info, lnt);
4201 intf->last_needs_timer = lnt;
4202
4203 nt += lnt;
4204 }
4205 rcu_read_unlock();
4206
4207 if (nt)
4208 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4209 }
4210
4211 static void need_waiter(ipmi_smi_t intf)
4212 {
4213 /* Racy, but worst case we start the timer twice. */
4214 if (!timer_pending(&ipmi_timer))
4215 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4216 }
4217
4218 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4219 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4220
4221 static void free_smi_msg(struct ipmi_smi_msg *msg)
4222 {
4223 atomic_dec(&smi_msg_inuse_count);
4224 kfree(msg);
4225 }
4226
4227 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4228 {
4229 struct ipmi_smi_msg *rv;
4230 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4231 if (rv) {
4232 rv->done = free_smi_msg;
4233 rv->user_data = NULL;
4234 atomic_inc(&smi_msg_inuse_count);
4235 }
4236 return rv;
4237 }
4238 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4239
4240 static void free_recv_msg(struct ipmi_recv_msg *msg)
4241 {
4242 atomic_dec(&recv_msg_inuse_count);
4243 kfree(msg);
4244 }
4245
4246 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4247 {
4248 struct ipmi_recv_msg *rv;
4249
4250 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4251 if (rv) {
4252 rv->user = NULL;
4253 rv->done = free_recv_msg;
4254 atomic_inc(&recv_msg_inuse_count);
4255 }
4256 return rv;
4257 }
4258
4259 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4260 {
4261 if (msg->user)
4262 kref_put(&msg->user->refcount, free_user);
4263 msg->done(msg);
4264 }
4265 EXPORT_SYMBOL(ipmi_free_recv_msg);
4266
4267 #ifdef CONFIG_IPMI_PANIC_EVENT
4268
4269 static atomic_t panic_done_count = ATOMIC_INIT(0);
4270
4271 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4272 {
4273 atomic_dec(&panic_done_count);
4274 }
4275
4276 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4277 {
4278 atomic_dec(&panic_done_count);
4279 }
4280
4281 /*
4282 * Inside a panic, send a message and wait for a response.
4283 */
4284 static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
4285 struct ipmi_addr *addr,
4286 struct kernel_ipmi_msg *msg)
4287 {
4288 struct ipmi_smi_msg smi_msg;
4289 struct ipmi_recv_msg recv_msg;
4290 int rv;
4291
4292 smi_msg.done = dummy_smi_done_handler;
4293 recv_msg.done = dummy_recv_done_handler;
4294 atomic_add(2, &panic_done_count);
4295 rv = i_ipmi_request(NULL,
4296 intf,
4297 addr,
4298 0,
4299 msg,
4300 intf,
4301 &smi_msg,
4302 &recv_msg,
4303 0,
4304 intf->channels[0].address,
4305 intf->channels[0].lun,
4306 0, 1); /* Don't retry, and don't wait. */
4307 if (rv)
4308 atomic_sub(2, &panic_done_count);
4309 else if (intf->handlers->flush_messages)
4310 intf->handlers->flush_messages(intf->send_info);
4311
4312 while (atomic_read(&panic_done_count) != 0)
4313 ipmi_poll(intf);
4314 }
4315
4316 #ifdef CONFIG_IPMI_PANIC_STRING
4317 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4318 {
4319 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4320 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4321 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4322 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4323 /* A get event receiver command, save it. */
4324 intf->event_receiver = msg->msg.data[1];
4325 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4326 }
4327 }
4328
4329 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4330 {
4331 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4332 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4333 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4334 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4335 /*
4336 * A get device id command, save if we are an event
4337 * receiver or generator.
4338 */
4339 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4340 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4341 }
4342 }
4343 #endif
4344
4345 static void send_panic_events(char *str)
4346 {
4347 struct kernel_ipmi_msg msg;
4348 ipmi_smi_t intf;
4349 unsigned char data[16];
4350 struct ipmi_system_interface_addr *si;
4351 struct ipmi_addr addr;
4352
4353 si = (struct ipmi_system_interface_addr *) &addr;
4354 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4355 si->channel = IPMI_BMC_CHANNEL;
4356 si->lun = 0;
4357
4358 /* Fill in an event telling that we have failed. */
4359 msg.netfn = 0x04; /* Sensor or Event. */
4360 msg.cmd = 2; /* Platform event command. */
4361 msg.data = data;
4362 msg.data_len = 8;
4363 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4364 data[1] = 0x03; /* This is for IPMI 1.0. */
4365 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4366 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4367 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4368
4369 /*
4370 * Put a few breadcrumbs in. Hopefully later we can add more things
4371 * to make the panic events more useful.
