]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
procfs: new helper - PDE_DATA(inode)
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
85
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119 * Indexes into stats[] in smi_info below.
120 */
121 enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
142
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
158 /* Number of asynchronous messages received. */
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164 };
165
166 struct smi_info {
167 int intf_num;
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
177
178 /*
179 * Used to handle the various types of I/O that can occur with
180 * IPMI
181 */
182 struct si_sm_io io;
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
191
192 /*
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
196 */
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199 /*
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
202 * from the flags.
203 */
204 #define RECEIVE_MSG_AVAIL 0x01
205 #define EVENT_MSG_BUFFER_FULL 0x02
206 #define WDT_PRE_TIMEOUT_INT 0x08
207 #define OEM0_DATA_AVAIL 0x20
208 #define OEM1_DATA_AVAIL 0x40
209 #define OEM2_DATA_AVAIL 0x80
210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
211 OEM1_DATA_AVAIL | \
212 OEM2_DATA_AVAIL)
213 unsigned char msg_flags;
214
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer;
217
218 /*
219 * If set to true, this will request events the next time the
220 * state machine is idle.
221 */
222 atomic_t req_events;
223
224 /*
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
227 * out.
228 */
229 int run_to_completion;
230
231 /* The I/O port of an SI interface. */
232 int port;
233
234 /*
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
238 */
239 unsigned int spacing;
240
241 /* zero if no irq; */
242 int irq;
243
244 /* The timer for this si. */
245 struct timer_list si_timer;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Used to gracefully stop the timer without race conditions. */
251 atomic_t stop_operation;
252
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
259 int interrupt_disabled;
260
261 /* From the get device id response... */
262 struct ipmi_device_id device_id;
263
264 /* Driver model stuff. */
265 struct device *dev;
266 struct platform_device *pdev;
267
268 /*
269 * True if we allocated the device, false if it came from
270 * someplace else (like PCI).
271 */
272 int dev_registered;
273
274 /* Slave address, could be reported from DMI. */
275 unsigned char slave_addr;
276
277 /* Counters and things for the proc filesystem. */
278 atomic_t stats[SI_NUM_STATS];
279
280 struct task_struct *thread;
281
282 struct list_head link;
283 union ipmi_smi_info_union addr_info;
284 };
285
286 #define smi_inc_stat(smi, stat) \
287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
291 #define SI_MAX_PARMS 4
292
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304
305 static int unload_when_empty = 1;
306
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317
318 static void deliver_recv_msg(struct smi_info *smi_info,
319 struct ipmi_smi_msg *msg)
320 {
321 /* Deliver the message to the upper layer. */
322 ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327 struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 cCode = IPMI_ERR_UNSPECIFIED;
331 /* else use it as is */
332
333 /* Make it a response */
334 msg->rsp[0] = msg->data[0] | 4;
335 msg->rsp[1] = msg->data[1];
336 msg->rsp[2] = cCode;
337 msg->rsp_size = 3;
338
339 smi_info->curr_msg = NULL;
340 deliver_recv_msg(smi_info, msg);
341 }
342
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345 int rv;
346 struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348 struct timeval t;
349 #endif
350
351 /* Pick the high priority queue first. */
352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 entry = smi_info->hp_xmit_msgs.next;
354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
355 entry = smi_info->xmit_msgs.next;
356 }
357
358 if (!entry) {
359 smi_info->curr_msg = NULL;
360 rv = SI_SM_IDLE;
361 } else {
362 int err;
363
364 list_del(entry);
365 smi_info->curr_msg = list_entry(entry,
366 struct ipmi_smi_msg,
367 link);
368 #ifdef DEBUG_TIMING
369 do_gettimeofday(&t);
370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
373 0, smi_info);
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
376 goto out;
377 }
378 err = smi_info->handlers->start_transaction(
379 smi_info->si_sm,
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
382 if (err)
383 return_hosed_msg(smi_info, err);
384
385 rv = SI_SM_CALL_WITHOUT_DELAY;
386 }
387 out:
388 return rv;
389 }
390
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393 unsigned char msg[2];
394
395 /*
396 * If we are enabling interrupts, we have to tell the
397 * BMC to use them.
398 */
399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408 unsigned char msg[2];
409
410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419 unsigned char msg[3];
420
421 /* Make sure the watchdog pre-timeout flag is not set at startup. */
422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 msg[2] = WDT_PRE_TIMEOUT_INT;
425
426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429
430 /*
431 * When we have a situtaion where we run out of memory and cannot
432 * allocate messages, we just leave them in the BMC and run the system
433 * polled until we can allocate some memory. Once we have some
434 * memory, we will re-enable the interrupt.
435 */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439 start_disable_irq(smi_info);
440 smi_info->interrupt_disabled = 1;
441 if (!atomic_read(&smi_info->stop_operation))
442 mod_timer(&smi_info->si_timer,
443 jiffies + SI_TIMEOUT_JIFFIES);
444 }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 start_enable_irq(smi_info);
451 smi_info->interrupt_disabled = 0;
452 }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457 retry:
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 /* Messages available. */
467 smi_info->curr_msg = ipmi_alloc_smi_msg();
468 if (!smi_info->curr_msg) {
469 disable_si_irq(smi_info);
470 smi_info->si_state = SI_NORMAL;
471 return;
472 }
473 enable_si_irq(smi_info);
474
475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 smi_info->curr_msg->data_size = 2;
478
479 smi_info->handlers->start_transaction(
480 smi_info->si_sm,
481 smi_info->curr_msg->data,
482 smi_info->curr_msg->data_size);
483 smi_info->si_state = SI_GETTING_MESSAGES;
484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 /* Events available. */
486 smi_info->curr_msg = ipmi_alloc_smi_msg();
487 if (!smi_info->curr_msg) {
488 disable_si_irq(smi_info);
489 smi_info->si_state = SI_NORMAL;
490 return;
491 }
492 enable_si_irq(smi_info);
493
494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 smi_info->curr_msg->data_size = 2;
497
498 smi_info->handlers->start_transaction(
499 smi_info->si_sm,
500 smi_info->curr_msg->data,
501 smi_info->curr_msg->data_size);
502 smi_info->si_state = SI_GETTING_EVENTS;
503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 smi_info->oem_data_avail_handler) {
505 if (smi_info->oem_data_avail_handler(smi_info))
506 goto retry;
507 } else
508 smi_info->si_state = SI_NORMAL;
509 }
510
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513 struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515 struct timeval t;
516
517 do_gettimeofday(&t);
518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520 switch (smi_info->si_state) {
521 case SI_NORMAL:
522 if (!smi_info->curr_msg)
523 break;
524
525 smi_info->curr_msg->rsp_size
526 = smi_info->handlers->get_result(
527 smi_info->si_sm,
528 smi_info->curr_msg->rsp,
529 IPMI_MAX_MSG_LENGTH);
530
531 /*
532 * Do this here becase deliver_recv_msg() releases the
533 * lock, and a new message can be put in during the
534 * time the lock is released.
535 */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 deliver_recv_msg(smi_info, msg);
539 break;
540
541 case SI_GETTING_FLAGS:
542 {
543 unsigned char msg[4];
544 unsigned int len;
545
546 /* We got the flags from the SMI, now handle them. */
547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 if (msg[2] != 0) {
549 /* Error fetching flags, just give up for now. */
550 smi_info->si_state = SI_NORMAL;
551 } else if (len < 4) {
552 /*
553 * Hmm, no flags. That's technically illegal, but
554 * don't use uninitialized data.
555 */
556 smi_info->si_state = SI_NORMAL;
557 } else {
558 smi_info->msg_flags = msg[3];
559 handle_flags(smi_info);
560 }
561 break;
562 }
563
564 case SI_CLEARING_FLAGS:
565 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 {
567 unsigned char msg[3];
568
569 /* We cleared the flags. */
570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 if (msg[2] != 0) {
572 /* Error clearing flags */
573 dev_warn(smi_info->dev,
574 "Error clearing flags: %2.2x\n", msg[2]);
575 }
576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 start_enable_irq(smi_info);
578 else
579 smi_info->si_state = SI_NORMAL;
580 break;
581 }
582
583 case SI_GETTING_EVENTS:
584 {
585 smi_info->curr_msg->rsp_size
586 = smi_info->handlers->get_result(
587 smi_info->si_sm,
588 smi_info->curr_msg->rsp,
589 IPMI_MAX_MSG_LENGTH);
590
591 /*
592 * Do this here becase deliver_recv_msg() releases the
593 * lock, and a new message can be put in during the
594 * time the lock is released.
595 */
596 msg = smi_info->curr_msg;
597 smi_info->curr_msg = NULL;
598 if (msg->rsp[2] != 0) {
599 /* Error getting event, probably done. */
600 msg->done(msg);
601
602 /* Take off the event flag. */
603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 handle_flags(smi_info);
605 } else {
606 smi_inc_stat(smi_info, events);
607
608 /*
609 * Do this before we deliver the message
610 * because delivering the message releases the
611 * lock and something else can mess with the
612 * state.
613 */
614 handle_flags(smi_info);
615
616 deliver_recv_msg(smi_info, msg);
617 }
618 break;
619 }
620
621 case SI_GETTING_MESSAGES:
622 {
623 smi_info->curr_msg->rsp_size
624 = smi_info->handlers->get_result(
625 smi_info->si_sm,
626 smi_info->curr_msg->rsp,
627 IPMI_MAX_MSG_LENGTH);
628
629 /*
630 * Do this here becase deliver_recv_msg() releases the
631 * lock, and a new message can be put in during the
632 * time the lock is released.
633 */
634 msg = smi_info->curr_msg;
635 smi_info->curr_msg = NULL;
636 if (msg->rsp[2] != 0) {
637 /* Error getting event, probably done. */
638 msg->done(msg);
639
640 /* Take off the msg flag. */
641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 handle_flags(smi_info);
643 } else {
644 smi_inc_stat(smi_info, incoming_messages);
645
646 /*
647 * Do this before we deliver the message
648 * because delivering the message releases the
649 * lock and something else can mess with the
650 * state.
651 */
652 handle_flags(smi_info);
653
654 deliver_recv_msg(smi_info, msg);
655 }
656 break;
657 }
658
659 case SI_ENABLE_INTERRUPTS1:
660 {
661 unsigned char msg[4];
662
663 /* We got the flags from the SMI, now handle them. */
664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 if (msg[2] != 0) {
666 dev_warn(smi_info->dev, "Could not enable interrupts"
667 ", failed get, using polled mode.\n");
668 smi_info->si_state = SI_NORMAL;
669 } else {
670 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
672 msg[2] = (msg[3] |
673 IPMI_BMC_RCV_MSG_INTR |
674 IPMI_BMC_EVT_MSG_INTR);
675 smi_info->handlers->start_transaction(
676 smi_info->si_sm, msg, 3);
677 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678 }
679 break;
680 }
681
682 case SI_ENABLE_INTERRUPTS2:
683 {
684 unsigned char msg[4];
685
686 /* We got the flags from the SMI, now handle them. */
687 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688 if (msg[2] != 0)
689 dev_warn(smi_info->dev, "Could not enable interrupts"
690 ", failed set, using polled mode.\n");
691 else
692 smi_info->interrupt_disabled = 0;
693 smi_info->si_state = SI_NORMAL;
694 break;
695 }
696
697 case SI_DISABLE_INTERRUPTS1:
698 {
699 unsigned char msg[4];
700
701 /* We got the flags from the SMI, now handle them. */
702 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703 if (msg[2] != 0) {
704 dev_warn(smi_info->dev, "Could not disable interrupts"
705 ", failed get.\n");
706 smi_info->si_state = SI_NORMAL;
707 } else {
708 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710 msg[2] = (msg[3] &
711 ~(IPMI_BMC_RCV_MSG_INTR |
712 IPMI_BMC_EVT_MSG_INTR));
713 smi_info->handlers->start_transaction(
714 smi_info->si_sm, msg, 3);
715 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716 }
717 break;
718 }
719
720 case SI_DISABLE_INTERRUPTS2:
721 {
722 unsigned char msg[4];
723
724 /* We got the flags from the SMI, now handle them. */
725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 if (msg[2] != 0) {
727 dev_warn(smi_info->dev, "Could not disable interrupts"
728 ", failed set.\n");
729 }
730 smi_info->si_state = SI_NORMAL;
731 break;
732 }
733 }
734 }
735
736 /*
737 * Called on timeouts and events. Timeouts should pass the elapsed
738 * time, interrupts should pass in zero. Must be called with
739 * si_lock held and interrupts disabled.
