]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include "ipmi_dmi.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
73
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78
79 #define PFX "ipmi_si: "
80
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC 10000
86 #define SI_USEC_PER_JIFFY (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
89 short timeout */
90
91 enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_GETTING_MESSAGES,
97 SI_CHECKING_ENABLES,
98 SI_SETTING_ENABLES
99 /* FIXME - add watchdog stuff. */
100 };
101
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG 2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106
107 enum si_type {
108 SI_KCS, SI_SMIC, SI_BT
109 };
110
111 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112
113 #define DEVICE_NAME "ipmi_si"
114
115 static struct platform_driver ipmi_driver;
116
117 /*
118 * Indexes into stats[] in smi_info below.
119 */
120 enum si_stat_indexes {
121 /*
122 * Number of times the driver requested a timer while an operation
123 * was in progress.
124 */
125 SI_STAT_short_timeouts = 0,
126
127 /*
128 * Number of times the driver requested a timer while nothing was in
129 * progress.
130 */
131 SI_STAT_long_timeouts,
132
133 /* Number of times the interface was idle while being polled. */
134 SI_STAT_idles,
135
136 /* Number of interrupts the driver handled. */
137 SI_STAT_interrupts,
138
139 /* Number of time the driver got an ATTN from the hardware. */
140 SI_STAT_attentions,
141
142 /* Number of times the driver requested flags from the hardware. */
143 SI_STAT_flag_fetches,
144
145 /* Number of times the hardware didn't follow the state machine. */
146 SI_STAT_hosed_count,
147
148 /* Number of completed messages. */
149 SI_STAT_complete_transactions,
150
151 /* Number of IPMI events received from the hardware. */
152 SI_STAT_events,
153
154 /* Number of watchdog pretimeouts. */
155 SI_STAT_watchdog_pretimeouts,
156
157 /* Number of asynchronous messages received. */
158 SI_STAT_incoming_messages,
159
160
161 /* This *must* remain last, add new values above this. */
162 SI_NUM_STATS
163 };
164
165 struct smi_info {
166 int intf_num;
167 ipmi_smi_t intf;
168 struct si_sm_data *si_sm;
169 const struct si_sm_handlers *handlers;
170 enum si_type si_type;
171 spinlock_t si_lock;
172 struct ipmi_smi_msg *waiting_msg;
173 struct ipmi_smi_msg *curr_msg;
174 enum si_intf_state si_state;
175
176 /*
177 * Used to handle the various types of I/O that can occur with
178 * IPMI
179 */
180 struct si_sm_io io;
181 int (*io_setup)(struct smi_info *info);
182 void (*io_cleanup)(struct smi_info *info);
183 int (*irq_setup)(struct smi_info *info);
184 void (*irq_cleanup)(struct smi_info *info);
185 unsigned int io_size;
186 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187 void (*addr_source_cleanup)(struct smi_info *info);
188 void *addr_source_data;
189
190 /*
191 * Per-OEM handler, called from handle_flags(). Returns 1
192 * when handle_flags() needs to be re-run or 0 indicating it
193 * set si_state itself.
194 */
195 int (*oem_data_avail_handler)(struct smi_info *smi_info);
196
197 /*
198 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199 * is set to hold the flags until we are done handling everything
200 * from the flags.
201 */
202 #define RECEIVE_MSG_AVAIL 0x01
203 #define EVENT_MSG_BUFFER_FULL 0x02
204 #define WDT_PRE_TIMEOUT_INT 0x08
205 #define OEM0_DATA_AVAIL 0x20
206 #define OEM1_DATA_AVAIL 0x40
207 #define OEM2_DATA_AVAIL 0x80
208 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
209 OEM1_DATA_AVAIL | \
210 OEM2_DATA_AVAIL)
211 unsigned char msg_flags;
212
213 /* Does the BMC have an event buffer? */
214 bool has_event_buffer;
215
216 /*
217 * If set to true, this will request events the next time the
218 * state machine is idle.
219 */
220 atomic_t req_events;
221
222 /*
223 * If true, run the state machine to completion on every send
224 * call. Generally used after a panic to make sure stuff goes
225 * out.
226 */
227 bool run_to_completion;
228
229 /* The I/O port of an SI interface. */
230 int port;
231
232 /*
233 * The space between start addresses of the two ports. For
234 * instance, if the first port is 0xca2 and the spacing is 4, then
235 * the second port is 0xca6.
236 */
237 unsigned int spacing;
238
239 /* zero if no irq; */
240 int irq;
241
242 /* The timer for this si. */
243 struct timer_list si_timer;
244
245 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
246 bool timer_running;
247
248 /* The time (in jiffies) the last timeout occurred at. */
249 unsigned long last_timeout_jiffies;
250
251 /* Are we waiting for the events, pretimeouts, received msgs? */
252 atomic_t need_watch;
253
254 /*
255 * The driver will disable interrupts when it gets into a
256 * situation where it cannot handle messages due to lack of
257 * memory. Once that situation clears up, it will re-enable
258 * interrupts.
259 */
260 bool interrupt_disabled;
261
262 /*
263 * Does the BMC support events?
264 */
265 bool supports_event_msg_buff;
266
267 /*
268 * Can we disable interrupts the global enables receive irq
269 * bit? There are currently two forms of brokenness, some
270 * systems cannot disable the bit (which is technically within
271 * the spec but a bad idea) and some systems have the bit
272 * forced to zero even though interrupts work (which is
273 * clearly outside the spec). The next bool tells which form
274 * of brokenness is present.
275 */
276 bool cannot_disable_irq;
277
278 /*
279 * Some systems are broken and cannot set the irq enable
280 * bit, even if they support interrupts.
281 */
282 bool irq_enable_broken;
283
284 /*
285 * Did we get an attention that we did not handle?
286 */
287 bool got_attn;
288
289 /* From the get device id response... */
290 struct ipmi_device_id device_id;
291
292 /* Driver model stuff. */
293 struct device *dev;
294 struct platform_device *pdev;
295
296 /*
297 * True if we allocated the device, false if it came from
298 * someplace else (like PCI).
299 */
300 bool dev_registered;
301
302 /* Slave address, could be reported from DMI. */
303 unsigned char slave_addr;
304
305 /* Counters and things for the proc filesystem. */
306 atomic_t stats[SI_NUM_STATS];
307
308 struct task_struct *thread;
309
310 struct list_head link;
311 union ipmi_smi_info_union addr_info;
312 };
313
314 #define smi_inc_stat(smi, stat) \
315 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
316 #define smi_get_stat(smi, stat) \
317 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
318
319 #define SI_MAX_PARMS 4
320
321 static int force_kipmid[SI_MAX_PARMS];
322 static int num_force_kipmid;
323 #ifdef CONFIG_PCI
324 static bool pci_registered;
325 #endif
326 #ifdef CONFIG_PARISC
327 static bool parisc_registered;
328 #endif
329
330 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
331 static int num_max_busy_us;
332
333 static bool unload_when_empty = true;
334
335 static int add_smi(struct smi_info *smi);
336 static int try_smi_init(struct smi_info *smi);
337 static void cleanup_one_si(struct smi_info *to_clean);
338 static void cleanup_ipmi_si(void);
339
340 #ifdef DEBUG_TIMING
341 void debug_timestamp(char *msg)
342 {
343 struct timespec64 t;
344
345 getnstimeofday64(&t);
346 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
347 }
348 #else
349 #define debug_timestamp(x)
350 #endif
351
352 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
353 static int register_xaction_notifier(struct notifier_block *nb)
354 {
355 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
356 }
357
358 static void deliver_recv_msg(struct smi_info *smi_info,
359 struct ipmi_smi_msg *msg)
360 {
361 /* Deliver the message to the upper layer. */
362 if (smi_info->intf)
363 ipmi_smi_msg_received(smi_info->intf, msg);
364 else
365 ipmi_free_smi_msg(msg);
366 }
367
368 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
369 {
370 struct ipmi_smi_msg *msg = smi_info->curr_msg;
371
372 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
373 cCode = IPMI_ERR_UNSPECIFIED;
374 /* else use it as is */
375
376 /* Make it a response */
377 msg->rsp[0] = msg->data[0] | 4;
378 msg->rsp[1] = msg->data[1];
379 msg->rsp[2] = cCode;
380 msg->rsp_size = 3;
381
382 smi_info->curr_msg = NULL;
383 deliver_recv_msg(smi_info, msg);
384 }
385
386 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
387 {
388 int rv;
389
390 if (!smi_info->waiting_msg) {
391 smi_info->curr_msg = NULL;
392 rv = SI_SM_IDLE;
393 } else {
394 int err;
395
396 smi_info->curr_msg = smi_info->waiting_msg;
397 smi_info->waiting_msg = NULL;
398 debug_timestamp("Start2");
399 err = atomic_notifier_call_chain(&xaction_notifier_list,
400 0, smi_info);
401 if (err & NOTIFY_STOP_MASK) {
402 rv = SI_SM_CALL_WITHOUT_DELAY;
403 goto out;
404 }
405 err = smi_info->handlers->start_transaction(
406 smi_info->si_sm,
407 smi_info->curr_msg->data,
408 smi_info->curr_msg->data_size);
409 if (err)
410 return_hosed_msg(smi_info, err);
411
412 rv = SI_SM_CALL_WITHOUT_DELAY;
413 }
414 out:
415 return rv;
416 }
417
418 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
419 {
420 smi_info->last_timeout_jiffies = jiffies;
421 mod_timer(&smi_info->si_timer, new_val);
422 smi_info->timer_running = true;
423 }
424
425 /*
426 * Start a new message and (re)start the timer and thread.
427 */
428 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
429 unsigned int size)
430 {
431 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
432
433 if (smi_info->thread)
434 wake_up_process(smi_info->thread);
435
436 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
437 }
438
439 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
440 {
441 unsigned char msg[2];
442
443 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
444 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
445
446 if (start_timer)
447 start_new_msg(smi_info, msg, 2);
448 else
449 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
450 smi_info->si_state = SI_CHECKING_ENABLES;
451 }
452
453 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
454 {
455 unsigned char msg[3];
456
457 /* Make sure the watchdog pre-timeout flag is not set at startup. */
458 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
459 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
460 msg[2] = WDT_PRE_TIMEOUT_INT;
461
462 if (start_timer)
463 start_new_msg(smi_info, msg, 3);
464 else
465 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
466 smi_info->si_state = SI_CLEARING_FLAGS;
467 }
468
469 static void start_getting_msg_queue(struct smi_info *smi_info)
470 {
471 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
472 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
473 smi_info->curr_msg->data_size = 2;
474
475 start_new_msg(smi_info, smi_info->curr_msg->data,
476 smi_info->curr_msg->data_size);
477 smi_info->si_state = SI_GETTING_MESSAGES;
478 }
479
480 static void start_getting_events(struct smi_info *smi_info)
481 {
482 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
483 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
484 smi_info->curr_msg->data_size = 2;
485
486 start_new_msg(smi_info, smi_info->curr_msg->data,
487 smi_info->curr_msg->data_size);
488 smi_info->si_state = SI_GETTING_EVENTS;
489 }
490
491 /*
492 * When we have a situtaion where we run out of memory and cannot
493 * allocate messages, we just leave them in the BMC and run the system
494 * polled until we can allocate some memory. Once we have some
495 * memory, we will re-enable the interrupt.
496 *
497 * Note that we cannot just use disable_irq(), since the interrupt may
498 * be shared.
499 */
500 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
501 {
502 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
503 smi_info->interrupt_disabled = true;
504 start_check_enables(smi_info, start_timer);
505 return true;
506 }
507 return false;
508 }
509
510 static inline bool enable_si_irq(struct smi_info *smi_info)
511 {
512 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
513 smi_info->interrupt_disabled = false;
514 start_check_enables(smi_info, true);
515 return true;
516 }
517 return false;
518 }
519
520 /*
521 * Allocate a message. If unable to allocate, start the interrupt
522 * disable process and return NULL. If able to allocate but
523 * interrupts are disabled, free the message and return NULL after
524 * starting the interrupt enable process.
525 */
526 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
527 {
528 struct ipmi_smi_msg *msg;
529
530 msg = ipmi_alloc_smi_msg();
531 if (!msg) {
532 if (!disable_si_irq(smi_info, true))
533 smi_info->si_state = SI_NORMAL;
534 } else if (enable_si_irq(smi_info)) {
535 ipmi_free_smi_msg(msg);
536 msg = NULL;
537 }
538 return msg;
539 }
540
541 static void handle_flags(struct smi_info *smi_info)
542 {
543 retry:
544 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
545 /* Watchdog pre-timeout */
546 smi_inc_stat(smi_info, watchdog_pretimeouts);
547
548 start_clear_flags(smi_info, true);
549 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
550 if (smi_info->intf)
551 ipmi_smi_watchdog_pretimeout(smi_info->intf);
552 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
553 /* Messages available. */
554 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
555 if (!smi_info->curr_msg)
556 return;
557
558 start_getting_msg_queue(smi_info);
559 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
560 /* Events available. */
561 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
562 if (!smi_info->curr_msg)
563 return;
564
565 start_getting_events(smi_info);
566 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
567 smi_info->oem_data_avail_handler) {
568 if (smi_info->oem_data_avail_handler(smi_info))
569 goto retry;
570 } else
571 smi_info->si_state = SI_NORMAL;
572 }
573
574 /*
575 * Global enables we care about.
