]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
Merge tag 'v2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[mirror_ubuntu-eoan-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
85
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119 * Indexes into stats[] in smi_info below.
120 */
121 enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
142
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
158 /* Number of asyncronous messages received. */
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164 };
165
166 struct smi_info {
167 int intf_num;
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
173 spinlock_t msg_lock;
174 struct list_head xmit_msgs;
175 struct list_head hp_xmit_msgs;
176 struct ipmi_smi_msg *curr_msg;
177 enum si_intf_state si_state;
178
179 /*
180 * Used to handle the various types of I/O that can occur with
181 * IPMI
182 */
183 struct si_sm_io io;
184 int (*io_setup)(struct smi_info *info);
185 void (*io_cleanup)(struct smi_info *info);
186 int (*irq_setup)(struct smi_info *info);
187 void (*irq_cleanup)(struct smi_info *info);
188 unsigned int io_size;
189 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
190 void (*addr_source_cleanup)(struct smi_info *info);
191 void *addr_source_data;
192
193 /*
194 * Per-OEM handler, called from handle_flags(). Returns 1
195 * when handle_flags() needs to be re-run or 0 indicating it
196 * set si_state itself.
197 */
198 int (*oem_data_avail_handler)(struct smi_info *smi_info);
199
200 /*
201 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
202 * is set to hold the flags until we are done handling everything
203 * from the flags.
204 */
205 #define RECEIVE_MSG_AVAIL 0x01
206 #define EVENT_MSG_BUFFER_FULL 0x02
207 #define WDT_PRE_TIMEOUT_INT 0x08
208 #define OEM0_DATA_AVAIL 0x20
209 #define OEM1_DATA_AVAIL 0x40
210 #define OEM2_DATA_AVAIL 0x80
211 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
212 OEM1_DATA_AVAIL | \
213 OEM2_DATA_AVAIL)
214 unsigned char msg_flags;
215
216 /* Does the BMC have an event buffer? */
217 char has_event_buffer;
218
219 /*
220 * If set to true, this will request events the next time the
221 * state machine is idle.
222 */
223 atomic_t req_events;
224
225 /*
226 * If true, run the state machine to completion on every send
227 * call. Generally used after a panic to make sure stuff goes
228 * out.
229 */
230 int run_to_completion;
231
232 /* The I/O port of an SI interface. */
233 int port;
234
235 /*
236 * The space between start addresses of the two ports. For
237 * instance, if the first port is 0xca2 and the spacing is 4, then
238 * the second port is 0xca6.
239 */
240 unsigned int spacing;
241
242 /* zero if no irq; */
243 int irq;
244
245 /* The timer for this si. */
246 struct timer_list si_timer;
247
248 /* The time (in jiffies) the last timeout occurred at. */
249 unsigned long last_timeout_jiffies;
250
251 /* Used to gracefully stop the timer without race conditions. */
252 atomic_t stop_operation;
253
254 /*
255 * The driver will disable interrupts when it gets into a
256 * situation where it cannot handle messages due to lack of
257 * memory. Once that situation clears up, it will re-enable
258 * interrupts.
259 */
260 int interrupt_disabled;
261
262 /* From the get device id response... */
263 struct ipmi_device_id device_id;
264
265 /* Driver model stuff. */
266 struct device *dev;
267 struct platform_device *pdev;
268
269 /*
270 * True if we allocated the device, false if it came from
271 * someplace else (like PCI).
272 */
273 int dev_registered;
274
275 /* Slave address, could be reported from DMI. */
276 unsigned char slave_addr;
277
278 /* Counters and things for the proc filesystem. */
279 atomic_t stats[SI_NUM_STATS];
280
281 struct task_struct *thread;
282
283 struct list_head link;
284 union ipmi_smi_info_union addr_info;
285 };
286
287 #define smi_inc_stat(smi, stat) \
288 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289 #define smi_get_stat(smi, stat) \
290 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291
292 #define SI_MAX_PARMS 4
293
294 static int force_kipmid[SI_MAX_PARMS];
295 static int num_force_kipmid;
296 #ifdef CONFIG_PCI
297 static int pci_registered;
298 #endif
299 #ifdef CONFIG_ACPI
300 static int pnp_registered;
301 #endif
302
303 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
304 static int num_max_busy_us;
305
306 static int unload_when_empty = 1;
307
308 static int add_smi(struct smi_info *smi);
309 static int try_smi_init(struct smi_info *smi);
310 static void cleanup_one_si(struct smi_info *to_clean);
311 static void cleanup_ipmi_si(void);
312
313 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
314 static int register_xaction_notifier(struct notifier_block *nb)
315 {
316 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
317 }
318
319 static void deliver_recv_msg(struct smi_info *smi_info,
320 struct ipmi_smi_msg *msg)
321 {
322 /* Deliver the message to the upper layer with the lock
323 released. */
324
325 if (smi_info->run_to_completion) {
326 ipmi_smi_msg_received(smi_info->intf, msg);
327 } else {
328 spin_unlock(&(smi_info->si_lock));
329 ipmi_smi_msg_received(smi_info->intf, msg);
330 spin_lock(&(smi_info->si_lock));
331 }
332 }
333
334 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
335 {
336 struct ipmi_smi_msg *msg = smi_info->curr_msg;
337
338 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
339 cCode = IPMI_ERR_UNSPECIFIED;
340 /* else use it as is */
341
342 /* Make it a response */
343 msg->rsp[0] = msg->data[0] | 4;
344 msg->rsp[1] = msg->data[1];
345 msg->rsp[2] = cCode;
346 msg->rsp_size = 3;
347
348 smi_info->curr_msg = NULL;
349 deliver_recv_msg(smi_info, msg);
350 }
351
352 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
353 {
354 int rv;
355 struct list_head *entry = NULL;
356 #ifdef DEBUG_TIMING
357 struct timeval t;
358 #endif
359
360 /*
361 * No need to save flags, we aleady have interrupts off and we
362 * already hold the SMI lock.
363 */
364 if (!smi_info->run_to_completion)
365 spin_lock(&(smi_info->msg_lock));
366
367 /* Pick the high priority queue first. */
368 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
369 entry = smi_info->hp_xmit_msgs.next;
370 } else if (!list_empty(&(smi_info->xmit_msgs))) {
371 entry = smi_info->xmit_msgs.next;
372 }
373
374 if (!entry) {
375 smi_info->curr_msg = NULL;
376 rv = SI_SM_IDLE;
377 } else {
378 int err;
379
380 list_del(entry);
381 smi_info->curr_msg = list_entry(entry,
382 struct ipmi_smi_msg,
383 link);
384 #ifdef DEBUG_TIMING
385 do_gettimeofday(&t);
386 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
387 #endif
388 err = atomic_notifier_call_chain(&xaction_notifier_list,
389 0, smi_info);
390 if (err & NOTIFY_STOP_MASK) {
391 rv = SI_SM_CALL_WITHOUT_DELAY;
392 goto out;
393 }
394 err = smi_info->handlers->start_transaction(
395 smi_info->si_sm,
396 smi_info->curr_msg->data,
397 smi_info->curr_msg->data_size);
398 if (err)
399 return_hosed_msg(smi_info, err);
400
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 }
403 out:
404 if (!smi_info->run_to_completion)
405 spin_unlock(&(smi_info->msg_lock));
406
407 return rv;
408 }
409
410 static void start_enable_irq(struct smi_info *smi_info)
411 {
412 unsigned char msg[2];
413
414 /*
415 * If we are enabling interrupts, we have to tell the
416 * BMC to use them.
417 */
418 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
420
421 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
422 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
423 }
424
425 static void start_disable_irq(struct smi_info *smi_info)
426 {
427 unsigned char msg[2];
428
429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
434 }
435
436 static void start_clear_flags(struct smi_info *smi_info)
437 {
438 unsigned char msg[3];
439
440 /* Make sure the watchdog pre-timeout flag is not set at startup. */
441 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
443 msg[2] = WDT_PRE_TIMEOUT_INT;
444
445 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
446 smi_info->si_state = SI_CLEARING_FLAGS;
447 }
448
449 /*
450 * When we have a situtaion where we run out of memory and cannot
451 * allocate messages, we just leave them in the BMC and run the system
452 * polled until we can allocate some memory. Once we have some
453 * memory, we will re-enable the interrupt.
454 */
455 static inline void disable_si_irq(struct smi_info *smi_info)
456 {
457 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
458 start_disable_irq(smi_info);
459 smi_info->interrupt_disabled = 1;
460 if (!atomic_read(&smi_info->stop_operation))
461 mod_timer(&smi_info->si_timer,
462 jiffies + SI_TIMEOUT_JIFFIES);
463 }
464 }
465
466 static inline void enable_si_irq(struct smi_info *smi_info)
467 {
468 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
469 start_enable_irq(smi_info);
470 smi_info->interrupt_disabled = 0;
471 }
472 }
473
474 static void handle_flags(struct smi_info *smi_info)
475 {
476 retry:
477 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
478 /* Watchdog pre-timeout */
479 smi_inc_stat(smi_info, watchdog_pretimeouts);
480
481 start_clear_flags(smi_info);
482 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
483 spin_unlock(&(smi_info->si_lock));
484 ipmi_smi_watchdog_pretimeout(smi_info->intf);
485 spin_lock(&(smi_info->si_lock));
486 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
487 /* Messages available. */
488 smi_info->curr_msg = ipmi_alloc_smi_msg();
489 if (!smi_info->curr_msg) {
490 disable_si_irq(smi_info);
491 smi_info->si_state = SI_NORMAL;
492 return;
493 }
494 enable_si_irq(smi_info);
495
496 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
497 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
498 smi_info->curr_msg->data_size = 2;
499
500 smi_info->handlers->start_transaction(
501 smi_info->si_sm,
502 smi_info->curr_msg->data,
503 smi_info->curr_msg->data_size);
504 smi_info->si_state = SI_GETTING_MESSAGES;
505 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
506 /* Events available. */
507 smi_info->curr_msg = ipmi_alloc_smi_msg();
508 if (!smi_info->curr_msg) {
509 disable_si_irq(smi_info);
510 smi_info->si_state = SI_NORMAL;
511 return;
512 }
513 enable_si_irq(smi_info);
514
515 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
516 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
517 smi_info->curr_msg->data_size = 2;
518
519 smi_info->handlers->start_transaction(
520 smi_info->si_sm,
521 smi_info->curr_msg->data,
522 smi_info->curr_msg->data_size);
523 smi_info->si_state = SI_GETTING_EVENTS;
524 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
525 smi_info->oem_data_avail_handler) {
526 if (smi_info->oem_data_avail_handler(smi_info))
527 goto retry;
528 } else
529 smi_info->si_state = SI_NORMAL;
530 }
531
532 static void handle_transaction_done(struct smi_info *smi_info)
533 {
534 struct ipmi_smi_msg *msg;
535 #ifdef DEBUG_TIMING
536 struct timeval t;
537
538 do_gettimeofday(&t);
539 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
540 #endif
541 switch (smi_info->si_state) {
542 case SI_NORMAL:
543 if (!smi_info->curr_msg)
544 break;
545
546 smi_info->curr_msg->rsp_size
547 = smi_info->handlers->get_result(
548 smi_info->si_sm,
549 smi_info->curr_msg->rsp,
550 IPMI_MAX_MSG_LENGTH);
551
552 /*
553 * Do this here becase deliver_recv_msg() releases the
554 * lock, and a new message can be put in during the
555 * time the lock is released.
556 */
557 msg = smi_info->curr_msg;
558 smi_info->curr_msg = NULL;
559 deliver_recv_msg(smi_info, msg);
560 break;
561
562 case SI_GETTING_FLAGS:
563 {
564 unsigned char msg[4];
565 unsigned int len;
566
567 /* We got the flags from the SMI, now handle them. */
568 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
569 if (msg[2] != 0) {
570 /* Error fetching flags, just give up for now. */
571 smi_info->si_state = SI_NORMAL;
572 } else if (len < 4) {
573 /*
574 * Hmm, no flags. That's technically illegal, but
575 * don't use uninitialized data.