740 */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742 int time)
743 {
744 enum si_sm_result si_sm_result;
745
746 restart:
747 /*
748 * There used to be a loop here that waited a little while
749 * (around 25us) before giving up. That turned out to be
750 * pointless, the minimum delays I was seeing were in the 300us
751 * range, which is far too long to wait in an interrupt. So
752 * we just run until the state machine tells us something
753 * happened or it needs a delay.
754 */
755 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756 time = 0;
757 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759
760 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761 smi_inc_stat(smi_info, complete_transactions);
762
763 handle_transaction_done(smi_info);
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765 } else if (si_sm_result == SI_SM_HOSED) {
766 smi_inc_stat(smi_info, hosed_count);
767
768 /*
769 * Do the before return_hosed_msg, because that
770 * releases the lock.
771 */
772 smi_info->si_state = SI_NORMAL;
773 if (smi_info->curr_msg != NULL) {
774 /*
775 * If we were handling a user message, format
776 * a response to send to the upper layer to
777 * tell it about the error.
778 */
779 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780 }
781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 }
783
784 /*
785 * We prefer handling attn over new messages. But don't do
786 * this if there is not yet an upper layer to handle anything.
787 */
788 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789 unsigned char msg[2];
790
791 smi_inc_stat(smi_info, attentions);
792
793 /*
794 * Got a attn, send down a get message flags to see
795 * what's causing it. It would be better to handle
796 * this in the upper layer, but due to the way
797 * interrupts work with the SMI, that's not really
798 * possible.
799 */
800 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802
803 smi_info->handlers->start_transaction(
804 smi_info->si_sm, msg, 2);
805 smi_info->si_state = SI_GETTING_FLAGS;
806 goto restart;
807 }
808
809 /* If we are currently idle, try to start the next message. */
810 if (si_sm_result == SI_SM_IDLE) {
811 smi_inc_stat(smi_info, idles);
812
813 si_sm_result = start_next_msg(smi_info);
814 if (si_sm_result != SI_SM_IDLE)
815 goto restart;
816 }
817
818 if ((si_sm_result == SI_SM_IDLE)
819 && (atomic_read(&smi_info->req_events))) {
820 /*
821 * We are idle and the upper layer requested that I fetch
822 * events, so do so.
823 */
824 atomic_set(&smi_info->req_events, 0);
825
826 smi_info->curr_msg = ipmi_alloc_smi_msg();
827 if (!smi_info->curr_msg)
828 goto out;
829
830 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832 smi_info->curr_msg->data_size = 2;
833
834 smi_info->handlers->start_transaction(
835 smi_info->si_sm,
836 smi_info->curr_msg->data,
837 smi_info->curr_msg->data_size);
838 smi_info->si_state = SI_GETTING_EVENTS;
839 goto restart;
840 }
841 out:
842 return si_sm_result;
843 }
844
845 static void sender(void *send_info,
846 struct ipmi_smi_msg *msg,
847 int priority)
848 {
849 struct smi_info *smi_info = send_info;
850 enum si_sm_result result;
851 unsigned long flags;
852 #ifdef DEBUG_TIMING
853 struct timeval t;
854 #endif
855
856 if (atomic_read(&smi_info->stop_operation)) {
857 msg->rsp[0] = msg->data[0] | 4;
858 msg->rsp[1] = msg->data[1];
859 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860 msg->rsp_size = 3;
861 deliver_recv_msg(smi_info, msg);
862 return;
863 }
864
865 #ifdef DEBUG_TIMING
866 do_gettimeofday(&t);
867 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869
870 if (smi_info->run_to_completion) {
871 /*
872 * If we are running to completion, then throw it in
873 * the list and run transactions until everything is
874 * clear. Priority doesn't matter here.
875 */
876
877 /*
878 * Run to completion means we are single-threaded, no
879 * need for locks.
880 */
881 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882
883 result = smi_event_handler(smi_info, 0);
884 while (result != SI_SM_IDLE) {
885 udelay(SI_SHORT_TIMEOUT_USEC);
886 result = smi_event_handler(smi_info,
887 SI_SHORT_TIMEOUT_USEC);
888 }
889 return;
890 }
891
892 spin_lock_irqsave(&smi_info->si_lock, flags);
893 if (priority > 0)
894 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895 else
896 list_add_tail(&msg->link, &smi_info->xmit_msgs);
897
898 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899 /*
900 * last_timeout_jiffies is updated here to avoid
901 * smi_timeout() handler passing very large time_diff
902 * value to smi_event_handler() that causes
903 * the send command to abort.
904 */
905 smi_info->last_timeout_jiffies = jiffies;
906
907 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908
909 if (smi_info->thread)
910 wake_up_process(smi_info->thread);
911
912 start_next_msg(smi_info);
913 smi_event_handler(smi_info, 0);
914 }
915 spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920 struct smi_info *smi_info = send_info;
921 enum si_sm_result result;
922
923 smi_info->run_to_completion = i_run_to_completion;
924 if (i_run_to_completion) {
925 result = smi_event_handler(smi_info, 0);
926 while (result != SI_SM_IDLE) {
927 udelay(SI_SHORT_TIMEOUT_USEC);
928 result = smi_event_handler(smi_info,
929 SI_SHORT_TIMEOUT_USEC);
930 }
931 }
932 }
933
934 /*
935 * Use -1 in the nsec value of the busy waiting timespec to tell that
936 * we are spinning in kipmid looking for something and not delaying
937 * between checks
938 */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941 ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945 return ts->tv_nsec != -1;
946 }
947
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 const struct smi_info *smi_info,
950 struct timespec *busy_until)
951 {
952 unsigned int max_busy_us = 0;
953
954 if (smi_info->intf_num < num_max_busy_us)
955 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 ipmi_si_set_not_busy(busy_until);
958 else if (!ipmi_si_is_busy(busy_until)) {
959 getnstimeofday(busy_until);
960 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961 } else {
962 struct timespec now;
963 getnstimeofday(&now);
964 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965 ipmi_si_set_not_busy(busy_until);
966 return 0;
967 }
968 }
969 return 1;
970 }
971
972
973 /*
974 * A busy-waiting loop for speeding up IPMI operation.
975 *
976 * Lousy hardware makes this hard. This is only enabled for systems
977 * that are not BT and do not have interrupts. It starts spinning
978 * when an operation is complete or until max_busy tells it to stop
979 * (if that is enabled). See the paragraph on kimid_max_busy_us in
980 * Documentation/IPMI.txt for details.
981 */
982 static int ipmi_thread(void *data)
983 {
984 struct smi_info *smi_info = data;
985 unsigned long flags;
986 enum si_sm_result smi_result;
987 struct timespec busy_until;
988
989 ipmi_si_set_not_busy(&busy_until);
990 set_user_nice(current, 19);
991 while (!kthread_should_stop()) {
992 int busy_wait;
993
994 spin_lock_irqsave(&(smi_info->si_lock), flags);
995 smi_result = smi_event_handler(smi_info, 0);
996 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998 &busy_until);
999 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000 ; /* do nothing */
1001 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002 schedule();
1003 else if (smi_result == SI_SM_IDLE)
1004 schedule_timeout_interruptible(100);
1005 else
1006 schedule_timeout_interruptible(1);
1007 }
1008 return 0;
1009 }
1010
1011
1012 static void poll(void *send_info)
1013 {
1014 struct smi_info *smi_info = send_info;
1015 unsigned long flags = 0;
1016 int run_to_completion = smi_info->run_to_completion;
1017
1018 /*
1019 * Make sure there is some delay in the poll loop so we can
1020 * drive time forward and timeout things.
1021 */
1022 udelay(10);
1023 if (!run_to_completion)
1024 spin_lock_irqsave(&smi_info->si_lock, flags);
1025 smi_event_handler(smi_info, 10);
1026 if (!run_to_completion)
1027 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029
1030 static void request_events(void *send_info)
1031 {
1032 struct smi_info *smi_info = send_info;
1033
1034 if (atomic_read(&smi_info->stop_operation) ||
1035 !smi_info->has_event_buffer)
1036 return;
1037
1038 atomic_set(&smi_info->req_events, 1);
1039 }
1040
1041 static int initialized;
1042
1043 static void smi_timeout(unsigned long data)
1044 {
1045 struct smi_info *smi_info = (struct smi_info *) data;
1046 enum si_sm_result smi_result;
1047 unsigned long flags;
1048 unsigned long jiffies_now;
1049 long time_diff;
1050 long timeout;
1051 #ifdef DEBUG_TIMING
1052 struct timeval t;
1053 #endif
1054
1055 spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057 do_gettimeofday(&t);
1058 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060 jiffies_now = jiffies;
1061 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062 * SI_USEC_PER_JIFFY);
1063 smi_result = smi_event_handler(smi_info, time_diff);
1064
1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067 smi_info->last_timeout_jiffies = jiffies_now;
1068
1069 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070 /* Running with interrupts, only do long timeouts. */
1071 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072 smi_inc_stat(smi_info, long_timeouts);
1073 goto do_mod_timer;
1074 }
1075
1076 /*
1077 * If the state machine asks for a short delay, then shorten
1078 * the timer timeout.
1079 */
1080 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081 smi_inc_stat(smi_info, short_timeouts);
1082 timeout = jiffies + 1;
1083 } else {
1084 smi_inc_stat(smi_info, long_timeouts);
1085 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086 }
1087
1088 do_mod_timer:
1089 if (smi_result != SI_SM_IDLE)
1090 mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095 struct smi_info *smi_info = data;
1096 unsigned long flags;
1097 #ifdef DEBUG_TIMING
1098 struct timeval t;
1099 #endif
1100
1101 spin_lock_irqsave(&(smi_info->si_lock), flags);
1102
1103 smi_inc_stat(smi_info, interrupts);
1104
1105 #ifdef DEBUG_TIMING
1106 do_gettimeofday(&t);
1107 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109 smi_event_handler(smi_info, 0);
1110 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111 return IRQ_HANDLED;
1112 }
1113
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116 struct smi_info *smi_info = data;
1117 /* We need to clear the IRQ flag for the BT interface. */
1118 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121 return si_irq_handler(irq, data);
1122 }
1123
1124 static int smi_start_processing(void *send_info,
1125 ipmi_smi_t intf)
1126 {
1127 struct smi_info *new_smi = send_info;
1128 int enable = 0;
1129
1130 new_smi->intf = intf;
1131
1132 /* Try to claim any interrupts. */
1133 if (new_smi->irq_setup)
1134 new_smi->irq_setup(new_smi);
1135
1136 /* Set up the timer that drives the interface. */
1137 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138 new_smi->last_timeout_jiffies = jiffies;
1139 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140
1141 /*
1142 * Check if the user forcefully enabled the daemon.
1143 */
1144 if (new_smi->intf_num < num_force_kipmid)
1145 enable = force_kipmid[new_smi->intf_num];
1146 /*
1147 * The BT interface is efficient enough to not need a thread,
1148 * and there is no need for a thread if we have interrupts.
