]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
Annotate hardware config module parameters in drivers/char/ipmi/
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
89
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
108 };
109
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111
112 #define DEVICE_NAME "ipmi_si"
113
114 static struct platform_driver ipmi_driver;
115
116 /*
117 * Indexes into stats[] in smi_info below.
118 */
119 enum si_stat_indexes {
120 /*
121 * Number of times the driver requested a timer while an operation
122 * was in progress.
123 */
124 SI_STAT_short_timeouts = 0,
125
126 /*
127 * Number of times the driver requested a timer while nothing was in
128 * progress.
129 */
130 SI_STAT_long_timeouts,
131
132 /* Number of times the interface was idle while being polled. */
133 SI_STAT_idles,
134
135 /* Number of interrupts the driver handled. */
136 SI_STAT_interrupts,
137
138 /* Number of time the driver got an ATTN from the hardware. */
139 SI_STAT_attentions,
140
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches,
143
144 /* Number of times the hardware didn't follow the state machine. */
145 SI_STAT_hosed_count,
146
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions,
149
150 /* Number of IPMI events received from the hardware. */
151 SI_STAT_events,
152
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts,
155
156 /* Number of asynchronous messages received. */
157 SI_STAT_incoming_messages,
158
159
160 /* This *must* remain last, add new values above this. */
161 SI_NUM_STATS
162 };
163
164 struct smi_info {
165 int intf_num;
166 ipmi_smi_t intf;
167 struct si_sm_data *si_sm;
168 const struct si_sm_handlers *handlers;
169 enum si_type si_type;
170 spinlock_t si_lock;
171 struct ipmi_smi_msg *waiting_msg;
172 struct ipmi_smi_msg *curr_msg;
173 enum si_intf_state si_state;
174
175 /*
176 * Used to handle the various types of I/O that can occur with
177 * IPMI
178 */
179 struct si_sm_io io;
180 int (*io_setup)(struct smi_info *info);
181 void (*io_cleanup)(struct smi_info *info);
182 int (*irq_setup)(struct smi_info *info);
183 void (*irq_cleanup)(struct smi_info *info);
184 unsigned int io_size;
185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 void (*addr_source_cleanup)(struct smi_info *info);
187 void *addr_source_data;
188
189 /*
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
193 */
194 int (*oem_data_avail_handler)(struct smi_info *smi_info);
195
196 /*
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
199 * from the flags.
200 */
201 #define RECEIVE_MSG_AVAIL 0x01
202 #define EVENT_MSG_BUFFER_FULL 0x02
203 #define WDT_PRE_TIMEOUT_INT 0x08
204 #define OEM0_DATA_AVAIL 0x20
205 #define OEM1_DATA_AVAIL 0x40
206 #define OEM2_DATA_AVAIL 0x80
207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
208 OEM1_DATA_AVAIL | \
209 OEM2_DATA_AVAIL)
210 unsigned char msg_flags;
211
212 /* Does the BMC have an event buffer? */
213 bool has_event_buffer;
214
215 /*
216 * If set to true, this will request events the next time the
217 * state machine is idle.
218 */
219 atomic_t req_events;
220
221 /*
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
224 * out.
225 */
226 bool run_to_completion;
227
228 /* The I/O port of an SI interface. */
229 int port;
230
231 /*
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
235 */
236 unsigned int spacing;
237
238 /* zero if no irq; */
239 int irq;
240
241 /* The timer for this si. */
242 struct timer_list si_timer;
243
244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 bool timer_running;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Are we waiting for the events, pretimeouts, received msgs? */
251 atomic_t need_watch;
252
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
259 bool interrupt_disabled;
260
261 /*
262 * Does the BMC support events?
263 */
264 bool supports_event_msg_buff;
265
266 /*
267 * Can we disable interrupts the global enables receive irq
268 * bit? There are currently two forms of brokenness, some
269 * systems cannot disable the bit (which is technically within
270 * the spec but a bad idea) and some systems have the bit
271 * forced to zero even though interrupts work (which is
272 * clearly outside the spec). The next bool tells which form
273 * of brokenness is present.
274 */
275 bool cannot_disable_irq;
276
277 /*
278 * Some systems are broken and cannot set the irq enable
279 * bit, even if they support interrupts.
280 */
281 bool irq_enable_broken;
282
283 /*
284 * Did we get an attention that we did not handle?
285 */
286 bool got_attn;
287
288 /* From the get device id response... */
289 struct ipmi_device_id device_id;
290
291 /* Driver model stuff. */
292 struct device *dev;
293 struct platform_device *pdev;
294
295 /*
296 * True if we allocated the device, false if it came from
297 * someplace else (like PCI).
298 */
299 bool dev_registered;
300
301 /* Slave address, could be reported from DMI. */
302 unsigned char slave_addr;
303
304 /* Counters and things for the proc filesystem. */
305 atomic_t stats[SI_NUM_STATS];
306
307 struct task_struct *thread;
308
309 struct list_head link;
310 union ipmi_smi_info_union addr_info;
311 };
312
313 #define smi_inc_stat(smi, stat) \
314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317
318 #define SI_MAX_PARMS 4
319
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331
332 static bool unload_when_empty = true;
333
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342 struct timespec64 t;
343
344 getnstimeofday64(&t);
345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356
357 static void deliver_recv_msg(struct smi_info *smi_info,
358 struct ipmi_smi_msg *msg)
359 {
360 /* Deliver the message to the upper layer. */
361 if (smi_info->intf)
362 ipmi_smi_msg_received(smi_info->intf, msg);
363 else
364 ipmi_free_smi_msg(msg);
365 }
366
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369 struct ipmi_smi_msg *msg = smi_info->curr_msg;
370
371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 cCode = IPMI_ERR_UNSPECIFIED;
373 /* else use it as is */
374
375 /* Make it a response */
376 msg->rsp[0] = msg->data[0] | 4;
377 msg->rsp[1] = msg->data[1];
378 msg->rsp[2] = cCode;
379 msg->rsp_size = 3;
380
381 smi_info->curr_msg = NULL;
382 deliver_recv_msg(smi_info, msg);
383 }
384
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387 int rv;
388
389 if (!smi_info->waiting_msg) {
390 smi_info->curr_msg = NULL;
391 rv = SI_SM_IDLE;
392 } else {
393 int err;
394
395 smi_info->curr_msg = smi_info->waiting_msg;
396 smi_info->waiting_msg = NULL;
397 debug_timestamp("Start2");
398 err = atomic_notifier_call_chain(&xaction_notifier_list,
399 0, smi_info);
400 if (err & NOTIFY_STOP_MASK) {
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 goto out;
403 }
404 err = smi_info->handlers->start_transaction(
405 smi_info->si_sm,
406 smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
408 if (err)
409 return_hosed_msg(smi_info, err);
410
411 rv = SI_SM_CALL_WITHOUT_DELAY;
412 }
413 out:
414 return rv;
415 }
416
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419 smi_info->last_timeout_jiffies = jiffies;
420 mod_timer(&smi_info->si_timer, new_val);
421 smi_info->timer_running = true;
422 }
423
424 /*
425 * Start a new message and (re)start the timer and thread.
426 */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 unsigned int size)
429 {
430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431
432 if (smi_info->thread)
433 wake_up_process(smi_info->thread);
434
435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440 unsigned char msg[2];
441
442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444
445 if (start_timer)
446 start_new_msg(smi_info, msg, 2);
447 else
448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449 smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454 unsigned char msg[3];
455
456 /* Make sure the watchdog pre-timeout flag is not set at startup. */
457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 msg[2] = WDT_PRE_TIMEOUT_INT;
460
461 if (start_timer)
462 start_new_msg(smi_info, msg, 3);
463 else
464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465 smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 smi_info->curr_msg->data_size = 2;
473
474 start_new_msg(smi_info, smi_info->curr_msg->data,
475 smi_info->curr_msg->data_size);
476 smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 smi_info->curr_msg->data_size = 2;
484
485 start_new_msg(smi_info, smi_info->curr_msg->data,
486 smi_info->curr_msg->data_size);
487 smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491 * When we have a situtaion where we run out of memory and cannot
492 * allocate messages, we just leave them in the BMC and run the system
493 * polled until we can allocate some memory. Once we have some
494 * memory, we will re-enable the interrupt.
495 *
496 * Note that we cannot just use disable_irq(), since the interrupt may
497 * be shared.
498 */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 smi_info->interrupt_disabled = true;
503 start_check_enables(smi_info, start_timer);
504 return true;
505 }
506 return false;
507 }
508
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 smi_info->interrupt_disabled = false;
513 start_check_enables(smi_info, true);
514 return true;
515 }
516 return false;
517 }
518
519 /*
520 * Allocate a message. If unable to allocate, start the interrupt
521 * disable process and return NULL. If able to allocate but
522 * interrupts are disabled, free the message and return NULL after
523 * starting the interrupt enable process.
524 */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 struct ipmi_smi_msg *msg;
528
529 msg = ipmi_alloc_smi_msg();
530 if (!msg) {
531 if (!disable_si_irq(smi_info, true))
532 smi_info->si_state = SI_NORMAL;
533 } else if (enable_si_irq(smi_info)) {
534 ipmi_free_smi_msg(msg);
535 msg = NULL;
536 }
537 return msg;
538 }
539
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 /* Watchdog pre-timeout */
545 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547 start_clear_flags(smi_info, true);
548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 if (smi_info->intf)
550 ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 /* Messages available. */
553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 if (!smi_info->curr_msg)
555 return;
556
557 start_getting_msg_queue(smi_info);
558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 /* Events available. */
560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 if (!smi_info->curr_msg)
562 return;
563
564 start_getting_events(smi_info);
565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 smi_info->oem_data_avail_handler) {
567 if (smi_info->oem_data_avail_handler(smi_info))
568 goto retry;
569 } else
570 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574 * Global enables we care about.
575 */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 IPMI_BMC_EVT_MSG_INTR)
578
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 bool *irq_on)
581 {
582 u8 enables = 0;
583
584 if (smi_info->supports_event_msg_buff)
585 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 smi_info->cannot_disable_irq) &&
589 !smi_info->irq_enable_broken)
590 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592 if (smi_info->supports_event_msg_buff &&
593 smi_info->irq && !smi_info->interrupt_disabled &&
594 !smi_info->irq_enable_broken)
595 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599 return enables;
600 }
601
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608 if ((bool)irqstate == irq_on)
609 return;
610
611 if (irq_on)
612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 else
615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 struct ipmi_smi_msg *msg;
621
622 debug_timestamp("Done");
623 switch (smi_info->si_state) {
624 case SI_NORMAL:
625 if (!smi_info->curr_msg)
626 break;
627
628 smi_info->curr_msg->rsp_size
629 = smi_info->handlers->get_result(
630 smi_info->si_sm,
631 smi_info->curr_msg->rsp,
632 IPMI_MAX_MSG_LENGTH);
633
634 /*
635 * Do this here becase deliver_recv_msg() releases the
636 * lock, and a new message can be put in during the
637 * time the lock is released.
638 */
639 msg = smi_info->curr_msg;
640 smi_info->curr_msg = NULL;
641 deliver_recv_msg(smi_info, msg);
642 break;
643
644 case SI_GETTING_FLAGS:
645 {
646 unsigned char msg[4];
647 unsigned int len;
648
649 /* We got the flags from the SMI, now handle them. */
650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 if (msg[2] != 0) {
652 /* Error fetching flags, just give up for now. */
653 smi_info->si_state = SI_NORMAL;
654 } else if (len < 4) {
655 /*
656 * Hmm, no flags. That's technically illegal, but
657 * don't use uninitialized data.
658 */
659 smi_info->si_state = SI_NORMAL;
660 } else {
661 smi_info->msg_flags = msg[3];
662 handle_flags(smi_info);
663 }
664 break;
665 }
666
667 case SI_CLEARING_FLAGS:
668 {
669 unsigned char msg[3];
670
671 /* We cleared the flags. */
672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 if (msg[2] != 0) {
674 /* Error clearing flags */
675 dev_warn(smi_info->dev,
676 "Error clearing flags: %2.2x\n", msg[2]);
677 }
678 smi_info->si_state = SI_NORMAL;
679 break;
680 }
681
682 case SI_GETTING_EVENTS:
683 {
684 smi_info->curr_msg->rsp_size
685 = smi_info->handlers->get_result(
686 smi_info->si_sm,
687 smi_info->curr_msg->rsp,
688 IPMI_MAX_MSG_LENGTH);
689
690 /*
691 * Do this here becase deliver_recv_msg() releases the
692 * lock, and a new message can be put in during the
693 * time the lock is released.