576 */
577 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
578 IPMI_BMC_EVT_MSG_INTR)
579
580 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
581 bool *irq_on)
582 {
583 u8 enables = 0;
584
585 if (smi_info->supports_event_msg_buff)
586 enables |= IPMI_BMC_EVT_MSG_BUFF;
587
588 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
589 smi_info->cannot_disable_irq) &&
590 !smi_info->irq_enable_broken)
591 enables |= IPMI_BMC_RCV_MSG_INTR;
592
593 if (smi_info->supports_event_msg_buff &&
594 smi_info->irq && !smi_info->interrupt_disabled &&
595 !smi_info->irq_enable_broken)
596 enables |= IPMI_BMC_EVT_MSG_INTR;
597
598 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
599
600 return enables;
601 }
602
603 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
604 {
605 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
606
607 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
608
609 if ((bool)irqstate == irq_on)
610 return;
611
612 if (irq_on)
613 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
614 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
615 else
616 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
617 }
618
619 static void handle_transaction_done(struct smi_info *smi_info)
620 {
621 struct ipmi_smi_msg *msg;
622
623 debug_timestamp("Done");
624 switch (smi_info->si_state) {
625 case SI_NORMAL:
626 if (!smi_info->curr_msg)
627 break;
628
629 smi_info->curr_msg->rsp_size
630 = smi_info->handlers->get_result(
631 smi_info->si_sm,
632 smi_info->curr_msg->rsp,
633 IPMI_MAX_MSG_LENGTH);
634
635 /*
636 * Do this here becase deliver_recv_msg() releases the
637 * lock, and a new message can be put in during the
638 * time the lock is released.
639 */
640 msg = smi_info->curr_msg;
641 smi_info->curr_msg = NULL;
642 deliver_recv_msg(smi_info, msg);
643 break;
644
645 case SI_GETTING_FLAGS:
646 {
647 unsigned char msg[4];
648 unsigned int len;
649
650 /* We got the flags from the SMI, now handle them. */
651 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
652 if (msg[2] != 0) {
653 /* Error fetching flags, just give up for now. */
654 smi_info->si_state = SI_NORMAL;
655 } else if (len < 4) {
656 /*
657 * Hmm, no flags. That's technically illegal, but
658 * don't use uninitialized data.
659 */
660 smi_info->si_state = SI_NORMAL;
661 } else {
662 smi_info->msg_flags = msg[3];
663 handle_flags(smi_info);
664 }
665 break;
666 }
667
668 case SI_CLEARING_FLAGS:
669 {
670 unsigned char msg[3];
671
672 /* We cleared the flags. */
673 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
674 if (msg[2] != 0) {
675 /* Error clearing flags */
676 dev_warn(smi_info->dev,
677 "Error clearing flags: %2.2x\n", msg[2]);
678 }
679 smi_info->si_state = SI_NORMAL;
680 break;
681 }
682
683 case SI_GETTING_EVENTS:
684 {
685 smi_info->curr_msg->rsp_size
686 = smi_info->handlers->get_result(
687 smi_info->si_sm,
688 smi_info->curr_msg->rsp,
689 IPMI_MAX_MSG_LENGTH);
690
691 /*
692 * Do this here becase deliver_recv_msg() releases the
693 * lock, and a new message can be put in during the
694 * time the lock is released.
695 */
696 msg = smi_info->curr_msg;
697 smi_info->curr_msg = NULL;
698 if (msg->rsp[2] != 0) {
699 /* Error getting event, probably done. */
700 msg->done(msg);
701
702 /* Take off the event flag. */
703 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
704 handle_flags(smi_info);
705 } else {
706 smi_inc_stat(smi_info, events);
707
708 /*
709 * Do this before we deliver the message
710 * because delivering the message releases the
711 * lock and something else can mess with the
712 * state.
713 */
714 handle_flags(smi_info);
715
716 deliver_recv_msg(smi_info, msg);
717 }
718 break;
719 }
720
721 case SI_GETTING_MESSAGES:
722 {
723 smi_info->curr_msg->rsp_size
724 = smi_info->handlers->get_result(
725 smi_info->si_sm,
726 smi_info->curr_msg->rsp,
727 IPMI_MAX_MSG_LENGTH);
728
729 /*
730 * Do this here becase deliver_recv_msg() releases the
731 * lock, and a new message can be put in during the
732 * time the lock is released.
733 */
734 msg = smi_info->curr_msg;
735 smi_info->curr_msg = NULL;
736 if (msg->rsp[2] != 0) {
737 /* Error getting event, probably done. */
738 msg->done(msg);
739
740 /* Take off the msg flag. */
741 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
742 handle_flags(smi_info);
743 } else {
744 smi_inc_stat(smi_info, incoming_messages);
745
746 /*
747 * Do this before we deliver the message
748 * because delivering the message releases the
749 * lock and something else can mess with the
750 * state.
751 */
752 handle_flags(smi_info);
753
754 deliver_recv_msg(smi_info, msg);
755 }
756 break;
757 }
758
759 case SI_CHECKING_ENABLES:
760 {
761 unsigned char msg[4];
762 u8 enables;
763 bool irq_on;
764
765 /* We got the flags from the SMI, now handle them. */
766 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
767 if (msg[2] != 0) {
768 dev_warn(smi_info->dev,
769 "Couldn't get irq info: %x.\n", msg[2]);
770 dev_warn(smi_info->dev,
771 "Maybe ok, but ipmi might run very slowly.\n");
772 smi_info->si_state = SI_NORMAL;
773 break;
774 }
775 enables = current_global_enables(smi_info, 0, &irq_on);
776 if (smi_info->si_type == SI_BT)
777 /* BT has its own interrupt enable bit. */
778 check_bt_irq(smi_info, irq_on);
779 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
780 /* Enables are not correct, fix them. */
781 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
782 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
783 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
784 smi_info->handlers->start_transaction(
785 smi_info->si_sm, msg, 3);
786 smi_info->si_state = SI_SETTING_ENABLES;
787 } else if (smi_info->supports_event_msg_buff) {
788 smi_info->curr_msg = ipmi_alloc_smi_msg();
789 if (!smi_info->curr_msg) {
790 smi_info->si_state = SI_NORMAL;
791 break;
792 }
793 start_getting_events(smi_info);
794 } else {
795 smi_info->si_state = SI_NORMAL;
796 }
797 break;
798 }
799
800 case SI_SETTING_ENABLES:
801 {
802 unsigned char msg[4];
803
804 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
805 if (msg[2] != 0)
806 dev_warn(smi_info->dev,
807 "Could not set the global enables: 0x%x.\n",
808 msg[2]);
809
810 if (smi_info->supports_event_msg_buff) {
811 smi_info->curr_msg = ipmi_alloc_smi_msg();
812 if (!smi_info->curr_msg) {
813 smi_info->si_state = SI_NORMAL;
814 break;
815 }
816 start_getting_events(smi_info);
817 } else {
818 smi_info->si_state = SI_NORMAL;
819 }
820 break;
821 }
822 }
823 }
824
825 /*
826 * Called on timeouts and events. Timeouts should pass the elapsed
827 * time, interrupts should pass in zero. Must be called with
828 * si_lock held and interrupts disabled.
829 */
830 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
831 int time)
832 {
833 enum si_sm_result si_sm_result;
834
835 restart:
836 /*
837 * There used to be a loop here that waited a little while
838 * (around 25us) before giving up. That turned out to be
839 * pointless, the minimum delays I was seeing were in the 300us
840 * range, which is far too long to wait in an interrupt. So
841 * we just run until the state machine tells us something
842 * happened or it needs a delay.
843 */
844 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
845 time = 0;
846 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
847 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
848
849 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
850 smi_inc_stat(smi_info, complete_transactions);
851
852 handle_transaction_done(smi_info);
853 goto restart;
854 } else if (si_sm_result == SI_SM_HOSED) {
855 smi_inc_stat(smi_info, hosed_count);
856
857 /*
858 * Do the before return_hosed_msg, because that
859 * releases the lock.
860 */
861 smi_info->si_state = SI_NORMAL;
862 if (smi_info->curr_msg != NULL) {
863 /*
864 * If we were handling a user message, format
865 * a response to send to the upper layer to
866 * tell it about the error.
867 */
868 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
869 }
870 goto restart;
871 }
872
873 /*
874 * We prefer handling attn over new messages. But don't do
875 * this if there is not yet an upper layer to handle anything.
876 */
877 if (likely(smi_info->intf) &&
878 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
879 unsigned char msg[2];
880
881 if (smi_info->si_state != SI_NORMAL) {
882 /*
883 * We got an ATTN, but we are doing something else.
884 * Handle the ATTN later.
885 */
886 smi_info->got_attn = true;
887 } else {
888 smi_info->got_attn = false;
889 smi_inc_stat(smi_info, attentions);
890
891 /*
892 * Got a attn, send down a get message flags to see
893 * what's causing it. It would be better to handle
894 * this in the upper layer, but due to the way
895 * interrupts work with the SMI, that's not really
896 * possible.
897 */
898 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
899 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
900
901 start_new_msg(smi_info, msg, 2);
902 smi_info->si_state = SI_GETTING_FLAGS;
903 goto restart;
904 }
905 }
906
907 /* If we are currently idle, try to start the next message. */
908 if (si_sm_result == SI_SM_IDLE) {
909 smi_inc_stat(smi_info, idles);
910
911 si_sm_result = start_next_msg(smi_info);
912 if (si_sm_result != SI_SM_IDLE)
913 goto restart;
914 }
915
916 if ((si_sm_result == SI_SM_IDLE)
917 && (atomic_read(&smi_info->req_events))) {
918 /*
919 * We are idle and the upper layer requested that I fetch
920 * events, so do so.
921 */
922 atomic_set(&smi_info->req_events, 0);
923
924 /*
925 * Take this opportunity to check the interrupt and
926 * message enable state for the BMC. The BMC can be
927 * asynchronously reset, and may thus get interrupts
928 * disable and messages disabled.
929 */
930 if (smi_info->supports_event_msg_buff || smi_info->irq) {
931 start_check_enables(smi_info, true);
932 } else {
933 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
934 if (!smi_info->curr_msg)
935 goto out;
936
937 start_getting_events(smi_info);
938 }
939 goto restart;
940 }
941
942 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
943 /* Ok it if fails, the timer will just go off. */
944 if (del_timer(&smi_info->si_timer))
945 smi_info->timer_running = false;
946 }
947
948 out:
949 return si_sm_result;
950 }
951
952 static void check_start_timer_thread(struct smi_info *smi_info)
953 {
954 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
955 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
956
957 if (smi_info->thread)
958 wake_up_process(smi_info->thread);
959
960 start_next_msg(smi_info);
961 smi_event_handler(smi_info, 0);
962 }
963 }
964
965 static void flush_messages(void *send_info)
966 {
967 struct smi_info *smi_info = send_info;
968 enum si_sm_result result;
969
970 /*
971 * Currently, this function is called only in run-to-completion
972 * mode. This means we are single-threaded, no need for locks.
973 */
974 result = smi_event_handler(smi_info, 0);
975 while (result != SI_SM_IDLE) {
976 udelay(SI_SHORT_TIMEOUT_USEC);
977 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
978 }
979 }
980
981 static void sender(void *send_info,
982 struct ipmi_smi_msg *msg)
983 {
984 struct smi_info *smi_info = send_info;
985 unsigned long flags;
986
987 debug_timestamp("Enqueue");
988
989 if (smi_info->run_to_completion) {
990 /*
991 * If we are running to completion, start it. Upper
992 * layer will call flush_messages to clear it out.
993 */
994 smi_info->waiting_msg = msg;
995 return;
996 }
997
998 spin_lock_irqsave(&smi_info->si_lock, flags);
999 /*
1000 * The following two lines don't need to be under the lock for
1001 * the lock's sake, but they do need SMP memory barriers to
1002 * avoid getting things out of order. We are already claiming
1003 * the lock, anyway, so just do it under the lock to avoid the
1004 * ordering problem.
1005 */
1006 BUG_ON(smi_info->waiting_msg);
1007 smi_info->waiting_msg = msg;
1008 check_start_timer_thread(smi_info);
1009 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1010 }
1011
1012 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1013 {
1014 struct smi_info *smi_info = send_info;
1015
1016 smi_info->run_to_completion = i_run_to_completion;
1017 if (i_run_to_completion)
1018 flush_messages(smi_info);
1019 }
1020
1021 /*
1022 * Use -1 in the nsec value of the busy waiting timespec to tell that
1023 * we are spinning in kipmid looking for something and not delaying
1024 * between checks
1025 */
1026 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1027 {
1028 ts->tv_nsec = -1;
1029 }
1030 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1031 {
1032 return ts->tv_nsec != -1;
1033 }
1034
1035 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1036 const struct smi_info *smi_info,
1037 struct timespec64 *busy_until)
1038 {
1039 unsigned int max_busy_us = 0;
1040
1041 if (smi_info->intf_num < num_max_busy_us)
1042 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1043 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1044 ipmi_si_set_not_busy(busy_until);
1045 else if (!ipmi_si_is_busy(busy_until)) {
1046 getnstimeofday64(busy_until);
1047 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1048 } else {
1049 struct timespec64 now;
1050
1051 getnstimeofday64(&now);
1052 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1053 ipmi_si_set_not_busy(busy_until);
1054 return 0;
1055 }
1056 }
1057 return 1;
1058 }
1059
1060
1061 /*
1062 * A busy-waiting loop for speeding up IPMI operation.