1149 */
1150 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151 enable = 1;
1152
1153 if (enable) {
1154 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155 "kipmi%d", new_smi->intf_num);
1156 if (IS_ERR(new_smi->thread)) {
1157 dev_notice(new_smi->dev, "Could not start"
1158 " kernel thread due to error %ld, only using"
1159 " timers to drive the interface\n",
1160 PTR_ERR(new_smi->thread));
1161 new_smi->thread = NULL;
1162 }
1163 }
1164
1165 return 0;
1166 }
1167
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170 struct smi_info *smi = send_info;
1171
1172 data->addr_src = smi->addr_source;
1173 data->dev = smi->dev;
1174 data->addr_info = smi->addr_info;
1175 get_device(smi->dev);
1176
1177 return 0;
1178 }
1179
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182 struct smi_info *smi_info = send_info;
1183
1184 if (!enable)
1185 atomic_set(&smi_info->req_events, 0);
1186 }
1187
1188 static struct ipmi_smi_handlers handlers = {
1189 .owner = THIS_MODULE,
1190 .start_processing = smi_start_processing,
1191 .get_smi_info = get_smi_info,
1192 .sender = sender,
1193 .request_events = request_events,
1194 .set_maintenance_mode = set_maintenance_mode,
1195 .set_run_to_completion = set_run_to_completion,
1196 .poll = poll,
1197 };
1198
1199 /*
1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1202 */
1203
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207
1208 #define DEFAULT_REGSPACING 1
1209 #define DEFAULT_REGSIZE 1
1210
1211 #ifdef CONFIG_ACPI
1212 static bool si_tryacpi = 1;
1213 #endif
1214 #ifdef CONFIG_DMI
1215 static bool si_trydmi = 1;
1216 #endif
1217 static bool si_tryplatform = 1;
1218 #ifdef CONFIG_PCI
1219 static bool si_trypci = 1;
1220 #endif
1221 static bool si_trydefaults = 1;
1222 static char *si_type[SI_MAX_PARMS];
1223 #define MAX_SI_TYPE_STR 30
1224 static char si_type_str[MAX_SI_TYPE_STR];
1225 static unsigned long addrs[SI_MAX_PARMS];
1226 static unsigned int num_addrs;
1227 static unsigned int ports[SI_MAX_PARMS];
1228 static unsigned int num_ports;
1229 static int irqs[SI_MAX_PARMS];
1230 static unsigned int num_irqs;
1231 static int regspacings[SI_MAX_PARMS];
1232 static unsigned int num_regspacings;
1233 static int regsizes[SI_MAX_PARMS];
1234 static unsigned int num_regsizes;
1235 static int regshifts[SI_MAX_PARMS];
1236 static unsigned int num_regshifts;
1237 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1238 static unsigned int num_slave_addrs;
1239
1240 #define IPMI_IO_ADDR_SPACE 0
1241 #define IPMI_MEM_ADDR_SPACE 1
1242 static char *addr_space_to_str[] = { "i/o", "mem" };
1243
1244 static int hotmod_handler(const char *val, struct kernel_param *kp);
1245
1246 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1247 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1248 " Documentation/IPMI.txt in the kernel sources for the"
1249 " gory details.");
1250
1251 #ifdef CONFIG_ACPI
1252 module_param_named(tryacpi, si_tryacpi, bool, 0);
1253 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1254 " default scan of the interfaces identified via ACPI");
1255 #endif
1256 #ifdef CONFIG_DMI
1257 module_param_named(trydmi, si_trydmi, bool, 0);
1258 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1259 " default scan of the interfaces identified via DMI");
1260 #endif
1261 module_param_named(tryplatform, si_tryplatform, bool, 0);
1262 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1263 " default scan of the interfaces identified via platform"
1264 " interfaces like openfirmware");
1265 #ifdef CONFIG_PCI
1266 module_param_named(trypci, si_trypci, bool, 0);
1267 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1268 " default scan of the interfaces identified via pci");
1269 #endif
1270 module_param_named(trydefaults, si_trydefaults, bool, 0);
1271 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1272 " default scan of the KCS and SMIC interface at the standard"
1273 " address");
1274 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1275 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1276 " interface separated by commas. The types are 'kcs',"
1277 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1278 " the first interface to kcs and the second to bt");
1279 module_param_array(addrs, ulong, &num_addrs, 0);
1280 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1281 " addresses separated by commas. Only use if an interface"
1282 " is in memory. Otherwise, set it to zero or leave"
1283 " it blank.");
1284 module_param_array(ports, uint, &num_ports, 0);
1285 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1286 " addresses separated by commas. Only use if an interface"
1287 " is a port. Otherwise, set it to zero or leave"
1288 " it blank.");
1289 module_param_array(irqs, int, &num_irqs, 0);
1290 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1291 " addresses separated by commas. Only use if an interface"
1292 " has an interrupt. Otherwise, set it to zero or leave"
1293 " it blank.");
1294 module_param_array(regspacings, int, &num_regspacings, 0);
1295 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1296 " and each successive register used by the interface. For"
1297 " instance, if the start address is 0xca2 and the spacing"
1298 " is 2, then the second address is at 0xca4. Defaults"
1299 " to 1.");
1300 module_param_array(regsizes, int, &num_regsizes, 0);
1301 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1302 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1303 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1304 " the 8-bit IPMI register has to be read from a larger"
1305 " register.");
1306 module_param_array(regshifts, int, &num_regshifts, 0);
1307 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1308 " IPMI register, in bits. For instance, if the data"
1309 " is read from a 32-bit word and the IPMI data is in"
1310 " bit 8-15, then the shift would be 8");
1311 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1312 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1313 " the controller. Normally this is 0x20, but can be"
1314 " overridden by this parm. This is an array indexed"
1315 " by interface number.");
1316 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1317 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1318 " disabled(0). Normally the IPMI driver auto-detects"
1319 " this, but the value may be overridden by this parm.");
1320 module_param(unload_when_empty, int, 0);
1321 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1322 " specified or found, default is 1. Setting to 0"
1323 " is useful for hot add of devices using hotmod.");
1324 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1325 MODULE_PARM_DESC(kipmid_max_busy_us,
1326 "Max time (in microseconds) to busy-wait for IPMI data before"
1327 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1328 " if kipmid is using up a lot of CPU time.");
1329
1330
1331 static void std_irq_cleanup(struct smi_info *info)
1332 {
1333 if (info->si_type == SI_BT)
1334 /* Disable the interrupt in the BT interface. */
1335 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1336 free_irq(info->irq, info);
1337 }
1338
1339 static int std_irq_setup(struct smi_info *info)
1340 {
1341 int rv;
1342
1343 if (!info->irq)
1344 return 0;
1345
1346 if (info->si_type == SI_BT) {
1347 rv = request_irq(info->irq,
1348 si_bt_irq_handler,
1349 IRQF_SHARED | IRQF_DISABLED,
1350 DEVICE_NAME,
1351 info);
1352 if (!rv)
1353 /* Enable the interrupt in the BT interface. */
1354 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1355 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1356 } else
1357 rv = request_irq(info->irq,
1358 si_irq_handler,
1359 IRQF_SHARED | IRQF_DISABLED,
1360 DEVICE_NAME,
1361 info);
1362 if (rv) {
1363 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1364 " running polled\n",
1365 DEVICE_NAME, info->irq);
1366 info->irq = 0;
1367 } else {
1368 info->irq_cleanup = std_irq_cleanup;
1369 dev_info(info->dev, "Using irq %d\n", info->irq);
1370 }
1371
1372 return rv;
1373 }
1374
1375 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1376 {
1377 unsigned int addr = io->addr_data;
1378
1379 return inb(addr + (offset * io->regspacing));
1380 }
1381
1382 static void port_outb(struct si_sm_io *io, unsigned int offset,
1383 unsigned char b)
1384 {
1385 unsigned int addr = io->addr_data;
1386
1387 outb(b, addr + (offset * io->regspacing));
1388 }
1389
1390 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1391 {
1392 unsigned int addr = io->addr_data;
1393
1394 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1395 }
1396
1397 static void port_outw(struct si_sm_io *io, unsigned int offset,
1398 unsigned char b)
1399 {
1400 unsigned int addr = io->addr_data;
1401
1402 outw(b << io->regshift, addr + (offset * io->regspacing));
1403 }
1404
1405 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1406 {
1407 unsigned int addr = io->addr_data;
1408
1409 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1410 }
1411
1412 static void port_outl(struct si_sm_io *io, unsigned int offset,
1413 unsigned char b)
1414 {
1415 unsigned int addr = io->addr_data;
1416
1417 outl(b << io->regshift, addr+(offset * io->regspacing));
1418 }
1419
1420 static void port_cleanup(struct smi_info *info)
1421 {
1422 unsigned int addr = info->io.addr_data;
1423 int idx;
1424
1425 if (addr) {
1426 for (idx = 0; idx < info->io_size; idx++)
1427 release_region(addr + idx * info->io.regspacing,
1428 info->io.regsize);
1429 }
1430 }
1431
1432 static int port_setup(struct smi_info *info)
1433 {
1434 unsigned int addr = info->io.addr_data;
1435 int idx;
1436
1437 if (!addr)
1438 return -ENODEV;
1439
1440 info->io_cleanup = port_cleanup;
1441
1442 /*
1443 * Figure out the actual inb/inw/inl/etc routine to use based
1444 * upon the register size.
1445 */
1446 switch (info->io.regsize) {
1447 case 1:
1448 info->io.inputb = port_inb;
1449 info->io.outputb = port_outb;
1450 break;
1451 case 2:
1452 info->io.inputb = port_inw;
1453 info->io.outputb = port_outw;
1454 break;
1455 case 4:
1456 info->io.inputb = port_inl;
1457 info->io.outputb = port_outl;
1458 break;
1459 default:
1460 dev_warn(info->dev, "Invalid register size: %d\n",
1461 info->io.regsize);
1462 return -EINVAL;
1463 }
1464
1465 /*
1466 * Some BIOSes reserve disjoint I/O regions in their ACPI
1467 * tables. This causes problems when trying to register the
1468 * entire I/O region. Therefore we must register each I/O
1469 * port separately.
1470 */
1471 for (idx = 0; idx < info->io_size; idx++) {
1472 if (request_region(addr + idx * info->io.regspacing,
1473 info->io.regsize, DEVICE_NAME) == NULL) {
1474 /* Undo allocations */
1475 while (idx--) {
1476 release_region(addr + idx * info->io.regspacing,
1477 info->io.regsize);
1478 }
1479 return -EIO;
1480 }
1481 }
1482 return 0;
1483 }
1484
1485 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1486 {
1487 return readb((io->addr)+(offset * io->regspacing));
1488 }
1489
1490 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1491 unsigned char b)
1492 {
1493 writeb(b, (io->addr)+(offset * io->regspacing));
1494 }
1495
1496 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1497 {
1498 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1499 & 0xff;
1500 }
1501
1502 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1503 unsigned char b)
1504 {
1505 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1506 }
1507
1508 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1509 {
1510 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1511 & 0xff;
1512 }
1513
1514 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1515 unsigned char b)
1516 {
1517 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1518 }
1519
1520 #ifdef readq
1521 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1522 {
1523 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1524 & 0xff;
1525 }
1526
1527 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1528 unsigned char b)
1529 {
1530 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1531 }
1532 #endif
1533
1534 static void mem_cleanup(struct smi_info *info)
1535 {
1536 unsigned long addr = info->io.addr_data;
1537 int mapsize;
1538
1539 if (info->io.addr) {
1540 iounmap(info->io.addr);
1541
1542 mapsize = ((info->io_size * info->io.regspacing)
1543 - (info->io.regspacing - info->io.regsize));
1544
1545 release_mem_region(addr, mapsize);
1546 }
1547 }
1548
1549 static int mem_setup(struct smi_info *info)
1550 {
1551 unsigned long addr = info->io.addr_data;
1552 int mapsize;
1553
1554 if (!addr)
1555 return -ENODEV;
1556
1557 info->io_cleanup = mem_cleanup;
1558
1559 /*
1560 * Figure out the actual readb/readw/readl/etc routine to use based
1561 * upon the register size.
