]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 /*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41 #include <linux/module.h>
42 #include <linux/moduleparam.h>
43 #include <asm/system.h>
44 #include <linux/sched.h>
45 #include <linux/timer.h>
46 #include <linux/errno.h>
47 #include <linux/spinlock.h>
48 #include <linux/slab.h>
49 #include <linux/delay.h>
50 #include <linux/list.h>
51 #include <linux/pci.h>
52 #include <linux/ioport.h>
53 #include <linux/notifier.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <asm/irq.h>
57 #include <linux/interrupt.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ipmi_smi.h>
60 #include <asm/io.h>
61 #include "ipmi_si_sm.h"
62 #include <linux/init.h>
63 #include <linux/dmi.h>
64
65 /* Measure times between events in the driver. */
66 #undef DEBUG_TIMING
67
68 /* Call every 10 ms. */
69 #define SI_TIMEOUT_TIME_USEC 10000
70 #define SI_USEC_PER_JIFFY (1000000/HZ)
71 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
72 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
73 short timeout */
74
75 enum si_intf_state {
76 SI_NORMAL,
77 SI_GETTING_FLAGS,
78 SI_GETTING_EVENTS,
79 SI_CLEARING_FLAGS,
80 SI_CLEARING_FLAGS_THEN_SET_IRQ,
81 SI_GETTING_MESSAGES,
82 SI_ENABLE_INTERRUPTS1,
83 SI_ENABLE_INTERRUPTS2
84 /* FIXME - add watchdog stuff. */
85 };
86
87 /* Some BT-specific defines we need here. */
88 #define IPMI_BT_INTMASK_REG 2
89 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
90 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
91
92 enum si_type {
93 SI_KCS, SI_SMIC, SI_BT
94 };
95 static char *si_to_str[] = { "KCS", "SMIC", "BT" };
96
97 #define DEVICE_NAME "ipmi_si"
98
99 static struct device_driver ipmi_driver =
100 {
101 .name = DEVICE_NAME,
102 .bus = &platform_bus_type
103 };
104
105 struct smi_info
106 {
107 int intf_num;
108 ipmi_smi_t intf;
109 struct si_sm_data *si_sm;
110 struct si_sm_handlers *handlers;
111 enum si_type si_type;
112 spinlock_t si_lock;
113 spinlock_t msg_lock;
114 struct list_head xmit_msgs;
115 struct list_head hp_xmit_msgs;
116 struct ipmi_smi_msg *curr_msg;
117 enum si_intf_state si_state;
118
119 /* Used to handle the various types of I/O that can occur with
120 IPMI */
121 struct si_sm_io io;
122 int (*io_setup)(struct smi_info *info);
123 void (*io_cleanup)(struct smi_info *info);
124 int (*irq_setup)(struct smi_info *info);
125 void (*irq_cleanup)(struct smi_info *info);
126 unsigned int io_size;
127 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
128 void (*addr_source_cleanup)(struct smi_info *info);
129 void *addr_source_data;
130
131 /* Per-OEM handler, called from handle_flags().
132 Returns 1 when handle_flags() needs to be re-run
133 or 0 indicating it set si_state itself.
134 */
135 int (*oem_data_avail_handler)(struct smi_info *smi_info);
136
137 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
138 is set to hold the flags until we are done handling everything
139 from the flags. */
140 #define RECEIVE_MSG_AVAIL 0x01
141 #define EVENT_MSG_BUFFER_FULL 0x02
142 #define WDT_PRE_TIMEOUT_INT 0x08
143 #define OEM0_DATA_AVAIL 0x20
144 #define OEM1_DATA_AVAIL 0x40
145 #define OEM2_DATA_AVAIL 0x80
146 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
147 OEM1_DATA_AVAIL | \
148 OEM2_DATA_AVAIL)
149 unsigned char msg_flags;
150
151 /* If set to true, this will request events the next time the
152 state machine is idle. */
153 atomic_t req_events;
154
155 /* If true, run the state machine to completion on every send
156 call. Generally used after a panic to make sure stuff goes
157 out. */
158 int run_to_completion;
159
160 /* The I/O port of an SI interface. */
161 int port;
162
163 /* The space between start addresses of the two ports. For
164 instance, if the first port is 0xca2 and the spacing is 4, then
165 the second port is 0xca6. */
166 unsigned int spacing;
167
168 /* zero if no irq; */
169 int irq;
170
171 /* The timer for this si. */
172 struct timer_list si_timer;
173
174 /* The time (in jiffies) the last timeout occurred at. */
175 unsigned long last_timeout_jiffies;
176
177 /* Used to gracefully stop the timer without race conditions. */
178 atomic_t stop_operation;
179
180 /* The driver will disable interrupts when it gets into a
181 situation where it cannot handle messages due to lack of
182 memory. Once that situation clears up, it will re-enable
183 interrupts. */
184 int interrupt_disabled;
185
186 /* From the get device id response... */
187 struct ipmi_device_id device_id;
188
189 /* Driver model stuff. */
190 struct device *dev;
191 struct platform_device *pdev;
192
193 /* True if we allocated the device, false if it came from
194 * someplace else (like PCI). */
195 int dev_registered;
196
197 /* Slave address, could be reported from DMI. */
198 unsigned char slave_addr;
199
200 /* Counters and things for the proc filesystem. */
201 spinlock_t count_lock;
202 unsigned long short_timeouts;
203 unsigned long long_timeouts;
204 unsigned long timeout_restarts;
205 unsigned long idles;
206 unsigned long interrupts;
207 unsigned long attentions;
208 unsigned long flag_fetches;
209 unsigned long hosed_count;
210 unsigned long complete_transactions;
211 unsigned long events;
212 unsigned long watchdog_pretimeouts;
213 unsigned long incoming_messages;
214
215 struct task_struct *thread;
216
217 struct list_head link;
218 };
219
220 #define SI_MAX_PARMS 4
221
222 static int force_kipmid[SI_MAX_PARMS];
223 static int num_force_kipmid;
224
225 static int try_smi_init(struct smi_info *smi);
226
227 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
228 static int register_xaction_notifier(struct notifier_block * nb)
229 {
230 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
231 }
232
233 static void deliver_recv_msg(struct smi_info *smi_info,
234 struct ipmi_smi_msg *msg)
235 {
236 /* Deliver the message to the upper layer with the lock
237 released. */
238 spin_unlock(&(smi_info->si_lock));
239 ipmi_smi_msg_received(smi_info->intf, msg);
240 spin_lock(&(smi_info->si_lock));
241 }
242
243 static void return_hosed_msg(struct smi_info *smi_info)
244 {
245 struct ipmi_smi_msg *msg = smi_info->curr_msg;
246
247 /* Make it a reponse */
248 msg->rsp[0] = msg->data[0] | 4;
249 msg->rsp[1] = msg->data[1];
250 msg->rsp[2] = 0xFF; /* Unknown error. */
251 msg->rsp_size = 3;
252
253 smi_info->curr_msg = NULL;
254 deliver_recv_msg(smi_info, msg);
255 }
256
257 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
258 {
259 int rv;
260 struct list_head *entry = NULL;
261 #ifdef DEBUG_TIMING
262 struct timeval t;
263 #endif
264
265 /* No need to save flags, we aleady have interrupts off and we
266 already hold the SMI lock. */
267 spin_lock(&(smi_info->msg_lock));
268
269 /* Pick the high priority queue first. */
270 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
271 entry = smi_info->hp_xmit_msgs.next;
272 } else if (!list_empty(&(smi_info->xmit_msgs))) {
273 entry = smi_info->xmit_msgs.next;
274 }
275
276 if (!entry) {
277 smi_info->curr_msg = NULL;
278 rv = SI_SM_IDLE;
279 } else {
280 int err;
281
282 list_del(entry);
283 smi_info->curr_msg = list_entry(entry,
284 struct ipmi_smi_msg,
285 link);
286 #ifdef DEBUG_TIMING
287 do_gettimeofday(&t);
288 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
289 #endif
290 err = atomic_notifier_call_chain(&xaction_notifier_list,
291 0, smi_info);
292 if (err & NOTIFY_STOP_MASK) {
293 rv = SI_SM_CALL_WITHOUT_DELAY;
294 goto out;
295 }
296 err = smi_info->handlers->start_transaction(
297 smi_info->si_sm,
298 smi_info->curr_msg->data,
299 smi_info->curr_msg->data_size);
300 if (err) {
301 return_hosed_msg(smi_info);
302 }
303
304 rv = SI_SM_CALL_WITHOUT_DELAY;
305 }
306 out:
307 spin_unlock(&(smi_info->msg_lock));
308
309 return rv;
310 }
311
312 static void start_enable_irq(struct smi_info *smi_info)
313 {
314 unsigned char msg[2];
315
316 /* If we are enabling interrupts, we have to tell the
317 BMC to use them. */
318 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
319 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
320
321 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
322 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
323 }
324
325 static void start_clear_flags(struct smi_info *smi_info)
326 {
327 unsigned char msg[3];
328
329 /* Make sure the watchdog pre-timeout flag is not set at startup. */
330 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
331 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
332 msg[2] = WDT_PRE_TIMEOUT_INT;
333
334 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
335 smi_info->si_state = SI_CLEARING_FLAGS;
336 }
337
338 /* When we have a situtaion where we run out of memory and cannot
