]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/random.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45 /*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
136 *
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/kmemcheck.h>
263 #include <linux/workqueue.h>
264 #include <linux/irq.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
269
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278
279 /* #define ADD_INTERRUPT_BENCH */
280
281 /*
282 * Configuration information
283 */
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
290
291 #define DEBUG_RANDOM_BOOT 0
292
293 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
294
295 /*
296 * To allow fractional bits to be tracked, the entropy_count field is
297 * denominated in units of 1/8th bits.
298 *
299 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
300 * credit_entropy_bits() needs to be 64 bits wide.
301 */
302 #define ENTROPY_SHIFT 3
303 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
304
305 /*
306 * The minimum number of bits of entropy before we wake up a read on
307 * /dev/random. Should be enough to do a significant reseed.
308 */
309 static int random_read_wakeup_bits = 64;
310
311 /*
312 * If the entropy count falls under this number of bits, then we
313 * should wake up processes which are selecting or polling on write
314 * access to /dev/random.
315 */
316 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
317
318 /*
319 * Originally, we used a primitive polynomial of degree .poolwords
320 * over GF(2). The taps for various sizes are defined below. They
321 * were chosen to be evenly spaced except for the last tap, which is 1
322 * to get the twisting happening as fast as possible.
323 *
324 * For the purposes of better mixing, we use the CRC-32 polynomial as
325 * well to make a (modified) twisted Generalized Feedback Shift
326 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
327 * generators. ACM Transactions on Modeling and Computer Simulation
328 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
329 * GFSR generators II. ACM Transactions on Modeling and Computer
330 * Simulation 4:254-266)
331 *
332 * Thanks to Colin Plumb for suggesting this.
333 *
334 * The mixing operation is much less sensitive than the output hash,
335 * where we use SHA-1. All that we want of mixing operation is that
336 * it be a good non-cryptographic hash; i.e. it not produce collisions
337 * when fed "random" data of the sort we expect to see. As long as
338 * the pool state differs for different inputs, we have preserved the
339 * input entropy and done a good job. The fact that an intelligent
340 * attacker can construct inputs that will produce controlled
341 * alterations to the pool's state is not important because we don't
342 * consider such inputs to contribute any randomness. The only
343 * property we need with respect to them is that the attacker can't
344 * increase his/her knowledge of the pool's state. Since all
345 * additions are reversible (knowing the final state and the input,
346 * you can reconstruct the initial state), if an attacker has any
347 * uncertainty about the initial state, he/she can only shuffle that
348 * uncertainty about, but never cause any collisions (which would
349 * decrease the uncertainty).
350 *
351 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
352 * Videau in their paper, "The Linux Pseudorandom Number Generator
353 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
354 * paper, they point out that we are not using a true Twisted GFSR,
355 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
356 * is, with only three taps, instead of the six that we are using).
357 * As a result, the resulting polynomial is neither primitive nor
358 * irreducible, and hence does not have a maximal period over
359 * GF(2**32). They suggest a slight change to the generator
360 * polynomial which improves the resulting TGFSR polynomial to be
361 * irreducible, which we have made here.
362 */
363 static struct poolinfo {
364 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
365 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
366 int tap1, tap2, tap3, tap4, tap5;
367 } poolinfo_table[] = {
368 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
369 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
370 { S(128), 104, 76, 51, 25, 1 },
371 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
372 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
373 { S(32), 26, 19, 14, 7, 1 },
374 #if 0
375 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
376 { S(2048), 1638, 1231, 819, 411, 1 },
377
378 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
379 { S(1024), 817, 615, 412, 204, 1 },
380
381 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
382 { S(1024), 819, 616, 410, 207, 2 },
383
384 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
385 { S(512), 411, 308, 208, 104, 1 },
386
387 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
388 { S(512), 409, 307, 206, 102, 2 },
389 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
390 { S(512), 409, 309, 205, 103, 2 },
391
392 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
393 { S(256), 205, 155, 101, 52, 1 },
394
395 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
396 { S(128), 103, 78, 51, 27, 2 },
397
398 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
399 { S(64), 52, 39, 26, 14, 1 },
400 #endif
401 };
402
403 /*
404 * Static global variables
405 */
406 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
407 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
408 static struct fasync_struct *fasync;
409
410 static DEFINE_SPINLOCK(random_ready_list_lock);
411 static LIST_HEAD(random_ready_list);
412
413 struct crng_state {
414 __u32 state[16];
415 unsigned long init_time;
416 spinlock_t lock;
417 };
418
419 struct crng_state primary_crng = {
420 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
421 };
422
423 /*
424 * crng_init = 0 --> Uninitialized
425 * 1 --> Initialized
426 * 2 --> Initialized from input_pool
427 *
428 * crng_init is protected by primary_crng->lock, and only increases
429 * its value (from 0->1->2).
430 */
431 static int crng_init = 0;
432 #define crng_ready() (likely(crng_init > 0))
433 static int crng_init_cnt = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng,
436 __u8 out[CHACHA20_BLOCK_SIZE]);
437 static void _crng_backtrack_protect(struct crng_state *crng,
438 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
439 static void process_random_ready_list(void);
440
441 /**********************************************************************
442 *
443 * OS independent entropy store. Here are the functions which handle
444 * storing entropy in an entropy pool.
445 *
446 **********************************************************************/
447
448 struct entropy_store;
449 struct entropy_store {
450 /* read-only data: */
451 const struct poolinfo *poolinfo;
452 __u32 *pool;
453 const char *name;
454 struct entropy_store *pull;
455 struct work_struct push_work;
456
457 /* read-write data: */
458 unsigned long last_pulled;
459 spinlock_t lock;
460 unsigned short add_ptr;
461 unsigned short input_rotate;
462 int entropy_count;
463 int entropy_total;
464 unsigned int initialized:1;
465 unsigned int last_data_init:1;
466 __u8 last_data[EXTRACT_SIZE];
467 };
468
469 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
470 size_t nbytes, int min, int rsvd);
471 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
472 size_t nbytes, int fips);
473
474 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
475 static void push_to_pool(struct work_struct *work);
476 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
477 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
478
479 static struct entropy_store input_pool = {
480 .poolinfo = &poolinfo_table[0],
481 .name = "input",
482 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
483 .pool = input_pool_data
484 };
485
486 static struct entropy_store blocking_pool = {
487 .poolinfo = &poolinfo_table[1],
488 .name = "blocking",
489 .pull = &input_pool,
490 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
491 .pool = blocking_pool_data,
492 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
493 push_to_pool),
494 };
495
496 static __u32 const twist_table[8] = {
497 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
498 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
499
500 /*
501 * This function adds bytes into the entropy "pool". It does not
502 * update the entropy estimate. The caller should call
503 * credit_entropy_bits if this is appropriate.
504 *
505 * The pool is stirred with a primitive polynomial of the appropriate
506 * degree, and then twisted. We twist by three bits at a time because
507 * it's cheap to do so and helps slightly in the expected case where
508 * the entropy is concentrated in the low-order bits.
