]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
crypto: qat - change the adf_ctl_stop_devices to void
[mirror_ubuntu-hirsute-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
89
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
108 };
109
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111
112 #define DEVICE_NAME "ipmi_si"
113
114 static struct platform_driver ipmi_driver;
115
116 /*
117 * Indexes into stats[] in smi_info below.
118 */
119 enum si_stat_indexes {
120 /*
121 * Number of times the driver requested a timer while an operation
122 * was in progress.
123 */
124 SI_STAT_short_timeouts = 0,
125
126 /*
127 * Number of times the driver requested a timer while nothing was in
128 * progress.
129 */
130 SI_STAT_long_timeouts,
131
132 /* Number of times the interface was idle while being polled. */
133 SI_STAT_idles,
134
135 /* Number of interrupts the driver handled. */
136 SI_STAT_interrupts,
137
138 /* Number of time the driver got an ATTN from the hardware. */
139 SI_STAT_attentions,
140
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches,
143
144 /* Number of times the hardware didn't follow the state machine. */
145 SI_STAT_hosed_count,
146
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions,
149
150 /* Number of IPMI events received from the hardware. */
151 SI_STAT_events,
152
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts,
155
156 /* Number of asynchronous messages received. */
157 SI_STAT_incoming_messages,
158
159
160 /* This *must* remain last, add new values above this. */
161 SI_NUM_STATS
162 };
163
164 struct smi_info {
165 int intf_num;
166 ipmi_smi_t intf;
167 struct si_sm_data *si_sm;
168 const struct si_sm_handlers *handlers;
169 enum si_type si_type;
170 spinlock_t si_lock;
171 struct ipmi_smi_msg *waiting_msg;
172 struct ipmi_smi_msg *curr_msg;
173 enum si_intf_state si_state;
174
175 /*
176 * Used to handle the various types of I/O that can occur with
177 * IPMI
178 */
179 struct si_sm_io io;
180 int (*io_setup)(struct smi_info *info);
181 void (*io_cleanup)(struct smi_info *info);
182 int (*irq_setup)(struct smi_info *info);
183 void (*irq_cleanup)(struct smi_info *info);
184 unsigned int io_size;
185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 void (*addr_source_cleanup)(struct smi_info *info);
187 void *addr_source_data;
188
189 /*
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
193 */
194 int (*oem_data_avail_handler)(struct smi_info *smi_info);
195
196 /*
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
199 * from the flags.
200 */
201 #define RECEIVE_MSG_AVAIL 0x01
202 #define EVENT_MSG_BUFFER_FULL 0x02
203 #define WDT_PRE_TIMEOUT_INT 0x08
204 #define OEM0_DATA_AVAIL 0x20
205 #define OEM1_DATA_AVAIL 0x40
206 #define OEM2_DATA_AVAIL 0x80
207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
208 OEM1_DATA_AVAIL | \
209 OEM2_DATA_AVAIL)
210 unsigned char msg_flags;
211
212 /* Does the BMC have an event buffer? */
213 bool has_event_buffer;
214
215 /*
216 * If set to true, this will request events the next time the
217 * state machine is idle.
218 */
219 atomic_t req_events;
220
221 /*
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
224 * out.
225 */
226 bool run_to_completion;
227
228 /* The I/O port of an SI interface. */
229 int port;
230
231 /*
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
235 */
236 unsigned int spacing;
237
238 /* zero if no irq; */
239 int irq;
240
241 /* The timer for this si. */
242 struct timer_list si_timer;
243
244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 bool timer_running;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Are we waiting for the events, pretimeouts, received msgs? */
251 atomic_t need_watch;
252
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
259 bool interrupt_disabled;
260
261 /*
262 * Does the BMC support events?
263 */
264 bool supports_event_msg_buff;
265
266 /*
267 * Can we disable interrupts the global enables receive irq
268 * bit? There are currently two forms of brokenness, some
269 * systems cannot disable the bit (which is technically within
270 * the spec but a bad idea) and some systems have the bit
271 * forced to zero even though interrupts work (which is
272 * clearly outside the spec). The next bool tells which form
273 * of brokenness is present.
274 */
275 bool cannot_disable_irq;
276
277 /*
278 * Some systems are broken and cannot set the irq enable
279 * bit, even if they support interrupts.
280 */
281 bool irq_enable_broken;
282
283 /*
284 * Did we get an attention that we did not handle?
285 */
286 bool got_attn;
287
288 /* From the get device id response... */
289 struct ipmi_device_id device_id;
290
291 /* Driver model stuff. */
292 struct device *dev;
293 struct platform_device *pdev;
294
295 /*
296 * True if we allocated the device, false if it came from
297 * someplace else (like PCI).
298 */
299 bool dev_registered;
300
301 /* Slave address, could be reported from DMI. */
302 unsigned char slave_addr;
303
304 /* Counters and things for the proc filesystem. */
305 atomic_t stats[SI_NUM_STATS];
306
307 struct task_struct *thread;
308
309 struct list_head link;
310 union ipmi_smi_info_union addr_info;
311 };
312
313 #define smi_inc_stat(smi, stat) \
314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317
318 #define SI_MAX_PARMS 4
319
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331
332 static bool unload_when_empty = true;
333
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342 struct timespec64 t;
343
344 getnstimeofday64(&t);
345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356
357 static void deliver_recv_msg(struct smi_info *smi_info,
358 struct ipmi_smi_msg *msg)
359 {
360 /* Deliver the message to the upper layer. */
361 if (smi_info->intf)
362 ipmi_smi_msg_received(smi_info->intf, msg);
363 else
364 ipmi_free_smi_msg(msg);
365 }
366
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369 struct ipmi_smi_msg *msg = smi_info->curr_msg;
370
371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 cCode = IPMI_ERR_UNSPECIFIED;
373 /* else use it as is */
374
375 /* Make it a response */
376 msg->rsp[0] = msg->data[0] | 4;
377 msg->rsp[1] = msg->data[1];
378 msg->rsp[2] = cCode;
379 msg->rsp_size = 3;
380
381 smi_info->curr_msg = NULL;
382 deliver_recv_msg(smi_info, msg);
383 }
384
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387 int rv;
388
389 if (!smi_info->waiting_msg) {
390 smi_info->curr_msg = NULL;
391 rv = SI_SM_IDLE;
392 } else {
393 int err;
394
395 smi_info->curr_msg = smi_info->waiting_msg;
396 smi_info->waiting_msg = NULL;
397 debug_timestamp("Start2");
398 err = atomic_notifier_call_chain(&xaction_notifier_list,
399 0, smi_info);
400 if (err & NOTIFY_STOP_MASK) {
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 goto out;
403 }
404 err = smi_info->handlers->start_transaction(
405 smi_info->si_sm,
406 smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
408 if (err)
409 return_hosed_msg(smi_info, err);
410
411 rv = SI_SM_CALL_WITHOUT_DELAY;
412 }
413 out:
414 return rv;
415 }
416
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419 smi_info->last_timeout_jiffies = jiffies;
420 mod_timer(&smi_info->si_timer, new_val);
421 smi_info->timer_running = true;
422 }
423
424 /*
425 * Start a new message and (re)start the timer and thread.
426 */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 unsigned int size)
429 {
430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431
432 if (smi_info->thread)
433 wake_up_process(smi_info->thread);
434
435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440 unsigned char msg[2];
441
442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444
445 if (start_timer)
446 start_new_msg(smi_info, msg, 2);
447 else
448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449 smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454 unsigned char msg[3];
455
456 /* Make sure the watchdog pre-timeout flag is not set at startup. */
457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 msg[2] = WDT_PRE_TIMEOUT_INT;
460
461 if (start_timer)
462 start_new_msg(smi_info, msg, 3);
463 else
464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465 smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 smi_info->curr_msg->data_size = 2;
473
474 start_new_msg(smi_info, smi_info->curr_msg->data,
475 smi_info->curr_msg->data_size);
476 smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 smi_info->curr_msg->data_size = 2;
484
485 start_new_msg(smi_info, smi_info->curr_msg->data,
486 smi_info->curr_msg->data_size);
487 smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491 * When we have a situtaion where we run out of memory and cannot
492 * allocate messages, we just leave them in the BMC and run the system
493 * polled until we can allocate some memory. Once we have some
494 * memory, we will re-enable the interrupt.
495 *
496 * Note that we cannot just use disable_irq(), since the interrupt may
497 * be shared.
498 */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 smi_info->interrupt_disabled = true;
503 start_check_enables(smi_info, start_timer);
504 return true;
505 }
506 return false;
507 }
508
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 smi_info->interrupt_disabled = false;
513 start_check_enables(smi_info, true);
514 return true;
515 }
516 return false;
517 }
518
519 /*
520 * Allocate a message. If unable to allocate, start the interrupt
521 * disable process and return NULL. If able to allocate but
522 * interrupts are disabled, free the message and return NULL after
523 * starting the interrupt enable process.
524 */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 struct ipmi_smi_msg *msg;
528
529 msg = ipmi_alloc_smi_msg();
530 if (!msg) {
531 if (!disable_si_irq(smi_info, true))
532 smi_info->si_state = SI_NORMAL;
533 } else if (enable_si_irq(smi_info)) {
534 ipmi_free_smi_msg(msg);
535 msg = NULL;
536 }
537 return msg;
538 }
539
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 /* Watchdog pre-timeout */
545 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547 start_clear_flags(smi_info, true);
548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 if (smi_info->intf)
550 ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 /* Messages available. */
553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 if (!smi_info->curr_msg)
555 return;
556
557 start_getting_msg_queue(smi_info);
558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 /* Events available. */
560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 if (!smi_info->curr_msg)
562 return;
563
564 start_getting_events(smi_info);
565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 smi_info->oem_data_avail_handler) {
567 if (smi_info->oem_data_avail_handler(smi_info))
568 goto retry;
569 } else
570 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574 * Global enables we care about.
575 */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 IPMI_BMC_EVT_MSG_INTR)
578
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 bool *irq_on)
581 {
582 u8 enables = 0;
583
584 if (smi_info->supports_event_msg_buff)
585 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 smi_info->cannot_disable_irq) &&
589 !smi_info->irq_enable_broken)
590 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592 if (smi_info->supports_event_msg_buff &&
593 smi_info->irq && !smi_info->interrupt_disabled &&
594 !smi_info->irq_enable_broken)
595 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599 return enables;
600 }
601
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608 if ((bool)irqstate == irq_on)
609 return;
610
611 if (irq_on)
612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 else
615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 struct ipmi_smi_msg *msg;
621
622 debug_timestamp("Done");
623 switch (smi_info->si_state) {
624 case SI_NORMAL:
625 if (!smi_info->curr_msg)
626 break;
627
628 smi_info->curr_msg->rsp_size
629 = smi_info->handlers->get_result(
630 smi_info->si_sm,
631 smi_info->curr_msg->rsp,
632 IPMI_MAX_MSG_LENGTH);
633
634 /*
635 * Do this here becase deliver_recv_msg() releases the
636 * lock, and a new message can be put in during the
637 * time the lock is released.
638 */
639 msg = smi_info->curr_msg;
640 smi_info->curr_msg = NULL;
641 deliver_recv_msg(smi_info, msg);
642 break;
643
644 case SI_GETTING_FLAGS:
645 {
646 unsigned char msg[4];
647 unsigned int len;
648
649 /* We got the flags from the SMI, now handle them. */
650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 if (msg[2] != 0) {
652 /* Error fetching flags, just give up for now. */
653 smi_info->si_state = SI_NORMAL;
654 } else if (len < 4) {
655 /*
656 * Hmm, no flags. That's technically illegal, but
657 * don't use uninitialized data.
658 */
659 smi_info->si_state = SI_NORMAL;
660 } else {
661 smi_info->msg_flags = msg[3];
662 handle_flags(smi_info);
663 }
664 break;
665 }
666
667 case SI_CLEARING_FLAGS:
668 {
669 unsigned char msg[3];
670
671 /* We cleared the flags. */
672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 if (msg[2] != 0) {
674 /* Error clearing flags */
675 dev_warn(smi_info->dev,
676 "Error clearing flags: %2.2x\n", msg[2]);
677 }
678 smi_info->si_state = SI_NORMAL;
679 break;
680 }
681
682 case SI_GETTING_EVENTS:
683 {
684 smi_info->curr_msg->rsp_size
685 = smi_info->handlers->get_result(
686 smi_info->si_sm,
687 smi_info->curr_msg->rsp,
688 IPMI_MAX_MSG_LENGTH);
689
690 /*
691 * Do this here becase deliver_recv_msg() releases the
692 * lock, and a new message can be put in during the
693 * time the lock is released.
694 */
695 msg = smi_info->curr_msg;
696 smi_info->curr_msg = NULL;
697 if (msg->rsp[2] != 0) {
698 /* Error getting event, probably done. */
699 msg->done(msg);
700
701 /* Take off the event flag. */
702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 handle_flags(smi_info);
704 } else {
705 smi_inc_stat(smi_info, events);
706
707 /*
708 * Do this before we deliver the message
709 * because delivering the message releases the
710 * lock and something else can mess with the
711 * state.