576 */
577 smi_info->si_state = SI_NORMAL;
578 } else {
579 smi_info->msg_flags = msg[3];
580 handle_flags(smi_info);
581 }
582 break;
583 }
584
585 case SI_CLEARING_FLAGS:
586 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
587 {
588 unsigned char msg[3];
589
590 /* We cleared the flags. */
591 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
592 if (msg[2] != 0) {
593 /* Error clearing flags */
594 dev_warn(smi_info->dev,
595 "Error clearing flags: %2.2x\n", msg[2]);
596 }
597 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
598 start_enable_irq(smi_info);
599 else
600 smi_info->si_state = SI_NORMAL;
601 break;
602 }
603
604 case SI_GETTING_EVENTS:
605 {
606 smi_info->curr_msg->rsp_size
607 = smi_info->handlers->get_result(
608 smi_info->si_sm,
609 smi_info->curr_msg->rsp,
610 IPMI_MAX_MSG_LENGTH);
611
612 /*
613 * Do this here becase deliver_recv_msg() releases the
614 * lock, and a new message can be put in during the
615 * time the lock is released.
616 */
617 msg = smi_info->curr_msg;
618 smi_info->curr_msg = NULL;
619 if (msg->rsp[2] != 0) {
620 /* Error getting event, probably done. */
621 msg->done(msg);
622
623 /* Take off the event flag. */
624 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
625 handle_flags(smi_info);
626 } else {
627 smi_inc_stat(smi_info, events);
628
629 /*
630 * Do this before we deliver the message
631 * because delivering the message releases the
632 * lock and something else can mess with the
633 * state.
634 */
635 handle_flags(smi_info);
636
637 deliver_recv_msg(smi_info, msg);
638 }
639 break;
640 }
641
642 case SI_GETTING_MESSAGES:
643 {
644 smi_info->curr_msg->rsp_size
645 = smi_info->handlers->get_result(
646 smi_info->si_sm,
647 smi_info->curr_msg->rsp,
648 IPMI_MAX_MSG_LENGTH);
649
650 /*
651 * Do this here becase deliver_recv_msg() releases the
652 * lock, and a new message can be put in during the
653 * time the lock is released.
654 */
655 msg = smi_info->curr_msg;
656 smi_info->curr_msg = NULL;
657 if (msg->rsp[2] != 0) {
658 /* Error getting event, probably done. */
659 msg->done(msg);
660
661 /* Take off the msg flag. */
662 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
663 handle_flags(smi_info);
664 } else {
665 smi_inc_stat(smi_info, incoming_messages);
666
667 /*
668 * Do this before we deliver the message
669 * because delivering the message releases the
670 * lock and something else can mess with the
671 * state.
672 */
673 handle_flags(smi_info);
674
675 deliver_recv_msg(smi_info, msg);
676 }
677 break;
678 }
679
680 case SI_ENABLE_INTERRUPTS1:
681 {
682 unsigned char msg[4];
683
684 /* We got the flags from the SMI, now handle them. */
685 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686 if (msg[2] != 0) {
687 dev_warn(smi_info->dev, "Could not enable interrupts"
688 ", failed get, using polled mode.\n");
689 smi_info->si_state = SI_NORMAL;
690 } else {
691 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
692 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
693 msg[2] = (msg[3] |
694 IPMI_BMC_RCV_MSG_INTR |
695 IPMI_BMC_EVT_MSG_INTR);
696 smi_info->handlers->start_transaction(
697 smi_info->si_sm, msg, 3);
698 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
699 }
700 break;
701 }
702
703 case SI_ENABLE_INTERRUPTS2:
704 {
705 unsigned char msg[4];
706
707 /* We got the flags from the SMI, now handle them. */
708 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
709 if (msg[2] != 0)
710 dev_warn(smi_info->dev, "Could not enable interrupts"
711 ", failed set, using polled mode.\n");
712 else
713 smi_info->interrupt_disabled = 0;
714 smi_info->si_state = SI_NORMAL;
715 break;
716 }
717
718 case SI_DISABLE_INTERRUPTS1:
719 {
720 unsigned char msg[4];
721
722 /* We got the flags from the SMI, now handle them. */
723 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724 if (msg[2] != 0) {
725 dev_warn(smi_info->dev, "Could not disable interrupts"
726 ", failed get.\n");
727 smi_info->si_state = SI_NORMAL;
728 } else {
729 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
730 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
731 msg[2] = (msg[3] &
732 ~(IPMI_BMC_RCV_MSG_INTR |
733 IPMI_BMC_EVT_MSG_INTR));
734 smi_info->handlers->start_transaction(
735 smi_info->si_sm, msg, 3);
736 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
737 }
738 break;
739 }
740
741 case SI_DISABLE_INTERRUPTS2:
742 {
743 unsigned char msg[4];
744
745 /* We got the flags from the SMI, now handle them. */
746 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
747 if (msg[2] != 0) {
748 dev_warn(smi_info->dev, "Could not disable interrupts"
749 ", failed set.\n");
750 }
751 smi_info->si_state = SI_NORMAL;
752 break;
753 }
754 }
755 }
756
757 /*
758 * Called on timeouts and events. Timeouts should pass the elapsed
759 * time, interrupts should pass in zero. Must be called with
760 * si_lock held and interrupts disabled.
761 */
762 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
763 int time)
764 {
765 enum si_sm_result si_sm_result;
766
767 restart:
768 /*
769 * There used to be a loop here that waited a little while
770 * (around 25us) before giving up. That turned out to be
771 * pointless, the minimum delays I was seeing were in the 300us
772 * range, which is far too long to wait in an interrupt. So
773 * we just run until the state machine tells us something
774 * happened or it needs a delay.
775 */
776 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
777 time = 0;
778 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
779 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
780
781 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
782 smi_inc_stat(smi_info, complete_transactions);
783
784 handle_transaction_done(smi_info);
785 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786 } else if (si_sm_result == SI_SM_HOSED) {
787 smi_inc_stat(smi_info, hosed_count);
788
789 /*
790 * Do the before return_hosed_msg, because that
791 * releases the lock.
792 */
793 smi_info->si_state = SI_NORMAL;
794 if (smi_info->curr_msg != NULL) {
795 /*
796 * If we were handling a user message, format
797 * a response to send to the upper layer to
798 * tell it about the error.
799 */
800 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
801 }
802 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
803 }
804
805 /*
806 * We prefer handling attn over new messages. But don't do
807 * this if there is not yet an upper layer to handle anything.
808 */
809 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
810 unsigned char msg[2];
811
812 smi_inc_stat(smi_info, attentions);
813
814 /*
815 * Got a attn, send down a get message flags to see
816 * what's causing it. It would be better to handle
817 * this in the upper layer, but due to the way
818 * interrupts work with the SMI, that's not really
819 * possible.
820 */
821 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
822 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
823
824 smi_info->handlers->start_transaction(
825 smi_info->si_sm, msg, 2);
826 smi_info->si_state = SI_GETTING_FLAGS;
827 goto restart;
828 }
829
830 /* If we are currently idle, try to start the next message. */
831 if (si_sm_result == SI_SM_IDLE) {
832 smi_inc_stat(smi_info, idles);
833
834 si_sm_result = start_next_msg(smi_info);
835 if (si_sm_result != SI_SM_IDLE)
836 goto restart;
837 }
838
839 if ((si_sm_result == SI_SM_IDLE)
840 && (atomic_read(&smi_info->req_events))) {
841 /*
842 * We are idle and the upper layer requested that I fetch
843 * events, so do so.
844 */
845 atomic_set(&smi_info->req_events, 0);
846
847 smi_info->curr_msg = ipmi_alloc_smi_msg();
848 if (!smi_info->curr_msg)
849 goto out;
850
851 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
852 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
853 smi_info->curr_msg->data_size = 2;
854
855 smi_info->handlers->start_transaction(
856 smi_info->si_sm,
857 smi_info->curr_msg->data,
858 smi_info->curr_msg->data_size);
859 smi_info->si_state = SI_GETTING_EVENTS;
860 goto restart;
861 }
862 out:
863 return si_sm_result;
864 }
865
866 static void sender(void *send_info,
867 struct ipmi_smi_msg *msg,
868 int priority)
869 {
870 struct smi_info *smi_info = send_info;
871 enum si_sm_result result;
872 unsigned long flags;
873 #ifdef DEBUG_TIMING
874 struct timeval t;
875 #endif
876
877 if (atomic_read(&smi_info->stop_operation)) {
878 msg->rsp[0] = msg->data[0] | 4;
879 msg->rsp[1] = msg->data[1];
880 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
881 msg->rsp_size = 3;
882 deliver_recv_msg(smi_info, msg);
883 return;
884 }
885
886 #ifdef DEBUG_TIMING
887 do_gettimeofday(&t);
888 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
889 #endif
890
891 /*
892 * last_timeout_jiffies is updated here to avoid
893 * smi_timeout() handler passing very large time_diff
894 * value to smi_event_handler() that causes
895 * the send command to abort.
896 */
897 smi_info->last_timeout_jiffies = jiffies;
898
899 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
900
901 if (smi_info->thread)
902 wake_up_process(smi_info->thread);
903
904 if (smi_info->run_to_completion) {
905 /*
906 * If we are running to completion, then throw it in
907 * the list and run transactions until everything is
908 * clear. Priority doesn't matter here.
909 */
910
911 /*
912 * Run to completion means we are single-threaded, no
913 * need for locks.
914 */
915 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
916
917 result = smi_event_handler(smi_info, 0);
918 while (result != SI_SM_IDLE) {
919 udelay(SI_SHORT_TIMEOUT_USEC);
920 result = smi_event_handler(smi_info,
921 SI_SHORT_TIMEOUT_USEC);
922 }
923 return;
924 }
925
926 spin_lock_irqsave(&smi_info->msg_lock, flags);
927 if (priority > 0)
928 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
929 else
930 list_add_tail(&msg->link, &smi_info->xmit_msgs);
931 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
932
933 spin_lock_irqsave(&smi_info->si_lock, flags);
934 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
935 start_next_msg(smi_info);
936 spin_unlock_irqrestore(&smi_info->si_lock, flags);
937 }
938
939 static void set_run_to_completion(void *send_info, int i_run_to_completion)
940 {
941 struct smi_info *smi_info = send_info;
942 enum si_sm_result result;
943
944 smi_info->run_to_completion = i_run_to_completion;
945 if (i_run_to_completion) {
946 result = smi_event_handler(smi_info, 0);
947 while (result != SI_SM_IDLE) {
948 udelay(SI_SHORT_TIMEOUT_USEC);
949 result = smi_event_handler(smi_info,
950 SI_SHORT_TIMEOUT_USEC);
951 }
952 }
953 }
954
955 /*
956 * Use -1 in the nsec value of the busy waiting timespec to tell that
957 * we are spinning in kipmid looking for something and not delaying
958 * between checks
959 */
960 static inline void ipmi_si_set_not_busy(struct timespec *ts)
961 {
962 ts->tv_nsec = -1;
963 }
964 static inline int ipmi_si_is_busy(struct timespec *ts)
965 {
966 return ts->tv_nsec != -1;
967 }
968
969 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
970 const struct smi_info *smi_info,
971 struct timespec *busy_until)
972 {
973 unsigned int max_busy_us = 0;
974
975 if (smi_info->intf_num < num_max_busy_us)
976 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
977 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
978 ipmi_si_set_not_busy(busy_until);
979 else if (!ipmi_si_is_busy(busy_until)) {
980 getnstimeofday(busy_until);
981 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
982 } else {
983 struct timespec now;
984 getnstimeofday(&now);
985 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
986 ipmi_si_set_not_busy(busy_until);
987 return 0;
988 }
989 }
990 return 1;
991 }
992
993
994 /*
995 * A busy-waiting loop for speeding up IPMI operation.
996 *
997 * Lousy hardware makes this hard. This is only enabled for systems
998 * that are not BT and do not have interrupts. It starts spinning
999 * when an operation is complete or until max_busy tells it to stop
1000 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1001 * Documentation/IPMI.txt for details.
1002 */
1003 static int ipmi_thread(void *data)
1004 {
1005 struct smi_info *smi_info = data;
1006 unsigned long flags;
1007 enum si_sm_result smi_result;
1008 struct timespec busy_until;
1009
1010 ipmi_si_set_not_busy(&busy_until);
1011 set_user_nice(current, 19);
1012 while (!kthread_should_stop()) {
1013 int busy_wait;
1014
1015 spin_lock_irqsave(&(smi_info->si_lock), flags);
1016 smi_result = smi_event_handler(smi_info, 0);
1017 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1018 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1019 &busy_until);
1020 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1021 ; /* do nothing */
1022 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1023 schedule();
1024 else if (smi_result == SI_SM_IDLE)
1025 schedule_timeout_interruptible(100);
1026 else
1027 schedule_timeout_interruptible(1);
1028 }
1029 return 0;
1030 }
1031
1032
1033 static void poll(void *send_info)
1034 {
1035 struct smi_info *smi_info = send_info;
1036 unsigned long flags;
1037
1038 /*
1039 * Make sure there is some delay in the poll loop so we can
1040 * drive time forward and timeout things.