694 */
695 msg = smi_info->curr_msg;
696 smi_info->curr_msg = NULL;
697 if (msg->rsp[2] != 0) {
698 /* Error getting event, probably done. */
699 msg->done(msg);
700
701 /* Take off the event flag. */
702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 handle_flags(smi_info);
704 } else {
705 smi_inc_stat(smi_info, events);
706
707 /*
708 * Do this before we deliver the message
709 * because delivering the message releases the
710 * lock and something else can mess with the
711 * state.
712 */
713 handle_flags(smi_info);
714
715 deliver_recv_msg(smi_info, msg);
716 }
717 break;
718 }
719
720 case SI_GETTING_MESSAGES:
721 {
722 smi_info->curr_msg->rsp_size
723 = smi_info->handlers->get_result(
724 smi_info->si_sm,
725 smi_info->curr_msg->rsp,
726 IPMI_MAX_MSG_LENGTH);
727
728 /*
729 * Do this here becase deliver_recv_msg() releases the
730 * lock, and a new message can be put in during the
731 * time the lock is released.
732 */
733 msg = smi_info->curr_msg;
734 smi_info->curr_msg = NULL;
735 if (msg->rsp[2] != 0) {
736 /* Error getting event, probably done. */
737 msg->done(msg);
738
739 /* Take off the msg flag. */
740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 handle_flags(smi_info);
742 } else {
743 smi_inc_stat(smi_info, incoming_messages);
744
745 /*
746 * Do this before we deliver the message
747 * because delivering the message releases the
748 * lock and something else can mess with the
749 * state.
750 */
751 handle_flags(smi_info);
752
753 deliver_recv_msg(smi_info, msg);
754 }
755 break;
756 }
757
758 case SI_CHECKING_ENABLES:
759 {
760 unsigned char msg[4];
761 u8 enables;
762 bool irq_on;
763
764 /* We got the flags from the SMI, now handle them. */
765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 if (msg[2] != 0) {
767 dev_warn(smi_info->dev,
768 "Couldn't get irq info: %x.\n", msg[2]);
769 dev_warn(smi_info->dev,
770 "Maybe ok, but ipmi might run very slowly.\n");
771 smi_info->si_state = SI_NORMAL;
772 break;
773 }
774 enables = current_global_enables(smi_info, 0, &irq_on);
775 if (smi_info->si_type == SI_BT)
776 /* BT has its own interrupt enable bit. */
777 check_bt_irq(smi_info, irq_on);
778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 /* Enables are not correct, fix them. */
780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 smi_info->handlers->start_transaction(
784 smi_info->si_sm, msg, 3);
785 smi_info->si_state = SI_SETTING_ENABLES;
786 } else if (smi_info->supports_event_msg_buff) {
787 smi_info->curr_msg = ipmi_alloc_smi_msg();
788 if (!smi_info->curr_msg) {
789 smi_info->si_state = SI_NORMAL;
790 break;
791 }
792 start_getting_events(smi_info);
793 } else {
794 smi_info->si_state = SI_NORMAL;
795 }
796 break;
797 }
798
799 case SI_SETTING_ENABLES:
800 {
801 unsigned char msg[4];
802
803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 if (msg[2] != 0)
805 dev_warn(smi_info->dev,
806 "Could not set the global enables: 0x%x.\n",
807 msg[2]);
808
809 if (smi_info->supports_event_msg_buff) {
810 smi_info->curr_msg = ipmi_alloc_smi_msg();
811 if (!smi_info->curr_msg) {
812 smi_info->si_state = SI_NORMAL;
813 break;
814 }
815 start_getting_events(smi_info);
816 } else {
817 smi_info->si_state = SI_NORMAL;
818 }
819 break;
820 }
821 }
822 }
823
824 /*
825 * Called on timeouts and events. Timeouts should pass the elapsed
826 * time, interrupts should pass in zero. Must be called with
827 * si_lock held and interrupts disabled.
828 */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 int time)
831 {
832 enum si_sm_result si_sm_result;
833
834 restart:
835 /*
836 * There used to be a loop here that waited a little while
837 * (around 25us) before giving up. That turned out to be
838 * pointless, the minimum delays I was seeing were in the 300us
839 * range, which is far too long to wait in an interrupt. So
840 * we just run until the state machine tells us something
841 * happened or it needs a delay.
842 */
843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 time = 0;
845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 smi_inc_stat(smi_info, complete_transactions);
850
851 handle_transaction_done(smi_info);
852 goto restart;
853 } else if (si_sm_result == SI_SM_HOSED) {
854 smi_inc_stat(smi_info, hosed_count);
855
856 /*
857 * Do the before return_hosed_msg, because that
858 * releases the lock.
859 */
860 smi_info->si_state = SI_NORMAL;
861 if (smi_info->curr_msg != NULL) {
862 /*
863 * If we were handling a user message, format
864 * a response to send to the upper layer to
865 * tell it about the error.
866 */
867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 }
869 goto restart;
870 }
871
872 /*
873 * We prefer handling attn over new messages. But don't do
874 * this if there is not yet an upper layer to handle anything.
875 */
876 if (likely(smi_info->intf) &&
877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 unsigned char msg[2];
879
880 if (smi_info->si_state != SI_NORMAL) {
881 /*
882 * We got an ATTN, but we are doing something else.
883 * Handle the ATTN later.
884 */
885 smi_info->got_attn = true;
886 } else {
887 smi_info->got_attn = false;
888 smi_inc_stat(smi_info, attentions);
889
890 /*
891 * Got a attn, send down a get message flags to see
892 * what's causing it. It would be better to handle
893 * this in the upper layer, but due to the way
894 * interrupts work with the SMI, that's not really
895 * possible.
896 */
897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900 start_new_msg(smi_info, msg, 2);
901 smi_info->si_state = SI_GETTING_FLAGS;
902 goto restart;
903 }
904 }
905
906 /* If we are currently idle, try to start the next message. */
907 if (si_sm_result == SI_SM_IDLE) {
908 smi_inc_stat(smi_info, idles);
909
910 si_sm_result = start_next_msg(smi_info);
911 if (si_sm_result != SI_SM_IDLE)
912 goto restart;
913 }
914
915 if ((si_sm_result == SI_SM_IDLE)
916 && (atomic_read(&smi_info->req_events))) {
917 /*
918 * We are idle and the upper layer requested that I fetch
919 * events, so do so.
920 */
921 atomic_set(&smi_info->req_events, 0);
922
923 /*
924 * Take this opportunity to check the interrupt and
925 * message enable state for the BMC. The BMC can be
926 * asynchronously reset, and may thus get interrupts
927 * disable and messages disabled.
928 */
929 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 start_check_enables(smi_info, true);
931 } else {
932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 if (!smi_info->curr_msg)
934 goto out;
935
936 start_getting_events(smi_info);
937 }
938 goto restart;
939 }
940
941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 /* Ok it if fails, the timer will just go off. */
943 if (del_timer(&smi_info->si_timer))
944 smi_info->timer_running = false;
945 }
946
947 out:
948 return si_sm_result;
949 }
950
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956 if (smi_info->thread)
957 wake_up_process(smi_info->thread);
958
959 start_next_msg(smi_info);
960 smi_event_handler(smi_info, 0);
961 }
962 }
963
964 static void flush_messages(void *send_info)
965 {
966 struct smi_info *smi_info = send_info;
967 enum si_sm_result result;
968
969 /*
970 * Currently, this function is called only in run-to-completion
971 * mode. This means we are single-threaded, no need for locks.
972 */
973 result = smi_event_handler(smi_info, 0);
974 while (result != SI_SM_IDLE) {
975 udelay(SI_SHORT_TIMEOUT_USEC);
976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 }
978 }
979
980 static void sender(void *send_info,
981 struct ipmi_smi_msg *msg)
982 {
983 struct smi_info *smi_info = send_info;
984 unsigned long flags;
985
986 debug_timestamp("Enqueue");
987
988 if (smi_info->run_to_completion) {
989 /*
990 * If we are running to completion, start it. Upper
991 * layer will call flush_messages to clear it out.
992 */
993 smi_info->waiting_msg = msg;
994 return;
995 }
996
997 spin_lock_irqsave(&smi_info->si_lock, flags);
998 /*
999 * The following two lines don't need to be under the lock for
1000 * the lock's sake, but they do need SMP memory barriers to
1001 * avoid getting things out of order. We are already claiming
1002 * the lock, anyway, so just do it under the lock to avoid the
1003 * ordering problem.
1004 */
1005 BUG_ON(smi_info->waiting_msg);
1006 smi_info->waiting_msg = msg;
1007 check_start_timer_thread(smi_info);
1008 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 struct smi_info *smi_info = send_info;
1014
1015 smi_info->run_to_completion = i_run_to_completion;
1016 if (i_run_to_completion)
1017 flush_messages(smi_info);
1018 }
1019
1020 /*
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1023 * between checks
1024 */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 return ts->tv_nsec != -1;
1032 }
1033
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 const struct smi_info *smi_info,
1036 struct timespec64 *busy_until)
1037 {
1038 unsigned int max_busy_us = 0;
1039
1040 if (smi_info->intf_num < num_max_busy_us)
1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 ipmi_si_set_not_busy(busy_until);
1044 else if (!ipmi_si_is_busy(busy_until)) {
1045 getnstimeofday64(busy_until);
1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 } else {
1048 struct timespec64 now;
1049
1050 getnstimeofday64(&now);
1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 ipmi_si_set_not_busy(busy_until);
1053 return 0;
1054 }
1055 }
1056 return 1;
1057 }
1058
1059
1060 /*
1061 * A busy-waiting loop for speeding up IPMI operation.
1062 *
1063 * Lousy hardware makes this hard. This is only enabled for systems
1064 * that are not BT and do not have interrupts. It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1068 */
1069 static int ipmi_thread(void *data)
1070 {
1071 struct smi_info *smi_info = data;
1072 unsigned long flags;
1073 enum si_sm_result smi_result;
1074 struct timespec64 busy_until;
1075
1076 ipmi_si_set_not_busy(&busy_until);
1077 set_user_nice(current, MAX_NICE);
1078 while (!kthread_should_stop()) {
1079 int busy_wait;
1080
1081 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 smi_result = smi_event_handler(smi_info, 0);
1083
1084 /*
1085 * If the driver is doing something, there is a possible
1086 * race with the timer. If the timer handler see idle,
1087 * and the thread here sees something else, the timer
1088 * handler won't restart the timer even though it is
1089 * required. So start it here if necessary.
1090 */
1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 &busy_until);
1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 ; /* do nothing */
1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100 schedule();
1101 else if (smi_result == SI_SM_IDLE) {
1102 if (atomic_read(&smi_info->need_watch)) {
1103 schedule_timeout_interruptible(100);
1104 } else {
1105 /* Wait to be woken up when we are needed. */
1106 __set_current_state(TASK_INTERRUPTIBLE);
1107 schedule();
1108 }
1109 } else
1110 schedule_timeout_interruptible(1);
1111 }
1112 return 0;
1113 }
1114
1115
1116 static void poll(void *send_info)
1117 {
1118 struct smi_info *smi_info = send_info;
1119 unsigned long flags = 0;
1120 bool run_to_completion = smi_info->run_to_completion;
1121
1122 /*
1123 * Make sure there is some delay in the poll loop so we can
1124 * drive time forward and timeout things.
1125 */
1126 udelay(10);
1127 if (!run_to_completion)
1128 spin_lock_irqsave(&smi_info->si_lock, flags);
1129 smi_event_handler(smi_info, 10);
1130 if (!run_to_completion)
1131 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133
1134 static void request_events(void *send_info)
1135 {
1136 struct smi_info *smi_info = send_info;
1137
1138 if (!smi_info->has_event_buffer)
1139 return;
1140
1141 atomic_set(&smi_info->req_events, 1);
1142 }
1143
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146 struct smi_info *smi_info = send_info;
1147 unsigned long flags;
1148
1149 atomic_set(&smi_info->need_watch, enable);
1150 spin_lock_irqsave(&smi_info->si_lock, flags);
1151 check_start_timer_thread(smi_info);
1152 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154
1155 static int initialized;
1156
1157 static void smi_timeout(unsigned long data)
1158 {
1159 struct smi_info *smi_info = (struct smi_info *) data;
1160 enum si_sm_result smi_result;
1161 unsigned long flags;
1162 unsigned long jiffies_now;
1163 long time_diff;
1164 long timeout;
1165
1166 spin_lock_irqsave(&(smi_info->si_lock), flags);
1167 debug_timestamp("Timer");
1168
1169 jiffies_now = jiffies;
1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171 * SI_USEC_PER_JIFFY);
1172 smi_result = smi_event_handler(smi_info, time_diff);
1173
1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175 /* Running with interrupts, only do long timeouts. */
1176 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 smi_inc_stat(smi_info, long_timeouts);
1178 goto do_mod_timer;
1179 }
1180
1181 /*
1182 * If the state machine asks for a short delay, then shorten
1183 * the timer timeout.