1063 *
1064 * Lousy hardware makes this hard. This is only enabled for systems
1065 * that are not BT and do not have interrupts. It starts spinning
1066 * when an operation is complete or until max_busy tells it to stop
1067 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1068 * Documentation/IPMI.txt for details.
1069 */
1070 static int ipmi_thread(void *data)
1071 {
1072 struct smi_info *smi_info = data;
1073 unsigned long flags;
1074 enum si_sm_result smi_result;
1075 struct timespec64 busy_until;
1076
1077 ipmi_si_set_not_busy(&busy_until);
1078 set_user_nice(current, MAX_NICE);
1079 while (!kthread_should_stop()) {
1080 int busy_wait;
1081
1082 spin_lock_irqsave(&(smi_info->si_lock), flags);
1083 smi_result = smi_event_handler(smi_info, 0);
1084
1085 /*
1086 * If the driver is doing something, there is a possible
1087 * race with the timer. If the timer handler see idle,
1088 * and the thread here sees something else, the timer
1089 * handler won't restart the timer even though it is
1090 * required. So start it here if necessary.
1091 */
1092 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1093 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1094
1095 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1096 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1097 &busy_until);
1098 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1099 ; /* do nothing */
1100 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1101 schedule();
1102 else if (smi_result == SI_SM_IDLE) {
1103 if (atomic_read(&smi_info->need_watch)) {
1104 schedule_timeout_interruptible(100);
1105 } else {
1106 /* Wait to be woken up when we are needed. */
1107 __set_current_state(TASK_INTERRUPTIBLE);
1108 schedule();
1109 }
1110 } else
1111 schedule_timeout_interruptible(1);
1112 }
1113 return 0;
1114 }
1115
1116
1117 static void poll(void *send_info)
1118 {
1119 struct smi_info *smi_info = send_info;
1120 unsigned long flags = 0;
1121 bool run_to_completion = smi_info->run_to_completion;
1122
1123 /*
1124 * Make sure there is some delay in the poll loop so we can
1125 * drive time forward and timeout things.
1126 */
1127 udelay(10);
1128 if (!run_to_completion)
1129 spin_lock_irqsave(&smi_info->si_lock, flags);
1130 smi_event_handler(smi_info, 10);
1131 if (!run_to_completion)
1132 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1133 }
1134
1135 static void request_events(void *send_info)
1136 {
1137 struct smi_info *smi_info = send_info;
1138
1139 if (!smi_info->has_event_buffer)
1140 return;
1141
1142 atomic_set(&smi_info->req_events, 1);
1143 }
1144
1145 static void set_need_watch(void *send_info, bool enable)
1146 {
1147 struct smi_info *smi_info = send_info;
1148 unsigned long flags;
1149
1150 atomic_set(&smi_info->need_watch, enable);
1151 spin_lock_irqsave(&smi_info->si_lock, flags);
1152 check_start_timer_thread(smi_info);
1153 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1154 }
1155
1156 static int initialized;
1157
1158 static void smi_timeout(unsigned long data)
1159 {
1160 struct smi_info *smi_info = (struct smi_info *) data;
1161 enum si_sm_result smi_result;
1162 unsigned long flags;
1163 unsigned long jiffies_now;
1164 long time_diff;
1165 long timeout;
1166
1167 spin_lock_irqsave(&(smi_info->si_lock), flags);
1168 debug_timestamp("Timer");
1169
1170 jiffies_now = jiffies;
1171 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1172 * SI_USEC_PER_JIFFY);
1173 smi_result = smi_event_handler(smi_info, time_diff);
1174
1175 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1176 /* Running with interrupts, only do long timeouts. */
1177 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1178 smi_inc_stat(smi_info, long_timeouts);
1179 goto do_mod_timer;
1180 }
1181
1182 /*
1183 * If the state machine asks for a short delay, then shorten
1184 * the timer timeout.
1185 */
1186 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1187 smi_inc_stat(smi_info, short_timeouts);
1188 timeout = jiffies + 1;
1189 } else {
1190 smi_inc_stat(smi_info, long_timeouts);
1191 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1192 }
1193
1194 do_mod_timer:
1195 if (smi_result != SI_SM_IDLE)
1196 smi_mod_timer(smi_info, timeout);
1197 else
1198 smi_info->timer_running = false;
1199 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1200 }
1201
1202 static irqreturn_t si_irq_handler(int irq, void *data)
1203 {
1204 struct smi_info *smi_info = data;
1205 unsigned long flags;
1206
1207 spin_lock_irqsave(&(smi_info->si_lock), flags);
1208
1209 smi_inc_stat(smi_info, interrupts);
1210
1211 debug_timestamp("Interrupt");
1212
1213 smi_event_handler(smi_info, 0);
1214 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1215 return IRQ_HANDLED;
1216 }
1217
1218 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1219 {
1220 struct smi_info *smi_info = data;
1221 /* We need to clear the IRQ flag for the BT interface. */
1222 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1223 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1224 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1225 return si_irq_handler(irq, data);
1226 }
1227
1228 static int smi_start_processing(void *send_info,
1229 ipmi_smi_t intf)
1230 {
1231 struct smi_info *new_smi = send_info;
1232 int enable = 0;
1233
1234 new_smi->intf = intf;
1235
1236 /* Set up the timer that drives the interface. */
1237 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1238 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1239
1240 /* Try to claim any interrupts. */
1241 if (new_smi->irq_setup)
1242 new_smi->irq_setup(new_smi);
1243
1244 /*
1245 * Check if the user forcefully enabled the daemon.
1246 */
1247 if (new_smi->intf_num < num_force_kipmid)
1248 enable = force_kipmid[new_smi->intf_num];
1249 /*
1250 * The BT interface is efficient enough to not need a thread,
1251 * and there is no need for a thread if we have interrupts.
1252 */
1253 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1254 enable = 1;
1255
1256 if (enable) {
1257 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1258 "kipmi%d", new_smi->intf_num);
1259 if (IS_ERR(new_smi->thread)) {
1260 dev_notice(new_smi->dev, "Could not start"
1261 " kernel thread due to error %ld, only using"
1262 " timers to drive the interface\n",
1263 PTR_ERR(new_smi->thread));
1264 new_smi->thread = NULL;
1265 }
1266 }
1267
1268 return 0;
1269 }
1270
1271 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1272 {
1273 struct smi_info *smi = send_info;
1274
1275 data->addr_src = smi->addr_source;
1276 data->dev = smi->dev;
1277 data->addr_info = smi->addr_info;
1278 get_device(smi->dev);
1279
1280 return 0;
1281 }
1282
1283 static void set_maintenance_mode(void *send_info, bool enable)
1284 {
1285 struct smi_info *smi_info = send_info;
1286
1287 if (!enable)
1288 atomic_set(&smi_info->req_events, 0);
1289 }
1290
1291 static const struct ipmi_smi_handlers handlers = {
1292 .owner = THIS_MODULE,
1293 .start_processing = smi_start_processing,
1294 .get_smi_info = get_smi_info,
1295 .sender = sender,
1296 .request_events = request_events,
1297 .set_need_watch = set_need_watch,
1298 .set_maintenance_mode = set_maintenance_mode,
1299 .set_run_to_completion = set_run_to_completion,
1300 .flush_messages = flush_messages,
1301 .poll = poll,
1302 };
1303
1304 /*
1305 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1306 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1307 */
1308
1309 static LIST_HEAD(smi_infos);
1310 static DEFINE_MUTEX(smi_infos_lock);
1311 static int smi_num; /* Used to sequence the SMIs */
1312
1313 #define DEFAULT_REGSPACING 1
1314 #define DEFAULT_REGSIZE 1
1315
1316 #ifdef CONFIG_ACPI
1317 static bool si_tryacpi = true;
1318 #endif
1319 #ifdef CONFIG_DMI
1320 static bool si_trydmi = true;
1321 #endif
1322 static bool si_tryplatform = true;
1323 #ifdef CONFIG_PCI
1324 static bool si_trypci = true;
1325 #endif
1326 static char *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343
1344 #define IPMI_IO_ADDR_SPACE 0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1352 " Documentation/IPMI.txt in the kernel sources for the"
1353 " gory details.");
1354
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367 " default scan of the interfaces identified via platform"
1368 " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372 " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1375 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1376 " interface separated by commas. The types are 'kcs',"
1377 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1378 " the first interface to kcs and the second to bt");
1379 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1380 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1381 " addresses separated by commas. Only use if an interface"
1382 " is in memory. Otherwise, set it to zero or leave"
1383 " it blank.");
1384 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1385 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1386 " addresses separated by commas. Only use if an interface"
1387 " is a port. Otherwise, set it to zero or leave"
1388 " it blank.");
1389 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1390 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1391 " addresses separated by commas. Only use if an interface"
1392 " has an interrupt. Otherwise, set it to zero or leave"
1393 " it blank.");
1394 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1395 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1396 " and each successive register used by the interface. For"
1397 " instance, if the start address is 0xca2 and the spacing"
1398 " is 2, then the second address is at 0xca4. Defaults"
1399 " to 1.");
1400 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1401 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1402 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1403 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1404 " the 8-bit IPMI register has to be read from a larger"
1405 " register.");
1406 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1407 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1408 " IPMI register, in bits. For instance, if the data"
1409 " is read from a 32-bit word and the IPMI data is in"
1410 " bit 8-15, then the shift would be 8");
1411 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1412 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1413 " the controller. Normally this is 0x20, but can be"
1414 " overridden by this parm. This is an array indexed"
1415 " by interface number.");
1416 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1417 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1418 " disabled(0). Normally the IPMI driver auto-detects"
1419 " this, but the value may be overridden by this parm.");
1420 module_param(unload_when_empty, bool, 0);
1421 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1422 " specified or found, default is 1. Setting to 0"
1423 " is useful for hot add of devices using hotmod.");
1424 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1425 MODULE_PARM_DESC(kipmid_max_busy_us,
1426 "Max time (in microseconds) to busy-wait for IPMI data before"
1427 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1428 " if kipmid is using up a lot of CPU time.");
1429
1430
1431 static void std_irq_cleanup(struct smi_info *info)
1432 {
1433 if (info->si_type == SI_BT)
1434 /* Disable the interrupt in the BT interface. */
1435 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1436 free_irq(info->irq, info);
1437 }
1438
1439 static int std_irq_setup(struct smi_info *info)
1440 {
1441 int rv;
1442
1443 if (!info->irq)
1444 return 0;
1445
1446 if (info->si_type == SI_BT) {
1447 rv = request_irq(info->irq,
1448 si_bt_irq_handler,
1449 IRQF_SHARED,
1450 DEVICE_NAME,
1451 info);
1452 if (!rv)
1453 /* Enable the interrupt in the BT interface. */
1454 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1455 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1456 } else
1457 rv = request_irq(info->irq,
1458 si_irq_handler,
1459 IRQF_SHARED,
1460 DEVICE_NAME,
1461 info);
1462 if (rv) {
1463 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1464 " running polled\n",
1465 DEVICE_NAME, info->irq);
1466 info->irq = 0;
1467 } else {
1468 info->irq_cleanup = std_irq_cleanup;
1469 dev_info(info->dev, "Using irq %d\n", info->irq);
1470 }
1471
1472 return rv;
1473 }
1474
1475 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1476 {
1477 unsigned int addr = io->addr_data;
1478
1479 return inb(addr + (offset * io->regspacing));
1480 }
1481
1482 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1483 unsigned char b)
1484 {
1485 unsigned int addr = io->addr_data;
1486
1487 outb(b, addr + (offset * io->regspacing));
1488 }
1489
1490 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1491 {
1492 unsigned int addr = io->addr_data;
1493
1494 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1495 }
1496
1497 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1498 unsigned char b)
1499 {
1500 unsigned int addr = io->addr_data;
1501
1502 outw(b << io->regshift, addr + (offset * io->regspacing));
1503 }
1504
1505 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1506 {
1507 unsigned int addr = io->addr_data;
1508
1509 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1510 }
1511
1512 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1513 unsigned char b)
1514 {
1515 unsigned int addr = io->addr_data;
1516
1517 outl(b << io->regshift, addr+(offset * io->regspacing));
1518 }
1519
1520 static void port_cleanup(struct smi_info *info)
1521 {
1522 unsigned int addr = info->io.addr_data;
1523 int idx;
1524
1525 if (addr) {
1526 for (idx = 0; idx < info->io_size; idx++)
1527 release_region(addr + idx * info->io.regspacing,
1528 info->io.regsize);
1529 }
1530 }
1531
1532 static int port_setup(struct smi_info *info)
1533 {
1534 unsigned int addr = info->io.addr_data;
1535 int idx;
1536
1537 if (!addr)
1538 return -ENODEV;
1539
1540 info->io_cleanup = port_cleanup;
1541
1542 /*
1543 * Figure out the actual inb/inw/inl/etc routine to use based
1544 * upon the register size.
1545 */
1546 switch (info->io.regsize) {
1547 case 1:
1548 info->io.inputb = port_inb;
1549 info->io.outputb = port_outb;
1550 break;
1551 case 2:
1552 info->io.inputb = port_inw;
1553 info->io.outputb = port_outw;
1554 break;
1555 case 4:
1556 info->io.inputb = port_inl;
1557 info->io.outputb = port_outl;
1558 break;
1559 default:
1560 dev_warn(info->dev, "Invalid register size: %d\n",
1561 info->io.regsize);
1562 return -EINVAL;
1563 }
1564
1565 /*
1566 * Some BIOSes reserve disjoint I/O regions in their ACPI
1567 * tables. This causes problems when trying to register the
1568 * entire I/O region. Therefore we must register each I/O
1569 * port separately.