1041 */
1042 udelay(10);
1043 spin_lock_irqsave(&smi_info->si_lock, flags);
1044 smi_event_handler(smi_info, 10);
1045 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1046 }
1047
1048 static void request_events(void *send_info)
1049 {
1050 struct smi_info *smi_info = send_info;
1051
1052 if (atomic_read(&smi_info->stop_operation) ||
1053 !smi_info->has_event_buffer)
1054 return;
1055
1056 atomic_set(&smi_info->req_events, 1);
1057 }
1058
1059 static int initialized;
1060
1061 static void smi_timeout(unsigned long data)
1062 {
1063 struct smi_info *smi_info = (struct smi_info *) data;
1064 enum si_sm_result smi_result;
1065 unsigned long flags;
1066 unsigned long jiffies_now;
1067 long time_diff;
1068 long timeout;
1069 #ifdef DEBUG_TIMING
1070 struct timeval t;
1071 #endif
1072
1073 spin_lock_irqsave(&(smi_info->si_lock), flags);
1074 #ifdef DEBUG_TIMING
1075 do_gettimeofday(&t);
1076 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1077 #endif
1078 jiffies_now = jiffies;
1079 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1080 * SI_USEC_PER_JIFFY);
1081 smi_result = smi_event_handler(smi_info, time_diff);
1082
1083 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1084
1085 smi_info->last_timeout_jiffies = jiffies_now;
1086
1087 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1088 /* Running with interrupts, only do long timeouts. */
1089 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090 smi_inc_stat(smi_info, long_timeouts);
1091 goto do_mod_timer;
1092 }
1093
1094 /*
1095 * If the state machine asks for a short delay, then shorten
1096 * the timer timeout.
1097 */
1098 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1099 smi_inc_stat(smi_info, short_timeouts);
1100 timeout = jiffies + 1;
1101 } else {
1102 smi_inc_stat(smi_info, long_timeouts);
1103 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1104 }
1105
1106 do_mod_timer:
1107 if (smi_result != SI_SM_IDLE)
1108 mod_timer(&(smi_info->si_timer), timeout);
1109 }
1110
1111 static irqreturn_t si_irq_handler(int irq, void *data)
1112 {
1113 struct smi_info *smi_info = data;
1114 unsigned long flags;
1115 #ifdef DEBUG_TIMING
1116 struct timeval t;
1117 #endif
1118
1119 spin_lock_irqsave(&(smi_info->si_lock), flags);
1120
1121 smi_inc_stat(smi_info, interrupts);
1122
1123 #ifdef DEBUG_TIMING
1124 do_gettimeofday(&t);
1125 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1126 #endif
1127 smi_event_handler(smi_info, 0);
1128 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1129 return IRQ_HANDLED;
1130 }
1131
1132 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1133 {
1134 struct smi_info *smi_info = data;
1135 /* We need to clear the IRQ flag for the BT interface. */
1136 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1137 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1138 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1139 return si_irq_handler(irq, data);
1140 }
1141
1142 static int smi_start_processing(void *send_info,
1143 ipmi_smi_t intf)
1144 {
1145 struct smi_info *new_smi = send_info;
1146 int enable = 0;
1147
1148 new_smi->intf = intf;
1149
1150 /* Try to claim any interrupts. */
1151 if (new_smi->irq_setup)
1152 new_smi->irq_setup(new_smi);
1153
1154 /* Set up the timer that drives the interface. */
1155 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1156 new_smi->last_timeout_jiffies = jiffies;
1157 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1158
1159 /*
1160 * Check if the user forcefully enabled the daemon.
1161 */
1162 if (new_smi->intf_num < num_force_kipmid)
1163 enable = force_kipmid[new_smi->intf_num];
1164 /*
1165 * The BT interface is efficient enough to not need a thread,
1166 * and there is no need for a thread if we have interrupts.
1167 */
1168 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1169 enable = 1;
1170
1171 if (enable) {
1172 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1173 "kipmi%d", new_smi->intf_num);
1174 if (IS_ERR(new_smi->thread)) {
1175 dev_notice(new_smi->dev, "Could not start"
1176 " kernel thread due to error %ld, only using"
1177 " timers to drive the interface\n",
1178 PTR_ERR(new_smi->thread));
1179 new_smi->thread = NULL;
1180 }
1181 }
1182
1183 return 0;
1184 }
1185
1186 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1187 {
1188 struct smi_info *smi = send_info;
1189
1190 data->addr_src = smi->addr_source;
1191 data->dev = smi->dev;
1192 data->addr_info = smi->addr_info;
1193 get_device(smi->dev);
1194
1195 return 0;
1196 }
1197
1198 static void set_maintenance_mode(void *send_info, int enable)
1199 {
1200 struct smi_info *smi_info = send_info;
1201
1202 if (!enable)
1203 atomic_set(&smi_info->req_events, 0);
1204 }
1205
1206 static struct ipmi_smi_handlers handlers = {
1207 .owner = THIS_MODULE,
1208 .start_processing = smi_start_processing,
1209 .get_smi_info = get_smi_info,
1210 .sender = sender,
1211 .request_events = request_events,
1212 .set_maintenance_mode = set_maintenance_mode,
1213 .set_run_to_completion = set_run_to_completion,
1214 .poll = poll,
1215 };
1216
1217 /*
1218 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1219 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1220 */
1221
1222 static LIST_HEAD(smi_infos);
1223 static DEFINE_MUTEX(smi_infos_lock);
1224 static int smi_num; /* Used to sequence the SMIs */
1225
1226 #define DEFAULT_REGSPACING 1
1227 #define DEFAULT_REGSIZE 1
1228
1229 static int si_trydefaults = 1;
1230 static char *si_type[SI_MAX_PARMS];
1231 #define MAX_SI_TYPE_STR 30
1232 static char si_type_str[MAX_SI_TYPE_STR];
1233 static unsigned long addrs[SI_MAX_PARMS];
1234 static unsigned int num_addrs;
1235 static unsigned int ports[SI_MAX_PARMS];
1236 static unsigned int num_ports;
1237 static int irqs[SI_MAX_PARMS];
1238 static unsigned int num_irqs;
1239 static int regspacings[SI_MAX_PARMS];
1240 static unsigned int num_regspacings;
1241 static int regsizes[SI_MAX_PARMS];
1242 static unsigned int num_regsizes;
1243 static int regshifts[SI_MAX_PARMS];
1244 static unsigned int num_regshifts;
1245 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1246 static unsigned int num_slave_addrs;
1247
1248 #define IPMI_IO_ADDR_SPACE 0
1249 #define IPMI_MEM_ADDR_SPACE 1
1250 static char *addr_space_to_str[] = { "i/o", "mem" };
1251
1252 static int hotmod_handler(const char *val, struct kernel_param *kp);
1253
1254 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1255 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1256 " Documentation/IPMI.txt in the kernel sources for the"
1257 " gory details.");
1258
1259 module_param_named(trydefaults, si_trydefaults, bool, 0);
1260 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1261 " default scan of the KCS and SMIC interface at the standard"
1262 " address");
1263 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1264 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1265 " interface separated by commas. The types are 'kcs',"
1266 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1267 " the first interface to kcs and the second to bt");
1268 module_param_array(addrs, ulong, &num_addrs, 0);
1269 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1270 " addresses separated by commas. Only use if an interface"
1271 " is in memory. Otherwise, set it to zero or leave"
1272 " it blank.");
1273 module_param_array(ports, uint, &num_ports, 0);
1274 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1275 " addresses separated by commas. Only use if an interface"
1276 " is a port. Otherwise, set it to zero or leave"
1277 " it blank.");
1278 module_param_array(irqs, int, &num_irqs, 0);
1279 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1280 " addresses separated by commas. Only use if an interface"
1281 " has an interrupt. Otherwise, set it to zero or leave"
1282 " it blank.");
1283 module_param_array(regspacings, int, &num_regspacings, 0);
1284 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1285 " and each successive register used by the interface. For"
1286 " instance, if the start address is 0xca2 and the spacing"
1287 " is 2, then the second address is at 0xca4. Defaults"
1288 " to 1.");
1289 module_param_array(regsizes, int, &num_regsizes, 0);
1290 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1291 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1292 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1293 " the 8-bit IPMI register has to be read from a larger"
1294 " register.");
1295 module_param_array(regshifts, int, &num_regshifts, 0);
1296 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1297 " IPMI register, in bits. For instance, if the data"
1298 " is read from a 32-bit word and the IPMI data is in"
1299 " bit 8-15, then the shift would be 8");
1300 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1301 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1302 " the controller. Normally this is 0x20, but can be"
1303 " overridden by this parm. This is an array indexed"
1304 " by interface number.");
1305 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1306 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1307 " disabled(0). Normally the IPMI driver auto-detects"
1308 " this, but the value may be overridden by this parm.");
1309 module_param(unload_when_empty, int, 0);
1310 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1311 " specified or found, default is 1. Setting to 0"
1312 " is useful for hot add of devices using hotmod.");
1313 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1314 MODULE_PARM_DESC(kipmid_max_busy_us,
1315 "Max time (in microseconds) to busy-wait for IPMI data before"
1316 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1317 " if kipmid is using up a lot of CPU time.");
1318
1319
1320 static void std_irq_cleanup(struct smi_info *info)
1321 {
1322 if (info->si_type == SI_BT)
1323 /* Disable the interrupt in the BT interface. */
1324 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1325 free_irq(info->irq, info);
1326 }
1327
1328 static int std_irq_setup(struct smi_info *info)
1329 {
1330 int rv;
1331
1332 if (!info->irq)
1333 return 0;
1334
1335 if (info->si_type == SI_BT) {
1336 rv = request_irq(info->irq,
1337 si_bt_irq_handler,
1338 IRQF_SHARED | IRQF_DISABLED,
1339 DEVICE_NAME,
1340 info);
1341 if (!rv)
1342 /* Enable the interrupt in the BT interface. */
1343 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1344 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1345 } else
1346 rv = request_irq(info->irq,
1347 si_irq_handler,
1348 IRQF_SHARED | IRQF_DISABLED,
1349 DEVICE_NAME,
1350 info);
1351 if (rv) {
1352 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1353 " running polled\n",
1354 DEVICE_NAME, info->irq);
1355 info->irq = 0;
1356 } else {
1357 info->irq_cleanup = std_irq_cleanup;
1358 dev_info(info->dev, "Using irq %d\n", info->irq);
1359 }
1360
1361 return rv;
1362 }
1363
1364 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1365 {
1366 unsigned int addr = io->addr_data;
1367
1368 return inb(addr + (offset * io->regspacing));
1369 }
1370
1371 static void port_outb(struct si_sm_io *io, unsigned int offset,
1372 unsigned char b)
1373 {
1374 unsigned int addr = io->addr_data;
1375
1376 outb(b, addr + (offset * io->regspacing));
1377 }
1378
1379 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1380 {
1381 unsigned int addr = io->addr_data;
1382
1383 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1384 }
1385
1386 static void port_outw(struct si_sm_io *io, unsigned int offset,
1387 unsigned char b)
1388 {
1389 unsigned int addr = io->addr_data;
1390
1391 outw(b << io->regshift, addr + (offset * io->regspacing));
1392 }
1393
1394 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1395 {
1396 unsigned int addr = io->addr_data;
1397
1398 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1399 }
1400
1401 static void port_outl(struct si_sm_io *io, unsigned int offset,
1402 unsigned char b)
1403 {
1404 unsigned int addr = io->addr_data;
1405
1406 outl(b << io->regshift, addr+(offset * io->regspacing));
1407 }
1408
1409 static void port_cleanup(struct smi_info *info)
1410 {
1411 unsigned int addr = info->io.addr_data;
1412 int idx;
1413
1414 if (addr) {
1415 for (idx = 0; idx < info->io_size; idx++)
1416 release_region(addr + idx * info->io.regspacing,
1417 info->io.regsize);
1418 }
1419 }
1420
1421 static int port_setup(struct smi_info *info)
1422 {
1423 unsigned int addr = info->io.addr_data;
1424 int idx;
1425
1426 if (!addr)
1427 return -ENODEV;
1428
1429 info->io_cleanup = port_cleanup;
1430
1431 /*
1432 * Figure out the actual inb/inw/inl/etc routine to use based
1433 * upon the register size.