509 */
510 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
511 int nbytes)
512 {
513 unsigned long i, tap1, tap2, tap3, tap4, tap5;
514 int input_rotate;
515 int wordmask = r->poolinfo->poolwords - 1;
516 const char *bytes = in;
517 __u32 w;
518
519 tap1 = r->poolinfo->tap1;
520 tap2 = r->poolinfo->tap2;
521 tap3 = r->poolinfo->tap3;
522 tap4 = r->poolinfo->tap4;
523 tap5 = r->poolinfo->tap5;
524
525 input_rotate = r->input_rotate;
526 i = r->add_ptr;
527
528 /* mix one byte at a time to simplify size handling and churn faster */
529 while (nbytes--) {
530 w = rol32(*bytes++, input_rotate);
531 i = (i - 1) & wordmask;
532
533 /* XOR in the various taps */
534 w ^= r->pool[i];
535 w ^= r->pool[(i + tap1) & wordmask];
536 w ^= r->pool[(i + tap2) & wordmask];
537 w ^= r->pool[(i + tap3) & wordmask];
538 w ^= r->pool[(i + tap4) & wordmask];
539 w ^= r->pool[(i + tap5) & wordmask];
540
541 /* Mix the result back in with a twist */
542 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
543
544 /*
545 * Normally, we add 7 bits of rotation to the pool.
546 * At the beginning of the pool, add an extra 7 bits
547 * rotation, so that successive passes spread the
548 * input bits across the pool evenly.
549 */
550 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
551 }
552
553 r->input_rotate = input_rotate;
554 r->add_ptr = i;
555 }
556
557 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
558 int nbytes)
559 {
560 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
561 _mix_pool_bytes(r, in, nbytes);
562 }
563
564 static void mix_pool_bytes(struct entropy_store *r, const void *in,
565 int nbytes)
566 {
567 unsigned long flags;
568
569 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
570 spin_lock_irqsave(&r->lock, flags);
571 _mix_pool_bytes(r, in, nbytes);
572 spin_unlock_irqrestore(&r->lock, flags);
573 }
574
575 struct fast_pool {
576 __u32 pool[4];
577 unsigned long last;
578 unsigned short reg_idx;
579 unsigned char count;
580 };
581
582 /*
583 * This is a fast mixing routine used by the interrupt randomness
584 * collector. It's hardcoded for an 128 bit pool and assumes that any
585 * locks that might be needed are taken by the caller.
586 */
587 static void fast_mix(struct fast_pool *f)
588 {
589 __u32 a = f->pool[0], b = f->pool[1];
590 __u32 c = f->pool[2], d = f->pool[3];
591
592 a += b; c += d;
593 b = rol32(b, 6); d = rol32(d, 27);
594 d ^= a; b ^= c;
595
596 a += b; c += d;
597 b = rol32(b, 16); d = rol32(d, 14);
598 d ^= a; b ^= c;
599
600 a += b; c += d;
601 b = rol32(b, 6); d = rol32(d, 27);
602 d ^= a; b ^= c;
603
604 a += b; c += d;
605 b = rol32(b, 16); d = rol32(d, 14);
606 d ^= a; b ^= c;
607
608 f->pool[0] = a; f->pool[1] = b;
609 f->pool[2] = c; f->pool[3] = d;
610 f->count++;
611 }
612
613 static void process_random_ready_list(void)
614 {
615 unsigned long flags;
616 struct random_ready_callback *rdy, *tmp;
617
618 spin_lock_irqsave(&random_ready_list_lock, flags);
619 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
620 struct module *owner = rdy->owner;
621
622 list_del_init(&rdy->list);
623 rdy->func(rdy);
624 module_put(owner);
625 }
626 spin_unlock_irqrestore(&random_ready_list_lock, flags);
627 }
628
629 /*
630 * Credit (or debit) the entropy store with n bits of entropy.
631 * Use credit_entropy_bits_safe() if the value comes from userspace
632 * or otherwise should be checked for extreme values.
633 */
634 static void credit_entropy_bits(struct entropy_store *r, int nbits)
635 {
636 int entropy_count, orig;
637 const int pool_size = r->poolinfo->poolfracbits;
638 int nfrac = nbits << ENTROPY_SHIFT;
639
640 if (!nbits)
641 return;
642
643 retry:
644 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
645 if (nfrac < 0) {
646 /* Debit */
647 entropy_count += nfrac;
648 } else {
649 /*
650 * Credit: we have to account for the possibility of
651 * overwriting already present entropy. Even in the
652 * ideal case of pure Shannon entropy, new contributions
653 * approach the full value asymptotically:
654 *
655 * entropy <- entropy + (pool_size - entropy) *
656 * (1 - exp(-add_entropy/pool_size))
657 *
658 * For add_entropy <= pool_size/2 then
659 * (1 - exp(-add_entropy/pool_size)) >=
660 * (add_entropy/pool_size)*0.7869...
661 * so we can approximate the exponential with
662 * 3/4*add_entropy/pool_size and still be on the
663 * safe side by adding at most pool_size/2 at a time.
664 *
665 * The use of pool_size-2 in the while statement is to
666 * prevent rounding artifacts from making the loop
667 * arbitrarily long; this limits the loop to log2(pool_size)*2
668 * turns no matter how large nbits is.
669 */
670 int pnfrac = nfrac;
671 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
672 /* The +2 corresponds to the /4 in the denominator */
673
674 do {
675 unsigned int anfrac = min(pnfrac, pool_size/2);
676 unsigned int add =
677 ((pool_size - entropy_count)*anfrac*3) >> s;
678
679 entropy_count += add;
680 pnfrac -= anfrac;
681 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
682 }
683
684 if (unlikely(entropy_count < 0)) {
685 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
686 r->name, entropy_count);
687 WARN_ON(1);
688 entropy_count = 0;
689 } else if (entropy_count > pool_size)
690 entropy_count = pool_size;
691 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
692 goto retry;
693
694 r->entropy_total += nbits;
695 if (!r->initialized && r->entropy_total > 128) {
696 r->initialized = 1;
697 r->entropy_total = 0;
698 }
699
700 trace_credit_entropy_bits(r->name, nbits,
701 entropy_count >> ENTROPY_SHIFT,
702 r->entropy_total, _RET_IP_);
703
704 if (r == &input_pool) {
705 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
706
707 if (crng_init < 2 && entropy_bits >= 128) {
708 crng_reseed(&primary_crng, r);
709 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
710 }
711
712 /* should we wake readers? */
713 if (entropy_bits >= random_read_wakeup_bits) {
714 wake_up_interruptible(&random_read_wait);
715 kill_fasync(&fasync, SIGIO, POLL_IN);
716 }
717 /* If the input pool is getting full, send some
718 * entropy to the blocking pool until it is 75% full.
719 */
720 if (entropy_bits > random_write_wakeup_bits &&
721 r->initialized &&
722 r->entropy_total >= 2*random_read_wakeup_bits) {
723 struct entropy_store *other = &blocking_pool;
724
725 if (other->entropy_count <=
726 3 * other->poolinfo->poolfracbits / 4) {
727 schedule_work(&other->push_work);
728 r->entropy_total = 0;
729 }
730 }
731 }
732 }
733
734 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
735 {
736 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
737
738 if (nbits < 0)
739 return -EINVAL;
740
741 /* Cap the value to avoid overflows */
742 nbits = min(nbits, nbits_max);
743
744 credit_entropy_bits(r, nbits);
745 return 0;
746 }
747
748 /*********************************************************************
749 *
750 * CRNG using CHACHA20
751 *
752 *********************************************************************/
753
754 #define CRNG_RESEED_INTERVAL (300*HZ)
755
756 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
757
758 #ifdef CONFIG_NUMA
759 /*
760 * Hack to deal with crazy userspace progams when they are all trying
761 * to access /dev/urandom in parallel. The programs are almost
762 * certainly doing something terribly wrong, but we'll work around
763 * their brain damage.