1184 */
1185 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186 smi_inc_stat(smi_info, short_timeouts);
1187 timeout = jiffies + 1;
1188 } else {
1189 smi_inc_stat(smi_info, long_timeouts);
1190 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191 }
1192
1193 do_mod_timer:
1194 if (smi_result != SI_SM_IDLE)
1195 smi_mod_timer(smi_info, timeout);
1196 else
1197 smi_info->timer_running = false;
1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203 struct smi_info *smi_info = data;
1204 unsigned long flags;
1205
1206 spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
1208 smi_inc_stat(smi_info, interrupts);
1209
1210 debug_timestamp("Interrupt");
1211
1212 smi_event_handler(smi_info, 0);
1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 return IRQ_HANDLED;
1215 }
1216
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219 struct smi_info *smi_info = data;
1220 /* We need to clear the IRQ flag for the BT interface. */
1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224 return si_irq_handler(irq, data);
1225 }
1226
1227 static int smi_start_processing(void *send_info,
1228 ipmi_smi_t intf)
1229 {
1230 struct smi_info *new_smi = send_info;
1231 int enable = 0;
1232
1233 new_smi->intf = intf;
1234
1235 /* Set up the timer that drives the interface. */
1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238
1239 /* Try to claim any interrupts. */
1240 if (new_smi->irq_setup)
1241 new_smi->irq_setup(new_smi);
1242
1243 /*
1244 * Check if the user forcefully enabled the daemon.
1245 */
1246 if (new_smi->intf_num < num_force_kipmid)
1247 enable = force_kipmid[new_smi->intf_num];
1248 /*
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1251 */
1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 enable = 1;
1254
1255 if (enable) {
1256 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 "kipmi%d", new_smi->intf_num);
1258 if (IS_ERR(new_smi->thread)) {
1259 dev_notice(new_smi->dev, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi->thread));
1263 new_smi->thread = NULL;
1264 }
1265 }
1266
1267 return 0;
1268 }
1269
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272 struct smi_info *smi = send_info;
1273
1274 data->addr_src = smi->addr_source;
1275 data->dev = smi->dev;
1276 data->addr_info = smi->addr_info;
1277 get_device(smi->dev);
1278
1279 return 0;
1280 }
1281
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284 struct smi_info *smi_info = send_info;
1285
1286 if (!enable)
1287 atomic_set(&smi_info->req_events, 0);
1288 }
1289
1290 static const struct ipmi_smi_handlers handlers = {
1291 .owner = THIS_MODULE,
1292 .start_processing = smi_start_processing,
1293 .get_smi_info = get_smi_info,
1294 .sender = sender,
1295 .request_events = request_events,
1296 .set_need_watch = set_need_watch,
1297 .set_maintenance_mode = set_maintenance_mode,
1298 .set_run_to_completion = set_run_to_completion,
1299 .flush_messages = flush_messages,
1300 .poll = poll,
1301 };
1302
1303 /*
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1306 */
1307
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311
1312 #define DEFAULT_REGSPACING 1
1313 #define DEFAULT_REGSIZE 1
1314
1315 #ifdef CONFIG_ACPI
1316 static bool si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool si_trydmi = true;
1320 #endif
1321 static bool si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool si_trypci = true;
1324 #endif
1325 static char *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1342
1343 #define IPMI_IO_ADDR_SPACE 0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1346
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1348
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1351 " Documentation/IPMI.txt in the kernel sources for the"
1352 " gory details.");
1353
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362 " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1366 " default scan of the interfaces identified via platform"
1367 " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1371 " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1375 " interface separated by commas. The types are 'kcs',"
1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1377 " the first interface to kcs and the second to bt");
1378 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1380 " addresses separated by commas. Only use if an interface"
1381 " is in memory. Otherwise, set it to zero or leave"
1382 " it blank.");
1383 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is a port. Otherwise, set it to zero or leave"
1387 " it blank.");
1388 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " has an interrupt. Otherwise, set it to zero or leave"
1392 " it blank.");
1393 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1395 " and each successive register used by the interface. For"
1396 " instance, if the start address is 0xca2 and the spacing"
1397 " is 2, then the second address is at 0xca4. Defaults"
1398 " to 1.");
1399 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1401 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1403 " the 8-bit IPMI register has to be read from a larger"
1404 " register.");
1405 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1407 " IPMI register, in bits. For instance, if the data"
1408 " is read from a 32-bit word and the IPMI data is in"
1409 " bit 8-15, then the shift would be 8");
1410 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1412 " the controller. Normally this is 0x20, but can be"
1413 " overridden by this parm. This is an array indexed"
1414 " by interface number.");
1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1417 " disabled(0). Normally the IPMI driver auto-detects"
1418 " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1421 " specified or found, default is 1. Setting to 0"
1422 " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us,
1425 "Max time (in microseconds) to busy-wait for IPMI data before"
1426 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427 " if kipmid is using up a lot of CPU time.");
1428
1429
1430 static void std_irq_cleanup(struct smi_info *info)
1431 {
1432 if (info->si_type == SI_BT)
1433 /* Disable the interrupt in the BT interface. */
1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1435 free_irq(info->irq, info);
1436 }
1437
1438 static int std_irq_setup(struct smi_info *info)
1439 {
1440 int rv;
1441
1442 if (!info->irq)
1443 return 0;
1444
1445 if (info->si_type == SI_BT) {
1446 rv = request_irq(info->irq,
1447 si_bt_irq_handler,
1448 IRQF_SHARED,
1449 DEVICE_NAME,
1450 info);
1451 if (!rv)
1452 /* Enable the interrupt in the BT interface. */
1453 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1455 } else
1456 rv = request_irq(info->irq,
1457 si_irq_handler,
1458 IRQF_SHARED,
1459 DEVICE_NAME,
1460 info);
1461 if (rv) {
1462 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1463 " running polled\n",
1464 DEVICE_NAME, info->irq);
1465 info->irq = 0;
1466 } else {
1467 info->irq_cleanup = std_irq_cleanup;
1468 dev_info(info->dev, "Using irq %d\n", info->irq);
1469 }
1470
1471 return rv;
1472 }
1473
1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1475 {
1476 unsigned int addr = io->addr_data;
1477
1478 return inb(addr + (offset * io->regspacing));
1479 }
1480
1481 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1482 unsigned char b)
1483 {
1484 unsigned int addr = io->addr_data;
1485
1486 outb(b, addr + (offset * io->regspacing));
1487 }
1488
1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1490 {
1491 unsigned int addr = io->addr_data;
1492
1493 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1494 }
1495
1496 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1497 unsigned char b)
1498 {
1499 unsigned int addr = io->addr_data;
1500
1501 outw(b << io->regshift, addr + (offset * io->regspacing));
1502 }
1503
1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1505 {
1506 unsigned int addr = io->addr_data;
1507
1508 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1509 }
1510
1511 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1512 unsigned char b)
1513 {
1514 unsigned int addr = io->addr_data;
1515
1516 outl(b << io->regshift, addr+(offset * io->regspacing));
1517 }
1518
1519 static void port_cleanup(struct smi_info *info)
1520 {
1521 unsigned int addr = info->io.addr_data;
1522 int idx;
1523
1524 if (addr) {
1525 for (idx = 0; idx < info->io_size; idx++)
1526 release_region(addr + idx * info->io.regspacing,
1527 info->io.regsize);
1528 }
1529 }
1530
1531 static int port_setup(struct smi_info *info)
1532 {
1533 unsigned int addr = info->io.addr_data;
1534 int idx;
1535
1536 if (!addr)
1537 return -ENODEV;
1538
1539 info->io_cleanup = port_cleanup;
1540
1541 /*
1542 * Figure out the actual inb/inw/inl/etc routine to use based
1543 * upon the register size.
1544 */
1545 switch (info->io.regsize) {
1546 case 1:
1547 info->io.inputb = port_inb;
1548 info->io.outputb = port_outb;
1549 break;
1550 case 2:
1551 info->io.inputb = port_inw;
1552 info->io.outputb = port_outw;
1553 break;
1554 case 4:
1555 info->io.inputb = port_inl;
1556 info->io.outputb = port_outl;
1557 break;
1558 default:
1559 dev_warn(info->dev, "Invalid register size: %d\n",
1560 info->io.regsize);
1561 return -EINVAL;
1562 }
1563
1564 /*
1565 * Some BIOSes reserve disjoint I/O regions in their ACPI
1566 * tables. This causes problems when trying to register the
1567 * entire I/O region. Therefore we must register each I/O
1568 * port separately.
1569 */
1570 for (idx = 0; idx < info->io_size; idx++) {
1571 if (request_region(addr + idx * info->io.regspacing,
1572 info->io.regsize, DEVICE_NAME) == NULL) {
1573 /* Undo allocations */
1574 while (idx--)
1575 release_region(addr + idx * info->io.regspacing,
1576 info->io.regsize);
1577 return -EIO;
1578 }
1579 }
1580 return 0;
1581 }
1582
1583 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1584 unsigned int offset)
1585 {
1586 return readb((io->addr)+(offset * io->regspacing));
1587 }
1588
1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1590 unsigned char b)
1591 {
1592 writeb(b, (io->addr)+(offset * io->regspacing));
1593 }
1594
1595 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1596 unsigned int offset)
1597 {
1598 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599 & 0xff;
1600 }
1601
1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1603 unsigned char b)
1604 {
1605 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1606 }
1607
1608 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1609 unsigned int offset)
1610 {
1611 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1612 & 0xff;
1613 }
1614
1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1616 unsigned char b)
1617 {
1618 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1619 }
1620
1621 #ifdef readq
1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1623 {
1624 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1625 & 0xff;
1626 }
1627
1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1629 unsigned char b)
1630 {
1631 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1632 }
1633 #endif
1634
1635 static void mem_region_cleanup(struct smi_info *info, int num)
1636 {
1637 unsigned long addr = info->io.addr_data;
1638 int idx;
1639
1640 for (idx = 0; idx < num; idx++)
1641 release_mem_region(addr + idx * info->io.regspacing,
1642 info->io.regsize);
1643 }
1644
1645 static void mem_cleanup(struct smi_info *info)
1646 {
1647 if (info->io.addr) {
1648 iounmap(info->io.addr);
1649 mem_region_cleanup(info, info->io_size);
1650 }
1651 }
1652
1653 static int mem_setup(struct smi_info *info)
1654 {
1655 unsigned long addr = info->io.addr_data;
1656 int mapsize, idx;
1657
1658 if (!addr)
1659 return -ENODEV;
1660
1661 info->io_cleanup = mem_cleanup;
1662
1663 /*
1664 * Figure out the actual readb/readw/readl/etc routine to use based
1665 * upon the register size.
1666 */
1667 switch (info->io.regsize) {
1668 case 1:
1669 info->io.inputb = intf_mem_inb;
1670 info->io.outputb = intf_mem_outb;
1671 break;
1672 case 2:
1673 info->io.inputb = intf_mem_inw;
1674 info->io.outputb = intf_mem_outw;
1675 break;
1676 case 4:
1677 info->io.inputb = intf_mem_inl;
1678 info->io.outputb = intf_mem_outl;
1679 break;
1680 #ifdef readq
1681 case 8:
1682 info->io.inputb = mem_inq;
1683 info->io.outputb = mem_outq;
1684 break;
1685 #endif
1686 default:
1687 dev_warn(info->dev, "Invalid register size: %d\n",
1688 info->io.regsize);
1689 return -EINVAL;
1690 }
1691
1692 /*
1693 * Some BIOSes reserve disjoint memory regions in their ACPI
1694 * tables. This causes problems when trying to request the
1695 * entire region. Therefore we must request each register
1696 * separately.
1697 */
1698 for (idx = 0; idx < info->io_size; idx++) {
1699 if (request_mem_region(addr + idx * info->io.regspacing,
1700 info->io.regsize, DEVICE_NAME) == NULL) {
1701 /* Undo allocations */
1702 mem_region_cleanup(info, idx);
1703 return -EIO;
1704 }
1705 }
1706
1707 /*
1708 * Calculate the total amount of memory to claim. This is an
1709 * unusual looking calculation, but it avoids claiming any
1710 * more memory than it has to. It will claim everything
1711 * between the first address to the end of the last full
1712 * register.