1434 */
1435 switch (info->io.regsize) {
1436 case 1:
1437 info->io.inputb = port_inb;
1438 info->io.outputb = port_outb;
1439 break;
1440 case 2:
1441 info->io.inputb = port_inw;
1442 info->io.outputb = port_outw;
1443 break;
1444 case 4:
1445 info->io.inputb = port_inl;
1446 info->io.outputb = port_outl;
1447 break;
1448 default:
1449 dev_warn(info->dev, "Invalid register size: %d\n",
1450 info->io.regsize);
1451 return -EINVAL;
1452 }
1453
1454 /*
1455 * Some BIOSes reserve disjoint I/O regions in their ACPI
1456 * tables. This causes problems when trying to register the
1457 * entire I/O region. Therefore we must register each I/O
1458 * port separately.
1459 */
1460 for (idx = 0; idx < info->io_size; idx++) {
1461 if (request_region(addr + idx * info->io.regspacing,
1462 info->io.regsize, DEVICE_NAME) == NULL) {
1463 /* Undo allocations */
1464 while (idx--) {
1465 release_region(addr + idx * info->io.regspacing,
1466 info->io.regsize);
1467 }
1468 return -EIO;
1469 }
1470 }
1471 return 0;
1472 }
1473
1474 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1475 {
1476 return readb((io->addr)+(offset * io->regspacing));
1477 }
1478
1479 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1480 unsigned char b)
1481 {
1482 writeb(b, (io->addr)+(offset * io->regspacing));
1483 }
1484
1485 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1486 {
1487 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1488 & 0xff;
1489 }
1490
1491 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1492 unsigned char b)
1493 {
1494 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1495 }
1496
1497 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1498 {
1499 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1500 & 0xff;
1501 }
1502
1503 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1504 unsigned char b)
1505 {
1506 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1507 }
1508
1509 #ifdef readq
1510 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1511 {
1512 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1513 & 0xff;
1514 }
1515
1516 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1517 unsigned char b)
1518 {
1519 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1520 }
1521 #endif
1522
1523 static void mem_cleanup(struct smi_info *info)
1524 {
1525 unsigned long addr = info->io.addr_data;
1526 int mapsize;
1527
1528 if (info->io.addr) {
1529 iounmap(info->io.addr);
1530
1531 mapsize = ((info->io_size * info->io.regspacing)
1532 - (info->io.regspacing - info->io.regsize));
1533
1534 release_mem_region(addr, mapsize);
1535 }
1536 }
1537
1538 static int mem_setup(struct smi_info *info)
1539 {
1540 unsigned long addr = info->io.addr_data;
1541 int mapsize;
1542
1543 if (!addr)
1544 return -ENODEV;
1545
1546 info->io_cleanup = mem_cleanup;
1547
1548 /*
1549 * Figure out the actual readb/readw/readl/etc routine to use based
1550 * upon the register size.
1551 */
1552 switch (info->io.regsize) {
1553 case 1:
1554 info->io.inputb = intf_mem_inb;
1555 info->io.outputb = intf_mem_outb;
1556 break;
1557 case 2:
1558 info->io.inputb = intf_mem_inw;
1559 info->io.outputb = intf_mem_outw;
1560 break;
1561 case 4:
1562 info->io.inputb = intf_mem_inl;
1563 info->io.outputb = intf_mem_outl;
1564 break;
1565 #ifdef readq
1566 case 8:
1567 info->io.inputb = mem_inq;
1568 info->io.outputb = mem_outq;
1569 break;
1570 #endif
1571 default:
1572 dev_warn(info->dev, "Invalid register size: %d\n",
1573 info->io.regsize);
1574 return -EINVAL;
1575 }
1576
1577 /*
1578 * Calculate the total amount of memory to claim. This is an
1579 * unusual looking calculation, but it avoids claiming any
1580 * more memory than it has to. It will claim everything
1581 * between the first address to the end of the last full
1582 * register.
1583 */
1584 mapsize = ((info->io_size * info->io.regspacing)
1585 - (info->io.regspacing - info->io.regsize));
1586
1587 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1588 return -EIO;
1589
1590 info->io.addr = ioremap(addr, mapsize);
1591 if (info->io.addr == NULL) {
1592 release_mem_region(addr, mapsize);
1593 return -EIO;
1594 }
1595 return 0;
1596 }
1597
1598 /*
1599 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1600 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1601 * Options are:
1602 * rsp=<regspacing>
1603 * rsi=<regsize>
1604 * rsh=<regshift>
1605 * irq=<irq>
1606 * ipmb=<ipmb addr>
1607 */
1608 enum hotmod_op { HM_ADD, HM_REMOVE };
1609 struct hotmod_vals {
1610 char *name;
1611 int val;
1612 };
1613 static struct hotmod_vals hotmod_ops[] = {
1614 { "add", HM_ADD },
1615 { "remove", HM_REMOVE },
1616 { NULL }
1617 };
1618 static struct hotmod_vals hotmod_si[] = {
1619 { "kcs", SI_KCS },
1620 { "smic", SI_SMIC },
1621 { "bt", SI_BT },
1622 { NULL }
1623 };
1624 static struct hotmod_vals hotmod_as[] = {
1625 { "mem", IPMI_MEM_ADDR_SPACE },
1626 { "i/o", IPMI_IO_ADDR_SPACE },
1627 { NULL }
1628 };
1629
1630 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1631 {
1632 char *s;
1633 int i;
1634
1635 s = strchr(*curr, ',');
1636 if (!s) {
1637 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1638 return -EINVAL;
1639 }
1640 *s = '\0';
1641 s++;
1642 for (i = 0; hotmod_ops[i].name; i++) {
1643 if (strcmp(*curr, v[i].name) == 0) {
1644 *val = v[i].val;
1645 *curr = s;
1646 return 0;
1647 }
1648 }
1649
1650 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1651 return -EINVAL;
1652 }
1653
1654 static int check_hotmod_int_op(const char *curr, const char *option,
1655 const char *name, int *val)
1656 {
1657 char *n;
1658
1659 if (strcmp(curr, name) == 0) {
1660 if (!option) {
1661 printk(KERN_WARNING PFX
1662 "No option given for '%s'\n",
1663 curr);
1664 return -EINVAL;
1665 }
1666 *val = simple_strtoul(option, &n, 0);
1667 if ((*n != '\0') || (*option == '\0')) {
1668 printk(KERN_WARNING PFX
1669 "Bad option given for '%s'\n",
1670 curr);
1671 return -EINVAL;
1672 }
1673 return 1;
1674 }
1675 return 0;
1676 }
1677
1678 static struct smi_info *smi_info_alloc(void)
1679 {
1680 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1681
1682 if (info) {
1683 spin_lock_init(&info->si_lock);
1684 spin_lock_init(&info->msg_lock);
1685 }
1686 return info;
1687 }
1688
1689 static int hotmod_handler(const char *val, struct kernel_param *kp)
1690 {
1691 char *str = kstrdup(val, GFP_KERNEL);
1692 int rv;
1693 char *next, *curr, *s, *n, *o;
1694 enum hotmod_op op;
1695 enum si_type si_type;
1696 int addr_space;
1697 unsigned long addr;
1698 int regspacing;
1699 int regsize;
1700 int regshift;
1701 int irq;
1702 int ipmb;
1703 int ival;
1704 int len;
1705 struct smi_info *info;
1706
1707 if (!str)
1708 return -ENOMEM;
1709
1710 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1711 len = strlen(str);
1712 ival = len - 1;
1713 while ((ival >= 0) && isspace(str[ival])) {
1714 str[ival] = '\0';
1715 ival--;
1716 }
1717
1718 for (curr = str; curr; curr = next) {
1719 regspacing = 1;
1720 regsize = 1;
1721 regshift = 0;
1722 irq = 0;
1723 ipmb = 0; /* Choose the default if not specified */
1724
1725 next = strchr(curr, ':');
1726 if (next) {
1727 *next = '\0';
1728 next++;
1729 }
1730
1731 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1732 if (rv)
1733 break;
1734 op = ival;
1735
1736 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1737 if (rv)
1738 break;
1739 si_type = ival;
1740
1741 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1742 if (rv)
1743 break;
1744
1745 s = strchr(curr, ',');
1746 if (s) {
1747 *s = '\0';
1748 s++;
1749 }
1750 addr = simple_strtoul(curr, &n, 0);
1751 if ((*n != '\0') || (*curr == '\0')) {
1752 printk(KERN_WARNING PFX "Invalid hotmod address"
1753 " '%s'\n", curr);
1754 break;
1755 }
1756
1757 while (s) {
1758 curr = s;
1759 s = strchr(curr, ',');
1760 if (s) {
1761 *s = '\0';
1762 s++;
1763 }
1764 o = strchr(curr, '=');
1765 if (o) {
1766 *o = '\0';
1767 o++;
1768 }
1769 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1770 if (rv < 0)
1771 goto out;
1772 else if (rv)
1773 continue;
1774 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1775 if (rv < 0)
1776 goto out;
1777 else if (rv)
1778 continue;
1779 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1780 if (rv < 0)
1781 goto out;
1782 else if (rv)
1783 continue;
1784 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1785 if (rv < 0)
1786 goto out;
1787 else if (rv)
1788 continue;
1789 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1790 if (rv < 0)
1791 goto out;
1792 else if (rv)
1793 continue;
1794
1795 rv = -EINVAL;
1796 printk(KERN_WARNING PFX
1797 "Invalid hotmod option '%s'\n",
1798 curr);
1799 goto out;
1800 }
1801
1802 if (op == HM_ADD) {
1803 info = smi_info_alloc();
1804 if (!info) {
1805 rv = -ENOMEM;
1806 goto out;
1807 }
1808
1809 info->addr_source = SI_HOTMOD;
1810 info->si_type = si_type;
1811 info->io.addr_data = addr;
1812 info->io.addr_type = addr_space;
1813 if (addr_space == IPMI_MEM_ADDR_SPACE)
1814 info->io_setup = mem_setup;
1815 else
1816 info->io_setup = port_setup;
1817
1818 info->io.addr = NULL;
1819 info->io.regspacing = regspacing;
1820 if (!info->io.regspacing)
1821 info->io.regspacing = DEFAULT_REGSPACING;
1822 info->io.regsize = regsize;
1823 if (!info->io.regsize)
1824 info->io.regsize = DEFAULT_REGSPACING;
1825 info->io.regshift = regshift;
1826 info->irq = irq;
1827 if (info->irq)
1828 info->irq_setup = std_irq_setup;
1829 info->slave_addr = ipmb;
1830
1831 if (!add_smi(info)) {
1832 if (try_smi_init(info))
1833 cleanup_one_si(info);
1834 } else {
1835 kfree(info);
1836 }
1837 } else {
1838 /* remove */
1839 struct smi_info *e, *tmp_e;
1840
1841 mutex_lock(&smi_infos_lock);
1842 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1843 if (e->io.addr_type != addr_space)
1844 continue;
1845 if (e->si_type != si_type)
1846 continue;
1847 if (e->io.addr_data == addr)
1848 cleanup_one_si(e);
1849 }
1850 mutex_unlock(&smi_infos_lock);
1851 }
1852 }
1853 rv = len;
1854 out:
1855 kfree(str);
1856 return rv;
1857 }
1858
1859 static int __devinit hardcode_find_bmc(void)
1860 {
1861 int ret = -ENODEV;
1862 int i;
1863 struct smi_info *info;
1864
1865 for (i = 0; i < SI_MAX_PARMS; i++) {
1866 if (!ports[i] && !addrs[i])
1867 continue;
1868
1869 info = smi_info_alloc();
1870 if (!info)
1871 return -ENOMEM;
1872
1873 info->addr_source = SI_HARDCODED;
1874 printk(KERN_INFO PFX "probing via hardcoded address\n");
1875
1876 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1877 info->si_type = SI_KCS;
1878 } else if (strcmp(si_type[i], "smic") == 0) {
1879 info->si_type = SI_SMIC;
1880 } else if (strcmp(si_type[i], "bt") == 0) {
1881 info->si_type = SI_BT;
1882 } else {
1883 printk(KERN_WARNING PFX "Interface type specified "
1884 "for interface %d, was invalid: %s\n",
1885 i, si_type[i]);
1886 kfree(info);
1887 continue;
1888 }
1889
1890 if (ports[i]) {
1891 /* An I/O port */
1892 info->io_setup = port_setup;
1893 info->io.addr_data = ports[i];
1894 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1895 } else if (addrs[i]) {
1896 /* A memory port */
1897 info->io_setup = mem_setup;
1898 info->io.addr_data = addrs[i];
1899 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1900 } else {
1901 printk(KERN_WARNING PFX "Interface type specified "
1902 "for interface %d, but port and address were "
1903 "not set or set to zero.\n", i);
1904 kfree(info);
1905 continue;
1906 }
1907
1908 info->io.addr = NULL;
1909 info->io.regspacing = regspacings[i];
1910 if (!info->io.regspacing)
1911 info->io.regspacing = DEFAULT_REGSPACING;
1912 info->io.regsize = regsizes[i];
1913 if (!info->io.regsize)
1914 info->io.regsize = DEFAULT_REGSPACING;
1915 info->io.regshift = regshifts[i];
1916 info->irq = irqs[i];
1917 if (info->irq)
1918 info->irq_setup = std_irq_setup;
1919 info->slave_addr = slave_addrs[i];
1920
1921 if (!add_smi(info)) {
1922 if (try_smi_init(info))
1923 cleanup_one_si(info);
1924 ret = 0;
1925 } else {
1926 kfree(info);
1927 }
1928 }
1929 return ret;
1930 }
1931
1932 #ifdef CONFIG_ACPI
1933
1934 #include <linux/acpi.h>
1935
1936 /*
1937 * Once we get an ACPI failure, we don't try any more, because we go
1938 * through the tables sequentially. Once we don't find a table, there
1939 * are no more.