764 */
765 static struct crng_state **crng_node_pool __read_mostly;
766 #endif
767
768 static void invalidate_batched_entropy(void);
769
770 static void crng_initialize(struct crng_state *crng)
771 {
772 int i;
773 unsigned long rv;
774
775 memcpy(&crng->state[0], "expand 32-byte k", 16);
776 if (crng == &primary_crng)
777 _extract_entropy(&input_pool, &crng->state[4],
778 sizeof(__u32) * 12, 0);
779 else
780 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
781 for (i = 4; i < 16; i++) {
782 if (!arch_get_random_seed_long(&rv) &&
783 !arch_get_random_long(&rv))
784 rv = random_get_entropy();
785 crng->state[i] ^= rv;
786 }
787 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
788 }
789
790 static int crng_fast_load(const char *cp, size_t len)
791 {
792 unsigned long flags;
793 char *p;
794
795 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
796 return 0;
797 if (crng_ready()) {
798 spin_unlock_irqrestore(&primary_crng.lock, flags);
799 return 0;
800 }
801 p = (unsigned char *) &primary_crng.state[4];
802 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
803 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
804 cp++; crng_init_cnt++; len--;
805 }
806 spin_unlock_irqrestore(&primary_crng.lock, flags);
807 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
808 invalidate_batched_entropy();
809 crng_init = 1;
810 wake_up_interruptible(&crng_init_wait);
811 pr_notice("random: fast init done\n");
812 }
813 return 1;
814 }
815
816 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
817 {
818 unsigned long flags;
819 int i, num;
820 union {
821 __u8 block[CHACHA20_BLOCK_SIZE];
822 __u32 key[8];
823 } buf;
824
825 if (r) {
826 num = extract_entropy(r, &buf, 32, 16, 0);
827 if (num == 0)
828 return;
829 } else {
830 _extract_crng(&primary_crng, buf.block);
831 _crng_backtrack_protect(&primary_crng, buf.block,
832 CHACHA20_KEY_SIZE);
833 }
834 spin_lock_irqsave(&primary_crng.lock, flags);
835 for (i = 0; i < 8; i++) {
836 unsigned long rv;
837 if (!arch_get_random_seed_long(&rv) &&
838 !arch_get_random_long(&rv))
839 rv = random_get_entropy();
840 crng->state[i+4] ^= buf.key[i] ^ rv;
841 }
842 memzero_explicit(&buf, sizeof(buf));
843 crng->init_time = jiffies;
844 spin_unlock_irqrestore(&primary_crng.lock, flags);
845 if (crng == &primary_crng && crng_init < 2) {
846 invalidate_batched_entropy();
847 crng_init = 2;
848 process_random_ready_list();
849 wake_up_interruptible(&crng_init_wait);
850 pr_notice("random: crng init done\n");
851 }
852 }
853
854 static inline void crng_wait_ready(void)
855 {
856 wait_event_interruptible(crng_init_wait, crng_ready());
857 }
858
859 static void _extract_crng(struct crng_state *crng,
860 __u8 out[CHACHA20_BLOCK_SIZE])
861 {
862 unsigned long v, flags;
863
864 if (crng_init > 1 &&
865 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
866 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
867 spin_lock_irqsave(&crng->lock, flags);
868 if (arch_get_random_long(&v))
869 crng->state[14] ^= v;
870 chacha20_block(&crng->state[0], out);
871 if (crng->state[12] == 0)
872 crng->state[13]++;
873 spin_unlock_irqrestore(&crng->lock, flags);
874 }
875
876 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
877 {
878 struct crng_state *crng = NULL;
879
880 #ifdef CONFIG_NUMA
881 if (crng_node_pool)
882 crng = crng_node_pool[numa_node_id()];
883 if (crng == NULL)
884 #endif
885 crng = &primary_crng;
886 _extract_crng(crng, out);
887 }
888
889 /*
890 * Use the leftover bytes from the CRNG block output (if there is
891 * enough) to mutate the CRNG key to provide backtracking protection.
892 */
893 static void _crng_backtrack_protect(struct crng_state *crng,
894 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
895 {
896 unsigned long flags;
897 __u32 *s, *d;
898 int i;
899
900 used = round_up(used, sizeof(__u32));
901 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
902 extract_crng(tmp);
903 used = 0;
904 }
905 spin_lock_irqsave(&crng->lock, flags);
906 s = (__u32 *) &tmp[used];
907 d = &crng->state[4];
908 for (i=0; i < 8; i++)
909 *d++ ^= *s++;
910 spin_unlock_irqrestore(&crng->lock, flags);
911 }
912
913 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
914 {
915 struct crng_state *crng = NULL;
916
917 #ifdef CONFIG_NUMA
918 if (crng_node_pool)
919 crng = crng_node_pool[numa_node_id()];
920 if (crng == NULL)
921 #endif
922 crng = &primary_crng;
923 _crng_backtrack_protect(crng, tmp, used);
924 }
925
926 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
927 {
928 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
929 __u8 tmp[CHACHA20_BLOCK_SIZE];
930 int large_request = (nbytes > 256);
931
932 while (nbytes) {
933 if (large_request && need_resched()) {
934 if (signal_pending(current)) {
935 if (ret == 0)
936 ret = -ERESTARTSYS;
937 break;
938 }
939 schedule();
940 }
941
942 extract_crng(tmp);
943 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
944 if (copy_to_user(buf, tmp, i)) {
945 ret = -EFAULT;
946 break;
947 }
948
949 nbytes -= i;
950 buf += i;
951 ret += i;
952 }
953 crng_backtrack_protect(tmp, i);
954
955 /* Wipe data just written to memory */
956 memzero_explicit(tmp, sizeof(tmp));
957
958 return ret;
959 }
960
961
962 /*********************************************************************
963 *
964 * Entropy input management
965 *
966 *********************************************************************/
967
968 /* There is one of these per entropy source */
969 struct timer_rand_state {
970 cycles_t last_time;
971 long last_delta, last_delta2;
972 unsigned dont_count_entropy:1;
973 };
974
975 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
976
977 /*
978 * Add device- or boot-specific data to the input pool to help
979 * initialize it.
980 *
981 * None of this adds any entropy; it is meant to avoid the problem of
982 * the entropy pool having similar initial state across largely
983 * identical devices.
984 */
985 void add_device_randomness(const void *buf, unsigned int size)
986 {
987 unsigned long time = random_get_entropy() ^ jiffies;
988 unsigned long flags;
989
990 trace_add_device_randomness(size, _RET_IP_);
991 spin_lock_irqsave(&input_pool.lock, flags);
992 _mix_pool_bytes(&input_pool, buf, size);
993 _mix_pool_bytes(&input_pool, &time, sizeof(time));
994 spin_unlock_irqrestore(&input_pool.lock, flags);
995 }
996 EXPORT_SYMBOL(add_device_randomness);
997
998 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
999
1000 /*
1001 * This function adds entropy to the entropy "pool" by using timing
1002 * delays. It uses the timer_rand_state structure to make an estimate
1003 * of how many bits of entropy this call has added to the pool.