4372 */
4373 if (str) {
4374 data[3] = str[0];
4375 data[6] = str[1];
4376 data[7] = str[2];
4377 }
4378
4379 /* For every registered interface, send the event. */
4380 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4381 if (!intf->handlers)
4382 /* Interface is not ready. */
4383 continue;
4384
4385 /* Send the event announcing the panic. */
4386 ipmi_panic_request_and_wait(intf, &addr, &msg);
4387 }
4388
4389 #ifdef CONFIG_IPMI_PANIC_STRING
4390 /*
4391 * On every interface, dump a bunch of OEM event holding the
4392 * string.
4393 */
4394 if (!str)
4395 return;
4396
4397 /* For every registered interface, send the event. */
4398 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4399 char *p = str;
4400 struct ipmi_ipmb_addr *ipmb;
4401 int j;
4402
4403 if (intf->intf_num == -1)
4404 /* Interface was not ready yet. */
4405 continue;
4406
4407 /*
4408 * intf_num is used as an marker to tell if the
4409 * interface is valid. Thus we need a read barrier to
4410 * make sure data fetched before checking intf_num
4411 * won't be used.
4412 */
4413 smp_rmb();
4414
4415 /*
4416 * First job here is to figure out where to send the
4417 * OEM events. There's no way in IPMI to send OEM
4418 * events using an event send command, so we have to
4419 * find the SEL to put them in and stick them in
4420 * there.
4421 */
4422
4423 /* Get capabilities from the get device id. */
4424 intf->local_sel_device = 0;
4425 intf->local_event_generator = 0;
4426 intf->event_receiver = 0;
4427
4428 /* Request the device info from the local MC. */
4429 msg.netfn = IPMI_NETFN_APP_REQUEST;
4430 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4431 msg.data = NULL;
4432 msg.data_len = 0;
4433 intf->null_user_handler = device_id_fetcher;
4434 ipmi_panic_request_and_wait(intf, &addr, &msg);
4435
4436 if (intf->local_event_generator) {
4437 /* Request the event receiver from the local MC. */
4438 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4439 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4440 msg.data = NULL;
4441 msg.data_len = 0;
4442 intf->null_user_handler = event_receiver_fetcher;
4443 ipmi_panic_request_and_wait(intf, &addr, &msg);
4444 }
4445 intf->null_user_handler = NULL;
4446
4447 /*
4448 * Validate the event receiver. The low bit must not
4449 * be 1 (it must be a valid IPMB address), it cannot
4450 * be zero, and it must not be my address.
4451 */
4452 if (((intf->event_receiver & 1) == 0)
4453 && (intf->event_receiver != 0)
4454 && (intf->event_receiver != intf->channels[0].address)) {
4455 /*
4456 * The event receiver is valid, send an IPMB
4457 * message.
4458 */
4459 ipmb = (struct ipmi_ipmb_addr *) &addr;
4460 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4461 ipmb->channel = 0; /* FIXME - is this right? */
4462 ipmb->lun = intf->event_receiver_lun;
4463 ipmb->slave_addr = intf->event_receiver;
4464 } else if (intf->local_sel_device) {
4465 /*
4466 * The event receiver was not valid (or was
4467 * me), but I am an SEL device, just dump it
4468 * in my SEL.
4469 */
4470 si = (struct ipmi_system_interface_addr *) &addr;
4471 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4472 si->channel = IPMI_BMC_CHANNEL;
4473 si->lun = 0;
4474 } else
4475 continue; /* No where to send the event. */
4476
4477 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4478 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4479 msg.data = data;
4480 msg.data_len = 16;
4481
4482 j = 0;
4483 while (*p) {
4484 int size = strlen(p);
4485
4486 if (size > 11)
4487 size = 11;
4488 data[0] = 0;
4489 data[1] = 0;
4490 data[2] = 0xf0; /* OEM event without timestamp. */
4491 data[3] = intf->channels[0].address;
4492 data[4] = j++; /* sequence # */
4493 /*
4494 * Always give 11 bytes, so strncpy will fill
4495 * it with zeroes for me.
