]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
IPMI: reserve memio regions separately
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
89
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
108 };
109
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111
112 #define DEVICE_NAME "ipmi_si"
113
114 static struct platform_driver ipmi_driver;
115
116 /*
117 * Indexes into stats[] in smi_info below.
118 */
119 enum si_stat_indexes {
120 /*
121 * Number of times the driver requested a timer while an operation
122 * was in progress.
123 */
124 SI_STAT_short_timeouts = 0,
125
126 /*
127 * Number of times the driver requested a timer while nothing was in
128 * progress.
129 */
130 SI_STAT_long_timeouts,
131
132 /* Number of times the interface was idle while being polled. */
133 SI_STAT_idles,
134
135 /* Number of interrupts the driver handled. */
136 SI_STAT_interrupts,
137
138 /* Number of time the driver got an ATTN from the hardware. */
139 SI_STAT_attentions,
140
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches,
143
144 /* Number of times the hardware didn't follow the state machine. */
145 SI_STAT_hosed_count,
146
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions,
149
150 /* Number of IPMI events received from the hardware. */
151 SI_STAT_events,
152
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts,
155
156 /* Number of asynchronous messages received. */
157 SI_STAT_incoming_messages,
158
159
160 /* This *must* remain last, add new values above this. */
161 SI_NUM_STATS
162 };
163
164 struct smi_info {
165 int intf_num;
166 ipmi_smi_t intf;
167 struct si_sm_data *si_sm;
168 const struct si_sm_handlers *handlers;
169 enum si_type si_type;
170 spinlock_t si_lock;
171 struct ipmi_smi_msg *waiting_msg;
172 struct ipmi_smi_msg *curr_msg;
173 enum si_intf_state si_state;
174
175 /*
176 * Used to handle the various types of I/O that can occur with
177 * IPMI
178 */
179 struct si_sm_io io;
180 int (*io_setup)(struct smi_info *info);
181 void (*io_cleanup)(struct smi_info *info);
182 int (*irq_setup)(struct smi_info *info);
183 void (*irq_cleanup)(struct smi_info *info);
184 unsigned int io_size;
185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 void (*addr_source_cleanup)(struct smi_info *info);
187 void *addr_source_data;
188
189 /*
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
193 */
194 int (*oem_data_avail_handler)(struct smi_info *smi_info);
195
196 /*
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
199 * from the flags.
200 */
201 #define RECEIVE_MSG_AVAIL 0x01
202 #define EVENT_MSG_BUFFER_FULL 0x02
203 #define WDT_PRE_TIMEOUT_INT 0x08
204 #define OEM0_DATA_AVAIL 0x20
205 #define OEM1_DATA_AVAIL 0x40
206 #define OEM2_DATA_AVAIL 0x80
207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
208 OEM1_DATA_AVAIL | \
209 OEM2_DATA_AVAIL)
210 unsigned char msg_flags;
211
212 /* Does the BMC have an event buffer? */
213 bool has_event_buffer;
214
215 /*
216 * If set to true, this will request events the next time the
217 * state machine is idle.
218 */
219 atomic_t req_events;
220
221 /*
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
224 * out.
225 */
226 bool run_to_completion;
227
228 /* The I/O port of an SI interface. */
229 int port;
230
231 /*
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
235 */
236 unsigned int spacing;
237
238 /* zero if no irq; */
239 int irq;
240
241 /* The timer for this si. */
242 struct timer_list si_timer;
243
244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 bool timer_running;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Are we waiting for the events, pretimeouts, received msgs? */
251 atomic_t need_watch;
252
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
259 bool interrupt_disabled;
260
261 /*
262 * Does the BMC support events?
263 */
264 bool supports_event_msg_buff;
265
266 /*
267 * Can we disable interrupts the global enables receive irq
268 * bit? There are currently two forms of brokenness, some
269 * systems cannot disable the bit (which is technically within
270 * the spec but a bad idea) and some systems have the bit
271 * forced to zero even though interrupts work (which is
272 * clearly outside the spec). The next bool tells which form
273 * of brokenness is present.
274 */
275 bool cannot_disable_irq;
276
277 /*
278 * Some systems are broken and cannot set the irq enable
279 * bit, even if they support interrupts.
280 */
281 bool irq_enable_broken;
282
283 /*
284 * Did we get an attention that we did not handle?
285 */
286 bool got_attn;
287
288 /* From the get device id response... */
289 struct ipmi_device_id device_id;
290
291 /* Driver model stuff. */
292 struct device *dev;
293 struct platform_device *pdev;
294
295 /*
296 * True if we allocated the device, false if it came from
297 * someplace else (like PCI).
298 */
299 bool dev_registered;
300
301 /* Slave address, could be reported from DMI. */
302 unsigned char slave_addr;
303
304 /* Counters and things for the proc filesystem. */
305 atomic_t stats[SI_NUM_STATS];
306
307 struct task_struct *thread;
308
309 struct list_head link;
310 union ipmi_smi_info_union addr_info;
311 };
312
313 #define smi_inc_stat(smi, stat) \
314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317
318 #define SI_MAX_PARMS 4
319
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331
332 static bool unload_when_empty = true;
333
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342 struct timespec64 t;
343
344 getnstimeofday64(&t);
345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356
357 static void deliver_recv_msg(struct smi_info *smi_info,
358 struct ipmi_smi_msg *msg)
359 {
360 /* Deliver the message to the upper layer. */
361 if (smi_info->intf)
362 ipmi_smi_msg_received(smi_info->intf, msg);
363 else
364 ipmi_free_smi_msg(msg);
365 }
366
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369 struct ipmi_smi_msg *msg = smi_info->curr_msg;
370
371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 cCode = IPMI_ERR_UNSPECIFIED;
373 /* else use it as is */
374
375 /* Make it a response */
376 msg->rsp[0] = msg->data[0] | 4;
377 msg->rsp[1] = msg->data[1];
378 msg->rsp[2] = cCode;
379 msg->rsp_size = 3;
380
381 smi_info->curr_msg = NULL;
382 deliver_recv_msg(smi_info, msg);
383 }
384
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387 int rv;
388
389 if (!smi_info->waiting_msg) {
390 smi_info->curr_msg = NULL;
391 rv = SI_SM_IDLE;
392 } else {
393 int err;
394
395 smi_info->curr_msg = smi_info->waiting_msg;
396 smi_info->waiting_msg = NULL;
397 debug_timestamp("Start2");
398 err = atomic_notifier_call_chain(&xaction_notifier_list,
399 0, smi_info);
400 if (err & NOTIFY_STOP_MASK) {
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 goto out;
403 }
404 err = smi_info->handlers->start_transaction(
405 smi_info->si_sm,
406 smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
408 if (err)
409 return_hosed_msg(smi_info, err);
410
411 rv = SI_SM_CALL_WITHOUT_DELAY;
412 }
413 out:
414 return rv;
415 }
416
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419 smi_info->last_timeout_jiffies = jiffies;
420 mod_timer(&smi_info->si_timer, new_val);
421 smi_info->timer_running = true;
422 }
423
424 /*
425 * Start a new message and (re)start the timer and thread.
426 */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 unsigned int size)
429 {
430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431
432 if (smi_info->thread)
433 wake_up_process(smi_info->thread);
434
435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440 unsigned char msg[2];
441
442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444
445 if (start_timer)
446 start_new_msg(smi_info, msg, 2);
447 else
448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449 smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454 unsigned char msg[3];
455
456 /* Make sure the watchdog pre-timeout flag is not set at startup. */
457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 msg[2] = WDT_PRE_TIMEOUT_INT;
460
461 if (start_timer)
462 start_new_msg(smi_info, msg, 3);
463 else
464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465 smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 smi_info->curr_msg->data_size = 2;
473
474 start_new_msg(smi_info, smi_info->curr_msg->data,
475 smi_info->curr_msg->data_size);
476 smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 smi_info->curr_msg->data_size = 2;
484
485 start_new_msg(smi_info, smi_info->curr_msg->data,
486 smi_info->curr_msg->data_size);
487 smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491 * When we have a situtaion where we run out of memory and cannot
492 * allocate messages, we just leave them in the BMC and run the system
493 * polled until we can allocate some memory. Once we have some
494 * memory, we will re-enable the interrupt.
495 *
496 * Note that we cannot just use disable_irq(), since the interrupt may
497 * be shared.
498 */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 smi_info->interrupt_disabled = true;
503 start_check_enables(smi_info, start_timer);
504 return true;
505 }
506 return false;
507 }
508
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 smi_info->interrupt_disabled = false;
513 start_check_enables(smi_info, true);
514 return true;
515 }
516 return false;
517 }
518
519 /*
520 * Allocate a message. If unable to allocate, start the interrupt
521 * disable process and return NULL. If able to allocate but
522 * interrupts are disabled, free the message and return NULL after
523 * starting the interrupt enable process.
524 */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 struct ipmi_smi_msg *msg;
528
529 msg = ipmi_alloc_smi_msg();
530 if (!msg) {
531 if (!disable_si_irq(smi_info, true))
532 smi_info->si_state = SI_NORMAL;
533 } else if (enable_si_irq(smi_info)) {
534 ipmi_free_smi_msg(msg);
535 msg = NULL;
536 }
537 return msg;
538 }
539
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 /* Watchdog pre-timeout */
545 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547 start_clear_flags(smi_info, true);
548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 if (smi_info->intf)
550 ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 /* Messages available. */
553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 if (!smi_info->curr_msg)
555 return;
556
557 start_getting_msg_queue(smi_info);
558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 /* Events available. */
560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 if (!smi_info->curr_msg)
562 return;
563
564 start_getting_events(smi_info);
565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 smi_info->oem_data_avail_handler) {
567 if (smi_info->oem_data_avail_handler(smi_info))
568 goto retry;
569 } else
570 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574 * Global enables we care about.
575 */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 IPMI_BMC_EVT_MSG_INTR)
578
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 bool *irq_on)
581 {
582 u8 enables = 0;
583
584 if (smi_info->supports_event_msg_buff)
585 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 smi_info->cannot_disable_irq) &&
589 !smi_info->irq_enable_broken)
590 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592 if (smi_info->supports_event_msg_buff &&
593 smi_info->irq && !smi_info->interrupt_disabled &&
594 !smi_info->irq_enable_broken)
595 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599 return enables;
600 }
601
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608 if ((bool)irqstate == irq_on)
609 return;
610
611 if (irq_on)
612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 else
615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 struct ipmi_smi_msg *msg;
621
622 debug_timestamp("Done");
623 switch (smi_info->si_state) {
624 case SI_NORMAL:
625 if (!smi_info->curr_msg)
626 break;
627
628 smi_info->curr_msg->rsp_size
629 = smi_info->handlers->get_result(
630 smi_info->si_sm,
631 smi_info->curr_msg->rsp,
632 IPMI_MAX_MSG_LENGTH);
633
634 /*
635 * Do this here becase deliver_recv_msg() releases the
636 * lock, and a new message can be put in during the
637 * time the lock is released.
638 */
639 msg = smi_info->curr_msg;
640 smi_info->curr_msg = NULL;
641 deliver_recv_msg(smi_info, msg);
642 break;
643
644 case SI_GETTING_FLAGS:
645 {
646 unsigned char msg[4];
647 unsigned int len;
648
649 /* We got the flags from the SMI, now handle them. */
650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 if (msg[2] != 0) {
652 /* Error fetching flags, just give up for now. */
653 smi_info->si_state = SI_NORMAL;
654 } else if (len < 4) {
655 /*
656 * Hmm, no flags. That's technically illegal, but
657 * don't use uninitialized data.
658 */
659 smi_info->si_state = SI_NORMAL;
660 } else {
661 smi_info->msg_flags = msg[3];
662 handle_flags(smi_info);
663 }
664 break;
665 }
666
667 case SI_CLEARING_FLAGS:
668 {
669 unsigned char msg[3];
670
671 /* We cleared the flags. */
672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 if (msg[2] != 0) {
674 /* Error clearing flags */
675 dev_warn(smi_info->dev,
676 "Error clearing flags: %2.2x\n", msg[2]);
677 }
678 smi_info->si_state = SI_NORMAL;
679 break;
680 }
681
682 case SI_GETTING_EVENTS:
683 {
684 smi_info->curr_msg->rsp_size
685 = smi_info->handlers->get_result(
686 smi_info->si_sm,
687 smi_info->curr_msg->rsp,
688 IPMI_MAX_MSG_LENGTH);
689
690 /*
691 * Do this here becase deliver_recv_msg() releases the
692 * lock, and a new message can be put in during the
693 * time the lock is released.
694 */
695 msg = smi_info->curr_msg;
696 smi_info->curr_msg = NULL;
697 if (msg->rsp[2] != 0) {
698 /* Error getting event, probably done. */
699 msg->done(msg);
700
701 /* Take off the event flag. */
702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 handle_flags(smi_info);
704 } else {
705 smi_inc_stat(smi_info, events);
706
707 /*
708 * Do this before we deliver the message
709 * because delivering the message releases the
710 * lock and something else can mess with the
711 * state.