339 allocate messages, we just leave them in the BMC and run the system
340 polled until we can allocate some memory. Once we have some
341 memory, we will re-enable the interrupt. */
342 static inline void disable_si_irq(struct smi_info *smi_info)
343 {
344 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
345 disable_irq_nosync(smi_info->irq);
346 smi_info->interrupt_disabled = 1;
347 }
348 }
349
350 static inline void enable_si_irq(struct smi_info *smi_info)
351 {
352 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
353 enable_irq(smi_info->irq);
354 smi_info->interrupt_disabled = 0;
355 }
356 }
357
358 static void handle_flags(struct smi_info *smi_info)
359 {
360 retry:
361 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
362 /* Watchdog pre-timeout */
363 spin_lock(&smi_info->count_lock);
364 smi_info->watchdog_pretimeouts++;
365 spin_unlock(&smi_info->count_lock);
366
367 start_clear_flags(smi_info);
368 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
369 spin_unlock(&(smi_info->si_lock));
370 ipmi_smi_watchdog_pretimeout(smi_info->intf);
371 spin_lock(&(smi_info->si_lock));
372 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
373 /* Messages available. */
374 smi_info->curr_msg = ipmi_alloc_smi_msg();
375 if (!smi_info->curr_msg) {
376 disable_si_irq(smi_info);
377 smi_info->si_state = SI_NORMAL;
378 return;
379 }
380 enable_si_irq(smi_info);
381
382 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
383 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
384 smi_info->curr_msg->data_size = 2;
385
386 smi_info->handlers->start_transaction(
387 smi_info->si_sm,
388 smi_info->curr_msg->data,
389 smi_info->curr_msg->data_size);
390 smi_info->si_state = SI_GETTING_MESSAGES;
391 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
392 /* Events available. */
393 smi_info->curr_msg = ipmi_alloc_smi_msg();
394 if (!smi_info->curr_msg) {
395 disable_si_irq(smi_info);
396 smi_info->si_state = SI_NORMAL;
397 return;
398 }
399 enable_si_irq(smi_info);
400
401 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
402 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
403 smi_info->curr_msg->data_size = 2;
404
405 smi_info->handlers->start_transaction(
406 smi_info->si_sm,
407 smi_info->curr_msg->data,
408 smi_info->curr_msg->data_size);
409 smi_info->si_state = SI_GETTING_EVENTS;
410 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
411 smi_info->oem_data_avail_handler) {
412 if (smi_info->oem_data_avail_handler(smi_info))
413 goto retry;
414 } else {
415 smi_info->si_state = SI_NORMAL;
416 }
417 }
418
419 static void handle_transaction_done(struct smi_info *smi_info)
420 {
421 struct ipmi_smi_msg *msg;
422 #ifdef DEBUG_TIMING
423 struct timeval t;
424
425 do_gettimeofday(&t);
426 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
427 #endif
428 switch (smi_info->si_state) {
429 case SI_NORMAL:
430 if (!smi_info->curr_msg)
431 break;
432
433 smi_info->curr_msg->rsp_size
434 = smi_info->handlers->get_result(
435 smi_info->si_sm,
436 smi_info->curr_msg->rsp,
437 IPMI_MAX_MSG_LENGTH);
438
439 /* Do this here becase deliver_recv_msg() releases the
440 lock, and a new message can be put in during the
441 time the lock is released. */
442 msg = smi_info->curr_msg;
443 smi_info->curr_msg = NULL;
444 deliver_recv_msg(smi_info, msg);
445 break;
446
447 case SI_GETTING_FLAGS:
448 {
449 unsigned char msg[4];
450 unsigned int len;
451
452 /* We got the flags from the SMI, now handle them. */
453 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
454 if (msg[2] != 0) {
455 /* Error fetching flags, just give up for
456 now. */
457 smi_info->si_state = SI_NORMAL;
458 } else if (len < 4) {
459 /* Hmm, no flags. That's technically illegal, but
460 don't use uninitialized data. */
461 smi_info->si_state = SI_NORMAL;
462 } else {
463 smi_info->msg_flags = msg[3];
464 handle_flags(smi_info);
465 }
466 break;
467 }
468
469 case SI_CLEARING_FLAGS:
470 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
471 {
472 unsigned char msg[3];
473
474 /* We cleared the flags. */
475 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
476 if (msg[2] != 0) {
477 /* Error clearing flags */
478 printk(KERN_WARNING
479 "ipmi_si: Error clearing flags: %2.2x\n",
480 msg[2]);
481 }
482 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
483 start_enable_irq(smi_info);
484 else
485 smi_info->si_state = SI_NORMAL;
486 break;
487 }
488
489 case SI_GETTING_EVENTS:
490 {
491 smi_info->curr_msg->rsp_size
492 = smi_info->handlers->get_result(
493 smi_info->si_sm,
494 smi_info->curr_msg->rsp,
495 IPMI_MAX_MSG_LENGTH);
496
497 /* Do this here becase deliver_recv_msg() releases the
498 lock, and a new message can be put in during the
499 time the lock is released. */
500 msg = smi_info->curr_msg;
501 smi_info->curr_msg = NULL;
502 if (msg->rsp[2] != 0) {
503 /* Error getting event, probably done. */
504 msg->done(msg);
505
506 /* Take off the event flag. */
507 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
508 handle_flags(smi_info);
509 } else {
510 spin_lock(&smi_info->count_lock);
511 smi_info->events++;
512 spin_unlock(&smi_info->count_lock);
513
514 /* Do this before we deliver the message
515 because delivering the message releases the
516 lock and something else can mess with the
517 state. */
518 handle_flags(smi_info);
519
520 deliver_recv_msg(smi_info, msg);
521 }
522 break;
523 }
524
525 case SI_GETTING_MESSAGES:
526 {
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
529 smi_info->si_sm,
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
532
533 /* Do this here becase deliver_recv_msg() releases the
534 lock, and a new message can be put in during the
535 time the lock is released. */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 if (msg->rsp[2] != 0) {
539 /* Error getting event, probably done. */
540 msg->done(msg);
541
542 /* Take off the msg flag. */
543 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
544 handle_flags(smi_info);
545 } else {
546 spin_lock(&smi_info->count_lock);
547 smi_info->incoming_messages++;
548 spin_unlock(&smi_info->count_lock);
549
550 /* Do this before we deliver the message
551 because delivering the message releases the
552 lock and something else can mess with the
553 state. */
554 handle_flags(smi_info);
555
556 deliver_recv_msg(smi_info, msg);
557 }
558 break;
559 }
560
561 case SI_ENABLE_INTERRUPTS1:
562 {
563 unsigned char msg[4];
564
565 /* We got the flags from the SMI, now handle them. */
566 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
567 if (msg[2] != 0) {
568 printk(KERN_WARNING
569 "ipmi_si: Could not enable interrupts"
570 ", failed get, using polled mode.\n");
571 smi_info->si_state = SI_NORMAL;
572 } else {
573 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
574 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
575 msg[2] = msg[3] | 1; /* enable msg queue int */
576 smi_info->handlers->start_transaction(
577 smi_info->si_sm, msg, 3);
578 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
579 }
580 break;
581 }
582
583 case SI_ENABLE_INTERRUPTS2:
584 {
585 unsigned char msg[4];
586
587 /* We got the flags from the SMI, now handle them. */
588 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
589 if (msg[2] != 0) {
590 printk(KERN_WARNING
591 "ipmi_si: Could not enable interrupts"
592 ", failed set, using polled mode.\n");
593 }
594 smi_info->si_state = SI_NORMAL;
595 break;
596 }
597 }
598 }
599
600 /* Called on timeouts and events. Timeouts should pass the elapsed
601 time, interrupts should pass in zero. */
602 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
603 int time)
604 {
605 enum si_sm_result si_sm_result;
606
607 restart:
608 /* There used to be a loop here that waited a little while
609 (around 25us) before giving up. That turned out to be
610 pointless, the minimum delays I was seeing were in the 300us
611 range, which is far too long to wait in an interrupt. So
612 we just run until the state machine tells us something
613 happened or it needs a delay. */
614 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
615 time = 0;
616 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
617 {
618 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
619 }
620
621 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
622 {
623 spin_lock(&smi_info->count_lock);
624 smi_info->complete_transactions++;
625 spin_unlock(&smi_info->count_lock);
626
627 handle_transaction_done(smi_info);
628 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
629 }
630 else if (si_sm_result == SI_SM_HOSED)
631 {
632 spin_lock(&smi_info->count_lock);
633 smi_info->hosed_count++;
634 spin_unlock(&smi_info->count_lock);
635
636 /* Do the before return_hosed_msg, because that
637 releases the lock. */
