]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/char/random.c
random: convert get_random_int/long into get_random_u32/u64
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42 /*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/nodemask.h>
253 #include <linux/spinlock.h>
254 #include <linux/kthread.h>
255 #include <linux/percpu.h>
256 #include <linux/cryptohash.h>
257 #include <linux/fips.h>
258 #include <linux/ptrace.h>
259 #include <linux/kmemcheck.h>
260 #include <linux/workqueue.h>
261 #include <linux/irq.h>
262 #include <linux/syscalls.h>
263 #include <linux/completion.h>
264 #include <linux/uuid.h>
265 #include <crypto/chacha20.h>
266
267 #include <asm/processor.h>
268 #include <linux/uaccess.h>
269 #include <asm/irq.h>
270 #include <asm/irq_regs.h>
271 #include <asm/io.h>
272
273 #define CREATE_TRACE_POINTS
274 #include <trace/events/random.h>
275
276 /* #define ADD_INTERRUPT_BENCH */
277
278 /*
279 * Configuration information
280 */
281 #define INPUT_POOL_SHIFT 12
282 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
283 #define OUTPUT_POOL_SHIFT 10
284 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
285 #define SEC_XFER_SIZE 512
286 #define EXTRACT_SIZE 10
287
288 #define DEBUG_RANDOM_BOOT 0
289
290 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291
292 /*
293 * To allow fractional bits to be tracked, the entropy_count field is
294 * denominated in units of 1/8th bits.
295 *
296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297 * credit_entropy_bits() needs to be 64 bits wide.
298 */
299 #define ENTROPY_SHIFT 3
300 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301
302 /*
303 * The minimum number of bits of entropy before we wake up a read on
304 * /dev/random. Should be enough to do a significant reseed.
305 */
306 static int random_read_wakeup_bits = 64;
307
308 /*
309 * If the entropy count falls under this number of bits, then we
310 * should wake up processes which are selecting or polling on write
311 * access to /dev/random.
312 */
313 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
314
315 /*
316 * Variable is currently unused by left for user space compatibility.
317 */
318 static int random_min_urandom_seed = 60;
319
320 /*
321 * Originally, we used a primitive polynomial of degree .poolwords
322 * over GF(2). The taps for various sizes are defined below. They
323 * were chosen to be evenly spaced except for the last tap, which is 1
324 * to get the twisting happening as fast as possible.
325 *
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a (modified) twisted Generalized Feedback Shift
328 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
329 * generators. ACM Transactions on Modeling and Computer Simulation
330 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
331 * GFSR generators II. ACM Transactions on Modeling and Computer
332 * Simulation 4:254-266)
333 *
334 * Thanks to Colin Plumb for suggesting this.
335 *
336 * The mixing operation is much less sensitive than the output hash,
337 * where we use SHA-1. All that we want of mixing operation is that
338 * it be a good non-cryptographic hash; i.e. it not produce collisions
339 * when fed "random" data of the sort we expect to see. As long as
340 * the pool state differs for different inputs, we have preserved the
341 * input entropy and done a good job. The fact that an intelligent
342 * attacker can construct inputs that will produce controlled
343 * alterations to the pool's state is not important because we don't
344 * consider such inputs to contribute any randomness. The only
345 * property we need with respect to them is that the attacker can't
346 * increase his/her knowledge of the pool's state. Since all
347 * additions are reversible (knowing the final state and the input,
348 * you can reconstruct the initial state), if an attacker has any
349 * uncertainty about the initial state, he/she can only shuffle that
350 * uncertainty about, but never cause any collisions (which would
351 * decrease the uncertainty).
352 *
353 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
354 * Videau in their paper, "The Linux Pseudorandom Number Generator
355 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
356 * paper, they point out that we are not using a true Twisted GFSR,
357 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
358 * is, with only three taps, instead of the six that we are using).
359 * As a result, the resulting polynomial is neither primitive nor
360 * irreducible, and hence does not have a maximal period over
361 * GF(2**32). They suggest a slight change to the generator
362 * polynomial which improves the resulting TGFSR polynomial to be
363 * irreducible, which we have made here.
364 */
365 static struct poolinfo {
366 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
367 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
368 int tap1, tap2, tap3, tap4, tap5;
369 } poolinfo_table[] = {
370 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
371 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
372 { S(128), 104, 76, 51, 25, 1 },
373 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
374 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
375 { S(32), 26, 19, 14, 7, 1 },
376 #if 0
377 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
378 { S(2048), 1638, 1231, 819, 411, 1 },
379
380 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
381 { S(1024), 817, 615, 412, 204, 1 },
382
383 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
384 { S(1024), 819, 616, 410, 207, 2 },
385
386 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
387 { S(512), 411, 308, 208, 104, 1 },
388
389 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
390 { S(512), 409, 307, 206, 102, 2 },
391 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
392 { S(512), 409, 309, 205, 103, 2 },
393
394 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
395 { S(256), 205, 155, 101, 52, 1 },
396
397 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
398 { S(128), 103, 78, 51, 27, 2 },
399
400 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
401 { S(64), 52, 39, 26, 14, 1 },
402 #endif
403 };
404
405 /*
406 * Static global variables
407 */
408 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
409 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
410 static struct fasync_struct *fasync;
411
412 static DEFINE_SPINLOCK(random_ready_list_lock);
413 static LIST_HEAD(random_ready_list);
414
415 struct crng_state {
416 __u32 state[16];
417 unsigned long init_time;
418 spinlock_t lock;
419 };
420
421 struct crng_state primary_crng = {
422 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
423 };
424
425 /*
426 * crng_init = 0 --> Uninitialized
427 * 1 --> Initialized
428 * 2 --> Initialized from input_pool
429 *
430 * crng_init is protected by primary_crng->lock, and only increases
431 * its value (from 0->1->2).
432 */
433 static int crng_init = 0;
434 #define crng_ready() (likely(crng_init > 0))
435 static int crng_init_cnt = 0;
436 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
437 static void _extract_crng(struct crng_state *crng,
438 __u8 out[CHACHA20_BLOCK_SIZE]);
439 static void _crng_backtrack_protect(struct crng_state *crng,
440 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
441 static void process_random_ready_list(void);
442
443 /**********************************************************************
444 *
445 * OS independent entropy store. Here are the functions which handle
446 * storing entropy in an entropy pool.
447 *
448 **********************************************************************/
449
450 struct entropy_store;
451 struct entropy_store {
452 /* read-only data: */
453 const struct poolinfo *poolinfo;
454 __u32 *pool;
455 const char *name;
456 struct entropy_store *pull;
457 struct work_struct push_work;
458
459 /* read-write data: */
460 unsigned long last_pulled;
461 spinlock_t lock;
462 unsigned short add_ptr;
463 unsigned short input_rotate;
464 int entropy_count;
465 int entropy_total;
466 unsigned int initialized:1;
467 unsigned int last_data_init:1;
468 __u8 last_data[EXTRACT_SIZE];
469 };
470
471 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
472 size_t nbytes, int min, int rsvd);
473 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
474 size_t nbytes, int fips);
475
476 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
477 static void push_to_pool(struct work_struct *work);
478 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
479 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
480
481 static struct entropy_store input_pool = {
482 .poolinfo = &poolinfo_table[0],
483 .name = "input",
484 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
485 .pool = input_pool_data
486 };
487
488 static struct entropy_store blocking_pool = {
489 .poolinfo = &poolinfo_table[1],
490 .name = "blocking",
491 .pull = &input_pool,
492 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
493 .pool = blocking_pool_data,
494 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
495 push_to_pool),
496 };
497
498 static __u32 const twist_table[8] = {
499 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
500 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
501
502 /*
503 * This function adds bytes into the entropy "pool". It does not
504 * update the entropy estimate. The caller should call
505 * credit_entropy_bits if this is appropriate.
