]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC 10000
84 #define SI_USEC_PER_JIFFY (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
87 short timeout */
88
89 enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_GETTING_MESSAGES,
95 SI_CHECKING_ENABLES,
96 SI_SETTING_ENABLES
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108
109 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116 * Indexes into stats[] in smi_info below.
117 */
118 enum si_stat_indexes {
119 /*
120 * Number of times the driver requested a timer while an operation
121 * was in progress.
122 */
123 SI_STAT_short_timeouts = 0,
124
125 /*
126 * Number of times the driver requested a timer while nothing was in
127 * progress.
128 */
129 SI_STAT_long_timeouts,
130
131 /* Number of times the interface was idle while being polled. */
132 SI_STAT_idles,
133
134 /* Number of interrupts the driver handled. */
135 SI_STAT_interrupts,
136
137 /* Number of time the driver got an ATTN from the hardware. */
138 SI_STAT_attentions,
139
140 /* Number of times the driver requested flags from the hardware. */
141 SI_STAT_flag_fetches,
142
143 /* Number of times the hardware didn't follow the state machine. */
144 SI_STAT_hosed_count,
145
146 /* Number of completed messages. */
147 SI_STAT_complete_transactions,
148
149 /* Number of IPMI events received from the hardware. */
150 SI_STAT_events,
151
152 /* Number of watchdog pretimeouts. */
153 SI_STAT_watchdog_pretimeouts,
154
155 /* Number of asynchronous messages received. */
156 SI_STAT_incoming_messages,
157
158
159 /* This *must* remain last, add new values above this. */
160 SI_NUM_STATS
161 };
162
163 struct smi_info {
164 int intf_num;
165 ipmi_smi_t intf;
166 struct si_sm_data *si_sm;
167 const struct si_sm_handlers *handlers;
168 enum si_type si_type;
169 spinlock_t si_lock;
170 struct ipmi_smi_msg *waiting_msg;
171 struct ipmi_smi_msg *curr_msg;
172 enum si_intf_state si_state;
173
174 /*
175 * Used to handle the various types of I/O that can occur with
176 * IPMI
177 */
178 struct si_sm_io io;
179 int (*io_setup)(struct smi_info *info);
180 void (*io_cleanup)(struct smi_info *info);
181 int (*irq_setup)(struct smi_info *info);
182 void (*irq_cleanup)(struct smi_info *info);
183 unsigned int io_size;
184 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 void (*addr_source_cleanup)(struct smi_info *info);
186 void *addr_source_data;
187
188 /*
189 * Per-OEM handler, called from handle_flags(). Returns 1
190 * when handle_flags() needs to be re-run or 0 indicating it
191 * set si_state itself.
192 */
193 int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195 /*
196 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 * is set to hold the flags until we are done handling everything
198 * from the flags.
199 */
200 #define RECEIVE_MSG_AVAIL 0x01
201 #define EVENT_MSG_BUFFER_FULL 0x02
202 #define WDT_PRE_TIMEOUT_INT 0x08
203 #define OEM0_DATA_AVAIL 0x20
204 #define OEM1_DATA_AVAIL 0x40
205 #define OEM2_DATA_AVAIL 0x80
206 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
207 OEM1_DATA_AVAIL | \
208 OEM2_DATA_AVAIL)
209 unsigned char msg_flags;
210
211 /* Does the BMC have an event buffer? */
212 bool has_event_buffer;
213
214 /*
215 * If set to true, this will request events the next time the
216 * state machine is idle.
217 */
218 atomic_t req_events;
219
220 /*
221 * If true, run the state machine to completion on every send
222 * call. Generally used after a panic to make sure stuff goes
223 * out.
224 */
225 bool run_to_completion;
226
227 /* The I/O port of an SI interface. */
228 int port;
229
230 /*
231 * The space between start addresses of the two ports. For
232 * instance, if the first port is 0xca2 and the spacing is 4, then
233 * the second port is 0xca6.
234 */
235 unsigned int spacing;
236
237 /* zero if no irq; */
238 int irq;
239
240 /* The timer for this si. */
241 struct timer_list si_timer;
242
243 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 bool timer_running;
245
246 /* The time (in jiffies) the last timeout occurred at. */
247 unsigned long last_timeout_jiffies;
248
249 /* Are we waiting for the events, pretimeouts, received msgs? */
250 atomic_t need_watch;
251
252 /*
253 * The driver will disable interrupts when it gets into a
254 * situation where it cannot handle messages due to lack of
255 * memory. Once that situation clears up, it will re-enable
256 * interrupts.
257 */
258 bool interrupt_disabled;
259
260 /*
261 * Does the BMC support events?
262 */
263 bool supports_event_msg_buff;
264
265 /*
266 * Can we disable interrupts the global enables receive irq
267 * bit? There are currently two forms of brokenness, some
268 * systems cannot disable the bit (which is technically within
269 * the spec but a bad idea) and some systems have the bit
270 * forced to zero even though interrupts work (which is
271 * clearly outside the spec). The next bool tells which form
272 * of brokenness is present.
273 */
274 bool cannot_disable_irq;
275
276 /*
277 * Some systems are broken and cannot set the irq enable
278 * bit, even if they support interrupts.
279 */
280 bool irq_enable_broken;
281
282 /*
283 * Did we get an attention that we did not handle?
284 */
285 bool got_attn;
286
287 /* From the get device id response... */
288 struct ipmi_device_id device_id;
289
290 /* Driver model stuff. */
291 struct device *dev;
292 struct platform_device *pdev;
293
294 /*
295 * True if we allocated the device, false if it came from
296 * someplace else (like PCI).
297 */
298 bool dev_registered;
299
300 /* Slave address, could be reported from DMI. */
301 unsigned char slave_addr;
302
303 /* Counters and things for the proc filesystem. */
304 atomic_t stats[SI_NUM_STATS];
305
306 struct task_struct *thread;
307
308 struct list_head link;
309 union ipmi_smi_info_union addr_info;
310 };
311
312 #define smi_inc_stat(smi, stat) \
313 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
314 #define smi_get_stat(smi, stat) \
315 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
316
317 #define SI_MAX_PARMS 4
318
319 static int force_kipmid[SI_MAX_PARMS];
320 static int num_force_kipmid;
321 #ifdef CONFIG_PCI
322 static bool pci_registered;
323 #endif
324 #ifdef CONFIG_PARISC
325 static bool parisc_registered;
326 #endif
327
328 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
329 static int num_max_busy_us;
330
331 static bool unload_when_empty = true;
332
333 static int add_smi(struct smi_info *smi);
334 static int try_smi_init(struct smi_info *smi);
335 static void cleanup_one_si(struct smi_info *to_clean);
336 static void cleanup_ipmi_si(void);
337
338 #ifdef DEBUG_TIMING
339 void debug_timestamp(char *msg)
340 {
341 struct timespec64 t;
342
343 getnstimeofday64(&t);
344 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
345 }
346 #else
347 #define debug_timestamp(x)
348 #endif
349
350 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
351 static int register_xaction_notifier(struct notifier_block *nb)
352 {
353 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
354 }
355
356 static void deliver_recv_msg(struct smi_info *smi_info,
357 struct ipmi_smi_msg *msg)
358 {
359 /* Deliver the message to the upper layer. */
360 if (smi_info->intf)
361 ipmi_smi_msg_received(smi_info->intf, msg);
362 else
363 ipmi_free_smi_msg(msg);
364 }
365
366 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
367 {
368 struct ipmi_smi_msg *msg = smi_info->curr_msg;
369
370 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
371 cCode = IPMI_ERR_UNSPECIFIED;
372 /* else use it as is */
373
374 /* Make it a response */
375 msg->rsp[0] = msg->data[0] | 4;
376 msg->rsp[1] = msg->data[1];
377 msg->rsp[2] = cCode;
378 msg->rsp_size = 3;
379
380 smi_info->curr_msg = NULL;
381 deliver_recv_msg(smi_info, msg);
382 }
383
384 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
385 {
386 int rv;
387
388 if (!smi_info->waiting_msg) {
389 smi_info->curr_msg = NULL;
390 rv = SI_SM_IDLE;
391 } else {
392 int err;
393
394 smi_info->curr_msg = smi_info->waiting_msg;
395 smi_info->waiting_msg = NULL;
396 debug_timestamp("Start2");
397 err = atomic_notifier_call_chain(&xaction_notifier_list,
398 0, smi_info);
399 if (err & NOTIFY_STOP_MASK) {
400 rv = SI_SM_CALL_WITHOUT_DELAY;
401 goto out;
402 }
403 err = smi_info->handlers->start_transaction(
404 smi_info->si_sm,
405 smi_info->curr_msg->data,
406 smi_info->curr_msg->data_size);
407 if (err)
408 return_hosed_msg(smi_info, err);
409
410 rv = SI_SM_CALL_WITHOUT_DELAY;
411 }
412 out:
413 return rv;
414 }
415
416 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
417 {
418 smi_info->last_timeout_jiffies = jiffies;
419 mod_timer(&smi_info->si_timer, new_val);
420 smi_info->timer_running = true;
421 }
422
423 /*
424 * Start a new message and (re)start the timer and thread.
425 */
426 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
427 unsigned int size)
428 {
429 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
430
431 if (smi_info->thread)
432 wake_up_process(smi_info->thread);
433
434 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
435 }
436
437 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
438 {
439 unsigned char msg[2];
440
441 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443
444 if (start_timer)
445 start_new_msg(smi_info, msg, 2);
446 else
447 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
448 smi_info->si_state = SI_CHECKING_ENABLES;
449 }
450
451 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
452 {
453 unsigned char msg[3];
454
455 /* Make sure the watchdog pre-timeout flag is not set at startup. */
456 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
457 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
458 msg[2] = WDT_PRE_TIMEOUT_INT;
459
460 if (start_timer)
461 start_new_msg(smi_info, msg, 3);
462 else
463 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
464 smi_info->si_state = SI_CLEARING_FLAGS;
465 }
466
467 static void start_getting_msg_queue(struct smi_info *smi_info)
468 {
469 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
470 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
471 smi_info->curr_msg->data_size = 2;
472
473 start_new_msg(smi_info, smi_info->curr_msg->data,
474 smi_info->curr_msg->data_size);
475 smi_info->si_state = SI_GETTING_MESSAGES;
476 }
477
478 static void start_getting_events(struct smi_info *smi_info)
479 {
480 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
481 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
482 smi_info->curr_msg->data_size = 2;
483
484 start_new_msg(smi_info, smi_info->curr_msg->data,
485 smi_info->curr_msg->data_size);
486 smi_info->si_state = SI_GETTING_EVENTS;
487 }
488
489 /*
490 * When we have a situtaion where we run out of memory and cannot
491 * allocate messages, we just leave them in the BMC and run the system
492 * polled until we can allocate some memory. Once we have some
493 * memory, we will re-enable the interrupt.
494 *
495 * Note that we cannot just use disable_irq(), since the interrupt may
496 * be shared.
497 */
498 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
499 {
500 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
501 smi_info->interrupt_disabled = true;
502 start_check_enables(smi_info, start_timer);
503 return true;
504 }
505 return false;
506 }
507
508 static inline bool enable_si_irq(struct smi_info *smi_info)
509 {
510 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
511 smi_info->interrupt_disabled = false;
512 start_check_enables(smi_info, true);
513 return true;
514 }
515 return false;
516 }
517
518 /*
519 * Allocate a message. If unable to allocate, start the interrupt
520 * disable process and return NULL. If able to allocate but
521 * interrupts are disabled, free the message and return NULL after
522 * starting the interrupt enable process.
523 */
524 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
525 {
526 struct ipmi_smi_msg *msg;
527
528 msg = ipmi_alloc_smi_msg();
529 if (!msg) {
530 if (!disable_si_irq(smi_info, true))
531 smi_info->si_state = SI_NORMAL;
532 } else if (enable_si_irq(smi_info)) {
533 ipmi_free_smi_msg(msg);
534 msg = NULL;
535 }
536 return msg;
537 }
538
539 static void handle_flags(struct smi_info *smi_info)
540 {
541 retry:
542 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
543 /* Watchdog pre-timeout */
544 smi_inc_stat(smi_info, watchdog_pretimeouts);
545
546 start_clear_flags(smi_info, true);
547 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
548 if (smi_info->intf)
549 ipmi_smi_watchdog_pretimeout(smi_info->intf);
550 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
551 /* Messages available. */
552 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
553 if (!smi_info->curr_msg)
554 return;
555
556 start_getting_msg_queue(smi_info);
557 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
558 /* Events available. */
559 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
560 if (!smi_info->curr_msg)
561 return;
562
563 start_getting_events(smi_info);
564 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
565 smi_info->oem_data_avail_handler) {
566 if (smi_info->oem_data_avail_handler(smi_info))
567 goto retry;
568 } else
569 smi_info->si_state = SI_NORMAL;
570 }
571
572 /*
573 * Global enables we care about.
574 */
575 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
576 IPMI_BMC_EVT_MSG_INTR)
577
578 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
579 bool *irq_on)
580 {
581 u8 enables = 0;
582
583 if (smi_info->supports_event_msg_buff)
584 enables |= IPMI_BMC_EVT_MSG_BUFF;
585
586 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
587 smi_info->cannot_disable_irq) &&
588 !smi_info->irq_enable_broken)
589 enables |= IPMI_BMC_RCV_MSG_INTR;
590
591 if (smi_info->supports_event_msg_buff &&
592 smi_info->irq && !smi_info->interrupt_disabled &&
593 !smi_info->irq_enable_broken)
594 enables |= IPMI_BMC_EVT_MSG_INTR;
595
596 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
597
598 return enables;
599 }
600
601 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
602 {
603 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
604
605 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
606
607 if ((bool)irqstate == irq_on)
608 return;
609
610 if (irq_on)
611 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
612 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
613 else
614 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
615 }
616
617 static void handle_transaction_done(struct smi_info *smi_info)
618 {
619 struct ipmi_smi_msg *msg;
620
621 debug_timestamp("Done");
622 switch (smi_info->si_state) {
623 case SI_NORMAL:
624 if (!smi_info->curr_msg)
625 break;
626
627 smi_info->curr_msg->rsp_size
628 = smi_info->handlers->get_result(
629 smi_info->si_sm,
630 smi_info->curr_msg->rsp,
631 IPMI_MAX_MSG_LENGTH);
632
633 /*
634 * Do this here becase deliver_recv_msg() releases the
635 * lock, and a new message can be put in during the
636 * time the lock is released.