1562 */
1563 switch (info->io.regsize) {
1564 case 1:
1565 info->io.inputb = intf_mem_inb;
1566 info->io.outputb = intf_mem_outb;
1567 break;
1568 case 2:
1569 info->io.inputb = intf_mem_inw;
1570 info->io.outputb = intf_mem_outw;
1571 break;
1572 case 4:
1573 info->io.inputb = intf_mem_inl;
1574 info->io.outputb = intf_mem_outl;
1575 break;
1576 #ifdef readq
1577 case 8:
1578 info->io.inputb = mem_inq;
1579 info->io.outputb = mem_outq;
1580 break;
1581 #endif
1582 default:
1583 dev_warn(info->dev, "Invalid register size: %d\n",
1584 info->io.regsize);
1585 return -EINVAL;
1586 }
1587
1588 /*
1589 * Calculate the total amount of memory to claim. This is an
1590 * unusual looking calculation, but it avoids claiming any
1591 * more memory than it has to. It will claim everything
1592 * between the first address to the end of the last full
1593 * register.
1594 */
1595 mapsize = ((info->io_size * info->io.regspacing)
1596 - (info->io.regspacing - info->io.regsize));
1597
1598 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1599 return -EIO;
1600
1601 info->io.addr = ioremap(addr, mapsize);
1602 if (info->io.addr == NULL) {
1603 release_mem_region(addr, mapsize);
1604 return -EIO;
1605 }
1606 return 0;
1607 }
1608
1609 /*
1610 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1611 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1612 * Options are:
1613 * rsp=<regspacing>
1614 * rsi=<regsize>
1615 * rsh=<regshift>
1616 * irq=<irq>
1617 * ipmb=<ipmb addr>
1618 */
1619 enum hotmod_op { HM_ADD, HM_REMOVE };
1620 struct hotmod_vals {
1621 char *name;
1622 int val;
1623 };
1624 static struct hotmod_vals hotmod_ops[] = {
1625 { "add", HM_ADD },
1626 { "remove", HM_REMOVE },
1627 { NULL }
1628 };
1629 static struct hotmod_vals hotmod_si[] = {
1630 { "kcs", SI_KCS },
1631 { "smic", SI_SMIC },
1632 { "bt", SI_BT },
1633 { NULL }
1634 };
1635 static struct hotmod_vals hotmod_as[] = {
1636 { "mem", IPMI_MEM_ADDR_SPACE },
1637 { "i/o", IPMI_IO_ADDR_SPACE },
1638 { NULL }
1639 };
1640
1641 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1642 {
1643 char *s;
1644 int i;
1645
1646 s = strchr(*curr, ',');
1647 if (!s) {
1648 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1649 return -EINVAL;
1650 }
1651 *s = '\0';
1652 s++;
1653 for (i = 0; hotmod_ops[i].name; i++) {
1654 if (strcmp(*curr, v[i].name) == 0) {
1655 *val = v[i].val;
1656 *curr = s;
1657 return 0;
1658 }
1659 }
1660
1661 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1662 return -EINVAL;
1663 }
1664
1665 static int check_hotmod_int_op(const char *curr, const char *option,
1666 const char *name, int *val)
1667 {
1668 char *n;
1669
1670 if (strcmp(curr, name) == 0) {
1671 if (!option) {
1672 printk(KERN_WARNING PFX
1673 "No option given for '%s'\n",
1674 curr);
1675 return -EINVAL;
1676 }
1677 *val = simple_strtoul(option, &n, 0);
1678 if ((*n != '\0') || (*option == '\0')) {
1679 printk(KERN_WARNING PFX
1680 "Bad option given for '%s'\n",
1681 curr);
1682 return -EINVAL;
1683 }
1684 return 1;
1685 }
1686 return 0;
1687 }
1688
1689 static struct smi_info *smi_info_alloc(void)
1690 {
1691 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1692
1693 if (info)
1694 spin_lock_init(&info->si_lock);
1695 return info;
1696 }
1697
1698 static int hotmod_handler(const char *val, struct kernel_param *kp)
1699 {
1700 char *str = kstrdup(val, GFP_KERNEL);
1701 int rv;
1702 char *next, *curr, *s, *n, *o;
1703 enum hotmod_op op;
1704 enum si_type si_type;
1705 int addr_space;
1706 unsigned long addr;
1707 int regspacing;
1708 int regsize;
1709 int regshift;
1710 int irq;
1711 int ipmb;
1712 int ival;
1713 int len;
1714 struct smi_info *info;
1715
1716 if (!str)
1717 return -ENOMEM;
1718
1719 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1720 len = strlen(str);
1721 ival = len - 1;
1722 while ((ival >= 0) && isspace(str[ival])) {
1723 str[ival] = '\0';
1724 ival--;
1725 }
1726
1727 for (curr = str; curr; curr = next) {
1728 regspacing = 1;
1729 regsize = 1;
1730 regshift = 0;
1731 irq = 0;
1732 ipmb = 0; /* Choose the default if not specified */
1733
1734 next = strchr(curr, ':');
1735 if (next) {
1736 *next = '\0';
1737 next++;
1738 }
1739
1740 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1741 if (rv)
1742 break;
1743 op = ival;
1744
1745 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1746 if (rv)
1747 break;
1748 si_type = ival;
1749
1750 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1751 if (rv)
1752 break;
1753
1754 s = strchr(curr, ',');
1755 if (s) {
1756 *s = '\0';
1757 s++;
1758 }
1759 addr = simple_strtoul(curr, &n, 0);
1760 if ((*n != '\0') || (*curr == '\0')) {
1761 printk(KERN_WARNING PFX "Invalid hotmod address"
1762 " '%s'\n", curr);
1763 break;
1764 }
1765
1766 while (s) {
1767 curr = s;
1768 s = strchr(curr, ',');
1769 if (s) {
1770 *s = '\0';
1771 s++;
1772 }
1773 o = strchr(curr, '=');
1774 if (o) {
1775 *o = '\0';
1776 o++;
1777 }
1778 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1779 if (rv < 0)
1780 goto out;
1781 else if (rv)
1782 continue;
1783 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1784 if (rv < 0)
1785 goto out;
1786 else if (rv)
1787 continue;
1788 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1789 if (rv < 0)
1790 goto out;
1791 else if (rv)
1792 continue;
1793 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1794 if (rv < 0)
1795 goto out;
1796 else if (rv)
1797 continue;
1798 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1799 if (rv < 0)
1800 goto out;
1801 else if (rv)
1802 continue;
1803
1804 rv = -EINVAL;
1805 printk(KERN_WARNING PFX
1806 "Invalid hotmod option '%s'\n",
1807 curr);
1808 goto out;
1809 }
1810
1811 if (op == HM_ADD) {
1812 info = smi_info_alloc();
1813 if (!info) {
1814 rv = -ENOMEM;
1815 goto out;
1816 }
1817
1818 info->addr_source = SI_HOTMOD;
1819 info->si_type = si_type;
1820 info->io.addr_data = addr;
1821 info->io.addr_type = addr_space;
1822 if (addr_space == IPMI_MEM_ADDR_SPACE)
1823 info->io_setup = mem_setup;
1824 else
1825 info->io_setup = port_setup;
1826
1827 info->io.addr = NULL;
1828 info->io.regspacing = regspacing;
1829 if (!info->io.regspacing)
1830 info->io.regspacing = DEFAULT_REGSPACING;
1831 info->io.regsize = regsize;
1832 if (!info->io.regsize)
1833 info->io.regsize = DEFAULT_REGSPACING;
1834 info->io.regshift = regshift;
1835 info->irq = irq;
1836 if (info->irq)
1837 info->irq_setup = std_irq_setup;
1838 info->slave_addr = ipmb;
1839
1840 if (!add_smi(info)) {
1841 if (try_smi_init(info))
1842 cleanup_one_si(info);
1843 } else {
1844 kfree(info);
1845 }
1846 } else {
1847 /* remove */
1848 struct smi_info *e, *tmp_e;
1849
1850 mutex_lock(&smi_infos_lock);
1851 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1852 if (e->io.addr_type != addr_space)
1853 continue;
1854 if (e->si_type != si_type)
1855 continue;
1856 if (e->io.addr_data == addr)
1857 cleanup_one_si(e);
1858 }
1859 mutex_unlock(&smi_infos_lock);
1860 }
1861 }
1862 rv = len;
1863 out:
1864 kfree(str);
1865 return rv;
1866 }
1867
1868 static int hardcode_find_bmc(void)
1869 {
1870 int ret = -ENODEV;
1871 int i;
1872 struct smi_info *info;
1873
1874 for (i = 0; i < SI_MAX_PARMS; i++) {
1875 if (!ports[i] && !addrs[i])
1876 continue;
1877
1878 info = smi_info_alloc();
1879 if (!info)
1880 return -ENOMEM;
1881
1882 info->addr_source = SI_HARDCODED;
1883 printk(KERN_INFO PFX "probing via hardcoded address\n");
1884
1885 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1886 info->si_type = SI_KCS;
1887 } else if (strcmp(si_type[i], "smic") == 0) {
1888 info->si_type = SI_SMIC;
1889 } else if (strcmp(si_type[i], "bt") == 0) {
1890 info->si_type = SI_BT;
1891 } else {
1892 printk(KERN_WARNING PFX "Interface type specified "
1893 "for interface %d, was invalid: %s\n",
1894 i, si_type[i]);
1895 kfree(info);
1896 continue;
1897 }
1898
1899 if (ports[i]) {
1900 /* An I/O port */
1901 info->io_setup = port_setup;
1902 info->io.addr_data = ports[i];
1903 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1904 } else if (addrs[i]) {
1905 /* A memory port */
1906 info->io_setup = mem_setup;
1907 info->io.addr_data = addrs[i];
1908 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1909 } else {
1910 printk(KERN_WARNING PFX "Interface type specified "
1911 "for interface %d, but port and address were "
1912 "not set or set to zero.\n", i);
1913 kfree(info);
1914 continue;
1915 }
1916
1917 info->io.addr = NULL;
1918 info->io.regspacing = regspacings[i];
1919 if (!info->io.regspacing)
1920 info->io.regspacing = DEFAULT_REGSPACING;
1921 info->io.regsize = regsizes[i];
1922 if (!info->io.regsize)
1923 info->io.regsize = DEFAULT_REGSPACING;
1924 info->io.regshift = regshifts[i];
1925 info->irq = irqs[i];
1926 if (info->irq)
1927 info->irq_setup = std_irq_setup;
1928 info->slave_addr = slave_addrs[i];
1929
1930 if (!add_smi(info)) {
1931 if (try_smi_init(info))
1932 cleanup_one_si(info);
1933 ret = 0;
1934 } else {
1935 kfree(info);
1936 }
1937 }
1938 return ret;
1939 }
1940
1941 #ifdef CONFIG_ACPI
1942
1943 #include <linux/acpi.h>
1944
1945 /*
1946 * Once we get an ACPI failure, we don't try any more, because we go
1947 * through the tables sequentially. Once we don't find a table, there
1948 * are no more.
1949 */
1950 static int acpi_failure;
1951
1952 /* For GPE-type interrupts. */
1953 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1954 u32 gpe_number, void *context)
1955 {
1956 struct smi_info *smi_info = context;
1957 unsigned long flags;
1958 #ifdef DEBUG_TIMING
1959 struct timeval t;
1960 #endif
1961
1962 spin_lock_irqsave(&(smi_info->si_lock), flags);
1963
1964 smi_inc_stat(smi_info, interrupts);
1965
1966 #ifdef DEBUG_TIMING
1967 do_gettimeofday(&t);
1968 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1969 #endif
1970 smi_event_handler(smi_info, 0);
1971 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1972
1973 return ACPI_INTERRUPT_HANDLED;
1974 }
1975
1976 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1977 {
1978 if (!info->irq)
1979 return;
1980
1981 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1982 }
1983
1984 static int acpi_gpe_irq_setup(struct smi_info *info)
1985 {
1986 acpi_status status;
1987
1988 if (!info->irq)
1989 return 0;
1990
1991 /* FIXME - is level triggered right? */
1992 status = acpi_install_gpe_handler(NULL,
1993 info->irq,
1994 ACPI_GPE_LEVEL_TRIGGERED,
1995 &ipmi_acpi_gpe,
1996 info);
1997 if (status != AE_OK) {
1998 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1999 " running polled\n", DEVICE_NAME, info->irq);
2000 info->irq = 0;
2001 return -EINVAL;
2002 } else {
2003 info->irq_cleanup = acpi_gpe_irq_cleanup;
2004 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2005 return 0;
2006 }
2007 }
2008
2009 /*
2010 * Defined at
2011 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2012 */
2013 struct SPMITable {
2014 s8 Signature[4];
2015 u32 Length;
2016 u8 Revision;
2017 u8 Checksum;
2018 s8 OEMID[6];
2019 s8 OEMTableID[8];
2020 s8 OEMRevision[4];
2021 s8 CreatorID[4];
2022 s8 CreatorRevision[4];
2023 u8 InterfaceType;
2024 u8 IPMIlegacy;
2025 s16 SpecificationRevision;
2026
2027 /*
2028 * Bit 0 - SCI interrupt supported
2029 * Bit 1 - I/O APIC/SAPIC
2030 */
2031 u8 InterruptType;
2032
2033 /*
2034 * If bit 0 of InterruptType is set, then this is the SCI
2035 * interrupt in the GPEx_STS register.