638 smi_info->si_state = SI_NORMAL;
639 if (smi_info->curr_msg != NULL) {
640 /* If we were handling a user message, format
641 a response to send to the upper layer to
642 tell it about the error. */
643 return_hosed_msg(smi_info);
644 }
645 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
646 }
647
648 /* We prefer handling attn over new messages. */
649 if (si_sm_result == SI_SM_ATTN)
650 {
651 unsigned char msg[2];
652
653 spin_lock(&smi_info->count_lock);
654 smi_info->attentions++;
655 spin_unlock(&smi_info->count_lock);
656
657 /* Got a attn, send down a get message flags to see
658 what's causing it. It would be better to handle
659 this in the upper layer, but due to the way
660 interrupts work with the SMI, that's not really
661 possible. */
662 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
663 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
664
665 smi_info->handlers->start_transaction(
666 smi_info->si_sm, msg, 2);
667 smi_info->si_state = SI_GETTING_FLAGS;
668 goto restart;
669 }
670
671 /* If we are currently idle, try to start the next message. */
672 if (si_sm_result == SI_SM_IDLE) {
673 spin_lock(&smi_info->count_lock);
674 smi_info->idles++;
675 spin_unlock(&smi_info->count_lock);
676
677 si_sm_result = start_next_msg(smi_info);
678 if (si_sm_result != SI_SM_IDLE)
679 goto restart;
680 }
681
682 if ((si_sm_result == SI_SM_IDLE)
683 && (atomic_read(&smi_info->req_events)))
684 {
685 /* We are idle and the upper layer requested that I fetch
686 events, so do so. */
687 unsigned char msg[2];
688
689 spin_lock(&smi_info->count_lock);
690 smi_info->flag_fetches++;
691 spin_unlock(&smi_info->count_lock);
692
693 atomic_set(&smi_info->req_events, 0);
694 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
695 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
696
697 smi_info->handlers->start_transaction(
698 smi_info->si_sm, msg, 2);
699 smi_info->si_state = SI_GETTING_FLAGS;
700 goto restart;
701 }
702
703 return si_sm_result;
704 }
705
706 static void sender(void *send_info,
707 struct ipmi_smi_msg *msg,
708 int priority)
709 {
710 struct smi_info *smi_info = send_info;
711 enum si_sm_result result;
712 unsigned long flags;
713 #ifdef DEBUG_TIMING
714 struct timeval t;
715 #endif
716
717 spin_lock_irqsave(&(smi_info->msg_lock), flags);
718 #ifdef DEBUG_TIMING
719 do_gettimeofday(&t);
720 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
721 #endif
722
723 if (smi_info->run_to_completion) {
724 /* If we are running to completion, then throw it in
725 the list and run transactions until everything is
726 clear. Priority doesn't matter here. */
727 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
728
729 /* We have to release the msg lock and claim the smi
730 lock in this case, because of race conditions. */
731 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
732
733 spin_lock_irqsave(&(smi_info->si_lock), flags);
734 result = smi_event_handler(smi_info, 0);
735 while (result != SI_SM_IDLE) {
736 udelay(SI_SHORT_TIMEOUT_USEC);
737 result = smi_event_handler(smi_info,
738 SI_SHORT_TIMEOUT_USEC);
739 }
740 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
741 return;
742 } else {
743 if (priority > 0) {
744 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
745 } else {
746 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
747 }
748 }
749 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
750
751 spin_lock_irqsave(&(smi_info->si_lock), flags);
752 if ((smi_info->si_state == SI_NORMAL)
753 && (smi_info->curr_msg == NULL))
754 {
755 start_next_msg(smi_info);
756 }
757 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
758 }
759
760 static void set_run_to_completion(void *send_info, int i_run_to_completion)
761 {
762 struct smi_info *smi_info = send_info;
763 enum si_sm_result result;
764 unsigned long flags;
765
766 spin_lock_irqsave(&(smi_info->si_lock), flags);
767
768 smi_info->run_to_completion = i_run_to_completion;
769 if (i_run_to_completion) {
770 result = smi_event_handler(smi_info, 0);
771 while (result != SI_SM_IDLE) {
772 udelay(SI_SHORT_TIMEOUT_USEC);
773 result = smi_event_handler(smi_info,
774 SI_SHORT_TIMEOUT_USEC);
775 }
776 }
777
778 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
779 }
780
781 static int ipmi_thread(void *data)
782 {
783 struct smi_info *smi_info = data;
784 unsigned long flags;
785 enum si_sm_result smi_result;
786
787 set_user_nice(current, 19);
788 while (!kthread_should_stop()) {
789 spin_lock_irqsave(&(smi_info->si_lock), flags);
790 smi_result = smi_event_handler(smi_info, 0);
791 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
792 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
793 /* do nothing */
794 }
795 else if (smi_result == SI_SM_CALL_WITH_DELAY)
796 schedule();
797 else
798 schedule_timeout_interruptible(1);
799 }
800 return 0;
801 }
802
803
804 static void poll(void *send_info)
805 {
806 struct smi_info *smi_info = send_info;
807
808 smi_event_handler(smi_info, 0);
809 }
810
811 static void request_events(void *send_info)
812 {
813 struct smi_info *smi_info = send_info;
814
815 atomic_set(&smi_info->req_events, 1);
816 }
817
818 static int initialized = 0;
819
820 static void smi_timeout(unsigned long data)
821 {
822 struct smi_info *smi_info = (struct smi_info *) data;
823 enum si_sm_result smi_result;
824 unsigned long flags;
825 unsigned long jiffies_now;
826 long time_diff;
827 #ifdef DEBUG_TIMING
828 struct timeval t;
829 #endif
830
831 if (atomic_read(&smi_info->stop_operation))
832 return;
833
834 spin_lock_irqsave(&(smi_info->si_lock), flags);
835 #ifdef DEBUG_TIMING
836 do_gettimeofday(&t);
837 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
838 #endif
839 jiffies_now = jiffies;
840 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
841 * SI_USEC_PER_JIFFY);
842 smi_result = smi_event_handler(smi_info, time_diff);
843
844 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
845
846 smi_info->last_timeout_jiffies = jiffies_now;
847
848 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
849 /* Running with interrupts, only do long timeouts. */
850 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
851 spin_lock_irqsave(&smi_info->count_lock, flags);
852 smi_info->long_timeouts++;
853 spin_unlock_irqrestore(&smi_info->count_lock, flags);
854 goto do_add_timer;
855 }
856
857 /* If the state machine asks for a short delay, then shorten
858 the timer timeout. */
859 if (smi_result == SI_SM_CALL_WITH_DELAY) {
860 spin_lock_irqsave(&smi_info->count_lock, flags);
861 smi_info->short_timeouts++;
862 spin_unlock_irqrestore(&smi_info->count_lock, flags);
863 smi_info->si_timer.expires = jiffies + 1;
864 } else {
865 spin_lock_irqsave(&smi_info->count_lock, flags);
866 smi_info->long_timeouts++;
867 spin_unlock_irqrestore(&smi_info->count_lock, flags);
868 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
869 }
870
871 do_add_timer:
872 add_timer(&(smi_info->si_timer));
873 }
874
875 static irqreturn_t si_irq_handler(int irq, void *data)
876 {
877 struct smi_info *smi_info = data;
878 unsigned long flags;
879 #ifdef DEBUG_TIMING
880 struct timeval t;
881 #endif
882
883 spin_lock_irqsave(&(smi_info->si_lock), flags);
884
885 spin_lock(&smi_info->count_lock);
886 smi_info->interrupts++;
887 spin_unlock(&smi_info->count_lock);
888
889 if (atomic_read(&smi_info->stop_operation))
890 goto out;
891
892 #ifdef DEBUG_TIMING
893 do_gettimeofday(&t);
894 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
895 #endif
896 smi_event_handler(smi_info, 0);
897 out:
898 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
899 return IRQ_HANDLED;
900 }
901
902 static irqreturn_t si_bt_irq_handler(int irq, void *data)
903 {
904 struct smi_info *smi_info = data;
905 /* We need to clear the IRQ flag for the BT interface. */
906 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
907 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
908 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
909 return si_irq_handler(irq, data);
910 }
911
912 static int smi_start_processing(void *send_info,
913 ipmi_smi_t intf)
914 {
915 struct smi_info *new_smi = send_info;
916 int enable = 0;
917
918 new_smi->intf = intf;
919
920 /* Set up the timer that drives the interface. */
921 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
922 new_smi->last_timeout_jiffies = jiffies;
923 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
924
925 /*
926 * Check if the user forcefully enabled the daemon.
927 */
928 if (new_smi->intf_num < num_force_kipmid)
929 enable = force_kipmid[new_smi->intf_num];
930 /*
931 * The BT interface is efficient enough to not need a thread,
932 * and there is no need for a thread if we have interrupts.