506 *
507 * The pool is stirred with a primitive polynomial of the appropriate
508 * degree, and then twisted. We twist by three bits at a time because
509 * it's cheap to do so and helps slightly in the expected case where
510 * the entropy is concentrated in the low-order bits.
511 */
512 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
513 int nbytes)
514 {
515 unsigned long i, tap1, tap2, tap3, tap4, tap5;
516 int input_rotate;
517 int wordmask = r->poolinfo->poolwords - 1;
518 const char *bytes = in;
519 __u32 w;
520
521 tap1 = r->poolinfo->tap1;
522 tap2 = r->poolinfo->tap2;
523 tap3 = r->poolinfo->tap3;
524 tap4 = r->poolinfo->tap4;
525 tap5 = r->poolinfo->tap5;
526
527 input_rotate = r->input_rotate;
528 i = r->add_ptr;
529
530 /* mix one byte at a time to simplify size handling and churn faster */
531 while (nbytes--) {
532 w = rol32(*bytes++, input_rotate);
533 i = (i - 1) & wordmask;
534
535 /* XOR in the various taps */
536 w ^= r->pool[i];
537 w ^= r->pool[(i + tap1) & wordmask];
538 w ^= r->pool[(i + tap2) & wordmask];
539 w ^= r->pool[(i + tap3) & wordmask];
540 w ^= r->pool[(i + tap4) & wordmask];
541 w ^= r->pool[(i + tap5) & wordmask];
542
543 /* Mix the result back in with a twist */
544 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
545
546 /*
547 * Normally, we add 7 bits of rotation to the pool.
548 * At the beginning of the pool, add an extra 7 bits
549 * rotation, so that successive passes spread the
550 * input bits across the pool evenly.
551 */
552 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
553 }
554
555 r->input_rotate = input_rotate;
556 r->add_ptr = i;
557 }
558
559 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
560 int nbytes)
561 {
562 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
563 _mix_pool_bytes(r, in, nbytes);
564 }
565
566 static void mix_pool_bytes(struct entropy_store *r, const void *in,
567 int nbytes)
568 {
569 unsigned long flags;
570
571 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
572 spin_lock_irqsave(&r->lock, flags);
573 _mix_pool_bytes(r, in, nbytes);
574 spin_unlock_irqrestore(&r->lock, flags);
575 }
576
577 struct fast_pool {
578 __u32 pool[4];
579 unsigned long last;
580 unsigned short reg_idx;
581 unsigned char count;
582 };
583
584 /*
585 * This is a fast mixing routine used by the interrupt randomness
586 * collector. It's hardcoded for an 128 bit pool and assumes that any
587 * locks that might be needed are taken by the caller.
588 */
589 static void fast_mix(struct fast_pool *f)
590 {
591 __u32 a = f->pool[0], b = f->pool[1];
592 __u32 c = f->pool[2], d = f->pool[3];
593
594 a += b; c += d;
595 b = rol32(b, 6); d = rol32(d, 27);
596 d ^= a; b ^= c;
597
598 a += b; c += d;
599 b = rol32(b, 16); d = rol32(d, 14);
600 d ^= a; b ^= c;
601
602 a += b; c += d;
603 b = rol32(b, 6); d = rol32(d, 27);
604 d ^= a; b ^= c;
605
606 a += b; c += d;
607 b = rol32(b, 16); d = rol32(d, 14);
608 d ^= a; b ^= c;
609
610 f->pool[0] = a; f->pool[1] = b;
611 f->pool[2] = c; f->pool[3] = d;
612 f->count++;
613 }
614
615 static void process_random_ready_list(void)
616 {
617 unsigned long flags;
618 struct random_ready_callback *rdy, *tmp;
619
620 spin_lock_irqsave(&random_ready_list_lock, flags);
621 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
622 struct module *owner = rdy->owner;
623
624 list_del_init(&rdy->list);
625 rdy->func(rdy);
626 module_put(owner);
627 }
628 spin_unlock_irqrestore(&random_ready_list_lock, flags);
629 }
630
631 /*
632 * Credit (or debit) the entropy store with n bits of entropy.
633 * Use credit_entropy_bits_safe() if the value comes from userspace
634 * or otherwise should be checked for extreme values.
635 */
636 static void credit_entropy_bits(struct entropy_store *r, int nbits)
637 {
638 int entropy_count, orig;
639 const int pool_size = r->poolinfo->poolfracbits;
640 int nfrac = nbits << ENTROPY_SHIFT;
641
642 if (!nbits)
643 return;
644
645 retry:
646 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
647 if (nfrac < 0) {
648 /* Debit */
649 entropy_count += nfrac;
650 } else {
651 /*
652 * Credit: we have to account for the possibility of
653 * overwriting already present entropy. Even in the
654 * ideal case of pure Shannon entropy, new contributions
655 * approach the full value asymptotically:
656 *
657 * entropy <- entropy + (pool_size - entropy) *
658 * (1 - exp(-add_entropy/pool_size))
659 *
660 * For add_entropy <= pool_size/2 then
661 * (1 - exp(-add_entropy/pool_size)) >=
662 * (add_entropy/pool_size)*0.7869...
663 * so we can approximate the exponential with
664 * 3/4*add_entropy/pool_size and still be on the
665 * safe side by adding at most pool_size/2 at a time.
666 *
667 * The use of pool_size-2 in the while statement is to
668 * prevent rounding artifacts from making the loop
669 * arbitrarily long; this limits the loop to log2(pool_size)*2
670 * turns no matter how large nbits is.
671 */
672 int pnfrac = nfrac;
673 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
674 /* The +2 corresponds to the /4 in the denominator */
675
676 do {
677 unsigned int anfrac = min(pnfrac, pool_size/2);
678 unsigned int add =
679 ((pool_size - entropy_count)*anfrac*3) >> s;
680
681 entropy_count += add;
682 pnfrac -= anfrac;
683 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
684 }
685
686 if (unlikely(entropy_count < 0)) {
687 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
688 r->name, entropy_count);
689 WARN_ON(1);
690 entropy_count = 0;
691 } else if (entropy_count > pool_size)
692 entropy_count = pool_size;
693 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
694 goto retry;
695
696 r->entropy_total += nbits;
697 if (!r->initialized && r->entropy_total > 128) {
698 r->initialized = 1;
699 r->entropy_total = 0;
700 }
701
702 trace_credit_entropy_bits(r->name, nbits,
703 entropy_count >> ENTROPY_SHIFT,
704 r->entropy_total, _RET_IP_);
705
706 if (r == &input_pool) {
707 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
708
709 if (crng_init < 2 && entropy_bits >= 128) {
710 crng_reseed(&primary_crng, r);
711 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
712 }
713
714 /* should we wake readers? */
715 if (entropy_bits >= random_read_wakeup_bits) {
716 wake_up_interruptible(&random_read_wait);
717 kill_fasync(&fasync, SIGIO, POLL_IN);
718 }
719 /* If the input pool is getting full, send some
720 * entropy to the blocking pool until it is 75% full.