2036 */
2037 u8 GPE;
2038
2039 s16 Reserved;
2040
2041 /*
2042 * If bit 1 of InterruptType is set, then this is the I/O
2043 * APIC/SAPIC interrupt.
2044 */
2045 u32 GlobalSystemInterrupt;
2046
2047 /* The actual register address. */
2048 struct acpi_generic_address addr;
2049
2050 u8 UID[4];
2051
2052 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2053 };
2054
2055 static int try_init_spmi(struct SPMITable *spmi)
2056 {
2057 struct smi_info *info;
2058
2059 if (spmi->IPMIlegacy != 1) {
2060 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2061 return -ENODEV;
2062 }
2063
2064 info = smi_info_alloc();
2065 if (!info) {
2066 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2067 return -ENOMEM;
2068 }
2069
2070 info->addr_source = SI_SPMI;
2071 printk(KERN_INFO PFX "probing via SPMI\n");
2072
2073 /* Figure out the interface type. */
2074 switch (spmi->InterfaceType) {
2075 case 1: /* KCS */
2076 info->si_type = SI_KCS;
2077 break;
2078 case 2: /* SMIC */
2079 info->si_type = SI_SMIC;
2080 break;
2081 case 3: /* BT */
2082 info->si_type = SI_BT;
2083 break;
2084 default:
2085 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2086 spmi->InterfaceType);
2087 kfree(info);
2088 return -EIO;
2089 }
2090
2091 if (spmi->InterruptType & 1) {
2092 /* We've got a GPE interrupt. */
2093 info->irq = spmi->GPE;
2094 info->irq_setup = acpi_gpe_irq_setup;
2095 } else if (spmi->InterruptType & 2) {
2096 /* We've got an APIC/SAPIC interrupt. */
2097 info->irq = spmi->GlobalSystemInterrupt;
2098 info->irq_setup = std_irq_setup;
2099 } else {
2100 /* Use the default interrupt setting. */
2101 info->irq = 0;
2102 info->irq_setup = NULL;
2103 }
2104
2105 if (spmi->addr.bit_width) {
2106 /* A (hopefully) properly formed register bit width. */
2107 info->io.regspacing = spmi->addr.bit_width / 8;
2108 } else {
2109 info->io.regspacing = DEFAULT_REGSPACING;
2110 }
2111 info->io.regsize = info->io.regspacing;
2112 info->io.regshift = spmi->addr.bit_offset;
2113
2114 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2115 info->io_setup = mem_setup;
2116 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2117 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2118 info->io_setup = port_setup;
2119 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2120 } else {
2121 kfree(info);
2122 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2123 return -EIO;
2124 }
2125 info->io.addr_data = spmi->addr.address;
2126
2127 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2128 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2129 info->io.addr_data, info->io.regsize, info->io.regspacing,
2130 info->irq);
2131
2132 if (add_smi(info))
2133 kfree(info);
2134
2135 return 0;
2136 }
2137
2138 static void spmi_find_bmc(void)
2139 {
2140 acpi_status status;
2141 struct SPMITable *spmi;
2142 int i;
2143
2144 if (acpi_disabled)
2145 return;
2146
2147 if (acpi_failure)
2148 return;
2149
2150 for (i = 0; ; i++) {
2151 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2152 (struct acpi_table_header **)&spmi);
2153 if (status != AE_OK)
2154 return;
2155
2156 try_init_spmi(spmi);
2157 }
2158 }
2159
2160 static int ipmi_pnp_probe(struct pnp_dev *dev,
2161 const struct pnp_device_id *dev_id)
2162 {
2163 struct acpi_device *acpi_dev;
2164 struct smi_info *info;
2165 struct resource *res, *res_second;
2166 acpi_handle handle;
2167 acpi_status status;
2168 unsigned long long tmp;
2169
2170 acpi_dev = pnp_acpi_device(dev);
2171 if (!acpi_dev)
2172 return -ENODEV;
2173
2174 info = smi_info_alloc();
2175 if (!info)
2176 return -ENOMEM;
2177
2178 info->addr_source = SI_ACPI;
2179 printk(KERN_INFO PFX "probing via ACPI\n");
2180
2181 handle = acpi_dev->handle;
2182 info->addr_info.acpi_info.acpi_handle = handle;
2183
2184 /* _IFT tells us the interface type: KCS, BT, etc */
2185 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2186 if (ACPI_FAILURE(status))
2187 goto err_free;
2188
2189 switch (tmp) {
2190 case 1:
2191 info->si_type = SI_KCS;
2192 break;
2193 case 2:
2194 info->si_type = SI_SMIC;
2195 break;
2196 case 3:
2197 info->si_type = SI_BT;
2198 break;
2199 default:
2200 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2201 goto err_free;
2202 }
2203
2204 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2205 if (res) {
2206 info->io_setup = port_setup;
2207 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2208 } else {
2209 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2210 if (res) {
2211 info->io_setup = mem_setup;
2212 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2213 }
2214 }
2215 if (!res) {
2216 dev_err(&dev->dev, "no I/O or memory address\n");
2217 goto err_free;
2218 }
2219 info->io.addr_data = res->start;
2220
2221 info->io.regspacing = DEFAULT_REGSPACING;
2222 res_second = pnp_get_resource(dev,
2223 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2224 IORESOURCE_IO : IORESOURCE_MEM,
2225 1);
2226 if (res_second) {
2227 if (res_second->start > info->io.addr_data)
2228 info->io.regspacing = res_second->start - info->io.addr_data;
2229 }
2230 info->io.regsize = DEFAULT_REGSPACING;
2231 info->io.regshift = 0;
2232
2233 /* If _GPE exists, use it; otherwise use standard interrupts */
2234 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2235 if (ACPI_SUCCESS(status)) {
2236 info->irq = tmp;
2237 info->irq_setup = acpi_gpe_irq_setup;
2238 } else if (pnp_irq_valid(dev, 0)) {
2239 info->irq = pnp_irq(dev, 0);
2240 info->irq_setup = std_irq_setup;
2241 }
2242
2243 info->dev = &dev->dev;
2244 pnp_set_drvdata(dev, info);
2245
2246 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2247 res, info->io.regsize, info->io.regspacing,
2248 info->irq);
2249
2250 if (add_smi(info))
2251 goto err_free;
2252
2253 return 0;
2254
2255 err_free:
2256 kfree(info);
2257 return -EINVAL;
2258 }
2259
2260 static void ipmi_pnp_remove(struct pnp_dev *dev)
2261 {
2262 struct smi_info *info = pnp_get_drvdata(dev);
2263
2264 cleanup_one_si(info);
2265 }
2266
2267 static const struct pnp_device_id pnp_dev_table[] = {
2268 {"IPI0001", 0},
2269 {"", 0},
2270 };
2271
2272 static struct pnp_driver ipmi_pnp_driver = {
2273 .name = DEVICE_NAME,
2274 .probe = ipmi_pnp_probe,
2275 .remove = ipmi_pnp_remove,
2276 .id_table = pnp_dev_table,
2277 };
2278 #endif
2279
2280 #ifdef CONFIG_DMI
2281 struct dmi_ipmi_data {
2282 u8 type;
2283 u8 addr_space;
2284 unsigned long base_addr;
2285 u8 irq;
2286 u8 offset;
2287 u8 slave_addr;
2288 };
2289
2290 static int decode_dmi(const struct dmi_header *dm,
2291 struct dmi_ipmi_data *dmi)
2292 {
2293 const u8 *data = (const u8 *)dm;
2294 unsigned long base_addr;
2295 u8 reg_spacing;
2296 u8 len = dm->length;
2297
2298 dmi->type = data[4];
2299
2300 memcpy(&base_addr, data+8, sizeof(unsigned long));
2301 if (len >= 0x11) {
2302 if (base_addr & 1) {
2303 /* I/O */
2304 base_addr &= 0xFFFE;
2305 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2306 } else
2307 /* Memory */
2308 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2309
2310 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2311 is odd. */
2312 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2313
2314 dmi->irq = data[0x11];
2315
2316 /* The top two bits of byte 0x10 hold the register spacing. */
2317 reg_spacing = (data[0x10] & 0xC0) >> 6;
2318 switch (reg_spacing) {
2319 case 0x00: /* Byte boundaries */
2320 dmi->offset = 1;
2321 break;
2322 case 0x01: /* 32-bit boundaries */
2323 dmi->offset = 4;
2324 break;
2325 case 0x02: /* 16-byte boundaries */
2326 dmi->offset = 16;
2327 break;
2328 default:
2329 /* Some other interface, just ignore it. */
2330 return -EIO;
2331 }
2332 } else {
2333 /* Old DMI spec. */
2334 /*
2335 * Note that technically, the lower bit of the base
2336 * address should be 1 if the address is I/O and 0 if
2337 * the address is in memory. So many systems get that
2338 * wrong (and all that I have seen are I/O) so we just
2339 * ignore that bit and assume I/O. Systems that use
2340 * memory should use the newer spec, anyway.