1570 */
1571 for (idx = 0; idx < info->io_size; idx++) {
1572 if (request_region(addr + idx * info->io.regspacing,
1573 info->io.regsize, DEVICE_NAME) == NULL) {
1574 /* Undo allocations */
1575 while (idx--)
1576 release_region(addr + idx * info->io.regspacing,
1577 info->io.regsize);
1578 return -EIO;
1579 }
1580 }
1581 return 0;
1582 }
1583
1584 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1585 unsigned int offset)
1586 {
1587 return readb((io->addr)+(offset * io->regspacing));
1588 }
1589
1590 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1591 unsigned char b)
1592 {
1593 writeb(b, (io->addr)+(offset * io->regspacing));
1594 }
1595
1596 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1597 unsigned int offset)
1598 {
1599 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600 & 0xff;
1601 }
1602
1603 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1604 unsigned char b)
1605 {
1606 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1607 }
1608
1609 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1610 unsigned int offset)
1611 {
1612 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613 & 0xff;
1614 }
1615
1616 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1617 unsigned char b)
1618 {
1619 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620 }
1621
1622 #ifdef readq
1623 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1624 {
1625 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1626 & 0xff;
1627 }
1628
1629 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1630 unsigned char b)
1631 {
1632 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1633 }
1634 #endif
1635
1636 static void mem_region_cleanup(struct smi_info *info, int num)
1637 {
1638 unsigned long addr = info->io.addr_data;
1639 int idx;
1640
1641 for (idx = 0; idx < num; idx++)
1642 release_mem_region(addr + idx * info->io.regspacing,
1643 info->io.regsize);
1644 }
1645
1646 static void mem_cleanup(struct smi_info *info)
1647 {
1648 if (info->io.addr) {
1649 iounmap(info->io.addr);
1650 mem_region_cleanup(info, info->io_size);
1651 }
1652 }
1653
1654 static int mem_setup(struct smi_info *info)
1655 {
1656 unsigned long addr = info->io.addr_data;
1657 int mapsize, idx;
1658
1659 if (!addr)
1660 return -ENODEV;
1661
1662 info->io_cleanup = mem_cleanup;
1663
1664 /*
1665 * Figure out the actual readb/readw/readl/etc routine to use based
1666 * upon the register size.
1667 */
1668 switch (info->io.regsize) {
1669 case 1:
1670 info->io.inputb = intf_mem_inb;
1671 info->io.outputb = intf_mem_outb;
1672 break;
1673 case 2:
1674 info->io.inputb = intf_mem_inw;
1675 info->io.outputb = intf_mem_outw;
1676 break;
1677 case 4:
1678 info->io.inputb = intf_mem_inl;
1679 info->io.outputb = intf_mem_outl;
1680 break;
1681 #ifdef readq
1682 case 8:
1683 info->io.inputb = mem_inq;
1684 info->io.outputb = mem_outq;
1685 break;
1686 #endif
1687 default:
1688 dev_warn(info->dev, "Invalid register size: %d\n",
1689 info->io.regsize);
1690 return -EINVAL;
1691 }
1692
1693 /*
1694 * Some BIOSes reserve disjoint memory regions in their ACPI
1695 * tables. This causes problems when trying to request the
1696 * entire region. Therefore we must request each register
1697 * separately.
1698 */
1699 for (idx = 0; idx < info->io_size; idx++) {
1700 if (request_mem_region(addr + idx * info->io.regspacing,
1701 info->io.regsize, DEVICE_NAME) == NULL) {
1702 /* Undo allocations */
1703 mem_region_cleanup(info, idx);
1704 return -EIO;
1705 }
1706 }
1707
1708 /*
1709 * Calculate the total amount of memory to claim. This is an
1710 * unusual looking calculation, but it avoids claiming any
1711 * more memory than it has to. It will claim everything
1712 * between the first address to the end of the last full
1713 * register.
1714 */
1715 mapsize = ((info->io_size * info->io.regspacing)
1716 - (info->io.regspacing - info->io.regsize));
1717 info->io.addr = ioremap(addr, mapsize);
1718 if (info->io.addr == NULL) {
1719 mem_region_cleanup(info, info->io_size);
1720 return -EIO;
1721 }
1722 return 0;
1723 }
1724
1725 /*
1726 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1727 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1728 * Options are:
1729 * rsp=<regspacing>
1730 * rsi=<regsize>
1731 * rsh=<regshift>
1732 * irq=<irq>
1733 * ipmb=<ipmb addr>
1734 */
1735 enum hotmod_op { HM_ADD, HM_REMOVE };
1736 struct hotmod_vals {
1737 const char *name;
1738 const int val;
1739 };
1740
1741 static const struct hotmod_vals hotmod_ops[] = {
1742 { "add", HM_ADD },
1743 { "remove", HM_REMOVE },
1744 { NULL }
1745 };
1746
1747 static const struct hotmod_vals hotmod_si[] = {
1748 { "kcs", SI_KCS },
1749 { "smic", SI_SMIC },
1750 { "bt", SI_BT },
1751 { NULL }
1752 };
1753
1754 static const struct hotmod_vals hotmod_as[] = {
1755 { "mem", IPMI_MEM_ADDR_SPACE },
1756 { "i/o", IPMI_IO_ADDR_SPACE },
1757 { NULL }
1758 };
1759
1760 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1761 char **curr)
1762 {
1763 char *s;
1764 int i;
1765
1766 s = strchr(*curr, ',');
1767 if (!s) {
1768 pr_warn(PFX "No hotmod %s given.\n", name);
1769 return -EINVAL;
1770 }
1771 *s = '\0';
1772 s++;
1773 for (i = 0; v[i].name; i++) {
1774 if (strcmp(*curr, v[i].name) == 0) {
1775 *val = v[i].val;
1776 *curr = s;
1777 return 0;
1778 }
1779 }
1780
1781 pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1782 return -EINVAL;
1783 }
1784
1785 static int check_hotmod_int_op(const char *curr, const char *option,
1786 const char *name, int *val)
1787 {
1788 char *n;
1789
1790 if (strcmp(curr, name) == 0) {
1791 if (!option) {
1792 pr_warn(PFX "No option given for '%s'\n", curr);
1793 return -EINVAL;
1794 }
1795 *val = simple_strtoul(option, &n, 0);
1796 if ((*n != '\0') || (*option == '\0')) {
1797 pr_warn(PFX "Bad option given for '%s'\n", curr);
1798 return -EINVAL;
1799 }
1800 return 1;
1801 }
1802 return 0;
1803 }
1804
1805 static struct smi_info *smi_info_alloc(void)
1806 {
1807 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1808
1809 if (info)
1810 spin_lock_init(&info->si_lock);
1811 return info;
1812 }
1813
1814 static int hotmod_handler(const char *val, struct kernel_param *kp)
1815 {
1816 char *str = kstrdup(val, GFP_KERNEL);
1817 int rv;
1818 char *next, *curr, *s, *n, *o;
1819 enum hotmod_op op;
1820 enum si_type si_type;
1821 int addr_space;
1822 unsigned long addr;
1823 int regspacing;
1824 int regsize;
1825 int regshift;
1826 int irq;
1827 int ipmb;
1828 int ival;
1829 int len;
1830 struct smi_info *info;
1831
1832 if (!str)
1833 return -ENOMEM;
1834
1835 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1836 len = strlen(str);
1837 ival = len - 1;
1838 while ((ival >= 0) && isspace(str[ival])) {
1839 str[ival] = '\0';
1840 ival--;
1841 }
1842
1843 for (curr = str; curr; curr = next) {
1844 regspacing = 1;
1845 regsize = 1;
1846 regshift = 0;
1847 irq = 0;
1848 ipmb = 0; /* Choose the default if not specified */
1849
1850 next = strchr(curr, ':');
1851 if (next) {
1852 *next = '\0';
1853 next++;
1854 }
1855
1856 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1857 if (rv)
1858 break;
1859 op = ival;
1860
1861 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1862 if (rv)
1863 break;
1864 si_type = ival;
1865
1866 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1867 if (rv)
1868 break;
1869
1870 s = strchr(curr, ',');
1871 if (s) {
1872 *s = '\0';
1873 s++;
1874 }
1875 addr = simple_strtoul(curr, &n, 0);
1876 if ((*n != '\0') || (*curr == '\0')) {
1877 pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1878 break;
1879 }
1880
1881 while (s) {
1882 curr = s;
1883 s = strchr(curr, ',');
1884 if (s) {
1885 *s = '\0';
1886 s++;
1887 }
1888 o = strchr(curr, '=');
1889 if (o) {
1890 *o = '\0';
1891 o++;
1892 }
1893 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1894 if (rv < 0)
1895 goto out;
1896 else if (rv)
1897 continue;
1898 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1899 if (rv < 0)
1900 goto out;
1901 else if (rv)
1902 continue;
1903 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1904 if (rv < 0)
1905 goto out;
1906 else if (rv)
1907 continue;
1908 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1909 if (rv < 0)
1910 goto out;
1911 else if (rv)
1912 continue;
1913 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1914 if (rv < 0)
1915 goto out;
1916 else if (rv)
1917 continue;
1918
1919 rv = -EINVAL;
1920 pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1921 goto out;
1922 }
1923
1924 if (op == HM_ADD) {
1925 info = smi_info_alloc();
1926 if (!info) {
1927 rv = -ENOMEM;
1928 goto out;
1929 }
1930
1931 info->addr_source = SI_HOTMOD;
1932 info->si_type = si_type;
1933 info->io.addr_data = addr;
1934 info->io.addr_type = addr_space;
1935 if (addr_space == IPMI_MEM_ADDR_SPACE)
1936 info->io_setup = mem_setup;
1937 else
1938 info->io_setup = port_setup;
1939
1940 info->io.addr = NULL;
1941 info->io.regspacing = regspacing;
1942 if (!info->io.regspacing)
1943 info->io.regspacing = DEFAULT_REGSPACING;
1944 info->io.regsize = regsize;
1945 if (!info->io.regsize)
1946 info->io.regsize = DEFAULT_REGSIZE;
1947 info->io.regshift = regshift;
1948 info->irq = irq;
1949 if (info->irq)
1950 info->irq_setup = std_irq_setup;
1951 info->slave_addr = ipmb;
1952
1953 rv = add_smi(info);
1954 if (rv) {
1955 kfree(info);
1956 goto out;
1957 }
1958 mutex_lock(&smi_infos_lock);
1959 rv = try_smi_init(info);
1960 mutex_unlock(&smi_infos_lock);
1961 if (rv) {
1962 cleanup_one_si(info);
1963 goto out;
1964 }
1965 } else {
1966 /* remove */
1967 struct smi_info *e, *tmp_e;
1968
1969 mutex_lock(&smi_infos_lock);
1970 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1971 if (e->io.addr_type != addr_space)
1972 continue;
1973 if (e->si_type != si_type)
1974 continue;
1975 if (e->io.addr_data == addr)
1976 cleanup_one_si(e);
1977 }
1978 mutex_unlock(&smi_infos_lock);
1979 }
1980 }
1981 rv = len;
1982 out:
1983 kfree(str);
1984 return rv;
1985 }
1986
1987 static int hardcode_find_bmc(void)
1988 {
1989 int ret = -ENODEV;
1990 int i;
1991 struct smi_info *info;
1992
1993 for (i = 0; i < SI_MAX_PARMS; i++) {
1994 if (!ports[i] && !addrs[i])
1995 continue;
1996
1997 info = smi_info_alloc();
1998 if (!info)
1999 return -ENOMEM;
2000
2001 info->addr_source = SI_HARDCODED;
2002 pr_info(PFX "probing via hardcoded address\n");
2003
2004 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2005 info->si_type = SI_KCS;
2006 } else if (strcmp(si_type[i], "smic") == 0) {
2007 info->si_type = SI_SMIC;
2008 } else if (strcmp(si_type[i], "bt") == 0) {
2009 info->si_type = SI_BT;
2010 } else {
2011 pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2012 i, si_type[i]);
2013 kfree(info);
2014 continue;
2015 }
2016
2017 if (ports[i]) {
2018 /* An I/O port */
2019 info->io_setup = port_setup;
2020 info->io.addr_data = ports[i];
2021 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2022 } else if (addrs[i]) {
2023 /* A memory port */
2024 info->io_setup = mem_setup;
2025 info->io.addr_data = addrs[i];
2026 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2027 } else {
2028 pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2029 i);
2030 kfree(info);
2031 continue;
2032 }
2033
2034 info->io.addr = NULL;
2035 info->io.regspacing = regspacings[i];
2036 if (!info->io.regspacing)
2037 info->io.regspacing = DEFAULT_REGSPACING;
2038 info->io.regsize = regsizes[i];
2039 if (!info->io.regsize)
2040 info->io.regsize = DEFAULT_REGSIZE;
2041 info->io.regshift = regshifts[i];
2042 info->irq = irqs[i];
2043 if (info->irq)
2044 info->irq_setup = std_irq_setup;
2045 info->slave_addr = slave_addrs[i];
2046
2047 if (!add_smi(info)) {
2048 mutex_lock(&smi_infos_lock);
2049 if (try_smi_init(info))
2050 cleanup_one_si(info);
2051 mutex_unlock(&smi_infos_lock);
2052 ret = 0;
2053 } else {
2054 kfree(info);
2055 }
2056 }
2057 return ret;
2058 }
2059
2060 #ifdef CONFIG_ACPI
2061
2062 /*
2063 * Once we get an ACPI failure, we don't try any more, because we go
2064 * through the tables sequentially. Once we don't find a table, there
2065 * are no more.