712 */
713 handle_flags(smi_info);
714
715 deliver_recv_msg(smi_info, msg);
716 }
717 break;
718 }
719
720 case SI_GETTING_MESSAGES:
721 {
722 smi_info->curr_msg->rsp_size
723 = smi_info->handlers->get_result(
724 smi_info->si_sm,
725 smi_info->curr_msg->rsp,
726 IPMI_MAX_MSG_LENGTH);
727
728 /*
729 * Do this here becase deliver_recv_msg() releases the
730 * lock, and a new message can be put in during the
731 * time the lock is released.
732 */
733 msg = smi_info->curr_msg;
734 smi_info->curr_msg = NULL;
735 if (msg->rsp[2] != 0) {
736 /* Error getting event, probably done. */
737 msg->done(msg);
738
739 /* Take off the msg flag. */
740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 handle_flags(smi_info);
742 } else {
743 smi_inc_stat(smi_info, incoming_messages);
744
745 /*
746 * Do this before we deliver the message
747 * because delivering the message releases the
748 * lock and something else can mess with the
749 * state.
750 */
751 handle_flags(smi_info);
752
753 deliver_recv_msg(smi_info, msg);
754 }
755 break;
756 }
757
758 case SI_CHECKING_ENABLES:
759 {
760 unsigned char msg[4];
761 u8 enables;
762 bool irq_on;
763
764 /* We got the flags from the SMI, now handle them. */
765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 if (msg[2] != 0) {
767 dev_warn(smi_info->dev,
768 "Couldn't get irq info: %x.\n", msg[2]);
769 dev_warn(smi_info->dev,
770 "Maybe ok, but ipmi might run very slowly.\n");
771 smi_info->si_state = SI_NORMAL;
772 break;
773 }
774 enables = current_global_enables(smi_info, 0, &irq_on);
775 if (smi_info->si_type == SI_BT)
776 /* BT has its own interrupt enable bit. */
777 check_bt_irq(smi_info, irq_on);
778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 /* Enables are not correct, fix them. */
780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 smi_info->handlers->start_transaction(
784 smi_info->si_sm, msg, 3);
785 smi_info->si_state = SI_SETTING_ENABLES;
786 } else if (smi_info->supports_event_msg_buff) {
787 smi_info->curr_msg = ipmi_alloc_smi_msg();
788 if (!smi_info->curr_msg) {
789 smi_info->si_state = SI_NORMAL;
790 break;
791 }
792 start_getting_msg_queue(smi_info);
793 } else {
794 smi_info->si_state = SI_NORMAL;
795 }
796 break;
797 }
798
799 case SI_SETTING_ENABLES:
800 {
801 unsigned char msg[4];
802
803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 if (msg[2] != 0)
805 dev_warn(smi_info->dev,
806 "Could not set the global enables: 0x%x.\n",
807 msg[2]);
808
809 if (smi_info->supports_event_msg_buff) {
810 smi_info->curr_msg = ipmi_alloc_smi_msg();
811 if (!smi_info->curr_msg) {
812 smi_info->si_state = SI_NORMAL;
813 break;
814 }
815 start_getting_msg_queue(smi_info);
816 } else {
817 smi_info->si_state = SI_NORMAL;
818 }
819 break;
820 }
821 }
822 }
823
824 /*
825 * Called on timeouts and events. Timeouts should pass the elapsed
826 * time, interrupts should pass in zero. Must be called with
827 * si_lock held and interrupts disabled.
828 */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 int time)
831 {
832 enum si_sm_result si_sm_result;
833
834 restart:
835 /*
836 * There used to be a loop here that waited a little while
837 * (around 25us) before giving up. That turned out to be
838 * pointless, the minimum delays I was seeing were in the 300us
839 * range, which is far too long to wait in an interrupt. So
840 * we just run until the state machine tells us something
841 * happened or it needs a delay.
842 */
843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 time = 0;
845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 smi_inc_stat(smi_info, complete_transactions);
850
851 handle_transaction_done(smi_info);
852 goto restart;
853 } else if (si_sm_result == SI_SM_HOSED) {
854 smi_inc_stat(smi_info, hosed_count);
855
856 /*
857 * Do the before return_hosed_msg, because that
858 * releases the lock.
859 */
860 smi_info->si_state = SI_NORMAL;
861 if (smi_info->curr_msg != NULL) {
862 /*
863 * If we were handling a user message, format
864 * a response to send to the upper layer to
865 * tell it about the error.
866 */
867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 }
869 goto restart;
870 }
871
872 /*
873 * We prefer handling attn over new messages. But don't do
874 * this if there is not yet an upper layer to handle anything.
875 */
876 if (likely(smi_info->intf) &&
877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 unsigned char msg[2];
879
880 if (smi_info->si_state != SI_NORMAL) {
881 /*
882 * We got an ATTN, but we are doing something else.
883 * Handle the ATTN later.
884 */
885 smi_info->got_attn = true;
886 } else {
887 smi_info->got_attn = false;
888 smi_inc_stat(smi_info, attentions);
889
890 /*
891 * Got a attn, send down a get message flags to see
892 * what's causing it. It would be better to handle
893 * this in the upper layer, but due to the way
894 * interrupts work with the SMI, that's not really
895 * possible.
896 */
897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900 start_new_msg(smi_info, msg, 2);
901 smi_info->si_state = SI_GETTING_FLAGS;
902 goto restart;
903 }
904 }
905
906 /* If we are currently idle, try to start the next message. */
907 if (si_sm_result == SI_SM_IDLE) {
908 smi_inc_stat(smi_info, idles);
909
910 si_sm_result = start_next_msg(smi_info);
911 if (si_sm_result != SI_SM_IDLE)
912 goto restart;
913 }
914
915 if ((si_sm_result == SI_SM_IDLE)
916 && (atomic_read(&smi_info->req_events))) {
917 /*
918 * We are idle and the upper layer requested that I fetch
919 * events, so do so.
920 */
921 atomic_set(&smi_info->req_events, 0);
922
923 /*
924 * Take this opportunity to check the interrupt and
925 * message enable state for the BMC. The BMC can be
926 * asynchronously reset, and may thus get interrupts
927 * disable and messages disabled.
928 */
929 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 start_check_enables(smi_info, true);
931 } else {
932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 if (!smi_info->curr_msg)
934 goto out;
935
936 start_getting_events(smi_info);
937 }
938 goto restart;
939 }
940
941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 /* Ok it if fails, the timer will just go off. */
943 if (del_timer(&smi_info->si_timer))
944 smi_info->timer_running = false;
945 }
946
947 out:
948 return si_sm_result;
949 }
950
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956 if (smi_info->thread)
957 wake_up_process(smi_info->thread);
958
959 start_next_msg(smi_info);
960 smi_event_handler(smi_info, 0);
961 }
962 }
963
964 static void flush_messages(void *send_info)
965 {
966 struct smi_info *smi_info = send_info;
967 enum si_sm_result result;
968
969 /*
970 * Currently, this function is called only in run-to-completion
971 * mode. This means we are single-threaded, no need for locks.
972 */
973 result = smi_event_handler(smi_info, 0);
974 while (result != SI_SM_IDLE) {
975 udelay(SI_SHORT_TIMEOUT_USEC);
976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 }
978 }
979
980 static void sender(void *send_info,
981 struct ipmi_smi_msg *msg)
982 {
983 struct smi_info *smi_info = send_info;
984 unsigned long flags;
985
986 debug_timestamp("Enqueue");
987
988 if (smi_info->run_to_completion) {
989 /*
990 * If we are running to completion, start it. Upper
991 * layer will call flush_messages to clear it out.
992 */
993 smi_info->waiting_msg = msg;
994 return;
995 }
996
997 spin_lock_irqsave(&smi_info->si_lock, flags);
998 /*
999 * The following two lines don't need to be under the lock for
1000 * the lock's sake, but they do need SMP memory barriers to
1001 * avoid getting things out of order. We are already claiming
1002 * the lock, anyway, so just do it under the lock to avoid the
1003 * ordering problem.
1004 */
1005 BUG_ON(smi_info->waiting_msg);
1006 smi_info->waiting_msg = msg;
1007 check_start_timer_thread(smi_info);
1008 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 struct smi_info *smi_info = send_info;
1014
1015 smi_info->run_to_completion = i_run_to_completion;
1016 if (i_run_to_completion)
1017 flush_messages(smi_info);
1018 }
1019
1020 /*
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1023 * between checks
1024 */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 return ts->tv_nsec != -1;
1032 }
1033
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 const struct smi_info *smi_info,
1036 struct timespec64 *busy_until)
1037 {
1038 unsigned int max_busy_us = 0;
1039
1040 if (smi_info->intf_num < num_max_busy_us)
1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 ipmi_si_set_not_busy(busy_until);
1044 else if (!ipmi_si_is_busy(busy_until)) {
1045 getnstimeofday64(busy_until);
1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 } else {
1048 struct timespec64 now;
1049
1050 getnstimeofday64(&now);
1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 ipmi_si_set_not_busy(busy_until);
1053 return 0;
1054 }
1055 }
1056 return 1;
1057 }
1058
1059
1060 /*
1061 * A busy-waiting loop for speeding up IPMI operation.
1062 *
1063 * Lousy hardware makes this hard. This is only enabled for systems
1064 * that are not BT and do not have interrupts. It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1068 */
1069 static int ipmi_thread(void *data)
1070 {
1071 struct smi_info *smi_info = data;
1072 unsigned long flags;
1073 enum si_sm_result smi_result;
1074 struct timespec64 busy_until;
1075
1076 ipmi_si_set_not_busy(&busy_until);
1077 set_user_nice(current, MAX_NICE);
1078 while (!kthread_should_stop()) {
1079 int busy_wait;
1080
1081 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 smi_result = smi_event_handler(smi_info, 0);
1083
1084 /*
1085 * If the driver is doing something, there is a possible
1086 * race with the timer. If the timer handler see idle,
1087 * and the thread here sees something else, the timer
1088 * handler won't restart the timer even though it is
1089 * required. So start it here if necessary.
1090 */
1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 &busy_until);
1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 ; /* do nothing */
1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100 schedule();
1101 else if (smi_result == SI_SM_IDLE) {
1102 if (atomic_read(&smi_info->need_watch)) {
1103 schedule_timeout_interruptible(100);
1104 } else {
1105 /* Wait to be woken up when we are needed. */
1106 __set_current_state(TASK_INTERRUPTIBLE);
1107 schedule();
1108 }
1109 } else
1110 schedule_timeout_interruptible(1);
1111 }
1112 return 0;
1113 }
1114
1115
1116 static void poll(void *send_info)
1117 {
1118 struct smi_info *smi_info = send_info;
1119 unsigned long flags = 0;
1120 bool run_to_completion = smi_info->run_to_completion;
1121
1122 /*
1123 * Make sure there is some delay in the poll loop so we can
1124 * drive time forward and timeout things.
1125 */
1126 udelay(10);
1127 if (!run_to_completion)
1128 spin_lock_irqsave(&smi_info->si_lock, flags);
1129 smi_event_handler(smi_info, 10);
1130 if (!run_to_completion)
1131 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133
1134 static void request_events(void *send_info)
1135 {
1136 struct smi_info *smi_info = send_info;
1137
1138 if (!smi_info->has_event_buffer)
1139 return;
1140
1141 atomic_set(&smi_info->req_events, 1);
1142 }
1143
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146 struct smi_info *smi_info = send_info;
1147 unsigned long flags;
1148
1149 atomic_set(&smi_info->need_watch, enable);
1150 spin_lock_irqsave(&smi_info->si_lock, flags);
1151 check_start_timer_thread(smi_info);
1152 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154
1155 static int initialized;
1156
1157 static void smi_timeout(unsigned long data)
1158 {
1159 struct smi_info *smi_info = (struct smi_info *) data;
1160 enum si_sm_result smi_result;
1161 unsigned long flags;
1162 unsigned long jiffies_now;
1163 long time_diff;
1164 long timeout;
1165
1166 spin_lock_irqsave(&(smi_info->si_lock), flags);
1167 debug_timestamp("Timer");
1168
1169 jiffies_now = jiffies;
1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171 * SI_USEC_PER_JIFFY);
1172 smi_result = smi_event_handler(smi_info, time_diff);
1173
1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175 /* Running with interrupts, only do long timeouts. */
1176 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 smi_inc_stat(smi_info, long_timeouts);
1178 goto do_mod_timer;
1179 }
1180
1181 /*
1182 * If the state machine asks for a short delay, then shorten
1183 * the timer timeout.