721 */
722 if (entropy_bits > random_write_wakeup_bits &&
723 r->initialized &&
724 r->entropy_total >= 2*random_read_wakeup_bits) {
725 struct entropy_store *other = &blocking_pool;
726
727 if (other->entropy_count <=
728 3 * other->poolinfo->poolfracbits / 4) {
729 schedule_work(&other->push_work);
730 r->entropy_total = 0;
731 }
732 }
733 }
734 }
735
736 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
737 {
738 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
739
740 if (nbits < 0)
741 return -EINVAL;
742
743 /* Cap the value to avoid overflows */
744 nbits = min(nbits, nbits_max);
745
746 credit_entropy_bits(r, nbits);
747 return 0;
748 }
749
750 /*********************************************************************
751 *
752 * CRNG using CHACHA20
753 *
754 *********************************************************************/
755
756 #define CRNG_RESEED_INTERVAL (300*HZ)
757
758 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
759
760 #ifdef CONFIG_NUMA
761 /*
762 * Hack to deal with crazy userspace progams when they are all trying
763 * to access /dev/urandom in parallel. The programs are almost
764 * certainly doing something terribly wrong, but we'll work around
765 * their brain damage.
766 */
767 static struct crng_state **crng_node_pool __read_mostly;
768 #endif
769
770 static void crng_initialize(struct crng_state *crng)
771 {
772 int i;
773 unsigned long rv;
774
775 memcpy(&crng->state[0], "expand 32-byte k", 16);
776 if (crng == &primary_crng)
777 _extract_entropy(&input_pool, &crng->state[4],
778 sizeof(__u32) * 12, 0);
779 else
780 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
781 for (i = 4; i < 16; i++) {
782 if (!arch_get_random_seed_long(&rv) &&
783 !arch_get_random_long(&rv))
784 rv = random_get_entropy();
785 crng->state[i] ^= rv;
786 }
787 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
788 }
789
790 static int crng_fast_load(const char *cp, size_t len)
791 {
792 unsigned long flags;
793 char *p;
794
795 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
796 return 0;
797 if (crng_ready()) {
798 spin_unlock_irqrestore(&primary_crng.lock, flags);
799 return 0;
800 }
801 p = (unsigned char *) &primary_crng.state[4];
802 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
803 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
804 cp++; crng_init_cnt++; len--;
805 }
806 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
807 crng_init = 1;
808 wake_up_interruptible(&crng_init_wait);
809 pr_notice("random: fast init done\n");
810 }
811 spin_unlock_irqrestore(&primary_crng.lock, flags);
812 return 1;
813 }
814
815 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
816 {
817 unsigned long flags;
818 int i, num;
819 union {
820 __u8 block[CHACHA20_BLOCK_SIZE];
821 __u32 key[8];
822 } buf;
823
824 if (r) {
825 num = extract_entropy(r, &buf, 32, 16, 0);
826 if (num == 0)
827 return;
828 } else {
829 _extract_crng(&primary_crng, buf.block);
830 _crng_backtrack_protect(&primary_crng, buf.block,
831 CHACHA20_KEY_SIZE);
832 }
833 spin_lock_irqsave(&primary_crng.lock, flags);
834 for (i = 0; i < 8; i++) {
835 unsigned long rv;
836 if (!arch_get_random_seed_long(&rv) &&
837 !arch_get_random_long(&rv))
838 rv = random_get_entropy();
839 crng->state[i+4] ^= buf.key[i] ^ rv;
840 }
841 memzero_explicit(&buf, sizeof(buf));
842 crng->init_time = jiffies;
843 if (crng == &primary_crng && crng_init < 2) {
844 crng_init = 2;
845 process_random_ready_list();
846 wake_up_interruptible(&crng_init_wait);
847 pr_notice("random: crng init done\n");
848 }
849 spin_unlock_irqrestore(&primary_crng.lock, flags);
850 }
851
852 static inline void crng_wait_ready(void)
853 {
854 wait_event_interruptible(crng_init_wait, crng_ready());
855 }
856
857 static void _extract_crng(struct crng_state *crng,
858 __u8 out[CHACHA20_BLOCK_SIZE])
859 {
860 unsigned long v, flags;
861
862 if (crng_init > 1 &&
863 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
864 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
865 spin_lock_irqsave(&crng->lock, flags);
866 if (arch_get_random_long(&v))
867 crng->state[14] ^= v;
868 chacha20_block(&crng->state[0], out);
869 if (crng->state[12] == 0)
870 crng->state[13]++;
871 spin_unlock_irqrestore(&crng->lock, flags);
872 }
873
874 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
875 {
876 struct crng_state *crng = NULL;
877
878 #ifdef CONFIG_NUMA
879 if (crng_node_pool)
880 crng = crng_node_pool[numa_node_id()];
881 if (crng == NULL)
882 #endif
883 crng = &primary_crng;
884 _extract_crng(crng, out);
885 }
886
887 /*
888 * Use the leftover bytes from the CRNG block output (if there is
889 * enough) to mutate the CRNG key to provide backtracking protection.
890 */
891 static void _crng_backtrack_protect(struct crng_state *crng,
892 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
893 {
894 unsigned long flags;
895 __u32 *s, *d;
896 int i;
897
898 used = round_up(used, sizeof(__u32));
899 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
900 extract_crng(tmp);
901 used = 0;
902 }
903 spin_lock_irqsave(&crng->lock, flags);
904 s = (__u32 *) &tmp[used];
905 d = &crng->state[4];
906 for (i=0; i < 8; i++)
907 *d++ ^= *s++;
908 spin_unlock_irqrestore(&crng->lock, flags);
909 }
910
911 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
912 {
913 struct crng_state *crng = NULL;
914
915 #ifdef CONFIG_NUMA
916 if (crng_node_pool)
917 crng = crng_node_pool[numa_node_id()];
918 if (crng == NULL)
919 #endif
920 crng = &primary_crng;
921 _crng_backtrack_protect(crng, tmp, used);
922 }
923
924 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
925 {
926 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
927 __u8 tmp[CHACHA20_BLOCK_SIZE];
928 int large_request = (nbytes > 256);
929
930 while (nbytes) {
931 if (large_request && need_resched()) {
932 if (signal_pending(current)) {
933 if (ret == 0)
934 ret = -ERESTARTSYS;
935 break;
936 }
937 schedule();
938 }
939
940 extract_crng(tmp);
941 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
942 if (copy_to_user(buf, tmp, i)) {
943 ret = -EFAULT;
944 break;
945 }
946
947 nbytes -= i;
948 buf += i;
949 ret += i;
950 }
951 crng_backtrack_protect(tmp, i);
952
953 /* Wipe data just written to memory */
954 memzero_explicit(tmp, sizeof(tmp));
955
956 return ret;
957 }
958
959
960 /*********************************************************************
961 *
962 * Entropy input management
963 *
964 *********************************************************************/
965
966 /* There is one of these per entropy source */
967 struct timer_rand_state {
968 cycles_t last_time;
969 long last_delta, last_delta2;
970 unsigned dont_count_entropy:1;
971 };
972
973 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
974
975 /*
976 * Add device- or boot-specific data to the input pool to help
977 * initialize it.