637 */
638 msg = smi_info->curr_msg;
639 smi_info->curr_msg = NULL;
640 deliver_recv_msg(smi_info, msg);
641 break;
642
643 case SI_GETTING_FLAGS:
644 {
645 unsigned char msg[4];
646 unsigned int len;
647
648 /* We got the flags from the SMI, now handle them. */
649 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
650 if (msg[2] != 0) {
651 /* Error fetching flags, just give up for now. */
652 smi_info->si_state = SI_NORMAL;
653 } else if (len < 4) {
654 /*
655 * Hmm, no flags. That's technically illegal, but
656 * don't use uninitialized data.
657 */
658 smi_info->si_state = SI_NORMAL;
659 } else {
660 smi_info->msg_flags = msg[3];
661 handle_flags(smi_info);
662 }
663 break;
664 }
665
666 case SI_CLEARING_FLAGS:
667 {
668 unsigned char msg[3];
669
670 /* We cleared the flags. */
671 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
672 if (msg[2] != 0) {
673 /* Error clearing flags */
674 dev_warn(smi_info->dev,
675 "Error clearing flags: %2.2x\n", msg[2]);
676 }
677 smi_info->si_state = SI_NORMAL;
678 break;
679 }
680
681 case SI_GETTING_EVENTS:
682 {
683 smi_info->curr_msg->rsp_size
684 = smi_info->handlers->get_result(
685 smi_info->si_sm,
686 smi_info->curr_msg->rsp,
687 IPMI_MAX_MSG_LENGTH);
688
689 /*
690 * Do this here becase deliver_recv_msg() releases the
691 * lock, and a new message can be put in during the
692 * time the lock is released.
693 */
694 msg = smi_info->curr_msg;
695 smi_info->curr_msg = NULL;
696 if (msg->rsp[2] != 0) {
697 /* Error getting event, probably done. */
698 msg->done(msg);
699
700 /* Take off the event flag. */
701 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
702 handle_flags(smi_info);
703 } else {
704 smi_inc_stat(smi_info, events);
705
706 /*
707 * Do this before we deliver the message
708 * because delivering the message releases the
709 * lock and something else can mess with the
710 * state.
711 */
712 handle_flags(smi_info);
713
714 deliver_recv_msg(smi_info, msg);
715 }
716 break;
717 }
718
719 case SI_GETTING_MESSAGES:
720 {
721 smi_info->curr_msg->rsp_size
722 = smi_info->handlers->get_result(
723 smi_info->si_sm,
724 smi_info->curr_msg->rsp,
725 IPMI_MAX_MSG_LENGTH);
726
727 /*
728 * Do this here becase deliver_recv_msg() releases the
729 * lock, and a new message can be put in during the
730 * time the lock is released.
731 */
732 msg = smi_info->curr_msg;
733 smi_info->curr_msg = NULL;
734 if (msg->rsp[2] != 0) {
735 /* Error getting event, probably done. */
736 msg->done(msg);
737
738 /* Take off the msg flag. */
739 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
740 handle_flags(smi_info);
741 } else {
742 smi_inc_stat(smi_info, incoming_messages);
743
744 /*
745 * Do this before we deliver the message
746 * because delivering the message releases the
747 * lock and something else can mess with the
748 * state.
749 */
750 handle_flags(smi_info);
751
752 deliver_recv_msg(smi_info, msg);
753 }
754 break;
755 }
756
757 case SI_CHECKING_ENABLES:
758 {
759 unsigned char msg[4];
760 u8 enables;
761 bool irq_on;
762
763 /* We got the flags from the SMI, now handle them. */
764 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
765 if (msg[2] != 0) {
766 dev_warn(smi_info->dev,
767 "Couldn't get irq info: %x.\n", msg[2]);
768 dev_warn(smi_info->dev,
769 "Maybe ok, but ipmi might run very slowly.\n");
770 smi_info->si_state = SI_NORMAL;
771 break;
772 }
773 enables = current_global_enables(smi_info, 0, &irq_on);
774 if (smi_info->si_type == SI_BT)
775 /* BT has its own interrupt enable bit. */
776 check_bt_irq(smi_info, irq_on);
777 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
778 /* Enables are not correct, fix them. */
779 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
780 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
781 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
782 smi_info->handlers->start_transaction(
783 smi_info->si_sm, msg, 3);
784 smi_info->si_state = SI_SETTING_ENABLES;
785 } else if (smi_info->supports_event_msg_buff) {
786 smi_info->curr_msg = ipmi_alloc_smi_msg();
787 if (!smi_info->curr_msg) {
788 smi_info->si_state = SI_NORMAL;
789 break;
790 }
791 start_getting_msg_queue(smi_info);
792 } else {
793 smi_info->si_state = SI_NORMAL;
794 }
795 break;
796 }
797
798 case SI_SETTING_ENABLES:
799 {
800 unsigned char msg[4];
801
802 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
803 if (msg[2] != 0)
804 dev_warn(smi_info->dev,
805 "Could not set the global enables: 0x%x.\n",
806 msg[2]);
807
808 if (smi_info->supports_event_msg_buff) {
809 smi_info->curr_msg = ipmi_alloc_smi_msg();
810 if (!smi_info->curr_msg) {
811 smi_info->si_state = SI_NORMAL;
812 break;
813 }
814 start_getting_msg_queue(smi_info);
815 } else {
816 smi_info->si_state = SI_NORMAL;
817 }
818 break;
819 }
820 }
821 }
822
823 /*
824 * Called on timeouts and events. Timeouts should pass the elapsed
825 * time, interrupts should pass in zero. Must be called with
826 * si_lock held and interrupts disabled.
827 */
828 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
829 int time)
830 {
831 enum si_sm_result si_sm_result;
832
833 restart:
834 /*
835 * There used to be a loop here that waited a little while
836 * (around 25us) before giving up. That turned out to be
837 * pointless, the minimum delays I was seeing were in the 300us
838 * range, which is far too long to wait in an interrupt. So
839 * we just run until the state machine tells us something
840 * happened or it needs a delay.
841 */
842 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
843 time = 0;
844 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
845 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
846
847 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
848 smi_inc_stat(smi_info, complete_transactions);
849
850 handle_transaction_done(smi_info);
851 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
852 } else if (si_sm_result == SI_SM_HOSED) {
853 smi_inc_stat(smi_info, hosed_count);
854
855 /*
856 * Do the before return_hosed_msg, because that
857 * releases the lock.
858 */
859 smi_info->si_state = SI_NORMAL;
860 if (smi_info->curr_msg != NULL) {
861 /*
862 * If we were handling a user message, format
863 * a response to send to the upper layer to
864 * tell it about the error.
865 */
866 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
867 }
868 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
869 }
870
871 /*
872 * We prefer handling attn over new messages. But don't do
873 * this if there is not yet an upper layer to handle anything.
874 */
875 if (likely(smi_info->intf) &&
876 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
877 unsigned char msg[2];
878
879 if (smi_info->si_state != SI_NORMAL) {
880 /*
881 * We got an ATTN, but we are doing something else.
882 * Handle the ATTN later.
883 */
884 smi_info->got_attn = true;
885 } else {
886 smi_info->got_attn = false;
887 smi_inc_stat(smi_info, attentions);
888
889 /*
890 * Got a attn, send down a get message flags to see
891 * what's causing it. It would be better to handle
892 * this in the upper layer, but due to the way
893 * interrupts work with the SMI, that's not really
894 * possible.
895 */
896 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
897 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
898
899 start_new_msg(smi_info, msg, 2);
900 smi_info->si_state = SI_GETTING_FLAGS;
901 goto restart;
902 }
903 }
904
905 /* If we are currently idle, try to start the next message. */
906 if (si_sm_result == SI_SM_IDLE) {
907 smi_inc_stat(smi_info, idles);
908
909 si_sm_result = start_next_msg(smi_info);
910 if (si_sm_result != SI_SM_IDLE)
911 goto restart;
912 }
913
914 if ((si_sm_result == SI_SM_IDLE)
915 && (atomic_read(&smi_info->req_events))) {
916 /*
917 * We are idle and the upper layer requested that I fetch
918 * events, so do so.
919 */
920 atomic_set(&smi_info->req_events, 0);
921
922 /*
923 * Take this opportunity to check the interrupt and
924 * message enable state for the BMC. The BMC can be
925 * asynchronously reset, and may thus get interrupts
926 * disable and messages disabled.
927 */
928 if (smi_info->supports_event_msg_buff || smi_info->irq) {
929 start_check_enables(smi_info, true);
930 } else {
931 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
932 if (!smi_info->curr_msg)
933 goto out;
934
935 start_getting_events(smi_info);
936 }
937 goto restart;
938 }
939
940 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
941 /* Ok it if fails, the timer will just go off. */
942 if (del_timer(&smi_info->si_timer))
943 smi_info->timer_running = false;
944 }
945
946 out:
947 return si_sm_result;
948 }
949
950 static void check_start_timer_thread(struct smi_info *smi_info)
951 {
952 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
953 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
954
955 if (smi_info->thread)
956 wake_up_process(smi_info->thread);
957
958 start_next_msg(smi_info);
959 smi_event_handler(smi_info, 0);
960 }
961 }
962
963 static void flush_messages(void *send_info)
964 {
965 struct smi_info *smi_info = send_info;
966 enum si_sm_result result;
967
968 /*
969 * Currently, this function is called only in run-to-completion
970 * mode. This means we are single-threaded, no need for locks.
971 */
972 result = smi_event_handler(smi_info, 0);
973 while (result != SI_SM_IDLE) {
974 udelay(SI_SHORT_TIMEOUT_USEC);
975 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
976 }
977 }
978
979 static void sender(void *send_info,
980 struct ipmi_smi_msg *msg)
981 {
982 struct smi_info *smi_info = send_info;
983 unsigned long flags;
984
985 debug_timestamp("Enqueue");
986
987 if (smi_info->run_to_completion) {
988 /*
989 * If we are running to completion, start it. Upper
990 * layer will call flush_messages to clear it out.
991 */
992 smi_info->waiting_msg = msg;
993 return;
994 }
995
996 spin_lock_irqsave(&smi_info->si_lock, flags);
997 /*
998 * The following two lines don't need to be under the lock for
999 * the lock's sake, but they do need SMP memory barriers to
1000 * avoid getting things out of order. We are already claiming
1001 * the lock, anyway, so just do it under the lock to avoid the
1002 * ordering problem.
1003 */
1004 BUG_ON(smi_info->waiting_msg);
1005 smi_info->waiting_msg = msg;
1006 check_start_timer_thread(smi_info);
1007 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1008 }
1009
1010 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1011 {
1012 struct smi_info *smi_info = send_info;
1013
1014 smi_info->run_to_completion = i_run_to_completion;
1015 if (i_run_to_completion)
1016 flush_messages(smi_info);
1017 }
1018
1019 /*
1020 * Use -1 in the nsec value of the busy waiting timespec to tell that
1021 * we are spinning in kipmid looking for something and not delaying
1022 * between checks
1023 */
1024 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1025 {
1026 ts->tv_nsec = -1;
1027 }
1028 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1029 {
1030 return ts->tv_nsec != -1;
1031 }
1032
1033 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1034 const struct smi_info *smi_info,
1035 struct timespec64 *busy_until)
1036 {
1037 unsigned int max_busy_us = 0;
1038
1039 if (smi_info->intf_num < num_max_busy_us)
1040 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1041 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1042 ipmi_si_set_not_busy(busy_until);
1043 else if (!ipmi_si_is_busy(busy_until)) {
1044 getnstimeofday64(busy_until);
1045 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1046 } else {
1047 struct timespec64 now;
1048
1049 getnstimeofday64(&now);
1050 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1051 ipmi_si_set_not_busy(busy_until);
1052 return 0;
1053 }
1054 }
1055 return 1;
1056 }
1057
1058
1059 /*
1060 * A busy-waiting loop for speeding up IPMI operation.
1061 *
1062 * Lousy hardware makes this hard. This is only enabled for systems
1063 * that are not BT and do not have interrupts. It starts spinning
1064 * when an operation is complete or until max_busy tells it to stop
1065 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1066 * Documentation/IPMI.txt for details.
1067 */
1068 static int ipmi_thread(void *data)
1069 {
1070 struct smi_info *smi_info = data;
1071 unsigned long flags;
1072 enum si_sm_result smi_result;
1073 struct timespec64 busy_until;
1074
1075 ipmi_si_set_not_busy(&busy_until);
1076 set_user_nice(current, MAX_NICE);
1077 while (!kthread_should_stop()) {
1078 int busy_wait;
1079
1080 spin_lock_irqsave(&(smi_info->si_lock), flags);
1081 smi_result = smi_event_handler(smi_info, 0);
1082
1083 /*
1084 * If the driver is doing something, there is a possible
1085 * race with the timer. If the timer handler see idle,
1086 * and the thread here sees something else, the timer
1087 * handler won't restart the timer even though it is
1088 * required. So start it here if necessary.