1713 */
1714 mapsize = ((info->io_size * info->io.regspacing)
1715 - (info->io.regspacing - info->io.regsize));
1716 info->io.addr = ioremap(addr, mapsize);
1717 if (info->io.addr == NULL) {
1718 mem_region_cleanup(info, info->io_size);
1719 return -EIO;
1720 }
1721 return 0;
1722 }
1723
1724 /*
1725 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1727 * Options are:
1728 * rsp=<regspacing>
1729 * rsi=<regsize>
1730 * rsh=<regshift>
1731 * irq=<irq>
1732 * ipmb=<ipmb addr>
1733 */
1734 enum hotmod_op { HM_ADD, HM_REMOVE };
1735 struct hotmod_vals {
1736 const char *name;
1737 const int val;
1738 };
1739
1740 static const struct hotmod_vals hotmod_ops[] = {
1741 { "add", HM_ADD },
1742 { "remove", HM_REMOVE },
1743 { NULL }
1744 };
1745
1746 static const struct hotmod_vals hotmod_si[] = {
1747 { "kcs", SI_KCS },
1748 { "smic", SI_SMIC },
1749 { "bt", SI_BT },
1750 { NULL }
1751 };
1752
1753 static const struct hotmod_vals hotmod_as[] = {
1754 { "mem", IPMI_MEM_ADDR_SPACE },
1755 { "i/o", IPMI_IO_ADDR_SPACE },
1756 { NULL }
1757 };
1758
1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1760 char **curr)
1761 {
1762 char *s;
1763 int i;
1764
1765 s = strchr(*curr, ',');
1766 if (!s) {
1767 pr_warn(PFX "No hotmod %s given.\n", name);
1768 return -EINVAL;
1769 }
1770 *s = '\0';
1771 s++;
1772 for (i = 0; v[i].name; i++) {
1773 if (strcmp(*curr, v[i].name) == 0) {
1774 *val = v[i].val;
1775 *curr = s;
1776 return 0;
1777 }
1778 }
1779
1780 pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781 return -EINVAL;
1782 }
1783
1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785 const char *name, int *val)
1786 {
1787 char *n;
1788
1789 if (strcmp(curr, name) == 0) {
1790 if (!option) {
1791 pr_warn(PFX "No option given for '%s'\n", curr);
1792 return -EINVAL;
1793 }
1794 *val = simple_strtoul(option, &n, 0);
1795 if ((*n != '\0') || (*option == '\0')) {
1796 pr_warn(PFX "Bad option given for '%s'\n", curr);
1797 return -EINVAL;
1798 }
1799 return 1;
1800 }
1801 return 0;
1802 }
1803
1804 static struct smi_info *smi_info_alloc(void)
1805 {
1806 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1807
1808 if (info)
1809 spin_lock_init(&info->si_lock);
1810 return info;
1811 }
1812
1813 static int hotmod_handler(const char *val, struct kernel_param *kp)
1814 {
1815 char *str = kstrdup(val, GFP_KERNEL);
1816 int rv;
1817 char *next, *curr, *s, *n, *o;
1818 enum hotmod_op op;
1819 enum si_type si_type;
1820 int addr_space;
1821 unsigned long addr;
1822 int regspacing;
1823 int regsize;
1824 int regshift;
1825 int irq;
1826 int ipmb;
1827 int ival;
1828 int len;
1829 struct smi_info *info;
1830
1831 if (!str)
1832 return -ENOMEM;
1833
1834 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1835 len = strlen(str);
1836 ival = len - 1;
1837 while ((ival >= 0) && isspace(str[ival])) {
1838 str[ival] = '\0';
1839 ival--;
1840 }
1841
1842 for (curr = str; curr; curr = next) {
1843 regspacing = 1;
1844 regsize = 1;
1845 regshift = 0;
1846 irq = 0;
1847 ipmb = 0; /* Choose the default if not specified */
1848
1849 next = strchr(curr, ':');
1850 if (next) {
1851 *next = '\0';
1852 next++;
1853 }
1854
1855 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1856 if (rv)
1857 break;
1858 op = ival;
1859
1860 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1861 if (rv)
1862 break;
1863 si_type = ival;
1864
1865 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1866 if (rv)
1867 break;
1868
1869 s = strchr(curr, ',');
1870 if (s) {
1871 *s = '\0';
1872 s++;
1873 }
1874 addr = simple_strtoul(curr, &n, 0);
1875 if ((*n != '\0') || (*curr == '\0')) {
1876 pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1877 break;
1878 }
1879
1880 while (s) {
1881 curr = s;
1882 s = strchr(curr, ',');
1883 if (s) {
1884 *s = '\0';
1885 s++;
1886 }
1887 o = strchr(curr, '=');
1888 if (o) {
1889 *o = '\0';
1890 o++;
1891 }
1892 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1893 if (rv < 0)
1894 goto out;
1895 else if (rv)
1896 continue;
1897 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1898 if (rv < 0)
1899 goto out;
1900 else if (rv)
1901 continue;
1902 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1903 if (rv < 0)
1904 goto out;
1905 else if (rv)
1906 continue;
1907 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1908 if (rv < 0)
1909 goto out;
1910 else if (rv)
1911 continue;
1912 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1913 if (rv < 0)
1914 goto out;
1915 else if (rv)
1916 continue;
1917
1918 rv = -EINVAL;
1919 pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1920 goto out;
1921 }
1922
1923 if (op == HM_ADD) {
1924 info = smi_info_alloc();
1925 if (!info) {
1926 rv = -ENOMEM;
1927 goto out;
1928 }
1929
1930 info->addr_source = SI_HOTMOD;
1931 info->si_type = si_type;
1932 info->io.addr_data = addr;
1933 info->io.addr_type = addr_space;
1934 if (addr_space == IPMI_MEM_ADDR_SPACE)
1935 info->io_setup = mem_setup;
1936 else
1937 info->io_setup = port_setup;
1938
1939 info->io.addr = NULL;
1940 info->io.regspacing = regspacing;
1941 if (!info->io.regspacing)
1942 info->io.regspacing = DEFAULT_REGSPACING;
1943 info->io.regsize = regsize;
1944 if (!info->io.regsize)
1945 info->io.regsize = DEFAULT_REGSPACING;
1946 info->io.regshift = regshift;
1947 info->irq = irq;
1948 if (info->irq)
1949 info->irq_setup = std_irq_setup;
1950 info->slave_addr = ipmb;
1951
1952 rv = add_smi(info);
1953 if (rv) {
1954 kfree(info);
1955 goto out;
1956 }
1957 rv = try_smi_init(info);
1958 if (rv) {
1959 cleanup_one_si(info);
1960 goto out;
1961 }
1962 } else {
1963 /* remove */
1964 struct smi_info *e, *tmp_e;
1965
1966 mutex_lock(&smi_infos_lock);
1967 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1968 if (e->io.addr_type != addr_space)
1969 continue;
1970 if (e->si_type != si_type)
1971 continue;
1972 if (e->io.addr_data == addr)
1973 cleanup_one_si(e);
1974 }
1975 mutex_unlock(&smi_infos_lock);
1976 }
1977 }
1978 rv = len;
1979 out:
1980 kfree(str);
1981 return rv;
1982 }
1983
1984 static int hardcode_find_bmc(void)
1985 {
1986 int ret = -ENODEV;
1987 int i;
1988 struct smi_info *info;
1989
1990 for (i = 0; i < SI_MAX_PARMS; i++) {
1991 if (!ports[i] && !addrs[i])
1992 continue;
1993
1994 info = smi_info_alloc();
1995 if (!info)
1996 return -ENOMEM;
1997
1998 info->addr_source = SI_HARDCODED;
1999 pr_info(PFX "probing via hardcoded address\n");
2000
2001 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2002 info->si_type = SI_KCS;
2003 } else if (strcmp(si_type[i], "smic") == 0) {
2004 info->si_type = SI_SMIC;
2005 } else if (strcmp(si_type[i], "bt") == 0) {
2006 info->si_type = SI_BT;
2007 } else {
2008 pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2009 i, si_type[i]);
2010 kfree(info);
2011 continue;
2012 }
2013
2014 if (ports[i]) {
2015 /* An I/O port */
2016 info->io_setup = port_setup;
2017 info->io.addr_data = ports[i];
2018 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2019 } else if (addrs[i]) {
2020 /* A memory port */
2021 info->io_setup = mem_setup;
2022 info->io.addr_data = addrs[i];
2023 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2024 } else {
2025 pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2026 i);
2027 kfree(info);
2028 continue;
2029 }
2030
2031 info->io.addr = NULL;
2032 info->io.regspacing = regspacings[i];
2033 if (!info->io.regspacing)
2034 info->io.regspacing = DEFAULT_REGSPACING;
2035 info->io.regsize = regsizes[i];
2036 if (!info->io.regsize)
2037 info->io.regsize = DEFAULT_REGSPACING;
2038 info->io.regshift = regshifts[i];
2039 info->irq = irqs[i];
2040 if (info->irq)
2041 info->irq_setup = std_irq_setup;
2042 info->slave_addr = slave_addrs[i];
2043
2044 if (!add_smi(info)) {
2045 if (try_smi_init(info))
2046 cleanup_one_si(info);
2047 ret = 0;
2048 } else {
2049 kfree(info);
2050 }
2051 }
2052 return ret;
2053 }
2054
2055 #ifdef CONFIG_ACPI
2056
2057 /*
2058 * Once we get an ACPI failure, we don't try any more, because we go
2059 * through the tables sequentially. Once we don't find a table, there
2060 * are no more.
2061 */
2062 static int acpi_failure;
2063
2064 /* For GPE-type interrupts. */
2065 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2066 u32 gpe_number, void *context)
2067 {
2068 struct smi_info *smi_info = context;
2069 unsigned long flags;
2070
2071 spin_lock_irqsave(&(smi_info->si_lock), flags);
2072
2073 smi_inc_stat(smi_info, interrupts);
2074
2075 debug_timestamp("ACPI_GPE");
2076
2077 smi_event_handler(smi_info, 0);
2078 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2079
2080 return ACPI_INTERRUPT_HANDLED;
2081 }
2082
2083 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2084 {
2085 if (!info->irq)
2086 return;
2087
2088 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2089 }
2090
2091 static int acpi_gpe_irq_setup(struct smi_info *info)
2092 {
2093 acpi_status status;
2094
2095 if (!info->irq)
2096 return 0;
2097
2098 status = acpi_install_gpe_handler(NULL,
2099 info->irq,
2100 ACPI_GPE_LEVEL_TRIGGERED,
2101 &ipmi_acpi_gpe,
2102 info);
2103 if (status != AE_OK) {
2104 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2105 " running polled\n", DEVICE_NAME, info->irq);
2106 info->irq = 0;
2107 return -EINVAL;
2108 } else {
2109 info->irq_cleanup = acpi_gpe_irq_cleanup;
2110 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2111 return 0;
2112 }
2113 }
2114
2115 /*
2116 * Defined at
2117 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2118 */
2119 struct SPMITable {
2120 s8 Signature[4];
2121 u32 Length;
2122 u8 Revision;
2123 u8 Checksum;
2124 s8 OEMID[6];
2125 s8 OEMTableID[8];
2126 s8 OEMRevision[4];
2127 s8 CreatorID[4];
2128 s8 CreatorRevision[4];
2129 u8 InterfaceType;
2130 u8 IPMIlegacy;
2131 s16 SpecificationRevision;
2132
2133 /*
2134 * Bit 0 - SCI interrupt supported
2135 * Bit 1 - I/O APIC/SAPIC
2136 */
2137 u8 InterruptType;
2138
2139 /*
2140 * If bit 0 of InterruptType is set, then this is the SCI
2141 * interrupt in the GPEx_STS register.
2142 */
2143 u8 GPE;
2144
2145 s16 Reserved;
2146
2147 /*
2148 * If bit 1 of InterruptType is set, then this is the I/O
2149 * APIC/SAPIC interrupt.