1184 */
1185 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186 smi_inc_stat(smi_info, short_timeouts);
1187 timeout = jiffies + 1;
1188 } else {
1189 smi_inc_stat(smi_info, long_timeouts);
1190 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191 }
1192
1193 do_mod_timer:
1194 if (smi_result != SI_SM_IDLE)
1195 smi_mod_timer(smi_info, timeout);
1196 else
1197 smi_info->timer_running = false;
1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203 struct smi_info *smi_info = data;
1204 unsigned long flags;
1205
1206 spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
1208 smi_inc_stat(smi_info, interrupts);
1209
1210 debug_timestamp("Interrupt");
1211
1212 smi_event_handler(smi_info, 0);
1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 return IRQ_HANDLED;
1215 }
1216
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219 struct smi_info *smi_info = data;
1220 /* We need to clear the IRQ flag for the BT interface. */
1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224 return si_irq_handler(irq, data);
1225 }
1226
1227 static int smi_start_processing(void *send_info,
1228 ipmi_smi_t intf)
1229 {
1230 struct smi_info *new_smi = send_info;
1231 int enable = 0;
1232
1233 new_smi->intf = intf;
1234
1235 /* Set up the timer that drives the interface. */
1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238
1239 /* Try to claim any interrupts. */
1240 if (new_smi->irq_setup)
1241 new_smi->irq_setup(new_smi);
1242
1243 /*
1244 * Check if the user forcefully enabled the daemon.
1245 */
1246 if (new_smi->intf_num < num_force_kipmid)
1247 enable = force_kipmid[new_smi->intf_num];
1248 /*
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1251 */
1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 enable = 1;
1254
1255 if (enable) {
1256 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 "kipmi%d", new_smi->intf_num);
1258 if (IS_ERR(new_smi->thread)) {
1259 dev_notice(new_smi->dev, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi->thread));
1263 new_smi->thread = NULL;
1264 }
1265 }
1266
1267 return 0;
1268 }
1269
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272 struct smi_info *smi = send_info;
1273
1274 data->addr_src = smi->addr_source;
1275 data->dev = smi->dev;
1276 data->addr_info = smi->addr_info;
1277 get_device(smi->dev);
1278
1279 return 0;
1280 }
1281
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284 struct smi_info *smi_info = send_info;
1285
1286 if (!enable)
1287 atomic_set(&smi_info->req_events, 0);
1288 }
1289
1290 static const struct ipmi_smi_handlers handlers = {
1291 .owner = THIS_MODULE,
1292 .start_processing = smi_start_processing,
1293 .get_smi_info = get_smi_info,
1294 .sender = sender,
1295 .request_events = request_events,
1296 .set_need_watch = set_need_watch,
1297 .set_maintenance_mode = set_maintenance_mode,
1298 .set_run_to_completion = set_run_to_completion,
1299 .flush_messages = flush_messages,
1300 .poll = poll,
1301 };
1302
1303 /*
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1306 */
1307
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311
1312 #define DEFAULT_REGSPACING 1
1313 #define DEFAULT_REGSIZE 1
1314
1315 #ifdef CONFIG_ACPI
1316 static bool si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool si_trydmi = true;
1320 #endif
1321 static bool si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool si_trypci = true;
1324 #endif
1325 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1326 static char *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343
1344 #define IPMI_IO_ADDR_SPACE 0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1352 " Documentation/IPMI.txt in the kernel sources for the"
1353 " gory details.");
1354
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367 " default scan of the interfaces identified via platform"
1368 " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372 " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_named(trydefaults, si_trydefaults, bool, 0);
1375 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1376 " default scan of the KCS and SMIC interface at the standard"
1377 " address");
1378 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1379 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1380 " interface separated by commas. The types are 'kcs',"
1381 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1382 " the first interface to kcs and the second to bt");
1383 module_param_array(addrs, ulong, &num_addrs, 0);
1384 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is in memory. Otherwise, set it to zero or leave"
1387 " it blank.");
1388 module_param_array(ports, uint, &num_ports, 0);
1389 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " is a port. Otherwise, set it to zero or leave"
1392 " it blank.");
1393 module_param_array(irqs, int, &num_irqs, 0);
1394 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1395 " addresses separated by commas. Only use if an interface"
1396 " has an interrupt. Otherwise, set it to zero or leave"
1397 " it blank.");
1398 module_param_array(regspacings, int, &num_regspacings, 0);
1399 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1400 " and each successive register used by the interface. For"
1401 " instance, if the start address is 0xca2 and the spacing"
1402 " is 2, then the second address is at 0xca4. Defaults"
1403 " to 1.");
1404 module_param_array(regsizes, int, &num_regsizes, 0);
1405 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1406 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1407 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1408 " the 8-bit IPMI register has to be read from a larger"
1409 " register.");
1410 module_param_array(regshifts, int, &num_regshifts, 0);
1411 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1412 " IPMI register, in bits. For instance, if the data"
1413 " is read from a 32-bit word and the IPMI data is in"
1414 " bit 8-15, then the shift would be 8");
1415 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1416 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1417 " the controller. Normally this is 0x20, but can be"
1418 " overridden by this parm. This is an array indexed"
1419 " by interface number.");
1420 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1421 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1422 " disabled(0). Normally the IPMI driver auto-detects"
1423 " this, but the value may be overridden by this parm.");
1424 module_param(unload_when_empty, bool, 0);
1425 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1426 " specified or found, default is 1. Setting to 0"
1427 " is useful for hot add of devices using hotmod.");
1428 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1429 MODULE_PARM_DESC(kipmid_max_busy_us,
1430 "Max time (in microseconds) to busy-wait for IPMI data before"
1431 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1432 " if kipmid is using up a lot of CPU time.");
1433
1434
1435 static void std_irq_cleanup(struct smi_info *info)
1436 {
1437 if (info->si_type == SI_BT)
1438 /* Disable the interrupt in the BT interface. */
1439 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1440 free_irq(info->irq, info);
1441 }
1442
1443 static int std_irq_setup(struct smi_info *info)
1444 {
1445 int rv;
1446
1447 if (!info->irq)
1448 return 0;
1449
1450 if (info->si_type == SI_BT) {
1451 rv = request_irq(info->irq,
1452 si_bt_irq_handler,
1453 IRQF_SHARED,
1454 DEVICE_NAME,
1455 info);
1456 if (!rv)
1457 /* Enable the interrupt in the BT interface. */
1458 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1459 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1460 } else
1461 rv = request_irq(info->irq,
1462 si_irq_handler,
1463 IRQF_SHARED,
1464 DEVICE_NAME,
1465 info);
1466 if (rv) {
1467 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1468 " running polled\n",
1469 DEVICE_NAME, info->irq);
1470 info->irq = 0;
1471 } else {
1472 info->irq_cleanup = std_irq_cleanup;
1473 dev_info(info->dev, "Using irq %d\n", info->irq);
1474 }
1475
1476 return rv;
1477 }
1478
1479 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1480 {
1481 unsigned int addr = io->addr_data;
1482
1483 return inb(addr + (offset * io->regspacing));
1484 }
1485
1486 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1487 unsigned char b)
1488 {
1489 unsigned int addr = io->addr_data;
1490
1491 outb(b, addr + (offset * io->regspacing));
1492 }
1493
1494 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1495 {
1496 unsigned int addr = io->addr_data;
1497
1498 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499 }
1500
1501 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1502 unsigned char b)
1503 {
1504 unsigned int addr = io->addr_data;
1505
1506 outw(b << io->regshift, addr + (offset * io->regspacing));
1507 }
1508
1509 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1510 {
1511 unsigned int addr = io->addr_data;
1512
1513 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1514 }
1515
1516 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1517 unsigned char b)
1518 {
1519 unsigned int addr = io->addr_data;
1520
1521 outl(b << io->regshift, addr+(offset * io->regspacing));
1522 }
1523
1524 static void port_cleanup(struct smi_info *info)
1525 {
1526 unsigned int addr = info->io.addr_data;
1527 int idx;
1528
1529 if (addr) {
1530 for (idx = 0; idx < info->io_size; idx++)
1531 release_region(addr + idx * info->io.regspacing,
1532 info->io.regsize);
1533 }
1534 }
1535
1536 static int port_setup(struct smi_info *info)
1537 {
1538 unsigned int addr = info->io.addr_data;
1539 int idx;
1540
1541 if (!addr)
1542 return -ENODEV;
1543
1544 info->io_cleanup = port_cleanup;
1545
1546 /*
1547 * Figure out the actual inb/inw/inl/etc routine to use based
1548 * upon the register size.
1549 */
1550 switch (info->io.regsize) {
1551 case 1:
1552 info->io.inputb = port_inb;
1553 info->io.outputb = port_outb;
1554 break;
1555 case 2:
1556 info->io.inputb = port_inw;
1557 info->io.outputb = port_outw;
1558 break;
1559 case 4:
1560 info->io.inputb = port_inl;
1561 info->io.outputb = port_outl;
1562 break;
1563 default:
1564 dev_warn(info->dev, "Invalid register size: %d\n",
1565 info->io.regsize);
1566 return -EINVAL;
1567 }
1568
1569 /*
1570 * Some BIOSes reserve disjoint I/O regions in their ACPI
1571 * tables. This causes problems when trying to register the
1572 * entire I/O region. Therefore we must register each I/O
1573 * port separately.
1574 */
1575 for (idx = 0; idx < info->io_size; idx++) {
1576 if (request_region(addr + idx * info->io.regspacing,
1577 info->io.regsize, DEVICE_NAME) == NULL) {
1578 /* Undo allocations */
1579 while (idx--)
1580 release_region(addr + idx * info->io.regspacing,
1581 info->io.regsize);
1582 return -EIO;
1583 }
1584 }
1585 return 0;
1586 }
1587
1588 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1589 unsigned int offset)
1590 {
1591 return readb((io->addr)+(offset * io->regspacing));
1592 }
1593
1594 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1595 unsigned char b)
1596 {
1597 writeb(b, (io->addr)+(offset * io->regspacing));
1598 }
1599
1600 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1601 unsigned int offset)
1602 {
1603 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1604 & 0xff;
1605 }
1606
1607 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1608 unsigned char b)
1609 {
1610 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1611 }
1612
1613 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1614 unsigned int offset)
1615 {
1616 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617 & 0xff;
1618 }
1619
1620 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1621 unsigned char b)
1622 {
1623 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625
1626 #ifdef readq
1627 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1628 {
1629 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630 & 0xff;
1631 }
1632
1633 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1634 unsigned char b)
1635 {
1636 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638 #endif
1639
1640 static void mem_region_cleanup(struct smi_info *info, int num)
1641 {
1642 unsigned long addr = info->io.addr_data;
1643 int idx;
1644
1645 for (idx = 0; idx < num; idx++)
1646 release_mem_region(addr + idx * info->io.regspacing,
1647 info->io.regsize);
1648 }
1649
1650 static void mem_cleanup(struct smi_info *info)
1651 {
1652 if (info->io.addr) {
1653 iounmap(info->io.addr);
1654 mem_region_cleanup(info, info->io_size);
1655 }
1656 }
1657
1658 static int mem_setup(struct smi_info *info)
1659 {
1660 unsigned long addr = info->io.addr_data;
1661 int mapsize, idx;
1662
1663 if (!addr)
1664 return -ENODEV;
1665
1666 info->io_cleanup = mem_cleanup;
1667
1668 /*
1669 * Figure out the actual readb/readw/readl/etc routine to use based
1670 * upon the register size.
1671 */
1672 switch (info->io.regsize) {
1673 case 1:
1674 info->io.inputb = intf_mem_inb;
1675 info->io.outputb = intf_mem_outb;
1676 break;
1677 case 2:
1678 info->io.inputb = intf_mem_inw;
1679 info->io.outputb = intf_mem_outw;
1680 break;
1681 case 4:
1682 info->io.inputb = intf_mem_inl;
1683 info->io.outputb = intf_mem_outl;
1684 break;
1685 #ifdef readq
1686 case 8:
1687 info->io.inputb = mem_inq;
1688 info->io.outputb = mem_outq;
1689 break;
1690 #endif
1691 default:
1692 dev_warn(info->dev, "Invalid register size: %d\n",
1693 info->io.regsize);
1694 return -EINVAL;
1695 }
1696
1697 /*
1698 * Some BIOSes reserve disjoint memory regions in their ACPI
1699 * tables. This causes problems when trying to request the
1700 * entire region. Therefore we must request each register
1701 * separately.
1702 */
1703 for (idx = 0; idx < info->io_size; idx++) {
1704 if (request_mem_region(addr + idx * info->io.regspacing,
1705 info->io.regsize, DEVICE_NAME) == NULL) {
1706 /* Undo allocations */
1707 mem_region_cleanup(info, idx);
1708 return -EIO;
1709 }
1710 }
1711
1712 /*
1713 * Calculate the total amount of memory to claim. This is an
1714 * unusual looking calculation, but it avoids claiming any
1715 * more memory than it has to. It will claim everything
1716 * between the first address to the end of the last full
1717 * register.