933 */
934 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
935 enable = 1;
936
937 if (enable) {
938 new_smi->thread = kthread_run(ipmi_thread, new_smi,
939 "kipmi%d", new_smi->intf_num);
940 if (IS_ERR(new_smi->thread)) {
941 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
942 " kernel thread due to error %ld, only using"
943 " timers to drive the interface\n",
944 PTR_ERR(new_smi->thread));
945 new_smi->thread = NULL;
946 }
947 }
948
949 return 0;
950 }
951
952 static struct ipmi_smi_handlers handlers =
953 {
954 .owner = THIS_MODULE,
955 .start_processing = smi_start_processing,
956 .sender = sender,
957 .request_events = request_events,
958 .set_run_to_completion = set_run_to_completion,
959 .poll = poll,
960 };
961
962 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
963 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
964
965 static LIST_HEAD(smi_infos);
966 static DEFINE_MUTEX(smi_infos_lock);
967 static int smi_num; /* Used to sequence the SMIs */
968
969 #define DEFAULT_REGSPACING 1
970
971 static int si_trydefaults = 1;
972 static char *si_type[SI_MAX_PARMS];
973 #define MAX_SI_TYPE_STR 30
974 static char si_type_str[MAX_SI_TYPE_STR];
975 static unsigned long addrs[SI_MAX_PARMS];
976 static int num_addrs;
977 static unsigned int ports[SI_MAX_PARMS];
978 static int num_ports;
979 static int irqs[SI_MAX_PARMS];
980 static int num_irqs;
981 static int regspacings[SI_MAX_PARMS];
982 static int num_regspacings = 0;
983 static int regsizes[SI_MAX_PARMS];
984 static int num_regsizes = 0;
985 static int regshifts[SI_MAX_PARMS];
986 static int num_regshifts = 0;
987 static int slave_addrs[SI_MAX_PARMS];
988 static int num_slave_addrs = 0;
989
990
991 module_param_named(trydefaults, si_trydefaults, bool, 0);
992 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
993 " default scan of the KCS and SMIC interface at the standard"
994 " address");
995 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
996 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
997 " interface separated by commas. The types are 'kcs',"
998 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
999 " the first interface to kcs and the second to bt");
1000 module_param_array(addrs, long, &num_addrs, 0);
1001 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1002 " addresses separated by commas. Only use if an interface"
1003 " is in memory. Otherwise, set it to zero or leave"
1004 " it blank.");
1005 module_param_array(ports, int, &num_ports, 0);
1006 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1007 " addresses separated by commas. Only use if an interface"
1008 " is a port. Otherwise, set it to zero or leave"
1009 " it blank.");
1010 module_param_array(irqs, int, &num_irqs, 0);
1011 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1012 " addresses separated by commas. Only use if an interface"
1013 " has an interrupt. Otherwise, set it to zero or leave"
1014 " it blank.");
1015 module_param_array(regspacings, int, &num_regspacings, 0);
1016 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1017 " and each successive register used by the interface. For"
1018 " instance, if the start address is 0xca2 and the spacing"
1019 " is 2, then the second address is at 0xca4. Defaults"
1020 " to 1.");
1021 module_param_array(regsizes, int, &num_regsizes, 0);
1022 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1023 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1024 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1025 " the 8-bit IPMI register has to be read from a larger"
1026 " register.");
1027 module_param_array(regshifts, int, &num_regshifts, 0);
1028 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1029 " IPMI register, in bits. For instance, if the data"
1030 " is read from a 32-bit word and the IPMI data is in"
1031 " bit 8-15, then the shift would be 8");
1032 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1033 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1034 " the controller. Normally this is 0x20, but can be"
1035 " overridden by this parm. This is an array indexed"
1036 " by interface number.");
1037 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1038 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1039 " disabled(0). Normally the IPMI driver auto-detects"
1040 " this, but the value may be overridden by this parm.");
1041
1042
1043 #define IPMI_IO_ADDR_SPACE 0
1044 #define IPMI_MEM_ADDR_SPACE 1
1045 static char *addr_space_to_str[] = { "I/O", "memory" };
1046
1047 static void std_irq_cleanup(struct smi_info *info)
1048 {
1049 if (info->si_type == SI_BT)
1050 /* Disable the interrupt in the BT interface. */
1051 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1052 free_irq(info->irq, info);
1053 }
1054
1055 static int std_irq_setup(struct smi_info *info)
1056 {
1057 int rv;
1058
1059 if (!info->irq)
1060 return 0;
1061
1062 if (info->si_type == SI_BT) {
1063 rv = request_irq(info->irq,
1064 si_bt_irq_handler,
1065 IRQF_DISABLED,
1066 DEVICE_NAME,
1067 info);
1068 if (!rv)
1069 /* Enable the interrupt in the BT interface. */
1070 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1071 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1072 } else
1073 rv = request_irq(info->irq,
1074 si_irq_handler,
1075 IRQF_DISABLED,
1076 DEVICE_NAME,
1077 info);
1078 if (rv) {
1079 printk(KERN_WARNING
1080 "ipmi_si: %s unable to claim interrupt %d,"
1081 " running polled\n",
1082 DEVICE_NAME, info->irq);
1083 info->irq = 0;
1084 } else {
1085 info->irq_cleanup = std_irq_cleanup;
1086 printk(" Using irq %d\n", info->irq);
1087 }
1088
1089 return rv;
1090 }
1091
1092 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1093 {
1094 unsigned int addr = io->addr_data;
1095
1096 return inb(addr + (offset * io->regspacing));
1097 }
1098
1099 static void port_outb(struct si_sm_io *io, unsigned int offset,
1100 unsigned char b)
1101 {
1102 unsigned int addr = io->addr_data;
1103
1104 outb(b, addr + (offset * io->regspacing));
1105 }
1106
1107 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1108 {
1109 unsigned int addr = io->addr_data;
1110
1111 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1112 }
1113
1114 static void port_outw(struct si_sm_io *io, unsigned int offset,
1115 unsigned char b)
1116 {
1117 unsigned int addr = io->addr_data;
1118
1119 outw(b << io->regshift, addr + (offset * io->regspacing));
1120 }
1121
1122 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1123 {
1124 unsigned int addr = io->addr_data;
1125
1126 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1127 }
1128
1129 static void port_outl(struct si_sm_io *io, unsigned int offset,
1130 unsigned char b)
1131 {
1132 unsigned int addr = io->addr_data;
1133
1134 outl(b << io->regshift, addr+(offset * io->regspacing));
1135 }
1136
1137 static void port_cleanup(struct smi_info *info)
1138 {
1139 unsigned int addr = info->io.addr_data;
1140 int idx;
1141
1142 if (addr) {
1143 for (idx = 0; idx < info->io_size; idx++) {
1144 release_region(addr + idx * info->io.regspacing,
1145 info->io.regsize);
1146 }
1147 }
1148 }
1149
1150 static int port_setup(struct smi_info *info)
1151 {
1152 unsigned int addr = info->io.addr_data;
1153 int idx;
1154
1155 if (!addr)
1156 return -ENODEV;
1157
1158 info->io_cleanup = port_cleanup;
1159
1160 /* Figure out the actual inb/inw/inl/etc routine to use based
1161 upon the register size. */
1162 switch (info->io.regsize) {
1163 case 1:
1164 info->io.inputb = port_inb;
1165 info->io.outputb = port_outb;
1166 break;
1167 case 2:
1168 info->io.inputb = port_inw;
1169 info->io.outputb = port_outw;
1170 break;
1171 case 4:
1172 info->io.inputb = port_inl;
1173 info->io.outputb = port_outl;
1174 break;
1175 default:
1176 printk("ipmi_si: Invalid register size: %d\n",
1177 info->io.regsize);
1178 return -EINVAL;
1179 }
1180
1181 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1182 * tables. This causes problems when trying to register the
1183 * entire I/O region. Therefore we must register each I/O
1184 * port separately.
1185 */
1186 for (idx = 0; idx < info->io_size; idx++) {
1187 if (request_region(addr + idx * info->io.regspacing,
1188 info->io.regsize, DEVICE_NAME) == NULL) {
1189 /* Undo allocations */
1190 while (idx--) {
1191 release_region(addr + idx * info->io.regspacing,
1192 info->io.regsize);
1193 }
1194 return -EIO;
1195 }
1196 }
1197 return 0;
1198 }
1199
1200 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1201 {
1202 return readb((io->addr)+(offset * io->regspacing));
1203 }
1204
1205 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1206 unsigned char b)
1207 {
1208 writeb(b, (io->addr)+(offset * io->regspacing));
1209 }
1210
1211 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1212 {
1213 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1214 && 0xff;
1215 }
1216
1217 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1218 unsigned char b)
1219 {
1220 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1221 }
1222
1223 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1224 {
1225 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1226 && 0xff;
1227 }
1228
1229 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1230 unsigned char b)
1231 {
1232 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1233 }
1234
1235 #ifdef readq
1236 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1237 {
1238 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1239 && 0xff;
1240 }
1241
1242 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1243 unsigned char b)
1244 {
1245 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1246 }
1247 #endif
1248
1249 static void mem_cleanup(struct smi_info *info)
1250 {
1251 unsigned long addr = info->io.addr_data;
1252 int mapsize;
1253
1254 if (info->io.addr) {
1255 iounmap(info->io.addr);
1256
1257 mapsize = ((info->io_size * info->io.regspacing)
1258 - (info->io.regspacing - info->io.regsize));
1259
