]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/random.c
Merge branches 'intel_pstate-fix' and 'cpufreq-x86-fix'
[mirror_ubuntu-artful-kernel.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45 /*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
136 *
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/kmemcheck.h>
263 #include <linux/workqueue.h>
264 #include <linux/irq.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
269
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278
279 /* #define ADD_INTERRUPT_BENCH */
280
281 /*
282 * Configuration information
283 */
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
290
291
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
294 /*
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
300 */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
304 /*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
308 static int random_read_wakeup_bits = 64;
309
310 /*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316
317 /*
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
361 */
362 static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
373 #if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
399 #endif
400 };
401
402 /*
403 * Static global variables
404 */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411
412 struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416 };
417
418 struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421
422 /*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 0))
432 static int crng_init_cnt = 0;
433 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
434 static void _extract_crng(struct crng_state *crng,
435 __u8 out[CHACHA20_BLOCK_SIZE]);
436 static void _crng_backtrack_protect(struct crng_state *crng,
437 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
438 static void process_random_ready_list(void);
439 static void _get_random_bytes(void *buf, int nbytes);
440
441 /**********************************************************************
442 *
443 * OS independent entropy store. Here are the functions which handle
444 * storing entropy in an entropy pool.
445 *
446 **********************************************************************/
447
448 struct entropy_store;
449 struct entropy_store {
450 /* read-only data: */
451 const struct poolinfo *poolinfo;
452 __u32 *pool;
453 const char *name;
454 struct entropy_store *pull;
455 struct work_struct push_work;
456
457 /* read-write data: */
458 unsigned long last_pulled;
459 spinlock_t lock;
460 unsigned short add_ptr;
461 unsigned short input_rotate;
462 int entropy_count;
463 int entropy_total;
464 unsigned int initialized:1;
465 unsigned int last_data_init:1;
466 __u8 last_data[EXTRACT_SIZE];
467 };
468
469 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
470 size_t nbytes, int min, int rsvd);
471 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
472 size_t nbytes, int fips);
473
474 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
475 static void push_to_pool(struct work_struct *work);
476 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
477 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
478
479 static struct entropy_store input_pool = {
480 .poolinfo = &poolinfo_table[0],
481 .name = "input",
482 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
483 .pool = input_pool_data
484 };
485
486 static struct entropy_store blocking_pool = {
487 .poolinfo = &poolinfo_table[1],
488 .name = "blocking",
489 .pull = &input_pool,
490 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
491 .pool = blocking_pool_data,
492 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
493 push_to_pool),
494 };
495
496 static __u32 const twist_table[8] = {
497 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
498 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
499
500 /*
501 * This function adds bytes into the entropy "pool". It does not
502 * update the entropy estimate. The caller should call
503 * credit_entropy_bits if this is appropriate.
504 *
505 * The pool is stirred with a primitive polynomial of the appropriate
506 * degree, and then twisted. We twist by three bits at a time because
507 * it's cheap to do so and helps slightly in the expected case where
508 * the entropy is concentrated in the low-order bits.
509 */
510 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
511 int nbytes)
512 {
513 unsigned long i, tap1, tap2, tap3, tap4, tap5;
514 int input_rotate;
515 int wordmask = r->poolinfo->poolwords - 1;
516 const char *bytes = in;
517 __u32 w;
518
519 tap1 = r->poolinfo->tap1;
520 tap2 = r->poolinfo->tap2;
521 tap3 = r->poolinfo->tap3;
522 tap4 = r->poolinfo->tap4;
523 tap5 = r->poolinfo->tap5;
524
525 input_rotate = r->input_rotate;
526 i = r->add_ptr;
527
528 /* mix one byte at a time to simplify size handling and churn faster */
529 while (nbytes--) {
530 w = rol32(*bytes++, input_rotate);
531 i = (i - 1) & wordmask;
532
533 /* XOR in the various taps */
534 w ^= r->pool[i];
535 w ^= r->pool[(i + tap1) & wordmask];
536 w ^= r->pool[(i + tap2) & wordmask];
537 w ^= r->pool[(i + tap3) & wordmask];
538 w ^= r->pool[(i + tap4) & wordmask];
539 w ^= r->pool[(i + tap5) & wordmask];
540
541 /* Mix the result back in with a twist */
542 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
543
544 /*
545 * Normally, we add 7 bits of rotation to the pool.