1718 */
1719 mapsize = ((info->io_size * info->io.regspacing)
1720 - (info->io.regspacing - info->io.regsize));
1721 info->io.addr = ioremap(addr, mapsize);
1722 if (info->io.addr == NULL) {
1723 mem_region_cleanup(info, info->io_size);
1724 return -EIO;
1725 }
1726 return 0;
1727 }
1728
1729 /*
1730 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1731 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1732 * Options are:
1733 * rsp=<regspacing>
1734 * rsi=<regsize>
1735 * rsh=<regshift>
1736 * irq=<irq>
1737 * ipmb=<ipmb addr>
1738 */
1739 enum hotmod_op { HM_ADD, HM_REMOVE };
1740 struct hotmod_vals {
1741 const char *name;
1742 const int val;
1743 };
1744
1745 static const struct hotmod_vals hotmod_ops[] = {
1746 { "add", HM_ADD },
1747 { "remove", HM_REMOVE },
1748 { NULL }
1749 };
1750
1751 static const struct hotmod_vals hotmod_si[] = {
1752 { "kcs", SI_KCS },
1753 { "smic", SI_SMIC },
1754 { "bt", SI_BT },
1755 { NULL }
1756 };
1757
1758 static const struct hotmod_vals hotmod_as[] = {
1759 { "mem", IPMI_MEM_ADDR_SPACE },
1760 { "i/o", IPMI_IO_ADDR_SPACE },
1761 { NULL }
1762 };
1763
1764 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1765 char **curr)
1766 {
1767 char *s;
1768 int i;
1769
1770 s = strchr(*curr, ',');
1771 if (!s) {
1772 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1773 return -EINVAL;
1774 }
1775 *s = '\0';
1776 s++;
1777 for (i = 0; v[i].name; i++) {
1778 if (strcmp(*curr, v[i].name) == 0) {
1779 *val = v[i].val;
1780 *curr = s;
1781 return 0;
1782 }
1783 }
1784
1785 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1786 return -EINVAL;
1787 }
1788
1789 static int check_hotmod_int_op(const char *curr, const char *option,
1790 const char *name, int *val)
1791 {
1792 char *n;
1793
1794 if (strcmp(curr, name) == 0) {
1795 if (!option) {
1796 printk(KERN_WARNING PFX
1797 "No option given for '%s'\n",
1798 curr);
1799 return -EINVAL;
1800 }
1801 *val = simple_strtoul(option, &n, 0);
1802 if ((*n != '\0') || (*option == '\0')) {
1803 printk(KERN_WARNING PFX
1804 "Bad option given for '%s'\n",
1805 curr);
1806 return -EINVAL;
1807 }
1808 return 1;
1809 }
1810 return 0;
1811 }
1812
1813 static struct smi_info *smi_info_alloc(void)
1814 {
1815 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1816
1817 if (info)
1818 spin_lock_init(&info->si_lock);
1819 return info;
1820 }
1821
1822 static int hotmod_handler(const char *val, struct kernel_param *kp)
1823 {
1824 char *str = kstrdup(val, GFP_KERNEL);
1825 int rv;
1826 char *next, *curr, *s, *n, *o;
1827 enum hotmod_op op;
1828 enum si_type si_type;
1829 int addr_space;
1830 unsigned long addr;
1831 int regspacing;
1832 int regsize;
1833 int regshift;
1834 int irq;
1835 int ipmb;
1836 int ival;
1837 int len;
1838 struct smi_info *info;
1839
1840 if (!str)
1841 return -ENOMEM;
1842
1843 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1844 len = strlen(str);
1845 ival = len - 1;
1846 while ((ival >= 0) && isspace(str[ival])) {
1847 str[ival] = '\0';
1848 ival--;
1849 }
1850
1851 for (curr = str; curr; curr = next) {
1852 regspacing = 1;
1853 regsize = 1;
1854 regshift = 0;
1855 irq = 0;
1856 ipmb = 0; /* Choose the default if not specified */
1857
1858 next = strchr(curr, ':');
1859 if (next) {
1860 *next = '\0';
1861 next++;
1862 }
1863
1864 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1865 if (rv)
1866 break;
1867 op = ival;
1868
1869 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1870 if (rv)
1871 break;
1872 si_type = ival;
1873
1874 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1875 if (rv)
1876 break;
1877
1878 s = strchr(curr, ',');
1879 if (s) {
1880 *s = '\0';
1881 s++;
1882 }
1883 addr = simple_strtoul(curr, &n, 0);
1884 if ((*n != '\0') || (*curr == '\0')) {
1885 printk(KERN_WARNING PFX "Invalid hotmod address"
1886 " '%s'\n", curr);
1887 break;
1888 }
1889
1890 while (s) {
1891 curr = s;
1892 s = strchr(curr, ',');
1893 if (s) {
1894 *s = '\0';
1895 s++;
1896 }
1897 o = strchr(curr, '=');
1898 if (o) {
1899 *o = '\0';
1900 o++;
1901 }
1902 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1903 if (rv < 0)
1904 goto out;
1905 else if (rv)
1906 continue;
1907 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1908 if (rv < 0)
1909 goto out;
1910 else if (rv)
1911 continue;
1912 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1913 if (rv < 0)
1914 goto out;
1915 else if (rv)
1916 continue;
1917 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1918 if (rv < 0)
1919 goto out;
1920 else if (rv)
1921 continue;
1922 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1923 if (rv < 0)
1924 goto out;
1925 else if (rv)
1926 continue;
1927
1928 rv = -EINVAL;
1929 printk(KERN_WARNING PFX
1930 "Invalid hotmod option '%s'\n",
1931 curr);
1932 goto out;
1933 }
1934
1935 if (op == HM_ADD) {
1936 info = smi_info_alloc();
1937 if (!info) {
1938 rv = -ENOMEM;
1939 goto out;
1940 }
1941
1942 info->addr_source = SI_HOTMOD;
1943 info->si_type = si_type;
1944 info->io.addr_data = addr;
1945 info->io.addr_type = addr_space;
1946 if (addr_space == IPMI_MEM_ADDR_SPACE)
1947 info->io_setup = mem_setup;
1948 else
1949 info->io_setup = port_setup;
1950
1951 info->io.addr = NULL;
1952 info->io.regspacing = regspacing;
1953 if (!info->io.regspacing)
1954 info->io.regspacing = DEFAULT_REGSPACING;
1955 info->io.regsize = regsize;
1956 if (!info->io.regsize)
1957 info->io.regsize = DEFAULT_REGSPACING;
1958 info->io.regshift = regshift;
1959 info->irq = irq;
1960 if (info->irq)
1961 info->irq_setup = std_irq_setup;
1962 info->slave_addr = ipmb;
1963
1964 rv = add_smi(info);
1965 if (rv) {
1966 kfree(info);
1967 goto out;
1968 }
1969 rv = try_smi_init(info);
1970 if (rv) {
1971 cleanup_one_si(info);
1972 goto out;
1973 }
1974 } else {
1975 /* remove */
1976 struct smi_info *e, *tmp_e;
1977
1978 mutex_lock(&smi_infos_lock);
1979 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1980 if (e->io.addr_type != addr_space)
1981 continue;
1982 if (e->si_type != si_type)
1983 continue;
1984 if (e->io.addr_data == addr)
1985 cleanup_one_si(e);
1986 }
1987 mutex_unlock(&smi_infos_lock);
1988 }
1989 }
1990 rv = len;
1991 out:
1992 kfree(str);
1993 return rv;
1994 }
1995
1996 static int hardcode_find_bmc(void)
1997 {
1998 int ret = -ENODEV;
1999 int i;
2000 struct smi_info *info;
2001
2002 for (i = 0; i < SI_MAX_PARMS; i++) {
2003 if (!ports[i] && !addrs[i])
2004 continue;
2005
2006 info = smi_info_alloc();
2007 if (!info)
2008 return -ENOMEM;
2009
2010 info->addr_source = SI_HARDCODED;
2011 printk(KERN_INFO PFX "probing via hardcoded address\n");
2012
2013 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2014 info->si_type = SI_KCS;
2015 } else if (strcmp(si_type[i], "smic") == 0) {
2016 info->si_type = SI_SMIC;
2017 } else if (strcmp(si_type[i], "bt") == 0) {
2018 info->si_type = SI_BT;
2019 } else {
2020 printk(KERN_WARNING PFX "Interface type specified "
2021 "for interface %d, was invalid: %s\n",
2022 i, si_type[i]);
2023 kfree(info);
2024 continue;
2025 }
2026
2027 if (ports[i]) {
2028 /* An I/O port */
2029 info->io_setup = port_setup;
2030 info->io.addr_data = ports[i];
2031 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2032 } else if (addrs[i]) {
2033 /* A memory port */
2034 info->io_setup = mem_setup;
2035 info->io.addr_data = addrs[i];
2036 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2037 } else {
2038 printk(KERN_WARNING PFX "Interface type specified "
2039 "for interface %d, but port and address were "
2040 "not set or set to zero.\n", i);
2041 kfree(info);
2042 continue;
2043 }
2044
2045 info->io.addr = NULL;
2046 info->io.regspacing = regspacings[i];
2047 if (!info->io.regspacing)
2048 info->io.regspacing = DEFAULT_REGSPACING;
2049 info->io.regsize = regsizes[i];
2050 if (!info->io.regsize)
2051 info->io.regsize = DEFAULT_REGSPACING;
2052 info->io.regshift = regshifts[i];
2053 info->irq = irqs[i];
2054 if (info->irq)
2055 info->irq_setup = std_irq_setup;
2056 info->slave_addr = slave_addrs[i];
2057
2058 if (!add_smi(info)) {
2059 if (try_smi_init(info))
2060 cleanup_one_si(info);
2061 ret = 0;
2062 } else {
2063 kfree(info);
2064 }
2065 }
2066 return ret;
2067 }
2068
2069 #ifdef CONFIG_ACPI
2070
2071 /*
2072 * Once we get an ACPI failure, we don't try any more, because we go
2073 * through the tables sequentially. Once we don't find a table, there
2074 * are no more.
2075 */
2076 static int acpi_failure;
2077
2078 /* For GPE-type interrupts. */
2079 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2080 u32 gpe_number, void *context)
2081 {
2082 struct smi_info *smi_info = context;
2083 unsigned long flags;
2084
2085 spin_lock_irqsave(&(smi_info->si_lock), flags);
2086
2087 smi_inc_stat(smi_info, interrupts);
2088
2089 debug_timestamp("ACPI_GPE");
2090
2091 smi_event_handler(smi_info, 0);
2092 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2093
2094 return ACPI_INTERRUPT_HANDLED;
2095 }
2096
2097 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2098 {
2099 if (!info->irq)
2100 return;
2101
2102 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2103 }
2104
2105 static int acpi_gpe_irq_setup(struct smi_info *info)
2106 {
2107 acpi_status status;
2108
2109 if (!info->irq)
2110 return 0;
2111
2112 status = acpi_install_gpe_handler(NULL,
2113 info->irq,
2114 ACPI_GPE_LEVEL_TRIGGERED,
2115 &ipmi_acpi_gpe,
2116 info);
2117 if (status != AE_OK) {
2118 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2119 " running polled\n", DEVICE_NAME, info->irq);
2120 info->irq = 0;
2121 return -EINVAL;
2122 } else {
2123 info->irq_cleanup = acpi_gpe_irq_cleanup;
2124 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2125 return 0;
2126 }
2127 }
2128
2129 /*
2130 * Defined at
2131 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2132 */
2133 struct SPMITable {
2134 s8 Signature[4];
2135 u32 Length;
2136 u8 Revision;
2137 u8 Checksum;
2138 s8 OEMID[6];
2139 s8 OEMTableID[8];
2140 s8 OEMRevision[4];
2141 s8 CreatorID[4];
2142 s8 CreatorRevision[4];
2143 u8 InterfaceType;
2144 u8 IPMIlegacy;
2145 s16 SpecificationRevision;
2146
2147 /*
2148 * Bit 0 - SCI interrupt supported
2149 * Bit 1 - I/O APIC/SAPIC
2150 */
2151 u8 InterruptType;
2152
2153 /*
2154 * If bit 0 of InterruptType is set, then this is the SCI
2155 * interrupt in the GPEx_STS register.
2156 */
2157 u8 GPE;
2158
2159 s16 Reserved;
2160
2161 /*
2162 * If bit 1 of InterruptType is set, then this is the I/O
2163 * APIC/SAPIC interrupt.