2150 */
2151 u32 GlobalSystemInterrupt;
2152
2153 /* The actual register address. */
2154 struct acpi_generic_address addr;
2155
2156 u8 UID[4];
2157
2158 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2159 };
2160
2161 static int try_init_spmi(struct SPMITable *spmi)
2162 {
2163 struct smi_info *info;
2164 int rv;
2165
2166 if (spmi->IPMIlegacy != 1) {
2167 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2168 return -ENODEV;
2169 }
2170
2171 info = smi_info_alloc();
2172 if (!info) {
2173 pr_err(PFX "Could not allocate SI data (3)\n");
2174 return -ENOMEM;
2175 }
2176
2177 info->addr_source = SI_SPMI;
2178 pr_info(PFX "probing via SPMI\n");
2179
2180 /* Figure out the interface type. */
2181 switch (spmi->InterfaceType) {
2182 case 1: /* KCS */
2183 info->si_type = SI_KCS;
2184 break;
2185 case 2: /* SMIC */
2186 info->si_type = SI_SMIC;
2187 break;
2188 case 3: /* BT */
2189 info->si_type = SI_BT;
2190 break;
2191 case 4: /* SSIF, just ignore */
2192 kfree(info);
2193 return -EIO;
2194 default:
2195 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2196 spmi->InterfaceType);
2197 kfree(info);
2198 return -EIO;
2199 }
2200
2201 if (spmi->InterruptType & 1) {
2202 /* We've got a GPE interrupt. */
2203 info->irq = spmi->GPE;
2204 info->irq_setup = acpi_gpe_irq_setup;
2205 } else if (spmi->InterruptType & 2) {
2206 /* We've got an APIC/SAPIC interrupt. */
2207 info->irq = spmi->GlobalSystemInterrupt;
2208 info->irq_setup = std_irq_setup;
2209 } else {
2210 /* Use the default interrupt setting. */
2211 info->irq = 0;
2212 info->irq_setup = NULL;
2213 }
2214
2215 if (spmi->addr.bit_width) {
2216 /* A (hopefully) properly formed register bit width. */
2217 info->io.regspacing = spmi->addr.bit_width / 8;
2218 } else {
2219 info->io.regspacing = DEFAULT_REGSPACING;
2220 }
2221 info->io.regsize = info->io.regspacing;
2222 info->io.regshift = spmi->addr.bit_offset;
2223
2224 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2225 info->io_setup = mem_setup;
2226 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2227 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2228 info->io_setup = port_setup;
2229 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2230 } else {
2231 kfree(info);
2232 pr_warn(PFX "Unknown ACPI I/O Address type\n");
2233 return -EIO;
2234 }
2235 info->io.addr_data = spmi->addr.address;
2236
2237 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2238 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2239 info->io.addr_data, info->io.regsize, info->io.regspacing,
2240 info->irq);
2241
2242 rv = add_smi(info);
2243 if (rv)
2244 kfree(info);
2245
2246 return rv;
2247 }
2248
2249 static void spmi_find_bmc(void)
2250 {
2251 acpi_status status;
2252 struct SPMITable *spmi;
2253 int i;
2254
2255 if (acpi_disabled)
2256 return;
2257
2258 if (acpi_failure)
2259 return;
2260
2261 for (i = 0; ; i++) {
2262 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2263 (struct acpi_table_header **)&spmi);
2264 if (status != AE_OK)
2265 return;
2266
2267 try_init_spmi(spmi);
2268 }
2269 }
2270 #endif
2271
2272 #ifdef CONFIG_DMI
2273 struct dmi_ipmi_data {
2274 u8 type;
2275 u8 addr_space;
2276 unsigned long base_addr;
2277 u8 irq;
2278 u8 offset;
2279 u8 slave_addr;
2280 };
2281
2282 static int decode_dmi(const struct dmi_header *dm,
2283 struct dmi_ipmi_data *dmi)
2284 {
2285 const u8 *data = (const u8 *)dm;
2286 unsigned long base_addr;
2287 u8 reg_spacing;
2288 u8 len = dm->length;
2289
2290 dmi->type = data[4];
2291
2292 memcpy(&base_addr, data+8, sizeof(unsigned long));
2293 if (len >= 0x11) {
2294 if (base_addr & 1) {
2295 /* I/O */
2296 base_addr &= 0xFFFE;
2297 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2298 } else
2299 /* Memory */
2300 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2301
2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2303 is odd. */
2304 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2305
2306 dmi->irq = data[0x11];
2307
2308 /* The top two bits of byte 0x10 hold the register spacing. */
2309 reg_spacing = (data[0x10] & 0xC0) >> 6;
2310 switch (reg_spacing) {
2311 case 0x00: /* Byte boundaries */
2312 dmi->offset = 1;
2313 break;
2314 case 0x01: /* 32-bit boundaries */
2315 dmi->offset = 4;
2316 break;
2317 case 0x02: /* 16-byte boundaries */
2318 dmi->offset = 16;
2319 break;
2320 default:
2321 /* Some other interface, just ignore it. */
2322 return -EIO;
2323 }
2324 } else {
2325 /* Old DMI spec. */
2326 /*
2327 * Note that technically, the lower bit of the base
2328 * address should be 1 if the address is I/O and 0 if
2329 * the address is in memory. So many systems get that
2330 * wrong (and all that I have seen are I/O) so we just
2331 * ignore that bit and assume I/O. Systems that use
2332 * memory should use the newer spec, anyway.
2333 */
2334 dmi->base_addr = base_addr & 0xfffe;
2335 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336 dmi->offset = 1;
2337 }
2338
2339 dmi->slave_addr = data[6];
2340
2341 return 0;
2342 }
2343
2344 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2345 {
2346 struct smi_info *info;
2347
2348 info = smi_info_alloc();
2349 if (!info) {
2350 pr_err(PFX "Could not allocate SI data\n");
2351 return;
2352 }
2353
2354 info->addr_source = SI_SMBIOS;
2355 pr_info(PFX "probing via SMBIOS\n");
2356
2357 switch (ipmi_data->type) {
2358 case 0x01: /* KCS */
2359 info->si_type = SI_KCS;
2360 break;
2361 case 0x02: /* SMIC */
2362 info->si_type = SI_SMIC;
2363 break;
2364 case 0x03: /* BT */
2365 info->si_type = SI_BT;
2366 break;
2367 default:
2368 kfree(info);
2369 return;
2370 }
2371
2372 switch (ipmi_data->addr_space) {
2373 case IPMI_MEM_ADDR_SPACE:
2374 info->io_setup = mem_setup;
2375 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376 break;
2377
2378 case IPMI_IO_ADDR_SPACE:
2379 info->io_setup = port_setup;
2380 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381 break;
2382
2383 default:
2384 kfree(info);
2385 pr_warn(PFX "Unknown SMBIOS I/O Address type: %d\n",
2386 ipmi_data->addr_space);
2387 return;
2388 }
2389 info->io.addr_data = ipmi_data->base_addr;
2390
2391 info->io.regspacing = ipmi_data->offset;
2392 if (!info->io.regspacing)
2393 info->io.regspacing = DEFAULT_REGSPACING;
2394 info->io.regsize = DEFAULT_REGSPACING;
2395 info->io.regshift = 0;
2396
2397 info->slave_addr = ipmi_data->slave_addr;
2398
2399 info->irq = ipmi_data->irq;
2400 if (info->irq)
2401 info->irq_setup = std_irq_setup;
2402
2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405 info->io.addr_data, info->io.regsize, info->io.regspacing,
2406 info->irq);
2407
2408 if (add_smi(info))
2409 kfree(info);
2410 }
2411
2412 static void dmi_find_bmc(void)
2413 {
2414 const struct dmi_device *dev = NULL;
2415 struct dmi_ipmi_data data;
2416 int rv;
2417
2418 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2419 memset(&data, 0, sizeof(data));
2420 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421 &data);
2422 if (!rv)
2423 try_init_dmi(&data);
2424 }
2425 }
2426 #endif /* CONFIG_DMI */
2427
2428 #ifdef CONFIG_PCI
2429
2430 #define PCI_ERMC_CLASSCODE 0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2436
2437 #define PCI_HP_VENDOR_ID 0x103C
2438 #define PCI_MMC_DEVICE_ID 0x121A
2439 #define PCI_MMC_ADDR_CW 0x10
2440
2441 static void ipmi_pci_cleanup(struct smi_info *info)
2442 {
2443 struct pci_dev *pdev = info->addr_source_data;
2444
2445 pci_disable_device(pdev);
2446 }
2447
2448 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2449 {
2450 if (info->si_type == SI_KCS) {
2451 unsigned char status;
2452 int regspacing;
2453
2454 info->io.regsize = DEFAULT_REGSIZE;
2455 info->io.regshift = 0;
2456 info->io_size = 2;
2457 info->handlers = &kcs_smi_handlers;
2458
2459 /* detect 1, 4, 16byte spacing */
2460 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2461 info->io.regspacing = regspacing;
2462 if (info->io_setup(info)) {
2463 dev_err(info->dev,
2464 "Could not setup I/O space\n");
2465 return DEFAULT_REGSPACING;
2466 }
2467 /* write invalid cmd */
2468 info->io.outputb(&info->io, 1, 0x10);
2469 /* read status back */
2470 status = info->io.inputb(&info->io, 1);
2471 info->io_cleanup(info);
2472 if (status)
2473 return regspacing;
2474 regspacing *= 4;
2475 }
2476 }
2477 return DEFAULT_REGSPACING;
2478 }
2479
2480 static int ipmi_pci_probe(struct pci_dev *pdev,
2481 const struct pci_device_id *ent)
2482 {
2483 int rv;
2484 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2485 struct smi_info *info;
2486
2487 info = smi_info_alloc();
2488 if (!info)
2489 return -ENOMEM;
2490
2491 info->addr_source = SI_PCI;
2492 dev_info(&pdev->dev, "probing via PCI");
2493
2494 switch (class_type) {
2495 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2496 info->si_type = SI_SMIC;
2497 break;
2498
2499 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2500 info->si_type = SI_KCS;
2501 break;
2502
2503 case PCI_ERMC_CLASSCODE_TYPE_BT:
2504 info->si_type = SI_BT;
2505 break;
2506
2507 default:
2508 kfree(info);
2509 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2510 return -ENOMEM;
2511 }
2512
2513 rv = pci_enable_device(pdev);
2514 if (rv) {
2515 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2516 kfree(info);
2517 return rv;
2518 }
2519
2520 info->addr_source_cleanup = ipmi_pci_cleanup;
2521 info->addr_source_data = pdev;
2522
2523 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2524 info->io_setup = port_setup;
2525 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2526 } else {
2527 info->io_setup = mem_setup;
2528 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2529 }
2530 info->io.addr_data = pci_resource_start(pdev, 0);
2531
2532 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2533 info->io.regsize = DEFAULT_REGSIZE;
2534 info->io.regshift = 0;
2535
2536 info->irq = pdev->irq;
2537 if (info->irq)
2538 info->irq_setup = std_irq_setup;
2539
2540 info->dev = &pdev->dev;
2541 pci_set_drvdata(pdev, info);
2542
2543 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2544 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2545 info->irq);
2546
2547 rv = add_smi(info);
2548 if (rv) {
2549 kfree(info);
2550 pci_disable_device(pdev);
2551 }
2552
2553 return rv;
2554 }
2555
2556 static void ipmi_pci_remove(struct pci_dev *pdev)
2557 {
2558 struct smi_info *info = pci_get_drvdata(pdev);
2559 cleanup_one_si(info);
2560 }
2561
2562 static const struct pci_device_id ipmi_pci_devices[] = {
2563 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2564 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2565 { 0, }
2566 };
2567 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2568
2569 static struct pci_driver ipmi_pci_driver = {
2570 .name = DEVICE_NAME,
2571 .id_table = ipmi_pci_devices,
2572 .probe = ipmi_pci_probe,
2573 .remove = ipmi_pci_remove,
2574 };
2575 #endif /* CONFIG_PCI */
2576
2577 #ifdef CONFIG_OF
2578 static const struct of_device_id of_ipmi_match[] = {
2579 { .type = "ipmi", .compatible = "ipmi-kcs",
2580 .data = (void *)(unsigned long) SI_KCS },
2581 { .type = "ipmi", .compatible = "ipmi-smic",
2582 .data = (void *)(unsigned long) SI_SMIC },
2583 { .type = "ipmi", .compatible = "ipmi-bt",
2584 .data = (void *)(unsigned long) SI_BT },
2585 {},
2586 };
2587 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2588
2589 static int of_ipmi_probe(struct platform_device *dev)
2590 {
2591 const struct of_device_id *match;
2592 struct smi_info *info;
2593 struct resource resource;
2594 const __be32 *regsize, *regspacing, *regshift;
2595 struct device_node *np = dev->dev.of_node;
2596 int ret;
2597 int proplen;
2598
2599 dev_info(&dev->dev, "probing via device tree\n");
2600
2601 match = of_match_device(of_ipmi_match, &dev->dev);
2602 if (!match)
2603 return -ENODEV;
2604
2605 if (!of_device_is_available(np))
2606 return -EINVAL;
2607
2608 ret = of_address_to_resource(np, 0, &resource);
2609 if (ret) {
2610 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2611 return ret;
2612 }
2613
2614 regsize = of_get_property(np, "reg-size", &proplen);
2615 if (regsize && proplen != 4) {
2616 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2617 return -EINVAL;
2618 }
2619
2620 regspacing = of_get_property(np, "reg-spacing", &proplen);
2621 if (regspacing && proplen != 4) {
2622 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2623 return -EINVAL;
2624 }
2625
2626 regshift = of_get_property(np, "reg-shift", &proplen);
2627 if (regshift && proplen != 4) {