1004 *
1005 * The number "num" is also added to the pool - it should somehow describe
1006 * the type of event which just happened. This is currently 0-255 for
1007 * keyboard scan codes, and 256 upwards for interrupts.
1008 *
1009 */
1010 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1011 {
1012 struct entropy_store *r;
1013 struct {
1014 long jiffies;
1015 unsigned cycles;
1016 unsigned num;
1017 } sample;
1018 long delta, delta2, delta3;
1019
1020 preempt_disable();
1021
1022 sample.jiffies = jiffies;
1023 sample.cycles = random_get_entropy();
1024 sample.num = num;
1025 r = &input_pool;
1026 mix_pool_bytes(r, &sample, sizeof(sample));
1027
1028 /*
1029 * Calculate number of bits of randomness we probably added.
1030 * We take into account the first, second and third-order deltas
1031 * in order to make our estimate.
1032 */
1033
1034 if (!state->dont_count_entropy) {
1035 delta = sample.jiffies - state->last_time;
1036 state->last_time = sample.jiffies;
1037
1038 delta2 = delta - state->last_delta;
1039 state->last_delta = delta;
1040
1041 delta3 = delta2 - state->last_delta2;
1042 state->last_delta2 = delta2;
1043
1044 if (delta < 0)
1045 delta = -delta;
1046 if (delta2 < 0)
1047 delta2 = -delta2;
1048 if (delta3 < 0)
1049 delta3 = -delta3;
1050 if (delta > delta2)
1051 delta = delta2;
1052 if (delta > delta3)
1053 delta = delta3;
1054
1055 /*
1056 * delta is now minimum absolute delta.
1057 * Round down by 1 bit on general principles,
1058 * and limit entropy entimate to 12 bits.
1059 */
1060 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1061 }
1062 preempt_enable();
1063 }
1064
1065 void add_input_randomness(unsigned int type, unsigned int code,
1066 unsigned int value)
1067 {
1068 static unsigned char last_value;
1069
1070 /* ignore autorepeat and the like */
1071 if (value == last_value)
1072 return;
1073
1074 last_value = value;
1075 add_timer_randomness(&input_timer_state,
1076 (type << 4) ^ code ^ (code >> 4) ^ value);
1077 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1078 }
1079 EXPORT_SYMBOL_GPL(add_input_randomness);
1080
1081 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1082
1083 #ifdef ADD_INTERRUPT_BENCH
1084 static unsigned long avg_cycles, avg_deviation;
1085
1086 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1087 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1088
1089 static void add_interrupt_bench(cycles_t start)
1090 {
1091 long delta = random_get_entropy() - start;
1092
1093 /* Use a weighted moving average */
1094 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1095 avg_cycles += delta;
1096 /* And average deviation */
1097 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1098 avg_deviation += delta;
1099 }
1100 #else
1101 #define add_interrupt_bench(x)
1102 #endif
1103
1104 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1105 {
1106 __u32 *ptr = (__u32 *) regs;
1107 unsigned int idx;
1108
1109 if (regs == NULL)
1110 return 0;
1111 idx = READ_ONCE(f->reg_idx);
1112 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1113 idx = 0;
1114 ptr += idx++;
1115 WRITE_ONCE(f->reg_idx, idx);
1116 return *ptr;
1117 }
1118
1119 void add_interrupt_randomness(int irq, int irq_flags)
1120 {
1121 struct entropy_store *r;
1122 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1123 struct pt_regs *regs = get_irq_regs();
1124 unsigned long now = jiffies;
1125 cycles_t cycles = random_get_entropy();
1126 __u32 c_high, j_high;
1127 __u64 ip;
1128 unsigned long seed;
1129 int credit = 0;
1130
1131 if (cycles == 0)
1132 cycles = get_reg(fast_pool, regs);
1133 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1134 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1135 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1136 fast_pool->pool[1] ^= now ^ c_high;
1137 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1138 fast_pool->pool[2] ^= ip;
1139 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1140 get_reg(fast_pool, regs);
1141
1142 fast_mix(fast_pool);
1143 add_interrupt_bench(cycles);
1144
1145 if (!crng_ready()) {
1146 if ((fast_pool->count >= 64) &&
1147 crng_fast_load((char *) fast_pool->pool,
1148 sizeof(fast_pool->pool))) {
1149 fast_pool->count = 0;
1150 fast_pool->last = now;
1151 }
1152 return;
1153 }
1154
1155 if ((fast_pool->count < 64) &&
1156 !time_after(now, fast_pool->last + HZ))
1157 return;
1158
1159 r = &input_pool;
1160 if (!spin_trylock(&r->lock))
1161 return;
1162
1163 fast_pool->last = now;
1164 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1165
1166 /*
1167 * If we have architectural seed generator, produce a seed and
1168 * add it to the pool. For the sake of paranoia don't let the
1169 * architectural seed generator dominate the input from the
1170 * interrupt noise.
1171 */
1172 if (arch_get_random_seed_long(&seed)) {
1173 __mix_pool_bytes(r, &seed, sizeof(seed));
1174 credit = 1;
1175 }
1176 spin_unlock(&r->lock);
1177
1178 fast_pool->count = 0;
1179
1180 /* award one bit for the contents of the fast pool */
1181 credit_entropy_bits(r, credit + 1);
1182 }
1183 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1184
1185 #ifdef CONFIG_BLOCK
1186 void add_disk_randomness(struct gendisk *disk)
1187 {
1188 if (!disk || !disk->random)
1189 return;
1190 /* first major is 1, so we get >= 0x200 here */
1191 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1192 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1193 }
1194 EXPORT_SYMBOL_GPL(add_disk_randomness);
1195 #endif
1196
1197 /*********************************************************************
1198 *
1199 * Entropy extraction routines
1200 *
1201 *********************************************************************/
1202
1203 /*
1204 * This utility inline function is responsible for transferring entropy
1205 * from the primary pool to the secondary extraction pool. We make
1206 * sure we pull enough for a 'catastrophic reseed'.
1207 */
1208 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1209 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1210 {
1211 if (!r->pull ||
1212 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1213 r->entropy_count > r->poolinfo->poolfracbits)
1214 return;
1215
1216 _xfer_secondary_pool(r, nbytes);
1217 }
1218
1219 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1220 {
1221 __u32 tmp[OUTPUT_POOL_WORDS];
1222
1223 int bytes = nbytes;
1224
1225 /* pull at least as much as a wakeup */
1226 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1227 /* but never more than the buffer size */
1228 bytes = min_t(int, bytes, sizeof(tmp));
1229
1230 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1231 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1232 bytes = extract_entropy(r->pull, tmp, bytes,
1233 random_read_wakeup_bits / 8, 0);
1234 mix_pool_bytes(r, tmp, bytes);
1235 credit_entropy_bits(r, bytes*8);
1236 }
1237
1238 /*
1239 * Used as a workqueue function so that when the input pool is getting
1240 * full, we can "spill over" some entropy to the output pools. That
1241 * way the output pools can store some of the excess entropy instead
1242 * of letting it go to waste.