1089 */
1090 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1091 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1092
1093 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1094 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1095 &busy_until);
1096 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1097 ; /* do nothing */
1098 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1099 schedule();
1100 else if (smi_result == SI_SM_IDLE) {
1101 if (atomic_read(&smi_info->need_watch)) {
1102 schedule_timeout_interruptible(100);
1103 } else {
1104 /* Wait to be woken up when we are needed. */
1105 __set_current_state(TASK_INTERRUPTIBLE);
1106 schedule();
1107 }
1108 } else
1109 schedule_timeout_interruptible(1);
1110 }
1111 return 0;
1112 }
1113
1114
1115 static void poll(void *send_info)
1116 {
1117 struct smi_info *smi_info = send_info;
1118 unsigned long flags = 0;
1119 bool run_to_completion = smi_info->run_to_completion;
1120
1121 /*
1122 * Make sure there is some delay in the poll loop so we can
1123 * drive time forward and timeout things.
1124 */
1125 udelay(10);
1126 if (!run_to_completion)
1127 spin_lock_irqsave(&smi_info->si_lock, flags);
1128 smi_event_handler(smi_info, 10);
1129 if (!run_to_completion)
1130 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1131 }
1132
1133 static void request_events(void *send_info)
1134 {
1135 struct smi_info *smi_info = send_info;
1136
1137 if (!smi_info->has_event_buffer)
1138 return;
1139
1140 atomic_set(&smi_info->req_events, 1);
1141 }
1142
1143 static void set_need_watch(void *send_info, bool enable)
1144 {
1145 struct smi_info *smi_info = send_info;
1146 unsigned long flags;
1147
1148 atomic_set(&smi_info->need_watch, enable);
1149 spin_lock_irqsave(&smi_info->si_lock, flags);
1150 check_start_timer_thread(smi_info);
1151 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1152 }
1153
1154 static int initialized;
1155
1156 static void smi_timeout(unsigned long data)
1157 {
1158 struct smi_info *smi_info = (struct smi_info *) data;
1159 enum si_sm_result smi_result;
1160 unsigned long flags;
1161 unsigned long jiffies_now;
1162 long time_diff;
1163 long timeout;
1164
1165 spin_lock_irqsave(&(smi_info->si_lock), flags);
1166 debug_timestamp("Timer");
1167
1168 jiffies_now = jiffies;
1169 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1170 * SI_USEC_PER_JIFFY);
1171 smi_result = smi_event_handler(smi_info, time_diff);
1172
1173 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1174 /* Running with interrupts, only do long timeouts. */
1175 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1176 smi_inc_stat(smi_info, long_timeouts);
1177 goto do_mod_timer;
1178 }
1179
1180 /*
1181 * If the state machine asks for a short delay, then shorten
1182 * the timer timeout.
1183 */
1184 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1185 smi_inc_stat(smi_info, short_timeouts);
1186 timeout = jiffies + 1;
1187 } else {
1188 smi_inc_stat(smi_info, long_timeouts);
1189 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1190 }
1191
1192 do_mod_timer:
1193 if (smi_result != SI_SM_IDLE)
1194 smi_mod_timer(smi_info, timeout);
1195 else
1196 smi_info->timer_running = false;
1197 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1198 }
1199
1200 static irqreturn_t si_irq_handler(int irq, void *data)
1201 {
1202 struct smi_info *smi_info = data;
1203 unsigned long flags;
1204
1205 spin_lock_irqsave(&(smi_info->si_lock), flags);
1206
1207 smi_inc_stat(smi_info, interrupts);
1208
1209 debug_timestamp("Interrupt");
1210
1211 smi_event_handler(smi_info, 0);
1212 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1213 return IRQ_HANDLED;
1214 }
1215
1216 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1217 {
1218 struct smi_info *smi_info = data;
1219 /* We need to clear the IRQ flag for the BT interface. */
1220 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1221 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1222 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1223 return si_irq_handler(irq, data);
1224 }
1225
1226 static int smi_start_processing(void *send_info,
1227 ipmi_smi_t intf)
1228 {
1229 struct smi_info *new_smi = send_info;
1230 int enable = 0;
1231
1232 new_smi->intf = intf;
1233
1234 /* Set up the timer that drives the interface. */
1235 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1236 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1237
1238 /* Try to claim any interrupts. */
1239 if (new_smi->irq_setup)
1240 new_smi->irq_setup(new_smi);
1241
1242 /*
1243 * Check if the user forcefully enabled the daemon.
1244 */
1245 if (new_smi->intf_num < num_force_kipmid)
1246 enable = force_kipmid[new_smi->intf_num];
1247 /*
1248 * The BT interface is efficient enough to not need a thread,
1249 * and there is no need for a thread if we have interrupts.
1250 */
1251 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1252 enable = 1;
1253
1254 if (enable) {
1255 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1256 "kipmi%d", new_smi->intf_num);
1257 if (IS_ERR(new_smi->thread)) {
1258 dev_notice(new_smi->dev, "Could not start"
1259 " kernel thread due to error %ld, only using"
1260 " timers to drive the interface\n",
1261 PTR_ERR(new_smi->thread));
1262 new_smi->thread = NULL;
1263 }
1264 }
1265
1266 return 0;
1267 }
1268
1269 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1270 {
1271 struct smi_info *smi = send_info;
1272
1273 data->addr_src = smi->addr_source;
1274 data->dev = smi->dev;
1275 data->addr_info = smi->addr_info;
1276 get_device(smi->dev);
1277
1278 return 0;
1279 }
1280
1281 static void set_maintenance_mode(void *send_info, bool enable)
1282 {
1283 struct smi_info *smi_info = send_info;
1284
1285 if (!enable)
1286 atomic_set(&smi_info->req_events, 0);
1287 }
1288
1289 static const struct ipmi_smi_handlers handlers = {
1290 .owner = THIS_MODULE,
1291 .start_processing = smi_start_processing,
1292 .get_smi_info = get_smi_info,
1293 .sender = sender,
1294 .request_events = request_events,
1295 .set_need_watch = set_need_watch,
1296 .set_maintenance_mode = set_maintenance_mode,
1297 .set_run_to_completion = set_run_to_completion,
1298 .flush_messages = flush_messages,
1299 .poll = poll,
1300 };
1301
1302 /*
1303 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1304 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1305 */
1306
1307 static LIST_HEAD(smi_infos);
1308 static DEFINE_MUTEX(smi_infos_lock);
1309 static int smi_num; /* Used to sequence the SMIs */
1310
1311 #define DEFAULT_REGSPACING 1
1312 #define DEFAULT_REGSIZE 1
1313
1314 #ifdef CONFIG_ACPI
1315 static bool si_tryacpi = true;
1316 #endif
1317 #ifdef CONFIG_DMI
1318 static bool si_trydmi = true;
1319 #endif
1320 static bool si_tryplatform = true;
1321 #ifdef CONFIG_PCI
1322 static bool si_trypci = true;
1323 #endif
1324 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1325 static char *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1342
1343 #define IPMI_IO_ADDR_SPACE 0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1346
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1348
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1351 " Documentation/IPMI.txt in the kernel sources for the"
1352 " gory details.");
1353
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362 " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1366 " default scan of the interfaces identified via platform"
1367 " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1371 " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_named(trydefaults, si_trydefaults, bool, 0);
1374 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1375 " default scan of the KCS and SMIC interface at the standard"
1376 " address");
1377 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1378 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1379 " interface separated by commas. The types are 'kcs',"
1380 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1381 " the first interface to kcs and the second to bt");
1382 module_param_array(addrs, ulong, &num_addrs, 0);
1383 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1384 " addresses separated by commas. Only use if an interface"
1385 " is in memory. Otherwise, set it to zero or leave"
1386 " it blank.");
1387 module_param_array(ports, uint, &num_ports, 0);
1388 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1389 " addresses separated by commas. Only use if an interface"
1390 " is a port. Otherwise, set it to zero or leave"
1391 " it blank.");
1392 module_param_array(irqs, int, &num_irqs, 0);
1393 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1394 " addresses separated by commas. Only use if an interface"
1395 " has an interrupt. Otherwise, set it to zero or leave"
1396 " it blank.");
1397 module_param_array(regspacings, int, &num_regspacings, 0);
1398 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1399 " and each successive register used by the interface. For"
1400 " instance, if the start address is 0xca2 and the spacing"
1401 " is 2, then the second address is at 0xca4. Defaults"
1402 " to 1.");
1403 module_param_array(regsizes, int, &num_regsizes, 0);
1404 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1405 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1406 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1407 " the 8-bit IPMI register has to be read from a larger"
1408 " register.");
1409 module_param_array(regshifts, int, &num_regshifts, 0);
1410 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1411 " IPMI register, in bits. For instance, if the data"
1412 " is read from a 32-bit word and the IPMI data is in"
1413 " bit 8-15, then the shift would be 8");
1414 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1415 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1416 " the controller. Normally this is 0x20, but can be"
1417 " overridden by this parm. This is an array indexed"
1418 " by interface number.");
1419 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1420 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1421 " disabled(0). Normally the IPMI driver auto-detects"
1422 " this, but the value may be overridden by this parm.");
1423 module_param(unload_when_empty, bool, 0);
1424 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1425 " specified or found, default is 1. Setting to 0"
1426 " is useful for hot add of devices using hotmod.");
1427 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1428 MODULE_PARM_DESC(kipmid_max_busy_us,
1429 "Max time (in microseconds) to busy-wait for IPMI data before"
1430 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1431 " if kipmid is using up a lot of CPU time.");
1432
1433
1434 static void std_irq_cleanup(struct smi_info *info)
1435 {
1436 if (info->si_type == SI_BT)
1437 /* Disable the interrupt in the BT interface. */
1438 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1439 free_irq(info->irq, info);
1440 }
1441
1442 static int std_irq_setup(struct smi_info *info)
1443 {
1444 int rv;
1445
1446 if (!info->irq)
1447 return 0;
1448
1449 if (info->si_type == SI_BT) {
1450 rv = request_irq(info->irq,
1451 si_bt_irq_handler,
1452 IRQF_SHARED,
1453 DEVICE_NAME,
1454 info);
1455 if (!rv)
1456 /* Enable the interrupt in the BT interface. */
1457 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1458 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1459 } else
1460 rv = request_irq(info->irq,
1461 si_irq_handler,
1462 IRQF_SHARED,
1463 DEVICE_NAME,
1464 info);
1465 if (rv) {
1466 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1467 " running polled\n",
1468 DEVICE_NAME, info->irq);
1469 info->irq = 0;
1470 } else {
1471 info->irq_cleanup = std_irq_cleanup;
1472 dev_info(info->dev, "Using irq %d\n", info->irq);
1473 }
1474
1475 return rv;
1476 }
1477
1478 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1479 {
1480 unsigned int addr = io->addr_data;
1481
1482 return inb(addr + (offset * io->regspacing));
1483 }
1484
1485 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1486 unsigned char b)
1487 {
1488 unsigned int addr = io->addr_data;
1489
1490 outb(b, addr + (offset * io->regspacing));
1491 }
1492
1493 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1494 {
1495 unsigned int addr = io->addr_data;
1496
1497 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1498 }
1499
1500 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1501 unsigned char b)
1502 {
1503 unsigned int addr = io->addr_data;
1504
1505 outw(b << io->regshift, addr + (offset * io->regspacing));
1506 }
1507
1508 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1509 {
1510 unsigned int addr = io->addr_data;
1511
1512 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1513 }
1514
1515 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1516 unsigned char b)
1517 {
1518 unsigned int addr = io->addr_data;
1519
1520 outl(b << io->regshift, addr+(offset * io->regspacing));
1521 }
1522
1523 static void port_cleanup(struct smi_info *info)
1524 {
1525 unsigned int addr = info->io.addr_data;
1526 int idx;
1527
1528 if (addr) {
1529 for (idx = 0; idx < info->io_size; idx++)
1530 release_region(addr + idx * info->io.regspacing,
1531 info->io.regsize);
1532 }
1533 }
1534
1535 static int port_setup(struct smi_info *info)
1536 {
1537 unsigned int addr = info->io.addr_data;
1538 int idx;
1539
1540 if (!addr)
1541 return -ENODEV;
1542
1543 info->io_cleanup = port_cleanup;
1544
1545 /*
1546 * Figure out the actual inb/inw/inl/etc routine to use based
1547 * upon the register size.
1548 */
1549 switch (info->io.regsize) {
1550 case 1:
1551 info->io.inputb = port_inb;
1552 info->io.outputb = port_outb;
1553 break;
1554 case 2:
1555 info->io.inputb = port_inw;
1556 info->io.outputb = port_outw;
1557 break;
1558 case 4:
1559 info->io.inputb = port_inl;
1560 info->io.outputb = port_outl;
1561 break;
1562 default:
1563 dev_warn(info->dev, "Invalid register size: %d\n",
1564 info->io.regsize);
1565 return -EINVAL;
1566 }
1567
1568 /*
1569 * Some BIOSes reserve disjoint I/O regions in their ACPI
1570 * tables. This causes problems when trying to register the
1571 * entire I/O region. Therefore we must register each I/O
1572 * port separately.