712 */
713 handle_flags(smi_info);
714
715 deliver_recv_msg(smi_info, msg);
716 }
717 break;
718 }
719
720 case SI_GETTING_MESSAGES:
721 {
722 smi_info->curr_msg->rsp_size
723 = smi_info->handlers->get_result(
724 smi_info->si_sm,
725 smi_info->curr_msg->rsp,
726 IPMI_MAX_MSG_LENGTH);
727
728 /*
729 * Do this here becase deliver_recv_msg() releases the
730 * lock, and a new message can be put in during the
731 * time the lock is released.
732 */
733 msg = smi_info->curr_msg;
734 smi_info->curr_msg = NULL;
735 if (msg->rsp[2] != 0) {
736 /* Error getting event, probably done. */
737 msg->done(msg);
738
739 /* Take off the msg flag. */
740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 handle_flags(smi_info);
742 } else {
743 smi_inc_stat(smi_info, incoming_messages);
744
745 /*
746 * Do this before we deliver the message
747 * because delivering the message releases the
748 * lock and something else can mess with the
749 * state.
750 */
751 handle_flags(smi_info);
752
753 deliver_recv_msg(smi_info, msg);
754 }
755 break;
756 }
757
758 case SI_CHECKING_ENABLES:
759 {
760 unsigned char msg[4];
761 u8 enables;
762 bool irq_on;
763
764 /* We got the flags from the SMI, now handle them. */
765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 if (msg[2] != 0) {
767 dev_warn(smi_info->dev,
768 "Couldn't get irq info: %x.\n", msg[2]);
769 dev_warn(smi_info->dev,
770 "Maybe ok, but ipmi might run very slowly.\n");
771 smi_info->si_state = SI_NORMAL;
772 break;
773 }
774 enables = current_global_enables(smi_info, 0, &irq_on);
775 if (smi_info->si_type == SI_BT)
776 /* BT has its own interrupt enable bit. */
777 check_bt_irq(smi_info, irq_on);
778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 /* Enables are not correct, fix them. */
780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 smi_info->handlers->start_transaction(
784 smi_info->si_sm, msg, 3);
785 smi_info->si_state = SI_SETTING_ENABLES;
786 } else if (smi_info->supports_event_msg_buff) {
787 smi_info->curr_msg = ipmi_alloc_smi_msg();
788 if (!smi_info->curr_msg) {
789 smi_info->si_state = SI_NORMAL;
790 break;
791 }
792 start_getting_msg_queue(smi_info);
793 } else {
794 smi_info->si_state = SI_NORMAL;
795 }
796 break;
797 }
798
799 case SI_SETTING_ENABLES:
800 {
801 unsigned char msg[4];
802
803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 if (msg[2] != 0)
805 dev_warn(smi_info->dev,
806 "Could not set the global enables: 0x%x.\n",
807 msg[2]);
808
809 if (smi_info->supports_event_msg_buff) {
810 smi_info->curr_msg = ipmi_alloc_smi_msg();
811 if (!smi_info->curr_msg) {
812 smi_info->si_state = SI_NORMAL;
813 break;
814 }
815 start_getting_msg_queue(smi_info);
816 } else {
817 smi_info->si_state = SI_NORMAL;
818 }
819 break;
820 }
821 }
822 }
823
824 /*
825 * Called on timeouts and events. Timeouts should pass the elapsed
826 * time, interrupts should pass in zero. Must be called with
827 * si_lock held and interrupts disabled.
828 */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 int time)
831 {
832 enum si_sm_result si_sm_result;
833
834 restart:
835 /*
836 * There used to be a loop here that waited a little while
837 * (around 25us) before giving up. That turned out to be
838 * pointless, the minimum delays I was seeing were in the 300us
839 * range, which is far too long to wait in an interrupt. So
840 * we just run until the state machine tells us something
841 * happened or it needs a delay.
842 */
843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 time = 0;
845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 smi_inc_stat(smi_info, complete_transactions);
850
851 handle_transaction_done(smi_info);
852 goto restart;
853 } else if (si_sm_result == SI_SM_HOSED) {
854 smi_inc_stat(smi_info, hosed_count);
855
856 /*
857 * Do the before return_hosed_msg, because that
858 * releases the lock.
859 */
860 smi_info->si_state = SI_NORMAL;
861 if (smi_info->curr_msg != NULL) {
862 /*
863 * If we were handling a user message, format
864 * a response to send to the upper layer to
865 * tell it about the error.
866 */
867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 }
869 goto restart;
870 }
871
872 /*
873 * We prefer handling attn over new messages. But don't do
874 * this if there is not yet an upper layer to handle anything.
875 */
876 if (likely(smi_info->intf) &&
877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 unsigned char msg[2];
879
880 if (smi_info->si_state != SI_NORMAL) {
881 /*
882 * We got an ATTN, but we are doing something else.
883 * Handle the ATTN later.
884 */
885 smi_info->got_attn = true;
886 } else {
887 smi_info->got_attn = false;
888 smi_inc_stat(smi_info, attentions);
889
890 /*
891 * Got a attn, send down a get message flags to see
892 * what's causing it. It would be better to handle
893 * this in the upper layer, but due to the way
894 * interrupts work with the SMI, that's not really
895 * possible.
896 */
897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900 start_new_msg(smi_info, msg, 2);
901 smi_info->si_state = SI_GETTING_FLAGS;
902 goto restart;
903 }
904 }
905
906 /* If we are currently idle, try to start the next message. */
907 if (si_sm_result == SI_SM_IDLE) {
908 smi_inc_stat(smi_info, idles);
909
910 si_sm_result = start_next_msg(smi_info);
911 if (si_sm_result != SI_SM_IDLE)
912 goto restart;
913 }
914
915 if ((si_sm_result == SI_SM_IDLE)
916 && (atomic_read(&smi_info->req_events))) {
917 /*
918 * We are idle and the upper layer requested that I fetch
919 * events, so do so.
920 */
921 atomic_set(&smi_info->req_events, 0);
922
923 /*
924 * Take this opportunity to check the interrupt and
925 * message enable state for the BMC. The BMC can be
926 * asynchronously reset, and may thus get interrupts
927 * disable and messages disabled.
928 */
929 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 start_check_enables(smi_info, true);
931 } else {
932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 if (!smi_info->curr_msg)
934 goto out;
935
936 start_getting_events(smi_info);
937 }
938 goto restart;
939 }
940
941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 /* Ok it if fails, the timer will just go off. */
943 if (del_timer(&smi_info->si_timer))
944 smi_info->timer_running = false;
945 }
946
947 out:
948 return si_sm_result;
949 }
950
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956 if (smi_info->thread)
957 wake_up_process(smi_info->thread);
958
959 start_next_msg(smi_info);
960 smi_event_handler(smi_info, 0);
961 }
962 }
963
964 static void flush_messages(void *send_info)
965 {
966 struct smi_info *smi_info = send_info;
967 enum si_sm_result result;
968
969 /*
970 * Currently, this function is called only in run-to-completion
971 * mode. This means we are single-threaded, no need for locks.
972 */
973 result = smi_event_handler(smi_info, 0);
974 while (result != SI_SM_IDLE) {
975 udelay(SI_SHORT_TIMEOUT_USEC);
976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 }
978 }
979
980 static void sender(void *send_info,
981 struct ipmi_smi_msg *msg)
982 {
983 struct smi_info *smi_info = send_info;
984 unsigned long flags;
985
986 debug_timestamp("Enqueue");
987
988 if (smi_info->run_to_completion) {
989 /*
990 * If we are running to completion, start it. Upper
991 * layer will call flush_messages to clear it out.
992 */
993 smi_info->waiting_msg = msg;
994 return;
995 }
996
997 spin_lock_irqsave(&smi_info->si_lock, flags);
998 /*
999 * The following two lines don't need to be under the lock for
1000 * the lock's sake, but they do need SMP memory barriers to
1001 * avoid getting things out of order. We are already claiming
1002 * the lock, anyway, so just do it under the lock to avoid the
1003 * ordering problem.
1004 */
1005 BUG_ON(smi_info->waiting_msg);
1006 smi_info->waiting_msg = msg;
1007 check_start_timer_thread(smi_info);
1008 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 struct smi_info *smi_info = send_info;
1014
1015 smi_info->run_to_completion = i_run_to_completion;
1016 if (i_run_to_completion)
1017 flush_messages(smi_info);
1018 }
1019
1020 /*
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1023 * between checks
1024 */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 return ts->tv_nsec != -1;
1032 }
1033
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 const struct smi_info *smi_info,
1036 struct timespec64 *busy_until)
1037 {
1038 unsigned int max_busy_us = 0;
1039
1040 if (smi_info->intf_num < num_max_busy_us)
1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 ipmi_si_set_not_busy(busy_until);
1044 else if (!ipmi_si_is_busy(busy_until)) {
1045 getnstimeofday64(busy_until);
1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 } else {
1048 struct timespec64 now;
1049
1050 getnstimeofday64(&now);
1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 ipmi_si_set_not_busy(busy_until);
1053 return 0;
1054 }
1055 }
1056 return 1;
1057 }
1058
1059
1060 /*
1061 * A busy-waiting loop for speeding up IPMI operation.
1062 *
1063 * Lousy hardware makes this hard. This is only enabled for systems
1064 * that are not BT and do not have interrupts. It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1068 */
1069 static int ipmi_thread(void *data)
1070 {
1071 struct smi_info *smi_info = data;
1072 unsigned long flags;
1073 enum si_sm_result smi_result;
1074 struct timespec64 busy_until;
1075
1076 ipmi_si_set_not_busy(&busy_until);
1077 set_user_nice(current, MAX_NICE);
1078 while (!kthread_should_stop()) {
1079 int busy_wait;
1080
1081 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 smi_result = smi_event_handler(smi_info, 0);
1083
1084 /*
1085 * If the driver is doing something, there is a possible
1086 * race with the timer. If the timer handler see idle,
1087 * and the thread here sees something else, the timer
1088 * handler won't restart the timer even though it is
1089 * required. So start it here if necessary.
1090 */
1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 &busy_until);
1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 ; /* do nothing */
1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100 schedule();
1101 else if (smi_result == SI_SM_IDLE) {
1102 if (atomic_read(&smi_info->need_watch)) {
1103 schedule_timeout_interruptible(100);
1104 } else {
1105 /* Wait to be woken up when we are needed. */
1106 __set_current_state(TASK_INTERRUPTIBLE);
1107 schedule();
1108 }
1109 } else
1110 schedule_timeout_interruptible(1);
1111 }
1112 return 0;
1113 }
1114
1115
1116 static void poll(void *send_info)
1117 {
1118 struct smi_info *smi_info = send_info;
1119 unsigned long flags = 0;
1120 bool run_to_completion = smi_info->run_to_completion;
1121
1122 /*
1123 * Make sure there is some delay in the poll loop so we can
1124 * drive time forward and timeout things.
1125 */
1126 udelay(10);
1127 if (!run_to_completion)
1128 spin_lock_irqsave(&smi_info->si_lock, flags);
1129 smi_event_handler(smi_info, 10);
1130 if (!run_to_completion)
1131 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133
1134 static void request_events(void *send_info)
1135 {
1136 struct smi_info *smi_info = send_info;
1137
1138 if (!smi_info->has_event_buffer)
1139 return;
1140
1141 atomic_set(&smi_info->req_events, 1);
1142 }
1143
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146 struct smi_info *smi_info = send_info;
1147 unsigned long flags;
1148
1149 atomic_set(&smi_info->need_watch, enable);
1150 spin_lock_irqsave(&smi_info->si_lock, flags);
1151 check_start_timer_thread(smi_info);
1152 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154
1155 static int initialized;
1156
1157 static void smi_timeout(unsigned long data)
1158 {
1159 struct smi_info *smi_info = (struct smi_info *) data;
1160 enum si_sm_result smi_result;
1161 unsigned long flags;
1162 unsigned long jiffies_now;
1163 long time_diff;
1164 long timeout;
1165
1166 spin_lock_irqsave(&(smi_info->si_lock), flags);
1167 debug_timestamp("Timer");
1168
1169 jiffies_now = jiffies;
1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171 * SI_USEC_PER_JIFFY);
1172 smi_result = smi_event_handler(smi_info, time_diff);
1173
1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175 /* Running with interrupts, only do long timeouts. */
1176 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 smi_inc_stat(smi_info, long_timeouts);
1178 goto do_mod_timer;
1179 }
1180
1181 /*
1182 * If the state machine asks for a short delay, then shorten
1183 * the timer timeout.