1940 */
1941 static int acpi_failure;
1942
1943 /* For GPE-type interrupts. */
1944 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1945 u32 gpe_number, void *context)
1946 {
1947 struct smi_info *smi_info = context;
1948 unsigned long flags;
1949 #ifdef DEBUG_TIMING
1950 struct timeval t;
1951 #endif
1952
1953 spin_lock_irqsave(&(smi_info->si_lock), flags);
1954
1955 smi_inc_stat(smi_info, interrupts);
1956
1957 #ifdef DEBUG_TIMING
1958 do_gettimeofday(&t);
1959 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1960 #endif
1961 smi_event_handler(smi_info, 0);
1962 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1963
1964 return ACPI_INTERRUPT_HANDLED;
1965 }
1966
1967 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1968 {
1969 if (!info->irq)
1970 return;
1971
1972 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1973 }
1974
1975 static int acpi_gpe_irq_setup(struct smi_info *info)
1976 {
1977 acpi_status status;
1978
1979 if (!info->irq)
1980 return 0;
1981
1982 /* FIXME - is level triggered right? */
1983 status = acpi_install_gpe_handler(NULL,
1984 info->irq,
1985 ACPI_GPE_LEVEL_TRIGGERED,
1986 &ipmi_acpi_gpe,
1987 info);
1988 if (status != AE_OK) {
1989 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1990 " running polled\n", DEVICE_NAME, info->irq);
1991 info->irq = 0;
1992 return -EINVAL;
1993 } else {
1994 info->irq_cleanup = acpi_gpe_irq_cleanup;
1995 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1996 return 0;
1997 }
1998 }
1999
2000 /*
2001 * Defined at
2002 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2003 */
2004 struct SPMITable {
2005 s8 Signature[4];
2006 u32 Length;
2007 u8 Revision;
2008 u8 Checksum;
2009 s8 OEMID[6];
2010 s8 OEMTableID[8];
2011 s8 OEMRevision[4];
2012 s8 CreatorID[4];
2013 s8 CreatorRevision[4];
2014 u8 InterfaceType;
2015 u8 IPMIlegacy;
2016 s16 SpecificationRevision;
2017
2018 /*
2019 * Bit 0 - SCI interrupt supported
2020 * Bit 1 - I/O APIC/SAPIC
2021 */
2022 u8 InterruptType;
2023
2024 /*
2025 * If bit 0 of InterruptType is set, then this is the SCI
2026 * interrupt in the GPEx_STS register.
2027 */
2028 u8 GPE;
2029
2030 s16 Reserved;
2031
2032 /*
2033 * If bit 1 of InterruptType is set, then this is the I/O
2034 * APIC/SAPIC interrupt.
2035 */
2036 u32 GlobalSystemInterrupt;
2037
2038 /* The actual register address. */
2039 struct acpi_generic_address addr;
2040
2041 u8 UID[4];
2042
2043 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2044 };
2045
2046 static int __devinit try_init_spmi(struct SPMITable *spmi)
2047 {
2048 struct smi_info *info;
2049
2050 if (spmi->IPMIlegacy != 1) {
2051 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2052 return -ENODEV;
2053 }
2054
2055 info = smi_info_alloc();
2056 if (!info) {
2057 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2058 return -ENOMEM;
2059 }
2060
2061 info->addr_source = SI_SPMI;
2062 printk(KERN_INFO PFX "probing via SPMI\n");
2063
2064 /* Figure out the interface type. */
2065 switch (spmi->InterfaceType) {
2066 case 1: /* KCS */
2067 info->si_type = SI_KCS;
2068 break;
2069 case 2: /* SMIC */
2070 info->si_type = SI_SMIC;
2071 break;
2072 case 3: /* BT */
2073 info->si_type = SI_BT;
2074 break;
2075 default:
2076 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2077 spmi->InterfaceType);
2078 kfree(info);
2079 return -EIO;
2080 }
2081
2082 if (spmi->InterruptType & 1) {
2083 /* We've got a GPE interrupt. */
2084 info->irq = spmi->GPE;
2085 info->irq_setup = acpi_gpe_irq_setup;
2086 } else if (spmi->InterruptType & 2) {
2087 /* We've got an APIC/SAPIC interrupt. */
2088 info->irq = spmi->GlobalSystemInterrupt;
2089 info->irq_setup = std_irq_setup;
2090 } else {
2091 /* Use the default interrupt setting. */
2092 info->irq = 0;
2093 info->irq_setup = NULL;
2094 }
2095
2096 if (spmi->addr.bit_width) {
2097 /* A (hopefully) properly formed register bit width. */
2098 info->io.regspacing = spmi->addr.bit_width / 8;
2099 } else {
2100 info->io.regspacing = DEFAULT_REGSPACING;
2101 }
2102 info->io.regsize = info->io.regspacing;
2103 info->io.regshift = spmi->addr.bit_offset;
2104
2105 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2106 info->io_setup = mem_setup;
2107 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2108 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2109 info->io_setup = port_setup;
2110 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2111 } else {
2112 kfree(info);
2113 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2114 return -EIO;
2115 }
2116 info->io.addr_data = spmi->addr.address;
2117
2118 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2119 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2120 info->io.addr_data, info->io.regsize, info->io.regspacing,
2121 info->irq);
2122
2123 if (add_smi(info))
2124 kfree(info);
2125
2126 return 0;
2127 }
2128
2129 static void __devinit spmi_find_bmc(void)
2130 {
2131 acpi_status status;
2132 struct SPMITable *spmi;
2133 int i;
2134
2135 if (acpi_disabled)
2136 return;
2137
2138 if (acpi_failure)
2139 return;
2140
2141 for (i = 0; ; i++) {
2142 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2143 (struct acpi_table_header **)&spmi);
2144 if (status != AE_OK)
2145 return;
2146
2147 try_init_spmi(spmi);
2148 }
2149 }
2150
2151 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2152 const struct pnp_device_id *dev_id)
2153 {
2154 struct acpi_device *acpi_dev;
2155 struct smi_info *info;
2156 struct resource *res, *res_second;
2157 acpi_handle handle;
2158 acpi_status status;
2159 unsigned long long tmp;
2160
2161 acpi_dev = pnp_acpi_device(dev);
2162 if (!acpi_dev)
2163 return -ENODEV;
2164
2165 info = smi_info_alloc();
2166 if (!info)
2167 return -ENOMEM;
2168
2169 info->addr_source = SI_ACPI;
2170 printk(KERN_INFO PFX "probing via ACPI\n");
2171
2172 handle = acpi_dev->handle;
2173 info->addr_info.acpi_info.acpi_handle = handle;
2174
2175 /* _IFT tells us the interface type: KCS, BT, etc */
2176 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2177 if (ACPI_FAILURE(status))
2178 goto err_free;
2179
2180 switch (tmp) {
2181 case 1:
2182 info->si_type = SI_KCS;
2183 break;
2184 case 2:
2185 info->si_type = SI_SMIC;
2186 break;
2187 case 3:
2188 info->si_type = SI_BT;
2189 break;
2190 default:
2191 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2192 goto err_free;
2193 }
2194
2195 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2196 if (res) {
2197 info->io_setup = port_setup;
2198 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2199 } else {
2200 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2201 if (res) {
2202 info->io_setup = mem_setup;
2203 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2204 }
2205 }
2206 if (!res) {
2207 dev_err(&dev->dev, "no I/O or memory address\n");
2208 goto err_free;
2209 }
2210 info->io.addr_data = res->start;
2211
2212 info->io.regspacing = DEFAULT_REGSPACING;
2213 res_second = pnp_get_resource(dev,
2214 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2215 IORESOURCE_IO : IORESOURCE_MEM,
2216 1);
2217 if (res_second) {
2218 if (res_second->start > info->io.addr_data)
2219 info->io.regspacing = res_second->start - info->io.addr_data;
2220 }
2221 info->io.regsize = DEFAULT_REGSPACING;
2222 info->io.regshift = 0;
2223
2224 /* If _GPE exists, use it; otherwise use standard interrupts */
2225 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2226 if (ACPI_SUCCESS(status)) {
2227 info->irq = tmp;
2228 info->irq_setup = acpi_gpe_irq_setup;
2229 } else if (pnp_irq_valid(dev, 0)) {
2230 info->irq = pnp_irq(dev, 0);
2231 info->irq_setup = std_irq_setup;
2232 }
2233
2234 info->dev = &dev->dev;
2235 pnp_set_drvdata(dev, info);
2236
2237 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2238 res, info->io.regsize, info->io.regspacing,
2239 info->irq);
2240
2241 if (add_smi(info))
2242 goto err_free;
2243
2244 return 0;
2245
2246 err_free:
2247 kfree(info);
2248 return -EINVAL;
2249 }
2250
2251 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2252 {
2253 struct smi_info *info = pnp_get_drvdata(dev);
2254
2255 cleanup_one_si(info);
2256 }
2257
2258 static const struct pnp_device_id pnp_dev_table[] = {
2259 {"IPI0001", 0},
2260 {"", 0},
2261 };
2262
2263 static struct pnp_driver ipmi_pnp_driver = {
2264 .name = DEVICE_NAME,
2265 .probe = ipmi_pnp_probe,
2266 .remove = __devexit_p(ipmi_pnp_remove),
2267 .id_table = pnp_dev_table,
2268 };
2269 #endif
2270
2271 #ifdef CONFIG_DMI
2272 struct dmi_ipmi_data {
2273 u8 type;
2274 u8 addr_space;
2275 unsigned long base_addr;
2276 u8 irq;
2277 u8 offset;
2278 u8 slave_addr;
2279 };
2280
2281 static int __devinit decode_dmi(const struct dmi_header *dm,
2282 struct dmi_ipmi_data *dmi)
2283 {
2284 const u8 *data = (const u8 *)dm;
2285 unsigned long base_addr;
2286 u8 reg_spacing;
2287 u8 len = dm->length;
2288
2289 dmi->type = data[4];
2290
2291 memcpy(&base_addr, data+8, sizeof(unsigned long));
2292 if (len >= 0x11) {
2293 if (base_addr & 1) {
2294 /* I/O */
2295 base_addr &= 0xFFFE;
2296 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2297 } else
2298 /* Memory */
2299 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2300
2301 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2302 is odd. */
2303 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2304
2305 dmi->irq = data[0x11];
2306
2307 /* The top two bits of byte 0x10 hold the register spacing. */
2308 reg_spacing = (data[0x10] & 0xC0) >> 6;
2309 switch (reg_spacing) {
2310 case 0x00: /* Byte boundaries */
2311 dmi->offset = 1;
2312 break;
2313 case 0x01: /* 32-bit boundaries */
2314 dmi->offset = 4;
2315 break;
2316 case 0x02: /* 16-byte boundaries */
2317 dmi->offset = 16;
2318 break;
2319 default:
2320 /* Some other interface, just ignore it. */
2321 return -EIO;
2322 }
2323 } else {
2324 /* Old DMI spec. */
2325 /*
2326 * Note that technically, the lower bit of the base
2327 * address should be 1 if the address is I/O and 0 if
2328 * the address is in memory. So many systems get that
2329 * wrong (and all that I have seen are I/O) so we just
2330 * ignore that bit and assume I/O. Systems that use
2331 * memory should use the newer spec, anyway.