1243 */
1244 static void push_to_pool(struct work_struct *work)
1245 {
1246 struct entropy_store *r = container_of(work, struct entropy_store,
1247 push_work);
1248 BUG_ON(!r);
1249 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1250 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1251 r->pull->entropy_count >> ENTROPY_SHIFT);
1252 }
1253
1254 /*
1255 * This function decides how many bytes to actually take from the
1256 * given pool, and also debits the entropy count accordingly.
1257 */
1258 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1259 int reserved)
1260 {
1261 int entropy_count, orig, have_bytes;
1262 size_t ibytes, nfrac;
1263
1264 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1265
1266 /* Can we pull enough? */
1267 retry:
1268 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1269 ibytes = nbytes;
1270 /* never pull more than available */
1271 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1272
1273 if ((have_bytes -= reserved) < 0)
1274 have_bytes = 0;
1275 ibytes = min_t(size_t, ibytes, have_bytes);
1276 if (ibytes < min)
1277 ibytes = 0;
1278
1279 if (unlikely(entropy_count < 0)) {
1280 pr_warn("random: negative entropy count: pool %s count %d\n",
1281 r->name, entropy_count);
1282 WARN_ON(1);
1283 entropy_count = 0;
1284 }
1285 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1286 if ((size_t) entropy_count > nfrac)
1287 entropy_count -= nfrac;
1288 else
1289 entropy_count = 0;
1290
1291 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1292 goto retry;
1293
1294 trace_debit_entropy(r->name, 8 * ibytes);
1295 if (ibytes &&
1296 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1297 wake_up_interruptible(&random_write_wait);
1298 kill_fasync(&fasync, SIGIO, POLL_OUT);
1299 }
1300
1301 return ibytes;
1302 }
1303
1304 /*
1305 * This function does the actual extraction for extract_entropy and
1306 * extract_entropy_user.
1307 *
1308 * Note: we assume that .poolwords is a multiple of 16 words.
1309 */
1310 static void extract_buf(struct entropy_store *r, __u8 *out)
1311 {
1312 int i;
1313 union {
1314 __u32 w[5];
1315 unsigned long l[LONGS(20)];
1316 } hash;
1317 __u32 workspace[SHA_WORKSPACE_WORDS];
1318 unsigned long flags;
1319
1320 /*
1321 * If we have an architectural hardware random number
1322 * generator, use it for SHA's initial vector
1323 */
1324 sha_init(hash.w);
1325 for (i = 0; i < LONGS(20); i++) {
1326 unsigned long v;
1327 if (!arch_get_random_long(&v))
1328 break;
1329 hash.l[i] = v;
1330 }
1331
1332 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1333 spin_lock_irqsave(&r->lock, flags);
1334 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1335 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1336
1337 /*
1338 * We mix the hash back into the pool to prevent backtracking
1339 * attacks (where the attacker knows the state of the pool
1340 * plus the current outputs, and attempts to find previous
1341 * ouputs), unless the hash function can be inverted. By
1342 * mixing at least a SHA1 worth of hash data back, we make
1343 * brute-forcing the feedback as hard as brute-forcing the
1344 * hash.
1345 */
1346 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1347 spin_unlock_irqrestore(&r->lock, flags);
1348
1349 memzero_explicit(workspace, sizeof(workspace));
1350
1351 /*
1352 * In case the hash function has some recognizable output
1353 * pattern, we fold it in half. Thus, we always feed back
1354 * twice as much data as we output.
1355 */
1356 hash.w[0] ^= hash.w[3];
1357 hash.w[1] ^= hash.w[4];
1358 hash.w[2] ^= rol32(hash.w[2], 16);
1359
1360 memcpy(out, &hash, EXTRACT_SIZE);
1361 memzero_explicit(&hash, sizeof(hash));
1362 }
1363
1364 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1365 size_t nbytes, int fips)
1366 {
1367 ssize_t ret = 0, i;
1368 __u8 tmp[EXTRACT_SIZE];
1369 unsigned long flags;
1370
1371 while (nbytes) {
1372 extract_buf(r, tmp);
1373
1374 if (fips) {
1375 spin_lock_irqsave(&r->lock, flags);
1376 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1377 panic("Hardware RNG duplicated output!\n");
1378 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1379 spin_unlock_irqrestore(&r->lock, flags);
1380 }
1381 i = min_t(int, nbytes, EXTRACT_SIZE);
1382 memcpy(buf, tmp, i);
1383 nbytes -= i;
1384 buf += i;
1385 ret += i;
1386 }
1387
1388 /* Wipe data just returned from memory */
1389 memzero_explicit(tmp, sizeof(tmp));
1390
1391 return ret;
1392 }
1393
1394 /*
1395 * This function extracts randomness from the "entropy pool", and
1396 * returns it in a buffer.
1397 *
1398 * The min parameter specifies the minimum amount we can pull before
1399 * failing to avoid races that defeat catastrophic reseeding while the
1400 * reserved parameter indicates how much entropy we must leave in the
1401 * pool after each pull to avoid starving other readers.
1402 */
1403 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1404 size_t nbytes, int min, int reserved)
1405 {
1406 __u8 tmp[EXTRACT_SIZE];
1407 unsigned long flags;
1408
1409 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1410 if (fips_enabled) {
1411 spin_lock_irqsave(&r->lock, flags);
1412 if (!r->last_data_init) {
1413 r->last_data_init = 1;
1414 spin_unlock_irqrestore(&r->lock, flags);
1415 trace_extract_entropy(r->name, EXTRACT_SIZE,
1416 ENTROPY_BITS(r), _RET_IP_);
1417 xfer_secondary_pool(r, EXTRACT_SIZE);
1418 extract_buf(r, tmp);
1419 spin_lock_irqsave(&r->lock, flags);
1420 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1421 }
1422 spin_unlock_irqrestore(&r->lock, flags);
1423 }
1424
1425 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1426 xfer_secondary_pool(r, nbytes);
1427 nbytes = account(r, nbytes, min, reserved);
1428
1429 return _extract_entropy(r, buf, nbytes, fips_enabled);
1430 }
1431
1432 /*
1433 * This function extracts randomness from the "entropy pool", and
1434 * returns it in a userspace buffer.
1435 */
1436 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1437 size_t nbytes)
1438 {
1439 ssize_t ret = 0, i;
1440 __u8 tmp[EXTRACT_SIZE];
1441 int large_request = (nbytes > 256);
1442
1443 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1444 xfer_secondary_pool(r, nbytes);
1445 nbytes = account(r, nbytes, 0, 0);
1446
1447 while (nbytes) {
1448 if (large_request && need_resched()) {
1449 if (signal_pending(current)) {
1450 if (ret == 0)
1451 ret = -ERESTARTSYS;
1452 break;
1453 }
1454 schedule();
1455 }
1456
1457 extract_buf(r, tmp);
1458 i = min_t(int, nbytes, EXTRACT_SIZE);
1459 if (copy_to_user(buf, tmp, i)) {
1460 ret = -EFAULT;
1461 break;
1462 }
1463
1464 nbytes -= i;
1465 buf += i;
1466 ret += i;
1467 }
1468
1469 /* Wipe data just returned from memory */
1470 memzero_explicit(tmp, sizeof(tmp));
1471
1472 return ret;
1473 }
1474
1475 /*
1476 * This function is the exported kernel interface. It returns some
1477 * number of good random numbers, suitable for key generation, seeding
1478 * TCP sequence numbers, etc. It does not rely on the hardware random
1479 * number generator. For random bytes direct from the hardware RNG
1480 * (when available), use get_random_bytes_arch().