2628 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2629 return -EINVAL;
2630 }
2631
2632 info = smi_info_alloc();
2633
2634 if (!info) {
2635 dev_err(&dev->dev,
2636 "could not allocate memory for OF probe\n");
2637 return -ENOMEM;
2638 }
2639
2640 info->si_type = (enum si_type) match->data;
2641 info->addr_source = SI_DEVICETREE;
2642 info->irq_setup = std_irq_setup;
2643
2644 if (resource.flags & IORESOURCE_IO) {
2645 info->io_setup = port_setup;
2646 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2647 } else {
2648 info->io_setup = mem_setup;
2649 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2650 }
2651
2652 info->io.addr_data = resource.start;
2653
2654 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2655 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2656 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2657
2658 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2659 info->dev = &dev->dev;
2660
2661 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2662 info->io.addr_data, info->io.regsize, info->io.regspacing,
2663 info->irq);
2664
2665 dev_set_drvdata(&dev->dev, info);
2666
2667 ret = add_smi(info);
2668 if (ret) {
2669 kfree(info);
2670 return ret;
2671 }
2672 return 0;
2673 }
2674 #else
2675 #define of_ipmi_match NULL
2676 static int of_ipmi_probe(struct platform_device *dev)
2677 {
2678 return -ENODEV;
2679 }
2680 #endif
2681
2682 #ifdef CONFIG_ACPI
2683 static int acpi_ipmi_probe(struct platform_device *dev)
2684 {
2685 struct smi_info *info;
2686 struct resource *res, *res_second;
2687 acpi_handle handle;
2688 acpi_status status;
2689 unsigned long long tmp;
2690 int rv = -EINVAL;
2691
2692 if (!si_tryacpi)
2693 return 0;
2694
2695 handle = ACPI_HANDLE(&dev->dev);
2696 if (!handle)
2697 return -ENODEV;
2698
2699 info = smi_info_alloc();
2700 if (!info)
2701 return -ENOMEM;
2702
2703 info->addr_source = SI_ACPI;
2704 dev_info(&dev->dev, PFX "probing via ACPI\n");
2705
2706 info->addr_info.acpi_info.acpi_handle = handle;
2707
2708 /* _IFT tells us the interface type: KCS, BT, etc */
2709 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2710 if (ACPI_FAILURE(status)) {
2711 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2712 goto err_free;
2713 }
2714
2715 switch (tmp) {
2716 case 1:
2717 info->si_type = SI_KCS;
2718 break;
2719 case 2:
2720 info->si_type = SI_SMIC;
2721 break;
2722 case 3:
2723 info->si_type = SI_BT;
2724 break;
2725 case 4: /* SSIF, just ignore */
2726 rv = -ENODEV;
2727 goto err_free;
2728 default:
2729 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2730 goto err_free;
2731 }
2732
2733 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2734 if (res) {
2735 info->io_setup = port_setup;
2736 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2737 } else {
2738 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2739 if (res) {
2740 info->io_setup = mem_setup;
2741 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2742 }
2743 }
2744 if (!res) {
2745 dev_err(&dev->dev, "no I/O or memory address\n");
2746 goto err_free;
2747 }
2748 info->io.addr_data = res->start;
2749
2750 info->io.regspacing = DEFAULT_REGSPACING;
2751 res_second = platform_get_resource(dev,
2752 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2753 IORESOURCE_IO : IORESOURCE_MEM,
2754 1);
2755 if (res_second) {
2756 if (res_second->start > info->io.addr_data)
2757 info->io.regspacing =
2758 res_second->start - info->io.addr_data;
2759 }
2760 info->io.regsize = DEFAULT_REGSPACING;
2761 info->io.regshift = 0;
2762
2763 /* If _GPE exists, use it; otherwise use standard interrupts */
2764 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2765 if (ACPI_SUCCESS(status)) {
2766 info->irq = tmp;
2767 info->irq_setup = acpi_gpe_irq_setup;
2768 } else {
2769 int irq = platform_get_irq(dev, 0);
2770
2771 if (irq > 0) {
2772 info->irq = irq;
2773 info->irq_setup = std_irq_setup;
2774 }
2775 }
2776
2777 info->dev = &dev->dev;
2778 platform_set_drvdata(dev, info);
2779
2780 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2781 res, info->io.regsize, info->io.regspacing,
2782 info->irq);
2783
2784 rv = add_smi(info);
2785 if (rv)
2786 kfree(info);
2787
2788 return rv;
2789
2790 err_free:
2791 kfree(info);
2792 return rv;
2793 }
2794
2795 static const struct acpi_device_id acpi_ipmi_match[] = {
2796 { "IPI0001", 0 },
2797 { },
2798 };
2799 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2800 #else
2801 static int acpi_ipmi_probe(struct platform_device *dev)
2802 {
2803 return -ENODEV;
2804 }
2805 #endif
2806
2807 static int ipmi_probe(struct platform_device *dev)
2808 {
2809 if (of_ipmi_probe(dev) == 0)
2810 return 0;
2811
2812 return acpi_ipmi_probe(dev);
2813 }
2814
2815 static int ipmi_remove(struct platform_device *dev)
2816 {
2817 struct smi_info *info = dev_get_drvdata(&dev->dev);
2818
2819 cleanup_one_si(info);
2820 return 0;
2821 }
2822
2823 static struct platform_driver ipmi_driver = {
2824 .driver = {
2825 .name = DEVICE_NAME,
2826 .of_match_table = of_ipmi_match,
2827 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2828 },
2829 .probe = ipmi_probe,
2830 .remove = ipmi_remove,
2831 };
2832
2833 #ifdef CONFIG_PARISC
2834 static int ipmi_parisc_probe(struct parisc_device *dev)
2835 {
2836 struct smi_info *info;
2837 int rv;
2838
2839 info = smi_info_alloc();
2840
2841 if (!info) {
2842 dev_err(&dev->dev,
2843 "could not allocate memory for PARISC probe\n");
2844 return -ENOMEM;
2845 }
2846
2847 info->si_type = SI_KCS;
2848 info->addr_source = SI_DEVICETREE;
2849 info->io_setup = mem_setup;
2850 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2851 info->io.addr_data = dev->hpa.start;
2852 info->io.regsize = 1;
2853 info->io.regspacing = 1;
2854 info->io.regshift = 0;
2855 info->irq = 0; /* no interrupt */
2856 info->irq_setup = NULL;
2857 info->dev = &dev->dev;
2858
2859 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2860
2861 dev_set_drvdata(&dev->dev, info);
2862
2863 rv = add_smi(info);
2864 if (rv) {
2865 kfree(info);
2866 return rv;
2867 }
2868
2869 return 0;
2870 }
2871
2872 static int ipmi_parisc_remove(struct parisc_device *dev)
2873 {
2874 cleanup_one_si(dev_get_drvdata(&dev->dev));
2875 return 0;
2876 }
2877
2878 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2879 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2880 { 0, }
2881 };
2882
2883 static struct parisc_driver ipmi_parisc_driver = {
2884 .name = "ipmi",
2885 .id_table = ipmi_parisc_tbl,
2886 .probe = ipmi_parisc_probe,
2887 .remove = ipmi_parisc_remove,
2888 };
2889 #endif /* CONFIG_PARISC */
2890
2891 static int wait_for_msg_done(struct smi_info *smi_info)
2892 {
2893 enum si_sm_result smi_result;
2894
2895 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2896 for (;;) {
2897 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2898 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2899 schedule_timeout_uninterruptible(1);
2900 smi_result = smi_info->handlers->event(
2901 smi_info->si_sm, jiffies_to_usecs(1));
2902 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2903 smi_result = smi_info->handlers->event(
2904 smi_info->si_sm, 0);
2905 } else
2906 break;
2907 }
2908 if (smi_result == SI_SM_HOSED)
2909 /*
2910 * We couldn't get the state machine to run, so whatever's at
2911 * the port is probably not an IPMI SMI interface.
2912 */
2913 return -ENODEV;
2914
2915 return 0;
2916 }
2917
2918 static int try_get_dev_id(struct smi_info *smi_info)
2919 {
2920 unsigned char msg[2];
2921 unsigned char *resp;
2922 unsigned long resp_len;
2923 int rv = 0;
2924
2925 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2926 if (!resp)
2927 return -ENOMEM;
2928
2929 /*
2930 * Do a Get Device ID command, since it comes back with some
2931 * useful info.
2932 */
2933 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2934 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2935 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2936
2937 rv = wait_for_msg_done(smi_info);
2938 if (rv)
2939 goto out;
2940
2941 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2942 resp, IPMI_MAX_MSG_LENGTH);
2943
2944 /* Check and record info from the get device id, in case we need it. */
2945 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2946
2947 out:
2948 kfree(resp);
2949 return rv;
2950 }
2951
2952 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2953 {
2954 unsigned char msg[3];
2955 unsigned char *resp;
2956 unsigned long resp_len;
2957 int rv;
2958
2959 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2960 if (!resp)
2961 return -ENOMEM;
2962
2963 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2964 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2965 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2966
2967 rv = wait_for_msg_done(smi_info);
2968 if (rv) {
2969 dev_warn(smi_info->dev,
2970 "Error getting response from get global enables command: %d\n",
2971 rv);
2972 goto out;
2973 }
2974
2975 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2976 resp, IPMI_MAX_MSG_LENGTH);
2977
2978 if (resp_len < 4 ||
2979 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2980 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2981 resp[2] != 0) {
2982 dev_warn(smi_info->dev,
2983 "Invalid return from get global enables command: %ld %x %x %x\n",
2984 resp_len, resp[0], resp[1], resp[2]);
2985 rv = -EINVAL;
2986 goto out;
2987 } else {
2988 *enables = resp[3];
2989 }
2990
2991 out:
2992 kfree(resp);
2993 return rv;
2994 }
2995
2996 /*
2997 * Returns 1 if it gets an error from the command.
2998 */
2999 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3000 {
3001 unsigned char msg[3];
3002 unsigned char *resp;
3003 unsigned long resp_len;
3004 int rv;
3005
3006 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3007 if (!resp)
3008 return -ENOMEM;
3009
3010 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3011 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3012 msg[2] = enables;
3013 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3014
3015 rv = wait_for_msg_done(smi_info);
3016 if (rv) {
3017 dev_warn(smi_info->dev,
3018 "Error getting response from set global enables command: %d\n",
3019 rv);
3020 goto out;
3021 }
3022
3023 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3024 resp, IPMI_MAX_MSG_LENGTH);
3025
3026 if (resp_len < 3 ||
3027 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3028 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3029 dev_warn(smi_info->dev,
3030 "Invalid return from set global enables command: %ld %x %x\n",
3031 resp_len, resp[0], resp[1]);
3032 rv = -EINVAL;
3033 goto out;
3034 }
3035
3036 if (resp[2] != 0)
3037 rv = 1;
3038
3039 out:
3040 kfree(resp);
3041 return rv;
3042 }
3043
3044 /*
3045 * Some BMCs do not support clearing the receive irq bit in the global
3046 * enables (even if they don't support interrupts on the BMC). Check
3047 * for this and handle it properly.
3048 */
3049 static void check_clr_rcv_irq(struct smi_info *smi_info)
3050 {
3051 u8 enables = 0;
3052 int rv;
3053
3054 rv = get_global_enables(smi_info, &enables);
3055 if (!rv) {
3056 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3057 /* Already clear, should work ok. */
3058 return;
3059
3060 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3061 rv = set_global_enables(smi_info, enables);
3062 }
3063
3064 if (rv < 0) {
3065 dev_err(smi_info->dev,
3066 "Cannot check clearing the rcv irq: %d\n", rv);
3067 return;
3068 }
3069
3070 if (rv) {
3071 /*
3072 * An error when setting the event buffer bit means
3073 * clearing the bit is not supported.
3074 */
3075 dev_warn(smi_info->dev,
3076 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3077 smi_info->cannot_disable_irq = true;
3078 }
3079 }
3080
3081 /*
3082 * Some BMCs do not support setting the interrupt bits in the global
3083 * enables even if they support interrupts. Clearly bad, but we can
3084 * compensate.
3085 */
3086 static void check_set_rcv_irq(struct smi_info *smi_info)
3087 {
3088 u8 enables = 0;
3089 int rv;
3090
3091 if (!smi_info->irq)
3092 return;
3093
3094 rv = get_global_enables(smi_info, &enables);
3095 if (!rv) {
3096 enables |= IPMI_BMC_RCV_MSG_INTR;
3097 rv = set_global_enables(smi_info, enables);
3098 }
3099
3100 if (rv < 0) {
3101 dev_err(smi_info->dev,
3102 "Cannot check setting the rcv irq: %d\n", rv);
3103 return;
3104 }
3105
3106 if (rv) {
3107 /*
3108 * An error when setting the event buffer bit means
3109 * setting the bit is not supported.