1573 */
1574 for (idx = 0; idx < info->io_size; idx++) {
1575 if (request_region(addr + idx * info->io.regspacing,
1576 info->io.regsize, DEVICE_NAME) == NULL) {
1577 /* Undo allocations */
1578 while (idx--) {
1579 release_region(addr + idx * info->io.regspacing,
1580 info->io.regsize);
1581 }
1582 return -EIO;
1583 }
1584 }
1585 return 0;
1586 }
1587
1588 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1589 unsigned int offset)
1590 {
1591 return readb((io->addr)+(offset * io->regspacing));
1592 }
1593
1594 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1595 unsigned char b)
1596 {
1597 writeb(b, (io->addr)+(offset * io->regspacing));
1598 }
1599
1600 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1601 unsigned int offset)
1602 {
1603 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1604 & 0xff;
1605 }
1606
1607 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1608 unsigned char b)
1609 {
1610 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1611 }
1612
1613 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1614 unsigned int offset)
1615 {
1616 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617 & 0xff;
1618 }
1619
1620 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1621 unsigned char b)
1622 {
1623 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625
1626 #ifdef readq
1627 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1628 {
1629 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630 & 0xff;
1631 }
1632
1633 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1634 unsigned char b)
1635 {
1636 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638 #endif
1639
1640 static void mem_cleanup(struct smi_info *info)
1641 {
1642 unsigned long addr = info->io.addr_data;
1643 int mapsize;
1644
1645 if (info->io.addr) {
1646 iounmap(info->io.addr);
1647
1648 mapsize = ((info->io_size * info->io.regspacing)
1649 - (info->io.regspacing - info->io.regsize));
1650
1651 release_mem_region(addr, mapsize);
1652 }
1653 }
1654
1655 static int mem_setup(struct smi_info *info)
1656 {
1657 unsigned long addr = info->io.addr_data;
1658 int mapsize;
1659
1660 if (!addr)
1661 return -ENODEV;
1662
1663 info->io_cleanup = mem_cleanup;
1664
1665 /*
1666 * Figure out the actual readb/readw/readl/etc routine to use based
1667 * upon the register size.
1668 */
1669 switch (info->io.regsize) {
1670 case 1:
1671 info->io.inputb = intf_mem_inb;
1672 info->io.outputb = intf_mem_outb;
1673 break;
1674 case 2:
1675 info->io.inputb = intf_mem_inw;
1676 info->io.outputb = intf_mem_outw;
1677 break;
1678 case 4:
1679 info->io.inputb = intf_mem_inl;
1680 info->io.outputb = intf_mem_outl;
1681 break;
1682 #ifdef readq
1683 case 8:
1684 info->io.inputb = mem_inq;
1685 info->io.outputb = mem_outq;
1686 break;
1687 #endif
1688 default:
1689 dev_warn(info->dev, "Invalid register size: %d\n",
1690 info->io.regsize);
1691 return -EINVAL;
1692 }
1693
1694 /*
1695 * Calculate the total amount of memory to claim. This is an
1696 * unusual looking calculation, but it avoids claiming any
1697 * more memory than it has to. It will claim everything
1698 * between the first address to the end of the last full
1699 * register.
1700 */
1701 mapsize = ((info->io_size * info->io.regspacing)
1702 - (info->io.regspacing - info->io.regsize));
1703
1704 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1705 return -EIO;
1706
1707 info->io.addr = ioremap(addr, mapsize);
1708 if (info->io.addr == NULL) {
1709 release_mem_region(addr, mapsize);
1710 return -EIO;
1711 }
1712 return 0;
1713 }
1714
1715 /*
1716 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1717 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1718 * Options are:
1719 * rsp=<regspacing>
1720 * rsi=<regsize>
1721 * rsh=<regshift>
1722 * irq=<irq>
1723 * ipmb=<ipmb addr>
1724 */
1725 enum hotmod_op { HM_ADD, HM_REMOVE };
1726 struct hotmod_vals {
1727 const char *name;
1728 const int val;
1729 };
1730
1731 static const struct hotmod_vals hotmod_ops[] = {
1732 { "add", HM_ADD },
1733 { "remove", HM_REMOVE },
1734 { NULL }
1735 };
1736
1737 static const struct hotmod_vals hotmod_si[] = {
1738 { "kcs", SI_KCS },
1739 { "smic", SI_SMIC },
1740 { "bt", SI_BT },
1741 { NULL }
1742 };
1743
1744 static const struct hotmod_vals hotmod_as[] = {
1745 { "mem", IPMI_MEM_ADDR_SPACE },
1746 { "i/o", IPMI_IO_ADDR_SPACE },
1747 { NULL }
1748 };
1749
1750 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1751 char **curr)
1752 {
1753 char *s;
1754 int i;
1755
1756 s = strchr(*curr, ',');
1757 if (!s) {
1758 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1759 return -EINVAL;
1760 }
1761 *s = '\0';
1762 s++;
1763 for (i = 0; v[i].name; i++) {
1764 if (strcmp(*curr, v[i].name) == 0) {
1765 *val = v[i].val;
1766 *curr = s;
1767 return 0;
1768 }
1769 }
1770
1771 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1772 return -EINVAL;
1773 }
1774
1775 static int check_hotmod_int_op(const char *curr, const char *option,
1776 const char *name, int *val)
1777 {
1778 char *n;
1779
1780 if (strcmp(curr, name) == 0) {
1781 if (!option) {
1782 printk(KERN_WARNING PFX
1783 "No option given for '%s'\n",
1784 curr);
1785 return -EINVAL;
1786 }
1787 *val = simple_strtoul(option, &n, 0);
1788 if ((*n != '\0') || (*option == '\0')) {
1789 printk(KERN_WARNING PFX
1790 "Bad option given for '%s'\n",
1791 curr);
1792 return -EINVAL;
1793 }
1794 return 1;
1795 }
1796 return 0;
1797 }
1798
1799 static struct smi_info *smi_info_alloc(void)
1800 {
1801 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1802
1803 if (info)
1804 spin_lock_init(&info->si_lock);
1805 return info;
1806 }
1807
1808 static int hotmod_handler(const char *val, struct kernel_param *kp)
1809 {
1810 char *str = kstrdup(val, GFP_KERNEL);
1811 int rv;
1812 char *next, *curr, *s, *n, *o;
1813 enum hotmod_op op;
1814 enum si_type si_type;
1815 int addr_space;
1816 unsigned long addr;
1817 int regspacing;
1818 int regsize;
1819 int regshift;
1820 int irq;
1821 int ipmb;
1822 int ival;
1823 int len;
1824 struct smi_info *info;
1825
1826 if (!str)
1827 return -ENOMEM;
1828
1829 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1830 len = strlen(str);
1831 ival = len - 1;
1832 while ((ival >= 0) && isspace(str[ival])) {
1833 str[ival] = '\0';
1834 ival--;
1835 }
1836
1837 for (curr = str; curr; curr = next) {
1838 regspacing = 1;
1839 regsize = 1;
1840 regshift = 0;
1841 irq = 0;
1842 ipmb = 0; /* Choose the default if not specified */
1843
1844 next = strchr(curr, ':');
1845 if (next) {
1846 *next = '\0';
1847 next++;
1848 }
1849
1850 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1851 if (rv)
1852 break;
1853 op = ival;
1854
1855 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1856 if (rv)
1857 break;
1858 si_type = ival;
1859
1860 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1861 if (rv)
1862 break;
1863
1864 s = strchr(curr, ',');
1865 if (s) {
1866 *s = '\0';
1867 s++;
1868 }
1869 addr = simple_strtoul(curr, &n, 0);
1870 if ((*n != '\0') || (*curr == '\0')) {
1871 printk(KERN_WARNING PFX "Invalid hotmod address"
1872 " '%s'\n", curr);
1873 break;
1874 }
1875
1876 while (s) {
1877 curr = s;
1878 s = strchr(curr, ',');
1879 if (s) {
1880 *s = '\0';
1881 s++;
1882 }
1883 o = strchr(curr, '=');
1884 if (o) {
1885 *o = '\0';
1886 o++;
1887 }
1888 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1889 if (rv < 0)
1890 goto out;
1891 else if (rv)
1892 continue;
1893 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1894 if (rv < 0)
1895 goto out;
1896 else if (rv)
1897 continue;
1898 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1899 if (rv < 0)
1900 goto out;
1901 else if (rv)
1902 continue;
1903 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1904 if (rv < 0)
1905 goto out;
1906 else if (rv)
1907 continue;
1908 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1909 if (rv < 0)
1910 goto out;
1911 else if (rv)
1912 continue;
1913
1914 rv = -EINVAL;
1915 printk(KERN_WARNING PFX
1916 "Invalid hotmod option '%s'\n",
1917 curr);
1918 goto out;
1919 }
1920
1921 if (op == HM_ADD) {
1922 info = smi_info_alloc();
1923 if (!info) {
1924 rv = -ENOMEM;
1925 goto out;
1926 }
1927
1928 info->addr_source = SI_HOTMOD;
1929 info->si_type = si_type;
1930 info->io.addr_data = addr;
1931 info->io.addr_type = addr_space;
1932 if (addr_space == IPMI_MEM_ADDR_SPACE)
1933 info->io_setup = mem_setup;
1934 else
1935 info->io_setup = port_setup;
1936
1937 info->io.addr = NULL;
1938 info->io.regspacing = regspacing;
1939 if (!info->io.regspacing)
1940 info->io.regspacing = DEFAULT_REGSPACING;
1941 info->io.regsize = regsize;
1942 if (!info->io.regsize)
1943 info->io.regsize = DEFAULT_REGSPACING;
1944 info->io.regshift = regshift;
1945 info->irq = irq;
1946 if (info->irq)
1947 info->irq_setup = std_irq_setup;
1948 info->slave_addr = ipmb;
1949
1950 rv = add_smi(info);
1951 if (rv) {
1952 kfree(info);
1953 goto out;
1954 }
1955 rv = try_smi_init(info);
1956 if (rv) {
1957 cleanup_one_si(info);
1958 goto out;
1959 }
1960 } else {
1961 /* remove */
1962 struct smi_info *e, *tmp_e;
1963
1964 mutex_lock(&smi_infos_lock);
1965 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1966 if (e->io.addr_type != addr_space)
1967 continue;
1968 if (e->si_type != si_type)
1969 continue;
1970 if (e->io.addr_data == addr)
1971 cleanup_one_si(e);
1972 }
1973 mutex_unlock(&smi_infos_lock);
1974 }
1975 }
1976 rv = len;
1977 out:
1978 kfree(str);
1979 return rv;
1980 }
1981
1982 static int hardcode_find_bmc(void)
1983 {
1984 int ret = -ENODEV;
1985 int i;
1986 struct smi_info *info;
1987
1988 for (i = 0; i < SI_MAX_PARMS; i++) {
1989 if (!ports[i] && !addrs[i])
1990 continue;
1991
1992 info = smi_info_alloc();
1993 if (!info)
1994 return -ENOMEM;
1995
1996 info->addr_source = SI_HARDCODED;
1997 printk(KERN_INFO PFX "probing via hardcoded address\n");
1998
1999 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2000 info->si_type = SI_KCS;
2001 } else if (strcmp(si_type[i], "smic") == 0) {
2002 info->si_type = SI_SMIC;
2003 } else if (strcmp(si_type[i], "bt") == 0) {
2004 info->si_type = SI_BT;
2005 } else {
2006 printk(KERN_WARNING PFX "Interface type specified "
2007 "for interface %d, was invalid: %s\n",
2008 i, si_type[i]);
2009 kfree(info);
2010 continue;
2011 }
2012
2013 if (ports[i]) {
2014 /* An I/O port */
2015 info->io_setup = port_setup;
2016 info->io.addr_data = ports[i];
2017 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2018 } else if (addrs[i]) {
2019 /* A memory port */
2020 info->io_setup = mem_setup;
2021 info->io.addr_data = addrs[i];
2022 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2023 } else {
2024 printk(KERN_WARNING PFX "Interface type specified "
2025 "for interface %d, but port and address were "
2026 "not set or set to zero.\n", i);
2027 kfree(info);
2028 continue;
2029 }
2030
2031 info->io.addr = NULL;
2032 info->io.regspacing = regspacings[i];
2033 if (!info->io.regspacing)
2034 info->io.regspacing = DEFAULT_REGSPACING;
2035 info->io.regsize = regsizes[i];
2036 if (!info->io.regsize)
2037 info->io.regsize = DEFAULT_REGSPACING;
2038 info->io.regshift = regshifts[i];
2039 info->irq = irqs[i];
2040 if (info->irq)
2041 info->irq_setup = std_irq_setup;
2042 info->slave_addr = slave_addrs[i];
2043
2044 if (!add_smi(info)) {
2045 if (try_smi_init(info))
2046 cleanup_one_si(info);
2047 ret = 0;
2048 } else {
2049 kfree(info);
2050 }
2051 }
2052 return ret;
2053 }
2054
2055 #ifdef CONFIG_ACPI
2056
2057 #include <linux/acpi.h>
2058
2059 /*
2060 * Once we get an ACPI failure, we don't try any more, because we go
2061 * through the tables sequentially. Once we don't find a table, there
2062 * are no more.
2063 */
2064 static int acpi_failure;
2065
2066 /* For GPE-type interrupts. */
2067 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2068 u32 gpe_number, void *context)
2069 {
2070 struct smi_info *smi_info = context;
2071 unsigned long flags;
2072
2073 spin_lock_irqsave(&(smi_info->si_lock), flags);
2074
2075 smi_inc_stat(smi_info, interrupts);
2076
2077 debug_timestamp("ACPI_GPE");
2078
2079 smi_event_handler(smi_info, 0);
2080 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2081
2082 return ACPI_INTERRUPT_HANDLED;
2083 }
2084
2085 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2086 {
2087 if (!info->irq)
2088 return;
2089
2090 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2091 }
2092
2093 static int acpi_gpe_irq_setup(struct smi_info *info)
2094 {
2095 acpi_status status;
2096
2097 if (!info->irq)
2098 return 0;
2099
2100 status = acpi_install_gpe_handler(NULL,
2101 info->irq,
2102 ACPI_GPE_LEVEL_TRIGGERED,
2103 &ipmi_acpi_gpe,
2104 info);
2105 if (status != AE_OK) {
2106 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2107 " running polled\n", DEVICE_NAME, info->irq);
2108 info->irq = 0;
2109 return -EINVAL;
2110 } else {
2111 info->irq_cleanup = acpi_gpe_irq_cleanup;
2112 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2113 return 0;
2114 }
2115 }
2116
2117 /*
2118 * Defined at
2119 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2120 */
2121 struct SPMITable {
2122 s8 Signature[4];
2123 u32 Length;
2124 u8 Revision;
2125 u8 Checksum;
2126 s8 OEMID[6];
2127 s8 OEMTableID[8];
2128 s8 OEMRevision[4];
2129 s8 CreatorID[4];
2130 s8 CreatorRevision[4];
2131 u8 InterfaceType;
2132 u8 IPMIlegacy;
2133 s16 SpecificationRevision;
2134
2135 /*
2136 * Bit 0 - SCI interrupt supported
2137 * Bit 1 - I/O APIC/SAPIC
2138 */
2139 u8 InterruptType;
2140
2141 /*
2142 * If bit 0 of InterruptType is set, then this is the SCI
2143 * interrupt in the GPEx_STS register.