1481 */
1482 void get_random_bytes(void *buf, int nbytes)
1483 {
1484 __u8 tmp[CHACHA20_BLOCK_SIZE];
1485
1486 #if DEBUG_RANDOM_BOOT > 0
1487 if (!crng_ready())
1488 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1489 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1490 #endif
1491 trace_get_random_bytes(nbytes, _RET_IP_);
1492
1493 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1494 extract_crng(buf);
1495 buf += CHACHA20_BLOCK_SIZE;
1496 nbytes -= CHACHA20_BLOCK_SIZE;
1497 }
1498
1499 if (nbytes > 0) {
1500 extract_crng(tmp);
1501 memcpy(buf, tmp, nbytes);
1502 crng_backtrack_protect(tmp, nbytes);
1503 } else
1504 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1505 memzero_explicit(tmp, sizeof(tmp));
1506 }
1507 EXPORT_SYMBOL(get_random_bytes);
1508
1509 /*
1510 * Add a callback function that will be invoked when the nonblocking
1511 * pool is initialised.
1512 *
1513 * returns: 0 if callback is successfully added
1514 * -EALREADY if pool is already initialised (callback not called)
1515 * -ENOENT if module for callback is not alive
1516 */
1517 int add_random_ready_callback(struct random_ready_callback *rdy)
1518 {
1519 struct module *owner;
1520 unsigned long flags;
1521 int err = -EALREADY;
1522
1523 if (crng_ready())
1524 return err;
1525
1526 owner = rdy->owner;
1527 if (!try_module_get(owner))
1528 return -ENOENT;
1529
1530 spin_lock_irqsave(&random_ready_list_lock, flags);
1531 if (crng_ready())
1532 goto out;
1533
1534 owner = NULL;
1535
1536 list_add(&rdy->list, &random_ready_list);
1537 err = 0;
1538
1539 out:
1540 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1541
1542 module_put(owner);
1543
1544 return err;
1545 }
1546 EXPORT_SYMBOL(add_random_ready_callback);
1547
1548 /*
1549 * Delete a previously registered readiness callback function.
1550 */
1551 void del_random_ready_callback(struct random_ready_callback *rdy)
1552 {
1553 unsigned long flags;
1554 struct module *owner = NULL;
1555
1556 spin_lock_irqsave(&random_ready_list_lock, flags);
1557 if (!list_empty(&rdy->list)) {
1558 list_del_init(&rdy->list);
1559 owner = rdy->owner;
1560 }
1561 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1562
1563 module_put(owner);
1564 }
1565 EXPORT_SYMBOL(del_random_ready_callback);
1566
1567 /*
1568 * This function will use the architecture-specific hardware random
1569 * number generator if it is available. The arch-specific hw RNG will
1570 * almost certainly be faster than what we can do in software, but it
1571 * is impossible to verify that it is implemented securely (as
1572 * opposed, to, say, the AES encryption of a sequence number using a
1573 * key known by the NSA). So it's useful if we need the speed, but
1574 * only if we're willing to trust the hardware manufacturer not to
1575 * have put in a back door.
1576 */
1577 void get_random_bytes_arch(void *buf, int nbytes)
1578 {
1579 char *p = buf;
1580
1581 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1582 while (nbytes) {
1583 unsigned long v;
1584 int chunk = min(nbytes, (int)sizeof(unsigned long));
1585
1586 if (!arch_get_random_long(&v))
1587 break;
1588
1589 memcpy(p, &v, chunk);
1590 p += chunk;
1591 nbytes -= chunk;
1592 }
1593
1594 if (nbytes)
1595 get_random_bytes(p, nbytes);
1596 }
1597 EXPORT_SYMBOL(get_random_bytes_arch);
1598
1599
1600 /*
1601 * init_std_data - initialize pool with system data
1602 *
1603 * @r: pool to initialize
1604 *
1605 * This function clears the pool's entropy count and mixes some system
1606 * data into the pool to prepare it for use. The pool is not cleared
1607 * as that can only decrease the entropy in the pool.
1608 */
1609 static void init_std_data(struct entropy_store *r)
1610 {
1611 int i;
1612 ktime_t now = ktime_get_real();
1613 unsigned long rv;
1614
1615 r->last_pulled = jiffies;
1616 mix_pool_bytes(r, &now, sizeof(now));
1617 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1618 if (!arch_get_random_seed_long(&rv) &&
1619 !arch_get_random_long(&rv))
1620 rv = random_get_entropy();
1621 mix_pool_bytes(r, &rv, sizeof(rv));
1622 }
1623 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1624 }
1625
1626 /*
1627 * Note that setup_arch() may call add_device_randomness()
1628 * long before we get here. This allows seeding of the pools
1629 * with some platform dependent data very early in the boot
1630 * process. But it limits our options here. We must use
1631 * statically allocated structures that already have all
1632 * initializations complete at compile time. We should also
1633 * take care not to overwrite the precious per platform data
1634 * we were given.
1635 */
1636 static int rand_initialize(void)
1637 {
1638 #ifdef CONFIG_NUMA
1639 int i;
1640 struct crng_state *crng;
1641 struct crng_state **pool;
1642 #endif
1643
1644 init_std_data(&input_pool);
1645 init_std_data(&blocking_pool);
1646 crng_initialize(&primary_crng);
1647
1648 #ifdef CONFIG_NUMA
1649 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1650 for_each_online_node(i) {
1651 crng = kmalloc_node(sizeof(struct crng_state),
1652 GFP_KERNEL | __GFP_NOFAIL, i);
1653 spin_lock_init(&crng->lock);
1654 crng_initialize(crng);
1655 pool[i] = crng;
1656 }
1657 mb();
1658 crng_node_pool = pool;
1659 #endif
1660 return 0;
1661 }
1662 early_initcall(rand_initialize);
1663
1664 #ifdef CONFIG_BLOCK
1665 void rand_initialize_disk(struct gendisk *disk)
1666 {
1667 struct timer_rand_state *state;
1668
1669 /*
1670 * If kzalloc returns null, we just won't use that entropy
1671 * source.