3110 */
3111 dev_warn(smi_info->dev,
3112 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3113 smi_info->cannot_disable_irq = true;
3114 smi_info->irq_enable_broken = true;
3115 }
3116 }
3117
3118 static int try_enable_event_buffer(struct smi_info *smi_info)
3119 {
3120 unsigned char msg[3];
3121 unsigned char *resp;
3122 unsigned long resp_len;
3123 int rv = 0;
3124
3125 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3126 if (!resp)
3127 return -ENOMEM;
3128
3129 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3130 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3131 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3132
3133 rv = wait_for_msg_done(smi_info);
3134 if (rv) {
3135 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3136 goto out;
3137 }
3138
3139 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3140 resp, IPMI_MAX_MSG_LENGTH);
3141
3142 if (resp_len < 4 ||
3143 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3144 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3145 resp[2] != 0) {
3146 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3147 rv = -EINVAL;
3148 goto out;
3149 }
3150
3151 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3152 /* buffer is already enabled, nothing to do. */
3153 smi_info->supports_event_msg_buff = true;
3154 goto out;
3155 }
3156
3157 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3158 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3159 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3160 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3161
3162 rv = wait_for_msg_done(smi_info);
3163 if (rv) {
3164 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3165 goto out;
3166 }
3167
3168 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3169 resp, IPMI_MAX_MSG_LENGTH);
3170
3171 if (resp_len < 3 ||
3172 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3173 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3174 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3175 rv = -EINVAL;
3176 goto out;
3177 }
3178
3179 if (resp[2] != 0)
3180 /*
3181 * An error when setting the event buffer bit means
3182 * that the event buffer is not supported.
3183 */
3184 rv = -ENOENT;
3185 else
3186 smi_info->supports_event_msg_buff = true;
3187
3188 out:
3189 kfree(resp);
3190 return rv;
3191 }
3192
3193 static int smi_type_proc_show(struct seq_file *m, void *v)
3194 {
3195 struct smi_info *smi = m->private;
3196
3197 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3198
3199 return 0;
3200 }
3201
3202 static int smi_type_proc_open(struct inode *inode, struct file *file)
3203 {
3204 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3205 }
3206
3207 static const struct file_operations smi_type_proc_ops = {
3208 .open = smi_type_proc_open,
3209 .read = seq_read,
3210 .llseek = seq_lseek,
3211 .release = single_release,
3212 };
3213
3214 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3215 {
3216 struct smi_info *smi = m->private;
3217
3218 seq_printf(m, "interrupts_enabled: %d\n",
3219 smi->irq && !smi->interrupt_disabled);
3220 seq_printf(m, "short_timeouts: %u\n",
3221 smi_get_stat(smi, short_timeouts));
3222 seq_printf(m, "long_timeouts: %u\n",
3223 smi_get_stat(smi, long_timeouts));
3224 seq_printf(m, "idles: %u\n",
3225 smi_get_stat(smi, idles));
3226 seq_printf(m, "interrupts: %u\n",
3227 smi_get_stat(smi, interrupts));
3228 seq_printf(m, "attentions: %u\n",
3229 smi_get_stat(smi, attentions));
3230 seq_printf(m, "flag_fetches: %u\n",
3231 smi_get_stat(smi, flag_fetches));
3232 seq_printf(m, "hosed_count: %u\n",
3233 smi_get_stat(smi, hosed_count));
3234 seq_printf(m, "complete_transactions: %u\n",
3235 smi_get_stat(smi, complete_transactions));
3236 seq_printf(m, "events: %u\n",
3237 smi_get_stat(smi, events));
3238 seq_printf(m, "watchdog_pretimeouts: %u\n",
3239 smi_get_stat(smi, watchdog_pretimeouts));
3240 seq_printf(m, "incoming_messages: %u\n",
3241 smi_get_stat(smi, incoming_messages));
3242 return 0;
3243 }
3244
3245 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3246 {
3247 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3248 }
3249
3250 static const struct file_operations smi_si_stats_proc_ops = {
3251 .open = smi_si_stats_proc_open,
3252 .read = seq_read,
3253 .llseek = seq_lseek,
3254 .release = single_release,
3255 };
3256
3257 static int smi_params_proc_show(struct seq_file *m, void *v)
3258 {
3259 struct smi_info *smi = m->private;
3260
3261 seq_printf(m,
3262 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3263 si_to_str[smi->si_type],
3264 addr_space_to_str[smi->io.addr_type],
3265 smi->io.addr_data,
3266 smi->io.regspacing,
3267 smi->io.regsize,
3268 smi->io.regshift,
3269 smi->irq,
3270 smi->slave_addr);
3271
3272 return 0;
3273 }
3274
3275 static int smi_params_proc_open(struct inode *inode, struct file *file)
3276 {
3277 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3278 }
3279
3280 static const struct file_operations smi_params_proc_ops = {
3281 .open = smi_params_proc_open,
3282 .read = seq_read,
3283 .llseek = seq_lseek,
3284 .release = single_release,
3285 };
3286
3287 /*
3288 * oem_data_avail_to_receive_msg_avail
3289 * @info - smi_info structure with msg_flags set
3290 *
3291 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3292 * Returns 1 indicating need to re-run handle_flags().
3293 */
3294 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3295 {
3296 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3297 RECEIVE_MSG_AVAIL);
3298 return 1;
3299 }
3300
3301 /*
3302 * setup_dell_poweredge_oem_data_handler
3303 * @info - smi_info.device_id must be populated
3304 *
3305 * Systems that match, but have firmware version < 1.40 may assert
3306 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3307 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3308 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3309 * as RECEIVE_MSG_AVAIL instead.
3310 *
3311 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3312 * assert the OEM[012] bits, and if it did, the driver would have to
3313 * change to handle that properly, we don't actually check for the
3314 * firmware version.
3315 * Device ID = 0x20 BMC on PowerEdge 8G servers
3316 * Device Revision = 0x80
3317 * Firmware Revision1 = 0x01 BMC version 1.40
3318 * Firmware Revision2 = 0x40 BCD encoded
3319 * IPMI Version = 0x51 IPMI 1.5
3320 * Manufacturer ID = A2 02 00 Dell IANA
3321 *
3322 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3323 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3324 *
3325 */
3326 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3328 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3329 #define DELL_IANA_MFR_ID 0x0002a2
3330 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3331 {
3332 struct ipmi_device_id *id = &smi_info->device_id;
3333 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3334 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3335 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3336 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3337 smi_info->oem_data_avail_handler =
3338 oem_data_avail_to_receive_msg_avail;
3339 } else if (ipmi_version_major(id) < 1 ||
3340 (ipmi_version_major(id) == 1 &&
3341 ipmi_version_minor(id) < 5)) {
3342 smi_info->oem_data_avail_handler =
3343 oem_data_avail_to_receive_msg_avail;
3344 }
3345 }
3346 }
3347
3348 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3349 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3350 {
3351 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3352
3353 /* Make it a response */
3354 msg->rsp[0] = msg->data[0] | 4;
3355 msg->rsp[1] = msg->data[1];
3356 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3357 msg->rsp_size = 3;
3358 smi_info->curr_msg = NULL;
3359 deliver_recv_msg(smi_info, msg);
3360 }
3361
3362 /*
3363 * dell_poweredge_bt_xaction_handler
3364 * @info - smi_info.device_id must be populated
3365 *
3366 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3367 * not respond to a Get SDR command if the length of the data
3368 * requested is exactly 0x3A, which leads to command timeouts and no
3369 * data returned. This intercepts such commands, and causes userspace
3370 * callers to try again with a different-sized buffer, which succeeds.
3371 */
3372
3373 #define STORAGE_NETFN 0x0A
3374 #define STORAGE_CMD_GET_SDR 0x23
3375 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3376 unsigned long unused,
3377 void *in)
3378 {
3379 struct smi_info *smi_info = in;
3380 unsigned char *data = smi_info->curr_msg->data;
3381 unsigned int size = smi_info->curr_msg->data_size;
3382 if (size >= 8 &&
3383 (data[0]>>2) == STORAGE_NETFN &&
3384 data[1] == STORAGE_CMD_GET_SDR &&
3385 data[7] == 0x3A) {
3386 return_hosed_msg_badsize(smi_info);
3387 return NOTIFY_STOP;
3388 }
3389 return NOTIFY_DONE;
3390 }
3391
3392 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3393 .notifier_call = dell_poweredge_bt_xaction_handler,
3394 };
3395
3396 /*
3397 * setup_dell_poweredge_bt_xaction_handler
3398 * @info - smi_info.device_id must be filled in already
3399 *
3400 * Fills in smi_info.device_id.start_transaction_pre_hook
3401 * when we know what function to use there.
3402 */
3403 static void
3404 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3405 {
3406 struct ipmi_device_id *id = &smi_info->device_id;
3407 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3408 smi_info->si_type == SI_BT)
3409 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3410 }
3411
3412 /*
3413 * setup_oem_data_handler
3414 * @info - smi_info.device_id must be filled in already
3415 *
3416 * Fills in smi_info.device_id.oem_data_available_handler
3417 * when we know what function to use there.
3418 */
3419
3420 static void setup_oem_data_handler(struct smi_info *smi_info)
3421 {
3422 setup_dell_poweredge_oem_data_handler(smi_info);
3423 }
3424
3425 static void setup_xaction_handlers(struct smi_info *smi_info)
3426 {
3427 setup_dell_poweredge_bt_xaction_handler(smi_info);
3428 }
3429
3430 static void check_for_broken_irqs(struct smi_info *smi_info)
3431 {
3432 check_clr_rcv_irq(smi_info);
3433 check_set_rcv_irq(smi_info);
3434 }
3435
3436 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3437 {
3438 if (smi_info->thread != NULL)
3439 kthread_stop(smi_info->thread);
3440 if (smi_info->timer_running)
3441 del_timer_sync(&smi_info->si_timer);
3442 }
3443
3444 static int is_new_interface(struct smi_info *info)
3445 {
3446 struct smi_info *e;
3447
3448 list_for_each_entry(e, &smi_infos, link) {
3449 if (e->io.addr_type != info->io.addr_type)
3450 continue;
3451 if (e->io.addr_data == info->io.addr_data) {
3452 /*
3453 * This is a cheap hack, ACPI doesn't have a defined
3454 * slave address but SMBIOS does. Pick it up from
3455 * any source that has it available.
3456 */
3457 if (info->slave_addr && !e->slave_addr)
3458 e->slave_addr = info->slave_addr;
3459 return 0;
3460 }
3461 }
3462
3463 return 1;
3464 }
3465
3466 static int add_smi(struct smi_info *new_smi)
3467 {
3468 int rv = 0;
3469
3470 mutex_lock(&smi_infos_lock);
3471 if (!is_new_interface(new_smi)) {
3472 pr_info(PFX "%s-specified %s state machine: duplicate\n",
3473 ipmi_addr_src_to_str(new_smi->addr_source),
3474 si_to_str[new_smi->si_type]);
3475 rv = -EBUSY;
3476 goto out_err;
3477 }
3478
3479 pr_info(PFX "Adding %s-specified %s state machine\n",
3480 ipmi_addr_src_to_str(new_smi->addr_source),
3481 si_to_str[new_smi->si_type]);
3482
3483 /* So we know not to free it unless we have allocated one. */
3484 new_smi->intf = NULL;
3485 new_smi->si_sm = NULL;
3486 new_smi->handlers = NULL;
3487
3488 list_add_tail(&new_smi->link, &smi_infos);
3489
3490 out_err:
3491 mutex_unlock(&smi_infos_lock);
3492 return rv;
3493 }
3494
3495 static int try_smi_init(struct smi_info *new_smi)
3496 {
3497 int rv = 0;
3498 int i;
3499 char *init_name = NULL;
3500
3501 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3502 ipmi_addr_src_to_str(new_smi->addr_source),
3503 si_to_str[new_smi->si_type],
3504 addr_space_to_str[new_smi->io.addr_type],
3505 new_smi->io.addr_data,
3506 new_smi->slave_addr, new_smi->irq);
3507
3508 switch (new_smi->si_type) {
3509 case SI_KCS:
3510 new_smi->handlers = &kcs_smi_handlers;
3511 break;
3512
3513 case SI_SMIC:
3514 new_smi->handlers = &smic_smi_handlers;
3515 break;
3516
3517 case SI_BT:
3518 new_smi->handlers = &bt_smi_handlers;
3519 break;
3520
3521 default:
3522 /* No support for anything else yet. */
3523 rv = -EIO;
3524 goto out_err;
3525 }
3526
3527 /* Do this early so it's available for logs. */
3528 if (!new_smi->dev) {
3529 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d", 0);
3530
3531 /*
3532 * If we don't already have a device from something
3533 * else (like PCI), then register a new one.