978 *
979 * None of this adds any entropy; it is meant to avoid the problem of
980 * the entropy pool having similar initial state across largely
981 * identical devices.
982 */
983 void add_device_randomness(const void *buf, unsigned int size)
984 {
985 unsigned long time = random_get_entropy() ^ jiffies;
986 unsigned long flags;
987
988 trace_add_device_randomness(size, _RET_IP_);
989 spin_lock_irqsave(&input_pool.lock, flags);
990 _mix_pool_bytes(&input_pool, buf, size);
991 _mix_pool_bytes(&input_pool, &time, sizeof(time));
992 spin_unlock_irqrestore(&input_pool.lock, flags);
993 }
994 EXPORT_SYMBOL(add_device_randomness);
995
996 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
997
998 /*
999 * This function adds entropy to the entropy "pool" by using timing
1000 * delays. It uses the timer_rand_state structure to make an estimate
1001 * of how many bits of entropy this call has added to the pool.
1002 *
1003 * The number "num" is also added to the pool - it should somehow describe
1004 * the type of event which just happened. This is currently 0-255 for
1005 * keyboard scan codes, and 256 upwards for interrupts.
1006 *
1007 */
1008 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1009 {
1010 struct entropy_store *r;
1011 struct {
1012 long jiffies;
1013 unsigned cycles;
1014 unsigned num;
1015 } sample;
1016 long delta, delta2, delta3;
1017
1018 preempt_disable();
1019
1020 sample.jiffies = jiffies;
1021 sample.cycles = random_get_entropy();
1022 sample.num = num;
1023 r = &input_pool;
1024 mix_pool_bytes(r, &sample, sizeof(sample));
1025
1026 /*
1027 * Calculate number of bits of randomness we probably added.
1028 * We take into account the first, second and third-order deltas
1029 * in order to make our estimate.
1030 */
1031
1032 if (!state->dont_count_entropy) {
1033 delta = sample.jiffies - state->last_time;
1034 state->last_time = sample.jiffies;
1035
1036 delta2 = delta - state->last_delta;
1037 state->last_delta = delta;
1038
1039 delta3 = delta2 - state->last_delta2;
1040 state->last_delta2 = delta2;
1041
1042 if (delta < 0)
1043 delta = -delta;
1044 if (delta2 < 0)
1045 delta2 = -delta2;
1046 if (delta3 < 0)
1047 delta3 = -delta3;
1048 if (delta > delta2)
1049 delta = delta2;
1050 if (delta > delta3)
1051 delta = delta3;
1052
1053 /*
1054 * delta is now minimum absolute delta.
1055 * Round down by 1 bit on general principles,
1056 * and limit entropy entimate to 12 bits.
1057 */
1058 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1059 }
1060 preempt_enable();
1061 }
1062
1063 void add_input_randomness(unsigned int type, unsigned int code,
1064 unsigned int value)
1065 {
1066 static unsigned char last_value;
1067
1068 /* ignore autorepeat and the like */
1069 if (value == last_value)
1070 return;
1071
1072 last_value = value;
1073 add_timer_randomness(&input_timer_state,
1074 (type << 4) ^ code ^ (code >> 4) ^ value);
1075 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1076 }
1077 EXPORT_SYMBOL_GPL(add_input_randomness);
1078
1079 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1080
1081 #ifdef ADD_INTERRUPT_BENCH
1082 static unsigned long avg_cycles, avg_deviation;
1083
1084 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1085 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1086
1087 static void add_interrupt_bench(cycles_t start)
1088 {
1089 long delta = random_get_entropy() - start;
1090
1091 /* Use a weighted moving average */
1092 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1093 avg_cycles += delta;
1094 /* And average deviation */
1095 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1096 avg_deviation += delta;
1097 }
1098 #else
1099 #define add_interrupt_bench(x)
1100 #endif
1101
1102 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1103 {
1104 __u32 *ptr = (__u32 *) regs;
1105
1106 if (regs == NULL)
1107 return 0;
1108 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1109 f->reg_idx = 0;
1110 return *(ptr + f->reg_idx++);
1111 }
1112
1113 void add_interrupt_randomness(int irq, int irq_flags)
1114 {
1115 struct entropy_store *r;
1116 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1117 struct pt_regs *regs = get_irq_regs();
1118 unsigned long now = jiffies;
1119 cycles_t cycles = random_get_entropy();
1120 __u32 c_high, j_high;
1121 __u64 ip;
1122 unsigned long seed;
1123 int credit = 0;
1124
1125 if (cycles == 0)
1126 cycles = get_reg(fast_pool, regs);
1127 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1128 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1129 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1130 fast_pool->pool[1] ^= now ^ c_high;
1131 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1132 fast_pool->pool[2] ^= ip;
1133 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1134 get_reg(fast_pool, regs);
1135
1136 fast_mix(fast_pool);
1137 add_interrupt_bench(cycles);
1138
1139 if (!crng_ready()) {
1140 if ((fast_pool->count >= 64) &&
1141 crng_fast_load((char *) fast_pool->pool,
1142 sizeof(fast_pool->pool))) {
1143 fast_pool->count = 0;
1144 fast_pool->last = now;
1145 }
1146 return;
1147 }
1148
1149 if ((fast_pool->count < 64) &&
1150 !time_after(now, fast_pool->last + HZ))
1151 return;
1152
1153 r = &input_pool;
1154 if (!spin_trylock(&r->lock))
1155 return;
1156
1157 fast_pool->last = now;
1158 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1159
1160 /*
1161 * If we have architectural seed generator, produce a seed and
1162 * add it to the pool. For the sake of paranoia don't let the
1163 * architectural seed generator dominate the input from the
1164 * interrupt noise.
1165 */
1166 if (arch_get_random_seed_long(&seed)) {
1167 __mix_pool_bytes(r, &seed, sizeof(seed));
1168 credit = 1;
1169 }
1170 spin_unlock(&r->lock);
1171
1172 fast_pool->count = 0;
1173
1174 /* award one bit for the contents of the fast pool */
1175 credit_entropy_bits(r, credit + 1);
1176 }
1177 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1178
1179 #ifdef CONFIG_BLOCK
1180 void add_disk_randomness(struct gendisk *disk)
1181 {
1182 if (!disk || !disk->random)
1183 return;
1184 /* first major is 1, so we get >= 0x200 here */
1185 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1186 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1187 }
1188 EXPORT_SYMBOL_GPL(add_disk_randomness);
1189 #endif
1190
1191 /*********************************************************************
1192 *
1193 * Entropy extraction routines
1194 *
1195 *********************************************************************/
1196
1197 /*
1198 * This utility inline function is responsible for transferring entropy
1199 * from the primary pool to the secondary extraction pool. We make
1200 * sure we pull enough for a 'catastrophic reseed'.