2164 */
2165 u32 GlobalSystemInterrupt;
2166
2167 /* The actual register address. */
2168 struct acpi_generic_address addr;
2169
2170 u8 UID[4];
2171
2172 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2173 };
2174
2175 static int try_init_spmi(struct SPMITable *spmi)
2176 {
2177 struct smi_info *info;
2178 int rv;
2179
2180 if (spmi->IPMIlegacy != 1) {
2181 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2182 return -ENODEV;
2183 }
2184
2185 info = smi_info_alloc();
2186 if (!info) {
2187 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2188 return -ENOMEM;
2189 }
2190
2191 info->addr_source = SI_SPMI;
2192 printk(KERN_INFO PFX "probing via SPMI\n");
2193
2194 /* Figure out the interface type. */
2195 switch (spmi->InterfaceType) {
2196 case 1: /* KCS */
2197 info->si_type = SI_KCS;
2198 break;
2199 case 2: /* SMIC */
2200 info->si_type = SI_SMIC;
2201 break;
2202 case 3: /* BT */
2203 info->si_type = SI_BT;
2204 break;
2205 case 4: /* SSIF, just ignore */
2206 kfree(info);
2207 return -EIO;
2208 default:
2209 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2210 spmi->InterfaceType);
2211 kfree(info);
2212 return -EIO;
2213 }
2214
2215 if (spmi->InterruptType & 1) {
2216 /* We've got a GPE interrupt. */
2217 info->irq = spmi->GPE;
2218 info->irq_setup = acpi_gpe_irq_setup;
2219 } else if (spmi->InterruptType & 2) {
2220 /* We've got an APIC/SAPIC interrupt. */
2221 info->irq = spmi->GlobalSystemInterrupt;
2222 info->irq_setup = std_irq_setup;
2223 } else {
2224 /* Use the default interrupt setting. */
2225 info->irq = 0;
2226 info->irq_setup = NULL;
2227 }
2228
2229 if (spmi->addr.bit_width) {
2230 /* A (hopefully) properly formed register bit width. */
2231 info->io.regspacing = spmi->addr.bit_width / 8;
2232 } else {
2233 info->io.regspacing = DEFAULT_REGSPACING;
2234 }
2235 info->io.regsize = info->io.regspacing;
2236 info->io.regshift = spmi->addr.bit_offset;
2237
2238 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2239 info->io_setup = mem_setup;
2240 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2241 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2242 info->io_setup = port_setup;
2243 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2244 } else {
2245 kfree(info);
2246 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2247 return -EIO;
2248 }
2249 info->io.addr_data = spmi->addr.address;
2250
2251 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2252 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2253 info->io.addr_data, info->io.regsize, info->io.regspacing,
2254 info->irq);
2255
2256 rv = add_smi(info);
2257 if (rv)
2258 kfree(info);
2259
2260 return rv;
2261 }
2262
2263 static void spmi_find_bmc(void)
2264 {
2265 acpi_status status;
2266 struct SPMITable *spmi;
2267 int i;
2268
2269 if (acpi_disabled)
2270 return;
2271
2272 if (acpi_failure)
2273 return;
2274
2275 for (i = 0; ; i++) {
2276 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2277 (struct acpi_table_header **)&spmi);
2278 if (status != AE_OK)
2279 return;
2280
2281 try_init_spmi(spmi);
2282 }
2283 }
2284 #endif
2285
2286 #ifdef CONFIG_DMI
2287 struct dmi_ipmi_data {
2288 u8 type;
2289 u8 addr_space;
2290 unsigned long base_addr;
2291 u8 irq;
2292 u8 offset;
2293 u8 slave_addr;
2294 };
2295
2296 static int decode_dmi(const struct dmi_header *dm,
2297 struct dmi_ipmi_data *dmi)
2298 {
2299 const u8 *data = (const u8 *)dm;
2300 unsigned long base_addr;
2301 u8 reg_spacing;
2302 u8 len = dm->length;
2303
2304 dmi->type = data[4];
2305
2306 memcpy(&base_addr, data+8, sizeof(unsigned long));
2307 if (len >= 0x11) {
2308 if (base_addr & 1) {
2309 /* I/O */
2310 base_addr &= 0xFFFE;
2311 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2312 } else
2313 /* Memory */
2314 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2315
2316 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2317 is odd. */
2318 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2319
2320 dmi->irq = data[0x11];
2321
2322 /* The top two bits of byte 0x10 hold the register spacing. */
2323 reg_spacing = (data[0x10] & 0xC0) >> 6;
2324 switch (reg_spacing) {
2325 case 0x00: /* Byte boundaries */
2326 dmi->offset = 1;
2327 break;
2328 case 0x01: /* 32-bit boundaries */
2329 dmi->offset = 4;
2330 break;
2331 case 0x02: /* 16-byte boundaries */
2332 dmi->offset = 16;
2333 break;
2334 default:
2335 /* Some other interface, just ignore it. */
2336 return -EIO;
2337 }
2338 } else {
2339 /* Old DMI spec. */
2340 /*
2341 * Note that technically, the lower bit of the base
2342 * address should be 1 if the address is I/O and 0 if
2343 * the address is in memory. So many systems get that
2344 * wrong (and all that I have seen are I/O) so we just
2345 * ignore that bit and assume I/O. Systems that use
2346 * memory should use the newer spec, anyway.
2347 */
2348 dmi->base_addr = base_addr & 0xfffe;
2349 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2350 dmi->offset = 1;
2351 }
2352
2353 dmi->slave_addr = data[6];
2354
2355 return 0;
2356 }
2357
2358 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2359 {
2360 struct smi_info *info;
2361
2362 info = smi_info_alloc();
2363 if (!info) {
2364 printk(KERN_ERR PFX "Could not allocate SI data\n");
2365 return;
2366 }
2367
2368 info->addr_source = SI_SMBIOS;
2369 printk(KERN_INFO PFX "probing via SMBIOS\n");
2370
2371 switch (ipmi_data->type) {
2372 case 0x01: /* KCS */
2373 info->si_type = SI_KCS;
2374 break;
2375 case 0x02: /* SMIC */
2376 info->si_type = SI_SMIC;
2377 break;
2378 case 0x03: /* BT */
2379 info->si_type = SI_BT;
2380 break;
2381 default:
2382 kfree(info);
2383 return;
2384 }
2385
2386 switch (ipmi_data->addr_space) {
2387 case IPMI_MEM_ADDR_SPACE:
2388 info->io_setup = mem_setup;
2389 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2390 break;
2391
2392 case IPMI_IO_ADDR_SPACE:
2393 info->io_setup = port_setup;
2394 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2395 break;
2396
2397 default:
2398 kfree(info);
2399 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2400 ipmi_data->addr_space);
2401 return;
2402 }
2403 info->io.addr_data = ipmi_data->base_addr;
2404
2405 info->io.regspacing = ipmi_data->offset;
2406 if (!info->io.regspacing)
2407 info->io.regspacing = DEFAULT_REGSPACING;
2408 info->io.regsize = DEFAULT_REGSPACING;
2409 info->io.regshift = 0;
2410
2411 info->slave_addr = ipmi_data->slave_addr;
2412
2413 info->irq = ipmi_data->irq;
2414 if (info->irq)
2415 info->irq_setup = std_irq_setup;
2416
2417 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2418 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2419 info->io.addr_data, info->io.regsize, info->io.regspacing,
2420 info->irq);
2421
2422 if (add_smi(info))
2423 kfree(info);
2424 }
2425
2426 static void dmi_find_bmc(void)
2427 {
2428 const struct dmi_device *dev = NULL;
2429 struct dmi_ipmi_data data;
2430 int rv;
2431
2432 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2433 memset(&data, 0, sizeof(data));
2434 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2435 &data);
2436 if (!rv)
2437 try_init_dmi(&data);
2438 }
2439 }
2440 #endif /* CONFIG_DMI */
2441
2442 #ifdef CONFIG_PCI
2443
2444 #define PCI_ERMC_CLASSCODE 0x0C0700
2445 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2446 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2447 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2448 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2449 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2450
2451 #define PCI_HP_VENDOR_ID 0x103C
2452 #define PCI_MMC_DEVICE_ID 0x121A
2453 #define PCI_MMC_ADDR_CW 0x10
2454
2455 static void ipmi_pci_cleanup(struct smi_info *info)
2456 {
2457 struct pci_dev *pdev = info->addr_source_data;
2458
2459 pci_disable_device(pdev);
2460 }
2461
2462 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2463 {
2464 if (info->si_type == SI_KCS) {
2465 unsigned char status;
2466 int regspacing;
2467
2468 info->io.regsize = DEFAULT_REGSIZE;
2469 info->io.regshift = 0;
2470 info->io_size = 2;
2471 info->handlers = &kcs_smi_handlers;
2472
2473 /* detect 1, 4, 16byte spacing */
2474 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2475 info->io.regspacing = regspacing;
2476 if (info->io_setup(info)) {
2477 dev_err(info->dev,
2478 "Could not setup I/O space\n");
2479 return DEFAULT_REGSPACING;
2480 }
2481 /* write invalid cmd */
2482 info->io.outputb(&info->io, 1, 0x10);
2483 /* read status back */
2484 status = info->io.inputb(&info->io, 1);
2485 info->io_cleanup(info);
2486 if (status)
2487 return regspacing;
2488 regspacing *= 4;
2489 }
2490 }
2491 return DEFAULT_REGSPACING;
2492 }
2493
2494 static int ipmi_pci_probe(struct pci_dev *pdev,
2495 const struct pci_device_id *ent)
2496 {
2497 int rv;
2498 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2499 struct smi_info *info;
2500
2501 info = smi_info_alloc();
2502 if (!info)
2503 return -ENOMEM;
2504
2505 info->addr_source = SI_PCI;
2506 dev_info(&pdev->dev, "probing via PCI");
2507
2508 switch (class_type) {
2509 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2510 info->si_type = SI_SMIC;
2511 break;
2512
2513 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2514 info->si_type = SI_KCS;
2515 break;
2516
2517 case PCI_ERMC_CLASSCODE_TYPE_BT:
2518 info->si_type = SI_BT;
2519 break;
2520
2521 default:
2522 kfree(info);
2523 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2524 return -ENOMEM;
2525 }
2526
2527 rv = pci_enable_device(pdev);
2528 if (rv) {
2529 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2530 kfree(info);
2531 return rv;
2532 }
2533
2534 info->addr_source_cleanup = ipmi_pci_cleanup;
2535 info->addr_source_data = pdev;
2536
2537 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2538 info->io_setup = port_setup;
2539 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2540 } else {
2541 info->io_setup = mem_setup;
2542 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2543 }
2544 info->io.addr_data = pci_resource_start(pdev, 0);
2545
2546 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2547 info->io.regsize = DEFAULT_REGSIZE;
2548 info->io.regshift = 0;
2549
2550 info->irq = pdev->irq;
2551 if (info->irq)
2552 info->irq_setup = std_irq_setup;
2553
2554 info->dev = &pdev->dev;
2555 pci_set_drvdata(pdev, info);
2556
2557 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2558 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2559 info->irq);
2560
2561 rv = add_smi(info);
2562 if (rv) {
2563 kfree(info);
2564 pci_disable_device(pdev);
2565 }
2566
2567 return rv;
2568 }
2569
2570 static void ipmi_pci_remove(struct pci_dev *pdev)
2571 {
2572 struct smi_info *info = pci_get_drvdata(pdev);
2573 cleanup_one_si(info);
2574 }
2575
2576 static const struct pci_device_id ipmi_pci_devices[] = {
2577 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2578 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2579 { 0, }
2580 };
2581 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2582
2583 static struct pci_driver ipmi_pci_driver = {
2584 .name = DEVICE_NAME,
2585 .id_table = ipmi_pci_devices,
2586 .probe = ipmi_pci_probe,
2587 .remove = ipmi_pci_remove,
2588 };
2589 #endif /* CONFIG_PCI */
2590
2591 #ifdef CONFIG_OF
2592 static const struct of_device_id of_ipmi_match[] = {
2593 { .type = "ipmi", .compatible = "ipmi-kcs",
2594 .data = (void *)(unsigned long) SI_KCS },
2595 { .type = "ipmi", .compatible = "ipmi-smic",
2596 .data = (void *)(unsigned long) SI_SMIC },
2597 { .type = "ipmi", .compatible = "ipmi-bt",
2598 .data = (void *)(unsigned long) SI_BT },
2599 {},
2600 };
2601 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2602
2603 static int of_ipmi_probe(struct platform_device *dev)
2604 {
2605 const struct of_device_id *match;
2606 struct smi_info *info;
2607 struct resource resource;
2608 const __be32 *regsize, *regspacing, *regshift;
2609 struct device_node *np = dev->dev.of_node;
2610 int ret;
2611 int proplen;
2612
2613 dev_info(&dev->dev, "probing via device tree\n");
2614
2615 match = of_match_device(of_ipmi_match, &dev->dev);
2616 if (!match)
2617 return -ENODEV;
2618
2619 if (!of_device_is_available(np))
2620 return -EINVAL;
2621
2622 ret = of_address_to_resource(np, 0, &resource);
2623 if (ret) {
2624 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2625 return ret;
2626 }
2627
2628 regsize = of_get_property(np, "reg-size", &proplen);
2629 if (regsize && proplen != 4) {
2630 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2631 return -EINVAL;
2632 }
2633
2634 regspacing = of_get_property(np, "reg-spacing", &proplen);
2635 if (regspacing && proplen != 4) {