1260 release_mem_region(addr, mapsize);
1261 }
1262 }
1263
1264 static int mem_setup(struct smi_info *info)
1265 {
1266 unsigned long addr = info->io.addr_data;
1267 int mapsize;
1268
1269 if (!addr)
1270 return -ENODEV;
1271
1272 info->io_cleanup = mem_cleanup;
1273
1274 /* Figure out the actual readb/readw/readl/etc routine to use based
1275 upon the register size. */
1276 switch (info->io.regsize) {
1277 case 1:
1278 info->io.inputb = intf_mem_inb;
1279 info->io.outputb = intf_mem_outb;
1280 break;
1281 case 2:
1282 info->io.inputb = intf_mem_inw;
1283 info->io.outputb = intf_mem_outw;
1284 break;
1285 case 4:
1286 info->io.inputb = intf_mem_inl;
1287 info->io.outputb = intf_mem_outl;
1288 break;
1289 #ifdef readq
1290 case 8:
1291 info->io.inputb = mem_inq;
1292 info->io.outputb = mem_outq;
1293 break;
1294 #endif
1295 default:
1296 printk("ipmi_si: Invalid register size: %d\n",
1297 info->io.regsize);
1298 return -EINVAL;
1299 }
1300
1301 /* Calculate the total amount of memory to claim. This is an
1302 * unusual looking calculation, but it avoids claiming any
1303 * more memory than it has to. It will claim everything
1304 * between the first address to the end of the last full
1305 * register. */
1306 mapsize = ((info->io_size * info->io.regspacing)
1307 - (info->io.regspacing - info->io.regsize));
1308
1309 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1310 return -EIO;
1311
1312 info->io.addr = ioremap(addr, mapsize);
1313 if (info->io.addr == NULL) {
1314 release_mem_region(addr, mapsize);
1315 return -EIO;
1316 }
1317 return 0;
1318 }
1319
1320
1321 static __devinit void hardcode_find_bmc(void)
1322 {
1323 int i;
1324 struct smi_info *info;
1325
1326 for (i = 0; i < SI_MAX_PARMS; i++) {
1327 if (!ports[i] && !addrs[i])
1328 continue;
1329
1330 info = kzalloc(sizeof(*info), GFP_KERNEL);
1331 if (!info)
1332 return;
1333
1334 info->addr_source = "hardcoded";
1335
1336 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1337 info->si_type = SI_KCS;
1338 } else if (strcmp(si_type[i], "smic") == 0) {
1339 info->si_type = SI_SMIC;
1340 } else if (strcmp(si_type[i], "bt") == 0) {
1341 info->si_type = SI_BT;
1342 } else {
1343 printk(KERN_WARNING
1344 "ipmi_si: Interface type specified "
1345 "for interface %d, was invalid: %s\n",
1346 i, si_type[i]);
1347 kfree(info);
1348 continue;
1349 }
1350
1351 if (ports[i]) {
1352 /* An I/O port */
1353 info->io_setup = port_setup;
1354 info->io.addr_data = ports[i];
1355 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1356 } else if (addrs[i]) {
1357 /* A memory port */
1358 info->io_setup = mem_setup;
1359 info->io.addr_data = addrs[i];
1360 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1361 } else {
1362 printk(KERN_WARNING
1363 "ipmi_si: Interface type specified "
1364 "for interface %d, "
1365 "but port and address were not set or "
1366 "set to zero.\n", i);
1367 kfree(info);
1368 continue;
1369 }
1370
1371 info->io.addr = NULL;
1372 info->io.regspacing = regspacings[i];
1373 if (!info->io.regspacing)
1374 info->io.regspacing = DEFAULT_REGSPACING;
1375 info->io.regsize = regsizes[i];
1376 if (!info->io.regsize)
1377 info->io.regsize = DEFAULT_REGSPACING;
1378 info->io.regshift = regshifts[i];
1379 info->irq = irqs[i];
1380 if (info->irq)
1381 info->irq_setup = std_irq_setup;
1382
1383 try_smi_init(info);
1384 }
1385 }
1386
1387 #ifdef CONFIG_ACPI
1388
1389 #include <linux/acpi.h>
1390
1391 /* Once we get an ACPI failure, we don't try any more, because we go
1392 through the tables sequentially. Once we don't find a table, there
1393 are no more. */
1394 static int acpi_failure = 0;
1395
1396 /* For GPE-type interrupts. */
1397 static u32 ipmi_acpi_gpe(void *context)
1398 {
1399 struct smi_info *smi_info = context;
1400 unsigned long flags;
1401 #ifdef DEBUG_TIMING
1402 struct timeval t;
1403 #endif
1404
1405 spin_lock_irqsave(&(smi_info->si_lock), flags);
1406
1407 spin_lock(&smi_info->count_lock);
1408 smi_info->interrupts++;
1409 spin_unlock(&smi_info->count_lock);
1410
1411 if (atomic_read(&smi_info->stop_operation))
1412 goto out;
1413
1414 #ifdef DEBUG_TIMING
1415 do_gettimeofday(&t);
1416 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1417 #endif
1418 smi_event_handler(smi_info, 0);
1419 out:
1420 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1421
1422 return ACPI_INTERRUPT_HANDLED;
1423 }
1424
1425 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1426 {
1427 if (!info->irq)
1428 return;
1429
1430 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1431 }
1432
1433 static int acpi_gpe_irq_setup(struct smi_info *info)
1434 {
1435 acpi_status status;
1436
1437 if (!info->irq)
1438 return 0;
1439
1440 /* FIXME - is level triggered right? */
1441 status = acpi_install_gpe_handler(NULL,
1442 info->irq,
1443 ACPI_GPE_LEVEL_TRIGGERED,
1444 &ipmi_acpi_gpe,
1445 info);
1446 if (status != AE_OK) {
1447 printk(KERN_WARNING
1448 "ipmi_si: %s unable to claim ACPI GPE %d,"
1449 " running polled\n",
1450 DEVICE_NAME, info->irq);
1451 info->irq = 0;
1452 return -EINVAL;
1453 } else {
1454 info->irq_cleanup = acpi_gpe_irq_cleanup;
1455 printk(" Using ACPI GPE %d\n", info->irq);
1456 return 0;
1457 }
1458 }
1459
1460 /*
1461 * Defined at
1462 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1463 */
1464 struct SPMITable {
1465 s8 Signature[4];
1466 u32 Length;
1467 u8 Revision;
1468 u8 Checksum;
1469 s8 OEMID[6];
1470 s8 OEMTableID[8];
1471 s8 OEMRevision[4];
1472 s8 CreatorID[4];
1473 s8 CreatorRevision[4];
1474 u8 InterfaceType;
1475 u8 IPMIlegacy;
1476 s16 SpecificationRevision;
1477
1478 /*
1479 * Bit 0 - SCI interrupt supported
1480 * Bit 1 - I/O APIC/SAPIC
1481 */
1482 u8 InterruptType;
1483
1484 /* If bit 0 of InterruptType is set, then this is the SCI
1485 interrupt in the GPEx_STS register. */
1486 u8 GPE;
1487
1488 s16 Reserved;
1489
1490 /* If bit 1 of InterruptType is set, then this is the I/O
1491 APIC/SAPIC interrupt. */
1492 u32 GlobalSystemInterrupt;
1493
1494 /* The actual register address. */
1495 struct acpi_generic_address addr;
1496
1497 u8 UID[4];
1498
1499 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1500 };
1501
1502 static __devinit int try_init_acpi(struct SPMITable *spmi)
1503 {
1504 struct smi_info *info;
1505 char *io_type;
1506 u8 addr_space;
1507
1508 if (spmi->IPMIlegacy != 1) {
1509 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1510 return -ENODEV;
1511 }
1512
1513 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1514 addr_space = IPMI_MEM_ADDR_SPACE;
1515 else
1516 addr_space = IPMI_IO_ADDR_SPACE;
1517
1518 info = kzalloc(sizeof(*info), GFP_KERNEL);
1519 if (!info) {
1520 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1521 return -ENOMEM;
1522 }
1523
1524 info->addr_source = "ACPI";
1525
1526 /* Figure out the interface type. */
1527 switch (spmi->InterfaceType)
1528 {
1529 case 1: /* KCS */
1530 info->si_type = SI_KCS;
1531 break;
1532 case 2: /* SMIC */
1533 info->si_type = SI_SMIC;
1534 break;
1535 case 3: /* BT */
1536 info->si_type = SI_BT;
1537 break;
1538 default:
1539 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1540 spmi->InterfaceType);
1541 kfree(info);
1542 return -EIO;
1543 }
1544
1545 if (spmi->InterruptType & 1) {
1546 /* We've got a GPE interrupt. */
1547 info->irq = spmi->GPE;
1548 info->irq_setup = acpi_gpe_irq_setup;
1549 } else if (spmi->InterruptType & 2) {
1550 /* We've got an APIC/SAPIC interrupt. */
1551 info->irq = spmi->GlobalSystemInterrupt;
1552 info->irq_setup = std_irq_setup;
1553 } else {
1554 /* Use the default interrupt setting. */
1555 info->irq = 0;
1556 info->irq_setup = NULL;
1557 }
1558
1559 if (spmi->addr.register_bit_width) {
1560 /* A (hopefully) properly formed register bit width. */
1561 info->io.regspacing = spmi->addr.register_bit_width / 8;
1562 } else {
1563 info->io.regspacing = DEFAULT_REGSPACING;
1564 }
1565 info->io.regsize = info->io.regspacing;
1566 info->io.regshift = spmi->addr.register_bit_offset;
1567
1568 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1569 io_type = "memory";
1570 info->io_setup = mem_setup;
1571 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1572 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1573 io_type = "I/O";
1574 info->io_setup = port_setup;
1575 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1576 } else {
1577 kfree(info);
1578 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1579 return -EIO;
1580 }
1581 info->io.addr_data = spmi->addr.address;
1582
1583 try_smi_init(info);
1584
1585 return 0;
1586 }
1587
1588 static __devinit void acpi_find_bmc(void)
1589 {
1590 acpi_status status;
1591 struct SPMITable *spmi;
1592 int i;
1593
1594 if (acpi_disabled)
1595 return;
1596
1597 if (acpi_failure)
1598 return;
1599
1600 for (i = 0; ; i++) {
1601 status = acpi_get_firmware_table("SPMI", i+1,
1602 ACPI_LOGICAL_ADDRESSING,
1603 (struct acpi_table_header **)
1604 &spmi);
1605 if (status != AE_OK)
1606 return;
1607
1608 try_init_acpi(spmi);
1609 }
1610 }
1611 #endif
1612
1613 #ifdef CONFIG_DMI
1614 struct dmi_ipmi_data
1615 {
1616 u8 type;
1617 u8 addr_space;
1618 unsigned long base_addr;
1619 u8 irq;
1620 u8 offset;
1621 u8 slave_addr;
1622 };
1623
1624 static int __devinit decode_dmi(struct dmi_header *dm,
1625 struct dmi_ipmi_data *dmi)
1626 {
1627 u8 *data = (u8 *)dm;
1628 unsigned long base_addr;
1629 u8 reg_spacing;
1630 u8 len = dm->length;
1631
1632 dmi->type = data[4];
1633
1634 memcpy(&base_addr, data+8, sizeof(unsigned long));
1635 if (len >= 0x11) {
1636 if (base_addr & 1) {
1637 /* I/O */
1638 base_addr &= 0xFFFE;
1639 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1640 }
1641 else {
1642 /* Memory */
1643 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1644 }
1645 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1646 is odd. */
1647 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1648
1649 dmi->irq = data[0x11];
1650
1651 /* The top two bits of byte 0x10 hold the register spacing. */