1201 */
1202 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1203 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1204 {
1205 if (!r->pull ||
1206 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1207 r->entropy_count > r->poolinfo->poolfracbits)
1208 return;
1209
1210 _xfer_secondary_pool(r, nbytes);
1211 }
1212
1213 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1214 {
1215 __u32 tmp[OUTPUT_POOL_WORDS];
1216
1217 int bytes = nbytes;
1218
1219 /* pull at least as much as a wakeup */
1220 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1221 /* but never more than the buffer size */
1222 bytes = min_t(int, bytes, sizeof(tmp));
1223
1224 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1225 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1226 bytes = extract_entropy(r->pull, tmp, bytes,
1227 random_read_wakeup_bits / 8, 0);
1228 mix_pool_bytes(r, tmp, bytes);
1229 credit_entropy_bits(r, bytes*8);
1230 }
1231
1232 /*
1233 * Used as a workqueue function so that when the input pool is getting
1234 * full, we can "spill over" some entropy to the output pools. That
1235 * way the output pools can store some of the excess entropy instead
1236 * of letting it go to waste.
1237 */
1238 static void push_to_pool(struct work_struct *work)
1239 {
1240 struct entropy_store *r = container_of(work, struct entropy_store,
1241 push_work);
1242 BUG_ON(!r);
1243 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1244 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1245 r->pull->entropy_count >> ENTROPY_SHIFT);
1246 }
1247
1248 /*
1249 * This function decides how many bytes to actually take from the
1250 * given pool, and also debits the entropy count accordingly.
1251 */
1252 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1253 int reserved)
1254 {
1255 int entropy_count, orig, have_bytes;
1256 size_t ibytes, nfrac;
1257
1258 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1259
1260 /* Can we pull enough? */
1261 retry:
1262 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1263 ibytes = nbytes;
1264 /* never pull more than available */
1265 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1266
1267 if ((have_bytes -= reserved) < 0)
1268 have_bytes = 0;
1269 ibytes = min_t(size_t, ibytes, have_bytes);
1270 if (ibytes < min)
1271 ibytes = 0;
1272
1273 if (unlikely(entropy_count < 0)) {
1274 pr_warn("random: negative entropy count: pool %s count %d\n",
1275 r->name, entropy_count);
1276 WARN_ON(1);
1277 entropy_count = 0;
1278 }
1279 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1280 if ((size_t) entropy_count > nfrac)
1281 entropy_count -= nfrac;
1282 else
1283 entropy_count = 0;
1284
1285 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1286 goto retry;
1287
1288 trace_debit_entropy(r->name, 8 * ibytes);
1289 if (ibytes &&
1290 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1291 wake_up_interruptible(&random_write_wait);
1292 kill_fasync(&fasync, SIGIO, POLL_OUT);
1293 }
1294
1295 return ibytes;
1296 }
1297
1298 /*
1299 * This function does the actual extraction for extract_entropy and
1300 * extract_entropy_user.
1301 *
1302 * Note: we assume that .poolwords is a multiple of 16 words.
1303 */
1304 static void extract_buf(struct entropy_store *r, __u8 *out)
1305 {
1306 int i;
1307 union {
1308 __u32 w[5];
1309 unsigned long l[LONGS(20)];
1310 } hash;
1311 __u32 workspace[SHA_WORKSPACE_WORDS];
1312 unsigned long flags;
1313
1314 /*
1315 * If we have an architectural hardware random number
1316 * generator, use it for SHA's initial vector
1317 */
1318 sha_init(hash.w);
1319 for (i = 0; i < LONGS(20); i++) {
1320 unsigned long v;
1321 if (!arch_get_random_long(&v))
1322 break;
1323 hash.l[i] = v;
1324 }
1325
1326 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1327 spin_lock_irqsave(&r->lock, flags);
1328 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1329 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1330
1331 /*
1332 * We mix the hash back into the pool to prevent backtracking
1333 * attacks (where the attacker knows the state of the pool
1334 * plus the current outputs, and attempts to find previous
1335 * ouputs), unless the hash function can be inverted. By
1336 * mixing at least a SHA1 worth of hash data back, we make
1337 * brute-forcing the feedback as hard as brute-forcing the
1338 * hash.
1339 */
1340 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1341 spin_unlock_irqrestore(&r->lock, flags);
1342
1343 memzero_explicit(workspace, sizeof(workspace));
1344
1345 /*
1346 * In case the hash function has some recognizable output
1347 * pattern, we fold it in half. Thus, we always feed back
1348 * twice as much data as we output.
1349 */
1350 hash.w[0] ^= hash.w[3];
1351 hash.w[1] ^= hash.w[4];
1352 hash.w[2] ^= rol32(hash.w[2], 16);
1353
1354 memcpy(out, &hash, EXTRACT_SIZE);
1355 memzero_explicit(&hash, sizeof(hash));
1356 }
1357
1358 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1359 size_t nbytes, int fips)
1360 {
1361 ssize_t ret = 0, i;
1362 __u8 tmp[EXTRACT_SIZE];
1363 unsigned long flags;
1364
1365 while (nbytes) {
1366 extract_buf(r, tmp);
1367
1368 if (fips) {
1369 spin_lock_irqsave(&r->lock, flags);
1370 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1371 panic("Hardware RNG duplicated output!\n");
1372 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1373 spin_unlock_irqrestore(&r->lock, flags);
1374 }
1375 i = min_t(int, nbytes, EXTRACT_SIZE);
1376 memcpy(buf, tmp, i);
1377 nbytes -= i;
1378 buf += i;
1379 ret += i;
1380 }
1381
1382 /* Wipe data just returned from memory */
1383 memzero_explicit(tmp, sizeof(tmp));
1384
1385 return ret;
1386 }
1387
1388 /*
1389 * This function extracts randomness from the "entropy pool", and
1390 * returns it in a buffer.
1391 *
1392 * The min parameter specifies the minimum amount we can pull before
1393 * failing to avoid races that defeat catastrophic reseeding while the
1394 * reserved parameter indicates how much entropy we must leave in the
1395 * pool after each pull to avoid starving other readers.
1396 */
1397 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1398 size_t nbytes, int min, int reserved)
1399 {
1400 __u8 tmp[EXTRACT_SIZE];
1401 unsigned long flags;
1402
1403 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1404 if (fips_enabled) {
1405 spin_lock_irqsave(&r->lock, flags);
1406 if (!r->last_data_init) {
1407 r->last_data_init = 1;
1408 spin_unlock_irqrestore(&r->lock, flags);
1409 trace_extract_entropy(r->name, EXTRACT_SIZE,
1410 ENTROPY_BITS(r), _RET_IP_);
1411 xfer_secondary_pool(r, EXTRACT_SIZE);
1412 extract_buf(r, tmp);
1413 spin_lock_irqsave(&r->lock, flags);
1414 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1415 }
1416 spin_unlock_irqrestore(&r->lock, flags);
1417 }
1418
1419 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1420 xfer_secondary_pool(r, nbytes);
1421 nbytes = account(r, nbytes, min, reserved);
1422
1423 return _extract_entropy(r, buf, nbytes, fips_enabled);
1424 }
1425
1426 /*
1427 * This function extracts randomness from the "entropy pool", and
1428 * returns it in a userspace buffer.