1184 */
1185 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186 smi_inc_stat(smi_info, short_timeouts);
1187 timeout = jiffies + 1;
1188 } else {
1189 smi_inc_stat(smi_info, long_timeouts);
1190 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191 }
1192
1193 do_mod_timer:
1194 if (smi_result != SI_SM_IDLE)
1195 smi_mod_timer(smi_info, timeout);
1196 else
1197 smi_info->timer_running = false;
1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203 struct smi_info *smi_info = data;
1204 unsigned long flags;
1205
1206 spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
1208 smi_inc_stat(smi_info, interrupts);
1209
1210 debug_timestamp("Interrupt");
1211
1212 smi_event_handler(smi_info, 0);
1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 return IRQ_HANDLED;
1215 }
1216
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219 struct smi_info *smi_info = data;
1220 /* We need to clear the IRQ flag for the BT interface. */
1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224 return si_irq_handler(irq, data);
1225 }
1226
1227 static int smi_start_processing(void *send_info,
1228 ipmi_smi_t intf)
1229 {
1230 struct smi_info *new_smi = send_info;
1231 int enable = 0;
1232
1233 new_smi->intf = intf;
1234
1235 /* Set up the timer that drives the interface. */
1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238
1239 /* Try to claim any interrupts. */
1240 if (new_smi->irq_setup)
1241 new_smi->irq_setup(new_smi);
1242
1243 /*
1244 * Check if the user forcefully enabled the daemon.
1245 */
1246 if (new_smi->intf_num < num_force_kipmid)
1247 enable = force_kipmid[new_smi->intf_num];
1248 /*
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1251 */
1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 enable = 1;
1254
1255 if (enable) {
1256 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 "kipmi%d", new_smi->intf_num);
1258 if (IS_ERR(new_smi->thread)) {
1259 dev_notice(new_smi->dev, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi->thread));
1263 new_smi->thread = NULL;
1264 }
1265 }
1266
1267 return 0;
1268 }
1269
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272 struct smi_info *smi = send_info;
1273
1274 data->addr_src = smi->addr_source;
1275 data->dev = smi->dev;
1276 data->addr_info = smi->addr_info;
1277 get_device(smi->dev);
1278
1279 return 0;
1280 }
1281
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284 struct smi_info *smi_info = send_info;
1285
1286 if (!enable)
1287 atomic_set(&smi_info->req_events, 0);
1288 }
1289
1290 static const struct ipmi_smi_handlers handlers = {
1291 .owner = THIS_MODULE,
1292 .start_processing = smi_start_processing,
1293 .get_smi_info = get_smi_info,
1294 .sender = sender,
1295 .request_events = request_events,
1296 .set_need_watch = set_need_watch,
1297 .set_maintenance_mode = set_maintenance_mode,
1298 .set_run_to_completion = set_run_to_completion,
1299 .flush_messages = flush_messages,
1300 .poll = poll,
1301 };
1302
1303 /*
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1306 */
1307
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311
1312 #define DEFAULT_REGSPACING 1
1313 #define DEFAULT_REGSIZE 1
1314
1315 #ifdef CONFIG_ACPI
1316 static bool si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool si_trydmi = true;
1320 #endif
1321 static bool si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool si_trypci = true;
1324 #endif
1325 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1326 static char *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343
1344 #define IPMI_IO_ADDR_SPACE 0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1352 " Documentation/IPMI.txt in the kernel sources for the"
1353 " gory details.");
1354
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367 " default scan of the interfaces identified via platform"
1368 " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372 " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_named(trydefaults, si_trydefaults, bool, 0);
1375 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1376 " default scan of the KCS and SMIC interface at the standard"
1377 " address");
1378 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1379 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1380 " interface separated by commas. The types are 'kcs',"
1381 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1382 " the first interface to kcs and the second to bt");
1383 module_param_array(addrs, ulong, &num_addrs, 0);
1384 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is in memory. Otherwise, set it to zero or leave"
1387 " it blank.");
1388 module_param_array(ports, uint, &num_ports, 0);
1389 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " is a port. Otherwise, set it to zero or leave"
1392 " it blank.");
1393 module_param_array(irqs, int, &num_irqs, 0);
1394 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1395 " addresses separated by commas. Only use if an interface"
1396 " has an interrupt. Otherwise, set it to zero or leave"
1397 " it blank.");
1398 module_param_array(regspacings, int, &num_regspacings, 0);
1399 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1400 " and each successive register used by the interface. For"
1401 " instance, if the start address is 0xca2 and the spacing"
1402 " is 2, then the second address is at 0xca4. Defaults"
1403 " to 1.");
1404 module_param_array(regsizes, int, &num_regsizes, 0);
1405 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1406 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1407 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1408 " the 8-bit IPMI register has to be read from a larger"
1409 " register.");
1410 module_param_array(regshifts, int, &num_regshifts, 0);
1411 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1412 " IPMI register, in bits. For instance, if the data"
1413 " is read from a 32-bit word and the IPMI data is in"
1414 " bit 8-15, then the shift would be 8");
1415 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1416 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1417 " the controller. Normally this is 0x20, but can be"
1418 " overridden by this parm. This is an array indexed"
1419 " by interface number.");
1420 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1421 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1422 " disabled(0). Normally the IPMI driver auto-detects"
1423 " this, but the value may be overridden by this parm.");
1424 module_param(unload_when_empty, bool, 0);
1425 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1426 " specified or found, default is 1. Setting to 0"
1427 " is useful for hot add of devices using hotmod.");
1428 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1429 MODULE_PARM_DESC(kipmid_max_busy_us,
1430 "Max time (in microseconds) to busy-wait for IPMI data before"
1431 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1432 " if kipmid is using up a lot of CPU time.");
1433
1434
1435 static void std_irq_cleanup(struct smi_info *info)
1436 {
1437 if (info->si_type == SI_BT)
1438 /* Disable the interrupt in the BT interface. */
1439 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1440 free_irq(info->irq, info);
1441 }
1442
1443 static int std_irq_setup(struct smi_info *info)
1444 {
1445 int rv;
1446
1447 if (!info->irq)
1448 return 0;
1449
1450 if (info->si_type == SI_BT) {
1451 rv = request_irq(info->irq,
1452 si_bt_irq_handler,
1453 IRQF_SHARED,
1454 DEVICE_NAME,
1455 info);
1456 if (!rv)
1457 /* Enable the interrupt in the BT interface. */
1458 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1459 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1460 } else
1461 rv = request_irq(info->irq,
1462 si_irq_handler,
1463 IRQF_SHARED,
1464 DEVICE_NAME,
1465 info);
1466 if (rv) {
1467 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1468 " running polled\n",
1469 DEVICE_NAME, info->irq);
1470 info->irq = 0;
1471 } else {
1472 info->irq_cleanup = std_irq_cleanup;
1473 dev_info(info->dev, "Using irq %d\n", info->irq);
1474 }
1475
1476 return rv;
1477 }
1478
1479 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1480 {
1481 unsigned int addr = io->addr_data;
1482
1483 return inb(addr + (offset * io->regspacing));
1484 }
1485
1486 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1487 unsigned char b)
1488 {
1489 unsigned int addr = io->addr_data;
1490
1491 outb(b, addr + (offset * io->regspacing));
1492 }
1493
1494 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1495 {
1496 unsigned int addr = io->addr_data;
1497
1498 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499 }
1500
1501 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1502 unsigned char b)
1503 {
1504 unsigned int addr = io->addr_data;
1505
1506 outw(b << io->regshift, addr + (offset * io->regspacing));
1507 }
1508
1509 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1510 {
1511 unsigned int addr = io->addr_data;
1512
1513 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1514 }
1515
1516 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1517 unsigned char b)
1518 {
1519 unsigned int addr = io->addr_data;
1520
1521 outl(b << io->regshift, addr+(offset * io->regspacing));
1522 }
1523
1524 static void port_cleanup(struct smi_info *info)
1525 {
1526 unsigned int addr = info->io.addr_data;
1527 int idx;
1528
1529 if (addr) {
1530 for (idx = 0; idx < info->io_size; idx++)
1531 release_region(addr + idx * info->io.regspacing,
1532 info->io.regsize);
1533 }
1534 }
1535
1536 static int port_setup(struct smi_info *info)
1537 {
1538 unsigned int addr = info->io.addr_data;
1539 int idx;
1540
1541 if (!addr)
1542 return -ENODEV;
1543
1544 info->io_cleanup = port_cleanup;
1545
1546 /*
1547 * Figure out the actual inb/inw/inl/etc routine to use based
1548 * upon the register size.
1549 */
1550 switch (info->io.regsize) {
1551 case 1:
1552 info->io.inputb = port_inb;
1553 info->io.outputb = port_outb;
1554 break;
1555 case 2:
1556 info->io.inputb = port_inw;
1557 info->io.outputb = port_outw;
1558 break;
1559 case 4:
1560 info->io.inputb = port_inl;
1561 info->io.outputb = port_outl;
1562 break;
1563 default:
1564 dev_warn(info->dev, "Invalid register size: %d\n",
1565 info->io.regsize);
1566 return -EINVAL;
1567 }
1568
1569 /*
1570 * Some BIOSes reserve disjoint I/O regions in their ACPI
1571 * tables. This causes problems when trying to register the
1572 * entire I/O region. Therefore we must register each I/O
1573 * port separately.
1574 */
1575 for (idx = 0; idx < info->io_size; idx++) {
1576 if (request_region(addr + idx * info->io.regspacing,
1577 info->io.regsize, DEVICE_NAME) == NULL) {
1578 /* Undo allocations */
1579 while (idx--) {
1580 release_region(addr + idx * info->io.regspacing,
1581 info->io.regsize);
1582 }
1583 return -EIO;
1584 }
1585 }
1586 return 0;
1587 }
1588
1589 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1590 unsigned int offset)
1591 {
1592 return readb((io->addr)+(offset * io->regspacing));
1593 }
1594
1595 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1596 unsigned char b)
1597 {
1598 writeb(b, (io->addr)+(offset * io->regspacing));
1599 }
1600
1601 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1602 unsigned int offset)
1603 {
1604 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1605 & 0xff;
1606 }
1607
1608 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1609 unsigned char b)
1610 {
1611 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1612 }
1613
1614 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1615 unsigned int offset)
1616 {
1617 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1618 & 0xff;
1619 }
1620
1621 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1622 unsigned char b)
1623 {
1624 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1625 }
1626
1627 #ifdef readq
1628 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1629 {
1630 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1631 & 0xff;
1632 }
1633
1634 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1635 unsigned char b)
1636 {
1637 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1638 }
1639 #endif
1640
1641 static void mem_cleanup(struct smi_info *info)
1642 {
1643 unsigned long addr = info->io.addr_data;
1644 int mapsize;
1645
1646 if (info->io.addr) {
1647 iounmap(info->io.addr);
1648
1649 mapsize = ((info->io_size * info->io.regspacing)
1650 - (info->io.regspacing - info->io.regsize));
1651
1652 release_mem_region(addr, mapsize);
1653 }
1654 }
1655
1656 static int mem_setup(struct smi_info *info)
1657 {
1658 unsigned long addr = info->io.addr_data;
1659 int mapsize;
1660
1661 if (!addr)
1662 return -ENODEV;
1663
1664 info->io_cleanup = mem_cleanup;
1665
1666 /*
1667 * Figure out the actual readb/readw/readl/etc routine to use based
1668 * upon the register size.
1669 */
1670 switch (info->io.regsize) {
1671 case 1:
1672 info->io.inputb = intf_mem_inb;
1673 info->io.outputb = intf_mem_outb;
1674 break;
1675 case 2:
1676 info->io.inputb = intf_mem_inw;
1677 info->io.outputb = intf_mem_outw;
1678 break;
1679 case 4:
1680 info->io.inputb = intf_mem_inl;
1681 info->io.outputb = intf_mem_outl;
1682 break;
1683 #ifdef readq
1684 case 8:
1685 info->io.inputb = mem_inq;
1686 info->io.outputb = mem_outq;
1687 break;
1688 #endif
1689 default:
1690 dev_warn(info->dev, "Invalid register size: %d\n",
1691 info->io.regsize);
1692 return -EINVAL;
1693 }
1694
1695 /*
1696 * Calculate the total amount of memory to claim. This is an
1697 * unusual looking calculation, but it avoids claiming any
1698 * more memory than it has to. It will claim everything
1699 * between the first address to the end of the last full
1700 * register.