2332 */
2333 dmi->base_addr = base_addr & 0xfffe;
2334 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2335 dmi->offset = 1;
2336 }
2337
2338 dmi->slave_addr = data[6];
2339
2340 return 0;
2341 }
2342
2343 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2344 {
2345 struct smi_info *info;
2346
2347 info = smi_info_alloc();
2348 if (!info) {
2349 printk(KERN_ERR PFX "Could not allocate SI data\n");
2350 return;
2351 }
2352
2353 info->addr_source = SI_SMBIOS;
2354 printk(KERN_INFO PFX "probing via SMBIOS\n");
2355
2356 switch (ipmi_data->type) {
2357 case 0x01: /* KCS */
2358 info->si_type = SI_KCS;
2359 break;
2360 case 0x02: /* SMIC */
2361 info->si_type = SI_SMIC;
2362 break;
2363 case 0x03: /* BT */
2364 info->si_type = SI_BT;
2365 break;
2366 default:
2367 kfree(info);
2368 return;
2369 }
2370
2371 switch (ipmi_data->addr_space) {
2372 case IPMI_MEM_ADDR_SPACE:
2373 info->io_setup = mem_setup;
2374 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2375 break;
2376
2377 case IPMI_IO_ADDR_SPACE:
2378 info->io_setup = port_setup;
2379 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2380 break;
2381
2382 default:
2383 kfree(info);
2384 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2385 ipmi_data->addr_space);
2386 return;
2387 }
2388 info->io.addr_data = ipmi_data->base_addr;
2389
2390 info->io.regspacing = ipmi_data->offset;
2391 if (!info->io.regspacing)
2392 info->io.regspacing = DEFAULT_REGSPACING;
2393 info->io.regsize = DEFAULT_REGSPACING;
2394 info->io.regshift = 0;
2395
2396 info->slave_addr = ipmi_data->slave_addr;
2397
2398 info->irq = ipmi_data->irq;
2399 if (info->irq)
2400 info->irq_setup = std_irq_setup;
2401
2402 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2403 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2404 info->io.addr_data, info->io.regsize, info->io.regspacing,
2405 info->irq);
2406
2407 if (add_smi(info))
2408 kfree(info);
2409 }
2410
2411 static void __devinit dmi_find_bmc(void)
2412 {
2413 const struct dmi_device *dev = NULL;
2414 struct dmi_ipmi_data data;
2415 int rv;
2416
2417 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2418 memset(&data, 0, sizeof(data));
2419 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2420 &data);
2421 if (!rv)
2422 try_init_dmi(&data);
2423 }
2424 }
2425 #endif /* CONFIG_DMI */
2426
2427 #ifdef CONFIG_PCI
2428
2429 #define PCI_ERMC_CLASSCODE 0x0C0700
2430 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2431 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2432 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2433 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2434 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2435
2436 #define PCI_HP_VENDOR_ID 0x103C
2437 #define PCI_MMC_DEVICE_ID 0x121A
2438 #define PCI_MMC_ADDR_CW 0x10
2439
2440 static void ipmi_pci_cleanup(struct smi_info *info)
2441 {
2442 struct pci_dev *pdev = info->addr_source_data;
2443
2444 pci_disable_device(pdev);
2445 }
2446
2447 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2448 const struct pci_device_id *ent)
2449 {
2450 int rv;
2451 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2452 struct smi_info *info;
2453
2454 info = smi_info_alloc();
2455 if (!info)
2456 return -ENOMEM;
2457
2458 info->addr_source = SI_PCI;
2459 dev_info(&pdev->dev, "probing via PCI");
2460
2461 switch (class_type) {
2462 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2463 info->si_type = SI_SMIC;
2464 break;
2465
2466 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2467 info->si_type = SI_KCS;
2468 break;
2469
2470 case PCI_ERMC_CLASSCODE_TYPE_BT:
2471 info->si_type = SI_BT;
2472 break;
2473
2474 default:
2475 kfree(info);
2476 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2477 return -ENOMEM;
2478 }
2479
2480 rv = pci_enable_device(pdev);
2481 if (rv) {
2482 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2483 kfree(info);
2484 return rv;
2485 }
2486
2487 info->addr_source_cleanup = ipmi_pci_cleanup;
2488 info->addr_source_data = pdev;
2489
2490 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2491 info->io_setup = port_setup;
2492 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2493 } else {
2494 info->io_setup = mem_setup;
2495 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2496 }
2497 info->io.addr_data = pci_resource_start(pdev, 0);
2498
2499 info->io.regspacing = DEFAULT_REGSPACING;
2500 info->io.regsize = DEFAULT_REGSPACING;
2501 info->io.regshift = 0;
2502
2503 info->irq = pdev->irq;
2504 if (info->irq)
2505 info->irq_setup = std_irq_setup;
2506
2507 info->dev = &pdev->dev;
2508 pci_set_drvdata(pdev, info);
2509
2510 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2511 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2512 info->irq);
2513
2514 if (add_smi(info))
2515 kfree(info);
2516
2517 return 0;
2518 }
2519
2520 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2521 {
2522 struct smi_info *info = pci_get_drvdata(pdev);
2523 cleanup_one_si(info);
2524 }
2525
2526 #ifdef CONFIG_PM
2527 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2528 {
2529 return 0;
2530 }
2531
2532 static int ipmi_pci_resume(struct pci_dev *pdev)
2533 {
2534 return 0;
2535 }
2536 #endif
2537
2538 static struct pci_device_id ipmi_pci_devices[] = {
2539 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541 { 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545 static struct pci_driver ipmi_pci_driver = {
2546 .name = DEVICE_NAME,
2547 .id_table = ipmi_pci_devices,
2548 .probe = ipmi_pci_probe,
2549 .remove = __devexit_p(ipmi_pci_remove),
2550 #ifdef CONFIG_PM
2551 .suspend = ipmi_pci_suspend,
2552 .resume = ipmi_pci_resume,
2553 #endif
2554 };
2555 #endif /* CONFIG_PCI */
2556
2557 static struct of_device_id ipmi_match[];
2558 static int __devinit ipmi_probe(struct platform_device *dev)
2559 {
2560 #ifdef CONFIG_OF
2561 const struct of_device_id *match;
2562 struct smi_info *info;
2563 struct resource resource;
2564 const __be32 *regsize, *regspacing, *regshift;
2565 struct device_node *np = dev->dev.of_node;
2566 int ret;
2567 int proplen;
2568
2569 dev_info(&dev->dev, "probing via device tree\n");
2570
2571 match = of_match_device(ipmi_match, &dev->dev);
2572 if (!match)
2573 return -EINVAL;
2574
2575 ret = of_address_to_resource(np, 0, &resource);
2576 if (ret) {
2577 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2578 return ret;
2579 }
2580
2581 regsize = of_get_property(np, "reg-size", &proplen);
2582 if (regsize && proplen != 4) {
2583 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2584 return -EINVAL;
2585 }
2586
2587 regspacing = of_get_property(np, "reg-spacing", &proplen);
2588 if (regspacing && proplen != 4) {
2589 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2590 return -EINVAL;
2591 }
2592
2593 regshift = of_get_property(np, "reg-shift", &proplen);
2594 if (regshift && proplen != 4) {
2595 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2596 return -EINVAL;
2597 }
2598
2599 info = smi_info_alloc();
2600
2601 if (!info) {
2602 dev_err(&dev->dev,
2603 "could not allocate memory for OF probe\n");
2604 return -ENOMEM;
2605 }
2606
2607 info->si_type = (enum si_type) match->data;
2608 info->addr_source = SI_DEVICETREE;
2609 info->irq_setup = std_irq_setup;
2610
2611 if (resource.flags & IORESOURCE_IO) {
2612 info->io_setup = port_setup;
2613 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2614 } else {
2615 info->io_setup = mem_setup;
2616 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2617 }
2618
2619 info->io.addr_data = resource.start;
2620
2621 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2622 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2623 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2624
2625 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2626 info->dev = &dev->dev;
2627
2628 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2629 info->io.addr_data, info->io.regsize, info->io.regspacing,
2630 info->irq);
2631
2632 dev_set_drvdata(&dev->dev, info);
2633
2634 if (add_smi(info)) {
2635 kfree(info);
2636 return -EBUSY;
2637 }
2638 #endif
2639 return 0;
2640 }
2641
2642 static int __devexit ipmi_remove(struct platform_device *dev)
2643 {
2644 #ifdef CONFIG_OF
2645 cleanup_one_si(dev_get_drvdata(&dev->dev));
2646 #endif
2647 return 0;
2648 }
2649
2650 static struct of_device_id ipmi_match[] =
2651 {
2652 { .type = "ipmi", .compatible = "ipmi-kcs",
2653 .data = (void *)(unsigned long) SI_KCS },
2654 { .type = "ipmi", .compatible = "ipmi-smic",
2655 .data = (void *)(unsigned long) SI_SMIC },
2656 { .type = "ipmi", .compatible = "ipmi-bt",
2657 .data = (void *)(unsigned long) SI_BT },
2658 {},
2659 };
2660
2661 static struct platform_driver ipmi_driver = {
2662 .driver = {
2663 .name = DEVICE_NAME,
2664 .owner = THIS_MODULE,
2665 .of_match_table = ipmi_match,
2666 },
2667 .probe = ipmi_probe,
2668 .remove = __devexit_p(ipmi_remove),
2669 };
2670
2671 static int wait_for_msg_done(struct smi_info *smi_info)
2672 {
2673 enum si_sm_result smi_result;
2674
2675 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2676 for (;;) {
2677 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2678 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2679 schedule_timeout_uninterruptible(1);
2680 smi_result = smi_info->handlers->event(
2681 smi_info->si_sm, 100);
2682 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2683 smi_result = smi_info->handlers->event(
2684 smi_info->si_sm, 0);
2685 } else
2686 break;
2687 }
2688 if (smi_result == SI_SM_HOSED)
2689 /*
2690 * We couldn't get the state machine to run, so whatever's at
2691 * the port is probably not an IPMI SMI interface.
2692 */
2693 return -ENODEV;
2694
2695 return 0;
2696 }
2697
2698 static int try_get_dev_id(struct smi_info *smi_info)
2699 {
2700 unsigned char msg[2];
2701 unsigned char *resp;
2702 unsigned long resp_len;
2703 int rv = 0;
2704
2705 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2706 if (!resp)
2707 return -ENOMEM;
2708
2709 /*
2710 * Do a Get Device ID command, since it comes back with some
2711 * useful info.