2341 */
2342 dmi->base_addr = base_addr & 0xfffe;
2343 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2344 dmi->offset = 1;
2345 }
2346
2347 dmi->slave_addr = data[6];
2348
2349 return 0;
2350 }
2351
2352 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2353 {
2354 struct smi_info *info;
2355
2356 info = smi_info_alloc();
2357 if (!info) {
2358 printk(KERN_ERR PFX "Could not allocate SI data\n");
2359 return;
2360 }
2361
2362 info->addr_source = SI_SMBIOS;
2363 printk(KERN_INFO PFX "probing via SMBIOS\n");
2364
2365 switch (ipmi_data->type) {
2366 case 0x01: /* KCS */
2367 info->si_type = SI_KCS;
2368 break;
2369 case 0x02: /* SMIC */
2370 info->si_type = SI_SMIC;
2371 break;
2372 case 0x03: /* BT */
2373 info->si_type = SI_BT;
2374 break;
2375 default:
2376 kfree(info);
2377 return;
2378 }
2379
2380 switch (ipmi_data->addr_space) {
2381 case IPMI_MEM_ADDR_SPACE:
2382 info->io_setup = mem_setup;
2383 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2384 break;
2385
2386 case IPMI_IO_ADDR_SPACE:
2387 info->io_setup = port_setup;
2388 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2389 break;
2390
2391 default:
2392 kfree(info);
2393 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2394 ipmi_data->addr_space);
2395 return;
2396 }
2397 info->io.addr_data = ipmi_data->base_addr;
2398
2399 info->io.regspacing = ipmi_data->offset;
2400 if (!info->io.regspacing)
2401 info->io.regspacing = DEFAULT_REGSPACING;
2402 info->io.regsize = DEFAULT_REGSPACING;
2403 info->io.regshift = 0;
2404
2405 info->slave_addr = ipmi_data->slave_addr;
2406
2407 info->irq = ipmi_data->irq;
2408 if (info->irq)
2409 info->irq_setup = std_irq_setup;
2410
2411 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2412 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2413 info->io.addr_data, info->io.regsize, info->io.regspacing,
2414 info->irq);
2415
2416 if (add_smi(info))
2417 kfree(info);
2418 }
2419
2420 static void dmi_find_bmc(void)
2421 {
2422 const struct dmi_device *dev = NULL;
2423 struct dmi_ipmi_data data;
2424 int rv;
2425
2426 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2427 memset(&data, 0, sizeof(data));
2428 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2429 &data);
2430 if (!rv)
2431 try_init_dmi(&data);
2432 }
2433 }
2434 #endif /* CONFIG_DMI */
2435
2436 #ifdef CONFIG_PCI
2437
2438 #define PCI_ERMC_CLASSCODE 0x0C0700
2439 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2440 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2441 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2442 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2443 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2444
2445 #define PCI_HP_VENDOR_ID 0x103C
2446 #define PCI_MMC_DEVICE_ID 0x121A
2447 #define PCI_MMC_ADDR_CW 0x10
2448
2449 static void ipmi_pci_cleanup(struct smi_info *info)
2450 {
2451 struct pci_dev *pdev = info->addr_source_data;
2452
2453 pci_disable_device(pdev);
2454 }
2455
2456 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2457 {
2458 if (info->si_type == SI_KCS) {
2459 unsigned char status;
2460 int regspacing;
2461
2462 info->io.regsize = DEFAULT_REGSIZE;
2463 info->io.regshift = 0;
2464 info->io_size = 2;
2465 info->handlers = &kcs_smi_handlers;
2466
2467 /* detect 1, 4, 16byte spacing */
2468 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2469 info->io.regspacing = regspacing;
2470 if (info->io_setup(info)) {
2471 dev_err(info->dev,
2472 "Could not setup I/O space\n");
2473 return DEFAULT_REGSPACING;
2474 }
2475 /* write invalid cmd */
2476 info->io.outputb(&info->io, 1, 0x10);
2477 /* read status back */
2478 status = info->io.inputb(&info->io, 1);
2479 info->io_cleanup(info);
2480 if (status)
2481 return regspacing;
2482 regspacing *= 4;
2483 }
2484 }
2485 return DEFAULT_REGSPACING;
2486 }
2487
2488 static int ipmi_pci_probe(struct pci_dev *pdev,
2489 const struct pci_device_id *ent)
2490 {
2491 int rv;
2492 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2493 struct smi_info *info;
2494
2495 info = smi_info_alloc();
2496 if (!info)
2497 return -ENOMEM;
2498
2499 info->addr_source = SI_PCI;
2500 dev_info(&pdev->dev, "probing via PCI");
2501
2502 switch (class_type) {
2503 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2504 info->si_type = SI_SMIC;
2505 break;
2506
2507 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2508 info->si_type = SI_KCS;
2509 break;
2510
2511 case PCI_ERMC_CLASSCODE_TYPE_BT:
2512 info->si_type = SI_BT;
2513 break;
2514
2515 default:
2516 kfree(info);
2517 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2518 return -ENOMEM;
2519 }
2520
2521 rv = pci_enable_device(pdev);
2522 if (rv) {
2523 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2524 kfree(info);
2525 return rv;
2526 }
2527
2528 info->addr_source_cleanup = ipmi_pci_cleanup;
2529 info->addr_source_data = pdev;
2530
2531 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2532 info->io_setup = port_setup;
2533 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2534 } else {
2535 info->io_setup = mem_setup;
2536 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2537 }
2538 info->io.addr_data = pci_resource_start(pdev, 0);
2539
2540 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2541 info->io.regsize = DEFAULT_REGSIZE;
2542 info->io.regshift = 0;
2543
2544 info->irq = pdev->irq;
2545 if (info->irq)
2546 info->irq_setup = std_irq_setup;
2547
2548 info->dev = &pdev->dev;
2549 pci_set_drvdata(pdev, info);
2550
2551 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2552 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2553 info->irq);
2554
2555 if (add_smi(info))
2556 kfree(info);
2557
2558 return 0;
2559 }
2560
2561 static void ipmi_pci_remove(struct pci_dev *pdev)
2562 {
2563 struct smi_info *info = pci_get_drvdata(pdev);
2564 cleanup_one_si(info);
2565 }
2566
2567 static struct pci_device_id ipmi_pci_devices[] = {
2568 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2569 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2570 { 0, }
2571 };
2572 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2573
2574 static struct pci_driver ipmi_pci_driver = {
2575 .name = DEVICE_NAME,
2576 .id_table = ipmi_pci_devices,
2577 .probe = ipmi_pci_probe,
2578 .remove = ipmi_pci_remove,
2579 };
2580 #endif /* CONFIG_PCI */
2581
2582 static struct of_device_id ipmi_match[];
2583 static int ipmi_probe(struct platform_device *dev)
2584 {
2585 #ifdef CONFIG_OF
2586 const struct of_device_id *match;
2587 struct smi_info *info;
2588 struct resource resource;
2589 const __be32 *regsize, *regspacing, *regshift;
2590 struct device_node *np = dev->dev.of_node;
2591 int ret;
2592 int proplen;
2593
2594 dev_info(&dev->dev, "probing via device tree\n");
2595
2596 match = of_match_device(ipmi_match, &dev->dev);
2597 if (!match)
2598 return -EINVAL;
2599
2600 ret = of_address_to_resource(np, 0, &resource);
2601 if (ret) {
2602 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2603 return ret;
2604 }
2605
2606 regsize = of_get_property(np, "reg-size", &proplen);
2607 if (regsize && proplen != 4) {
2608 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2609 return -EINVAL;
2610 }
2611
2612 regspacing = of_get_property(np, "reg-spacing", &proplen);
2613 if (regspacing && proplen != 4) {
2614 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2615 return -EINVAL;
2616 }
2617
2618 regshift = of_get_property(np, "reg-shift", &proplen);
2619 if (regshift && proplen != 4) {
2620 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2621 return -EINVAL;
2622 }
2623
2624 info = smi_info_alloc();
2625
2626 if (!info) {
2627 dev_err(&dev->dev,
2628 "could not allocate memory for OF probe\n");
2629 return -ENOMEM;
2630 }
2631
2632 info->si_type = (enum si_type) match->data;
2633 info->addr_source = SI_DEVICETREE;
2634 info->irq_setup = std_irq_setup;
2635
2636 if (resource.flags & IORESOURCE_IO) {
2637 info->io_setup = port_setup;
2638 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2639 } else {
2640 info->io_setup = mem_setup;
2641 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2642 }
2643
2644 info->io.addr_data = resource.start;
2645
2646 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2647 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2648 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2649
2650 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2651 info->dev = &dev->dev;
2652
2653 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2654 info->io.addr_data, info->io.regsize, info->io.regspacing,
2655 info->irq);
2656
2657 dev_set_drvdata(&dev->dev, info);
2658
2659 if (add_smi(info)) {
2660 kfree(info);
2661 return -EBUSY;
2662 }
2663 #endif
2664 return 0;
2665 }
2666
2667 static int ipmi_remove(struct platform_device *dev)
2668 {
2669 #ifdef CONFIG_OF
2670 cleanup_one_si(dev_get_drvdata(&dev->dev));
2671 #endif
2672 return 0;
2673 }
2674
2675 static struct of_device_id ipmi_match[] =
2676 {
2677 { .type = "ipmi", .compatible = "ipmi-kcs",
2678 .data = (void *)(unsigned long) SI_KCS },
2679 { .type = "ipmi", .compatible = "ipmi-smic",
2680 .data = (void *)(unsigned long) SI_SMIC },
2681 { .type = "ipmi", .compatible = "ipmi-bt",
2682 .data = (void *)(unsigned long) SI_BT },
2683 {},
2684 };
2685
2686 static struct platform_driver ipmi_driver = {
2687 .driver = {
2688 .name = DEVICE_NAME,
2689 .owner = THIS_MODULE,
2690 .of_match_table = ipmi_match,
2691 },
2692 .probe = ipmi_probe,
2693 .remove = ipmi_remove,
2694 };
2695
2696 static int wait_for_msg_done(struct smi_info *smi_info)
2697 {
2698 enum si_sm_result smi_result;
2699
2700 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2701 for (;;) {
2702 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2703 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2704 schedule_timeout_uninterruptible(1);
2705 smi_result = smi_info->handlers->event(
2706 smi_info->si_sm, 100);
2707 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2708 smi_result = smi_info->handlers->event(
2709 smi_info->si_sm, 0);
2710 } else
2711 break;
2712 }
2713 if (smi_result == SI_SM_HOSED)
2714 /*
2715 * We couldn't get the state machine to run, so whatever's at
2716 * the port is probably not an IPMI SMI interface.
2717 */
2718 return -ENODEV;
2719
2720 return 0;
2721 }
2722
2723 static int try_get_dev_id(struct smi_info *smi_info)
2724 {
2725 unsigned char msg[2];
2726 unsigned char *resp;
2727 unsigned long resp_len;
2728 int rv = 0;
2729
2730 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2731 if (!resp)
2732 return -ENOMEM;
2733
2734 /*
2735 * Do a Get Device ID command, since it comes back with some
2736 * useful info.
2737 */
2738 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2739 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2740 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2741
2742 rv = wait_for_msg_done(smi_info);
2743 if (rv)
2744 goto out;
2745
2746 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2747 resp, IPMI_MAX_MSG_LENGTH);
2748
2749 /* Check and record info from the get device id, in case we need it. */
2750 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2751
2752 out:
2753 kfree(resp);
2754 return rv;
2755 }
2756
2757 static int try_enable_event_buffer(struct smi_info *smi_info)
2758 {
2759 unsigned char msg[3];
2760 unsigned char *resp;
2761 unsigned long resp_len;
2762 int rv = 0;
2763
2764 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2765 if (!resp)
2766 return -ENOMEM;
2767
2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2770 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2771
2772 rv = wait_for_msg_done(smi_info);
2773 if (rv) {
2774 printk(KERN_WARNING PFX "Error getting response from get"
2775 " global enables command, the event buffer is not"
2776 " enabled.\n");
2777 goto out;
2778 }
2779
2780 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2781 resp, IPMI_MAX_MSG_LENGTH);
2782
2783 if (resp_len < 4 ||
2784 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2785 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2786 resp[2] != 0) {
2787 printk(KERN_WARNING PFX "Invalid return from get global"
2788 " enables command, cannot enable the event buffer.\n");
2789 rv = -EINVAL;
2790 goto out;
2791 }
2792
2793 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2794 /* buffer is already enabled, nothing to do. */
2795 goto out;
2796
2797 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2798 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2799 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2800 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2801
2802 rv = wait_for_msg_done(smi_info);
2803 if (rv) {
2804 printk(KERN_WARNING PFX "Error getting response from set"
2805 " global, enables command, the event buffer is not"
2806 " enabled.\n");
2807 goto out;
2808 }
2809
2810 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2811 resp, IPMI_MAX_MSG_LENGTH);
2812
2813 if (resp_len < 3 ||
2814 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2815 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2816 printk(KERN_WARNING PFX "Invalid return from get global,"
2817 "enables command, not enable the event buffer.\n");
2818 rv = -EINVAL;
2819 goto out;
2820 }
2821
2822 if (resp[2] != 0)
2823 /*
2824 * An error when setting the event buffer bit means
2825 * that the event buffer is not supported.