2636 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2637 return -EINVAL;
2638 }
2639
2640 regshift = of_get_property(np, "reg-shift", &proplen);
2641 if (regshift && proplen != 4) {
2642 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2643 return -EINVAL;
2644 }
2645
2646 info = smi_info_alloc();
2647
2648 if (!info) {
2649 dev_err(&dev->dev,
2650 "could not allocate memory for OF probe\n");
2651 return -ENOMEM;
2652 }
2653
2654 info->si_type = (enum si_type) match->data;
2655 info->addr_source = SI_DEVICETREE;
2656 info->irq_setup = std_irq_setup;
2657
2658 if (resource.flags & IORESOURCE_IO) {
2659 info->io_setup = port_setup;
2660 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2661 } else {
2662 info->io_setup = mem_setup;
2663 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2664 }
2665
2666 info->io.addr_data = resource.start;
2667
2668 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2669 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2670 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2671
2672 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2673 info->dev = &dev->dev;
2674
2675 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2676 info->io.addr_data, info->io.regsize, info->io.regspacing,
2677 info->irq);
2678
2679 dev_set_drvdata(&dev->dev, info);
2680
2681 ret = add_smi(info);
2682 if (ret) {
2683 kfree(info);
2684 return ret;
2685 }
2686 return 0;
2687 }
2688 #else
2689 #define of_ipmi_match NULL
2690 static int of_ipmi_probe(struct platform_device *dev)
2691 {
2692 return -ENODEV;
2693 }
2694 #endif
2695
2696 #ifdef CONFIG_ACPI
2697 static int acpi_ipmi_probe(struct platform_device *dev)
2698 {
2699 struct smi_info *info;
2700 struct resource *res, *res_second;
2701 acpi_handle handle;
2702 acpi_status status;
2703 unsigned long long tmp;
2704 int rv = -EINVAL;
2705
2706 if (!si_tryacpi)
2707 return 0;
2708
2709 handle = ACPI_HANDLE(&dev->dev);
2710 if (!handle)
2711 return -ENODEV;
2712
2713 info = smi_info_alloc();
2714 if (!info)
2715 return -ENOMEM;
2716
2717 info->addr_source = SI_ACPI;
2718 dev_info(&dev->dev, PFX "probing via ACPI\n");
2719
2720 info->addr_info.acpi_info.acpi_handle = handle;
2721
2722 /* _IFT tells us the interface type: KCS, BT, etc */
2723 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2724 if (ACPI_FAILURE(status)) {
2725 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2726 goto err_free;
2727 }
2728
2729 switch (tmp) {
2730 case 1:
2731 info->si_type = SI_KCS;
2732 break;
2733 case 2:
2734 info->si_type = SI_SMIC;
2735 break;
2736 case 3:
2737 info->si_type = SI_BT;
2738 break;
2739 case 4: /* SSIF, just ignore */
2740 rv = -ENODEV;
2741 goto err_free;
2742 default:
2743 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2744 goto err_free;
2745 }
2746
2747 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2748 if (res) {
2749 info->io_setup = port_setup;
2750 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2751 } else {
2752 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2753 if (res) {
2754 info->io_setup = mem_setup;
2755 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2756 }
2757 }
2758 if (!res) {
2759 dev_err(&dev->dev, "no I/O or memory address\n");
2760 goto err_free;
2761 }
2762 info->io.addr_data = res->start;
2763
2764 info->io.regspacing = DEFAULT_REGSPACING;
2765 res_second = platform_get_resource(dev,
2766 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2767 IORESOURCE_IO : IORESOURCE_MEM,
2768 1);
2769 if (res_second) {
2770 if (res_second->start > info->io.addr_data)
2771 info->io.regspacing =
2772 res_second->start - info->io.addr_data;
2773 }
2774 info->io.regsize = DEFAULT_REGSPACING;
2775 info->io.regshift = 0;
2776
2777 /* If _GPE exists, use it; otherwise use standard interrupts */
2778 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2779 if (ACPI_SUCCESS(status)) {
2780 info->irq = tmp;
2781 info->irq_setup = acpi_gpe_irq_setup;
2782 } else {
2783 int irq = platform_get_irq(dev, 0);
2784
2785 if (irq > 0) {
2786 info->irq = irq;
2787 info->irq_setup = std_irq_setup;
2788 }
2789 }
2790
2791 info->dev = &dev->dev;
2792 platform_set_drvdata(dev, info);
2793
2794 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2795 res, info->io.regsize, info->io.regspacing,
2796 info->irq);
2797
2798 rv = add_smi(info);
2799 if (rv)
2800 kfree(info);
2801
2802 return rv;
2803
2804 err_free:
2805 kfree(info);
2806 return rv;
2807 }
2808
2809 static const struct acpi_device_id acpi_ipmi_match[] = {
2810 { "IPI0001", 0 },
2811 { },
2812 };
2813 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2814 #else
2815 static int acpi_ipmi_probe(struct platform_device *dev)
2816 {
2817 return -ENODEV;
2818 }
2819 #endif
2820
2821 static int ipmi_probe(struct platform_device *dev)
2822 {
2823 if (of_ipmi_probe(dev) == 0)
2824 return 0;
2825
2826 return acpi_ipmi_probe(dev);
2827 }
2828
2829 static int ipmi_remove(struct platform_device *dev)
2830 {
2831 struct smi_info *info = dev_get_drvdata(&dev->dev);
2832
2833 cleanup_one_si(info);
2834 return 0;
2835 }
2836
2837 static struct platform_driver ipmi_driver = {
2838 .driver = {
2839 .name = DEVICE_NAME,
2840 .of_match_table = of_ipmi_match,
2841 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2842 },
2843 .probe = ipmi_probe,
2844 .remove = ipmi_remove,
2845 };
2846
2847 #ifdef CONFIG_PARISC
2848 static int ipmi_parisc_probe(struct parisc_device *dev)
2849 {
2850 struct smi_info *info;
2851 int rv;
2852
2853 info = smi_info_alloc();
2854
2855 if (!info) {
2856 dev_err(&dev->dev,
2857 "could not allocate memory for PARISC probe\n");
2858 return -ENOMEM;
2859 }
2860
2861 info->si_type = SI_KCS;
2862 info->addr_source = SI_DEVICETREE;
2863 info->io_setup = mem_setup;
2864 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2865 info->io.addr_data = dev->hpa.start;
2866 info->io.regsize = 1;
2867 info->io.regspacing = 1;
2868 info->io.regshift = 0;
2869 info->irq = 0; /* no interrupt */
2870 info->irq_setup = NULL;
2871 info->dev = &dev->dev;
2872
2873 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2874
2875 dev_set_drvdata(&dev->dev, info);
2876
2877 rv = add_smi(info);
2878 if (rv) {
2879 kfree(info);
2880 return rv;
2881 }
2882
2883 return 0;
2884 }
2885
2886 static int ipmi_parisc_remove(struct parisc_device *dev)
2887 {
2888 cleanup_one_si(dev_get_drvdata(&dev->dev));
2889 return 0;
2890 }
2891
2892 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2893 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2894 { 0, }
2895 };
2896
2897 static struct parisc_driver ipmi_parisc_driver = {
2898 .name = "ipmi",
2899 .id_table = ipmi_parisc_tbl,
2900 .probe = ipmi_parisc_probe,
2901 .remove = ipmi_parisc_remove,
2902 };
2903 #endif /* CONFIG_PARISC */
2904
2905 static int wait_for_msg_done(struct smi_info *smi_info)
2906 {
2907 enum si_sm_result smi_result;
2908
2909 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2910 for (;;) {
2911 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2912 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2913 schedule_timeout_uninterruptible(1);
2914 smi_result = smi_info->handlers->event(
2915 smi_info->si_sm, jiffies_to_usecs(1));
2916 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2917 smi_result = smi_info->handlers->event(
2918 smi_info->si_sm, 0);
2919 } else
2920 break;
2921 }
2922 if (smi_result == SI_SM_HOSED)
2923 /*
2924 * We couldn't get the state machine to run, so whatever's at
2925 * the port is probably not an IPMI SMI interface.
2926 */
2927 return -ENODEV;
2928
2929 return 0;
2930 }
2931
2932 static int try_get_dev_id(struct smi_info *smi_info)
2933 {
2934 unsigned char msg[2];
2935 unsigned char *resp;
2936 unsigned long resp_len;
2937 int rv = 0;
2938
2939 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2940 if (!resp)
2941 return -ENOMEM;
2942
2943 /*
2944 * Do a Get Device ID command, since it comes back with some
2945 * useful info.
2946 */
2947 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2948 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2949 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2950
2951 rv = wait_for_msg_done(smi_info);
2952 if (rv)
2953 goto out;
2954
2955 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2956 resp, IPMI_MAX_MSG_LENGTH);
2957
2958 /* Check and record info from the get device id, in case we need it. */
2959 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2960
2961 out:
2962 kfree(resp);
2963 return rv;
2964 }
2965
2966 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2967 {
2968 unsigned char msg[3];
2969 unsigned char *resp;
2970 unsigned long resp_len;
2971 int rv;
2972
2973 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2974 if (!resp)
2975 return -ENOMEM;
2976
2977 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2978 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2979 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2980
2981 rv = wait_for_msg_done(smi_info);
2982 if (rv) {
2983 dev_warn(smi_info->dev,
2984 "Error getting response from get global enables command: %d\n",
2985 rv);
2986 goto out;
2987 }
2988
2989 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2990 resp, IPMI_MAX_MSG_LENGTH);
2991
2992 if (resp_len < 4 ||
2993 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2994 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2995 resp[2] != 0) {
2996 dev_warn(smi_info->dev,
2997 "Invalid return from get global enables command: %ld %x %x %x\n",
2998 resp_len, resp[0], resp[1], resp[2]);
2999 rv = -EINVAL;
3000 goto out;
3001 } else {
3002 *enables = resp[3];
3003 }
3004
3005 out:
3006 kfree(resp);
3007 return rv;
3008 }
3009
3010 /*
3011 * Returns 1 if it gets an error from the command.
3012 */
3013 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3014 {
3015 unsigned char msg[3];
3016 unsigned char *resp;
3017 unsigned long resp_len;
3018 int rv;
3019
3020 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3021 if (!resp)
3022 return -ENOMEM;
3023
3024 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3025 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3026 msg[2] = enables;
3027 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3028
3029 rv = wait_for_msg_done(smi_info);
3030 if (rv) {
3031 dev_warn(smi_info->dev,
3032 "Error getting response from set global enables command: %d\n",
3033 rv);
3034 goto out;
3035 }
3036
3037 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3038 resp, IPMI_MAX_MSG_LENGTH);
3039
3040 if (resp_len < 3 ||
3041 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3042 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3043 dev_warn(smi_info->dev,
3044 "Invalid return from set global enables command: %ld %x %x\n",
3045 resp_len, resp[0], resp[1]);
3046 rv = -EINVAL;
3047 goto out;
3048 }
3049
3050 if (resp[2] != 0)
3051 rv = 1;
3052
3053 out:
3054 kfree(resp);
3055 return rv;
3056 }
3057
3058 /*
3059 * Some BMCs do not support clearing the receive irq bit in the global
3060 * enables (even if they don't support interrupts on the BMC). Check
3061 * for this and handle it properly.
3062 */
3063 static void check_clr_rcv_irq(struct smi_info *smi_info)
3064 {
3065 u8 enables = 0;
3066 int rv;
3067
3068 rv = get_global_enables(smi_info, &enables);
3069 if (!rv) {
3070 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3071 /* Already clear, should work ok. */
3072 return;
3073
3074 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3075 rv = set_global_enables(smi_info, enables);
3076 }
3077
3078 if (rv < 0) {
3079 dev_err(smi_info->dev,
3080 "Cannot check clearing the rcv irq: %d\n", rv);
3081 return;
3082 }
3083
3084 if (rv) {
3085 /*
3086 * An error when setting the event buffer bit means
3087 * clearing the bit is not supported.
3088 */
3089 dev_warn(smi_info->dev,
3090 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3091 smi_info->cannot_disable_irq = true;
3092 }
3093 }
3094
3095 /*
3096 * Some BMCs do not support setting the interrupt bits in the global
3097 * enables even if they support interrupts. Clearly bad, but we can
3098 * compensate.
3099 */
3100 static void check_set_rcv_irq(struct smi_info *smi_info)
3101 {
3102 u8 enables = 0;
3103 int rv;
3104
3105 if (!smi_info->irq)
3106 return;
3107
3108 rv = get_global_enables(smi_info, &enables);
3109 if (!rv) {
3110 enables |= IPMI_BMC_RCV_MSG_INTR;
3111 rv = set_global_enables(smi_info, enables);
3112 }
3113
3114 if (rv < 0) {
3115 dev_err(smi_info->dev,
3116 "Cannot check setting the rcv irq: %d\n", rv);
3117 return;
3118 }
3119
3120 if (rv) {
3121 /*
3122 * An error when setting the event buffer bit means
3123 * setting the bit is not supported.