2066 */
2067 static int acpi_failure;
2068
2069 /* For GPE-type interrupts. */
2070 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2071 u32 gpe_number, void *context)
2072 {
2073 struct smi_info *smi_info = context;
2074 unsigned long flags;
2075
2076 spin_lock_irqsave(&(smi_info->si_lock), flags);
2077
2078 smi_inc_stat(smi_info, interrupts);
2079
2080 debug_timestamp("ACPI_GPE");
2081
2082 smi_event_handler(smi_info, 0);
2083 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2084
2085 return ACPI_INTERRUPT_HANDLED;
2086 }
2087
2088 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2089 {
2090 if (!info->irq)
2091 return;
2092
2093 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2094 }
2095
2096 static int acpi_gpe_irq_setup(struct smi_info *info)
2097 {
2098 acpi_status status;
2099
2100 if (!info->irq)
2101 return 0;
2102
2103 status = acpi_install_gpe_handler(NULL,
2104 info->irq,
2105 ACPI_GPE_LEVEL_TRIGGERED,
2106 &ipmi_acpi_gpe,
2107 info);
2108 if (status != AE_OK) {
2109 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2110 " running polled\n", DEVICE_NAME, info->irq);
2111 info->irq = 0;
2112 return -EINVAL;
2113 } else {
2114 info->irq_cleanup = acpi_gpe_irq_cleanup;
2115 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2116 return 0;
2117 }
2118 }
2119
2120 /*
2121 * Defined at
2122 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2123 */
2124 struct SPMITable {
2125 s8 Signature[4];
2126 u32 Length;
2127 u8 Revision;
2128 u8 Checksum;
2129 s8 OEMID[6];
2130 s8 OEMTableID[8];
2131 s8 OEMRevision[4];
2132 s8 CreatorID[4];
2133 s8 CreatorRevision[4];
2134 u8 InterfaceType;
2135 u8 IPMIlegacy;
2136 s16 SpecificationRevision;
2137
2138 /*
2139 * Bit 0 - SCI interrupt supported
2140 * Bit 1 - I/O APIC/SAPIC
2141 */
2142 u8 InterruptType;
2143
2144 /*
2145 * If bit 0 of InterruptType is set, then this is the SCI
2146 * interrupt in the GPEx_STS register.
2147 */
2148 u8 GPE;
2149
2150 s16 Reserved;
2151
2152 /*
2153 * If bit 1 of InterruptType is set, then this is the I/O
2154 * APIC/SAPIC interrupt.
2155 */
2156 u32 GlobalSystemInterrupt;
2157
2158 /* The actual register address. */
2159 struct acpi_generic_address addr;
2160
2161 u8 UID[4];
2162
2163 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2164 };
2165
2166 static int try_init_spmi(struct SPMITable *spmi)
2167 {
2168 struct smi_info *info;
2169 int rv;
2170
2171 if (spmi->IPMIlegacy != 1) {
2172 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2173 return -ENODEV;
2174 }
2175
2176 info = smi_info_alloc();
2177 if (!info) {
2178 pr_err(PFX "Could not allocate SI data (3)\n");
2179 return -ENOMEM;
2180 }
2181
2182 info->addr_source = SI_SPMI;
2183 pr_info(PFX "probing via SPMI\n");
2184
2185 /* Figure out the interface type. */
2186 switch (spmi->InterfaceType) {
2187 case 1: /* KCS */
2188 info->si_type = SI_KCS;
2189 break;
2190 case 2: /* SMIC */
2191 info->si_type = SI_SMIC;
2192 break;
2193 case 3: /* BT */
2194 info->si_type = SI_BT;
2195 break;
2196 case 4: /* SSIF, just ignore */
2197 kfree(info);
2198 return -EIO;
2199 default:
2200 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2201 spmi->InterfaceType);
2202 kfree(info);
2203 return -EIO;
2204 }
2205
2206 if (spmi->InterruptType & 1) {
2207 /* We've got a GPE interrupt. */
2208 info->irq = spmi->GPE;
2209 info->irq_setup = acpi_gpe_irq_setup;
2210 } else if (spmi->InterruptType & 2) {
2211 /* We've got an APIC/SAPIC interrupt. */
2212 info->irq = spmi->GlobalSystemInterrupt;
2213 info->irq_setup = std_irq_setup;
2214 } else {
2215 /* Use the default interrupt setting. */
2216 info->irq = 0;
2217 info->irq_setup = NULL;
2218 }
2219
2220 if (spmi->addr.bit_width) {
2221 /* A (hopefully) properly formed register bit width. */
2222 info->io.regspacing = spmi->addr.bit_width / 8;
2223 } else {
2224 info->io.regspacing = DEFAULT_REGSPACING;
2225 }
2226 info->io.regsize = info->io.regspacing;
2227 info->io.regshift = spmi->addr.bit_offset;
2228
2229 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2230 info->io_setup = mem_setup;
2231 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2232 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2233 info->io_setup = port_setup;
2234 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2235 } else {
2236 kfree(info);
2237 pr_warn(PFX "Unknown ACPI I/O Address type\n");
2238 return -EIO;
2239 }
2240 info->io.addr_data = spmi->addr.address;
2241
2242 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2243 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2244 info->io.addr_data, info->io.regsize, info->io.regspacing,
2245 info->irq);
2246
2247 rv = add_smi(info);
2248 if (rv)
2249 kfree(info);
2250
2251 return rv;
2252 }
2253
2254 static void spmi_find_bmc(void)
2255 {
2256 acpi_status status;
2257 struct SPMITable *spmi;
2258 int i;
2259
2260 if (acpi_disabled)
2261 return;
2262
2263 if (acpi_failure)
2264 return;
2265
2266 for (i = 0; ; i++) {
2267 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2268 (struct acpi_table_header **)&spmi);
2269 if (status != AE_OK)
2270 return;
2271
2272 try_init_spmi(spmi);
2273 }
2274 }
2275 #endif
2276
2277 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
2278 struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
2279 struct smi_info *info)
2280 {
2281 struct resource *res, *res_second;
2282
2283 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2284 if (res) {
2285 info->io_setup = port_setup;
2286 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2287 } else {
2288 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2289 if (res) {
2290 info->io_setup = mem_setup;
2291 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2292 }
2293 }
2294 if (!res) {
2295 dev_err(&pdev->dev, "no I/O or memory address\n");
2296 return NULL;
2297 }
2298 info->io.addr_data = res->start;
2299
2300 info->io.regspacing = DEFAULT_REGSPACING;
2301 res_second = platform_get_resource(pdev,
2302 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2303 IORESOURCE_IO : IORESOURCE_MEM,
2304 1);
2305 if (res_second) {
2306 if (res_second->start > info->io.addr_data)
2307 info->io.regspacing =
2308 res_second->start - info->io.addr_data;
2309 }
2310 info->io.regsize = DEFAULT_REGSIZE;
2311 info->io.regshift = 0;
2312
2313 return res;
2314 }
2315
2316 #endif
2317
2318 #ifdef CONFIG_DMI
2319 static int dmi_ipmi_probe(struct platform_device *pdev)
2320 {
2321 struct smi_info *info;
2322 u8 type, slave_addr;
2323 int rv;
2324
2325 if (!si_trydmi)
2326 return -ENODEV;
2327
2328 rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
2329 if (rv)
2330 return -ENODEV;
2331
2332 info = smi_info_alloc();
2333 if (!info) {
2334 pr_err(PFX "Could not allocate SI data\n");
2335 return -ENOMEM;
2336 }
2337
2338 info->addr_source = SI_SMBIOS;
2339 pr_info(PFX "probing via SMBIOS\n");
2340
2341 switch (type) {
2342 case IPMI_DMI_TYPE_KCS:
2343 info->si_type = SI_KCS;
2344 break;
2345 case IPMI_DMI_TYPE_SMIC:
2346 info->si_type = SI_SMIC;
2347 break;
2348 case IPMI_DMI_TYPE_BT:
2349 info->si_type = SI_BT;
2350 break;
2351 default:
2352 kfree(info);
2353 return -EINVAL;
2354 }
2355
2356 if (!ipmi_get_info_from_resources(pdev, info)) {
2357 rv = -EINVAL;
2358 goto err_free;
2359 }
2360
2361 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2362 if (rv) {
2363 dev_warn(&pdev->dev, "device has no slave-addr property");
2364 info->slave_addr = 0x20;
2365 } else {
2366 info->slave_addr = slave_addr;
2367 }
2368
2369 info->irq = platform_get_irq(pdev, 0);
2370 if (info->irq > 0)
2371 info->irq_setup = std_irq_setup;
2372 else
2373 info->irq = 0;
2374
2375 info->dev = &pdev->dev;
2376
2377 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2378 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2379 info->io.addr_data, info->io.regsize, info->io.regspacing,
2380 info->irq);
2381
2382 if (add_smi(info))
2383 kfree(info);
2384
2385 return 0;
2386
2387 err_free:
2388 kfree(info);
2389 return rv;
2390 }
2391 #else
2392 static int dmi_ipmi_probe(struct platform_device *pdev)
2393 {
2394 return -ENODEV;
2395 }
2396 #endif /* CONFIG_DMI */
2397
2398 #ifdef CONFIG_PCI
2399
2400 #define PCI_ERMC_CLASSCODE 0x0C0700
2401 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2402 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2403 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2404 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2405 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2406
2407 #define PCI_HP_VENDOR_ID 0x103C
2408 #define PCI_MMC_DEVICE_ID 0x121A
2409 #define PCI_MMC_ADDR_CW 0x10
2410
2411 static void ipmi_pci_cleanup(struct smi_info *info)
2412 {
2413 struct pci_dev *pdev = info->addr_source_data;
2414
2415 pci_disable_device(pdev);
2416 }
2417
2418 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2419 {
2420 if (info->si_type == SI_KCS) {
2421 unsigned char status;
2422 int regspacing;
2423
2424 info->io.regsize = DEFAULT_REGSIZE;
2425 info->io.regshift = 0;
2426 info->io_size = 2;
2427 info->handlers = &kcs_smi_handlers;
2428
2429 /* detect 1, 4, 16byte spacing */
2430 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2431 info->io.regspacing = regspacing;
2432 if (info->io_setup(info)) {
2433 dev_err(info->dev,
2434 "Could not setup I/O space\n");
2435 return DEFAULT_REGSPACING;
2436 }
2437 /* write invalid cmd */
2438 info->io.outputb(&info->io, 1, 0x10);
2439 /* read status back */
2440 status = info->io.inputb(&info->io, 1);
2441 info->io_cleanup(info);
2442 if (status)
2443 return regspacing;
2444 regspacing *= 4;
2445 }
2446 }
2447 return DEFAULT_REGSPACING;
2448 }
2449
2450 static int ipmi_pci_probe(struct pci_dev *pdev,
2451 const struct pci_device_id *ent)
2452 {
2453 int rv;
2454 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2455 struct smi_info *info;
2456
2457 info = smi_info_alloc();
2458 if (!info)
2459 return -ENOMEM;
2460
2461 info->addr_source = SI_PCI;
2462 dev_info(&pdev->dev, "probing via PCI");
2463
2464 switch (class_type) {
2465 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2466 info->si_type = SI_SMIC;
2467 break;
2468
2469 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2470 info->si_type = SI_KCS;
2471 break;
2472
2473 case PCI_ERMC_CLASSCODE_TYPE_BT:
2474 info->si_type = SI_BT;
2475 break;
2476
2477 default:
2478 kfree(info);
2479 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2480 return -ENOMEM;
2481 }
2482
2483 rv = pci_enable_device(pdev);
2484 if (rv) {
2485 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2486 kfree(info);
2487 return rv;
2488 }
2489
2490 info->addr_source_cleanup = ipmi_pci_cleanup;
2491 info->addr_source_data = pdev;
2492
2493 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2494 info->io_setup = port_setup;
2495 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2496 } else {
2497 info->io_setup = mem_setup;
2498 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2499 }
2500 info->io.addr_data = pci_resource_start(pdev, 0);
2501
2502 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2503 info->io.regsize = DEFAULT_REGSIZE;
2504 info->io.regshift = 0;
2505
2506 info->irq = pdev->irq;
2507 if (info->irq)
2508 info->irq_setup = std_irq_setup;
2509
2510 info->dev = &pdev->dev;
2511 pci_set_drvdata(pdev, info);
2512
2513 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2514 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2515 info->irq);
2516
2517 rv = add_smi(info);
2518 if (rv) {
2519 kfree(info);
2520 pci_disable_device(pdev);
2521 }
2522
2523 return rv;
2524 }
2525
2526 static void ipmi_pci_remove(struct pci_dev *pdev)
2527 {
2528 struct smi_info *info = pci_get_drvdata(pdev);
2529 cleanup_one_si(info);
2530 }
2531
2532 static const struct pci_device_id ipmi_pci_devices[] = {
2533 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2534 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2535 { 0, }
2536 };
2537 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2538
2539 static struct pci_driver ipmi_pci_driver = {
2540 .name = DEVICE_NAME,
2541 .id_table = ipmi_pci_devices,
2542 .probe = ipmi_pci_probe,
2543 .remove = ipmi_pci_remove,
2544 };
2545 #endif /* CONFIG_PCI */
2546
2547 #ifdef CONFIG_OF
2548 static const struct of_device_id of_ipmi_match[] = {
2549 { .type = "ipmi", .compatible = "ipmi-kcs",
2550 .data = (void *)(unsigned long) SI_KCS },