1429 */
1430 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1431 size_t nbytes)
1432 {
1433 ssize_t ret = 0, i;
1434 __u8 tmp[EXTRACT_SIZE];
1435 int large_request = (nbytes > 256);
1436
1437 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1438 xfer_secondary_pool(r, nbytes);
1439 nbytes = account(r, nbytes, 0, 0);
1440
1441 while (nbytes) {
1442 if (large_request && need_resched()) {
1443 if (signal_pending(current)) {
1444 if (ret == 0)
1445 ret = -ERESTARTSYS;
1446 break;
1447 }
1448 schedule();
1449 }
1450
1451 extract_buf(r, tmp);
1452 i = min_t(int, nbytes, EXTRACT_SIZE);
1453 if (copy_to_user(buf, tmp, i)) {
1454 ret = -EFAULT;
1455 break;
1456 }
1457
1458 nbytes -= i;
1459 buf += i;
1460 ret += i;
1461 }
1462
1463 /* Wipe data just returned from memory */
1464 memzero_explicit(tmp, sizeof(tmp));
1465
1466 return ret;
1467 }
1468
1469 /*
1470 * This function is the exported kernel interface. It returns some
1471 * number of good random numbers, suitable for key generation, seeding
1472 * TCP sequence numbers, etc. It does not rely on the hardware random
1473 * number generator. For random bytes direct from the hardware RNG
1474 * (when available), use get_random_bytes_arch().
1475 */
1476 void get_random_bytes(void *buf, int nbytes)
1477 {
1478 __u8 tmp[CHACHA20_BLOCK_SIZE];
1479
1480 #if DEBUG_RANDOM_BOOT > 0
1481 if (!crng_ready())
1482 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1483 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1484 #endif
1485 trace_get_random_bytes(nbytes, _RET_IP_);
1486
1487 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1488 extract_crng(buf);
1489 buf += CHACHA20_BLOCK_SIZE;
1490 nbytes -= CHACHA20_BLOCK_SIZE;
1491 }
1492
1493 if (nbytes > 0) {
1494 extract_crng(tmp);
1495 memcpy(buf, tmp, nbytes);
1496 crng_backtrack_protect(tmp, nbytes);
1497 } else
1498 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1499 memzero_explicit(tmp, sizeof(tmp));
1500 }
1501 EXPORT_SYMBOL(get_random_bytes);
1502
1503 /*
1504 * Add a callback function that will be invoked when the nonblocking
1505 * pool is initialised.
1506 *
1507 * returns: 0 if callback is successfully added
1508 * -EALREADY if pool is already initialised (callback not called)
1509 * -ENOENT if module for callback is not alive
1510 */
1511 int add_random_ready_callback(struct random_ready_callback *rdy)
1512 {
1513 struct module *owner;
1514 unsigned long flags;
1515 int err = -EALREADY;
1516
1517 if (crng_ready())
1518 return err;
1519
1520 owner = rdy->owner;
1521 if (!try_module_get(owner))
1522 return -ENOENT;
1523
1524 spin_lock_irqsave(&random_ready_list_lock, flags);
1525 if (crng_ready())
1526 goto out;
1527
1528 owner = NULL;
1529
1530 list_add(&rdy->list, &random_ready_list);
1531 err = 0;
1532
1533 out:
1534 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1535
1536 module_put(owner);
1537
1538 return err;
1539 }
1540 EXPORT_SYMBOL(add_random_ready_callback);
1541
1542 /*
1543 * Delete a previously registered readiness callback function.
1544 */
1545 void del_random_ready_callback(struct random_ready_callback *rdy)
1546 {
1547 unsigned long flags;
1548 struct module *owner = NULL;
1549
1550 spin_lock_irqsave(&random_ready_list_lock, flags);
1551 if (!list_empty(&rdy->list)) {
1552 list_del_init(&rdy->list);
1553 owner = rdy->owner;
1554 }
1555 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1556
1557 module_put(owner);
1558 }
1559 EXPORT_SYMBOL(del_random_ready_callback);
1560
1561 /*
1562 * This function will use the architecture-specific hardware random
1563 * number generator if it is available. The arch-specific hw RNG will
1564 * almost certainly be faster than what we can do in software, but it
1565 * is impossible to verify that it is implemented securely (as
1566 * opposed, to, say, the AES encryption of a sequence number using a
1567 * key known by the NSA). So it's useful if we need the speed, but
1568 * only if we're willing to trust the hardware manufacturer not to
1569 * have put in a back door.
1570 */
1571 void get_random_bytes_arch(void *buf, int nbytes)
1572 {
1573 char *p = buf;
1574
1575 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1576 while (nbytes) {
1577 unsigned long v;
1578 int chunk = min(nbytes, (int)sizeof(unsigned long));
1579
1580 if (!arch_get_random_long(&v))
1581 break;
1582
1583 memcpy(p, &v, chunk);
1584 p += chunk;
1585 nbytes -= chunk;
1586 }
1587
1588 if (nbytes)
1589 get_random_bytes(p, nbytes);
1590 }
1591 EXPORT_SYMBOL(get_random_bytes_arch);
1592
1593
1594 /*
1595 * init_std_data - initialize pool with system data
1596 *
1597 * @r: pool to initialize
1598 *
1599 * This function clears the pool's entropy count and mixes some system
1600 * data into the pool to prepare it for use. The pool is not cleared
1601 * as that can only decrease the entropy in the pool.
1602 */
1603 static void init_std_data(struct entropy_store *r)
1604 {
1605 int i;
1606 ktime_t now = ktime_get_real();
1607 unsigned long rv;
1608
1609 r->last_pulled = jiffies;
1610 mix_pool_bytes(r, &now, sizeof(now));
1611 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1612 if (!arch_get_random_seed_long(&rv) &&
1613 !arch_get_random_long(&rv))
1614 rv = random_get_entropy();
1615 mix_pool_bytes(r, &rv, sizeof(rv));
1616 }
1617 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1618 }
1619
1620 /*
1621 * Note that setup_arch() may call add_device_randomness()
1622 * long before we get here. This allows seeding of the pools
1623 * with some platform dependent data very early in the boot
1624 * process. But it limits our options here. We must use
1625 * statically allocated structures that already have all
1626 * initializations complete at compile time. We should also
1627 * take care not to overwrite the precious per platform data
1628 * we were given.
1629 */
1630 static int rand_initialize(void)
1631 {
1632 #ifdef CONFIG_NUMA
1633 int i;
1634 struct crng_state *crng;
1635 struct crng_state **pool;
1636 #endif
1637
1638 init_std_data(&input_pool);
1639 init_std_data(&blocking_pool);
1640 crng_initialize(&primary_crng);
1641
1642 #ifdef CONFIG_NUMA
1643 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1644 for_each_online_node(i) {
1645 crng = kmalloc_node(sizeof(struct crng_state),
1646 GFP_KERNEL | __GFP_NOFAIL, i);
1647 spin_lock_init(&crng->lock);
1648 crng_initialize(crng);
1649 pool[i] = crng;
1650 }
1651 mb();
1652 crng_node_pool = pool;
1653 #endif
1654 return 0;
1655 }
1656 early_initcall(rand_initialize);
1657
1658 #ifdef CONFIG_BLOCK
1659 void rand_initialize_disk(struct gendisk *disk)
1660 {
1661 struct timer_rand_state *state;
1662
1663 /*
1664 * If kzalloc returns null, we just won't use that entropy
1665 * source.