2144 */
2145 u8 GPE;
2146
2147 s16 Reserved;
2148
2149 /*
2150 * If bit 1 of InterruptType is set, then this is the I/O
2151 * APIC/SAPIC interrupt.
2152 */
2153 u32 GlobalSystemInterrupt;
2154
2155 /* The actual register address. */
2156 struct acpi_generic_address addr;
2157
2158 u8 UID[4];
2159
2160 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2161 };
2162
2163 static int try_init_spmi(struct SPMITable *spmi)
2164 {
2165 struct smi_info *info;
2166 int rv;
2167
2168 if (spmi->IPMIlegacy != 1) {
2169 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2170 return -ENODEV;
2171 }
2172
2173 info = smi_info_alloc();
2174 if (!info) {
2175 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2176 return -ENOMEM;
2177 }
2178
2179 info->addr_source = SI_SPMI;
2180 printk(KERN_INFO PFX "probing via SPMI\n");
2181
2182 /* Figure out the interface type. */
2183 switch (spmi->InterfaceType) {
2184 case 1: /* KCS */
2185 info->si_type = SI_KCS;
2186 break;
2187 case 2: /* SMIC */
2188 info->si_type = SI_SMIC;
2189 break;
2190 case 3: /* BT */
2191 info->si_type = SI_BT;
2192 break;
2193 case 4: /* SSIF, just ignore */
2194 kfree(info);
2195 return -EIO;
2196 default:
2197 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2198 spmi->InterfaceType);
2199 kfree(info);
2200 return -EIO;
2201 }
2202
2203 if (spmi->InterruptType & 1) {
2204 /* We've got a GPE interrupt. */
2205 info->irq = spmi->GPE;
2206 info->irq_setup = acpi_gpe_irq_setup;
2207 } else if (spmi->InterruptType & 2) {
2208 /* We've got an APIC/SAPIC interrupt. */
2209 info->irq = spmi->GlobalSystemInterrupt;
2210 info->irq_setup = std_irq_setup;
2211 } else {
2212 /* Use the default interrupt setting. */
2213 info->irq = 0;
2214 info->irq_setup = NULL;
2215 }
2216
2217 if (spmi->addr.bit_width) {
2218 /* A (hopefully) properly formed register bit width. */
2219 info->io.regspacing = spmi->addr.bit_width / 8;
2220 } else {
2221 info->io.regspacing = DEFAULT_REGSPACING;
2222 }
2223 info->io.regsize = info->io.regspacing;
2224 info->io.regshift = spmi->addr.bit_offset;
2225
2226 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2227 info->io_setup = mem_setup;
2228 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2229 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2230 info->io_setup = port_setup;
2231 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2232 } else {
2233 kfree(info);
2234 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2235 return -EIO;
2236 }
2237 info->io.addr_data = spmi->addr.address;
2238
2239 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2240 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2241 info->io.addr_data, info->io.regsize, info->io.regspacing,
2242 info->irq);
2243
2244 rv = add_smi(info);
2245 if (rv)
2246 kfree(info);
2247
2248 return rv;
2249 }
2250
2251 static void spmi_find_bmc(void)
2252 {
2253 acpi_status status;
2254 struct SPMITable *spmi;
2255 int i;
2256
2257 if (acpi_disabled)
2258 return;
2259
2260 if (acpi_failure)
2261 return;
2262
2263 for (i = 0; ; i++) {
2264 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2265 (struct acpi_table_header **)&spmi);
2266 if (status != AE_OK)
2267 return;
2268
2269 try_init_spmi(spmi);
2270 }
2271 }
2272 #endif
2273
2274 #ifdef CONFIG_DMI
2275 struct dmi_ipmi_data {
2276 u8 type;
2277 u8 addr_space;
2278 unsigned long base_addr;
2279 u8 irq;
2280 u8 offset;
2281 u8 slave_addr;
2282 };
2283
2284 static int decode_dmi(const struct dmi_header *dm,
2285 struct dmi_ipmi_data *dmi)
2286 {
2287 const u8 *data = (const u8 *)dm;
2288 unsigned long base_addr;
2289 u8 reg_spacing;
2290 u8 len = dm->length;
2291
2292 dmi->type = data[4];
2293
2294 memcpy(&base_addr, data+8, sizeof(unsigned long));
2295 if (len >= 0x11) {
2296 if (base_addr & 1) {
2297 /* I/O */
2298 base_addr &= 0xFFFE;
2299 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2300 } else
2301 /* Memory */
2302 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2303
2304 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2305 is odd. */
2306 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2307
2308 dmi->irq = data[0x11];
2309
2310 /* The top two bits of byte 0x10 hold the register spacing. */
2311 reg_spacing = (data[0x10] & 0xC0) >> 6;
2312 switch (reg_spacing) {
2313 case 0x00: /* Byte boundaries */
2314 dmi->offset = 1;
2315 break;
2316 case 0x01: /* 32-bit boundaries */
2317 dmi->offset = 4;
2318 break;
2319 case 0x02: /* 16-byte boundaries */
2320 dmi->offset = 16;
2321 break;
2322 default:
2323 /* Some other interface, just ignore it. */
2324 return -EIO;
2325 }
2326 } else {
2327 /* Old DMI spec. */
2328 /*
2329 * Note that technically, the lower bit of the base
2330 * address should be 1 if the address is I/O and 0 if
2331 * the address is in memory. So many systems get that
2332 * wrong (and all that I have seen are I/O) so we just
2333 * ignore that bit and assume I/O. Systems that use
2334 * memory should use the newer spec, anyway.
2335 */
2336 dmi->base_addr = base_addr & 0xfffe;
2337 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2338 dmi->offset = 1;
2339 }
2340
2341 dmi->slave_addr = data[6];
2342
2343 return 0;
2344 }
2345
2346 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2347 {
2348 struct smi_info *info;
2349
2350 info = smi_info_alloc();
2351 if (!info) {
2352 printk(KERN_ERR PFX "Could not allocate SI data\n");
2353 return;
2354 }
2355
2356 info->addr_source = SI_SMBIOS;
2357 printk(KERN_INFO PFX "probing via SMBIOS\n");
2358
2359 switch (ipmi_data->type) {
2360 case 0x01: /* KCS */
2361 info->si_type = SI_KCS;
2362 break;
2363 case 0x02: /* SMIC */
2364 info->si_type = SI_SMIC;
2365 break;
2366 case 0x03: /* BT */
2367 info->si_type = SI_BT;
2368 break;
2369 default:
2370 kfree(info);
2371 return;
2372 }
2373
2374 switch (ipmi_data->addr_space) {
2375 case IPMI_MEM_ADDR_SPACE:
2376 info->io_setup = mem_setup;
2377 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2378 break;
2379
2380 case IPMI_IO_ADDR_SPACE:
2381 info->io_setup = port_setup;
2382 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2383 break;
2384
2385 default:
2386 kfree(info);
2387 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2388 ipmi_data->addr_space);
2389 return;
2390 }
2391 info->io.addr_data = ipmi_data->base_addr;
2392
2393 info->io.regspacing = ipmi_data->offset;
2394 if (!info->io.regspacing)
2395 info->io.regspacing = DEFAULT_REGSPACING;
2396 info->io.regsize = DEFAULT_REGSPACING;
2397 info->io.regshift = 0;
2398
2399 info->slave_addr = ipmi_data->slave_addr;
2400
2401 info->irq = ipmi_data->irq;
2402 if (info->irq)
2403 info->irq_setup = std_irq_setup;
2404
2405 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2406 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2407 info->io.addr_data, info->io.regsize, info->io.regspacing,
2408 info->irq);
2409
2410 if (add_smi(info))
2411 kfree(info);
2412 }
2413
2414 static void dmi_find_bmc(void)
2415 {
2416 const struct dmi_device *dev = NULL;
2417 struct dmi_ipmi_data data;
2418 int rv;
2419
2420 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2421 memset(&data, 0, sizeof(data));
2422 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2423 &data);
2424 if (!rv)
2425 try_init_dmi(&data);
2426 }
2427 }
2428 #endif /* CONFIG_DMI */
2429
2430 #ifdef CONFIG_PCI
2431
2432 #define PCI_ERMC_CLASSCODE 0x0C0700
2433 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2434 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2435 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2436 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2437 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2438
2439 #define PCI_HP_VENDOR_ID 0x103C
2440 #define PCI_MMC_DEVICE_ID 0x121A
2441 #define PCI_MMC_ADDR_CW 0x10
2442
2443 static void ipmi_pci_cleanup(struct smi_info *info)
2444 {
2445 struct pci_dev *pdev = info->addr_source_data;
2446
2447 pci_disable_device(pdev);
2448 }
2449
2450 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2451 {
2452 if (info->si_type == SI_KCS) {
2453 unsigned char status;
2454 int regspacing;
2455
2456 info->io.regsize = DEFAULT_REGSIZE;
2457 info->io.regshift = 0;
2458 info->io_size = 2;
2459 info->handlers = &kcs_smi_handlers;
2460
2461 /* detect 1, 4, 16byte spacing */
2462 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2463 info->io.regspacing = regspacing;
2464 if (info->io_setup(info)) {
2465 dev_err(info->dev,
2466 "Could not setup I/O space\n");
2467 return DEFAULT_REGSPACING;
2468 }
2469 /* write invalid cmd */
2470 info->io.outputb(&info->io, 1, 0x10);
2471 /* read status back */
2472 status = info->io.inputb(&info->io, 1);
2473 info->io_cleanup(info);
2474 if (status)
2475 return regspacing;
2476 regspacing *= 4;
2477 }
2478 }
2479 return DEFAULT_REGSPACING;
2480 }
2481
2482 static int ipmi_pci_probe(struct pci_dev *pdev,
2483 const struct pci_device_id *ent)
2484 {
2485 int rv;
2486 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2487 struct smi_info *info;
2488
2489 info = smi_info_alloc();
2490 if (!info)
2491 return -ENOMEM;
2492
2493 info->addr_source = SI_PCI;
2494 dev_info(&pdev->dev, "probing via PCI");
2495
2496 switch (class_type) {
2497 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2498 info->si_type = SI_SMIC;
2499 break;
2500
2501 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2502 info->si_type = SI_KCS;
2503 break;
2504
2505 case PCI_ERMC_CLASSCODE_TYPE_BT:
2506 info->si_type = SI_BT;
2507 break;
2508
2509 default:
2510 kfree(info);
2511 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2512 return -ENOMEM;
2513 }
2514
2515 rv = pci_enable_device(pdev);
2516 if (rv) {
2517 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2518 kfree(info);
2519 return rv;
2520 }
2521
2522 info->addr_source_cleanup = ipmi_pci_cleanup;
2523 info->addr_source_data = pdev;
2524
2525 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2526 info->io_setup = port_setup;
2527 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2528 } else {
2529 info->io_setup = mem_setup;
2530 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2531 }
2532 info->io.addr_data = pci_resource_start(pdev, 0);
2533
2534 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2535 info->io.regsize = DEFAULT_REGSIZE;
2536 info->io.regshift = 0;
2537
2538 info->irq = pdev->irq;
2539 if (info->irq)
2540 info->irq_setup = std_irq_setup;
2541
2542 info->dev = &pdev->dev;
2543 pci_set_drvdata(pdev, info);
2544
2545 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2546 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2547 info->irq);
2548
2549 rv = add_smi(info);
2550 if (rv) {
2551 kfree(info);
2552 pci_disable_device(pdev);
2553 }
2554
2555 return rv;
2556 }
2557
2558 static void ipmi_pci_remove(struct pci_dev *pdev)
2559 {
2560 struct smi_info *info = pci_get_drvdata(pdev);
2561 cleanup_one_si(info);
2562 }
2563
2564 static const struct pci_device_id ipmi_pci_devices[] = {
2565 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2566 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2567 { 0, }
2568 };
2569 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2570
2571 static struct pci_driver ipmi_pci_driver = {
2572 .name = DEVICE_NAME,
2573 .id_table = ipmi_pci_devices,
2574 .probe = ipmi_pci_probe,
2575 .remove = ipmi_pci_remove,
2576 };
2577 #endif /* CONFIG_PCI */
2578
2579 #ifdef CONFIG_OF
2580 static const struct of_device_id of_ipmi_match[] = {
2581 { .type = "ipmi", .compatible = "ipmi-kcs",
2582 .data = (void *)(unsigned long) SI_KCS },
2583 { .type = "ipmi", .compatible = "ipmi-smic",
2584 .data = (void *)(unsigned long) SI_SMIC },
2585 { .type = "ipmi", .compatible = "ipmi-bt",
2586 .data = (void *)(unsigned long) SI_BT },
2587 {},
2588 };
2589 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2590
2591 static int of_ipmi_probe(struct platform_device *dev)
2592 {
2593 const struct of_device_id *match;
2594 struct smi_info *info;
2595 struct resource resource;
2596 const __be32 *regsize, *regspacing, *regshift;
2597 struct device_node *np = dev->dev.of_node;
2598 int ret;
2599 int proplen;
2600
2601 dev_info(&dev->dev, "probing via device tree\n");
2602
2603 match = of_match_device(of_ipmi_match, &dev->dev);
2604 if (!match)
2605 return -ENODEV;
2606
2607 if (!of_device_is_available(np))
2608 return -EINVAL;
2609
2610 ret = of_address_to_resource(np, 0, &resource);
2611 if (ret) {
2612 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2613 return ret;
2614 }
2615
2616 regsize = of_get_property(np, "reg-size", &proplen);
2617 if (regsize && proplen != 4) {
2618 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2619 return -EINVAL;
2620 }
2621
2622 regspacing = of_get_property(np, "reg-spacing", &proplen);