1701 */
1702 mapsize = ((info->io_size * info->io.regspacing)
1703 - (info->io.regspacing - info->io.regsize));
1704
1705 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1706 return -EIO;
1707
1708 info->io.addr = ioremap(addr, mapsize);
1709 if (info->io.addr == NULL) {
1710 release_mem_region(addr, mapsize);
1711 return -EIO;
1712 }
1713 return 0;
1714 }
1715
1716 /*
1717 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1718 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1719 * Options are:
1720 * rsp=<regspacing>
1721 * rsi=<regsize>
1722 * rsh=<regshift>
1723 * irq=<irq>
1724 * ipmb=<ipmb addr>
1725 */
1726 enum hotmod_op { HM_ADD, HM_REMOVE };
1727 struct hotmod_vals {
1728 const char *name;
1729 const int val;
1730 };
1731
1732 static const struct hotmod_vals hotmod_ops[] = {
1733 { "add", HM_ADD },
1734 { "remove", HM_REMOVE },
1735 { NULL }
1736 };
1737
1738 static const struct hotmod_vals hotmod_si[] = {
1739 { "kcs", SI_KCS },
1740 { "smic", SI_SMIC },
1741 { "bt", SI_BT },
1742 { NULL }
1743 };
1744
1745 static const struct hotmod_vals hotmod_as[] = {
1746 { "mem", IPMI_MEM_ADDR_SPACE },
1747 { "i/o", IPMI_IO_ADDR_SPACE },
1748 { NULL }
1749 };
1750
1751 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1752 char **curr)
1753 {
1754 char *s;
1755 int i;
1756
1757 s = strchr(*curr, ',');
1758 if (!s) {
1759 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1760 return -EINVAL;
1761 }
1762 *s = '\0';
1763 s++;
1764 for (i = 0; v[i].name; i++) {
1765 if (strcmp(*curr, v[i].name) == 0) {
1766 *val = v[i].val;
1767 *curr = s;
1768 return 0;
1769 }
1770 }
1771
1772 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1773 return -EINVAL;
1774 }
1775
1776 static int check_hotmod_int_op(const char *curr, const char *option,
1777 const char *name, int *val)
1778 {
1779 char *n;
1780
1781 if (strcmp(curr, name) == 0) {
1782 if (!option) {
1783 printk(KERN_WARNING PFX
1784 "No option given for '%s'\n",
1785 curr);
1786 return -EINVAL;
1787 }
1788 *val = simple_strtoul(option, &n, 0);
1789 if ((*n != '\0') || (*option == '\0')) {
1790 printk(KERN_WARNING PFX
1791 "Bad option given for '%s'\n",
1792 curr);
1793 return -EINVAL;
1794 }
1795 return 1;
1796 }
1797 return 0;
1798 }
1799
1800 static struct smi_info *smi_info_alloc(void)
1801 {
1802 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1803
1804 if (info)
1805 spin_lock_init(&info->si_lock);
1806 return info;
1807 }
1808
1809 static int hotmod_handler(const char *val, struct kernel_param *kp)
1810 {
1811 char *str = kstrdup(val, GFP_KERNEL);
1812 int rv;
1813 char *next, *curr, *s, *n, *o;
1814 enum hotmod_op op;
1815 enum si_type si_type;
1816 int addr_space;
1817 unsigned long addr;
1818 int regspacing;
1819 int regsize;
1820 int regshift;
1821 int irq;
1822 int ipmb;
1823 int ival;
1824 int len;
1825 struct smi_info *info;
1826
1827 if (!str)
1828 return -ENOMEM;
1829
1830 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1831 len = strlen(str);
1832 ival = len - 1;
1833 while ((ival >= 0) && isspace(str[ival])) {
1834 str[ival] = '\0';
1835 ival--;
1836 }
1837
1838 for (curr = str; curr; curr = next) {
1839 regspacing = 1;
1840 regsize = 1;
1841 regshift = 0;
1842 irq = 0;
1843 ipmb = 0; /* Choose the default if not specified */
1844
1845 next = strchr(curr, ':');
1846 if (next) {
1847 *next = '\0';
1848 next++;
1849 }
1850
1851 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1852 if (rv)
1853 break;
1854 op = ival;
1855
1856 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1857 if (rv)
1858 break;
1859 si_type = ival;
1860
1861 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1862 if (rv)
1863 break;
1864
1865 s = strchr(curr, ',');
1866 if (s) {
1867 *s = '\0';
1868 s++;
1869 }
1870 addr = simple_strtoul(curr, &n, 0);
1871 if ((*n != '\0') || (*curr == '\0')) {
1872 printk(KERN_WARNING PFX "Invalid hotmod address"
1873 " '%s'\n", curr);
1874 break;
1875 }
1876
1877 while (s) {
1878 curr = s;
1879 s = strchr(curr, ',');
1880 if (s) {
1881 *s = '\0';
1882 s++;
1883 }
1884 o = strchr(curr, '=');
1885 if (o) {
1886 *o = '\0';
1887 o++;
1888 }
1889 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1890 if (rv < 0)
1891 goto out;
1892 else if (rv)
1893 continue;
1894 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1895 if (rv < 0)
1896 goto out;
1897 else if (rv)
1898 continue;
1899 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1900 if (rv < 0)
1901 goto out;
1902 else if (rv)
1903 continue;
1904 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1905 if (rv < 0)
1906 goto out;
1907 else if (rv)
1908 continue;
1909 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1910 if (rv < 0)
1911 goto out;
1912 else if (rv)
1913 continue;
1914
1915 rv = -EINVAL;
1916 printk(KERN_WARNING PFX
1917 "Invalid hotmod option '%s'\n",
1918 curr);
1919 goto out;
1920 }
1921
1922 if (op == HM_ADD) {
1923 info = smi_info_alloc();
1924 if (!info) {
1925 rv = -ENOMEM;
1926 goto out;
1927 }
1928
1929 info->addr_source = SI_HOTMOD;
1930 info->si_type = si_type;
1931 info->io.addr_data = addr;
1932 info->io.addr_type = addr_space;
1933 if (addr_space == IPMI_MEM_ADDR_SPACE)
1934 info->io_setup = mem_setup;
1935 else
1936 info->io_setup = port_setup;
1937
1938 info->io.addr = NULL;
1939 info->io.regspacing = regspacing;
1940 if (!info->io.regspacing)
1941 info->io.regspacing = DEFAULT_REGSPACING;
1942 info->io.regsize = regsize;
1943 if (!info->io.regsize)
1944 info->io.regsize = DEFAULT_REGSPACING;
1945 info->io.regshift = regshift;
1946 info->irq = irq;
1947 if (info->irq)
1948 info->irq_setup = std_irq_setup;
1949 info->slave_addr = ipmb;
1950
1951 rv = add_smi(info);
1952 if (rv) {
1953 kfree(info);
1954 goto out;
1955 }
1956 rv = try_smi_init(info);
1957 if (rv) {
1958 cleanup_one_si(info);
1959 goto out;
1960 }
1961 } else {
1962 /* remove */
1963 struct smi_info *e, *tmp_e;
1964
1965 mutex_lock(&smi_infos_lock);
1966 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1967 if (e->io.addr_type != addr_space)
1968 continue;
1969 if (e->si_type != si_type)
1970 continue;
1971 if (e->io.addr_data == addr)
1972 cleanup_one_si(e);
1973 }
1974 mutex_unlock(&smi_infos_lock);
1975 }
1976 }
1977 rv = len;
1978 out:
1979 kfree(str);
1980 return rv;
1981 }
1982
1983 static int hardcode_find_bmc(void)
1984 {
1985 int ret = -ENODEV;
1986 int i;
1987 struct smi_info *info;
1988
1989 for (i = 0; i < SI_MAX_PARMS; i++) {
1990 if (!ports[i] && !addrs[i])
1991 continue;
1992
1993 info = smi_info_alloc();
1994 if (!info)
1995 return -ENOMEM;
1996
1997 info->addr_source = SI_HARDCODED;
1998 printk(KERN_INFO PFX "probing via hardcoded address\n");
1999
2000 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2001 info->si_type = SI_KCS;
2002 } else if (strcmp(si_type[i], "smic") == 0) {
2003 info->si_type = SI_SMIC;
2004 } else if (strcmp(si_type[i], "bt") == 0) {
2005 info->si_type = SI_BT;
2006 } else {
2007 printk(KERN_WARNING PFX "Interface type specified "
2008 "for interface %d, was invalid: %s\n",
2009 i, si_type[i]);
2010 kfree(info);
2011 continue;
2012 }
2013
2014 if (ports[i]) {
2015 /* An I/O port */
2016 info->io_setup = port_setup;
2017 info->io.addr_data = ports[i];
2018 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2019 } else if (addrs[i]) {
2020 /* A memory port */
2021 info->io_setup = mem_setup;
2022 info->io.addr_data = addrs[i];
2023 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2024 } else {
2025 printk(KERN_WARNING PFX "Interface type specified "
2026 "for interface %d, but port and address were "
2027 "not set or set to zero.\n", i);
2028 kfree(info);
2029 continue;
2030 }
2031
2032 info->io.addr = NULL;
2033 info->io.regspacing = regspacings[i];
2034 if (!info->io.regspacing)
2035 info->io.regspacing = DEFAULT_REGSPACING;
2036 info->io.regsize = regsizes[i];
2037 if (!info->io.regsize)
2038 info->io.regsize = DEFAULT_REGSPACING;
2039 info->io.regshift = regshifts[i];
2040 info->irq = irqs[i];
2041 if (info->irq)
2042 info->irq_setup = std_irq_setup;
2043 info->slave_addr = slave_addrs[i];
2044
2045 if (!add_smi(info)) {
2046 if (try_smi_init(info))
2047 cleanup_one_si(info);
2048 ret = 0;
2049 } else {
2050 kfree(info);
2051 }
2052 }
2053 return ret;
2054 }
2055
2056 #ifdef CONFIG_ACPI
2057
2058 /*
2059 * Once we get an ACPI failure, we don't try any more, because we go
2060 * through the tables sequentially. Once we don't find a table, there
2061 * are no more.
2062 */
2063 static int acpi_failure;
2064
2065 /* For GPE-type interrupts. */
2066 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2067 u32 gpe_number, void *context)
2068 {
2069 struct smi_info *smi_info = context;
2070 unsigned long flags;
2071
2072 spin_lock_irqsave(&(smi_info->si_lock), flags);
2073
2074 smi_inc_stat(smi_info, interrupts);
2075
2076 debug_timestamp("ACPI_GPE");
2077
2078 smi_event_handler(smi_info, 0);
2079 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2080
2081 return ACPI_INTERRUPT_HANDLED;
2082 }
2083
2084 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2085 {
2086 if (!info->irq)
2087 return;
2088
2089 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2090 }
2091
2092 static int acpi_gpe_irq_setup(struct smi_info *info)
2093 {
2094 acpi_status status;
2095
2096 if (!info->irq)
2097 return 0;
2098
2099 status = acpi_install_gpe_handler(NULL,
2100 info->irq,
2101 ACPI_GPE_LEVEL_TRIGGERED,
2102 &ipmi_acpi_gpe,
2103 info);
2104 if (status != AE_OK) {
2105 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2106 " running polled\n", DEVICE_NAME, info->irq);
2107 info->irq = 0;
2108 return -EINVAL;
2109 } else {
2110 info->irq_cleanup = acpi_gpe_irq_cleanup;
2111 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2112 return 0;
2113 }
2114 }
2115
2116 /*
2117 * Defined at
2118 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2119 */
2120 struct SPMITable {
2121 s8 Signature[4];
2122 u32 Length;
2123 u8 Revision;
2124 u8 Checksum;
2125 s8 OEMID[6];
2126 s8 OEMTableID[8];
2127 s8 OEMRevision[4];
2128 s8 CreatorID[4];
2129 s8 CreatorRevision[4];
2130 u8 InterfaceType;
2131 u8 IPMIlegacy;
2132 s16 SpecificationRevision;
2133
2134 /*
2135 * Bit 0 - SCI interrupt supported
2136 * Bit 1 - I/O APIC/SAPIC
2137 */
2138 u8 InterruptType;
2139
2140 /*
2141 * If bit 0 of InterruptType is set, then this is the SCI
2142 * interrupt in the GPEx_STS register.
2143 */
2144 u8 GPE;
2145
2146 s16 Reserved;
2147
2148 /*
2149 * If bit 1 of InterruptType is set, then this is the I/O
2150 * APIC/SAPIC interrupt.