3124 */
3125 dev_warn(smi_info->dev,
3126 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3127 smi_info->cannot_disable_irq = true;
3128 smi_info->irq_enable_broken = true;
3129 }
3130 }
3131
3132 static int try_enable_event_buffer(struct smi_info *smi_info)
3133 {
3134 unsigned char msg[3];
3135 unsigned char *resp;
3136 unsigned long resp_len;
3137 int rv = 0;
3138
3139 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3140 if (!resp)
3141 return -ENOMEM;
3142
3143 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3144 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3145 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3146
3147 rv = wait_for_msg_done(smi_info);
3148 if (rv) {
3149 printk(KERN_WARNING PFX "Error getting response from get"
3150 " global enables command, the event buffer is not"
3151 " enabled.\n");
3152 goto out;
3153 }
3154
3155 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3156 resp, IPMI_MAX_MSG_LENGTH);
3157
3158 if (resp_len < 4 ||
3159 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3160 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3161 resp[2] != 0) {
3162 printk(KERN_WARNING PFX "Invalid return from get global"
3163 " enables command, cannot enable the event buffer.\n");
3164 rv = -EINVAL;
3165 goto out;
3166 }
3167
3168 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3169 /* buffer is already enabled, nothing to do. */
3170 smi_info->supports_event_msg_buff = true;
3171 goto out;
3172 }
3173
3174 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3175 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3176 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3177 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3178
3179 rv = wait_for_msg_done(smi_info);
3180 if (rv) {
3181 printk(KERN_WARNING PFX "Error getting response from set"
3182 " global, enables command, the event buffer is not"
3183 " enabled.\n");
3184 goto out;
3185 }
3186
3187 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3188 resp, IPMI_MAX_MSG_LENGTH);
3189
3190 if (resp_len < 3 ||
3191 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3192 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3193 printk(KERN_WARNING PFX "Invalid return from get global,"
3194 "enables command, not enable the event buffer.\n");
3195 rv = -EINVAL;
3196 goto out;
3197 }
3198
3199 if (resp[2] != 0)
3200 /*
3201 * An error when setting the event buffer bit means
3202 * that the event buffer is not supported.
3203 */
3204 rv = -ENOENT;
3205 else
3206 smi_info->supports_event_msg_buff = true;
3207
3208 out:
3209 kfree(resp);
3210 return rv;
3211 }
3212
3213 static int smi_type_proc_show(struct seq_file *m, void *v)
3214 {
3215 struct smi_info *smi = m->private;
3216
3217 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3218
3219 return 0;
3220 }
3221
3222 static int smi_type_proc_open(struct inode *inode, struct file *file)
3223 {
3224 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3225 }
3226
3227 static const struct file_operations smi_type_proc_ops = {
3228 .open = smi_type_proc_open,
3229 .read = seq_read,
3230 .llseek = seq_lseek,
3231 .release = single_release,
3232 };
3233
3234 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3235 {
3236 struct smi_info *smi = m->private;
3237
3238 seq_printf(m, "interrupts_enabled: %d\n",
3239 smi->irq && !smi->interrupt_disabled);
3240 seq_printf(m, "short_timeouts: %u\n",
3241 smi_get_stat(smi, short_timeouts));
3242 seq_printf(m, "long_timeouts: %u\n",
3243 smi_get_stat(smi, long_timeouts));
3244 seq_printf(m, "idles: %u\n",
3245 smi_get_stat(smi, idles));
3246 seq_printf(m, "interrupts: %u\n",
3247 smi_get_stat(smi, interrupts));
3248 seq_printf(m, "attentions: %u\n",
3249 smi_get_stat(smi, attentions));
3250 seq_printf(m, "flag_fetches: %u\n",
3251 smi_get_stat(smi, flag_fetches));
3252 seq_printf(m, "hosed_count: %u\n",
3253 smi_get_stat(smi, hosed_count));
3254 seq_printf(m, "complete_transactions: %u\n",
3255 smi_get_stat(smi, complete_transactions));
3256 seq_printf(m, "events: %u\n",
3257 smi_get_stat(smi, events));
3258 seq_printf(m, "watchdog_pretimeouts: %u\n",
3259 smi_get_stat(smi, watchdog_pretimeouts));
3260 seq_printf(m, "incoming_messages: %u\n",
3261 smi_get_stat(smi, incoming_messages));
3262 return 0;
3263 }
3264
3265 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3266 {
3267 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3268 }
3269
3270 static const struct file_operations smi_si_stats_proc_ops = {
3271 .open = smi_si_stats_proc_open,
3272 .read = seq_read,
3273 .llseek = seq_lseek,
3274 .release = single_release,
3275 };
3276
3277 static int smi_params_proc_show(struct seq_file *m, void *v)
3278 {
3279 struct smi_info *smi = m->private;
3280
3281 seq_printf(m,
3282 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3283 si_to_str[smi->si_type],
3284 addr_space_to_str[smi->io.addr_type],
3285 smi->io.addr_data,
3286 smi->io.regspacing,
3287 smi->io.regsize,
3288 smi->io.regshift,
3289 smi->irq,
3290 smi->slave_addr);
3291
3292 return 0;
3293 }
3294
3295 static int smi_params_proc_open(struct inode *inode, struct file *file)
3296 {
3297 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3298 }
3299
3300 static const struct file_operations smi_params_proc_ops = {
3301 .open = smi_params_proc_open,
3302 .read = seq_read,
3303 .llseek = seq_lseek,
3304 .release = single_release,
3305 };
3306
3307 /*
3308 * oem_data_avail_to_receive_msg_avail
3309 * @info - smi_info structure with msg_flags set
3310 *
3311 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3312 * Returns 1 indicating need to re-run handle_flags().
3313 */
3314 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3315 {
3316 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3317 RECEIVE_MSG_AVAIL);
3318 return 1;
3319 }
3320
3321 /*
3322 * setup_dell_poweredge_oem_data_handler
3323 * @info - smi_info.device_id must be populated
3324 *
3325 * Systems that match, but have firmware version < 1.40 may assert
3326 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3327 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3328 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3329 * as RECEIVE_MSG_AVAIL instead.
3330 *
3331 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3332 * assert the OEM[012] bits, and if it did, the driver would have to
3333 * change to handle that properly, we don't actually check for the
3334 * firmware version.
3335 * Device ID = 0x20 BMC on PowerEdge 8G servers
3336 * Device Revision = 0x80
3337 * Firmware Revision1 = 0x01 BMC version 1.40
3338 * Firmware Revision2 = 0x40 BCD encoded
3339 * IPMI Version = 0x51 IPMI 1.5
3340 * Manufacturer ID = A2 02 00 Dell IANA
3341 *
3342 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3343 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3344 *
3345 */
3346 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3347 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3348 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3349 #define DELL_IANA_MFR_ID 0x0002a2
3350 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3351 {
3352 struct ipmi_device_id *id = &smi_info->device_id;
3353 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3354 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3355 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3356 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3357 smi_info->oem_data_avail_handler =
3358 oem_data_avail_to_receive_msg_avail;
3359 } else if (ipmi_version_major(id) < 1 ||
3360 (ipmi_version_major(id) == 1 &&
3361 ipmi_version_minor(id) < 5)) {
3362 smi_info->oem_data_avail_handler =
3363 oem_data_avail_to_receive_msg_avail;
3364 }
3365 }
3366 }
3367
3368 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3369 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3370 {
3371 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3372
3373 /* Make it a response */
3374 msg->rsp[0] = msg->data[0] | 4;
3375 msg->rsp[1] = msg->data[1];
3376 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3377 msg->rsp_size = 3;
3378 smi_info->curr_msg = NULL;
3379 deliver_recv_msg(smi_info, msg);
3380 }
3381
3382 /*
3383 * dell_poweredge_bt_xaction_handler
3384 * @info - smi_info.device_id must be populated
3385 *
3386 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3387 * not respond to a Get SDR command if the length of the data
3388 * requested is exactly 0x3A, which leads to command timeouts and no
3389 * data returned. This intercepts such commands, and causes userspace
3390 * callers to try again with a different-sized buffer, which succeeds.
3391 */
3392
3393 #define STORAGE_NETFN 0x0A
3394 #define STORAGE_CMD_GET_SDR 0x23
3395 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3396 unsigned long unused,
3397 void *in)
3398 {
3399 struct smi_info *smi_info = in;
3400 unsigned char *data = smi_info->curr_msg->data;
3401 unsigned int size = smi_info->curr_msg->data_size;
3402 if (size >= 8 &&
3403 (data[0]>>2) == STORAGE_NETFN &&
3404 data[1] == STORAGE_CMD_GET_SDR &&
3405 data[7] == 0x3A) {
3406 return_hosed_msg_badsize(smi_info);
3407 return NOTIFY_STOP;
3408 }
3409 return NOTIFY_DONE;
3410 }
3411
3412 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3413 .notifier_call = dell_poweredge_bt_xaction_handler,
3414 };
3415
3416 /*
3417 * setup_dell_poweredge_bt_xaction_handler
3418 * @info - smi_info.device_id must be filled in already
3419 *
3420 * Fills in smi_info.device_id.start_transaction_pre_hook
3421 * when we know what function to use there.
3422 */
3423 static void
3424 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3425 {
3426 struct ipmi_device_id *id = &smi_info->device_id;
3427 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3428 smi_info->si_type == SI_BT)
3429 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3430 }
3431
3432 /*
3433 * setup_oem_data_handler
3434 * @info - smi_info.device_id must be filled in already
3435 *
3436 * Fills in smi_info.device_id.oem_data_available_handler
3437 * when we know what function to use there.
3438 */
3439
3440 static void setup_oem_data_handler(struct smi_info *smi_info)
3441 {
3442 setup_dell_poweredge_oem_data_handler(smi_info);
3443 }
3444
3445 static void setup_xaction_handlers(struct smi_info *smi_info)
3446 {
3447 setup_dell_poweredge_bt_xaction_handler(smi_info);
3448 }
3449
3450 static void check_for_broken_irqs(struct smi_info *smi_info)
3451 {
3452 check_clr_rcv_irq(smi_info);
3453 check_set_rcv_irq(smi_info);
3454 }
3455
3456 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3457 {
3458 if (smi_info->thread != NULL)
3459 kthread_stop(smi_info->thread);
3460 if (smi_info->timer_running)
3461 del_timer_sync(&smi_info->si_timer);
3462 }
3463
3464 static const struct ipmi_default_vals
3465 {
3466 const int type;
3467 const int port;
3468 } ipmi_defaults[] =
3469 {
3470 { .type = SI_KCS, .port = 0xca2 },
3471 { .type = SI_SMIC, .port = 0xca9 },
3472 { .type = SI_BT, .port = 0xe4 },
3473 { .port = 0 }
3474 };
3475
3476 static void default_find_bmc(void)
3477 {
3478 struct smi_info *info;
3479 int i;
3480
3481 for (i = 0; ; i++) {
3482 if (!ipmi_defaults[i].port)
3483 break;
3484 #ifdef CONFIG_PPC
3485 if (check_legacy_ioport(ipmi_defaults[i].port))
3486 continue;
3487 #endif
3488 info = smi_info_alloc();
3489 if (!info)
3490 return;
3491
3492 info->addr_source = SI_DEFAULT;
3493
3494 info->si_type = ipmi_defaults[i].type;
3495 info->io_setup = port_setup;
3496 info->io.addr_data = ipmi_defaults[i].port;
3497 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3498
3499 info->io.addr = NULL;
3500 info->io.regspacing = DEFAULT_REGSPACING;
3501 info->io.regsize = DEFAULT_REGSPACING;
3502 info->io.regshift = 0;
3503
3504 if (add_smi(info) == 0) {
3505 if ((try_smi_init(info)) == 0) {
3506 /* Found one... */
3507 printk(KERN_INFO PFX "Found default %s"
3508 " state machine at %s address 0x%lx\n",
3509 si_to_str[info->si_type],
3510 addr_space_to_str[info->io.addr_type],
3511 info->io.addr_data);
3512 } else
3513 cleanup_one_si(info);
3514 } else {
3515 kfree(info);
3516 }
3517 }
3518 }
3519
3520 static int is_new_interface(struct smi_info *info)
3521 {
3522 struct smi_info *e;
3523
3524 list_for_each_entry(e, &smi_infos, link) {
3525 if (e->io.addr_type != info->io.addr_type)
3526 continue;
3527 if (e->io.addr_data == info->io.addr_data)
3528 return 0;
3529 }
3530
3531 return 1;
3532 }
3533
3534 static int add_smi(struct smi_info *new_smi)
3535 {
3536 int rv = 0;
3537
3538 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3539 ipmi_addr_src_to_str(new_smi->addr_source),
3540 si_to_str[new_smi->si_type]);
3541 mutex_lock(&smi_infos_lock);
3542 if (!is_new_interface(new_smi)) {
3543 printk(KERN_CONT " duplicate interface\n");
3544 rv = -EBUSY;
3545 goto out_err;
3546 }
3547
3548 printk(KERN_CONT "\n");
3549
3550 /* So we know not to free it unless we have allocated one. */
3551 new_smi->intf = NULL;
3552 new_smi->si_sm = NULL;
3553 new_smi->handlers = NULL;
3554
3555 list_add_tail(&new_smi->link, &smi_infos);
3556
3557 out_err:
3558 mutex_unlock(&smi_infos_lock);
3559 return rv;
3560 }
3561
3562 static int try_smi_init(struct smi_info *new_smi)
3563 {
3564 int rv = 0;
3565 int i;
3566
3567 printk(KERN_INFO PFX "Trying %s-specified %s state"
3568 " machine at %s address 0x%lx, slave address 0x%x,"
3569 " irq %d\n",
3570 ipmi_addr_src_to_str(new_smi->addr_source),
3571 si_to_str[new_smi->si_type],
3572 addr_space_to_str[new_smi->io.addr_type],
3573 new_smi->io.addr_data,
3574 new_smi->slave_addr, new_smi->irq);
3575
3576 switch (new_smi->si_type) {
3577 case SI_KCS:
3578 new_smi->handlers = &kcs_smi_handlers;
3579 break;
3580
3581 case SI_SMIC:
3582 new_smi->handlers = &smic_smi_handlers;
3583 break;
3584
3585 case SI_BT:
3586 new_smi->handlers = &bt_smi_handlers;
3587 break;
3588
3589 default:
3590 /* No support for anything else yet. */
3591 rv = -EIO;
3592 goto out_err;
3593 }
3594
3595 /* Allocate the state machine's data and initialize it. */
3596 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3597 if (!new_smi->si_sm) {
3598 printk(KERN_ERR PFX
3599 "Could not allocate state machine memory\n");
3600 rv = -ENOMEM;
3601 goto out_err;
3602 }
3603 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3604 &new_smi->io);
3605
3606 /* Now that we know the I/O size, we can set up the I/O. */
3607 rv = new_smi->io_setup(new_smi);
3608 if (rv) {
3609 printk(KERN_ERR PFX "Could not set up I/O space\n");
3610 goto out_err;
3611 }
3612
3613 /* Do low-level detection first. */
3614 if (new_smi->handlers->detect(new_smi->si_sm)) {
3615 if (new_smi->addr_source)
3616 printk(KERN_INFO PFX "Interface detection failed\n");
3617 rv = -ENODEV;
3618 goto out_err;
3619 }
3620
3621 /*
3622 * Attempt a get device id command. If it fails, we probably
3623 * don't have a BMC here.