1666 */
1667 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1668 if (state) {
1669 state->last_time = INITIAL_JIFFIES;
1670 disk->random = state;
1671 }
1672 }
1673 #endif
1674
1675 static ssize_t
1676 _random_read(int nonblock, char __user *buf, size_t nbytes)
1677 {
1678 ssize_t n;
1679
1680 if (nbytes == 0)
1681 return 0;
1682
1683 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1684 while (1) {
1685 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1686 if (n < 0)
1687 return n;
1688 trace_random_read(n*8, (nbytes-n)*8,
1689 ENTROPY_BITS(&blocking_pool),
1690 ENTROPY_BITS(&input_pool));
1691 if (n > 0)
1692 return n;
1693
1694 /* Pool is (near) empty. Maybe wait and retry. */
1695 if (nonblock)
1696 return -EAGAIN;
1697
1698 wait_event_interruptible(random_read_wait,
1699 ENTROPY_BITS(&input_pool) >=
1700 random_read_wakeup_bits);
1701 if (signal_pending(current))
1702 return -ERESTARTSYS;
1703 }
1704 }
1705
1706 static ssize_t
1707 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1708 {
1709 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1710 }
1711
1712 static ssize_t
1713 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1714 {
1715 unsigned long flags;
1716 static int maxwarn = 10;
1717 int ret;
1718
1719 if (!crng_ready() && maxwarn > 0) {
1720 maxwarn--;
1721 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1722 "(%zd bytes read)\n",
1723 current->comm, nbytes);
1724 spin_lock_irqsave(&primary_crng.lock, flags);
1725 crng_init_cnt = 0;
1726 spin_unlock_irqrestore(&primary_crng.lock, flags);
1727 }
1728 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1729 ret = extract_crng_user(buf, nbytes);
1730 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1731 return ret;
1732 }
1733
1734 static unsigned int
1735 random_poll(struct file *file, poll_table * wait)
1736 {
1737 unsigned int mask;
1738
1739 poll_wait(file, &random_read_wait, wait);
1740 poll_wait(file, &random_write_wait, wait);
1741 mask = 0;
1742 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1743 mask |= POLLIN | POLLRDNORM;
1744 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1745 mask |= POLLOUT | POLLWRNORM;
1746 return mask;
1747 }
1748
1749 static int
1750 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1751 {
1752 size_t bytes;
1753 __u32 buf[16];
1754 const char __user *p = buffer;
1755
1756 while (count > 0) {
1757 bytes = min(count, sizeof(buf));
1758 if (copy_from_user(&buf, p, bytes))
1759 return -EFAULT;
1760
1761 count -= bytes;
1762 p += bytes;
1763
1764 mix_pool_bytes(r, buf, bytes);
1765 cond_resched();
1766 }
1767
1768 return 0;
1769 }
1770
1771 static ssize_t random_write(struct file *file, const char __user *buffer,
1772 size_t count, loff_t *ppos)
1773 {
1774 size_t ret;
1775
1776 ret = write_pool(&input_pool, buffer, count);
1777 if (ret)
1778 return ret;
1779
1780 return (ssize_t)count;
1781 }
1782
1783 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1784 {
1785 int size, ent_count;
1786 int __user *p = (int __user *)arg;
1787 int retval;
1788
1789 switch (cmd) {
1790 case RNDGETENTCNT:
1791 /* inherently racy, no point locking */
1792 ent_count = ENTROPY_BITS(&input_pool);
1793 if (put_user(ent_count, p))
1794 return -EFAULT;
1795 return 0;
1796 case RNDADDTOENTCNT:
1797 if (!capable(CAP_SYS_ADMIN))
1798 return -EPERM;
1799 if (get_user(ent_count, p))
1800 return -EFAULT;
1801 return credit_entropy_bits_safe(&input_pool, ent_count);
1802 case RNDADDENTROPY:
1803 if (!capable(CAP_SYS_ADMIN))
1804 return -EPERM;
1805 if (get_user(ent_count, p++))
1806 return -EFAULT;
1807 if (ent_count < 0)
1808 return -EINVAL;
1809 if (get_user(size, p++))
1810 return -EFAULT;
1811 retval = write_pool(&input_pool, (const char __user *)p,
1812 size);
1813 if (retval < 0)
1814 return retval;
1815 return credit_entropy_bits_safe(&input_pool, ent_count);
1816 case RNDZAPENTCNT:
1817 case RNDCLEARPOOL:
1818 /*
1819 * Clear the entropy pool counters. We no longer clear
1820 * the entropy pool, as that's silly.
1821 */
1822 if (!capable(CAP_SYS_ADMIN))
1823 return -EPERM;
1824 input_pool.entropy_count = 0;
1825 blocking_pool.entropy_count = 0;
1826 return 0;
1827 default:
1828 return -EINVAL;
1829 }
1830 }
1831
1832 static int random_fasync(int fd, struct file *filp, int on)
1833 {
1834 return fasync_helper(fd, filp, on, &fasync);
1835 }
1836
1837 const struct file_operations random_fops = {
1838 .read = random_read,
1839 .write = random_write,
1840 .poll = random_poll,
1841 .unlocked_ioctl = random_ioctl,
1842 .fasync = random_fasync,
1843 .llseek = noop_llseek,
1844 };
1845
1846 const struct file_operations urandom_fops = {
1847 .read = urandom_read,
1848 .write = random_write,
1849 .unlocked_ioctl = random_ioctl,
1850 .fasync = random_fasync,
1851 .llseek = noop_llseek,
1852 };
1853
1854 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1855 unsigned int, flags)
1856 {
1857 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1858 return -EINVAL;
1859
1860 if (count > INT_MAX)
1861 count = INT_MAX;
1862
1863 if (flags & GRND_RANDOM)
1864 return _random_read(flags & GRND_NONBLOCK, buf, count);
1865
1866 if (!crng_ready()) {
1867 if (flags & GRND_NONBLOCK)
1868 return -EAGAIN;
1869 crng_wait_ready();
1870 if (signal_pending(current))
1871 return -ERESTARTSYS;
1872 }
1873 return urandom_read(NULL, buf, count, NULL);
1874 }
1875
1876 /********************************************************************
1877 *
1878 * Sysctl interface
1879 *
1880 ********************************************************************/
1881
1882 #ifdef CONFIG_SYSCTL
1883
1884 #include <linux/sysctl.h>
1885
1886 static int min_read_thresh = 8, min_write_thresh;
1887 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1888 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1889 static char sysctl_bootid[16];
1890
1891 /*
1892 * This function is used to return both the bootid UUID, and random
1893 * UUID. The difference is in whether table->data is NULL; if it is,
1894 * then a new UUID is generated and returned to the user.
1895 *
1896 * If the user accesses this via the proc interface, the UUID will be
1897 * returned as an ASCII string in the standard UUID format; if via the
1898 * sysctl system call, as 16 bytes of binary data.