2826 */
2827 rv = -ENOENT;
2828 out:
2829 kfree(resp);
2830 return rv;
2831 }
2832
2833 static int smi_type_proc_show(struct seq_file *m, void *v)
2834 {
2835 struct smi_info *smi = m->private;
2836
2837 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2838 }
2839
2840 static int smi_type_proc_open(struct inode *inode, struct file *file)
2841 {
2842 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2843 }
2844
2845 static const struct file_operations smi_type_proc_ops = {
2846 .open = smi_type_proc_open,
2847 .read = seq_read,
2848 .llseek = seq_lseek,
2849 .release = single_release,
2850 };
2851
2852 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2853 {
2854 struct smi_info *smi = m->private;
2855
2856 seq_printf(m, "interrupts_enabled: %d\n",
2857 smi->irq && !smi->interrupt_disabled);
2858 seq_printf(m, "short_timeouts: %u\n",
2859 smi_get_stat(smi, short_timeouts));
2860 seq_printf(m, "long_timeouts: %u\n",
2861 smi_get_stat(smi, long_timeouts));
2862 seq_printf(m, "idles: %u\n",
2863 smi_get_stat(smi, idles));
2864 seq_printf(m, "interrupts: %u\n",
2865 smi_get_stat(smi, interrupts));
2866 seq_printf(m, "attentions: %u\n",
2867 smi_get_stat(smi, attentions));
2868 seq_printf(m, "flag_fetches: %u\n",
2869 smi_get_stat(smi, flag_fetches));
2870 seq_printf(m, "hosed_count: %u\n",
2871 smi_get_stat(smi, hosed_count));
2872 seq_printf(m, "complete_transactions: %u\n",
2873 smi_get_stat(smi, complete_transactions));
2874 seq_printf(m, "events: %u\n",
2875 smi_get_stat(smi, events));
2876 seq_printf(m, "watchdog_pretimeouts: %u\n",
2877 smi_get_stat(smi, watchdog_pretimeouts));
2878 seq_printf(m, "incoming_messages: %u\n",
2879 smi_get_stat(smi, incoming_messages));
2880 return 0;
2881 }
2882
2883 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2884 {
2885 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2886 }
2887
2888 static const struct file_operations smi_si_stats_proc_ops = {
2889 .open = smi_si_stats_proc_open,
2890 .read = seq_read,
2891 .llseek = seq_lseek,
2892 .release = single_release,
2893 };
2894
2895 static int smi_params_proc_show(struct seq_file *m, void *v)
2896 {
2897 struct smi_info *smi = m->private;
2898
2899 return seq_printf(m,
2900 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2901 si_to_str[smi->si_type],
2902 addr_space_to_str[smi->io.addr_type],
2903 smi->io.addr_data,
2904 smi->io.regspacing,
2905 smi->io.regsize,
2906 smi->io.regshift,
2907 smi->irq,
2908 smi->slave_addr);
2909 }
2910
2911 static int smi_params_proc_open(struct inode *inode, struct file *file)
2912 {
2913 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2914 }
2915
2916 static const struct file_operations smi_params_proc_ops = {
2917 .open = smi_params_proc_open,
2918 .read = seq_read,
2919 .llseek = seq_lseek,
2920 .release = single_release,
2921 };
2922
2923 /*
2924 * oem_data_avail_to_receive_msg_avail
2925 * @info - smi_info structure with msg_flags set
2926 *
2927 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2928 * Returns 1 indicating need to re-run handle_flags().
2929 */
2930 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2931 {
2932 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2933 RECEIVE_MSG_AVAIL);
2934 return 1;
2935 }
2936
2937 /*
2938 * setup_dell_poweredge_oem_data_handler
2939 * @info - smi_info.device_id must be populated
2940 *
2941 * Systems that match, but have firmware version < 1.40 may assert
2942 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2943 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2944 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2945 * as RECEIVE_MSG_AVAIL instead.
2946 *
2947 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2948 * assert the OEM[012] bits, and if it did, the driver would have to
2949 * change to handle that properly, we don't actually check for the
2950 * firmware version.
2951 * Device ID = 0x20 BMC on PowerEdge 8G servers
2952 * Device Revision = 0x80
2953 * Firmware Revision1 = 0x01 BMC version 1.40
2954 * Firmware Revision2 = 0x40 BCD encoded
2955 * IPMI Version = 0x51 IPMI 1.5
2956 * Manufacturer ID = A2 02 00 Dell IANA
2957 *
2958 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2959 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2960 *
2961 */
2962 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2963 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2964 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2965 #define DELL_IANA_MFR_ID 0x0002a2
2966 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2967 {
2968 struct ipmi_device_id *id = &smi_info->device_id;
2969 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2970 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2971 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2972 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2973 smi_info->oem_data_avail_handler =
2974 oem_data_avail_to_receive_msg_avail;
2975 } else if (ipmi_version_major(id) < 1 ||
2976 (ipmi_version_major(id) == 1 &&
2977 ipmi_version_minor(id) < 5)) {
2978 smi_info->oem_data_avail_handler =
2979 oem_data_avail_to_receive_msg_avail;
2980 }
2981 }
2982 }
2983
2984 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2985 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2986 {
2987 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2988
2989 /* Make it a response */
2990 msg->rsp[0] = msg->data[0] | 4;
2991 msg->rsp[1] = msg->data[1];
2992 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2993 msg->rsp_size = 3;
2994 smi_info->curr_msg = NULL;
2995 deliver_recv_msg(smi_info, msg);
2996 }
2997
2998 /*
2999 * dell_poweredge_bt_xaction_handler
3000 * @info - smi_info.device_id must be populated
3001 *
3002 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3003 * not respond to a Get SDR command if the length of the data
3004 * requested is exactly 0x3A, which leads to command timeouts and no
3005 * data returned. This intercepts such commands, and causes userspace
3006 * callers to try again with a different-sized buffer, which succeeds.
3007 */
3008
3009 #define STORAGE_NETFN 0x0A
3010 #define STORAGE_CMD_GET_SDR 0x23
3011 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3012 unsigned long unused,
3013 void *in)
3014 {
3015 struct smi_info *smi_info = in;
3016 unsigned char *data = smi_info->curr_msg->data;
3017 unsigned int size = smi_info->curr_msg->data_size;
3018 if (size >= 8 &&
3019 (data[0]>>2) == STORAGE_NETFN &&
3020 data[1] == STORAGE_CMD_GET_SDR &&
3021 data[7] == 0x3A) {
3022 return_hosed_msg_badsize(smi_info);
3023 return NOTIFY_STOP;
3024 }
3025 return NOTIFY_DONE;
3026 }
3027
3028 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3029 .notifier_call = dell_poweredge_bt_xaction_handler,
3030 };
3031
3032 /*
3033 * setup_dell_poweredge_bt_xaction_handler
3034 * @info - smi_info.device_id must be filled in already
3035 *
3036 * Fills in smi_info.device_id.start_transaction_pre_hook
3037 * when we know what function to use there.
3038 */
3039 static void
3040 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3041 {
3042 struct ipmi_device_id *id = &smi_info->device_id;
3043 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3044 smi_info->si_type == SI_BT)
3045 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3046 }
3047
3048 /*
3049 * setup_oem_data_handler
3050 * @info - smi_info.device_id must be filled in already
3051 *
3052 * Fills in smi_info.device_id.oem_data_available_handler
3053 * when we know what function to use there.
3054 */
3055
3056 static void setup_oem_data_handler(struct smi_info *smi_info)
3057 {
3058 setup_dell_poweredge_oem_data_handler(smi_info);
3059 }
3060
3061 static void setup_xaction_handlers(struct smi_info *smi_info)
3062 {
3063 setup_dell_poweredge_bt_xaction_handler(smi_info);
3064 }
3065
3066 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3067 {
3068 if (smi_info->intf) {
3069 /*
3070 * The timer and thread are only running if the
3071 * interface has been started up and registered.
3072 */
3073 if (smi_info->thread != NULL)
3074 kthread_stop(smi_info->thread);
3075 del_timer_sync(&smi_info->si_timer);
3076 }
3077 }
3078
3079 static struct ipmi_default_vals
3080 {
3081 int type;
3082 int port;
3083 } ipmi_defaults[] =
3084 {
3085 { .type = SI_KCS, .port = 0xca2 },
3086 { .type = SI_SMIC, .port = 0xca9 },
3087 { .type = SI_BT, .port = 0xe4 },
3088 { .port = 0 }
3089 };
3090
3091 static void default_find_bmc(void)
3092 {
3093 struct smi_info *info;
3094 int i;
3095
3096 for (i = 0; ; i++) {
3097 if (!ipmi_defaults[i].port)
3098 break;
3099 #ifdef CONFIG_PPC
3100 if (check_legacy_ioport(ipmi_defaults[i].port))
3101 continue;
3102 #endif
3103 info = smi_info_alloc();
3104 if (!info)
3105 return;
3106
3107 info->addr_source = SI_DEFAULT;
3108
3109 info->si_type = ipmi_defaults[i].type;
3110 info->io_setup = port_setup;
3111 info->io.addr_data = ipmi_defaults[i].port;
3112 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3113
3114 info->io.addr = NULL;
3115 info->io.regspacing = DEFAULT_REGSPACING;
3116 info->io.regsize = DEFAULT_REGSPACING;
3117 info->io.regshift = 0;
3118
3119 if (add_smi(info) == 0) {
3120 if ((try_smi_init(info)) == 0) {
3121 /* Found one... */
3122 printk(KERN_INFO PFX "Found default %s"
3123 " state machine at %s address 0x%lx\n",
3124 si_to_str[info->si_type],
3125 addr_space_to_str[info->io.addr_type],
3126 info->io.addr_data);
3127 } else
3128 cleanup_one_si(info);
3129 } else {
3130 kfree(info);
3131 }
3132 }
3133 }
3134
3135 static int is_new_interface(struct smi_info *info)
3136 {
3137 struct smi_info *e;
3138
3139 list_for_each_entry(e, &smi_infos, link) {
3140 if (e->io.addr_type != info->io.addr_type)
3141 continue;
3142 if (e->io.addr_data == info->io.addr_data)
3143 return 0;
3144 }
3145
3146 return 1;
3147 }
3148
3149 static int add_smi(struct smi_info *new_smi)
3150 {
3151 int rv = 0;
3152
3153 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3154 ipmi_addr_src_to_str[new_smi->addr_source],
3155 si_to_str[new_smi->si_type]);
3156 mutex_lock(&smi_infos_lock);
3157 if (!is_new_interface(new_smi)) {
3158 printk(KERN_CONT " duplicate interface\n");
3159 rv = -EBUSY;
3160 goto out_err;
3161 }
3162
3163 printk(KERN_CONT "\n");
3164
3165 /* So we know not to free it unless we have allocated one. */
3166 new_smi->intf = NULL;
3167 new_smi->si_sm = NULL;
3168 new_smi->handlers = NULL;
3169
3170 list_add_tail(&new_smi->link, &smi_infos);
3171
3172 out_err:
3173 mutex_unlock(&smi_infos_lock);
3174 return rv;
3175 }
3176
3177 static int try_smi_init(struct smi_info *new_smi)
3178 {
3179 int rv = 0;
3180 int i;
3181
3182 printk(KERN_INFO PFX "Trying %s-specified %s state"
3183 " machine at %s address 0x%lx, slave address 0x%x,"
3184 " irq %d\n",
3185 ipmi_addr_src_to_str[new_smi->addr_source],
3186 si_to_str[new_smi->si_type],
3187 addr_space_to_str[new_smi->io.addr_type],
3188 new_smi->io.addr_data,
3189 new_smi->slave_addr, new_smi->irq);
3190
3191 switch (new_smi->si_type) {
3192 case SI_KCS:
3193 new_smi->handlers = &kcs_smi_handlers;
3194 break;
3195
3196 case SI_SMIC:
3197 new_smi->handlers = &smic_smi_handlers;
3198 break;
3199
3200 case SI_BT:
3201 new_smi->handlers = &bt_smi_handlers;
3202 break;
3203
3204 default:
3205 /* No support for anything else yet. */
3206 rv = -EIO;
3207 goto out_err;
3208 }
3209
3210 /* Allocate the state machine's data and initialize it. */
3211 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3212 if (!new_smi->si_sm) {
3213 printk(KERN_ERR PFX
3214 "Could not allocate state machine memory\n");
3215 rv = -ENOMEM;
3216 goto out_err;
3217 }
3218 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3219 &new_smi->io);
3220
3221 /* Now that we know the I/O size, we can set up the I/O. */
3222 rv = new_smi->io_setup(new_smi);
3223 if (rv) {
3224 printk(KERN_ERR PFX "Could not set up I/O space\n");
3225 goto out_err;
3226 }
3227
3228 /* Do low-level detection first. */
3229 if (new_smi->handlers->detect(new_smi->si_sm)) {
3230 if (new_smi->addr_source)
3231 printk(KERN_INFO PFX "Interface detection failed\n");
3232 rv = -ENODEV;
3233 goto out_err;
3234 }
3235
3236 /*
3237 * Attempt a get device id command. If it fails, we probably
3238 * don't have a BMC here.