2151 */
2152 u32 GlobalSystemInterrupt;
2153
2154 /* The actual register address. */
2155 struct acpi_generic_address addr;
2156
2157 u8 UID[4];
2158
2159 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2160 };
2161
2162 static int try_init_spmi(struct SPMITable *spmi)
2163 {
2164 struct smi_info *info;
2165 int rv;
2166
2167 if (spmi->IPMIlegacy != 1) {
2168 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2169 return -ENODEV;
2170 }
2171
2172 info = smi_info_alloc();
2173 if (!info) {
2174 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2175 return -ENOMEM;
2176 }
2177
2178 info->addr_source = SI_SPMI;
2179 printk(KERN_INFO PFX "probing via SPMI\n");
2180
2181 /* Figure out the interface type. */
2182 switch (spmi->InterfaceType) {
2183 case 1: /* KCS */
2184 info->si_type = SI_KCS;
2185 break;
2186 case 2: /* SMIC */
2187 info->si_type = SI_SMIC;
2188 break;
2189 case 3: /* BT */
2190 info->si_type = SI_BT;
2191 break;
2192 case 4: /* SSIF, just ignore */
2193 kfree(info);
2194 return -EIO;
2195 default:
2196 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2197 spmi->InterfaceType);
2198 kfree(info);
2199 return -EIO;
2200 }
2201
2202 if (spmi->InterruptType & 1) {
2203 /* We've got a GPE interrupt. */
2204 info->irq = spmi->GPE;
2205 info->irq_setup = acpi_gpe_irq_setup;
2206 } else if (spmi->InterruptType & 2) {
2207 /* We've got an APIC/SAPIC interrupt. */
2208 info->irq = spmi->GlobalSystemInterrupt;
2209 info->irq_setup = std_irq_setup;
2210 } else {
2211 /* Use the default interrupt setting. */
2212 info->irq = 0;
2213 info->irq_setup = NULL;
2214 }
2215
2216 if (spmi->addr.bit_width) {
2217 /* A (hopefully) properly formed register bit width. */
2218 info->io.regspacing = spmi->addr.bit_width / 8;
2219 } else {
2220 info->io.regspacing = DEFAULT_REGSPACING;
2221 }
2222 info->io.regsize = info->io.regspacing;
2223 info->io.regshift = spmi->addr.bit_offset;
2224
2225 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2226 info->io_setup = mem_setup;
2227 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2228 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2229 info->io_setup = port_setup;
2230 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2231 } else {
2232 kfree(info);
2233 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2234 return -EIO;
2235 }
2236 info->io.addr_data = spmi->addr.address;
2237
2238 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2239 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2240 info->io.addr_data, info->io.regsize, info->io.regspacing,
2241 info->irq);
2242
2243 rv = add_smi(info);
2244 if (rv)
2245 kfree(info);
2246
2247 return rv;
2248 }
2249
2250 static void spmi_find_bmc(void)
2251 {
2252 acpi_status status;
2253 struct SPMITable *spmi;
2254 int i;
2255
2256 if (acpi_disabled)
2257 return;
2258
2259 if (acpi_failure)
2260 return;
2261
2262 for (i = 0; ; i++) {
2263 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2264 (struct acpi_table_header **)&spmi);
2265 if (status != AE_OK)
2266 return;
2267
2268 try_init_spmi(spmi);
2269 }
2270 }
2271 #endif
2272
2273 #ifdef CONFIG_DMI
2274 struct dmi_ipmi_data {
2275 u8 type;
2276 u8 addr_space;
2277 unsigned long base_addr;
2278 u8 irq;
2279 u8 offset;
2280 u8 slave_addr;
2281 };
2282
2283 static int decode_dmi(const struct dmi_header *dm,
2284 struct dmi_ipmi_data *dmi)
2285 {
2286 const u8 *data = (const u8 *)dm;
2287 unsigned long base_addr;
2288 u8 reg_spacing;
2289 u8 len = dm->length;
2290
2291 dmi->type = data[4];
2292
2293 memcpy(&base_addr, data+8, sizeof(unsigned long));
2294 if (len >= 0x11) {
2295 if (base_addr & 1) {
2296 /* I/O */
2297 base_addr &= 0xFFFE;
2298 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2299 } else
2300 /* Memory */
2301 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2302
2303 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2304 is odd. */
2305 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2306
2307 dmi->irq = data[0x11];
2308
2309 /* The top two bits of byte 0x10 hold the register spacing. */
2310 reg_spacing = (data[0x10] & 0xC0) >> 6;
2311 switch (reg_spacing) {
2312 case 0x00: /* Byte boundaries */
2313 dmi->offset = 1;
2314 break;
2315 case 0x01: /* 32-bit boundaries */
2316 dmi->offset = 4;
2317 break;
2318 case 0x02: /* 16-byte boundaries */
2319 dmi->offset = 16;
2320 break;
2321 default:
2322 /* Some other interface, just ignore it. */
2323 return -EIO;
2324 }
2325 } else {
2326 /* Old DMI spec. */
2327 /*
2328 * Note that technically, the lower bit of the base
2329 * address should be 1 if the address is I/O and 0 if
2330 * the address is in memory. So many systems get that
2331 * wrong (and all that I have seen are I/O) so we just
2332 * ignore that bit and assume I/O. Systems that use
2333 * memory should use the newer spec, anyway.
2334 */
2335 dmi->base_addr = base_addr & 0xfffe;
2336 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2337 dmi->offset = 1;
2338 }
2339
2340 dmi->slave_addr = data[6];
2341
2342 return 0;
2343 }
2344
2345 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2346 {
2347 struct smi_info *info;
2348
2349 info = smi_info_alloc();
2350 if (!info) {
2351 printk(KERN_ERR PFX "Could not allocate SI data\n");
2352 return;
2353 }
2354
2355 info->addr_source = SI_SMBIOS;
2356 printk(KERN_INFO PFX "probing via SMBIOS\n");
2357
2358 switch (ipmi_data->type) {
2359 case 0x01: /* KCS */
2360 info->si_type = SI_KCS;
2361 break;
2362 case 0x02: /* SMIC */
2363 info->si_type = SI_SMIC;
2364 break;
2365 case 0x03: /* BT */
2366 info->si_type = SI_BT;
2367 break;
2368 default:
2369 kfree(info);
2370 return;
2371 }
2372
2373 switch (ipmi_data->addr_space) {
2374 case IPMI_MEM_ADDR_SPACE:
2375 info->io_setup = mem_setup;
2376 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2377 break;
2378
2379 case IPMI_IO_ADDR_SPACE:
2380 info->io_setup = port_setup;
2381 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2382 break;
2383
2384 default:
2385 kfree(info);
2386 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2387 ipmi_data->addr_space);
2388 return;
2389 }
2390 info->io.addr_data = ipmi_data->base_addr;
2391
2392 info->io.regspacing = ipmi_data->offset;
2393 if (!info->io.regspacing)
2394 info->io.regspacing = DEFAULT_REGSPACING;
2395 info->io.regsize = DEFAULT_REGSPACING;
2396 info->io.regshift = 0;
2397
2398 info->slave_addr = ipmi_data->slave_addr;
2399
2400 info->irq = ipmi_data->irq;
2401 if (info->irq)
2402 info->irq_setup = std_irq_setup;
2403
2404 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2405 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2406 info->io.addr_data, info->io.regsize, info->io.regspacing,
2407 info->irq);
2408
2409 if (add_smi(info))
2410 kfree(info);
2411 }
2412
2413 static void dmi_find_bmc(void)
2414 {
2415 const struct dmi_device *dev = NULL;
2416 struct dmi_ipmi_data data;
2417 int rv;
2418
2419 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2420 memset(&data, 0, sizeof(data));
2421 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2422 &data);
2423 if (!rv)
2424 try_init_dmi(&data);
2425 }
2426 }
2427 #endif /* CONFIG_DMI */
2428
2429 #ifdef CONFIG_PCI
2430
2431 #define PCI_ERMC_CLASSCODE 0x0C0700
2432 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2433 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2434 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2435 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2436 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2437
2438 #define PCI_HP_VENDOR_ID 0x103C
2439 #define PCI_MMC_DEVICE_ID 0x121A
2440 #define PCI_MMC_ADDR_CW 0x10
2441
2442 static void ipmi_pci_cleanup(struct smi_info *info)
2443 {
2444 struct pci_dev *pdev = info->addr_source_data;
2445
2446 pci_disable_device(pdev);
2447 }
2448
2449 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2450 {
2451 if (info->si_type == SI_KCS) {
2452 unsigned char status;
2453 int regspacing;
2454
2455 info->io.regsize = DEFAULT_REGSIZE;
2456 info->io.regshift = 0;
2457 info->io_size = 2;
2458 info->handlers = &kcs_smi_handlers;
2459
2460 /* detect 1, 4, 16byte spacing */
2461 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2462 info->io.regspacing = regspacing;
2463 if (info->io_setup(info)) {
2464 dev_err(info->dev,
2465 "Could not setup I/O space\n");
2466 return DEFAULT_REGSPACING;
2467 }
2468 /* write invalid cmd */
2469 info->io.outputb(&info->io, 1, 0x10);
2470 /* read status back */
2471 status = info->io.inputb(&info->io, 1);
2472 info->io_cleanup(info);
2473 if (status)
2474 return regspacing;
2475 regspacing *= 4;
2476 }
2477 }
2478 return DEFAULT_REGSPACING;
2479 }
2480
2481 static int ipmi_pci_probe(struct pci_dev *pdev,
2482 const struct pci_device_id *ent)
2483 {
2484 int rv;
2485 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2486 struct smi_info *info;
2487
2488 info = smi_info_alloc();
2489 if (!info)
2490 return -ENOMEM;
2491
2492 info->addr_source = SI_PCI;
2493 dev_info(&pdev->dev, "probing via PCI");
2494
2495 switch (class_type) {
2496 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2497 info->si_type = SI_SMIC;
2498 break;
2499
2500 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2501 info->si_type = SI_KCS;
2502 break;
2503
2504 case PCI_ERMC_CLASSCODE_TYPE_BT:
2505 info->si_type = SI_BT;
2506 break;
2507
2508 default:
2509 kfree(info);
2510 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2511 return -ENOMEM;
2512 }
2513
2514 rv = pci_enable_device(pdev);
2515 if (rv) {
2516 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2517 kfree(info);
2518 return rv;
2519 }
2520
2521 info->addr_source_cleanup = ipmi_pci_cleanup;
2522 info->addr_source_data = pdev;
2523
2524 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2525 info->io_setup = port_setup;
2526 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2527 } else {
2528 info->io_setup = mem_setup;
2529 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2530 }
2531 info->io.addr_data = pci_resource_start(pdev, 0);
2532
2533 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2534 info->io.regsize = DEFAULT_REGSIZE;
2535 info->io.regshift = 0;
2536
2537 info->irq = pdev->irq;
2538 if (info->irq)
2539 info->irq_setup = std_irq_setup;
2540
2541 info->dev = &pdev->dev;
2542 pci_set_drvdata(pdev, info);
2543
2544 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2545 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2546 info->irq);
2547
2548 rv = add_smi(info);
2549 if (rv) {
2550 kfree(info);
2551 pci_disable_device(pdev);
2552 }
2553
2554 return rv;
2555 }
2556
2557 static void ipmi_pci_remove(struct pci_dev *pdev)
2558 {
2559 struct smi_info *info = pci_get_drvdata(pdev);
2560 cleanup_one_si(info);
2561 }
2562
2563 static const struct pci_device_id ipmi_pci_devices[] = {
2564 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2565 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2566 { 0, }
2567 };
2568 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2569
2570 static struct pci_driver ipmi_pci_driver = {
2571 .name = DEVICE_NAME,
2572 .id_table = ipmi_pci_devices,
2573 .probe = ipmi_pci_probe,
2574 .remove = ipmi_pci_remove,
2575 };
2576 #endif /* CONFIG_PCI */
2577
2578 #ifdef CONFIG_OF
2579 static const struct of_device_id of_ipmi_match[] = {
2580 { .type = "ipmi", .compatible = "ipmi-kcs",
2581 .data = (void *)(unsigned long) SI_KCS },
2582 { .type = "ipmi", .compatible = "ipmi-smic",
2583 .data = (void *)(unsigned long) SI_SMIC },
2584 { .type = "ipmi", .compatible = "ipmi-bt",
2585 .data = (void *)(unsigned long) SI_BT },
2586 {},
2587 };
2588 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2589
2590 static int of_ipmi_probe(struct platform_device *dev)
2591 {
2592 const struct of_device_id *match;
2593 struct smi_info *info;
2594 struct resource resource;
2595 const __be32 *regsize, *regspacing, *regshift;
2596 struct device_node *np = dev->dev.of_node;
2597 int ret;
2598 int proplen;
2599
2600 dev_info(&dev->dev, "probing via device tree\n");
2601
2602 match = of_match_device(of_ipmi_match, &dev->dev);
2603 if (!match)
2604 return -ENODEV;
2605
2606 if (!of_device_is_available(np))
2607 return -EINVAL;
2608
2609 ret = of_address_to_resource(np, 0, &resource);
2610 if (ret) {
2611 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2612 return ret;
2613 }
2614
2615 regsize = of_get_property(np, "reg-size", &proplen);
2616 if (regsize && proplen != 4) {
2617 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2618 return -EINVAL;
2619 }
2620
2621 regspacing = of_get_property(np, "reg-spacing", &proplen);
2622 if (regspacing && proplen != 4) {
2623 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2624 return -EINVAL;
2625 }
2626
2627 regshift = of_get_property(np, "reg-shift", &proplen);
2628 if (regshift && proplen != 4) {
2629 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2630 return -EINVAL;
2631 }
2632
2633 info = smi_info_alloc();
2634
2635 if (!info) {
2636 dev_err(&dev->dev,
2637 "could not allocate memory for OF probe\n");
2638 return -ENOMEM;
2639 }
2640
2641 info->si_type = (enum si_type) match->data;
2642 info->addr_source = SI_DEVICETREE;
2643 info->irq_setup = std_irq_setup;
2644
2645 if (resource.flags & IORESOURCE_IO) {
2646 info->io_setup = port_setup;
2647 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2648 } else {
2649 info->io_setup = mem_setup;
2650 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2651 }
2652
2653 info->io.addr_data = resource.start;
2654
2655 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2656 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2657 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2658
2659 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2660 info->dev = &dev->dev;
2661
2662 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2663 info->io.addr_data, info->io.regsize, info->io.regspacing,