4496 */
4497 strncpy(data+5, p, 11);
4498 p += size;
4499
4500 ipmi_panic_request_and_wait(intf, &addr, &msg);
4501 }
4502 }
4503 #endif /* CONFIG_IPMI_PANIC_STRING */
4504 }
4505 #endif /* CONFIG_IPMI_PANIC_EVENT */
4506
4507 static int has_panicked;
4508
4509 static int panic_event(struct notifier_block *this,
4510 unsigned long event,
4511 void *ptr)
4512 {
4513 ipmi_smi_t intf;
4514
4515 if (has_panicked)
4516 return NOTIFY_DONE;
4517 has_panicked = 1;
4518
4519 /* For every registered interface, set it to run to completion. */
4520 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4521 if (!intf->handlers)
4522 /* Interface is not ready. */
4523 continue;
4524
4525 /*
4526 * If we were interrupted while locking xmit_msgs_lock or
4527 * waiting_rcv_msgs_lock, the corresponding list may be
4528 * corrupted. In this case, drop items on the list for
4529 * the safety.
4530 */
4531 if (!spin_trylock(&intf->xmit_msgs_lock)) {
4532 INIT_LIST_HEAD(&intf->xmit_msgs);
4533 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4534 } else
4535 spin_unlock(&intf->xmit_msgs_lock);
4536
4537 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4538 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4539 else
4540 spin_unlock(&intf->waiting_rcv_msgs_lock);
4541
4542 intf->run_to_completion = 1;
4543 intf->handlers->set_run_to_completion(intf->send_info, 1);
4544 }
4545
4546 #ifdef CONFIG_IPMI_PANIC_EVENT
4547 send_panic_events(ptr);
4548 #endif
4549
4550 return NOTIFY_DONE;
4551 }
4552
4553 static struct notifier_block panic_block = {
4554 .notifier_call = panic_event,
4555 .next = NULL,
4556 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4557 };
4558
4559 static int ipmi_init_msghandler(void)
4560 {
4561 int rv;
4562
4563 if (initialized)
4564 return 0;
4565
4566 rv = driver_register(&ipmidriver.driver);
4567 if (rv) {
4568 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4569 return rv;
4570 }
4571
4572 printk(KERN_INFO "ipmi message handler version "
4573 IPMI_DRIVER_VERSION "\n");
4574
4575 #ifdef CONFIG_PROC_FS
4576 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4577 if (!proc_ipmi_root) {
4578 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4579 driver_unregister(&ipmidriver.driver);
4580 return -ENOMEM;
4581 }
4582
4583 #endif /* CONFIG_PROC_FS */
4584
4585 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4586 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4587
4588 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4589
4590 initialized = 1;
4591
4592 return 0;
4593 }
4594
4595 static int __init ipmi_init_msghandler_mod(void)
4596 {
4597 ipmi_init_msghandler();
4598 return 0;
4599 }
4600
4601 static void __exit cleanup_ipmi(void)
4602 {
4603 int count;
4604
4605 if (!initialized)
4606 return;
4607
4608 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4609
4610 /*
4611 * This can't be called if any interfaces exist, so no worry
4612 * about shutting down the interfaces.
4613 */
4614
4615 /*
4616 * Tell the timer to stop, then wait for it to stop. This
4617 * avoids problems with race conditions removing the timer
4618 * here.
4619 */
4620 atomic_inc(&stop_operation);
4621 del_timer_sync(&ipmi_timer);
4622
4623 #ifdef CONFIG_PROC_FS
4624 proc_remove(proc_ipmi_root);
4625 #endif /* CONFIG_PROC_FS */
4626
4627 driver_unregister(&ipmidriver.driver);
4628
4629 initialized = 0;
4630
4631 /* Check for buffer leaks. */
4632 count = atomic_read(&smi_msg_inuse_count);
4633 if (count != 0)
4634 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4635 count);
4636 count = atomic_read(&recv_msg_inuse_count);
4637 if (count != 0)
4638 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4639 count);
4640 }
4641 module_exit(cleanup_ipmi);
4642
4643 module_init(ipmi_init_msghandler_mod);
4644 MODULE_LICENSE("GPL");
4645 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4646 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4647 " interface.");
4648 MODULE_VERSION(IPMI_DRIVER_VERSION);
4649 MODULE_SOFTDEP("post: ipmi_devintf");