3239 */
3240 rv = try_get_dev_id(new_smi);
3241 if (rv) {
3242 if (new_smi->addr_source)
3243 printk(KERN_INFO PFX "There appears to be no BMC"
3244 " at this location\n");
3245 goto out_err;
3246 }
3247
3248 setup_oem_data_handler(new_smi);
3249 setup_xaction_handlers(new_smi);
3250
3251 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3252 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3253 new_smi->curr_msg = NULL;
3254 atomic_set(&new_smi->req_events, 0);
3255 new_smi->run_to_completion = 0;
3256 for (i = 0; i < SI_NUM_STATS; i++)
3257 atomic_set(&new_smi->stats[i], 0);
3258
3259 new_smi->interrupt_disabled = 1;
3260 atomic_set(&new_smi->stop_operation, 0);
3261 new_smi->intf_num = smi_num;
3262 smi_num++;
3263
3264 rv = try_enable_event_buffer(new_smi);
3265 if (rv == 0)
3266 new_smi->has_event_buffer = 1;
3267
3268 /*
3269 * Start clearing the flags before we enable interrupts or the
3270 * timer to avoid racing with the timer.
3271 */
3272 start_clear_flags(new_smi);
3273 /* IRQ is defined to be set when non-zero. */
3274 if (new_smi->irq)
3275 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3276
3277 if (!new_smi->dev) {
3278 /*
3279 * If we don't already have a device from something
3280 * else (like PCI), then register a new one.
3281 */
3282 new_smi->pdev = platform_device_alloc("ipmi_si",
3283 new_smi->intf_num);
3284 if (!new_smi->pdev) {
3285 printk(KERN_ERR PFX
3286 "Unable to allocate platform device\n");
3287 goto out_err;
3288 }
3289 new_smi->dev = &new_smi->pdev->dev;
3290 new_smi->dev->driver = &ipmi_driver.driver;
3291
3292 rv = platform_device_add(new_smi->pdev);
3293 if (rv) {
3294 printk(KERN_ERR PFX
3295 "Unable to register system interface device:"
3296 " %d\n",
3297 rv);
3298 goto out_err;
3299 }
3300 new_smi->dev_registered = 1;
3301 }
3302
3303 rv = ipmi_register_smi(&handlers,
3304 new_smi,
3305 &new_smi->device_id,
3306 new_smi->dev,
3307 "bmc",
3308 new_smi->slave_addr);
3309 if (rv) {
3310 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3311 rv);
3312 goto out_err_stop_timer;
3313 }
3314
3315 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3316 &smi_type_proc_ops,
3317 new_smi);
3318 if (rv) {
3319 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3320 goto out_err_stop_timer;
3321 }
3322
3323 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3324 &smi_si_stats_proc_ops,
3325 new_smi);
3326 if (rv) {
3327 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3328 goto out_err_stop_timer;
3329 }
3330
3331 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3332 &smi_params_proc_ops,
3333 new_smi);
3334 if (rv) {
3335 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3336 goto out_err_stop_timer;
3337 }
3338
3339 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3340 si_to_str[new_smi->si_type]);
3341
3342 return 0;
3343
3344 out_err_stop_timer:
3345 atomic_inc(&new_smi->stop_operation);
3346 wait_for_timer_and_thread(new_smi);
3347
3348 out_err:
3349 new_smi->interrupt_disabled = 1;
3350
3351 if (new_smi->intf) {
3352 ipmi_unregister_smi(new_smi->intf);
3353 new_smi->intf = NULL;
3354 }
3355
3356 if (new_smi->irq_cleanup) {
3357 new_smi->irq_cleanup(new_smi);
3358 new_smi->irq_cleanup = NULL;
3359 }
3360
3361 /*
3362 * Wait until we know that we are out of any interrupt
3363 * handlers might have been running before we freed the
3364 * interrupt.
3365 */
3366 synchronize_sched();
3367
3368 if (new_smi->si_sm) {
3369 if (new_smi->handlers)
3370 new_smi->handlers->cleanup(new_smi->si_sm);
3371 kfree(new_smi->si_sm);
3372 new_smi->si_sm = NULL;
3373 }
3374 if (new_smi->addr_source_cleanup) {
3375 new_smi->addr_source_cleanup(new_smi);
3376 new_smi->addr_source_cleanup = NULL;
3377 }
3378 if (new_smi->io_cleanup) {
3379 new_smi->io_cleanup(new_smi);
3380 new_smi->io_cleanup = NULL;
3381 }
3382
3383 if (new_smi->dev_registered) {
3384 platform_device_unregister(new_smi->pdev);
3385 new_smi->dev_registered = 0;
3386 }
3387
3388 return rv;
3389 }
3390
3391 static int init_ipmi_si(void)
3392 {
3393 int i;
3394 char *str;
3395 int rv;
3396 struct smi_info *e;
3397 enum ipmi_addr_src type = SI_INVALID;
3398
3399 if (initialized)
3400 return 0;
3401 initialized = 1;
3402
3403 if (si_tryplatform) {
3404 rv = platform_driver_register(&ipmi_driver);
3405 if (rv) {
3406 printk(KERN_ERR PFX "Unable to register "
3407 "driver: %d\n", rv);
3408 return rv;
3409 }
3410 }
3411
3412 /* Parse out the si_type string into its components. */
3413 str = si_type_str;
3414 if (*str != '\0') {
3415 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3416 si_type[i] = str;
3417 str = strchr(str, ',');
3418 if (str) {
3419 *str = '\0';
3420 str++;
3421 } else {
3422 break;
3423 }
3424 }
3425 }
3426
3427 printk(KERN_INFO "IPMI System Interface driver.\n");
3428
3429 /* If the user gave us a device, they presumably want us to use it */
3430 if (!hardcode_find_bmc())
3431 return 0;
3432
3433 #ifdef CONFIG_PCI
3434 if (si_trypci) {
3435 rv = pci_register_driver(&ipmi_pci_driver);
3436 if (rv)
3437 printk(KERN_ERR PFX "Unable to register "
3438 "PCI driver: %d\n", rv);
3439 else
3440 pci_registered = 1;
3441 }
3442 #endif
3443
3444 #ifdef CONFIG_ACPI
3445 if (si_tryacpi) {
3446 pnp_register_driver(&ipmi_pnp_driver);
3447 pnp_registered = 1;
3448 }
3449 #endif
3450
3451 #ifdef CONFIG_DMI
3452 if (si_trydmi)
3453 dmi_find_bmc();
3454 #endif
3455
3456 #ifdef CONFIG_ACPI
3457 if (si_tryacpi)
3458 spmi_find_bmc();
3459 #endif
3460
3461 /* We prefer devices with interrupts, but in the case of a machine
3462 with multiple BMCs we assume that there will be several instances
3463 of a given type so if we succeed in registering a type then also
3464 try to register everything else of the same type */
3465
3466 mutex_lock(&smi_infos_lock);
3467 list_for_each_entry(e, &smi_infos, link) {
3468 /* Try to register a device if it has an IRQ and we either
3469 haven't successfully registered a device yet or this
3470 device has the same type as one we successfully registered */
3471 if (e->irq && (!type || e->addr_source == type)) {
3472 if (!try_smi_init(e)) {
3473 type = e->addr_source;
3474 }
3475 }
3476 }
3477
3478 /* type will only have been set if we successfully registered an si */
3479 if (type) {
3480 mutex_unlock(&smi_infos_lock);
3481 return 0;
3482 }
3483
3484 /* Fall back to the preferred device */
3485
3486 list_for_each_entry(e, &smi_infos, link) {
3487 if (!e->irq && (!type || e->addr_source == type)) {
3488 if (!try_smi_init(e)) {
3489 type = e->addr_source;
3490 }
3491 }
3492 }
3493 mutex_unlock(&smi_infos_lock);
3494
3495 if (type)
3496 return 0;
3497
3498 if (si_trydefaults) {
3499 mutex_lock(&smi_infos_lock);
3500 if (list_empty(&smi_infos)) {
3501 /* No BMC was found, try defaults. */
3502 mutex_unlock(&smi_infos_lock);
3503 default_find_bmc();
3504 } else
3505 mutex_unlock(&smi_infos_lock);
3506 }
3507
3508 mutex_lock(&smi_infos_lock);
3509 if (unload_when_empty && list_empty(&smi_infos)) {
3510 mutex_unlock(&smi_infos_lock);
3511 cleanup_ipmi_si();
3512 printk(KERN_WARNING PFX
3513 "Unable to find any System Interface(s)\n");
3514 return -ENODEV;
3515 } else {
3516 mutex_unlock(&smi_infos_lock);
3517 return 0;
3518 }
3519 }
3520 module_init(init_ipmi_si);
3521
3522 static void cleanup_one_si(struct smi_info *to_clean)
3523 {
3524 int rv = 0;
3525 unsigned long flags;
3526
3527 if (!to_clean)
3528 return;
3529
3530 list_del(&to_clean->link);
3531
3532 /* Tell the driver that we are shutting down. */
3533 atomic_inc(&to_clean->stop_operation);
3534
3535 /*
3536 * Make sure the timer and thread are stopped and will not run
3537 * again.
3538 */
3539 wait_for_timer_and_thread(to_clean);
3540
3541 /*
3542 * Timeouts are stopped, now make sure the interrupts are off
3543 * for the device. A little tricky with locks to make sure
3544 * there are no races.
3545 */
3546 spin_lock_irqsave(&to_clean->si_lock, flags);
3547 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3548 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3549 poll(to_clean);
3550 schedule_timeout_uninterruptible(1);
3551 spin_lock_irqsave(&to_clean->si_lock, flags);
3552 }
3553 disable_si_irq(to_clean);
3554 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3555 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3556 poll(to_clean);
3557 schedule_timeout_uninterruptible(1);
3558 }
3559
3560 /* Clean up interrupts and make sure that everything is done. */
3561 if (to_clean->irq_cleanup)
3562 to_clean->irq_cleanup(to_clean);
3563 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3564 poll(to_clean);
3565 schedule_timeout_uninterruptible(1);
3566 }
3567
3568 if (to_clean->intf)
3569 rv = ipmi_unregister_smi(to_clean->intf);
3570
3571 if (rv) {
3572 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3573 rv);
3574 }
3575
3576 if (to_clean->handlers)
3577 to_clean->handlers->cleanup(to_clean->si_sm);
3578
3579 kfree(to_clean->si_sm);
3580
3581 if (to_clean->addr_source_cleanup)
3582 to_clean->addr_source_cleanup(to_clean);
3583 if (to_clean->io_cleanup)
3584 to_clean->io_cleanup(to_clean);
3585
3586 if (to_clean->dev_registered)
3587 platform_device_unregister(to_clean->pdev);
3588
3589 kfree(to_clean);
3590 }
3591
3592 static void cleanup_ipmi_si(void)
3593 {
3594 struct smi_info *e, *tmp_e;
3595
3596 if (!initialized)
3597 return;
3598
3599 #ifdef CONFIG_PCI
3600 if (pci_registered)
3601 pci_unregister_driver(&ipmi_pci_driver);
3602 #endif
3603 #ifdef CONFIG_ACPI
3604 if (pnp_registered)
3605 pnp_unregister_driver(&ipmi_pnp_driver);
3606 #endif
3607
3608 platform_driver_unregister(&ipmi_driver);
3609
3610 mutex_lock(&smi_infos_lock);
3611 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3612 cleanup_one_si(e);
3613 mutex_unlock(&smi_infos_lock);
3614 }
3615 module_exit(cleanup_ipmi_si);
3616
3617 MODULE_LICENSE("GPL");
3618 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3619 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3620 " system interfaces.");