2623 if (regspacing && proplen != 4) {
2624 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2625 return -EINVAL;
2626 }
2627
2628 regshift = of_get_property(np, "reg-shift", &proplen);
2629 if (regshift && proplen != 4) {
2630 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2631 return -EINVAL;
2632 }
2633
2634 info = smi_info_alloc();
2635
2636 if (!info) {
2637 dev_err(&dev->dev,
2638 "could not allocate memory for OF probe\n");
2639 return -ENOMEM;
2640 }
2641
2642 info->si_type = (enum si_type) match->data;
2643 info->addr_source = SI_DEVICETREE;
2644 info->irq_setup = std_irq_setup;
2645
2646 if (resource.flags & IORESOURCE_IO) {
2647 info->io_setup = port_setup;
2648 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2649 } else {
2650 info->io_setup = mem_setup;
2651 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2652 }
2653
2654 info->io.addr_data = resource.start;
2655
2656 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2657 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2658 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2659
2660 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2661 info->dev = &dev->dev;
2662
2663 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2664 info->io.addr_data, info->io.regsize, info->io.regspacing,
2665 info->irq);
2666
2667 dev_set_drvdata(&dev->dev, info);
2668
2669 ret = add_smi(info);
2670 if (ret) {
2671 kfree(info);
2672 return ret;
2673 }
2674 return 0;
2675 }
2676 #else
2677 #define of_ipmi_match NULL
2678 static int of_ipmi_probe(struct platform_device *dev)
2679 {
2680 return -ENODEV;
2681 }
2682 #endif
2683
2684 #ifdef CONFIG_ACPI
2685 static int acpi_ipmi_probe(struct platform_device *dev)
2686 {
2687 struct smi_info *info;
2688 struct resource *res, *res_second;
2689 acpi_handle handle;
2690 acpi_status status;
2691 unsigned long long tmp;
2692 int rv = -EINVAL;
2693
2694 handle = ACPI_HANDLE(&dev->dev);
2695 if (!handle)
2696 return -ENODEV;
2697
2698 info = smi_info_alloc();
2699 if (!info)
2700 return -ENOMEM;
2701
2702 info->addr_source = SI_ACPI;
2703 dev_info(&dev->dev, PFX "probing via ACPI\n");
2704
2705 info->addr_info.acpi_info.acpi_handle = handle;
2706
2707 /* _IFT tells us the interface type: KCS, BT, etc */
2708 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2709 if (ACPI_FAILURE(status)) {
2710 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2711 goto err_free;
2712 }
2713
2714 switch (tmp) {
2715 case 1:
2716 info->si_type = SI_KCS;
2717 break;
2718 case 2:
2719 info->si_type = SI_SMIC;
2720 break;
2721 case 3:
2722 info->si_type = SI_BT;
2723 break;
2724 case 4: /* SSIF, just ignore */
2725 rv = -ENODEV;
2726 goto err_free;
2727 default:
2728 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2729 goto err_free;
2730 }
2731
2732 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2733 if (res) {
2734 info->io_setup = port_setup;
2735 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2736 } else {
2737 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2738 if (res) {
2739 info->io_setup = mem_setup;
2740 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2741 }
2742 }
2743 if (!res) {
2744 dev_err(&dev->dev, "no I/O or memory address\n");
2745 goto err_free;
2746 }
2747 info->io.addr_data = res->start;
2748
2749 info->io.regspacing = DEFAULT_REGSPACING;
2750 res_second = platform_get_resource(dev,
2751 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2752 IORESOURCE_IO : IORESOURCE_MEM,
2753 1);
2754 if (res_second) {
2755 if (res_second->start > info->io.addr_data)
2756 info->io.regspacing =
2757 res_second->start - info->io.addr_data;
2758 }
2759 info->io.regsize = DEFAULT_REGSPACING;
2760 info->io.regshift = 0;
2761
2762 /* If _GPE exists, use it; otherwise use standard interrupts */
2763 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2764 if (ACPI_SUCCESS(status)) {
2765 info->irq = tmp;
2766 info->irq_setup = acpi_gpe_irq_setup;
2767 } else {
2768 int irq = platform_get_irq(dev, 0);
2769
2770 if (irq > 0) {
2771 info->irq = irq;
2772 info->irq_setup = std_irq_setup;
2773 }
2774 }
2775
2776 info->dev = &dev->dev;
2777 platform_set_drvdata(dev, info);
2778
2779 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2780 res, info->io.regsize, info->io.regspacing,
2781 info->irq);
2782
2783 rv = add_smi(info);
2784 if (rv)
2785 kfree(info);
2786
2787 return rv;
2788
2789 err_free:
2790 kfree(info);
2791 return rv;
2792 }
2793
2794 static const struct acpi_device_id acpi_ipmi_match[] = {
2795 { "IPI0001", 0 },
2796 { },
2797 };
2798 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2799 #else
2800 static int acpi_ipmi_probe(struct platform_device *dev)
2801 {
2802 return -ENODEV;
2803 }
2804 #endif
2805
2806 static int ipmi_probe(struct platform_device *dev)
2807 {
2808 if (of_ipmi_probe(dev) == 0)
2809 return 0;
2810
2811 return acpi_ipmi_probe(dev);
2812 }
2813
2814 static int ipmi_remove(struct platform_device *dev)
2815 {
2816 struct smi_info *info = dev_get_drvdata(&dev->dev);
2817
2818 cleanup_one_si(info);
2819 return 0;
2820 }
2821
2822 static struct platform_driver ipmi_driver = {
2823 .driver = {
2824 .name = DEVICE_NAME,
2825 .of_match_table = of_ipmi_match,
2826 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2827 },
2828 .probe = ipmi_probe,
2829 .remove = ipmi_remove,
2830 };
2831
2832 #ifdef CONFIG_PARISC
2833 static int ipmi_parisc_probe(struct parisc_device *dev)
2834 {
2835 struct smi_info *info;
2836 int rv;
2837
2838 info = smi_info_alloc();
2839
2840 if (!info) {
2841 dev_err(&dev->dev,
2842 "could not allocate memory for PARISC probe\n");
2843 return -ENOMEM;
2844 }
2845
2846 info->si_type = SI_KCS;
2847 info->addr_source = SI_DEVICETREE;
2848 info->io_setup = mem_setup;
2849 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2850 info->io.addr_data = dev->hpa.start;
2851 info->io.regsize = 1;
2852 info->io.regspacing = 1;
2853 info->io.regshift = 0;
2854 info->irq = 0; /* no interrupt */
2855 info->irq_setup = NULL;
2856 info->dev = &dev->dev;
2857
2858 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2859
2860 dev_set_drvdata(&dev->dev, info);
2861
2862 rv = add_smi(info);
2863 if (rv) {
2864 kfree(info);
2865 return rv;
2866 }
2867
2868 return 0;
2869 }
2870
2871 static int ipmi_parisc_remove(struct parisc_device *dev)
2872 {
2873 cleanup_one_si(dev_get_drvdata(&dev->dev));
2874 return 0;
2875 }
2876
2877 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2878 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2879 { 0, }
2880 };
2881
2882 static struct parisc_driver ipmi_parisc_driver = {
2883 .name = "ipmi",
2884 .id_table = ipmi_parisc_tbl,
2885 .probe = ipmi_parisc_probe,
2886 .remove = ipmi_parisc_remove,
2887 };
2888 #endif /* CONFIG_PARISC */
2889
2890 static int wait_for_msg_done(struct smi_info *smi_info)
2891 {
2892 enum si_sm_result smi_result;
2893
2894 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2895 for (;;) {
2896 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2897 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2898 schedule_timeout_uninterruptible(1);
2899 smi_result = smi_info->handlers->event(
2900 smi_info->si_sm, jiffies_to_usecs(1));
2901 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2902 smi_result = smi_info->handlers->event(
2903 smi_info->si_sm, 0);
2904 } else
2905 break;
2906 }
2907 if (smi_result == SI_SM_HOSED)
2908 /*
2909 * We couldn't get the state machine to run, so whatever's at
2910 * the port is probably not an IPMI SMI interface.
2911 */
2912 return -ENODEV;
2913
2914 return 0;
2915 }
2916
2917 static int try_get_dev_id(struct smi_info *smi_info)
2918 {
2919 unsigned char msg[2];
2920 unsigned char *resp;
2921 unsigned long resp_len;
2922 int rv = 0;
2923
2924 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2925 if (!resp)
2926 return -ENOMEM;
2927
2928 /*
2929 * Do a Get Device ID command, since it comes back with some
2930 * useful info.
2931 */
2932 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2933 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2934 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2935
2936 rv = wait_for_msg_done(smi_info);
2937 if (rv)
2938 goto out;
2939
2940 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2941 resp, IPMI_MAX_MSG_LENGTH);
2942
2943 /* Check and record info from the get device id, in case we need it. */
2944 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2945
2946 out:
2947 kfree(resp);
2948 return rv;
2949 }
2950
2951 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2952 {
2953 unsigned char msg[3];
2954 unsigned char *resp;
2955 unsigned long resp_len;
2956 int rv;
2957
2958 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2959 if (!resp)
2960 return -ENOMEM;
2961
2962 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2963 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2964 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2965
2966 rv = wait_for_msg_done(smi_info);
2967 if (rv) {
2968 dev_warn(smi_info->dev,
2969 "Error getting response from get global enables command: %d\n",
2970 rv);
2971 goto out;
2972 }
2973
2974 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2975 resp, IPMI_MAX_MSG_LENGTH);
2976
2977 if (resp_len < 4 ||
2978 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2979 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2980 resp[2] != 0) {
2981 dev_warn(smi_info->dev,
2982 "Invalid return from get global enables command: %ld %x %x %x\n",
2983 resp_len, resp[0], resp[1], resp[2]);
2984 rv = -EINVAL;
2985 goto out;
2986 } else {
2987 *enables = resp[3];
2988 }
2989
2990 out:
2991 kfree(resp);
2992 return rv;
2993 }
2994
2995 /*
2996 * Returns 1 if it gets an error from the command.
2997 */
2998 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2999 {
3000 unsigned char msg[3];
3001 unsigned char *resp;
3002 unsigned long resp_len;
3003 int rv;
3004
3005 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3006 if (!resp)
3007 return -ENOMEM;
3008
3009 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3010 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3011 msg[2] = enables;
3012 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3013
3014 rv = wait_for_msg_done(smi_info);
3015 if (rv) {
3016 dev_warn(smi_info->dev,
3017 "Error getting response from set global enables command: %d\n",
3018 rv);
3019 goto out;
3020 }
3021
3022 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3023 resp, IPMI_MAX_MSG_LENGTH);
3024
3025 if (resp_len < 3 ||
3026 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3027 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3028 dev_warn(smi_info->dev,
3029 "Invalid return from set global enables command: %ld %x %x\n",
3030 resp_len, resp[0], resp[1]);
3031 rv = -EINVAL;
3032 goto out;
3033 }
3034
3035 if (resp[2] != 0)
3036 rv = 1;
3037
3038 out:
3039 kfree(resp);
3040 return rv;
3041 }
3042
3043 /*
3044 * Some BMCs do not support clearing the receive irq bit in the global
3045 * enables (even if they don't support interrupts on the BMC). Check
3046 * for this and handle it properly.
3047 */
3048 static void check_clr_rcv_irq(struct smi_info *smi_info)
3049 {
3050 u8 enables = 0;
3051 int rv;
3052
3053 rv = get_global_enables(smi_info, &enables);
3054 if (!rv) {
3055 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3056 /* Already clear, should work ok. */
3057 return;
3058
3059 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3060 rv = set_global_enables(smi_info, enables);
3061 }
3062
3063 if (rv < 0) {
3064 dev_err(smi_info->dev,
3065 "Cannot check clearing the rcv irq: %d\n", rv);
3066 return;
3067 }
3068
3069 if (rv) {
3070 /*
3071 * An error when setting the event buffer bit means
3072 * clearing the bit is not supported.
3073 */
3074 dev_warn(smi_info->dev,
3075 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3076 smi_info->cannot_disable_irq = true;
3077 }
3078 }
3079
3080 /*
3081 * Some BMCs do not support setting the interrupt bits in the global
3082 * enables even if they support interrupts. Clearly bad, but we can
3083 * compensate.
3084 */
3085 static void check_set_rcv_irq(struct smi_info *smi_info)
3086 {
3087 u8 enables = 0;
3088 int rv;
3089
3090 if (!smi_info->irq)
3091 return;
3092
3093 rv = get_global_enables(smi_info, &enables);
3094 if (!rv) {
3095 enables |= IPMI_BMC_RCV_MSG_INTR;
3096 rv = set_global_enables(smi_info, enables);
3097 }
3098
3099 if (rv < 0) {
3100 dev_err(smi_info->dev,
3101 "Cannot check setting the rcv irq: %d\n", rv);
3102 return;
3103 }
3104
3105 if (rv) {
3106 /*
3107 * An error when setting the event buffer bit means
3108 * setting the bit is not supported.