2664 info->irq);
2665
2666 dev_set_drvdata(&dev->dev, info);
2667
2668 ret = add_smi(info);
2669 if (ret) {
2670 kfree(info);
2671 return ret;
2672 }
2673 return 0;
2674 }
2675 #else
2676 #define of_ipmi_match NULL
2677 static int of_ipmi_probe(struct platform_device *dev)
2678 {
2679 return -ENODEV;
2680 }
2681 #endif
2682
2683 #ifdef CONFIG_ACPI
2684 static int acpi_ipmi_probe(struct platform_device *dev)
2685 {
2686 struct smi_info *info;
2687 struct resource *res, *res_second;
2688 acpi_handle handle;
2689 acpi_status status;
2690 unsigned long long tmp;
2691 int rv = -EINVAL;
2692
2693 if (!si_tryacpi)
2694 return 0;
2695
2696 handle = ACPI_HANDLE(&dev->dev);
2697 if (!handle)
2698 return -ENODEV;
2699
2700 info = smi_info_alloc();
2701 if (!info)
2702 return -ENOMEM;
2703
2704 info->addr_source = SI_ACPI;
2705 dev_info(&dev->dev, PFX "probing via ACPI\n");
2706
2707 info->addr_info.acpi_info.acpi_handle = handle;
2708
2709 /* _IFT tells us the interface type: KCS, BT, etc */
2710 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2711 if (ACPI_FAILURE(status)) {
2712 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2713 goto err_free;
2714 }
2715
2716 switch (tmp) {
2717 case 1:
2718 info->si_type = SI_KCS;
2719 break;
2720 case 2:
2721 info->si_type = SI_SMIC;
2722 break;
2723 case 3:
2724 info->si_type = SI_BT;
2725 break;
2726 case 4: /* SSIF, just ignore */
2727 rv = -ENODEV;
2728 goto err_free;
2729 default:
2730 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2731 goto err_free;
2732 }
2733
2734 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2735 if (res) {
2736 info->io_setup = port_setup;
2737 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2738 } else {
2739 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2740 if (res) {
2741 info->io_setup = mem_setup;
2742 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2743 }
2744 }
2745 if (!res) {
2746 dev_err(&dev->dev, "no I/O or memory address\n");
2747 goto err_free;
2748 }
2749 info->io.addr_data = res->start;
2750
2751 info->io.regspacing = DEFAULT_REGSPACING;
2752 res_second = platform_get_resource(dev,
2753 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2754 IORESOURCE_IO : IORESOURCE_MEM,
2755 1);
2756 if (res_second) {
2757 if (res_second->start > info->io.addr_data)
2758 info->io.regspacing =
2759 res_second->start - info->io.addr_data;
2760 }
2761 info->io.regsize = DEFAULT_REGSPACING;
2762 info->io.regshift = 0;
2763
2764 /* If _GPE exists, use it; otherwise use standard interrupts */
2765 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2766 if (ACPI_SUCCESS(status)) {
2767 info->irq = tmp;
2768 info->irq_setup = acpi_gpe_irq_setup;
2769 } else {
2770 int irq = platform_get_irq(dev, 0);
2771
2772 if (irq > 0) {
2773 info->irq = irq;
2774 info->irq_setup = std_irq_setup;
2775 }
2776 }
2777
2778 info->dev = &dev->dev;
2779 platform_set_drvdata(dev, info);
2780
2781 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2782 res, info->io.regsize, info->io.regspacing,
2783 info->irq);
2784
2785 rv = add_smi(info);
2786 if (rv)
2787 kfree(info);
2788
2789 return rv;
2790
2791 err_free:
2792 kfree(info);
2793 return rv;
2794 }
2795
2796 static const struct acpi_device_id acpi_ipmi_match[] = {
2797 { "IPI0001", 0 },
2798 { },
2799 };
2800 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2801 #else
2802 static int acpi_ipmi_probe(struct platform_device *dev)
2803 {
2804 return -ENODEV;
2805 }
2806 #endif
2807
2808 static int ipmi_probe(struct platform_device *dev)
2809 {
2810 if (of_ipmi_probe(dev) == 0)
2811 return 0;
2812
2813 return acpi_ipmi_probe(dev);
2814 }
2815
2816 static int ipmi_remove(struct platform_device *dev)
2817 {
2818 struct smi_info *info = dev_get_drvdata(&dev->dev);
2819
2820 cleanup_one_si(info);
2821 return 0;
2822 }
2823
2824 static struct platform_driver ipmi_driver = {
2825 .driver = {
2826 .name = DEVICE_NAME,
2827 .of_match_table = of_ipmi_match,
2828 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2829 },
2830 .probe = ipmi_probe,
2831 .remove = ipmi_remove,
2832 };
2833
2834 #ifdef CONFIG_PARISC
2835 static int ipmi_parisc_probe(struct parisc_device *dev)
2836 {
2837 struct smi_info *info;
2838 int rv;
2839
2840 info = smi_info_alloc();
2841
2842 if (!info) {
2843 dev_err(&dev->dev,
2844 "could not allocate memory for PARISC probe\n");
2845 return -ENOMEM;
2846 }
2847
2848 info->si_type = SI_KCS;
2849 info->addr_source = SI_DEVICETREE;
2850 info->io_setup = mem_setup;
2851 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2852 info->io.addr_data = dev->hpa.start;
2853 info->io.regsize = 1;
2854 info->io.regspacing = 1;
2855 info->io.regshift = 0;
2856 info->irq = 0; /* no interrupt */
2857 info->irq_setup = NULL;
2858 info->dev = &dev->dev;
2859
2860 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2861
2862 dev_set_drvdata(&dev->dev, info);
2863
2864 rv = add_smi(info);
2865 if (rv) {
2866 kfree(info);
2867 return rv;
2868 }
2869
2870 return 0;
2871 }
2872
2873 static int ipmi_parisc_remove(struct parisc_device *dev)
2874 {
2875 cleanup_one_si(dev_get_drvdata(&dev->dev));
2876 return 0;
2877 }
2878
2879 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2880 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2881 { 0, }
2882 };
2883
2884 static struct parisc_driver ipmi_parisc_driver = {
2885 .name = "ipmi",
2886 .id_table = ipmi_parisc_tbl,
2887 .probe = ipmi_parisc_probe,
2888 .remove = ipmi_parisc_remove,
2889 };
2890 #endif /* CONFIG_PARISC */
2891
2892 static int wait_for_msg_done(struct smi_info *smi_info)
2893 {
2894 enum si_sm_result smi_result;
2895
2896 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2897 for (;;) {
2898 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2899 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2900 schedule_timeout_uninterruptible(1);
2901 smi_result = smi_info->handlers->event(
2902 smi_info->si_sm, jiffies_to_usecs(1));
2903 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2904 smi_result = smi_info->handlers->event(
2905 smi_info->si_sm, 0);
2906 } else
2907 break;
2908 }
2909 if (smi_result == SI_SM_HOSED)
2910 /*
2911 * We couldn't get the state machine to run, so whatever's at
2912 * the port is probably not an IPMI SMI interface.
2913 */
2914 return -ENODEV;
2915
2916 return 0;
2917 }
2918
2919 static int try_get_dev_id(struct smi_info *smi_info)
2920 {
2921 unsigned char msg[2];
2922 unsigned char *resp;
2923 unsigned long resp_len;
2924 int rv = 0;
2925
2926 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2927 if (!resp)
2928 return -ENOMEM;
2929
2930 /*
2931 * Do a Get Device ID command, since it comes back with some
2932 * useful info.
2933 */
2934 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2935 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2936 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2937
2938 rv = wait_for_msg_done(smi_info);
2939 if (rv)
2940 goto out;
2941
2942 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2943 resp, IPMI_MAX_MSG_LENGTH);
2944
2945 /* Check and record info from the get device id, in case we need it. */
2946 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2947
2948 out:
2949 kfree(resp);
2950 return rv;
2951 }
2952
2953 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2954 {
2955 unsigned char msg[3];
2956 unsigned char *resp;
2957 unsigned long resp_len;
2958 int rv;
2959
2960 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2961 if (!resp)
2962 return -ENOMEM;
2963
2964 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2965 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2966 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2967
2968 rv = wait_for_msg_done(smi_info);
2969 if (rv) {
2970 dev_warn(smi_info->dev,
2971 "Error getting response from get global enables command: %d\n",
2972 rv);
2973 goto out;
2974 }
2975
2976 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2977 resp, IPMI_MAX_MSG_LENGTH);
2978
2979 if (resp_len < 4 ||
2980 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2981 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2982 resp[2] != 0) {
2983 dev_warn(smi_info->dev,
2984 "Invalid return from get global enables command: %ld %x %x %x\n",
2985 resp_len, resp[0], resp[1], resp[2]);
2986 rv = -EINVAL;
2987 goto out;
2988 } else {
2989 *enables = resp[3];
2990 }
2991
2992 out:
2993 kfree(resp);
2994 return rv;
2995 }
2996
2997 /*
2998 * Returns 1 if it gets an error from the command.
2999 */
3000 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3001 {
3002 unsigned char msg[3];
3003 unsigned char *resp;
3004 unsigned long resp_len;
3005 int rv;
3006
3007 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3008 if (!resp)
3009 return -ENOMEM;
3010
3011 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3012 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3013 msg[2] = enables;
3014 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3015
3016 rv = wait_for_msg_done(smi_info);
3017 if (rv) {
3018 dev_warn(smi_info->dev,
3019 "Error getting response from set global enables command: %d\n",
3020 rv);
3021 goto out;
3022 }
3023
3024 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3025 resp, IPMI_MAX_MSG_LENGTH);
3026
3027 if (resp_len < 3 ||
3028 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3029 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3030 dev_warn(smi_info->dev,
3031 "Invalid return from set global enables command: %ld %x %x\n",
3032 resp_len, resp[0], resp[1]);
3033 rv = -EINVAL;
3034 goto out;
3035 }
3036
3037 if (resp[2] != 0)
3038 rv = 1;
3039
3040 out:
3041 kfree(resp);
3042 return rv;
3043 }
3044
3045 /*
3046 * Some BMCs do not support clearing the receive irq bit in the global
3047 * enables (even if they don't support interrupts on the BMC). Check
3048 * for this and handle it properly.
3049 */
3050 static void check_clr_rcv_irq(struct smi_info *smi_info)
3051 {
3052 u8 enables = 0;
3053 int rv;
3054
3055 rv = get_global_enables(smi_info, &enables);
3056 if (!rv) {
3057 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3058 /* Already clear, should work ok. */
3059 return;
3060
3061 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3062 rv = set_global_enables(smi_info, enables);
3063 }
3064
3065 if (rv < 0) {
3066 dev_err(smi_info->dev,
3067 "Cannot check clearing the rcv irq: %d\n", rv);
3068 return;
3069 }
3070
3071 if (rv) {
3072 /*
3073 * An error when setting the event buffer bit means
3074 * clearing the bit is not supported.
3075 */
3076 dev_warn(smi_info->dev,
3077 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3078 smi_info->cannot_disable_irq = true;
3079 }
3080 }
3081
3082 /*
3083 * Some BMCs do not support setting the interrupt bits in the global
3084 * enables even if they support interrupts. Clearly bad, but we can
3085 * compensate.
3086 */
3087 static void check_set_rcv_irq(struct smi_info *smi_info)
3088 {
3089 u8 enables = 0;
3090 int rv;
3091
3092 if (!smi_info->irq)
3093 return;
3094
3095 rv = get_global_enables(smi_info, &enables);
3096 if (!rv) {
3097 enables |= IPMI_BMC_RCV_MSG_INTR;
3098 rv = set_global_enables(smi_info, enables);
3099 }
3100
3101 if (rv < 0) {
3102 dev_err(smi_info->dev,
3103 "Cannot check setting the rcv irq: %d\n", rv);
3104 return;
3105 }
3106
3107 if (rv) {
3108 /*
3109 * An error when setting the event buffer bit means
3110 * setting the bit is not supported.
3111 */
3112 dev_warn(smi_info->dev,
3113 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3114 smi_info->cannot_disable_irq = true;
3115 smi_info->irq_enable_broken = true;
3116 }
3117 }
3118
3119 static int try_enable_event_buffer(struct smi_info *smi_info)
3120 {
3121 unsigned char msg[3];
3122 unsigned char *resp;
3123 unsigned long resp_len;
3124 int rv = 0;
3125
3126 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3127 if (!resp)
3128 return -ENOMEM;
3129
3130 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3131 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3132 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3133
3134 rv = wait_for_msg_done(smi_info);
3135 if (rv) {
3136 printk(KERN_WARNING PFX "Error getting response from get"
3137 " global enables command, the event buffer is not"
3138 " enabled.\n");
3139 goto out;
3140 }
3141
3142 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3143 resp, IPMI_MAX_MSG_LENGTH);
3144
3145 if (resp_len < 4 ||
3146 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3147 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3148 resp[2] != 0) {
3149 printk(KERN_WARNING PFX "Invalid return from get global"
3150 " enables command, cannot enable the event buffer.\n");
3151 rv = -EINVAL;
3152 goto out;
3153 }
3154
3155 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3156 /* buffer is already enabled, nothing to do. */
3157 smi_info->supports_event_msg_buff = true;
3158 goto out;
3159 }
3160
3161 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3162 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3163 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3164 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3165
3166 rv = wait_for_msg_done(smi_info);
3167 if (rv) {
3168 printk(KERN_WARNING PFX "Error getting response from set"
3169 " global, enables command, the event buffer is not"
3170 " enabled.\n");
3171 goto out;
3172 }
3173
3174 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3175 resp, IPMI_MAX_MSG_LENGTH);
3176
3177 if (resp_len < 3 ||
3178 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3179 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3180 printk(KERN_WARNING PFX "Invalid return from get global,"
3181 "enables command, not enable the event buffer.\n");
3182 rv = -EINVAL;
3183 goto out;
3184 }
3185
3186 if (resp[2] != 0)
3187 /*
3188 * An error when setting the event buffer bit means
3189 * that the event buffer is not supported.