1652 reg_spacing = (data[0x10] & 0xC0) >> 6;
1653 switch(reg_spacing){
1654 case 0x00: /* Byte boundaries */
1655 dmi->offset = 1;
1656 break;
1657 case 0x01: /* 32-bit boundaries */
1658 dmi->offset = 4;
1659 break;
1660 case 0x02: /* 16-byte boundaries */
1661 dmi->offset = 16;
1662 break;
1663 default:
1664 /* Some other interface, just ignore it. */
1665 return -EIO;
1666 }
1667 } else {
1668 /* Old DMI spec. */
1669 /* Note that technically, the lower bit of the base
1670 * address should be 1 if the address is I/O and 0 if
1671 * the address is in memory. So many systems get that
1672 * wrong (and all that I have seen are I/O) so we just
1673 * ignore that bit and assume I/O. Systems that use
1674 * memory should use the newer spec, anyway. */
1675 dmi->base_addr = base_addr & 0xfffe;
1676 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1677 dmi->offset = 1;
1678 }
1679
1680 dmi->slave_addr = data[6];
1681
1682 return 0;
1683 }
1684
1685 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1686 {
1687 struct smi_info *info;
1688
1689 info = kzalloc(sizeof(*info), GFP_KERNEL);
1690 if (!info) {
1691 printk(KERN_ERR
1692 "ipmi_si: Could not allocate SI data\n");
1693 return;
1694 }
1695
1696 info->addr_source = "SMBIOS";
1697
1698 switch (ipmi_data->type) {
1699 case 0x01: /* KCS */
1700 info->si_type = SI_KCS;
1701 break;
1702 case 0x02: /* SMIC */
1703 info->si_type = SI_SMIC;
1704 break;
1705 case 0x03: /* BT */
1706 info->si_type = SI_BT;
1707 break;
1708 default:
1709 return;
1710 }
1711
1712 switch (ipmi_data->addr_space) {
1713 case IPMI_MEM_ADDR_SPACE:
1714 info->io_setup = mem_setup;
1715 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1716 break;
1717
1718 case IPMI_IO_ADDR_SPACE:
1719 info->io_setup = port_setup;
1720 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1721 break;
1722
1723 default:
1724 kfree(info);
1725 printk(KERN_WARNING
1726 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1727 ipmi_data->addr_space);
1728 return;
1729 }
1730 info->io.addr_data = ipmi_data->base_addr;
1731
1732 info->io.regspacing = ipmi_data->offset;
1733 if (!info->io.regspacing)
1734 info->io.regspacing = DEFAULT_REGSPACING;
1735 info->io.regsize = DEFAULT_REGSPACING;
1736 info->io.regshift = 0;
1737
1738 info->slave_addr = ipmi_data->slave_addr;
1739
1740 info->irq = ipmi_data->irq;
1741 if (info->irq)
1742 info->irq_setup = std_irq_setup;
1743
1744 try_smi_init(info);
1745 }
1746
1747 static void __devinit dmi_find_bmc(void)
1748 {
1749 struct dmi_device *dev = NULL;
1750 struct dmi_ipmi_data data;
1751 int rv;
1752
1753 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1754 memset(&data, 0, sizeof(data));
1755 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1756 if (!rv)
1757 try_init_dmi(&data);
1758 }
1759 }
1760 #endif /* CONFIG_DMI */
1761
1762 #ifdef CONFIG_PCI
1763
1764 #define PCI_ERMC_CLASSCODE 0x0C0700
1765 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1766 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1767 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1768 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1769 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1770
1771 #define PCI_HP_VENDOR_ID 0x103C
1772 #define PCI_MMC_DEVICE_ID 0x121A
1773 #define PCI_MMC_ADDR_CW 0x10
1774
1775 static void ipmi_pci_cleanup(struct smi_info *info)
1776 {
1777 struct pci_dev *pdev = info->addr_source_data;
1778
1779 pci_disable_device(pdev);
1780 }
1781
1782 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1783 const struct pci_device_id *ent)
1784 {
1785 int rv;
1786 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1787 struct smi_info *info;
1788 int first_reg_offset = 0;
1789
1790 info = kzalloc(sizeof(*info), GFP_KERNEL);
1791 if (!info)
1792 return ENOMEM;
1793
1794 info->addr_source = "PCI";
1795
1796 switch (class_type) {
1797 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1798 info->si_type = SI_SMIC;
1799 break;
1800
1801 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1802 info->si_type = SI_KCS;
1803 break;
1804
1805 case PCI_ERMC_CLASSCODE_TYPE_BT:
1806 info->si_type = SI_BT;
1807 break;
1808
1809 default:
1810 kfree(info);
1811 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1812 pci_name(pdev), class_type);
1813 return ENOMEM;
1814 }
1815
1816 rv = pci_enable_device(pdev);
1817 if (rv) {
1818 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1819 pci_name(pdev));
1820 kfree(info);
1821 return rv;
1822 }
1823
1824 info->addr_source_cleanup = ipmi_pci_cleanup;
1825 info->addr_source_data = pdev;
1826
1827 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1828 first_reg_offset = 1;
1829
1830 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1831 info->io_setup = port_setup;
1832 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1833 } else {
1834 info->io_setup = mem_setup;
1835 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1836 }
1837 info->io.addr_data = pci_resource_start(pdev, 0);
1838
1839 info->io.regspacing = DEFAULT_REGSPACING;
1840 info->io.regsize = DEFAULT_REGSPACING;
1841 info->io.regshift = 0;
1842
1843 info->irq = pdev->irq;
1844 if (info->irq)
1845 info->irq_setup = std_irq_setup;
1846
1847 info->dev = &pdev->dev;
1848
1849 return try_smi_init(info);
1850 }
1851
1852 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1853 {
1854 }
1855
1856 #ifdef CONFIG_PM
1857 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1858 {
1859 return 0;
1860 }
1861
1862 static int ipmi_pci_resume(struct pci_dev *pdev)
1863 {
1864 return 0;
1865 }
1866 #endif
1867
1868 static struct pci_device_id ipmi_pci_devices[] = {
1869 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1870 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1871 };
1872 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1873
1874 static struct pci_driver ipmi_pci_driver = {
1875 .name = DEVICE_NAME,
1876 .id_table = ipmi_pci_devices,
1877 .probe = ipmi_pci_probe,
1878 .remove = __devexit_p(ipmi_pci_remove),
1879 #ifdef CONFIG_PM
1880 .suspend = ipmi_pci_suspend,
1881 .resume = ipmi_pci_resume,
1882 #endif
1883 };
1884 #endif /* CONFIG_PCI */
1885
1886
1887 static int try_get_dev_id(struct smi_info *smi_info)
1888 {
1889 unsigned char msg[2];
1890 unsigned char *resp;
1891 unsigned long resp_len;
1892 enum si_sm_result smi_result;
1893 int rv = 0;
1894
1895 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1896 if (!resp)
1897 return -ENOMEM;
1898
1899 /* Do a Get Device ID command, since it comes back with some
1900 useful info. */
1901 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1902 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1903 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1904
1905 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1906 for (;;)
1907 {
1908 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1909 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1910 schedule_timeout_uninterruptible(1);
1911 smi_result = smi_info->handlers->event(
1912 smi_info->si_sm, 100);
1913 }
1914 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1915 {
1916 smi_result = smi_info->handlers->event(
1917 smi_info->si_sm, 0);
1918 }
1919 else
1920 break;
1921 }
1922 if (smi_result == SI_SM_HOSED) {
1923 /* We couldn't get the state machine to run, so whatever's at
1924 the port is probably not an IPMI SMI interface. */
1925 rv = -ENODEV;
1926 goto out;
1927 }
1928
1929 /* Otherwise, we got some data. */
1930 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1931 resp, IPMI_MAX_MSG_LENGTH);
1932 if (resp_len < 14) {
1933 /* That's odd, it should be longer. */
1934 rv = -EINVAL;
1935 goto out;
1936 }
1937
1938 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1939 /* That's odd, it shouldn't be able to fail. */
1940 rv = -EINVAL;
1941 goto out;
1942 }
1943
1944 /* Record info from the get device id, in case we need it. */
1945 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1946
1947 out:
1948 kfree(resp);
1949 return rv;
1950 }
1951
1952 static int type_file_read_proc(char *page, char **start, off_t off,
1953 int count, int *eof, void *data)
1954 {
1955 char *out = (char *) page;
1956 struct smi_info *smi = data;
1957
1958 switch (smi->si_type) {
1959 case SI_KCS:
1960 return sprintf(out, "kcs\n");
1961 case SI_SMIC:
1962 return sprintf(out, "smic\n");
1963 case SI_BT:
1964 return sprintf(out, "bt\n");
1965 default:
1966 return 0;
1967 }
1968 }
1969
1970 static int stat_file_read_proc(char *page, char **start, off_t off,
1971 int count, int *eof, void *data)
1972 {
1973 char *out = (char *) page;
1974 struct smi_info *smi = data;
1975
1976 out += sprintf(out, "interrupts_enabled: %d\n",
1977 smi->irq && !smi->interrupt_disabled);
1978 out += sprintf(out, "short_timeouts: %ld\n",
1979 smi->short_timeouts);
1980 out += sprintf(out, "long_timeouts: %ld\n",
1981 smi->long_timeouts);
1982 out += sprintf(out, "timeout_restarts: %ld\n",
1983 smi->timeout_restarts);
1984 out += sprintf(out, "idles: %ld\n",
1985 smi->idles);
1986 out += sprintf(out, "interrupts: %ld\n",
1987 smi->interrupts);
1988 out += sprintf(out, "attentions: %ld\n",
1989 smi->attentions);
1990 out += sprintf(out, "flag_fetches: %ld\n",
1991 smi->flag_fetches);
1992 out += sprintf(out, "hosed_count: %ld\n",
1993 smi->hosed_count);
1994 out += sprintf(out, "complete_transactions: %ld\n",
1995 smi->complete_transactions);
1996 out += sprintf(out, "events: %ld\n",
1997 smi->events);
1998 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
1999 smi->watchdog_pretimeouts);
2000 out += sprintf(out, "incoming_messages: %ld\n",
2001 smi->incoming_messages);
2002
2003 return (out - ((char *) page));
2004 }
2005
2006 /*
2007 * oem_data_avail_to_receive_msg_avail
2008 * @info - smi_info structure with msg_flags set
2009 *
2010 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2011 * Returns 1 indicating need to re-run handle_flags().