2712 */
2713 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2714 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2715 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2716
2717 rv = wait_for_msg_done(smi_info);
2718 if (rv)
2719 goto out;
2720
2721 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2722 resp, IPMI_MAX_MSG_LENGTH);
2723
2724 /* Check and record info from the get device id, in case we need it. */
2725 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2726
2727 out:
2728 kfree(resp);
2729 return rv;
2730 }
2731
2732 static int try_enable_event_buffer(struct smi_info *smi_info)
2733 {
2734 unsigned char msg[3];
2735 unsigned char *resp;
2736 unsigned long resp_len;
2737 int rv = 0;
2738
2739 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2740 if (!resp)
2741 return -ENOMEM;
2742
2743 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2744 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2745 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2746
2747 rv = wait_for_msg_done(smi_info);
2748 if (rv) {
2749 printk(KERN_WARNING PFX "Error getting response from get"
2750 " global enables command, the event buffer is not"
2751 " enabled.\n");
2752 goto out;
2753 }
2754
2755 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2756 resp, IPMI_MAX_MSG_LENGTH);
2757
2758 if (resp_len < 4 ||
2759 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2760 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2761 resp[2] != 0) {
2762 printk(KERN_WARNING PFX "Invalid return from get global"
2763 " enables command, cannot enable the event buffer.\n");
2764 rv = -EINVAL;
2765 goto out;
2766 }
2767
2768 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2769 /* buffer is already enabled, nothing to do. */
2770 goto out;
2771
2772 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2773 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2774 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2775 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2776
2777 rv = wait_for_msg_done(smi_info);
2778 if (rv) {
2779 printk(KERN_WARNING PFX "Error getting response from set"
2780 " global, enables command, the event buffer is not"
2781 " enabled.\n");
2782 goto out;
2783 }
2784
2785 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2786 resp, IPMI_MAX_MSG_LENGTH);
2787
2788 if (resp_len < 3 ||
2789 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2790 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2791 printk(KERN_WARNING PFX "Invalid return from get global,"
2792 "enables command, not enable the event buffer.\n");
2793 rv = -EINVAL;
2794 goto out;
2795 }
2796
2797 if (resp[2] != 0)
2798 /*
2799 * An error when setting the event buffer bit means
2800 * that the event buffer is not supported.
2801 */
2802 rv = -ENOENT;
2803 out:
2804 kfree(resp);
2805 return rv;
2806 }
2807
2808 static int type_file_read_proc(char *page, char **start, off_t off,
2809 int count, int *eof, void *data)
2810 {
2811 struct smi_info *smi = data;
2812
2813 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2814 }
2815
2816 static int stat_file_read_proc(char *page, char **start, off_t off,
2817 int count, int *eof, void *data)
2818 {
2819 char *out = (char *) page;
2820 struct smi_info *smi = data;
2821
2822 out += sprintf(out, "interrupts_enabled: %d\n",
2823 smi->irq && !smi->interrupt_disabled);
2824 out += sprintf(out, "short_timeouts: %u\n",
2825 smi_get_stat(smi, short_timeouts));
2826 out += sprintf(out, "long_timeouts: %u\n",
2827 smi_get_stat(smi, long_timeouts));
2828 out += sprintf(out, "idles: %u\n",
2829 smi_get_stat(smi, idles));
2830 out += sprintf(out, "interrupts: %u\n",
2831 smi_get_stat(smi, interrupts));
2832 out += sprintf(out, "attentions: %u\n",
2833 smi_get_stat(smi, attentions));
2834 out += sprintf(out, "flag_fetches: %u\n",
2835 smi_get_stat(smi, flag_fetches));
2836 out += sprintf(out, "hosed_count: %u\n",
2837 smi_get_stat(smi, hosed_count));
2838 out += sprintf(out, "complete_transactions: %u\n",
2839 smi_get_stat(smi, complete_transactions));
2840 out += sprintf(out, "events: %u\n",
2841 smi_get_stat(smi, events));
2842 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2843 smi_get_stat(smi, watchdog_pretimeouts));
2844 out += sprintf(out, "incoming_messages: %u\n",
2845 smi_get_stat(smi, incoming_messages));
2846
2847 return out - page;
2848 }
2849
2850 static int param_read_proc(char *page, char **start, off_t off,
2851 int count, int *eof, void *data)
2852 {
2853 struct smi_info *smi = data;
2854
2855 return sprintf(page,
2856 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2857 si_to_str[smi->si_type],
2858 addr_space_to_str[smi->io.addr_type],
2859 smi->io.addr_data,
2860 smi->io.regspacing,
2861 smi->io.regsize,
2862 smi->io.regshift,
2863 smi->irq,
2864 smi->slave_addr);
2865 }
2866
2867 /*
2868 * oem_data_avail_to_receive_msg_avail
2869 * @info - smi_info structure with msg_flags set
2870 *
2871 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2872 * Returns 1 indicating need to re-run handle_flags().
2873 */
2874 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2875 {
2876 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2877 RECEIVE_MSG_AVAIL);
2878 return 1;
2879 }
2880
2881 /*
2882 * setup_dell_poweredge_oem_data_handler
2883 * @info - smi_info.device_id must be populated
2884 *
2885 * Systems that match, but have firmware version < 1.40 may assert
2886 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2887 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2888 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2889 * as RECEIVE_MSG_AVAIL instead.
2890 *
2891 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2892 * assert the OEM[012] bits, and if it did, the driver would have to
2893 * change to handle that properly, we don't actually check for the
2894 * firmware version.
2895 * Device ID = 0x20 BMC on PowerEdge 8G servers
2896 * Device Revision = 0x80
2897 * Firmware Revision1 = 0x01 BMC version 1.40
2898 * Firmware Revision2 = 0x40 BCD encoded
2899 * IPMI Version = 0x51 IPMI 1.5
2900 * Manufacturer ID = A2 02 00 Dell IANA
2901 *
2902 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2903 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2904 *
2905 */
2906 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2907 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2908 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2909 #define DELL_IANA_MFR_ID 0x0002a2
2910 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2911 {
2912 struct ipmi_device_id *id = &smi_info->device_id;
2913 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2914 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2915 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2916 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2917 smi_info->oem_data_avail_handler =
2918 oem_data_avail_to_receive_msg_avail;
2919 } else if (ipmi_version_major(id) < 1 ||
2920 (ipmi_version_major(id) == 1 &&
2921 ipmi_version_minor(id) < 5)) {
2922 smi_info->oem_data_avail_handler =
2923 oem_data_avail_to_receive_msg_avail;
2924 }
2925 }
2926 }
2927
2928 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2929 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2930 {
2931 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2932
2933 /* Make it a response */
2934 msg->rsp[0] = msg->data[0] | 4;
2935 msg->rsp[1] = msg->data[1];
2936 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2937 msg->rsp_size = 3;
2938 smi_info->curr_msg = NULL;
2939 deliver_recv_msg(smi_info, msg);
2940 }
2941
2942 /*
2943 * dell_poweredge_bt_xaction_handler
2944 * @info - smi_info.device_id must be populated
2945 *
2946 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2947 * not respond to a Get SDR command if the length of the data
2948 * requested is exactly 0x3A, which leads to command timeouts and no
2949 * data returned. This intercepts such commands, and causes userspace
2950 * callers to try again with a different-sized buffer, which succeeds.
2951 */
2952
2953 #define STORAGE_NETFN 0x0A
2954 #define STORAGE_CMD_GET_SDR 0x23
2955 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2956 unsigned long unused,
2957 void *in)
2958 {
2959 struct smi_info *smi_info = in;
2960 unsigned char *data = smi_info->curr_msg->data;
2961 unsigned int size = smi_info->curr_msg->data_size;
2962 if (size >= 8 &&
2963 (data[0]>>2) == STORAGE_NETFN &&
2964 data[1] == STORAGE_CMD_GET_SDR &&
2965 data[7] == 0x3A) {
2966 return_hosed_msg_badsize(smi_info);
2967 return NOTIFY_STOP;
2968 }
2969 return NOTIFY_DONE;
2970 }
2971
2972 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2973 .notifier_call = dell_poweredge_bt_xaction_handler,
2974 };
2975
2976 /*
2977 * setup_dell_poweredge_bt_xaction_handler
2978 * @info - smi_info.device_id must be filled in already
2979 *
2980 * Fills in smi_info.device_id.start_transaction_pre_hook
2981 * when we know what function to use there.
2982 */
2983 static void
2984 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2985 {
2986 struct ipmi_device_id *id = &smi_info->device_id;
2987 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2988 smi_info->si_type == SI_BT)
2989 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2990 }
2991
2992 /*
2993 * setup_oem_data_handler
2994 * @info - smi_info.device_id must be filled in already
2995 *
2996 * Fills in smi_info.device_id.oem_data_available_handler
2997 * when we know what function to use there.
2998 */
2999
3000 static void setup_oem_data_handler(struct smi_info *smi_info)
3001 {
3002 setup_dell_poweredge_oem_data_handler(smi_info);
3003 }
3004
3005 static void setup_xaction_handlers(struct smi_info *smi_info)
3006 {
3007 setup_dell_poweredge_bt_xaction_handler(smi_info);
3008 }
3009
3010 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3011 {
3012 if (smi_info->intf) {
3013 /*
3014 * The timer and thread are only running if the
3015 * interface has been started up and registered.
3016 */
3017 if (smi_info->thread != NULL)
3018 kthread_stop(smi_info->thread);
3019 del_timer_sync(&smi_info->si_timer);
3020 }
3021 }
3022
3023 static __devinitdata struct ipmi_default_vals
3024 {
3025 int type;
3026 int port;
3027 } ipmi_defaults[] =
3028 {
3029 { .type = SI_KCS, .port = 0xca2 },
3030 { .type = SI_SMIC, .port = 0xca9 },
3031 { .type = SI_BT, .port = 0xe4 },
3032 { .port = 0 }
3033 };
3034
3035 static void __devinit default_find_bmc(void)
3036 {
3037 struct smi_info *info;
3038 int i;
3039
3040 for (i = 0; ; i++) {
3041 if (!ipmi_defaults[i].port)
3042 break;
3043 #ifdef CONFIG_PPC
3044 if (check_legacy_ioport(ipmi_defaults[i].port))
3045 continue;
3046 #endif
3047 info = smi_info_alloc();
3048 if (!info)
3049 return;
3050
3051 info->addr_source = SI_DEFAULT;
3052
3053 info->si_type = ipmi_defaults[i].type;
3054 info->io_setup = port_setup;
3055 info->io.addr_data = ipmi_defaults[i].port;
3056 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3057
3058 info->io.addr = NULL;
3059 info->io.regspacing = DEFAULT_REGSPACING;
3060 info->io.regsize = DEFAULT_REGSPACING;
3061 info->io.regshift = 0;
3062
3063 if (add_smi(info) == 0) {
3064 if ((try_smi_init(info)) == 0) {
3065 /* Found one... */
3066 printk(KERN_INFO PFX "Found default %s"
3067 " state machine at %s address 0x%lx\n",
3068 si_to_str[info->si_type],
3069 addr_space_to_str[info->io.addr_type],
3070 info->io.addr_data);
3071 } else
3072 cleanup_one_si(info);
3073 } else {
3074 kfree(info);
3075 }
3076 }
3077 }
3078
3079 static int is_new_interface(struct smi_info *info)
3080 {
3081 struct smi_info *e;
3082
3083 list_for_each_entry(e, &smi_infos, link) {
3084 if (e->io.addr_type != info->io.addr_type)
3085 continue;
3086 if (e->io.addr_data == info->io.addr_data)
3087 return 0;
3088 }
3089
3090 return 1;
3091 }
3092
3093 static int add_smi(struct smi_info *new_smi)
3094 {
3095 int rv = 0;
3096
3097 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3098 ipmi_addr_src_to_str[new_smi->addr_source],
3099 si_to_str[new_smi->si_type]);
3100 mutex_lock(&smi_infos_lock);
3101 if (!is_new_interface(new_smi)) {
3102 printk(KERN_CONT " duplicate interface\n");
3103 rv = -EBUSY;
3104 goto out_err;
3105 }
3106
3107 printk(KERN_CONT "\n");
3108
3109 /* So we know not to free it unless we have allocated one. */
3110 new_smi->intf = NULL;
3111 new_smi->si_sm = NULL;
3112 new_smi->handlers = NULL;
3113
3114 list_add_tail(&new_smi->link, &smi_infos);
3115
3116 out_err:
3117 mutex_unlock(&smi_infos_lock);
3118 return rv;
3119 }
3120
3121 static int try_smi_init(struct smi_info *new_smi)
3122 {
3123 int rv = 0;
3124 int i;
3125
3126 printk(KERN_INFO PFX "Trying %s-specified %s state"
3127 " machine at %s address 0x%lx, slave address 0x%x,"
3128 " irq %d\n",
3129 ipmi_addr_src_to_str[new_smi->addr_source],
3130 si_to_str[new_smi->si_type],
3131 addr_space_to_str[new_smi->io.addr_type],
3132 new_smi->io.addr_data,
3133 new_smi->slave_addr, new_smi->irq);
3134
3135 switch (new_smi->si_type) {
3136 case SI_KCS:
3137 new_smi->handlers = &kcs_smi_handlers;
3138 break;
3139
3140 case SI_SMIC:
3141 new_smi->handlers = &smic_smi_handlers;
3142 break;
3143
3144 case SI_BT:
3145 new_smi->handlers = &bt_smi_handlers;
3146 break;
3147
3148 default:
3149 /* No support for anything else yet. */
3150 rv = -EIO;
3151 goto out_err;
3152 }
3153
3154 /* Allocate the state machine's data and initialize it. */
3155 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3156 if (!new_smi->si_sm) {
3157 printk(KERN_ERR PFX
3158 "Could not allocate state machine memory\n");
3159 rv = -ENOMEM;
3160 goto out_err;
3161 }
3162 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3163 &new_smi->io);
3164
3165 /* Now that we know the I/O size, we can set up the I/O. */
3166 rv = new_smi->io_setup(new_smi);
3167 if (rv) {
3168 printk(KERN_ERR PFX "Could not set up I/O space\n");
3169 goto out_err;
3170 }
3171
3172 /* Do low-level detection first. */
3173 if (new_smi->handlers->detect(new_smi->si_sm)) {
3174 if (new_smi->addr_source)
3175 printk(KERN_INFO PFX "Interface detection failed\n");
3176 rv = -ENODEV;
3177 goto out_err;
3178 }
3179
3180 /*
3181 * Attempt a get device id command. If it fails, we probably
3182 * don't have a BMC here.