3190 */
3191 rv = -ENOENT;
3192 else
3193 smi_info->supports_event_msg_buff = true;
3194
3195 out:
3196 kfree(resp);
3197 return rv;
3198 }
3199
3200 static int smi_type_proc_show(struct seq_file *m, void *v)
3201 {
3202 struct smi_info *smi = m->private;
3203
3204 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3205
3206 return 0;
3207 }
3208
3209 static int smi_type_proc_open(struct inode *inode, struct file *file)
3210 {
3211 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3212 }
3213
3214 static const struct file_operations smi_type_proc_ops = {
3215 .open = smi_type_proc_open,
3216 .read = seq_read,
3217 .llseek = seq_lseek,
3218 .release = single_release,
3219 };
3220
3221 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3222 {
3223 struct smi_info *smi = m->private;
3224
3225 seq_printf(m, "interrupts_enabled: %d\n",
3226 smi->irq && !smi->interrupt_disabled);
3227 seq_printf(m, "short_timeouts: %u\n",
3228 smi_get_stat(smi, short_timeouts));
3229 seq_printf(m, "long_timeouts: %u\n",
3230 smi_get_stat(smi, long_timeouts));
3231 seq_printf(m, "idles: %u\n",
3232 smi_get_stat(smi, idles));
3233 seq_printf(m, "interrupts: %u\n",
3234 smi_get_stat(smi, interrupts));
3235 seq_printf(m, "attentions: %u\n",
3236 smi_get_stat(smi, attentions));
3237 seq_printf(m, "flag_fetches: %u\n",
3238 smi_get_stat(smi, flag_fetches));
3239 seq_printf(m, "hosed_count: %u\n",
3240 smi_get_stat(smi, hosed_count));
3241 seq_printf(m, "complete_transactions: %u\n",
3242 smi_get_stat(smi, complete_transactions));
3243 seq_printf(m, "events: %u\n",
3244 smi_get_stat(smi, events));
3245 seq_printf(m, "watchdog_pretimeouts: %u\n",
3246 smi_get_stat(smi, watchdog_pretimeouts));
3247 seq_printf(m, "incoming_messages: %u\n",
3248 smi_get_stat(smi, incoming_messages));
3249 return 0;
3250 }
3251
3252 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3253 {
3254 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3255 }
3256
3257 static const struct file_operations smi_si_stats_proc_ops = {
3258 .open = smi_si_stats_proc_open,
3259 .read = seq_read,
3260 .llseek = seq_lseek,
3261 .release = single_release,
3262 };
3263
3264 static int smi_params_proc_show(struct seq_file *m, void *v)
3265 {
3266 struct smi_info *smi = m->private;
3267
3268 seq_printf(m,
3269 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3270 si_to_str[smi->si_type],
3271 addr_space_to_str[smi->io.addr_type],
3272 smi->io.addr_data,
3273 smi->io.regspacing,
3274 smi->io.regsize,
3275 smi->io.regshift,
3276 smi->irq,
3277 smi->slave_addr);
3278
3279 return 0;
3280 }
3281
3282 static int smi_params_proc_open(struct inode *inode, struct file *file)
3283 {
3284 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3285 }
3286
3287 static const struct file_operations smi_params_proc_ops = {
3288 .open = smi_params_proc_open,
3289 .read = seq_read,
3290 .llseek = seq_lseek,
3291 .release = single_release,
3292 };
3293
3294 /*
3295 * oem_data_avail_to_receive_msg_avail
3296 * @info - smi_info structure with msg_flags set
3297 *
3298 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3299 * Returns 1 indicating need to re-run handle_flags().
3300 */
3301 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3302 {
3303 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3304 RECEIVE_MSG_AVAIL);
3305 return 1;
3306 }
3307
3308 /*
3309 * setup_dell_poweredge_oem_data_handler
3310 * @info - smi_info.device_id must be populated
3311 *
3312 * Systems that match, but have firmware version < 1.40 may assert
3313 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3314 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3315 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3316 * as RECEIVE_MSG_AVAIL instead.
3317 *
3318 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3319 * assert the OEM[012] bits, and if it did, the driver would have to
3320 * change to handle that properly, we don't actually check for the
3321 * firmware version.
3322 * Device ID = 0x20 BMC on PowerEdge 8G servers
3323 * Device Revision = 0x80
3324 * Firmware Revision1 = 0x01 BMC version 1.40
3325 * Firmware Revision2 = 0x40 BCD encoded
3326 * IPMI Version = 0x51 IPMI 1.5
3327 * Manufacturer ID = A2 02 00 Dell IANA
3328 *
3329 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3330 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3331 *
3332 */
3333 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3334 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3335 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3336 #define DELL_IANA_MFR_ID 0x0002a2
3337 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3338 {
3339 struct ipmi_device_id *id = &smi_info->device_id;
3340 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3341 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3342 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3343 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3344 smi_info->oem_data_avail_handler =
3345 oem_data_avail_to_receive_msg_avail;
3346 } else if (ipmi_version_major(id) < 1 ||
3347 (ipmi_version_major(id) == 1 &&
3348 ipmi_version_minor(id) < 5)) {
3349 smi_info->oem_data_avail_handler =
3350 oem_data_avail_to_receive_msg_avail;
3351 }
3352 }
3353 }
3354
3355 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3356 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3357 {
3358 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3359
3360 /* Make it a response */
3361 msg->rsp[0] = msg->data[0] | 4;
3362 msg->rsp[1] = msg->data[1];
3363 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3364 msg->rsp_size = 3;
3365 smi_info->curr_msg = NULL;
3366 deliver_recv_msg(smi_info, msg);
3367 }
3368
3369 /*
3370 * dell_poweredge_bt_xaction_handler
3371 * @info - smi_info.device_id must be populated
3372 *
3373 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3374 * not respond to a Get SDR command if the length of the data
3375 * requested is exactly 0x3A, which leads to command timeouts and no
3376 * data returned. This intercepts such commands, and causes userspace
3377 * callers to try again with a different-sized buffer, which succeeds.
3378 */
3379
3380 #define STORAGE_NETFN 0x0A
3381 #define STORAGE_CMD_GET_SDR 0x23
3382 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3383 unsigned long unused,
3384 void *in)
3385 {
3386 struct smi_info *smi_info = in;
3387 unsigned char *data = smi_info->curr_msg->data;
3388 unsigned int size = smi_info->curr_msg->data_size;
3389 if (size >= 8 &&
3390 (data[0]>>2) == STORAGE_NETFN &&
3391 data[1] == STORAGE_CMD_GET_SDR &&
3392 data[7] == 0x3A) {
3393 return_hosed_msg_badsize(smi_info);
3394 return NOTIFY_STOP;
3395 }
3396 return NOTIFY_DONE;
3397 }
3398
3399 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3400 .notifier_call = dell_poweredge_bt_xaction_handler,
3401 };
3402
3403 /*
3404 * setup_dell_poweredge_bt_xaction_handler
3405 * @info - smi_info.device_id must be filled in already
3406 *
3407 * Fills in smi_info.device_id.start_transaction_pre_hook
3408 * when we know what function to use there.
3409 */
3410 static void
3411 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3412 {
3413 struct ipmi_device_id *id = &smi_info->device_id;
3414 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3415 smi_info->si_type == SI_BT)
3416 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3417 }
3418
3419 /*
3420 * setup_oem_data_handler
3421 * @info - smi_info.device_id must be filled in already
3422 *
3423 * Fills in smi_info.device_id.oem_data_available_handler
3424 * when we know what function to use there.
3425 */
3426
3427 static void setup_oem_data_handler(struct smi_info *smi_info)
3428 {
3429 setup_dell_poweredge_oem_data_handler(smi_info);
3430 }
3431
3432 static void setup_xaction_handlers(struct smi_info *smi_info)
3433 {
3434 setup_dell_poweredge_bt_xaction_handler(smi_info);
3435 }
3436
3437 static void check_for_broken_irqs(struct smi_info *smi_info)
3438 {
3439 check_clr_rcv_irq(smi_info);
3440 check_set_rcv_irq(smi_info);
3441 }
3442
3443 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3444 {
3445 if (smi_info->thread != NULL)
3446 kthread_stop(smi_info->thread);
3447 if (smi_info->timer_running)
3448 del_timer_sync(&smi_info->si_timer);
3449 }
3450
3451 static const struct ipmi_default_vals
3452 {
3453 const int type;
3454 const int port;
3455 } ipmi_defaults[] =
3456 {
3457 { .type = SI_KCS, .port = 0xca2 },
3458 { .type = SI_SMIC, .port = 0xca9 },
3459 { .type = SI_BT, .port = 0xe4 },
3460 { .port = 0 }
3461 };
3462
3463 static void default_find_bmc(void)
3464 {
3465 struct smi_info *info;
3466 int i;
3467
3468 for (i = 0; ; i++) {
3469 if (!ipmi_defaults[i].port)
3470 break;
3471 #ifdef CONFIG_PPC
3472 if (check_legacy_ioport(ipmi_defaults[i].port))
3473 continue;
3474 #endif
3475 info = smi_info_alloc();
3476 if (!info)
3477 return;
3478
3479 info->addr_source = SI_DEFAULT;
3480
3481 info->si_type = ipmi_defaults[i].type;
3482 info->io_setup = port_setup;
3483 info->io.addr_data = ipmi_defaults[i].port;
3484 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3485
3486 info->io.addr = NULL;
3487 info->io.regspacing = DEFAULT_REGSPACING;
3488 info->io.regsize = DEFAULT_REGSPACING;
3489 info->io.regshift = 0;
3490
3491 if (add_smi(info) == 0) {
3492 if ((try_smi_init(info)) == 0) {
3493 /* Found one... */
3494 printk(KERN_INFO PFX "Found default %s"
3495 " state machine at %s address 0x%lx\n",
3496 si_to_str[info->si_type],
3497 addr_space_to_str[info->io.addr_type],
3498 info->io.addr_data);
3499 } else
3500 cleanup_one_si(info);
3501 } else {
3502 kfree(info);
3503 }
3504 }
3505 }
3506
3507 static int is_new_interface(struct smi_info *info)
3508 {
3509 struct smi_info *e;
3510
3511 list_for_each_entry(e, &smi_infos, link) {
3512 if (e->io.addr_type != info->io.addr_type)
3513 continue;
3514 if (e->io.addr_data == info->io.addr_data)
3515 return 0;
3516 }
3517
3518 return 1;
3519 }
3520
3521 static int add_smi(struct smi_info *new_smi)
3522 {
3523 int rv = 0;
3524
3525 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3526 ipmi_addr_src_to_str(new_smi->addr_source),
3527 si_to_str[new_smi->si_type]);
3528 mutex_lock(&smi_infos_lock);
3529 if (!is_new_interface(new_smi)) {
3530 printk(KERN_CONT " duplicate interface\n");
3531 rv = -EBUSY;
3532 goto out_err;
3533 }
3534
3535 printk(KERN_CONT "\n");
3536
3537 /* So we know not to free it unless we have allocated one. */
3538 new_smi->intf = NULL;
3539 new_smi->si_sm = NULL;
3540 new_smi->handlers = NULL;
3541
3542 list_add_tail(&new_smi->link, &smi_infos);
3543
3544 out_err:
3545 mutex_unlock(&smi_infos_lock);
3546 return rv;
3547 }
3548
3549 static int try_smi_init(struct smi_info *new_smi)
3550 {
3551 int rv = 0;
3552 int i;
3553
3554 printk(KERN_INFO PFX "Trying %s-specified %s state"
3555 " machine at %s address 0x%lx, slave address 0x%x,"
3556 " irq %d\n",
3557 ipmi_addr_src_to_str(new_smi->addr_source),
3558 si_to_str[new_smi->si_type],
3559 addr_space_to_str[new_smi->io.addr_type],
3560 new_smi->io.addr_data,
3561 new_smi->slave_addr, new_smi->irq);
3562
3563 switch (new_smi->si_type) {
3564 case SI_KCS:
3565 new_smi->handlers = &kcs_smi_handlers;
3566 break;
3567
3568 case SI_SMIC:
3569 new_smi->handlers = &smic_smi_handlers;
3570 break;
3571
3572 case SI_BT:
3573 new_smi->handlers = &bt_smi_handlers;
3574 break;
3575
3576 default:
3577 /* No support for anything else yet. */
3578 rv = -EIO;
3579 goto out_err;
3580 }
3581
3582 /* Allocate the state machine's data and initialize it. */
3583 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3584 if (!new_smi->si_sm) {
3585 printk(KERN_ERR PFX
3586 "Could not allocate state machine memory\n");
3587 rv = -ENOMEM;
3588 goto out_err;
3589 }
3590 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3591 &new_smi->io);
3592
3593 /* Now that we know the I/O size, we can set up the I/O. */
3594 rv = new_smi->io_setup(new_smi);
3595 if (rv) {
3596 printk(KERN_ERR PFX "Could not set up I/O space\n");
3597 goto out_err;
3598 }
3599
3600 /* Do low-level detection first. */
3601 if (new_smi->handlers->detect(new_smi->si_sm)) {
3602 if (new_smi->addr_source)
3603 printk(KERN_INFO PFX "Interface detection failed\n");
3604 rv = -ENODEV;
3605 goto out_err;
3606 }
3607
3608 /*
3609 * Attempt a get device id command. If it fails, we probably
3610 * don't have a BMC here.