1672 */
1673 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1674 if (state) {
1675 state->last_time = INITIAL_JIFFIES;
1676 disk->random = state;
1677 }
1678 }
1679 #endif
1680
1681 static ssize_t
1682 _random_read(int nonblock, char __user *buf, size_t nbytes)
1683 {
1684 ssize_t n;
1685
1686 if (nbytes == 0)
1687 return 0;
1688
1689 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1690 while (1) {
1691 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1692 if (n < 0)
1693 return n;
1694 trace_random_read(n*8, (nbytes-n)*8,
1695 ENTROPY_BITS(&blocking_pool),
1696 ENTROPY_BITS(&input_pool));
1697 if (n > 0)
1698 return n;
1699
1700 /* Pool is (near) empty. Maybe wait and retry. */
1701 if (nonblock)
1702 return -EAGAIN;
1703
1704 wait_event_interruptible(random_read_wait,
1705 ENTROPY_BITS(&input_pool) >=
1706 random_read_wakeup_bits);
1707 if (signal_pending(current))
1708 return -ERESTARTSYS;
1709 }
1710 }
1711
1712 static ssize_t
1713 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1714 {
1715 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1716 }
1717
1718 static ssize_t
1719 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1720 {
1721 unsigned long flags;
1722 static int maxwarn = 10;
1723 int ret;
1724
1725 if (!crng_ready() && maxwarn > 0) {
1726 maxwarn--;
1727 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1728 "(%zd bytes read)\n",
1729 current->comm, nbytes);
1730 spin_lock_irqsave(&primary_crng.lock, flags);
1731 crng_init_cnt = 0;
1732 spin_unlock_irqrestore(&primary_crng.lock, flags);
1733 }
1734 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1735 ret = extract_crng_user(buf, nbytes);
1736 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1737 return ret;
1738 }
1739
1740 static unsigned int
1741 random_poll(struct file *file, poll_table * wait)
1742 {
1743 unsigned int mask;
1744
1745 poll_wait(file, &random_read_wait, wait);
1746 poll_wait(file, &random_write_wait, wait);
1747 mask = 0;
1748 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1749 mask |= POLLIN | POLLRDNORM;
1750 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1751 mask |= POLLOUT | POLLWRNORM;
1752 return mask;
1753 }
1754
1755 static int
1756 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1757 {
1758 size_t bytes;
1759 __u32 buf[16];
1760 const char __user *p = buffer;
1761
1762 while (count > 0) {
1763 bytes = min(count, sizeof(buf));
1764 if (copy_from_user(&buf, p, bytes))
1765 return -EFAULT;
1766
1767 count -= bytes;
1768 p += bytes;
1769
1770 mix_pool_bytes(r, buf, bytes);
1771 cond_resched();
1772 }
1773
1774 return 0;
1775 }
1776
1777 static ssize_t random_write(struct file *file, const char __user *buffer,
1778 size_t count, loff_t *ppos)
1779 {
1780 size_t ret;
1781
1782 ret = write_pool(&input_pool, buffer, count);
1783 if (ret)
1784 return ret;
1785
1786 return (ssize_t)count;
1787 }
1788
1789 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1790 {
1791 int size, ent_count;
1792 int __user *p = (int __user *)arg;
1793 int retval;
1794
1795 switch (cmd) {
1796 case RNDGETENTCNT:
1797 /* inherently racy, no point locking */
1798 ent_count = ENTROPY_BITS(&input_pool);
1799 if (put_user(ent_count, p))
1800 return -EFAULT;
1801 return 0;
1802 case RNDADDTOENTCNT:
1803 if (!capable(CAP_SYS_ADMIN))
1804 return -EPERM;
1805 if (get_user(ent_count, p))
1806 return -EFAULT;
1807 return credit_entropy_bits_safe(&input_pool, ent_count);
1808 case RNDADDENTROPY:
1809 if (!capable(CAP_SYS_ADMIN))
1810 return -EPERM;
1811 if (get_user(ent_count, p++))
1812 return -EFAULT;
1813 if (ent_count < 0)
1814 return -EINVAL;
1815 if (get_user(size, p++))
1816 return -EFAULT;
1817 retval = write_pool(&input_pool, (const char __user *)p,
1818 size);
1819 if (retval < 0)
1820 return retval;
1821 return credit_entropy_bits_safe(&input_pool, ent_count);
1822 case RNDZAPENTCNT:
1823 case RNDCLEARPOOL:
1824 /*
1825 * Clear the entropy pool counters. We no longer clear
1826 * the entropy pool, as that's silly.
1827 */
1828 if (!capable(CAP_SYS_ADMIN))
1829 return -EPERM;
1830 input_pool.entropy_count = 0;
1831 blocking_pool.entropy_count = 0;
1832 return 0;
1833 default:
1834 return -EINVAL;
1835 }
1836 }
1837
1838 static int random_fasync(int fd, struct file *filp, int on)
1839 {
1840 return fasync_helper(fd, filp, on, &fasync);
1841 }
1842
1843 const struct file_operations random_fops = {
1844 .read = random_read,
1845 .write = random_write,
1846 .poll = random_poll,
1847 .unlocked_ioctl = random_ioctl,
1848 .fasync = random_fasync,
1849 .llseek = noop_llseek,
1850 };
1851
1852 const struct file_operations urandom_fops = {
1853 .read = urandom_read,
1854 .write = random_write,
1855 .unlocked_ioctl = random_ioctl,
1856 .fasync = random_fasync,
1857 .llseek = noop_llseek,
1858 };
1859
1860 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1861 unsigned int, flags)
1862 {
1863 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1864 return -EINVAL;
1865
1866 if (count > INT_MAX)
1867 count = INT_MAX;
1868
1869 if (flags & GRND_RANDOM)
1870 return _random_read(flags & GRND_NONBLOCK, buf, count);
1871
1872 if (!crng_ready()) {
1873 if (flags & GRND_NONBLOCK)
1874 return -EAGAIN;
1875 crng_wait_ready();
1876 if (signal_pending(current))
1877 return -ERESTARTSYS;
1878 }
1879 return urandom_read(NULL, buf, count, NULL);
1880 }
1881
1882 /********************************************************************
1883 *
1884 * Sysctl interface
1885 *
1886 ********************************************************************/
1887
1888 #ifdef CONFIG_SYSCTL
1889
1890 #include <linux/sysctl.h>
1891
1892 static int min_read_thresh = 8, min_write_thresh;
1893 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1894 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1895 static int random_min_urandom_seed = 60;
1896 static char sysctl_bootid[16];
1897
1898 /*
1899 * This function is used to return both the bootid UUID, and random
1900 * UUID. The difference is in whether table->data is NULL; if it is,
1901 * then a new UUID is generated and returned to the user.
1902 *
1903 * If the user accesses this via the proc interface, the UUID will be
1904 * returned as an ASCII string in the standard UUID format; if via the
1905 * sysctl system call, as 16 bytes of binary data.