2551 { .type = "ipmi", .compatible = "ipmi-smic",
2552 .data = (void *)(unsigned long) SI_SMIC },
2553 { .type = "ipmi", .compatible = "ipmi-bt",
2554 .data = (void *)(unsigned long) SI_BT },
2555 {},
2556 };
2557 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2558
2559 static int of_ipmi_probe(struct platform_device *dev)
2560 {
2561 const struct of_device_id *match;
2562 struct smi_info *info;
2563 struct resource resource;
2564 const __be32 *regsize, *regspacing, *regshift;
2565 struct device_node *np = dev->dev.of_node;
2566 int ret;
2567 int proplen;
2568
2569 dev_info(&dev->dev, "probing via device tree\n");
2570
2571 match = of_match_device(of_ipmi_match, &dev->dev);
2572 if (!match)
2573 return -ENODEV;
2574
2575 if (!of_device_is_available(np))
2576 return -EINVAL;
2577
2578 ret = of_address_to_resource(np, 0, &resource);
2579 if (ret) {
2580 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2581 return ret;
2582 }
2583
2584 regsize = of_get_property(np, "reg-size", &proplen);
2585 if (regsize && proplen != 4) {
2586 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2587 return -EINVAL;
2588 }
2589
2590 regspacing = of_get_property(np, "reg-spacing", &proplen);
2591 if (regspacing && proplen != 4) {
2592 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2593 return -EINVAL;
2594 }
2595
2596 regshift = of_get_property(np, "reg-shift", &proplen);
2597 if (regshift && proplen != 4) {
2598 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2599 return -EINVAL;
2600 }
2601
2602 info = smi_info_alloc();
2603
2604 if (!info) {
2605 dev_err(&dev->dev,
2606 "could not allocate memory for OF probe\n");
2607 return -ENOMEM;
2608 }
2609
2610 info->si_type = (enum si_type) match->data;
2611 info->addr_source = SI_DEVICETREE;
2612 info->irq_setup = std_irq_setup;
2613
2614 if (resource.flags & IORESOURCE_IO) {
2615 info->io_setup = port_setup;
2616 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2617 } else {
2618 info->io_setup = mem_setup;
2619 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2620 }
2621
2622 info->io.addr_data = resource.start;
2623
2624 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2625 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2626 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2627
2628 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2629 info->dev = &dev->dev;
2630
2631 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2632 info->io.addr_data, info->io.regsize, info->io.regspacing,
2633 info->irq);
2634
2635 dev_set_drvdata(&dev->dev, info);
2636
2637 ret = add_smi(info);
2638 if (ret) {
2639 kfree(info);
2640 return ret;
2641 }
2642 return 0;
2643 }
2644 #else
2645 #define of_ipmi_match NULL
2646 static int of_ipmi_probe(struct platform_device *dev)
2647 {
2648 return -ENODEV;
2649 }
2650 #endif
2651
2652 #ifdef CONFIG_ACPI
2653 static int find_slave_address(struct smi_info *info, int slave_addr)
2654 {
2655 #ifdef CONFIG_IPMI_DMI_DECODE
2656 if (!slave_addr) {
2657 int type = -1;
2658 u32 flags = IORESOURCE_IO;
2659
2660 switch (info->si_type) {
2661 case SI_KCS:
2662 type = IPMI_DMI_TYPE_KCS;
2663 break;
2664 case SI_BT:
2665 type = IPMI_DMI_TYPE_BT;
2666 break;
2667 case SI_SMIC:
2668 type = IPMI_DMI_TYPE_SMIC;
2669 break;
2670 }
2671
2672 if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
2673 flags = IORESOURCE_MEM;
2674
2675 slave_addr = ipmi_dmi_get_slave_addr(type, flags,
2676 info->io.addr_data);
2677 }
2678 #endif
2679
2680 return slave_addr;
2681 }
2682
2683 static int acpi_ipmi_probe(struct platform_device *dev)
2684 {
2685 struct smi_info *info;
2686 acpi_handle handle;
2687 acpi_status status;
2688 unsigned long long tmp;
2689 struct resource *res;
2690 int rv = -EINVAL;
2691
2692 if (!si_tryacpi)
2693 return -ENODEV;
2694
2695 handle = ACPI_HANDLE(&dev->dev);
2696 if (!handle)
2697 return -ENODEV;
2698
2699 info = smi_info_alloc();
2700 if (!info)
2701 return -ENOMEM;
2702
2703 info->addr_source = SI_ACPI;
2704 dev_info(&dev->dev, PFX "probing via ACPI\n");
2705
2706 info->addr_info.acpi_info.acpi_handle = handle;
2707
2708 /* _IFT tells us the interface type: KCS, BT, etc */
2709 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2710 if (ACPI_FAILURE(status)) {
2711 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2712 goto err_free;
2713 }
2714
2715 switch (tmp) {
2716 case 1:
2717 info->si_type = SI_KCS;
2718 break;
2719 case 2:
2720 info->si_type = SI_SMIC;
2721 break;
2722 case 3:
2723 info->si_type = SI_BT;
2724 break;
2725 case 4: /* SSIF, just ignore */
2726 rv = -ENODEV;
2727 goto err_free;
2728 default:
2729 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2730 goto err_free;
2731 }
2732
2733 res = ipmi_get_info_from_resources(dev, info);
2734 if (!res) {
2735 rv = -EINVAL;
2736 goto err_free;
2737 }
2738
2739 /* If _GPE exists, use it; otherwise use standard interrupts */
2740 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2741 if (ACPI_SUCCESS(status)) {
2742 info->irq = tmp;
2743 info->irq_setup = acpi_gpe_irq_setup;
2744 } else {
2745 int irq = platform_get_irq(dev, 0);
2746
2747 if (irq > 0) {
2748 info->irq = irq;
2749 info->irq_setup = std_irq_setup;
2750 }
2751 }
2752
2753 info->slave_addr = find_slave_address(info, info->slave_addr);
2754
2755 info->dev = &dev->dev;
2756 platform_set_drvdata(dev, info);
2757
2758 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2759 res, info->io.regsize, info->io.regspacing,
2760 info->irq);
2761
2762 rv = add_smi(info);
2763 if (rv)
2764 kfree(info);
2765
2766 return rv;
2767
2768 err_free:
2769 kfree(info);
2770 return rv;
2771 }
2772
2773 static const struct acpi_device_id acpi_ipmi_match[] = {
2774 { "IPI0001", 0 },
2775 { },
2776 };
2777 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2778 #else
2779 static int acpi_ipmi_probe(struct platform_device *dev)
2780 {
2781 return -ENODEV;
2782 }
2783 #endif
2784
2785 static int ipmi_probe(struct platform_device *dev)
2786 {
2787 if (of_ipmi_probe(dev) == 0)
2788 return 0;
2789
2790 if (acpi_ipmi_probe(dev) == 0)
2791 return 0;
2792
2793 return dmi_ipmi_probe(dev);
2794 }
2795
2796 static int ipmi_remove(struct platform_device *dev)
2797 {
2798 struct smi_info *info = dev_get_drvdata(&dev->dev);
2799
2800 cleanup_one_si(info);
2801 return 0;
2802 }
2803
2804 static struct platform_driver ipmi_driver = {
2805 .driver = {
2806 .name = DEVICE_NAME,
2807 .of_match_table = of_ipmi_match,
2808 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2809 },
2810 .probe = ipmi_probe,
2811 .remove = ipmi_remove,
2812 };
2813
2814 #ifdef CONFIG_PARISC
2815 static int ipmi_parisc_probe(struct parisc_device *dev)
2816 {
2817 struct smi_info *info;
2818 int rv;
2819
2820 info = smi_info_alloc();
2821
2822 if (!info) {
2823 dev_err(&dev->dev,
2824 "could not allocate memory for PARISC probe\n");
2825 return -ENOMEM;
2826 }
2827
2828 info->si_type = SI_KCS;
2829 info->addr_source = SI_DEVICETREE;
2830 info->io_setup = mem_setup;
2831 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2832 info->io.addr_data = dev->hpa.start;
2833 info->io.regsize = 1;
2834 info->io.regspacing = 1;
2835 info->io.regshift = 0;
2836 info->irq = 0; /* no interrupt */
2837 info->irq_setup = NULL;
2838 info->dev = &dev->dev;
2839
2840 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2841
2842 dev_set_drvdata(&dev->dev, info);
2843
2844 rv = add_smi(info);
2845 if (rv) {
2846 kfree(info);
2847 return rv;
2848 }
2849
2850 return 0;
2851 }
2852
2853 static int ipmi_parisc_remove(struct parisc_device *dev)
2854 {
2855 cleanup_one_si(dev_get_drvdata(&dev->dev));
2856 return 0;
2857 }
2858
2859 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2860 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2861 { 0, }
2862 };
2863
2864 static struct parisc_driver ipmi_parisc_driver = {
2865 .name = "ipmi",
2866 .id_table = ipmi_parisc_tbl,
2867 .probe = ipmi_parisc_probe,
2868 .remove = ipmi_parisc_remove,
2869 };
2870 #endif /* CONFIG_PARISC */
2871
2872 static int wait_for_msg_done(struct smi_info *smi_info)
2873 {
2874 enum si_sm_result smi_result;
2875
2876 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2877 for (;;) {
2878 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2879 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2880 schedule_timeout_uninterruptible(1);
2881 smi_result = smi_info->handlers->event(
2882 smi_info->si_sm, jiffies_to_usecs(1));
2883 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2884 smi_result = smi_info->handlers->event(
2885 smi_info->si_sm, 0);
2886 } else
2887 break;
2888 }
2889 if (smi_result == SI_SM_HOSED)
2890 /*
2891 * We couldn't get the state machine to run, so whatever's at
2892 * the port is probably not an IPMI SMI interface.
2893 */
2894 return -ENODEV;
2895
2896 return 0;
2897 }
2898
2899 static int try_get_dev_id(struct smi_info *smi_info)
2900 {
2901 unsigned char msg[2];
2902 unsigned char *resp;
2903 unsigned long resp_len;
2904 int rv = 0;
2905
2906 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2907 if (!resp)
2908 return -ENOMEM;
2909
2910 /*
2911 * Do a Get Device ID command, since it comes back with some
2912 * useful info.
2913 */
2914 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2915 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2916 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2917
2918 rv = wait_for_msg_done(smi_info);
2919 if (rv)
2920 goto out;
2921
2922 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2923 resp, IPMI_MAX_MSG_LENGTH);
2924
2925 /* Check and record info from the get device id, in case we need it. */
2926 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2927
2928 out:
2929 kfree(resp);
2930 return rv;
2931 }
2932
2933 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2934 {
2935 unsigned char msg[3];
2936 unsigned char *resp;
2937 unsigned long resp_len;
2938 int rv;
2939
2940 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2941 if (!resp)
2942 return -ENOMEM;
2943
2944 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2945 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2946 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2947
2948 rv = wait_for_msg_done(smi_info);
2949 if (rv) {
2950 dev_warn(smi_info->dev,
2951 "Error getting response from get global enables command: %d\n",
2952 rv);
2953 goto out;
2954 }
2955
2956 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2957 resp, IPMI_MAX_MSG_LENGTH);
2958
2959 if (resp_len < 4 ||
2960 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2961 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2962 resp[2] != 0) {
2963 dev_warn(smi_info->dev,
2964 "Invalid return from get global enables command: %ld %x %x %x\n",
2965 resp_len, resp[0], resp[1], resp[2]);
2966 rv = -EINVAL;
2967 goto out;
2968 } else {
2969 *enables = resp[3];
2970 }
2971
2972 out:
2973 kfree(resp);
2974 return rv;
2975 }
2976
2977 /*
2978 * Returns 1 if it gets an error from the command.
2979 */
2980 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2981 {
2982 unsigned char msg[3];
2983 unsigned char *resp;
2984 unsigned long resp_len;
2985 int rv;
2986
2987 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2988 if (!resp)
2989 return -ENOMEM;
2990
2991 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2992 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2993 msg[2] = enables;
2994 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2995
2996 rv = wait_for_msg_done(smi_info);
2997 if (rv) {
2998 dev_warn(smi_info->dev,
2999 "Error getting response from set global enables command: %d\n",
3000 rv);
3001 goto out;
3002 }
3003
3004 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3005 resp, IPMI_MAX_MSG_LENGTH);
3006
3007 if (resp_len < 3 ||
3008 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3009 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3010 dev_warn(smi_info->dev,
3011 "Invalid return from set global enables command: %ld %x %x\n",
3012 resp_len, resp[0], resp[1]);
3013 rv = -EINVAL;
3014 goto out;
3015 }
3016
3017 if (resp[2] != 0)
3018 rv = 1;
3019
3020 out:
3021 kfree(resp);
3022 return rv;
3023 }
3024
3025 /*
3026 * Some BMCs do not support clearing the receive irq bit in the global
3027 * enables (even if they don't support interrupts on the BMC). Check
3028 * for this and handle it properly.