3183 */
3184 rv = try_get_dev_id(new_smi);
3185 if (rv) {
3186 if (new_smi->addr_source)
3187 printk(KERN_INFO PFX "There appears to be no BMC"
3188 " at this location\n");
3189 goto out_err;
3190 }
3191
3192 setup_oem_data_handler(new_smi);
3193 setup_xaction_handlers(new_smi);
3194
3195 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3196 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3197 new_smi->curr_msg = NULL;
3198 atomic_set(&new_smi->req_events, 0);
3199 new_smi->run_to_completion = 0;
3200 for (i = 0; i < SI_NUM_STATS; i++)
3201 atomic_set(&new_smi->stats[i], 0);
3202
3203 new_smi->interrupt_disabled = 1;
3204 atomic_set(&new_smi->stop_operation, 0);
3205 new_smi->intf_num = smi_num;
3206 smi_num++;
3207
3208 rv = try_enable_event_buffer(new_smi);
3209 if (rv == 0)
3210 new_smi->has_event_buffer = 1;
3211
3212 /*
3213 * Start clearing the flags before we enable interrupts or the
3214 * timer to avoid racing with the timer.
3215 */
3216 start_clear_flags(new_smi);
3217 /* IRQ is defined to be set when non-zero. */
3218 if (new_smi->irq)
3219 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3220
3221 if (!new_smi->dev) {
3222 /*
3223 * If we don't already have a device from something
3224 * else (like PCI), then register a new one.
3225 */
3226 new_smi->pdev = platform_device_alloc("ipmi_si",
3227 new_smi->intf_num);
3228 if (!new_smi->pdev) {
3229 printk(KERN_ERR PFX
3230 "Unable to allocate platform device\n");
3231 goto out_err;
3232 }
3233 new_smi->dev = &new_smi->pdev->dev;
3234 new_smi->dev->driver = &ipmi_driver.driver;
3235
3236 rv = platform_device_add(new_smi->pdev);
3237 if (rv) {
3238 printk(KERN_ERR PFX
3239 "Unable to register system interface device:"
3240 " %d\n",
3241 rv);
3242 goto out_err;
3243 }
3244 new_smi->dev_registered = 1;
3245 }
3246
3247 rv = ipmi_register_smi(&handlers,
3248 new_smi,
3249 &new_smi->device_id,
3250 new_smi->dev,
3251 "bmc",
3252 new_smi->slave_addr);
3253 if (rv) {
3254 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3255 rv);
3256 goto out_err_stop_timer;
3257 }
3258
3259 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3260 type_file_read_proc,
3261 new_smi);
3262 if (rv) {
3263 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3264 goto out_err_stop_timer;
3265 }
3266
3267 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3268 stat_file_read_proc,
3269 new_smi);
3270 if (rv) {
3271 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3272 goto out_err_stop_timer;
3273 }
3274
3275 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3276 param_read_proc,
3277 new_smi);
3278 if (rv) {
3279 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3280 goto out_err_stop_timer;
3281 }
3282
3283 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3284 si_to_str[new_smi->si_type]);
3285
3286 return 0;
3287
3288 out_err_stop_timer:
3289 atomic_inc(&new_smi->stop_operation);
3290 wait_for_timer_and_thread(new_smi);
3291
3292 out_err:
3293 new_smi->interrupt_disabled = 1;
3294
3295 if (new_smi->intf) {
3296 ipmi_unregister_smi(new_smi->intf);
3297 new_smi->intf = NULL;
3298 }
3299
3300 if (new_smi->irq_cleanup) {
3301 new_smi->irq_cleanup(new_smi);
3302 new_smi->irq_cleanup = NULL;
3303 }
3304
3305 /*
3306 * Wait until we know that we are out of any interrupt
3307 * handlers might have been running before we freed the
3308 * interrupt.
3309 */
3310 synchronize_sched();
3311
3312 if (new_smi->si_sm) {
3313 if (new_smi->handlers)
3314 new_smi->handlers->cleanup(new_smi->si_sm);
3315 kfree(new_smi->si_sm);
3316 new_smi->si_sm = NULL;
3317 }
3318 if (new_smi->addr_source_cleanup) {
3319 new_smi->addr_source_cleanup(new_smi);
3320 new_smi->addr_source_cleanup = NULL;
3321 }
3322 if (new_smi->io_cleanup) {
3323 new_smi->io_cleanup(new_smi);
3324 new_smi->io_cleanup = NULL;
3325 }
3326
3327 if (new_smi->dev_registered) {
3328 platform_device_unregister(new_smi->pdev);
3329 new_smi->dev_registered = 0;
3330 }
3331
3332 return rv;
3333 }
3334
3335 static int __devinit init_ipmi_si(void)
3336 {
3337 int i;
3338 char *str;
3339 int rv;
3340 struct smi_info *e;
3341 enum ipmi_addr_src type = SI_INVALID;
3342
3343 if (initialized)
3344 return 0;
3345 initialized = 1;
3346
3347 rv = platform_driver_register(&ipmi_driver);
3348 if (rv) {
3349 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3350 return rv;
3351 }
3352
3353
3354 /* Parse out the si_type string into its components. */
3355 str = si_type_str;
3356 if (*str != '\0') {
3357 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3358 si_type[i] = str;
3359 str = strchr(str, ',');
3360 if (str) {
3361 *str = '\0';
3362 str++;
3363 } else {
3364 break;
3365 }
3366 }
3367 }
3368
3369 printk(KERN_INFO "IPMI System Interface driver.\n");
3370
3371 /* If the user gave us a device, they presumably want us to use it */
3372 if (!hardcode_find_bmc())
3373 return 0;
3374
3375 #ifdef CONFIG_PCI
3376 rv = pci_register_driver(&ipmi_pci_driver);
3377 if (rv)
3378 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3379 else
3380 pci_registered = 1;
3381 #endif
3382
3383 #ifdef CONFIG_ACPI
3384 pnp_register_driver(&ipmi_pnp_driver);
3385 pnp_registered = 1;
3386 #endif
3387
3388 #ifdef CONFIG_DMI
3389 dmi_find_bmc();
3390 #endif
3391
3392 #ifdef CONFIG_ACPI
3393 spmi_find_bmc();
3394 #endif
3395
3396 /* We prefer devices with interrupts, but in the case of a machine
3397 with multiple BMCs we assume that there will be several instances
3398 of a given type so if we succeed in registering a type then also
3399 try to register everything else of the same type */
3400
3401 mutex_lock(&smi_infos_lock);
3402 list_for_each_entry(e, &smi_infos, link) {
3403 /* Try to register a device if it has an IRQ and we either
3404 haven't successfully registered a device yet or this
3405 device has the same type as one we successfully registered */
3406 if (e->irq && (!type || e->addr_source == type)) {
3407 if (!try_smi_init(e)) {
3408 type = e->addr_source;
3409 }
3410 }
3411 }
3412
3413 /* type will only have been set if we successfully registered an si */
3414 if (type) {
3415 mutex_unlock(&smi_infos_lock);
3416 return 0;
3417 }
3418
3419 /* Fall back to the preferred device */
3420
3421 list_for_each_entry(e, &smi_infos, link) {
3422 if (!e->irq && (!type || e->addr_source == type)) {
3423 if (!try_smi_init(e)) {
3424 type = e->addr_source;
3425 }
3426 }
3427 }
3428 mutex_unlock(&smi_infos_lock);
3429
3430 if (type)
3431 return 0;
3432
3433 if (si_trydefaults) {
3434 mutex_lock(&smi_infos_lock);
3435 if (list_empty(&smi_infos)) {
3436 /* No BMC was found, try defaults. */
3437 mutex_unlock(&smi_infos_lock);
3438 default_find_bmc();
3439 } else
3440 mutex_unlock(&smi_infos_lock);
3441 }
3442
3443 mutex_lock(&smi_infos_lock);
3444 if (unload_when_empty && list_empty(&smi_infos)) {
3445 mutex_unlock(&smi_infos_lock);
3446 cleanup_ipmi_si();
3447 printk(KERN_WARNING PFX
3448 "Unable to find any System Interface(s)\n");
3449 return -ENODEV;
3450 } else {
3451 mutex_unlock(&smi_infos_lock);
3452 return 0;
3453 }
3454 }
3455 module_init(init_ipmi_si);
3456
3457 static void cleanup_one_si(struct smi_info *to_clean)
3458 {
3459 int rv = 0;
3460 unsigned long flags;
3461
3462 if (!to_clean)
3463 return;
3464
3465 list_del(&to_clean->link);
3466
3467 /* Tell the driver that we are shutting down. */
3468 atomic_inc(&to_clean->stop_operation);
3469
3470 /*
3471 * Make sure the timer and thread are stopped and will not run
3472 * again.
3473 */
3474 wait_for_timer_and_thread(to_clean);
3475
3476 /*
3477 * Timeouts are stopped, now make sure the interrupts are off
3478 * for the device. A little tricky with locks to make sure
3479 * there are no races.
3480 */
3481 spin_lock_irqsave(&to_clean->si_lock, flags);
3482 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3483 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3484 poll(to_clean);
3485 schedule_timeout_uninterruptible(1);
3486 spin_lock_irqsave(&to_clean->si_lock, flags);
3487 }
3488 disable_si_irq(to_clean);
3489 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3490 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3491 poll(to_clean);
3492 schedule_timeout_uninterruptible(1);
3493 }
3494
3495 /* Clean up interrupts and make sure that everything is done. */
3496 if (to_clean->irq_cleanup)
3497 to_clean->irq_cleanup(to_clean);
3498 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499 poll(to_clean);
3500 schedule_timeout_uninterruptible(1);
3501 }
3502
3503 if (to_clean->intf)
3504 rv = ipmi_unregister_smi(to_clean->intf);
3505
3506 if (rv) {
3507 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3508 rv);
3509 }
3510
3511 if (to_clean->handlers)
3512 to_clean->handlers->cleanup(to_clean->si_sm);
3513
3514 kfree(to_clean->si_sm);
3515
3516 if (to_clean->addr_source_cleanup)
3517 to_clean->addr_source_cleanup(to_clean);
3518 if (to_clean->io_cleanup)
3519 to_clean->io_cleanup(to_clean);
3520
3521 if (to_clean->dev_registered)
3522 platform_device_unregister(to_clean->pdev);
3523
3524 kfree(to_clean);
3525 }
3526
3527 static void cleanup_ipmi_si(void)
3528 {
3529 struct smi_info *e, *tmp_e;
3530
3531 if (!initialized)
3532 return;
3533
3534 #ifdef CONFIG_PCI
3535 if (pci_registered)
3536 pci_unregister_driver(&ipmi_pci_driver);
3537 #endif
3538 #ifdef CONFIG_ACPI
3539 if (pnp_registered)
3540 pnp_unregister_driver(&ipmi_pnp_driver);
3541 #endif
3542
3543 platform_driver_unregister(&ipmi_driver);
3544
3545 mutex_lock(&smi_infos_lock);
3546 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3547 cleanup_one_si(e);
3548 mutex_unlock(&smi_infos_lock);
3549 }
3550 module_exit(cleanup_ipmi_si);
3551
3552 MODULE_LICENSE("GPL");
3553 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3554 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3555 " system interfaces.");