2012 */
2013 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2014 {
2015 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2016 RECEIVE_MSG_AVAIL);
2017 return 1;
2018 }
2019
2020 /*
2021 * setup_dell_poweredge_oem_data_handler
2022 * @info - smi_info.device_id must be populated
2023 *
2024 * Systems that match, but have firmware version < 1.40 may assert
2025 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2026 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2027 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2028 * as RECEIVE_MSG_AVAIL instead.
2029 *
2030 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2031 * assert the OEM[012] bits, and if it did, the driver would have to
2032 * change to handle that properly, we don't actually check for the
2033 * firmware version.
2034 * Device ID = 0x20 BMC on PowerEdge 8G servers
2035 * Device Revision = 0x80
2036 * Firmware Revision1 = 0x01 BMC version 1.40
2037 * Firmware Revision2 = 0x40 BCD encoded
2038 * IPMI Version = 0x51 IPMI 1.5
2039 * Manufacturer ID = A2 02 00 Dell IANA
2040 *
2041 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2042 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2043 *
2044 */
2045 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2046 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2047 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2048 #define DELL_IANA_MFR_ID 0x0002a2
2049 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2050 {
2051 struct ipmi_device_id *id = &smi_info->device_id;
2052 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2053 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2054 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2055 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2056 smi_info->oem_data_avail_handler =
2057 oem_data_avail_to_receive_msg_avail;
2058 }
2059 else if (ipmi_version_major(id) < 1 ||
2060 (ipmi_version_major(id) == 1 &&
2061 ipmi_version_minor(id) < 5)) {
2062 smi_info->oem_data_avail_handler =
2063 oem_data_avail_to_receive_msg_avail;
2064 }
2065 }
2066 }
2067
2068 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2069 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2070 {
2071 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2072
2073 /* Make it a reponse */
2074 msg->rsp[0] = msg->data[0] | 4;
2075 msg->rsp[1] = msg->data[1];
2076 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2077 msg->rsp_size = 3;
2078 smi_info->curr_msg = NULL;
2079 deliver_recv_msg(smi_info, msg);
2080 }
2081
2082 /*
2083 * dell_poweredge_bt_xaction_handler
2084 * @info - smi_info.device_id must be populated
2085 *
2086 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2087 * not respond to a Get SDR command if the length of the data
2088 * requested is exactly 0x3A, which leads to command timeouts and no
2089 * data returned. This intercepts such commands, and causes userspace
2090 * callers to try again with a different-sized buffer, which succeeds.
2091 */
2092
2093 #define STORAGE_NETFN 0x0A
2094 #define STORAGE_CMD_GET_SDR 0x23
2095 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2096 unsigned long unused,
2097 void *in)
2098 {
2099 struct smi_info *smi_info = in;
2100 unsigned char *data = smi_info->curr_msg->data;
2101 unsigned int size = smi_info->curr_msg->data_size;
2102 if (size >= 8 &&
2103 (data[0]>>2) == STORAGE_NETFN &&
2104 data[1] == STORAGE_CMD_GET_SDR &&
2105 data[7] == 0x3A) {
2106 return_hosed_msg_badsize(smi_info);
2107 return NOTIFY_STOP;
2108 }
2109 return NOTIFY_DONE;
2110 }
2111
2112 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2113 .notifier_call = dell_poweredge_bt_xaction_handler,
2114 };
2115
2116 /*
2117 * setup_dell_poweredge_bt_xaction_handler
2118 * @info - smi_info.device_id must be filled in already
2119 *
2120 * Fills in smi_info.device_id.start_transaction_pre_hook
2121 * when we know what function to use there.
2122 */
2123 static void
2124 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2125 {
2126 struct ipmi_device_id *id = &smi_info->device_id;
2127 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2128 smi_info->si_type == SI_BT)
2129 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2130 }
2131
2132 /*
2133 * setup_oem_data_handler
2134 * @info - smi_info.device_id must be filled in already
2135 *
2136 * Fills in smi_info.device_id.oem_data_available_handler
2137 * when we know what function to use there.
2138 */
2139
2140 static void setup_oem_data_handler(struct smi_info *smi_info)
2141 {
2142 setup_dell_poweredge_oem_data_handler(smi_info);
2143 }
2144
2145 static void setup_xaction_handlers(struct smi_info *smi_info)
2146 {
2147 setup_dell_poweredge_bt_xaction_handler(smi_info);
2148 }
2149
2150 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2151 {
2152 if (smi_info->intf) {
2153 /* The timer and thread are only running if the
2154 interface has been started up and registered. */
2155 if (smi_info->thread != NULL)
2156 kthread_stop(smi_info->thread);
2157 del_timer_sync(&smi_info->si_timer);
2158 }
2159 }
2160
2161 static __devinitdata struct ipmi_default_vals
2162 {
2163 int type;
2164 int port;
2165 } ipmi_defaults[] =
2166 {
2167 { .type = SI_KCS, .port = 0xca2 },
2168 { .type = SI_SMIC, .port = 0xca9 },
2169 { .type = SI_BT, .port = 0xe4 },
2170 { .port = 0 }
2171 };
2172
2173 static __devinit void default_find_bmc(void)
2174 {
2175 struct smi_info *info;
2176 int i;
2177
2178 for (i = 0; ; i++) {
2179 if (!ipmi_defaults[i].port)
2180 break;
2181
2182 info = kzalloc(sizeof(*info), GFP_KERNEL);
2183 if (!info)
2184 return;
2185
2186 info->addr_source = NULL;
2187
2188 info->si_type = ipmi_defaults[i].type;
2189 info->io_setup = port_setup;
2190 info->io.addr_data = ipmi_defaults[i].port;
2191 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2192
2193 info->io.addr = NULL;
2194 info->io.regspacing = DEFAULT_REGSPACING;
2195 info->io.regsize = DEFAULT_REGSPACING;
2196 info->io.regshift = 0;
2197
2198 if (try_smi_init(info) == 0) {
2199 /* Found one... */
2200 printk(KERN_INFO "ipmi_si: Found default %s state"
2201 " machine at %s address 0x%lx\n",
2202 si_to_str[info->si_type],
2203 addr_space_to_str[info->io.addr_type],
2204 info->io.addr_data);
2205 return;
2206 }
2207 }
2208 }
2209
2210 static int is_new_interface(struct smi_info *info)
2211 {
2212 struct smi_info *e;
2213
2214 list_for_each_entry(e, &smi_infos, link) {
2215 if (e->io.addr_type != info->io.addr_type)
2216 continue;
2217 if (e->io.addr_data == info->io.addr_data)
2218 return 0;
2219 }
2220
2221 return 1;
2222 }
2223
2224 static int try_smi_init(struct smi_info *new_smi)
2225 {
2226 int rv;
2227
2228 if (new_smi->addr_source) {
2229 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2230 " machine at %s address 0x%lx, slave address 0x%x,"
2231 " irq %d\n",
2232 new_smi->addr_source,
2233 si_to_str[new_smi->si_type],
2234 addr_space_to_str[new_smi->io.addr_type],
2235 new_smi->io.addr_data,
2236 new_smi->slave_addr, new_smi->irq);
2237 }
2238
2239 mutex_lock(&smi_infos_lock);
2240 if (!is_new_interface(new_smi)) {
2241 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2242 rv = -EBUSY;
2243 goto out_err;
2244 }
2245
2246 /* So we know not to free it unless we have allocated one. */
2247 new_smi->intf = NULL;
2248 new_smi->si_sm = NULL;
2249 new_smi->handlers = NULL;
2250
2251 switch (new_smi->si_type) {
2252 case SI_KCS:
2253 new_smi->handlers = &kcs_smi_handlers;
2254 break;
2255
2256 case SI_SMIC:
2257 new_smi->handlers = &smic_smi_handlers;
2258 break;
2259
2260 case SI_BT:
2261 new_smi->handlers = &bt_smi_handlers;
2262 break;
2263
2264 default:
2265 /* No support for anything else yet. */
2266 rv = -EIO;
2267 goto out_err;
2268 }
2269
2270 /* Allocate the state machine's data and initialize it. */
2271 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2272 if (!new_smi->si_sm) {
2273 printk(" Could not allocate state machine memory\n");
2274 rv = -ENOMEM;
2275 goto out_err;
2276 }
2277 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2278 &new_smi->io);
2279
2280 /* Now that we know the I/O size, we can set up the I/O. */