3029 */
3030 static void check_clr_rcv_irq(struct smi_info *smi_info)
3031 {
3032 u8 enables = 0;
3033 int rv;
3034
3035 rv = get_global_enables(smi_info, &enables);
3036 if (!rv) {
3037 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3038 /* Already clear, should work ok. */
3039 return;
3040
3041 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3042 rv = set_global_enables(smi_info, enables);
3043 }
3044
3045 if (rv < 0) {
3046 dev_err(smi_info->dev,
3047 "Cannot check clearing the rcv irq: %d\n", rv);
3048 return;
3049 }
3050
3051 if (rv) {
3052 /*
3053 * An error when setting the event buffer bit means
3054 * clearing the bit is not supported.
3055 */
3056 dev_warn(smi_info->dev,
3057 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3058 smi_info->cannot_disable_irq = true;
3059 }
3060 }
3061
3062 /*
3063 * Some BMCs do not support setting the interrupt bits in the global
3064 * enables even if they support interrupts. Clearly bad, but we can
3065 * compensate.
3066 */
3067 static void check_set_rcv_irq(struct smi_info *smi_info)
3068 {
3069 u8 enables = 0;
3070 int rv;
3071
3072 if (!smi_info->irq)
3073 return;
3074
3075 rv = get_global_enables(smi_info, &enables);
3076 if (!rv) {
3077 enables |= IPMI_BMC_RCV_MSG_INTR;
3078 rv = set_global_enables(smi_info, enables);
3079 }
3080
3081 if (rv < 0) {
3082 dev_err(smi_info->dev,
3083 "Cannot check setting the rcv irq: %d\n", rv);
3084 return;
3085 }
3086
3087 if (rv) {
3088 /*
3089 * An error when setting the event buffer bit means
3090 * setting the bit is not supported.
3091 */
3092 dev_warn(smi_info->dev,
3093 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3094 smi_info->cannot_disable_irq = true;
3095 smi_info->irq_enable_broken = true;
3096 }
3097 }
3098
3099 static int try_enable_event_buffer(struct smi_info *smi_info)
3100 {
3101 unsigned char msg[3];
3102 unsigned char *resp;
3103 unsigned long resp_len;
3104 int rv = 0;
3105
3106 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3107 if (!resp)
3108 return -ENOMEM;
3109
3110 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3111 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3112 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3113
3114 rv = wait_for_msg_done(smi_info);
3115 if (rv) {
3116 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3117 goto out;
3118 }
3119
3120 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3121 resp, IPMI_MAX_MSG_LENGTH);
3122
3123 if (resp_len < 4 ||
3124 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3125 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3126 resp[2] != 0) {
3127 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3128 rv = -EINVAL;
3129 goto out;
3130 }
3131
3132 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3133 /* buffer is already enabled, nothing to do. */
3134 smi_info->supports_event_msg_buff = true;
3135 goto out;
3136 }
3137
3138 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3140 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3141 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3142
3143 rv = wait_for_msg_done(smi_info);
3144 if (rv) {
3145 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3146 goto out;
3147 }
3148
3149 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3150 resp, IPMI_MAX_MSG_LENGTH);
3151
3152 if (resp_len < 3 ||
3153 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3154 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3155 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3156 rv = -EINVAL;
3157 goto out;
3158 }
3159
3160 if (resp[2] != 0)
3161 /*
3162 * An error when setting the event buffer bit means
3163 * that the event buffer is not supported.
3164 */
3165 rv = -ENOENT;
3166 else
3167 smi_info->supports_event_msg_buff = true;
3168
3169 out:
3170 kfree(resp);
3171 return rv;
3172 }
3173
3174 static int smi_type_proc_show(struct seq_file *m, void *v)
3175 {
3176 struct smi_info *smi = m->private;
3177
3178 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3179
3180 return 0;
3181 }
3182
3183 static int smi_type_proc_open(struct inode *inode, struct file *file)
3184 {
3185 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3186 }
3187
3188 static const struct file_operations smi_type_proc_ops = {
3189 .open = smi_type_proc_open,
3190 .read = seq_read,
3191 .llseek = seq_lseek,
3192 .release = single_release,
3193 };
3194
3195 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3196 {
3197 struct smi_info *smi = m->private;
3198
3199 seq_printf(m, "interrupts_enabled: %d\n",
3200 smi->irq && !smi->interrupt_disabled);
3201 seq_printf(m, "short_timeouts: %u\n",
3202 smi_get_stat(smi, short_timeouts));
3203 seq_printf(m, "long_timeouts: %u\n",
3204 smi_get_stat(smi, long_timeouts));
3205 seq_printf(m, "idles: %u\n",
3206 smi_get_stat(smi, idles));
3207 seq_printf(m, "interrupts: %u\n",
3208 smi_get_stat(smi, interrupts));
3209 seq_printf(m, "attentions: %u\n",
3210 smi_get_stat(smi, attentions));
3211 seq_printf(m, "flag_fetches: %u\n",
3212 smi_get_stat(smi, flag_fetches));
3213 seq_printf(m, "hosed_count: %u\n",
3214 smi_get_stat(smi, hosed_count));
3215 seq_printf(m, "complete_transactions: %u\n",
3216 smi_get_stat(smi, complete_transactions));
3217 seq_printf(m, "events: %u\n",
3218 smi_get_stat(smi, events));
3219 seq_printf(m, "watchdog_pretimeouts: %u\n",
3220 smi_get_stat(smi, watchdog_pretimeouts));
3221 seq_printf(m, "incoming_messages: %u\n",
3222 smi_get_stat(smi, incoming_messages));
3223 return 0;
3224 }
3225
3226 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3227 {
3228 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3229 }
3230
3231 static const struct file_operations smi_si_stats_proc_ops = {
3232 .open = smi_si_stats_proc_open,
3233 .read = seq_read,
3234 .llseek = seq_lseek,
3235 .release = single_release,
3236 };
3237
3238 static int smi_params_proc_show(struct seq_file *m, void *v)
3239 {
3240 struct smi_info *smi = m->private;
3241
3242 seq_printf(m,
3243 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3244 si_to_str[smi->si_type],
3245 addr_space_to_str[smi->io.addr_type],
3246 smi->io.addr_data,
3247 smi->io.regspacing,
3248 smi->io.regsize,
3249 smi->io.regshift,
3250 smi->irq,
3251 smi->slave_addr);
3252
3253 return 0;
3254 }
3255
3256 static int smi_params_proc_open(struct inode *inode, struct file *file)
3257 {
3258 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3259 }
3260
3261 static const struct file_operations smi_params_proc_ops = {
3262 .open = smi_params_proc_open,
3263 .read = seq_read,
3264 .llseek = seq_lseek,
3265 .release = single_release,
3266 };
3267
3268 /*
3269 * oem_data_avail_to_receive_msg_avail
3270 * @info - smi_info structure with msg_flags set
3271 *
3272 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3273 * Returns 1 indicating need to re-run handle_flags().
3274 */
3275 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3276 {
3277 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3278 RECEIVE_MSG_AVAIL);
3279 return 1;
3280 }
3281
3282 /*
3283 * setup_dell_poweredge_oem_data_handler
3284 * @info - smi_info.device_id must be populated
3285 *
3286 * Systems that match, but have firmware version < 1.40 may assert
3287 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3288 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3289 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3290 * as RECEIVE_MSG_AVAIL instead.
3291 *
3292 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3293 * assert the OEM[012] bits, and if it did, the driver would have to
3294 * change to handle that properly, we don't actually check for the
3295 * firmware version.
3296 * Device ID = 0x20 BMC on PowerEdge 8G servers
3297 * Device Revision = 0x80
3298 * Firmware Revision1 = 0x01 BMC version 1.40
3299 * Firmware Revision2 = 0x40 BCD encoded
3300 * IPMI Version = 0x51 IPMI 1.5
3301 * Manufacturer ID = A2 02 00 Dell IANA
3302 *
3303 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3304 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3305 *
3306 */
3307 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3308 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3309 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3310 #define DELL_IANA_MFR_ID 0x0002a2
3311 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3312 {
3313 struct ipmi_device_id *id = &smi_info->device_id;
3314 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3315 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3316 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3317 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3318 smi_info->oem_data_avail_handler =
3319 oem_data_avail_to_receive_msg_avail;
3320 } else if (ipmi_version_major(id) < 1 ||
3321 (ipmi_version_major(id) == 1 &&
3322 ipmi_version_minor(id) < 5)) {
3323 smi_info->oem_data_avail_handler =
3324 oem_data_avail_to_receive_msg_avail;
3325 }
3326 }
3327 }
3328
3329 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3330 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3331 {
3332 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3333
3334 /* Make it a response */
3335 msg->rsp[0] = msg->data[0] | 4;
3336 msg->rsp[1] = msg->data[1];
3337 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3338 msg->rsp_size = 3;
3339 smi_info->curr_msg = NULL;
3340 deliver_recv_msg(smi_info, msg);
3341 }
3342
3343 /*
3344 * dell_poweredge_bt_xaction_handler
3345 * @info - smi_info.device_id must be populated
3346 *
3347 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3348 * not respond to a Get SDR command if the length of the data
3349 * requested is exactly 0x3A, which leads to command timeouts and no
3350 * data returned. This intercepts such commands, and causes userspace
3351 * callers to try again with a different-sized buffer, which succeeds.
3352 */
3353
3354 #define STORAGE_NETFN 0x0A
3355 #define STORAGE_CMD_GET_SDR 0x23
3356 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3357 unsigned long unused,
3358 void *in)
3359 {
3360 struct smi_info *smi_info = in;
3361 unsigned char *data = smi_info->curr_msg->data;
3362 unsigned int size = smi_info->curr_msg->data_size;
3363 if (size >= 8 &&
3364 (data[0]>>2) == STORAGE_NETFN &&
3365 data[1] == STORAGE_CMD_GET_SDR &&
3366 data[7] == 0x3A) {
3367 return_hosed_msg_badsize(smi_info);
3368 return NOTIFY_STOP;
3369 }
3370 return NOTIFY_DONE;
3371 }
3372
3373 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3374 .notifier_call = dell_poweredge_bt_xaction_handler,
3375 };
3376
3377 /*
3378 * setup_dell_poweredge_bt_xaction_handler
3379 * @info - smi_info.device_id must be filled in already
3380 *
3381 * Fills in smi_info.device_id.start_transaction_pre_hook
3382 * when we know what function to use there.
3383 */
3384 static void
3385 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3386 {
3387 struct ipmi_device_id *id = &smi_info->device_id;
3388 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3389 smi_info->si_type == SI_BT)
3390 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3391 }
3392
3393 /*
3394 * setup_oem_data_handler
3395 * @info - smi_info.device_id must be filled in already
3396 *
3397 * Fills in smi_info.device_id.oem_data_available_handler
3398 * when we know what function to use there.
3399 */
3400
3401 static void setup_oem_data_handler(struct smi_info *smi_info)
3402 {
3403 setup_dell_poweredge_oem_data_handler(smi_info);
3404 }
3405
3406 static void setup_xaction_handlers(struct smi_info *smi_info)
3407 {
3408 setup_dell_poweredge_bt_xaction_handler(smi_info);
3409 }
3410
3411 static void check_for_broken_irqs(struct smi_info *smi_info)
3412 {
3413 check_clr_rcv_irq(smi_info);
3414 check_set_rcv_irq(smi_info);
3415 }
3416
3417 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3418 {
3419 if (smi_info->thread != NULL)
3420 kthread_stop(smi_info->thread);
3421 if (smi_info->timer_running)
3422 del_timer_sync(&smi_info->si_timer);
3423 }
3424
3425 static int is_new_interface(struct smi_info *info)
3426 {
3427 struct smi_info *e;
3428
3429 list_for_each_entry(e, &smi_infos, link) {
3430 if (e->io.addr_type != info->io.addr_type)
3431 continue;
3432 if (e->io.addr_data == info->io.addr_data) {
3433 /*
3434 * This is a cheap hack, ACPI doesn't have a defined
3435 * slave address but SMBIOS does. Pick it up from
3436 * any source that has it available.
3437 */
3438 if (info->slave_addr && !e->slave_addr)
3439 e->slave_addr = info->slave_addr;
3440 return 0;
3441 }
3442 }
3443
3444 return 1;
3445 }
3446
3447 static int add_smi(struct smi_info *new_smi)
3448 {
3449 int rv = 0;
3450
3451 mutex_lock(&smi_infos_lock);
3452 if (!is_new_interface(new_smi)) {
3453 pr_info(PFX "%s-specified %s state machine: duplicate\n",
3454 ipmi_addr_src_to_str(new_smi->addr_source),
3455 si_to_str[new_smi->si_type]);
3456 rv = -EBUSY;
3457 goto out_err;
3458 }
3459
3460 pr_info(PFX "Adding %s-specified %s state machine\n",
3461 ipmi_addr_src_to_str(new_smi->addr_source),
3462 si_to_str[new_smi->si_type]);
3463
3464 /* So we know not to free it unless we have allocated one. */
3465 new_smi->intf = NULL;
3466 new_smi->si_sm = NULL;
3467 new_smi->handlers = NULL;
3468
3469 list_add_tail(&new_smi->link, &smi_infos);
3470
3471 out_err:
3472 mutex_unlock(&smi_infos_lock);
3473 return rv;
3474 }
3475
3476 /*
3477 * Try to start up an interface. Must be called with smi_infos_lock
3478 * held, primarily to keep smi_num consistent, we only one to do these
3479 * one at a time.