1906 */
1907 static int proc_do_uuid(struct ctl_table *table, int write,
1908 void __user *buffer, size_t *lenp, loff_t *ppos)
1909 {
1910 struct ctl_table fake_table;
1911 unsigned char buf[64], tmp_uuid[16], *uuid;
1912
1913 uuid = table->data;
1914 if (!uuid) {
1915 uuid = tmp_uuid;
1916 generate_random_uuid(uuid);
1917 } else {
1918 static DEFINE_SPINLOCK(bootid_spinlock);
1919
1920 spin_lock(&bootid_spinlock);
1921 if (!uuid[8])
1922 generate_random_uuid(uuid);
1923 spin_unlock(&bootid_spinlock);
1924 }
1925
1926 sprintf(buf, "%pU", uuid);
1927
1928 fake_table.data = buf;
1929 fake_table.maxlen = sizeof(buf);
1930
1931 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1932 }
1933
1934 /*
1935 * Return entropy available scaled to integral bits
1936 */
1937 static int proc_do_entropy(struct ctl_table *table, int write,
1938 void __user *buffer, size_t *lenp, loff_t *ppos)
1939 {
1940 struct ctl_table fake_table;
1941 int entropy_count;
1942
1943 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1944
1945 fake_table.data = &entropy_count;
1946 fake_table.maxlen = sizeof(entropy_count);
1947
1948 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1949 }
1950
1951 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1952 extern struct ctl_table random_table[];
1953 struct ctl_table random_table[] = {
1954 {
1955 .procname = "poolsize",
1956 .data = &sysctl_poolsize,
1957 .maxlen = sizeof(int),
1958 .mode = 0444,
1959 .proc_handler = proc_dointvec,
1960 },
1961 {
1962 .procname = "entropy_avail",
1963 .maxlen = sizeof(int),
1964 .mode = 0444,
1965 .proc_handler = proc_do_entropy,
1966 .data = &input_pool.entropy_count,
1967 },
1968 {
1969 .procname = "read_wakeup_threshold",
1970 .data = &random_read_wakeup_bits,
1971 .maxlen = sizeof(int),
1972 .mode = 0644,
1973 .proc_handler = proc_dointvec_minmax,
1974 .extra1 = &min_read_thresh,
1975 .extra2 = &max_read_thresh,
1976 },
1977 {
1978 .procname = "write_wakeup_threshold",
1979 .data = &random_write_wakeup_bits,
1980 .maxlen = sizeof(int),
1981 .mode = 0644,
1982 .proc_handler = proc_dointvec_minmax,
1983 .extra1 = &min_write_thresh,
1984 .extra2 = &max_write_thresh,
1985 },
1986 {
1987 .procname = "urandom_min_reseed_secs",
1988 .data = &random_min_urandom_seed,
1989 .maxlen = sizeof(int),
1990 .mode = 0644,
1991 .proc_handler = proc_dointvec,
1992 },
1993 {
1994 .procname = "boot_id",
1995 .data = &sysctl_bootid,
1996 .maxlen = 16,
1997 .mode = 0444,
1998 .proc_handler = proc_do_uuid,
1999 },
2000 {
2001 .procname = "uuid",
2002 .maxlen = 16,
2003 .mode = 0444,
2004 .proc_handler = proc_do_uuid,
2005 },
2006 #ifdef ADD_INTERRUPT_BENCH
2007 {
2008 .procname = "add_interrupt_avg_cycles",
2009 .data = &avg_cycles,
2010 .maxlen = sizeof(avg_cycles),
2011 .mode = 0444,
2012 .proc_handler = proc_doulongvec_minmax,
2013 },
2014 {
2015 .procname = "add_interrupt_avg_deviation",
2016 .data = &avg_deviation,
2017 .maxlen = sizeof(avg_deviation),
2018 .mode = 0444,
2019 .proc_handler = proc_doulongvec_minmax,
2020 },
2021 #endif
2022 { }
2023 };
2024 #endif /* CONFIG_SYSCTL */
2025
2026 struct batched_entropy {
2027 union {
2028 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2029 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2030 };
2031 unsigned int position;
2032 };
2033 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2034
2035 /*
2036 * Get a random word for internal kernel use only. The quality of the random
2037 * number is either as good as RDRAND or as good as /dev/urandom, with the
2038 * goal of being quite fast and not depleting entropy.
2039 */
2040 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2041 u64 get_random_u64(void)
2042 {
2043 u64 ret;
2044 bool use_lock = READ_ONCE(crng_init) < 2;
2045 unsigned long flags = 0;
2046 struct batched_entropy *batch;
2047
2048 #if BITS_PER_LONG == 64
2049 if (arch_get_random_long((unsigned long *)&ret))
2050 return ret;
2051 #else
2052 if (arch_get_random_long((unsigned long *)&ret) &&
2053 arch_get_random_long((unsigned long *)&ret + 1))
2054 return ret;
2055 #endif
2056
2057 batch = &get_cpu_var(batched_entropy_u64);
2058 if (use_lock)
2059 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2060 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2061 extract_crng((u8 *)batch->entropy_u64);
2062 batch->position = 0;
2063 }
2064 ret = batch->entropy_u64[batch->position++];
2065 if (use_lock)
2066 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2067 put_cpu_var(batched_entropy_u64);
2068 return ret;
2069 }
2070 EXPORT_SYMBOL(get_random_u64);
2071
2072 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2073 u32 get_random_u32(void)
2074 {
2075 u32 ret;
2076 bool use_lock = READ_ONCE(crng_init) < 2;
2077 unsigned long flags = 0;
2078 struct batched_entropy *batch;
2079
2080 if (arch_get_random_int(&ret))
2081 return ret;
2082
2083 batch = &get_cpu_var(batched_entropy_u32);
2084 if (use_lock)
2085 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2086 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2087 extract_crng((u8 *)batch->entropy_u32);
2088 batch->position = 0;
2089 }
2090 ret = batch->entropy_u32[batch->position++];
2091 if (use_lock)
2092 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2093 put_cpu_var(batched_entropy_u32);
2094 return ret;
2095 }
2096 EXPORT_SYMBOL(get_random_u32);
2097
2098 /* It's important to invalidate all potential batched entropy that might
2099 * be stored before the crng is initialized, which we can do lazily by
2100 * simply resetting the counter to zero so that it's re-extracted on the
2101 * next usage. */
2102 static void invalidate_batched_entropy(void)
2103 {
2104 int cpu;
2105 unsigned long flags;
2106
2107 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2108 for_each_possible_cpu (cpu) {
2109 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2110 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2111 }
2112 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2113 }
2114
2115 /**
2116 * randomize_page - Generate a random, page aligned address
2117 * @start: The smallest acceptable address the caller will take.
2118 * @range: The size of the area, starting at @start, within which the
2119 * random address must fall.
2120 *
2121 * If @start + @range would overflow, @range is capped.
2122 *
2123 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2124 * @start was already page aligned. We now align it regardless.
2125 *
2126 * Return: A page aligned address within [start, start + range). On error,
2127 * @start is returned.
2128 */
2129 unsigned long
2130 randomize_page(unsigned long start, unsigned long range)
2131 {
2132 if (!PAGE_ALIGNED(start)) {
2133 range -= PAGE_ALIGN(start) - start;
2134 start = PAGE_ALIGN(start);
2135 }
2136
2137 if (start > ULONG_MAX - range)
2138 range = ULONG_MAX - start;
2139
2140 range >>= PAGE_SHIFT;
2141
2142 if (range == 0)
2143 return start;
2144
2145 return start + (get_random_long() % range << PAGE_SHIFT);
2146 }
2147
2148 /* Interface for in-kernel drivers of true hardware RNGs.
2149 * Those devices may produce endless random bits and will be throttled
2150 * when our pool is full.
2151 */
2152 void add_hwgenerator_randomness(const char *buffer, size_t count,
2153 size_t entropy)
2154 {
2155 struct entropy_store *poolp = &input_pool;
2156
2157 if (!crng_ready()) {
2158 crng_fast_load(buffer, count);
2159 return;
2160 }
2161
2162 /* Suspend writing if we're above the trickle threshold.
2163 * We'll be woken up again once below random_write_wakeup_thresh,
2164 * or when the calling thread is about to terminate.
2165 */
2166 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2167 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2168 mix_pool_bytes(poolp, buffer, count);
2169 credit_entropy_bits(poolp, entropy);
2170 }
2171 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);