3624 */
3625 rv = try_get_dev_id(new_smi);
3626 if (rv) {
3627 if (new_smi->addr_source)
3628 printk(KERN_INFO PFX "There appears to be no BMC"
3629 " at this location\n");
3630 goto out_err;
3631 }
3632
3633 setup_oem_data_handler(new_smi);
3634 setup_xaction_handlers(new_smi);
3635 check_for_broken_irqs(new_smi);
3636
3637 new_smi->waiting_msg = NULL;
3638 new_smi->curr_msg = NULL;
3639 atomic_set(&new_smi->req_events, 0);
3640 new_smi->run_to_completion = false;
3641 for (i = 0; i < SI_NUM_STATS; i++)
3642 atomic_set(&new_smi->stats[i], 0);
3643
3644 new_smi->interrupt_disabled = true;
3645 atomic_set(&new_smi->need_watch, 0);
3646 new_smi->intf_num = smi_num;
3647 smi_num++;
3648
3649 rv = try_enable_event_buffer(new_smi);
3650 if (rv == 0)
3651 new_smi->has_event_buffer = true;
3652
3653 /*
3654 * Start clearing the flags before we enable interrupts or the
3655 * timer to avoid racing with the timer.
3656 */
3657 start_clear_flags(new_smi, false);
3658
3659 /*
3660 * IRQ is defined to be set when non-zero. req_events will
3661 * cause a global flags check that will enable interrupts.
3662 */
3663 if (new_smi->irq) {
3664 new_smi->interrupt_disabled = false;
3665 atomic_set(&new_smi->req_events, 1);
3666 }
3667
3668 if (!new_smi->dev) {
3669 /*
3670 * If we don't already have a device from something
3671 * else (like PCI), then register a new one.
3672 */
3673 new_smi->pdev = platform_device_alloc("ipmi_si",
3674 new_smi->intf_num);
3675 if (!new_smi->pdev) {
3676 printk(KERN_ERR PFX
3677 "Unable to allocate platform device\n");
3678 goto out_err;
3679 }
3680 new_smi->dev = &new_smi->pdev->dev;
3681 new_smi->dev->driver = &ipmi_driver.driver;
3682
3683 rv = platform_device_add(new_smi->pdev);
3684 if (rv) {
3685 printk(KERN_ERR PFX
3686 "Unable to register system interface device:"
3687 " %d\n",
3688 rv);
3689 goto out_err;
3690 }
3691 new_smi->dev_registered = true;
3692 }
3693
3694 rv = ipmi_register_smi(&handlers,
3695 new_smi,
3696 &new_smi->device_id,
3697 new_smi->dev,
3698 new_smi->slave_addr);
3699 if (rv) {
3700 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3701 rv);
3702 goto out_err_stop_timer;
3703 }
3704
3705 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3706 &smi_type_proc_ops,
3707 new_smi);
3708 if (rv) {
3709 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3710 goto out_err_stop_timer;
3711 }
3712
3713 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3714 &smi_si_stats_proc_ops,
3715 new_smi);
3716 if (rv) {
3717 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3718 goto out_err_stop_timer;
3719 }
3720
3721 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3722 &smi_params_proc_ops,
3723 new_smi);
3724 if (rv) {
3725 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3726 goto out_err_stop_timer;
3727 }
3728
3729 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3730 si_to_str[new_smi->si_type]);
3731
3732 return 0;
3733
3734 out_err_stop_timer:
3735 wait_for_timer_and_thread(new_smi);
3736
3737 out_err:
3738 new_smi->interrupt_disabled = true;
3739
3740 if (new_smi->intf) {
3741 ipmi_smi_t intf = new_smi->intf;
3742 new_smi->intf = NULL;
3743 ipmi_unregister_smi(intf);
3744 }
3745
3746 if (new_smi->irq_cleanup) {
3747 new_smi->irq_cleanup(new_smi);
3748 new_smi->irq_cleanup = NULL;
3749 }
3750
3751 /*
3752 * Wait until we know that we are out of any interrupt
3753 * handlers might have been running before we freed the
3754 * interrupt.
3755 */
3756 synchronize_sched();
3757
3758 if (new_smi->si_sm) {
3759 if (new_smi->handlers)
3760 new_smi->handlers->cleanup(new_smi->si_sm);
3761 kfree(new_smi->si_sm);
3762 new_smi->si_sm = NULL;
3763 }
3764 if (new_smi->addr_source_cleanup) {
3765 new_smi->addr_source_cleanup(new_smi);
3766 new_smi->addr_source_cleanup = NULL;
3767 }
3768 if (new_smi->io_cleanup) {
3769 new_smi->io_cleanup(new_smi);
3770 new_smi->io_cleanup = NULL;
3771 }
3772
3773 if (new_smi->dev_registered) {
3774 platform_device_unregister(new_smi->pdev);
3775 new_smi->dev_registered = false;
3776 }
3777
3778 return rv;
3779 }
3780
3781 static int init_ipmi_si(void)
3782 {
3783 int i;
3784 char *str;
3785 int rv;
3786 struct smi_info *e;
3787 enum ipmi_addr_src type = SI_INVALID;
3788
3789 if (initialized)
3790 return 0;
3791 initialized = 1;
3792
3793 if (si_tryplatform) {
3794 rv = platform_driver_register(&ipmi_driver);
3795 if (rv) {
3796 printk(KERN_ERR PFX "Unable to register "
3797 "driver: %d\n", rv);
3798 return rv;
3799 }
3800 }
3801
3802 /* Parse out the si_type string into its components. */
3803 str = si_type_str;
3804 if (*str != '\0') {
3805 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3806 si_type[i] = str;
3807 str = strchr(str, ',');
3808 if (str) {
3809 *str = '\0';
3810 str++;
3811 } else {
3812 break;
3813 }
3814 }
3815 }
3816
3817 printk(KERN_INFO "IPMI System Interface driver.\n");
3818
3819 /* If the user gave us a device, they presumably want us to use it */
3820 if (!hardcode_find_bmc())
3821 return 0;
3822
3823 #ifdef CONFIG_PCI
3824 if (si_trypci) {
3825 rv = pci_register_driver(&ipmi_pci_driver);
3826 if (rv)
3827 printk(KERN_ERR PFX "Unable to register "
3828 "PCI driver: %d\n", rv);
3829 else
3830 pci_registered = true;
3831 }
3832 #endif
3833
3834 #ifdef CONFIG_DMI
3835 if (si_trydmi)
3836 dmi_find_bmc();
3837 #endif
3838
3839 #ifdef CONFIG_ACPI
3840 if (si_tryacpi)
3841 spmi_find_bmc();
3842 #endif
3843
3844 #ifdef CONFIG_PARISC
3845 register_parisc_driver(&ipmi_parisc_driver);
3846 parisc_registered = true;
3847 /* poking PC IO addresses will crash machine, don't do it */
3848 si_trydefaults = 0;
3849 #endif
3850
3851 /* We prefer devices with interrupts, but in the case of a machine
3852 with multiple BMCs we assume that there will be several instances
3853 of a given type so if we succeed in registering a type then also
3854 try to register everything else of the same type */
3855
3856 mutex_lock(&smi_infos_lock);
3857 list_for_each_entry(e, &smi_infos, link) {
3858 /* Try to register a device if it has an IRQ and we either
3859 haven't successfully registered a device yet or this
3860 device has the same type as one we successfully registered */
3861 if (e->irq && (!type || e->addr_source == type)) {
3862 if (!try_smi_init(e)) {
3863 type = e->addr_source;
3864 }
3865 }
3866 }
3867
3868 /* type will only have been set if we successfully registered an si */
3869 if (type) {
3870 mutex_unlock(&smi_infos_lock);
3871 return 0;
3872 }
3873
3874 /* Fall back to the preferred device */
3875
3876 list_for_each_entry(e, &smi_infos, link) {
3877 if (!e->irq && (!type || e->addr_source == type)) {
3878 if (!try_smi_init(e)) {
3879 type = e->addr_source;
3880 }
3881 }
3882 }
3883 mutex_unlock(&smi_infos_lock);
3884
3885 if (type)
3886 return 0;
3887
3888 if (si_trydefaults) {
3889 mutex_lock(&smi_infos_lock);
3890 if (list_empty(&smi_infos)) {
3891 /* No BMC was found, try defaults. */
3892 mutex_unlock(&smi_infos_lock);
3893 default_find_bmc();
3894 } else
3895 mutex_unlock(&smi_infos_lock);
3896 }
3897
3898 mutex_lock(&smi_infos_lock);
3899 if (unload_when_empty && list_empty(&smi_infos)) {
3900 mutex_unlock(&smi_infos_lock);
3901 cleanup_ipmi_si();
3902 printk(KERN_WARNING PFX
3903 "Unable to find any System Interface(s)\n");
3904 return -ENODEV;
3905 } else {
3906 mutex_unlock(&smi_infos_lock);
3907 return 0;
3908 }
3909 }
3910 module_init(init_ipmi_si);
3911
3912 static void cleanup_one_si(struct smi_info *to_clean)
3913 {
3914 int rv = 0;
3915
3916 if (!to_clean)
3917 return;
3918
3919 if (to_clean->intf) {
3920 ipmi_smi_t intf = to_clean->intf;
3921
3922 to_clean->intf = NULL;
3923 rv = ipmi_unregister_smi(intf);
3924 if (rv) {
3925 pr_err(PFX "Unable to unregister device: errno=%d\n",
3926 rv);
3927 }
3928 }
3929
3930 if (to_clean->dev)
3931 dev_set_drvdata(to_clean->dev, NULL);
3932
3933 list_del(&to_clean->link);
3934
3935 /*
3936 * Make sure that interrupts, the timer and the thread are
3937 * stopped and will not run again.
3938 */
3939 if (to_clean->irq_cleanup)
3940 to_clean->irq_cleanup(to_clean);
3941 wait_for_timer_and_thread(to_clean);
3942
3943 /*
3944 * Timeouts are stopped, now make sure the interrupts are off
3945 * in the BMC. Note that timers and CPU interrupts are off,
3946 * so no need for locks.
3947 */
3948 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3949 poll(to_clean);
3950 schedule_timeout_uninterruptible(1);
3951 }
3952 disable_si_irq(to_clean, false);
3953 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3954 poll(to_clean);
3955 schedule_timeout_uninterruptible(1);
3956 }
3957
3958 if (to_clean->handlers)
3959 to_clean->handlers->cleanup(to_clean->si_sm);
3960
3961 kfree(to_clean->si_sm);
3962
3963 if (to_clean->addr_source_cleanup)
3964 to_clean->addr_source_cleanup(to_clean);
3965 if (to_clean->io_cleanup)
3966 to_clean->io_cleanup(to_clean);
3967
3968 if (to_clean->dev_registered)
3969 platform_device_unregister(to_clean->pdev);
3970
3971 kfree(to_clean);
3972 }
3973
3974 static void cleanup_ipmi_si(void)
3975 {
3976 struct smi_info *e, *tmp_e;
3977
3978 if (!initialized)
3979 return;
3980
3981 #ifdef CONFIG_PCI
3982 if (pci_registered)
3983 pci_unregister_driver(&ipmi_pci_driver);
3984 #endif
3985 #ifdef CONFIG_PARISC
3986 if (parisc_registered)
3987 unregister_parisc_driver(&ipmi_parisc_driver);
3988 #endif
3989
3990 platform_driver_unregister(&ipmi_driver);
3991
3992 mutex_lock(&smi_infos_lock);
3993 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3994 cleanup_one_si(e);
3995 mutex_unlock(&smi_infos_lock);
3996 }
3997 module_exit(cleanup_ipmi_si);
3998
3999 MODULE_LICENSE("GPL");
4000 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4001 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
4002 " system interfaces.");