3480 */
3481 static int try_smi_init(struct smi_info *new_smi)
3482 {
3483 int rv = 0;
3484 int i;
3485 char *init_name = NULL;
3486
3487 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3488 ipmi_addr_src_to_str(new_smi->addr_source),
3489 si_to_str[new_smi->si_type],
3490 addr_space_to_str[new_smi->io.addr_type],
3491 new_smi->io.addr_data,
3492 new_smi->slave_addr, new_smi->irq);
3493
3494 switch (new_smi->si_type) {
3495 case SI_KCS:
3496 new_smi->handlers = &kcs_smi_handlers;
3497 break;
3498
3499 case SI_SMIC:
3500 new_smi->handlers = &smic_smi_handlers;
3501 break;
3502
3503 case SI_BT:
3504 new_smi->handlers = &bt_smi_handlers;
3505 break;
3506
3507 default:
3508 /* No support for anything else yet. */
3509 rv = -EIO;
3510 goto out_err;
3511 }
3512
3513 new_smi->intf_num = smi_num;
3514
3515 /* Do this early so it's available for logs. */
3516 if (!new_smi->dev) {
3517 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3518 new_smi->intf_num);
3519
3520 /*
3521 * If we don't already have a device from something
3522 * else (like PCI), then register a new one.
3523 */
3524 new_smi->pdev = platform_device_alloc("ipmi_si",
3525 new_smi->intf_num);
3526 if (!new_smi->pdev) {
3527 pr_err(PFX "Unable to allocate platform device\n");
3528 goto out_err;
3529 }
3530 new_smi->dev = &new_smi->pdev->dev;
3531 new_smi->dev->driver = &ipmi_driver.driver;
3532 /* Nulled by device_add() */
3533 new_smi->dev->init_name = init_name;
3534 }
3535
3536 /* Allocate the state machine's data and initialize it. */
3537 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3538 if (!new_smi->si_sm) {
3539 pr_err(PFX "Could not allocate state machine memory\n");
3540 rv = -ENOMEM;
3541 goto out_err;
3542 }
3543 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3544 &new_smi->io);
3545
3546 /* Now that we know the I/O size, we can set up the I/O. */
3547 rv = new_smi->io_setup(new_smi);
3548 if (rv) {
3549 dev_err(new_smi->dev, "Could not set up I/O space\n");
3550 goto out_err;
3551 }
3552
3553 /* Do low-level detection first. */
3554 if (new_smi->handlers->detect(new_smi->si_sm)) {
3555 if (new_smi->addr_source)
3556 dev_err(new_smi->dev, "Interface detection failed\n");
3557 rv = -ENODEV;
3558 goto out_err;
3559 }
3560
3561 /*
3562 * Attempt a get device id command. If it fails, we probably
3563 * don't have a BMC here.
3564 */
3565 rv = try_get_dev_id(new_smi);
3566 if (rv) {
3567 if (new_smi->addr_source)
3568 dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3569 goto out_err;
3570 }
3571
3572 setup_oem_data_handler(new_smi);
3573 setup_xaction_handlers(new_smi);
3574 check_for_broken_irqs(new_smi);
3575
3576 new_smi->waiting_msg = NULL;
3577 new_smi->curr_msg = NULL;
3578 atomic_set(&new_smi->req_events, 0);
3579 new_smi->run_to_completion = false;
3580 for (i = 0; i < SI_NUM_STATS; i++)
3581 atomic_set(&new_smi->stats[i], 0);
3582
3583 new_smi->interrupt_disabled = true;
3584 atomic_set(&new_smi->need_watch, 0);
3585
3586 rv = try_enable_event_buffer(new_smi);
3587 if (rv == 0)
3588 new_smi->has_event_buffer = true;
3589
3590 /*
3591 * Start clearing the flags before we enable interrupts or the
3592 * timer to avoid racing with the timer.
3593 */
3594 start_clear_flags(new_smi, false);
3595
3596 /*
3597 * IRQ is defined to be set when non-zero. req_events will
3598 * cause a global flags check that will enable interrupts.
3599 */
3600 if (new_smi->irq) {
3601 new_smi->interrupt_disabled = false;
3602 atomic_set(&new_smi->req_events, 1);
3603 }
3604
3605 if (new_smi->pdev) {
3606 rv = platform_device_add(new_smi->pdev);
3607 if (rv) {
3608 dev_err(new_smi->dev,
3609 "Unable to register system interface device: %d\n",
3610 rv);
3611 goto out_err;
3612 }
3613 new_smi->dev_registered = true;
3614 }
3615
3616 rv = ipmi_register_smi(&handlers,
3617 new_smi,
3618 &new_smi->device_id,
3619 new_smi->dev,
3620 new_smi->slave_addr);
3621 if (rv) {
3622 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3623 rv);
3624 goto out_err_stop_timer;
3625 }
3626
3627 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3628 &smi_type_proc_ops,
3629 new_smi);
3630 if (rv) {
3631 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3632 goto out_err_stop_timer;
3633 }
3634
3635 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3636 &smi_si_stats_proc_ops,
3637 new_smi);
3638 if (rv) {
3639 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3640 goto out_err_stop_timer;
3641 }
3642
3643 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3644 &smi_params_proc_ops,
3645 new_smi);
3646 if (rv) {
3647 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3648 goto out_err_stop_timer;
3649 }
3650
3651 /* Don't increment till we know we have succeeded. */
3652 smi_num++;
3653
3654 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3655 si_to_str[new_smi->si_type]);
3656
3657 WARN_ON(new_smi->dev->init_name != NULL);
3658 kfree(init_name);
3659
3660 return 0;
3661
3662 out_err_stop_timer:
3663 wait_for_timer_and_thread(new_smi);
3664
3665 out_err:
3666 new_smi->interrupt_disabled = true;
3667
3668 if (new_smi->intf) {
3669 ipmi_smi_t intf = new_smi->intf;
3670 new_smi->intf = NULL;
3671 ipmi_unregister_smi(intf);
3672 }
3673
3674 if (new_smi->irq_cleanup) {
3675 new_smi->irq_cleanup(new_smi);
3676 new_smi->irq_cleanup = NULL;
3677 }
3678
3679 /*
3680 * Wait until we know that we are out of any interrupt
3681 * handlers might have been running before we freed the
3682 * interrupt.
3683 */
3684 synchronize_sched();
3685
3686 if (new_smi->si_sm) {
3687 if (new_smi->handlers)
3688 new_smi->handlers->cleanup(new_smi->si_sm);
3689 kfree(new_smi->si_sm);
3690 new_smi->si_sm = NULL;
3691 }
3692 if (new_smi->addr_source_cleanup) {
3693 new_smi->addr_source_cleanup(new_smi);
3694 new_smi->addr_source_cleanup = NULL;
3695 }
3696 if (new_smi->io_cleanup) {
3697 new_smi->io_cleanup(new_smi);
3698 new_smi->io_cleanup = NULL;
3699 }
3700
3701 if (new_smi->dev_registered) {
3702 platform_device_unregister(new_smi->pdev);
3703 new_smi->dev_registered = false;
3704 new_smi->pdev = NULL;
3705 } else if (new_smi->pdev) {
3706 platform_device_put(new_smi->pdev);
3707 new_smi->pdev = NULL;
3708 }
3709
3710 kfree(init_name);
3711
3712 return rv;
3713 }
3714
3715 static int init_ipmi_si(void)
3716 {
3717 int i;
3718 char *str;
3719 int rv;
3720 struct smi_info *e;
3721 enum ipmi_addr_src type = SI_INVALID;
3722
3723 if (initialized)
3724 return 0;
3725 initialized = 1;
3726
3727 if (si_tryplatform) {
3728 rv = platform_driver_register(&ipmi_driver);
3729 if (rv) {
3730 pr_err(PFX "Unable to register driver: %d\n", rv);
3731 return rv;
3732 }
3733 }
3734
3735 /* Parse out the si_type string into its components. */
3736 str = si_type_str;
3737 if (*str != '\0') {
3738 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3739 si_type[i] = str;
3740 str = strchr(str, ',');
3741 if (str) {
3742 *str = '\0';
3743 str++;
3744 } else {
3745 break;
3746 }
3747 }
3748 }
3749
3750 pr_info("IPMI System Interface driver.\n");
3751
3752 /* If the user gave us a device, they presumably want us to use it */
3753 if (!hardcode_find_bmc())
3754 return 0;
3755
3756 #ifdef CONFIG_PCI
3757 if (si_trypci) {
3758 rv = pci_register_driver(&ipmi_pci_driver);
3759 if (rv)
3760 pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3761 else
3762 pci_registered = true;
3763 }
3764 #endif
3765
3766 #ifdef CONFIG_ACPI
3767 if (si_tryacpi)
3768 spmi_find_bmc();
3769 #endif
3770
3771 #ifdef CONFIG_PARISC
3772 register_parisc_driver(&ipmi_parisc_driver);
3773 parisc_registered = true;
3774 #endif
3775
3776 /* We prefer devices with interrupts, but in the case of a machine
3777 with multiple BMCs we assume that there will be several instances
3778 of a given type so if we succeed in registering a type then also
3779 try to register everything else of the same type */
3780
3781 mutex_lock(&smi_infos_lock);
3782 list_for_each_entry(e, &smi_infos, link) {
3783 /* Try to register a device if it has an IRQ and we either
3784 haven't successfully registered a device yet or this
3785 device has the same type as one we successfully registered */
3786 if (e->irq && (!type || e->addr_source == type)) {
3787 if (!try_smi_init(e)) {
3788 type = e->addr_source;
3789 }
3790 }
3791 }
3792
3793 /* type will only have been set if we successfully registered an si */
3794 if (type) {
3795 mutex_unlock(&smi_infos_lock);
3796 return 0;
3797 }
3798
3799 /* Fall back to the preferred device */
3800
3801 list_for_each_entry(e, &smi_infos, link) {
3802 if (!e->irq && (!type || e->addr_source == type)) {
3803 if (!try_smi_init(e)) {
3804 type = e->addr_source;
3805 }
3806 }
3807 }
3808 mutex_unlock(&smi_infos_lock);
3809
3810 if (type)
3811 return 0;
3812
3813 mutex_lock(&smi_infos_lock);
3814 if (unload_when_empty && list_empty(&smi_infos)) {
3815 mutex_unlock(&smi_infos_lock);
3816 cleanup_ipmi_si();
3817 pr_warn(PFX "Unable to find any System Interface(s)\n");
3818 return -ENODEV;
3819 } else {
3820 mutex_unlock(&smi_infos_lock);
3821 return 0;
3822 }
3823 }
3824 module_init(init_ipmi_si);
3825
3826 static void cleanup_one_si(struct smi_info *to_clean)
3827 {
3828 int rv = 0;
3829
3830 if (!to_clean)
3831 return;
3832
3833 if (to_clean->intf) {
3834 ipmi_smi_t intf = to_clean->intf;
3835
3836 to_clean->intf = NULL;
3837 rv = ipmi_unregister_smi(intf);
3838 if (rv) {
3839 pr_err(PFX "Unable to unregister device: errno=%d\n",
3840 rv);
3841 }
3842 }
3843
3844 if (to_clean->dev)
3845 dev_set_drvdata(to_clean->dev, NULL);
3846
3847 list_del(&to_clean->link);
3848
3849 /*
3850 * Make sure that interrupts, the timer and the thread are
3851 * stopped and will not run again.
3852 */
3853 if (to_clean->irq_cleanup)
3854 to_clean->irq_cleanup(to_clean);
3855 wait_for_timer_and_thread(to_clean);
3856
3857 /*
3858 * Timeouts are stopped, now make sure the interrupts are off
3859 * in the BMC. Note that timers and CPU interrupts are off,
3860 * so no need for locks.
3861 */
3862 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3863 poll(to_clean);
3864 schedule_timeout_uninterruptible(1);
3865 }
3866 disable_si_irq(to_clean, false);
3867 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3868 poll(to_clean);
3869 schedule_timeout_uninterruptible(1);
3870 }
3871
3872 if (to_clean->handlers)
3873 to_clean->handlers->cleanup(to_clean->si_sm);
3874
3875 kfree(to_clean->si_sm);
3876
3877 if (to_clean->addr_source_cleanup)
3878 to_clean->addr_source_cleanup(to_clean);
3879 if (to_clean->io_cleanup)
3880 to_clean->io_cleanup(to_clean);
3881
3882 if (to_clean->dev_registered)
3883 platform_device_unregister(to_clean->pdev);
3884
3885 kfree(to_clean);
3886 }
3887
3888 static void cleanup_ipmi_si(void)
3889 {
3890 struct smi_info *e, *tmp_e;
3891
3892 if (!initialized)
3893 return;
3894
3895 #ifdef CONFIG_PCI
3896 if (pci_registered)
3897 pci_unregister_driver(&ipmi_pci_driver);
3898 #endif
3899 #ifdef CONFIG_PARISC
3900 if (parisc_registered)
3901 unregister_parisc_driver(&ipmi_parisc_driver);
3902 #endif
3903
3904 platform_driver_unregister(&ipmi_driver);
3905
3906 mutex_lock(&smi_infos_lock);
3907 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3908 cleanup_one_si(e);
3909 mutex_unlock(&smi_infos_lock);
3910 }
3911 module_exit(cleanup_ipmi_si);
3912
3913 MODULE_ALIAS("platform:dmi-ipmi-si");
3914 MODULE_LICENSE("GPL");
3915 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3916 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3917 " system interfaces.");