3109 */
3110 dev_warn(smi_info->dev,
3111 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3112 smi_info->cannot_disable_irq = true;
3113 smi_info->irq_enable_broken = true;
3114 }
3115 }
3116
3117 static int try_enable_event_buffer(struct smi_info *smi_info)
3118 {
3119 unsigned char msg[3];
3120 unsigned char *resp;
3121 unsigned long resp_len;
3122 int rv = 0;
3123
3124 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3125 if (!resp)
3126 return -ENOMEM;
3127
3128 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3129 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3130 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3131
3132 rv = wait_for_msg_done(smi_info);
3133 if (rv) {
3134 printk(KERN_WARNING PFX "Error getting response from get"
3135 " global enables command, the event buffer is not"
3136 " enabled.\n");
3137 goto out;
3138 }
3139
3140 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3141 resp, IPMI_MAX_MSG_LENGTH);
3142
3143 if (resp_len < 4 ||
3144 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3145 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3146 resp[2] != 0) {
3147 printk(KERN_WARNING PFX "Invalid return from get global"
3148 " enables command, cannot enable the event buffer.\n");
3149 rv = -EINVAL;
3150 goto out;
3151 }
3152
3153 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3154 /* buffer is already enabled, nothing to do. */
3155 smi_info->supports_event_msg_buff = true;
3156 goto out;
3157 }
3158
3159 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3160 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3161 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3162 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3163
3164 rv = wait_for_msg_done(smi_info);
3165 if (rv) {
3166 printk(KERN_WARNING PFX "Error getting response from set"
3167 " global, enables command, the event buffer is not"
3168 " enabled.\n");
3169 goto out;
3170 }
3171
3172 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3173 resp, IPMI_MAX_MSG_LENGTH);
3174
3175 if (resp_len < 3 ||
3176 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3177 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3178 printk(KERN_WARNING PFX "Invalid return from get global,"
3179 "enables command, not enable the event buffer.\n");
3180 rv = -EINVAL;
3181 goto out;
3182 }
3183
3184 if (resp[2] != 0)
3185 /*
3186 * An error when setting the event buffer bit means
3187 * that the event buffer is not supported.
3188 */
3189 rv = -ENOENT;
3190 else
3191 smi_info->supports_event_msg_buff = true;
3192
3193 out:
3194 kfree(resp);
3195 return rv;
3196 }
3197
3198 static int smi_type_proc_show(struct seq_file *m, void *v)
3199 {
3200 struct smi_info *smi = m->private;
3201
3202 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3203
3204 return 0;
3205 }
3206
3207 static int smi_type_proc_open(struct inode *inode, struct file *file)
3208 {
3209 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3210 }
3211
3212 static const struct file_operations smi_type_proc_ops = {
3213 .open = smi_type_proc_open,
3214 .read = seq_read,
3215 .llseek = seq_lseek,
3216 .release = single_release,
3217 };
3218
3219 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3220 {
3221 struct smi_info *smi = m->private;
3222
3223 seq_printf(m, "interrupts_enabled: %d\n",
3224 smi->irq && !smi->interrupt_disabled);
3225 seq_printf(m, "short_timeouts: %u\n",
3226 smi_get_stat(smi, short_timeouts));
3227 seq_printf(m, "long_timeouts: %u\n",
3228 smi_get_stat(smi, long_timeouts));
3229 seq_printf(m, "idles: %u\n",
3230 smi_get_stat(smi, idles));
3231 seq_printf(m, "interrupts: %u\n",
3232 smi_get_stat(smi, interrupts));
3233 seq_printf(m, "attentions: %u\n",
3234 smi_get_stat(smi, attentions));
3235 seq_printf(m, "flag_fetches: %u\n",
3236 smi_get_stat(smi, flag_fetches));
3237 seq_printf(m, "hosed_count: %u\n",
3238 smi_get_stat(smi, hosed_count));
3239 seq_printf(m, "complete_transactions: %u\n",
3240 smi_get_stat(smi, complete_transactions));
3241 seq_printf(m, "events: %u\n",
3242 smi_get_stat(smi, events));
3243 seq_printf(m, "watchdog_pretimeouts: %u\n",
3244 smi_get_stat(smi, watchdog_pretimeouts));
3245 seq_printf(m, "incoming_messages: %u\n",
3246 smi_get_stat(smi, incoming_messages));
3247 return 0;
3248 }
3249
3250 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3251 {
3252 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3253 }
3254
3255 static const struct file_operations smi_si_stats_proc_ops = {
3256 .open = smi_si_stats_proc_open,
3257 .read = seq_read,
3258 .llseek = seq_lseek,
3259 .release = single_release,
3260 };
3261
3262 static int smi_params_proc_show(struct seq_file *m, void *v)
3263 {
3264 struct smi_info *smi = m->private;
3265
3266 seq_printf(m,
3267 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3268 si_to_str[smi->si_type],
3269 addr_space_to_str[smi->io.addr_type],
3270 smi->io.addr_data,
3271 smi->io.regspacing,
3272 smi->io.regsize,
3273 smi->io.regshift,
3274 smi->irq,
3275 smi->slave_addr);
3276
3277 return 0;
3278 }
3279
3280 static int smi_params_proc_open(struct inode *inode, struct file *file)
3281 {
3282 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3283 }
3284
3285 static const struct file_operations smi_params_proc_ops = {
3286 .open = smi_params_proc_open,
3287 .read = seq_read,
3288 .llseek = seq_lseek,
3289 .release = single_release,
3290 };
3291
3292 /*
3293 * oem_data_avail_to_receive_msg_avail
3294 * @info - smi_info structure with msg_flags set
3295 *
3296 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3297 * Returns 1 indicating need to re-run handle_flags().
3298 */
3299 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3300 {
3301 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3302 RECEIVE_MSG_AVAIL);
3303 return 1;
3304 }
3305
3306 /*
3307 * setup_dell_poweredge_oem_data_handler
3308 * @info - smi_info.device_id must be populated
3309 *
3310 * Systems that match, but have firmware version < 1.40 may assert
3311 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3312 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3313 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3314 * as RECEIVE_MSG_AVAIL instead.
3315 *
3316 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3317 * assert the OEM[012] bits, and if it did, the driver would have to
3318 * change to handle that properly, we don't actually check for the
3319 * firmware version.
3320 * Device ID = 0x20 BMC on PowerEdge 8G servers
3321 * Device Revision = 0x80
3322 * Firmware Revision1 = 0x01 BMC version 1.40
3323 * Firmware Revision2 = 0x40 BCD encoded
3324 * IPMI Version = 0x51 IPMI 1.5
3325 * Manufacturer ID = A2 02 00 Dell IANA
3326 *
3327 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3328 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3329 *
3330 */
3331 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3332 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3333 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3334 #define DELL_IANA_MFR_ID 0x0002a2
3335 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3336 {
3337 struct ipmi_device_id *id = &smi_info->device_id;
3338 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3339 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3340 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3341 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3342 smi_info->oem_data_avail_handler =
3343 oem_data_avail_to_receive_msg_avail;
3344 } else if (ipmi_version_major(id) < 1 ||
3345 (ipmi_version_major(id) == 1 &&
3346 ipmi_version_minor(id) < 5)) {
3347 smi_info->oem_data_avail_handler =
3348 oem_data_avail_to_receive_msg_avail;
3349 }
3350 }
3351 }
3352
3353 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3354 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3355 {
3356 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3357
3358 /* Make it a response */
3359 msg->rsp[0] = msg->data[0] | 4;
3360 msg->rsp[1] = msg->data[1];
3361 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3362 msg->rsp_size = 3;
3363 smi_info->curr_msg = NULL;
3364 deliver_recv_msg(smi_info, msg);
3365 }
3366
3367 /*
3368 * dell_poweredge_bt_xaction_handler
3369 * @info - smi_info.device_id must be populated
3370 *
3371 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3372 * not respond to a Get SDR command if the length of the data
3373 * requested is exactly 0x3A, which leads to command timeouts and no
3374 * data returned. This intercepts such commands, and causes userspace
3375 * callers to try again with a different-sized buffer, which succeeds.
3376 */
3377
3378 #define STORAGE_NETFN 0x0A
3379 #define STORAGE_CMD_GET_SDR 0x23
3380 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3381 unsigned long unused,
3382 void *in)
3383 {
3384 struct smi_info *smi_info = in;
3385 unsigned char *data = smi_info->curr_msg->data;
3386 unsigned int size = smi_info->curr_msg->data_size;
3387 if (size >= 8 &&
3388 (data[0]>>2) == STORAGE_NETFN &&
3389 data[1] == STORAGE_CMD_GET_SDR &&
3390 data[7] == 0x3A) {
3391 return_hosed_msg_badsize(smi_info);
3392 return NOTIFY_STOP;
3393 }
3394 return NOTIFY_DONE;
3395 }
3396
3397 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3398 .notifier_call = dell_poweredge_bt_xaction_handler,
3399 };
3400
3401 /*
3402 * setup_dell_poweredge_bt_xaction_handler
3403 * @info - smi_info.device_id must be filled in already
3404 *
3405 * Fills in smi_info.device_id.start_transaction_pre_hook
3406 * when we know what function to use there.
3407 */
3408 static void
3409 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3410 {
3411 struct ipmi_device_id *id = &smi_info->device_id;
3412 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3413 smi_info->si_type == SI_BT)
3414 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3415 }
3416
3417 /*
3418 * setup_oem_data_handler
3419 * @info - smi_info.device_id must be filled in already
3420 *
3421 * Fills in smi_info.device_id.oem_data_available_handler
3422 * when we know what function to use there.
3423 */
3424
3425 static void setup_oem_data_handler(struct smi_info *smi_info)
3426 {
3427 setup_dell_poweredge_oem_data_handler(smi_info);
3428 }
3429
3430 static void setup_xaction_handlers(struct smi_info *smi_info)
3431 {
3432 setup_dell_poweredge_bt_xaction_handler(smi_info);
3433 }
3434
3435 static void check_for_broken_irqs(struct smi_info *smi_info)
3436 {
3437 check_clr_rcv_irq(smi_info);
3438 check_set_rcv_irq(smi_info);
3439 }
3440
3441 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3442 {
3443 if (smi_info->thread != NULL)
3444 kthread_stop(smi_info->thread);
3445 if (smi_info->timer_running)
3446 del_timer_sync(&smi_info->si_timer);
3447 }
3448
3449 static const struct ipmi_default_vals
3450 {
3451 const int type;
3452 const int port;
3453 } ipmi_defaults[] =
3454 {
3455 { .type = SI_KCS, .port = 0xca2 },
3456 { .type = SI_SMIC, .port = 0xca9 },
3457 { .type = SI_BT, .port = 0xe4 },
3458 { .port = 0 }
3459 };
3460
3461 static void default_find_bmc(void)
3462 {
3463 struct smi_info *info;
3464 int i;
3465
3466 for (i = 0; ; i++) {
3467 if (!ipmi_defaults[i].port)
3468 break;
3469 #ifdef CONFIG_PPC
3470 if (check_legacy_ioport(ipmi_defaults[i].port))
3471 continue;
3472 #endif
3473 info = smi_info_alloc();
3474 if (!info)
3475 return;
3476
3477 info->addr_source = SI_DEFAULT;
3478
3479 info->si_type = ipmi_defaults[i].type;
3480 info->io_setup = port_setup;
3481 info->io.addr_data = ipmi_defaults[i].port;
3482 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3483
3484 info->io.addr = NULL;
3485 info->io.regspacing = DEFAULT_REGSPACING;
3486 info->io.regsize = DEFAULT_REGSPACING;
3487 info->io.regshift = 0;
3488
3489 if (add_smi(info) == 0) {
3490 if ((try_smi_init(info)) == 0) {
3491 /* Found one... */
3492 printk(KERN_INFO PFX "Found default %s"
3493 " state machine at %s address 0x%lx\n",
3494 si_to_str[info->si_type],
3495 addr_space_to_str[info->io.addr_type],
3496 info->io.addr_data);
3497 } else
3498 cleanup_one_si(info);
3499 } else {
3500 kfree(info);
3501 }
3502 }
3503 }
3504
3505 static int is_new_interface(struct smi_info *info)
3506 {
3507 struct smi_info *e;
3508
3509 list_for_each_entry(e, &smi_infos, link) {
3510 if (e->io.addr_type != info->io.addr_type)
3511 continue;
3512 if (e->io.addr_data == info->io.addr_data)
3513 return 0;
3514 }
3515
3516 return 1;
3517 }
3518
3519 static int add_smi(struct smi_info *new_smi)
3520 {
3521 int rv = 0;
3522
3523 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3524 ipmi_addr_src_to_str(new_smi->addr_source),
3525 si_to_str[new_smi->si_type]);
3526 mutex_lock(&smi_infos_lock);
3527 if (!is_new_interface(new_smi)) {
3528 printk(KERN_CONT " duplicate interface\n");
3529 rv = -EBUSY;
3530 goto out_err;
3531 }
3532
3533 printk(KERN_CONT "\n");
3534
3535 /* So we know not to free it unless we have allocated one. */
3536 new_smi->intf = NULL;
3537 new_smi->si_sm = NULL;
3538 new_smi->handlers = NULL;
3539
3540 list_add_tail(&new_smi->link, &smi_infos);
3541
3542 out_err:
3543 mutex_unlock(&smi_infos_lock);
3544 return rv;
3545 }
3546
3547 static int try_smi_init(struct smi_info *new_smi)
3548 {
3549 int rv = 0;
3550 int i;
3551
3552 printk(KERN_INFO PFX "Trying %s-specified %s state"
3553 " machine at %s address 0x%lx, slave address 0x%x,"
3554 " irq %d\n",
3555 ipmi_addr_src_to_str(new_smi->addr_source),
3556 si_to_str[new_smi->si_type],
3557 addr_space_to_str[new_smi->io.addr_type],
3558 new_smi->io.addr_data,
3559 new_smi->slave_addr, new_smi->irq);
3560
3561 switch (new_smi->si_type) {
3562 case SI_KCS:
3563 new_smi->handlers = &kcs_smi_handlers;
3564 break;
3565
3566 case SI_SMIC:
3567 new_smi->handlers = &smic_smi_handlers;
3568 break;
3569
3570 case SI_BT:
3571 new_smi->handlers = &bt_smi_handlers;
3572 break;
3573
3574 default:
3575 /* No support for anything else yet. */
3576 rv = -EIO;
3577 goto out_err;
3578 }
3579
3580 /* Allocate the state machine's data and initialize it. */
3581 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3582 if (!new_smi->si_sm) {
3583 printk(KERN_ERR PFX
3584 "Could not allocate state machine memory\n");
3585 rv = -ENOMEM;
3586 goto out_err;
3587 }
3588 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3589 &new_smi->io);
3590
3591 /* Now that we know the I/O size, we can set up the I/O. */
3592 rv = new_smi->io_setup(new_smi);
3593 if (rv) {
3594 printk(KERN_ERR PFX "Could not set up I/O space\n");
3595 goto out_err;
3596 }
3597
3598 /* Do low-level detection first. */
3599 if (new_smi->handlers->detect(new_smi->si_sm)) {
3600 if (new_smi->addr_source)
3601 printk(KERN_INFO PFX "Interface detection failed\n");
3602 rv = -ENODEV;
3603 goto out_err;
3604 }
3605
3606 /*
3607 * Attempt a get device id command. If it fails, we probably
3608 * don't have a BMC here.