3611 */
3612 rv = try_get_dev_id(new_smi);
3613 if (rv) {
3614 if (new_smi->addr_source)
3615 printk(KERN_INFO PFX "There appears to be no BMC"
3616 " at this location\n");
3617 goto out_err;
3618 }
3619
3620 setup_oem_data_handler(new_smi);
3621 setup_xaction_handlers(new_smi);
3622 check_for_broken_irqs(new_smi);
3623
3624 new_smi->waiting_msg = NULL;
3625 new_smi->curr_msg = NULL;
3626 atomic_set(&new_smi->req_events, 0);
3627 new_smi->run_to_completion = false;
3628 for (i = 0; i < SI_NUM_STATS; i++)
3629 atomic_set(&new_smi->stats[i], 0);
3630
3631 new_smi->interrupt_disabled = true;
3632 atomic_set(&new_smi->need_watch, 0);
3633 new_smi->intf_num = smi_num;
3634 smi_num++;
3635
3636 rv = try_enable_event_buffer(new_smi);
3637 if (rv == 0)
3638 new_smi->has_event_buffer = true;
3639
3640 /*
3641 * Start clearing the flags before we enable interrupts or the
3642 * timer to avoid racing with the timer.
3643 */
3644 start_clear_flags(new_smi, false);
3645
3646 /*
3647 * IRQ is defined to be set when non-zero. req_events will
3648 * cause a global flags check that will enable interrupts.
3649 */
3650 if (new_smi->irq) {
3651 new_smi->interrupt_disabled = false;
3652 atomic_set(&new_smi->req_events, 1);
3653 }
3654
3655 if (!new_smi->dev) {
3656 /*
3657 * If we don't already have a device from something
3658 * else (like PCI), then register a new one.
3659 */
3660 new_smi->pdev = platform_device_alloc("ipmi_si",
3661 new_smi->intf_num);
3662 if (!new_smi->pdev) {
3663 printk(KERN_ERR PFX
3664 "Unable to allocate platform device\n");
3665 goto out_err;
3666 }
3667 new_smi->dev = &new_smi->pdev->dev;
3668 new_smi->dev->driver = &ipmi_driver.driver;
3669
3670 rv = platform_device_add(new_smi->pdev);
3671 if (rv) {
3672 printk(KERN_ERR PFX
3673 "Unable to register system interface device:"
3674 " %d\n",
3675 rv);
3676 goto out_err;
3677 }
3678 new_smi->dev_registered = true;
3679 }
3680
3681 rv = ipmi_register_smi(&handlers,
3682 new_smi,
3683 &new_smi->device_id,
3684 new_smi->dev,
3685 new_smi->slave_addr);
3686 if (rv) {
3687 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3688 rv);
3689 goto out_err_stop_timer;
3690 }
3691
3692 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3693 &smi_type_proc_ops,
3694 new_smi);
3695 if (rv) {
3696 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3697 goto out_err_stop_timer;
3698 }
3699
3700 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3701 &smi_si_stats_proc_ops,
3702 new_smi);
3703 if (rv) {
3704 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3705 goto out_err_stop_timer;
3706 }
3707
3708 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3709 &smi_params_proc_ops,
3710 new_smi);
3711 if (rv) {
3712 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3713 goto out_err_stop_timer;
3714 }
3715
3716 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3717 si_to_str[new_smi->si_type]);
3718
3719 return 0;
3720
3721 out_err_stop_timer:
3722 wait_for_timer_and_thread(new_smi);
3723
3724 out_err:
3725 new_smi->interrupt_disabled = true;
3726
3727 if (new_smi->intf) {
3728 ipmi_smi_t intf = new_smi->intf;
3729 new_smi->intf = NULL;
3730 ipmi_unregister_smi(intf);
3731 }
3732
3733 if (new_smi->irq_cleanup) {
3734 new_smi->irq_cleanup(new_smi);
3735 new_smi->irq_cleanup = NULL;
3736 }
3737
3738 /*
3739 * Wait until we know that we are out of any interrupt
3740 * handlers might have been running before we freed the
3741 * interrupt.
3742 */
3743 synchronize_sched();
3744
3745 if (new_smi->si_sm) {
3746 if (new_smi->handlers)
3747 new_smi->handlers->cleanup(new_smi->si_sm);
3748 kfree(new_smi->si_sm);
3749 new_smi->si_sm = NULL;
3750 }
3751 if (new_smi->addr_source_cleanup) {
3752 new_smi->addr_source_cleanup(new_smi);
3753 new_smi->addr_source_cleanup = NULL;
3754 }
3755 if (new_smi->io_cleanup) {
3756 new_smi->io_cleanup(new_smi);
3757 new_smi->io_cleanup = NULL;
3758 }
3759
3760 if (new_smi->dev_registered) {
3761 platform_device_unregister(new_smi->pdev);
3762 new_smi->dev_registered = false;
3763 }
3764
3765 return rv;
3766 }
3767
3768 static int init_ipmi_si(void)
3769 {
3770 int i;
3771 char *str;
3772 int rv;
3773 struct smi_info *e;
3774 enum ipmi_addr_src type = SI_INVALID;
3775
3776 if (initialized)
3777 return 0;
3778 initialized = 1;
3779
3780 if (si_tryplatform) {
3781 rv = platform_driver_register(&ipmi_driver);
3782 if (rv) {
3783 printk(KERN_ERR PFX "Unable to register "
3784 "driver: %d\n", rv);
3785 return rv;
3786 }
3787 }
3788
3789 /* Parse out the si_type string into its components. */
3790 str = si_type_str;
3791 if (*str != '\0') {
3792 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3793 si_type[i] = str;
3794 str = strchr(str, ',');
3795 if (str) {
3796 *str = '\0';
3797 str++;
3798 } else {
3799 break;
3800 }
3801 }
3802 }
3803
3804 printk(KERN_INFO "IPMI System Interface driver.\n");
3805
3806 /* If the user gave us a device, they presumably want us to use it */
3807 if (!hardcode_find_bmc())
3808 return 0;
3809
3810 #ifdef CONFIG_PCI
3811 if (si_trypci) {
3812 rv = pci_register_driver(&ipmi_pci_driver);
3813 if (rv)
3814 printk(KERN_ERR PFX "Unable to register "
3815 "PCI driver: %d\n", rv);
3816 else
3817 pci_registered = true;
3818 }
3819 #endif
3820
3821 #ifdef CONFIG_DMI
3822 if (si_trydmi)
3823 dmi_find_bmc();
3824 #endif
3825
3826 #ifdef CONFIG_ACPI
3827 if (si_tryacpi)
3828 spmi_find_bmc();
3829 #endif
3830
3831 #ifdef CONFIG_PARISC
3832 register_parisc_driver(&ipmi_parisc_driver);
3833 parisc_registered = true;
3834 /* poking PC IO addresses will crash machine, don't do it */
3835 si_trydefaults = 0;
3836 #endif
3837
3838 /* We prefer devices with interrupts, but in the case of a machine
3839 with multiple BMCs we assume that there will be several instances
3840 of a given type so if we succeed in registering a type then also
3841 try to register everything else of the same type */
3842
3843 mutex_lock(&smi_infos_lock);
3844 list_for_each_entry(e, &smi_infos, link) {
3845 /* Try to register a device if it has an IRQ and we either
3846 haven't successfully registered a device yet or this
3847 device has the same type as one we successfully registered */
3848 if (e->irq && (!type || e->addr_source == type)) {
3849 if (!try_smi_init(e)) {
3850 type = e->addr_source;
3851 }
3852 }
3853 }
3854
3855 /* type will only have been set if we successfully registered an si */
3856 if (type) {
3857 mutex_unlock(&smi_infos_lock);
3858 return 0;
3859 }
3860
3861 /* Fall back to the preferred device */
3862
3863 list_for_each_entry(e, &smi_infos, link) {
3864 if (!e->irq && (!type || e->addr_source == type)) {
3865 if (!try_smi_init(e)) {
3866 type = e->addr_source;
3867 }
3868 }
3869 }
3870 mutex_unlock(&smi_infos_lock);
3871
3872 if (type)
3873 return 0;
3874
3875 if (si_trydefaults) {
3876 mutex_lock(&smi_infos_lock);
3877 if (list_empty(&smi_infos)) {
3878 /* No BMC was found, try defaults. */
3879 mutex_unlock(&smi_infos_lock);
3880 default_find_bmc();
3881 } else
3882 mutex_unlock(&smi_infos_lock);
3883 }
3884
3885 mutex_lock(&smi_infos_lock);
3886 if (unload_when_empty && list_empty(&smi_infos)) {
3887 mutex_unlock(&smi_infos_lock);
3888 cleanup_ipmi_si();
3889 printk(KERN_WARNING PFX
3890 "Unable to find any System Interface(s)\n");
3891 return -ENODEV;
3892 } else {
3893 mutex_unlock(&smi_infos_lock);
3894 return 0;
3895 }
3896 }
3897 module_init(init_ipmi_si);
3898
3899 static void cleanup_one_si(struct smi_info *to_clean)
3900 {
3901 int rv = 0;
3902
3903 if (!to_clean)
3904 return;
3905
3906 if (to_clean->intf) {
3907 ipmi_smi_t intf = to_clean->intf;
3908
3909 to_clean->intf = NULL;
3910 rv = ipmi_unregister_smi(intf);
3911 if (rv) {
3912 pr_err(PFX "Unable to unregister device: errno=%d\n",
3913 rv);
3914 }
3915 }
3916
3917 if (to_clean->dev)
3918 dev_set_drvdata(to_clean->dev, NULL);
3919
3920 list_del(&to_clean->link);
3921
3922 /*
3923 * Make sure that interrupts, the timer and the thread are
3924 * stopped and will not run again.
3925 */
3926 if (to_clean->irq_cleanup)
3927 to_clean->irq_cleanup(to_clean);
3928 wait_for_timer_and_thread(to_clean);
3929
3930 /*
3931 * Timeouts are stopped, now make sure the interrupts are off
3932 * in the BMC. Note that timers and CPU interrupts are off,
3933 * so no need for locks.
3934 */
3935 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3936 poll(to_clean);
3937 schedule_timeout_uninterruptible(1);
3938 }
3939 disable_si_irq(to_clean, false);
3940 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3941 poll(to_clean);
3942 schedule_timeout_uninterruptible(1);
3943 }
3944
3945 if (to_clean->handlers)
3946 to_clean->handlers->cleanup(to_clean->si_sm);
3947
3948 kfree(to_clean->si_sm);
3949
3950 if (to_clean->addr_source_cleanup)
3951 to_clean->addr_source_cleanup(to_clean);
3952 if (to_clean->io_cleanup)
3953 to_clean->io_cleanup(to_clean);
3954
3955 if (to_clean->dev_registered)
3956 platform_device_unregister(to_clean->pdev);
3957
3958 kfree(to_clean);
3959 }
3960
3961 static void cleanup_ipmi_si(void)
3962 {
3963 struct smi_info *e, *tmp_e;
3964
3965 if (!initialized)
3966 return;
3967
3968 #ifdef CONFIG_PCI
3969 if (pci_registered)
3970 pci_unregister_driver(&ipmi_pci_driver);
3971 #endif
3972 #ifdef CONFIG_PARISC
3973 if (parisc_registered)
3974 unregister_parisc_driver(&ipmi_parisc_driver);
3975 #endif
3976
3977 platform_driver_unregister(&ipmi_driver);
3978
3979 mutex_lock(&smi_infos_lock);
3980 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3981 cleanup_one_si(e);
3982 mutex_unlock(&smi_infos_lock);
3983 }
3984 module_exit(cleanup_ipmi_si);
3985
3986 MODULE_LICENSE("GPL");
3987 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3988 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3989 " system interfaces.");