1899 */
1900 static int proc_do_uuid(struct ctl_table *table, int write,
1901 void __user *buffer, size_t *lenp, loff_t *ppos)
1902 {
1903 struct ctl_table fake_table;
1904 unsigned char buf[64], tmp_uuid[16], *uuid;
1905
1906 uuid = table->data;
1907 if (!uuid) {
1908 uuid = tmp_uuid;
1909 generate_random_uuid(uuid);
1910 } else {
1911 static DEFINE_SPINLOCK(bootid_spinlock);
1912
1913 spin_lock(&bootid_spinlock);
1914 if (!uuid[8])
1915 generate_random_uuid(uuid);
1916 spin_unlock(&bootid_spinlock);
1917 }
1918
1919 sprintf(buf, "%pU", uuid);
1920
1921 fake_table.data = buf;
1922 fake_table.maxlen = sizeof(buf);
1923
1924 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1925 }
1926
1927 /*
1928 * Return entropy available scaled to integral bits
1929 */
1930 static int proc_do_entropy(struct ctl_table *table, int write,
1931 void __user *buffer, size_t *lenp, loff_t *ppos)
1932 {
1933 struct ctl_table fake_table;
1934 int entropy_count;
1935
1936 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1937
1938 fake_table.data = &entropy_count;
1939 fake_table.maxlen = sizeof(entropy_count);
1940
1941 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1942 }
1943
1944 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1945 extern struct ctl_table random_table[];
1946 struct ctl_table random_table[] = {
1947 {
1948 .procname = "poolsize",
1949 .data = &sysctl_poolsize,
1950 .maxlen = sizeof(int),
1951 .mode = 0444,
1952 .proc_handler = proc_dointvec,
1953 },
1954 {
1955 .procname = "entropy_avail",
1956 .maxlen = sizeof(int),
1957 .mode = 0444,
1958 .proc_handler = proc_do_entropy,
1959 .data = &input_pool.entropy_count,
1960 },
1961 {
1962 .procname = "read_wakeup_threshold",
1963 .data = &random_read_wakeup_bits,
1964 .maxlen = sizeof(int),
1965 .mode = 0644,
1966 .proc_handler = proc_dointvec_minmax,
1967 .extra1 = &min_read_thresh,
1968 .extra2 = &max_read_thresh,
1969 },
1970 {
1971 .procname = "write_wakeup_threshold",
1972 .data = &random_write_wakeup_bits,
1973 .maxlen = sizeof(int),
1974 .mode = 0644,
1975 .proc_handler = proc_dointvec_minmax,
1976 .extra1 = &min_write_thresh,
1977 .extra2 = &max_write_thresh,
1978 },
1979 {
1980 .procname = "urandom_min_reseed_secs",
1981 .data = &random_min_urandom_seed,
1982 .maxlen = sizeof(int),
1983 .mode = 0644,
1984 .proc_handler = proc_dointvec,
1985 },
1986 {
1987 .procname = "boot_id",
1988 .data = &sysctl_bootid,
1989 .maxlen = 16,
1990 .mode = 0444,
1991 .proc_handler = proc_do_uuid,
1992 },
1993 {
1994 .procname = "uuid",
1995 .maxlen = 16,
1996 .mode = 0444,
1997 .proc_handler = proc_do_uuid,
1998 },
1999 #ifdef ADD_INTERRUPT_BENCH
2000 {
2001 .procname = "add_interrupt_avg_cycles",
2002 .data = &avg_cycles,
2003 .maxlen = sizeof(avg_cycles),
2004 .mode = 0444,
2005 .proc_handler = proc_doulongvec_minmax,
2006 },
2007 {
2008 .procname = "add_interrupt_avg_deviation",
2009 .data = &avg_deviation,
2010 .maxlen = sizeof(avg_deviation),
2011 .mode = 0444,
2012 .proc_handler = proc_doulongvec_minmax,
2013 },
2014 #endif
2015 { }
2016 };
2017 #endif /* CONFIG_SYSCTL */
2018
2019 struct batched_entropy {
2020 union {
2021 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2022 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2023 };
2024 unsigned int position;
2025 };
2026
2027 /*
2028 * Get a random word for internal kernel use only. The quality of the random
2029 * number is either as good as RDRAND or as good as /dev/urandom, with the
2030 * goal of being quite fast and not depleting entropy.
2031 */
2032 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2033 u64 get_random_u64(void)
2034 {
2035 u64 ret;
2036 struct batched_entropy *batch;
2037
2038 #if BITS_PER_LONG == 64
2039 if (arch_get_random_long((unsigned long *)&ret))
2040 return ret;
2041 #else
2042 if (arch_get_random_long((unsigned long *)&ret) &&
2043 arch_get_random_long((unsigned long *)&ret + 1))
2044 return ret;
2045 #endif
2046
2047 batch = &get_cpu_var(batched_entropy_u64);
2048 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2049 extract_crng((u8 *)batch->entropy_u64);
2050 batch->position = 0;
2051 }
2052 ret = batch->entropy_u64[batch->position++];
2053 put_cpu_var(batched_entropy_u64);
2054 return ret;
2055 }
2056 EXPORT_SYMBOL(get_random_u64);
2057
2058 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2059 u32 get_random_u32(void)
2060 {
2061 u32 ret;
2062 struct batched_entropy *batch;
2063
2064 if (arch_get_random_int(&ret))
2065 return ret;
2066
2067 batch = &get_cpu_var(batched_entropy_u32);
2068 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2069 extract_crng((u8 *)batch->entropy_u32);
2070 batch->position = 0;
2071 }
2072 ret = batch->entropy_u32[batch->position++];
2073 put_cpu_var(batched_entropy_u32);
2074 return ret;
2075 }
2076 EXPORT_SYMBOL(get_random_u32);
2077
2078 /**
2079 * randomize_page - Generate a random, page aligned address
2080 * @start: The smallest acceptable address the caller will take.
2081 * @range: The size of the area, starting at @start, within which the
2082 * random address must fall.
2083 *
2084 * If @start + @range would overflow, @range is capped.
2085 *
2086 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2087 * @start was already page aligned. We now align it regardless.
2088 *
2089 * Return: A page aligned address within [start, start + range). On error,
2090 * @start is returned.
2091 */
2092 unsigned long
2093 randomize_page(unsigned long start, unsigned long range)
2094 {
2095 if (!PAGE_ALIGNED(start)) {
2096 range -= PAGE_ALIGN(start) - start;
2097 start = PAGE_ALIGN(start);
2098 }
2099
2100 if (start > ULONG_MAX - range)
2101 range = ULONG_MAX - start;
2102
2103 range >>= PAGE_SHIFT;
2104
2105 if (range == 0)
2106 return start;
2107
2108 return start + (get_random_long() % range << PAGE_SHIFT);
2109 }
2110
2111 /* Interface for in-kernel drivers of true hardware RNGs.
2112 * Those devices may produce endless random bits and will be throttled
2113 * when our pool is full.
2114 */
2115 void add_hwgenerator_randomness(const char *buffer, size_t count,
2116 size_t entropy)
2117 {
2118 struct entropy_store *poolp = &input_pool;
2119
2120 if (!crng_ready()) {
2121 crng_fast_load(buffer, count);
2122 return;
2123 }
2124
2125 /* Suspend writing if we're above the trickle threshold.
2126 * We'll be woken up again once below random_write_wakeup_thresh,
2127 * or when the calling thread is about to terminate.
2128 */
2129 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2130 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2131 mix_pool_bytes(poolp, buffer, count);
2132 credit_entropy_bits(poolp, entropy);
2133 }
2134 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);