2281 rv = new_smi->io_setup(new_smi);
2282 if (rv) {
2283 printk(" Could not set up I/O space\n");
2284 goto out_err;
2285 }
2286
2287 spin_lock_init(&(new_smi->si_lock));
2288 spin_lock_init(&(new_smi->msg_lock));
2289 spin_lock_init(&(new_smi->count_lock));
2290
2291 /* Do low-level detection first. */
2292 if (new_smi->handlers->detect(new_smi->si_sm)) {
2293 if (new_smi->addr_source)
2294 printk(KERN_INFO "ipmi_si: Interface detection"
2295 " failed\n");
2296 rv = -ENODEV;
2297 goto out_err;
2298 }
2299
2300 /* Attempt a get device id command. If it fails, we probably
2301 don't have a BMC here. */
2302 rv = try_get_dev_id(new_smi);
2303 if (rv) {
2304 if (new_smi->addr_source)
2305 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2306 " at this location\n");
2307 goto out_err;
2308 }
2309
2310 setup_oem_data_handler(new_smi);
2311 setup_xaction_handlers(new_smi);
2312
2313 /* Try to claim any interrupts. */
2314 if (new_smi->irq_setup)
2315 new_smi->irq_setup(new_smi);
2316
2317 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2318 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2319 new_smi->curr_msg = NULL;
2320 atomic_set(&new_smi->req_events, 0);
2321 new_smi->run_to_completion = 0;
2322
2323 new_smi->interrupt_disabled = 0;
2324 atomic_set(&new_smi->stop_operation, 0);
2325 new_smi->intf_num = smi_num;
2326 smi_num++;
2327
2328 /* Start clearing the flags before we enable interrupts or the
2329 timer to avoid racing with the timer. */
2330 start_clear_flags(new_smi);
2331 /* IRQ is defined to be set when non-zero. */
2332 if (new_smi->irq)
2333 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2334
2335 if (!new_smi->dev) {
2336 /* If we don't already have a device from something
2337 * else (like PCI), then register a new one. */
2338 new_smi->pdev = platform_device_alloc("ipmi_si",
2339 new_smi->intf_num);
2340 if (rv) {
2341 printk(KERN_ERR
2342 "ipmi_si_intf:"
2343 " Unable to allocate platform device\n");
2344 goto out_err;
2345 }
2346 new_smi->dev = &new_smi->pdev->dev;
2347 new_smi->dev->driver = &ipmi_driver;
2348
2349 rv = platform_device_register(new_smi->pdev);
2350 if (rv) {
2351 printk(KERN_ERR
2352 "ipmi_si_intf:"
2353 " Unable to register system interface device:"
2354 " %d\n",
2355 rv);
2356 goto out_err;
2357 }
2358 new_smi->dev_registered = 1;
2359 }
2360
2361 rv = ipmi_register_smi(&handlers,
2362 new_smi,
2363 &new_smi->device_id,
2364 new_smi->dev,
2365 new_smi->slave_addr);
2366 if (rv) {
2367 printk(KERN_ERR
2368 "ipmi_si: Unable to register device: error %d\n",
2369 rv);
2370 goto out_err_stop_timer;
2371 }
2372
2373 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2374 type_file_read_proc, NULL,
2375 new_smi, THIS_MODULE);
2376 if (rv) {
2377 printk(KERN_ERR
2378 "ipmi_si: Unable to create proc entry: %d\n",
2379 rv);
2380 goto out_err_stop_timer;
2381 }
2382
2383 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2384 stat_file_read_proc, NULL,
2385 new_smi, THIS_MODULE);
2386 if (rv) {
2387 printk(KERN_ERR
2388 "ipmi_si: Unable to create proc entry: %d\n",
2389 rv);
2390 goto out_err_stop_timer;
2391 }
2392
2393 list_add_tail(&new_smi->link, &smi_infos);
2394
2395 mutex_unlock(&smi_infos_lock);
2396
2397 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2398
2399 return 0;
2400
2401 out_err_stop_timer:
2402 atomic_inc(&new_smi->stop_operation);
2403 wait_for_timer_and_thread(new_smi);
2404
2405 out_err:
2406 if (new_smi->intf)
2407 ipmi_unregister_smi(new_smi->intf);
2408
2409 if (new_smi->irq_cleanup)
2410 new_smi->irq_cleanup(new_smi);
2411
2412 /* Wait until we know that we are out of any interrupt
2413 handlers might have been running before we freed the
2414 interrupt. */
2415 synchronize_sched();
2416
2417 if (new_smi->si_sm) {
2418 if (new_smi->handlers)
2419 new_smi->handlers->cleanup(new_smi->si_sm);
2420 kfree(new_smi->si_sm);
2421 }
2422 if (new_smi->addr_source_cleanup)
2423 new_smi->addr_source_cleanup(new_smi);
2424 if (new_smi->io_cleanup)
2425 new_smi->io_cleanup(new_smi);
2426
2427 if (new_smi->dev_registered)
2428 platform_device_unregister(new_smi->pdev);
2429
2430 kfree(new_smi);
2431
2432 mutex_unlock(&smi_infos_lock);
2433
2434 return rv;
2435 }
2436
2437 static __devinit int init_ipmi_si(void)
2438 {
2439 int i;
2440 char *str;
2441 int rv;
2442
2443 if (initialized)
2444 return 0;
2445 initialized = 1;
2446
2447 /* Register the device drivers. */
2448 rv = driver_register(&ipmi_driver);
2449 if (rv) {
2450 printk(KERN_ERR
2451 "init_ipmi_si: Unable to register driver: %d\n",
2452 rv);
2453 return rv;
2454 }
2455
2456
2457 /* Parse out the si_type string into its components. */
2458 str = si_type_str;
2459 if (*str != '\0') {
2460 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2461 si_type[i] = str;
2462 str = strchr(str, ',');
2463 if (str) {
2464 *str = '\0';
2465 str++;
2466 } else {
2467 break;
2468 }
2469 }
2470 }
2471
2472 printk(KERN_INFO "IPMI System Interface driver.\n");
2473
2474 hardcode_find_bmc();
2475
2476 #ifdef CONFIG_DMI
2477 dmi_find_bmc();
2478 #endif
2479
2480 #ifdef CONFIG_ACPI
2481 if (si_trydefaults)
2482 acpi_find_bmc();
2483 #endif
2484
2485 #ifdef CONFIG_PCI
2486 pci_module_init(&ipmi_pci_driver);
2487 #endif
2488
2489 if (si_trydefaults) {
2490 mutex_lock(&smi_infos_lock);
2491 if (list_empty(&smi_infos)) {
2492 /* No BMC was found, try defaults. */
2493 mutex_unlock(&smi_infos_lock);
2494 default_find_bmc();
2495 } else {
2496 mutex_unlock(&smi_infos_lock);
2497 }
2498 }
2499
2500 mutex_lock(&smi_infos_lock);
2501 if (list_empty(&smi_infos)) {
2502 mutex_unlock(&smi_infos_lock);
2503 #ifdef CONFIG_PCI
2504 pci_unregister_driver(&ipmi_pci_driver);
2505 #endif
2506 driver_unregister(&ipmi_driver);
2507 printk("ipmi_si: Unable to find any System Interface(s)\n");
2508 return -ENODEV;
2509 } else {
2510 mutex_unlock(&smi_infos_lock);
2511 return 0;
2512 }
2513 }
2514 module_init(init_ipmi_si);
2515
2516 static void __devexit cleanup_one_si(struct smi_info *to_clean)
2517 {
2518 int rv;
2519 unsigned long flags;
2520
2521 if (!to_clean)
2522 return;
2523
2524 list_del(&to_clean->link);
2525
2526 /* Tell the timer and interrupt handlers that we are shutting
2527 down. */
2528 spin_lock_irqsave(&(to_clean->si_lock), flags);
2529 spin_lock(&(to_clean->msg_lock));
2530
2531 atomic_inc(&to_clean->stop_operation);
2532
2533 if (to_clean->irq_cleanup)
2534 to_clean->irq_cleanup(to_clean);
2535
2536 spin_unlock(&(to_clean->msg_lock));
2537 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2538
2539 /* Wait until we know that we are out of any interrupt
2540 handlers might have been running before we freed the
2541 interrupt. */
2542 synchronize_sched();
2543
2544 wait_for_timer_and_thread(to_clean);
2545
2546 /* Interrupts and timeouts are stopped, now make sure the
2547 interface is in a clean state. */
2548 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2549 poll(to_clean);
2550 schedule_timeout_uninterruptible(1);
2551 }
2552
2553 rv = ipmi_unregister_smi(to_clean->intf);
2554 if (rv) {
2555 printk(KERN_ERR
2556 "ipmi_si: Unable to unregister device: errno=%d\n",
2557 rv);
2558 }
2559
2560 to_clean->handlers->cleanup(to_clean->si_sm);
2561
2562 kfree(to_clean->si_sm);
2563
2564 if (to_clean->addr_source_cleanup)
2565 to_clean->addr_source_cleanup(to_clean);
2566 if (to_clean->io_cleanup)
2567 to_clean->io_cleanup(to_clean);
2568
2569 if (to_clean->dev_registered)
2570 platform_device_unregister(to_clean->pdev);
2571
2572 kfree(to_clean);
2573 }
2574
2575 static __exit void cleanup_ipmi_si(void)
2576 {
2577 struct smi_info *e, *tmp_e;
2578
2579 if (!initialized)
2580 return;
2581
2582 #ifdef CONFIG_PCI
2583 pci_unregister_driver(&ipmi_pci_driver);
2584 #endif
2585
2586 mutex_lock(&smi_infos_lock);
2587 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2588 cleanup_one_si(e);
2589 mutex_unlock(&smi_infos_lock);
2590
2591 driver_unregister(&ipmi_driver);
2592 }
2593 module_exit(cleanup_ipmi_si);
2594
2595 MODULE_LICENSE("GPL");
2596 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2597 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");