3534 */
3535 new_smi->pdev = platform_device_alloc("ipmi_si",
3536 new_smi->intf_num);
3537 if (!new_smi->pdev) {
3538 pr_err(PFX "Unable to allocate platform device\n");
3539 goto out_err;
3540 }
3541 new_smi->dev = &new_smi->pdev->dev;
3542 new_smi->dev->driver = &ipmi_driver.driver;
3543 /* Nulled by device_add() */
3544 new_smi->dev->init_name = init_name;
3545 }
3546
3547 /* Allocate the state machine's data and initialize it. */
3548 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3549 if (!new_smi->si_sm) {
3550 pr_err(PFX "Could not allocate state machine memory\n");
3551 rv = -ENOMEM;
3552 goto out_err;
3553 }
3554 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3555 &new_smi->io);
3556
3557 /* Now that we know the I/O size, we can set up the I/O. */
3558 rv = new_smi->io_setup(new_smi);
3559 if (rv) {
3560 dev_err(new_smi->dev, "Could not set up I/O space\n");
3561 goto out_err;
3562 }
3563
3564 /* Do low-level detection first. */
3565 if (new_smi->handlers->detect(new_smi->si_sm)) {
3566 if (new_smi->addr_source)
3567 dev_err(new_smi->dev, "Interface detection failed\n");
3568 rv = -ENODEV;
3569 goto out_err;
3570 }
3571
3572 /*
3573 * Attempt a get device id command. If it fails, we probably
3574 * don't have a BMC here.
3575 */
3576 rv = try_get_dev_id(new_smi);
3577 if (rv) {
3578 if (new_smi->addr_source)
3579 dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3580 goto out_err;
3581 }
3582
3583 setup_oem_data_handler(new_smi);
3584 setup_xaction_handlers(new_smi);
3585 check_for_broken_irqs(new_smi);
3586
3587 new_smi->waiting_msg = NULL;
3588 new_smi->curr_msg = NULL;
3589 atomic_set(&new_smi->req_events, 0);
3590 new_smi->run_to_completion = false;
3591 for (i = 0; i < SI_NUM_STATS; i++)
3592 atomic_set(&new_smi->stats[i], 0);
3593
3594 new_smi->interrupt_disabled = true;
3595 atomic_set(&new_smi->need_watch, 0);
3596 new_smi->intf_num = smi_num;
3597 smi_num++;
3598
3599 rv = try_enable_event_buffer(new_smi);
3600 if (rv == 0)
3601 new_smi->has_event_buffer = true;
3602
3603 /*
3604 * Start clearing the flags before we enable interrupts or the
3605 * timer to avoid racing with the timer.
3606 */
3607 start_clear_flags(new_smi, false);
3608
3609 /*
3610 * IRQ is defined to be set when non-zero. req_events will
3611 * cause a global flags check that will enable interrupts.
3612 */
3613 if (new_smi->irq) {
3614 new_smi->interrupt_disabled = false;
3615 atomic_set(&new_smi->req_events, 1);
3616 }
3617
3618 if (new_smi->pdev) {
3619 rv = platform_device_add(new_smi->pdev);
3620 if (rv) {
3621 dev_err(new_smi->dev,
3622 "Unable to register system interface device: %d\n",
3623 rv);
3624 goto out_err;
3625 }
3626 new_smi->dev_registered = true;
3627 }
3628
3629 rv = ipmi_register_smi(&handlers,
3630 new_smi,
3631 &new_smi->device_id,
3632 new_smi->dev,
3633 new_smi->slave_addr);
3634 if (rv) {
3635 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3636 rv);
3637 goto out_err_stop_timer;
3638 }
3639
3640 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3641 &smi_type_proc_ops,
3642 new_smi);
3643 if (rv) {
3644 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3645 goto out_err_stop_timer;
3646 }
3647
3648 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3649 &smi_si_stats_proc_ops,
3650 new_smi);
3651 if (rv) {
3652 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3653 goto out_err_stop_timer;
3654 }
3655
3656 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3657 &smi_params_proc_ops,
3658 new_smi);
3659 if (rv) {
3660 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3661 goto out_err_stop_timer;
3662 }
3663
3664 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3665 si_to_str[new_smi->si_type]);
3666
3667 WARN_ON(new_smi->dev->init_name != NULL);
3668 kfree(init_name);
3669
3670 return 0;
3671
3672 out_err_stop_timer:
3673 wait_for_timer_and_thread(new_smi);
3674
3675 out_err:
3676 new_smi->interrupt_disabled = true;
3677
3678 if (new_smi->intf) {
3679 ipmi_smi_t intf = new_smi->intf;
3680 new_smi->intf = NULL;
3681 ipmi_unregister_smi(intf);
3682 }
3683
3684 if (new_smi->irq_cleanup) {
3685 new_smi->irq_cleanup(new_smi);
3686 new_smi->irq_cleanup = NULL;
3687 }
3688
3689 /*
3690 * Wait until we know that we are out of any interrupt
3691 * handlers might have been running before we freed the
3692 * interrupt.
3693 */
3694 synchronize_sched();
3695
3696 if (new_smi->si_sm) {
3697 if (new_smi->handlers)
3698 new_smi->handlers->cleanup(new_smi->si_sm);
3699 kfree(new_smi->si_sm);
3700 new_smi->si_sm = NULL;
3701 }
3702 if (new_smi->addr_source_cleanup) {
3703 new_smi->addr_source_cleanup(new_smi);
3704 new_smi->addr_source_cleanup = NULL;
3705 }
3706 if (new_smi->io_cleanup) {
3707 new_smi->io_cleanup(new_smi);
3708 new_smi->io_cleanup = NULL;
3709 }
3710
3711 if (new_smi->dev_registered) {
3712 platform_device_unregister(new_smi->pdev);
3713 new_smi->dev_registered = false;
3714 new_smi->pdev = NULL;
3715 } else if (new_smi->pdev) {
3716 platform_device_put(new_smi->pdev);
3717 new_smi->pdev = NULL;
3718 }
3719
3720 kfree(init_name);
3721
3722 return rv;
3723 }
3724
3725 static int init_ipmi_si(void)
3726 {
3727 int i;
3728 char *str;
3729 int rv;
3730 struct smi_info *e;
3731 enum ipmi_addr_src type = SI_INVALID;
3732
3733 if (initialized)
3734 return 0;
3735 initialized = 1;
3736
3737 if (si_tryplatform) {
3738 rv = platform_driver_register(&ipmi_driver);
3739 if (rv) {
3740 pr_err(PFX "Unable to register driver: %d\n", rv);
3741 return rv;
3742 }
3743 }
3744
3745 /* Parse out the si_type string into its components. */
3746 str = si_type_str;
3747 if (*str != '\0') {
3748 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3749 si_type[i] = str;
3750 str = strchr(str, ',');
3751 if (str) {
3752 *str = '\0';
3753 str++;
3754 } else {
3755 break;
3756 }
3757 }
3758 }
3759
3760 pr_info("IPMI System Interface driver.\n");
3761
3762 /* If the user gave us a device, they presumably want us to use it */
3763 if (!hardcode_find_bmc())
3764 return 0;
3765
3766 #ifdef CONFIG_PCI
3767 if (si_trypci) {
3768 rv = pci_register_driver(&ipmi_pci_driver);
3769 if (rv)
3770 pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3771 else
3772 pci_registered = true;
3773 }
3774 #endif
3775
3776 #ifdef CONFIG_DMI
3777 if (si_trydmi)
3778 dmi_find_bmc();
3779 #endif
3780
3781 #ifdef CONFIG_ACPI
3782 if (si_tryacpi)
3783 spmi_find_bmc();
3784 #endif
3785
3786 #ifdef CONFIG_PARISC
3787 register_parisc_driver(&ipmi_parisc_driver);
3788 parisc_registered = true;
3789 #endif
3790
3791 /* We prefer devices with interrupts, but in the case of a machine
3792 with multiple BMCs we assume that there will be several instances
3793 of a given type so if we succeed in registering a type then also
3794 try to register everything else of the same type */
3795
3796 mutex_lock(&smi_infos_lock);
3797 list_for_each_entry(e, &smi_infos, link) {
3798 /* Try to register a device if it has an IRQ and we either
3799 haven't successfully registered a device yet or this
3800 device has the same type as one we successfully registered */
3801 if (e->irq && (!type || e->addr_source == type)) {
3802 if (!try_smi_init(e)) {
3803 type = e->addr_source;
3804 }
3805 }
3806 }
3807
3808 /* type will only have been set if we successfully registered an si */
3809 if (type) {
3810 mutex_unlock(&smi_infos_lock);
3811 return 0;
3812 }
3813
3814 /* Fall back to the preferred device */
3815
3816 list_for_each_entry(e, &smi_infos, link) {
3817 if (!e->irq && (!type || e->addr_source == type)) {
3818 if (!try_smi_init(e)) {
3819 type = e->addr_source;
3820 }
3821 }
3822 }
3823 mutex_unlock(&smi_infos_lock);
3824
3825 if (type)
3826 return 0;
3827
3828 mutex_lock(&smi_infos_lock);
3829 if (unload_when_empty && list_empty(&smi_infos)) {
3830 mutex_unlock(&smi_infos_lock);
3831 cleanup_ipmi_si();
3832 pr_warn(PFX "Unable to find any System Interface(s)\n");
3833 return -ENODEV;
3834 } else {
3835 mutex_unlock(&smi_infos_lock);
3836 return 0;
3837 }
3838 }
3839 module_init(init_ipmi_si);
3840
3841 static void cleanup_one_si(struct smi_info *to_clean)
3842 {
3843 int rv = 0;
3844
3845 if (!to_clean)
3846 return;
3847
3848 if (to_clean->intf) {
3849 ipmi_smi_t intf = to_clean->intf;
3850
3851 to_clean->intf = NULL;
3852 rv = ipmi_unregister_smi(intf);
3853 if (rv) {
3854 pr_err(PFX "Unable to unregister device: errno=%d\n",
3855 rv);
3856 }
3857 }
3858
3859 if (to_clean->dev)
3860 dev_set_drvdata(to_clean->dev, NULL);
3861
3862 list_del(&to_clean->link);
3863
3864 /*
3865 * Make sure that interrupts, the timer and the thread are
3866 * stopped and will not run again.
3867 */
3868 if (to_clean->irq_cleanup)
3869 to_clean->irq_cleanup(to_clean);
3870 wait_for_timer_and_thread(to_clean);
3871
3872 /*
3873 * Timeouts are stopped, now make sure the interrupts are off
3874 * in the BMC. Note that timers and CPU interrupts are off,
3875 * so no need for locks.
3876 */
3877 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3878 poll(to_clean);
3879 schedule_timeout_uninterruptible(1);
3880 }
3881 disable_si_irq(to_clean, false);
3882 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3883 poll(to_clean);
3884 schedule_timeout_uninterruptible(1);
3885 }
3886
3887 if (to_clean->handlers)
3888 to_clean->handlers->cleanup(to_clean->si_sm);
3889
3890 kfree(to_clean->si_sm);
3891
3892 if (to_clean->addr_source_cleanup)
3893 to_clean->addr_source_cleanup(to_clean);
3894 if (to_clean->io_cleanup)
3895 to_clean->io_cleanup(to_clean);
3896
3897 if (to_clean->dev_registered)
3898 platform_device_unregister(to_clean->pdev);
3899
3900 kfree(to_clean);
3901 }
3902
3903 static void cleanup_ipmi_si(void)
3904 {
3905 struct smi_info *e, *tmp_e;
3906
3907 if (!initialized)
3908 return;
3909
3910 #ifdef CONFIG_PCI
3911 if (pci_registered)
3912 pci_unregister_driver(&ipmi_pci_driver);
3913 #endif
3914 #ifdef CONFIG_PARISC
3915 if (parisc_registered)
3916 unregister_parisc_driver(&ipmi_parisc_driver);
3917 #endif
3918
3919 platform_driver_unregister(&ipmi_driver);
3920
3921 mutex_lock(&smi_infos_lock);
3922 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3923 cleanup_one_si(e);
3924 mutex_unlock(&smi_infos_lock);
3925 }
3926 module_exit(cleanup_ipmi_si);
3927
3928 MODULE_LICENSE("GPL");
3929 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3930 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3931 " system interfaces.");