3609 */
3610 rv = try_get_dev_id(new_smi);
3611 if (rv) {
3612 if (new_smi->addr_source)
3613 printk(KERN_INFO PFX "There appears to be no BMC"
3614 " at this location\n");
3615 goto out_err;
3616 }
3617
3618 setup_oem_data_handler(new_smi);
3619 setup_xaction_handlers(new_smi);
3620 check_for_broken_irqs(new_smi);
3621
3622 new_smi->waiting_msg = NULL;
3623 new_smi->curr_msg = NULL;
3624 atomic_set(&new_smi->req_events, 0);
3625 new_smi->run_to_completion = false;
3626 for (i = 0; i < SI_NUM_STATS; i++)
3627 atomic_set(&new_smi->stats[i], 0);
3628
3629 new_smi->interrupt_disabled = true;
3630 atomic_set(&new_smi->need_watch, 0);
3631 new_smi->intf_num = smi_num;
3632 smi_num++;
3633
3634 rv = try_enable_event_buffer(new_smi);
3635 if (rv == 0)
3636 new_smi->has_event_buffer = true;
3637
3638 /*
3639 * Start clearing the flags before we enable interrupts or the
3640 * timer to avoid racing with the timer.
3641 */
3642 start_clear_flags(new_smi, false);
3643
3644 /*
3645 * IRQ is defined to be set when non-zero. req_events will
3646 * cause a global flags check that will enable interrupts.
3647 */
3648 if (new_smi->irq) {
3649 new_smi->interrupt_disabled = false;
3650 atomic_set(&new_smi->req_events, 1);
3651 }
3652
3653 if (!new_smi->dev) {
3654 /*
3655 * If we don't already have a device from something
3656 * else (like PCI), then register a new one.
3657 */
3658 new_smi->pdev = platform_device_alloc("ipmi_si",
3659 new_smi->intf_num);
3660 if (!new_smi->pdev) {
3661 printk(KERN_ERR PFX
3662 "Unable to allocate platform device\n");
3663 goto out_err;
3664 }
3665 new_smi->dev = &new_smi->pdev->dev;
3666 new_smi->dev->driver = &ipmi_driver.driver;
3667
3668 rv = platform_device_add(new_smi->pdev);
3669 if (rv) {
3670 printk(KERN_ERR PFX
3671 "Unable to register system interface device:"
3672 " %d\n",
3673 rv);
3674 goto out_err;
3675 }
3676 new_smi->dev_registered = true;
3677 }
3678
3679 rv = ipmi_register_smi(&handlers,
3680 new_smi,
3681 &new_smi->device_id,
3682 new_smi->dev,
3683 new_smi->slave_addr);
3684 if (rv) {
3685 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3686 rv);
3687 goto out_err_stop_timer;
3688 }
3689
3690 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3691 &smi_type_proc_ops,
3692 new_smi);
3693 if (rv) {
3694 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3695 goto out_err_stop_timer;
3696 }
3697
3698 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3699 &smi_si_stats_proc_ops,
3700 new_smi);
3701 if (rv) {
3702 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3703 goto out_err_stop_timer;
3704 }
3705
3706 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3707 &smi_params_proc_ops,
3708 new_smi);
3709 if (rv) {
3710 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3711 goto out_err_stop_timer;
3712 }
3713
3714 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3715 si_to_str[new_smi->si_type]);
3716
3717 return 0;
3718
3719 out_err_stop_timer:
3720 wait_for_timer_and_thread(new_smi);
3721
3722 out_err:
3723 new_smi->interrupt_disabled = true;
3724
3725 if (new_smi->intf) {
3726 ipmi_smi_t intf = new_smi->intf;
3727 new_smi->intf = NULL;
3728 ipmi_unregister_smi(intf);
3729 }
3730
3731 if (new_smi->irq_cleanup) {
3732 new_smi->irq_cleanup(new_smi);
3733 new_smi->irq_cleanup = NULL;
3734 }
3735
3736 /*
3737 * Wait until we know that we are out of any interrupt
3738 * handlers might have been running before we freed the
3739 * interrupt.
3740 */
3741 synchronize_sched();
3742
3743 if (new_smi->si_sm) {
3744 if (new_smi->handlers)
3745 new_smi->handlers->cleanup(new_smi->si_sm);
3746 kfree(new_smi->si_sm);
3747 new_smi->si_sm = NULL;
3748 }
3749 if (new_smi->addr_source_cleanup) {
3750 new_smi->addr_source_cleanup(new_smi);
3751 new_smi->addr_source_cleanup = NULL;
3752 }
3753 if (new_smi->io_cleanup) {
3754 new_smi->io_cleanup(new_smi);
3755 new_smi->io_cleanup = NULL;
3756 }
3757
3758 if (new_smi->dev_registered) {
3759 platform_device_unregister(new_smi->pdev);
3760 new_smi->dev_registered = false;
3761 }
3762
3763 return rv;
3764 }
3765
3766 static int init_ipmi_si(void)
3767 {
3768 int i;
3769 char *str;
3770 int rv;
3771 struct smi_info *e;
3772 enum ipmi_addr_src type = SI_INVALID;
3773
3774 if (initialized)
3775 return 0;
3776 initialized = 1;
3777
3778 if (si_tryplatform) {
3779 rv = platform_driver_register(&ipmi_driver);
3780 if (rv) {
3781 printk(KERN_ERR PFX "Unable to register "
3782 "driver: %d\n", rv);
3783 return rv;
3784 }
3785 }
3786
3787 /* Parse out the si_type string into its components. */
3788 str = si_type_str;
3789 if (*str != '\0') {
3790 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3791 si_type[i] = str;
3792 str = strchr(str, ',');
3793 if (str) {
3794 *str = '\0';
3795 str++;
3796 } else {
3797 break;
3798 }
3799 }
3800 }
3801
3802 printk(KERN_INFO "IPMI System Interface driver.\n");
3803
3804 /* If the user gave us a device, they presumably want us to use it */
3805 if (!hardcode_find_bmc())
3806 return 0;
3807
3808 #ifdef CONFIG_PCI
3809 if (si_trypci) {
3810 rv = pci_register_driver(&ipmi_pci_driver);
3811 if (rv)
3812 printk(KERN_ERR PFX "Unable to register "
3813 "PCI driver: %d\n", rv);
3814 else
3815 pci_registered = true;
3816 }
3817 #endif
3818
3819 #ifdef CONFIG_DMI
3820 if (si_trydmi)
3821 dmi_find_bmc();
3822 #endif
3823
3824 #ifdef CONFIG_ACPI
3825 if (si_tryacpi)
3826 spmi_find_bmc();
3827 #endif
3828
3829 #ifdef CONFIG_PARISC
3830 register_parisc_driver(&ipmi_parisc_driver);
3831 parisc_registered = true;
3832 /* poking PC IO addresses will crash machine, don't do it */
3833 si_trydefaults = 0;
3834 #endif
3835
3836 /* We prefer devices with interrupts, but in the case of a machine
3837 with multiple BMCs we assume that there will be several instances
3838 of a given type so if we succeed in registering a type then also
3839 try to register everything else of the same type */
3840
3841 mutex_lock(&smi_infos_lock);
3842 list_for_each_entry(e, &smi_infos, link) {
3843 /* Try to register a device if it has an IRQ and we either
3844 haven't successfully registered a device yet or this
3845 device has the same type as one we successfully registered */
3846 if (e->irq && (!type || e->addr_source == type)) {
3847 if (!try_smi_init(e)) {
3848 type = e->addr_source;
3849 }
3850 }
3851 }
3852
3853 /* type will only have been set if we successfully registered an si */
3854 if (type) {
3855 mutex_unlock(&smi_infos_lock);
3856 return 0;
3857 }
3858
3859 /* Fall back to the preferred device */
3860
3861 list_for_each_entry(e, &smi_infos, link) {
3862 if (!e->irq && (!type || e->addr_source == type)) {
3863 if (!try_smi_init(e)) {
3864 type = e->addr_source;
3865 }
3866 }
3867 }
3868 mutex_unlock(&smi_infos_lock);
3869
3870 if (type)
3871 return 0;
3872
3873 if (si_trydefaults) {
3874 mutex_lock(&smi_infos_lock);
3875 if (list_empty(&smi_infos)) {
3876 /* No BMC was found, try defaults. */
3877 mutex_unlock(&smi_infos_lock);
3878 default_find_bmc();
3879 } else
3880 mutex_unlock(&smi_infos_lock);
3881 }
3882
3883 mutex_lock(&smi_infos_lock);
3884 if (unload_when_empty && list_empty(&smi_infos)) {
3885 mutex_unlock(&smi_infos_lock);
3886 cleanup_ipmi_si();
3887 printk(KERN_WARNING PFX
3888 "Unable to find any System Interface(s)\n");
3889 return -ENODEV;
3890 } else {
3891 mutex_unlock(&smi_infos_lock);
3892 return 0;
3893 }
3894 }
3895 module_init(init_ipmi_si);
3896
3897 static void cleanup_one_si(struct smi_info *to_clean)
3898 {
3899 int rv = 0;
3900
3901 if (!to_clean)
3902 return;
3903
3904 if (to_clean->intf) {
3905 ipmi_smi_t intf = to_clean->intf;
3906
3907 to_clean->intf = NULL;
3908 rv = ipmi_unregister_smi(intf);
3909 if (rv) {
3910 pr_err(PFX "Unable to unregister device: errno=%d\n",
3911 rv);
3912 }
3913 }
3914
3915 if (to_clean->dev)
3916 dev_set_drvdata(to_clean->dev, NULL);
3917
3918 list_del(&to_clean->link);
3919
3920 /*
3921 * Make sure that interrupts, the timer and the thread are
3922 * stopped and will not run again.
3923 */
3924 if (to_clean->irq_cleanup)
3925 to_clean->irq_cleanup(to_clean);
3926 wait_for_timer_and_thread(to_clean);
3927
3928 /*
3929 * Timeouts are stopped, now make sure the interrupts are off
3930 * in the BMC. Note that timers and CPU interrupts are off,
3931 * so no need for locks.
3932 */
3933 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3934 poll(to_clean);
3935 schedule_timeout_uninterruptible(1);
3936 }
3937 disable_si_irq(to_clean, false);
3938 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3939 poll(to_clean);
3940 schedule_timeout_uninterruptible(1);
3941 }
3942
3943 if (to_clean->handlers)
3944 to_clean->handlers->cleanup(to_clean->si_sm);
3945
3946 kfree(to_clean->si_sm);
3947
3948 if (to_clean->addr_source_cleanup)
3949 to_clean->addr_source_cleanup(to_clean);
3950 if (to_clean->io_cleanup)
3951 to_clean->io_cleanup(to_clean);
3952
3953 if (to_clean->dev_registered)
3954 platform_device_unregister(to_clean->pdev);
3955
3956 kfree(to_clean);
3957 }
3958
3959 static void cleanup_ipmi_si(void)
3960 {
3961 struct smi_info *e, *tmp_e;
3962
3963 if (!initialized)
3964 return;
3965
3966 #ifdef CONFIG_PCI
3967 if (pci_registered)
3968 pci_unregister_driver(&ipmi_pci_driver);
3969 #endif
3970 #ifdef CONFIG_PARISC
3971 if (parisc_registered)
3972 unregister_parisc_driver(&ipmi_parisc_driver);
3973 #endif
3974
3975 platform_driver_unregister(&ipmi_driver);
3976
3977 mutex_lock(&smi_infos_lock);
3978 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3979 cleanup_one_si(e);
3980 mutex_unlock(&smi_infos_lock);
3981 }
3982 module_exit(cleanup_ipmi_si);
3983
3984 MODULE_LICENSE("GPL");
3985 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3986 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3987 " system interfaces.");