546 * At the beginning of the pool, add an extra 7 bits
547 * rotation, so that successive passes spread the
548 * input bits across the pool evenly.
549 */
550 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
551 }
552
553 r->input_rotate = input_rotate;
554 r->add_ptr = i;
555 }
556
557 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
558 int nbytes)
559 {
560 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
561 _mix_pool_bytes(r, in, nbytes);
562 }
563
564 static void mix_pool_bytes(struct entropy_store *r, const void *in,
565 int nbytes)
566 {
567 unsigned long flags;
568
569 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
570 spin_lock_irqsave(&r->lock, flags);
571 _mix_pool_bytes(r, in, nbytes);
572 spin_unlock_irqrestore(&r->lock, flags);
573 }
574
575 struct fast_pool {
576 __u32 pool[4];
577 unsigned long last;
578 unsigned short reg_idx;
579 unsigned char count;
580 };
581
582 /*
583 * This is a fast mixing routine used by the interrupt randomness
584 * collector. It's hardcoded for an 128 bit pool and assumes that any
585 * locks that might be needed are taken by the caller.
586 */
587 static void fast_mix(struct fast_pool *f)
588 {
589 __u32 a = f->pool[0], b = f->pool[1];
590 __u32 c = f->pool[2], d = f->pool[3];
591
592 a += b; c += d;
593 b = rol32(b, 6); d = rol32(d, 27);
594 d ^= a; b ^= c;
595
596 a += b; c += d;
597 b = rol32(b, 16); d = rol32(d, 14);
598 d ^= a; b ^= c;
599
600 a += b; c += d;
601 b = rol32(b, 6); d = rol32(d, 27);
602 d ^= a; b ^= c;
603
604 a += b; c += d;
605 b = rol32(b, 16); d = rol32(d, 14);
606 d ^= a; b ^= c;
607
608 f->pool[0] = a; f->pool[1] = b;
609 f->pool[2] = c; f->pool[3] = d;
610 f->count++;
611 }
612
613 static void process_random_ready_list(void)
614 {
615 unsigned long flags;
616 struct random_ready_callback *rdy, *tmp;
617
618 spin_lock_irqsave(&random_ready_list_lock, flags);
619 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
620 struct module *owner = rdy->owner;
621
622 list_del_init(&rdy->list);
623 rdy->func(rdy);
624 module_put(owner);
625 }
626 spin_unlock_irqrestore(&random_ready_list_lock, flags);
627 }
628
629 /*
630 * Credit (or debit) the entropy store with n bits of entropy.
631 * Use credit_entropy_bits_safe() if the value comes from userspace
632 * or otherwise should be checked for extreme values.
633 */
634 static void credit_entropy_bits(struct entropy_store *r, int nbits)
635 {
636 int entropy_count, orig;
637 const int pool_size = r->poolinfo->poolfracbits;
638 int nfrac = nbits << ENTROPY_SHIFT;
639
640 if (!nbits)
641 return;
642
643 retry:
644 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
645 if (nfrac < 0) {
646 /* Debit */
647 entropy_count += nfrac;
648 } else {
649 /*
650 * Credit: we have to account for the possibility of
651 * overwriting already present entropy. Even in the
652 * ideal case of pure Shannon entropy, new contributions
653 * approach the full value asymptotically:
654 *
655 * entropy <- entropy + (pool_size - entropy) *
656 * (1 - exp(-add_entropy/pool_size))
657 *
658 * For add_entropy <= pool_size/2 then
659 * (1 - exp(-add_entropy/pool_size)) >=
660 * (add_entropy/pool_size)*0.7869...
661 * so we can approximate the exponential with
662 * 3/4*add_entropy/pool_size and still be on the
663 * safe side by adding at most pool_size/2 at a time.
664 *
665 * The use of pool_size-2 in the while statement is to
666 * prevent rounding artifacts from making the loop
667 * arbitrarily long; this limits the loop to log2(pool_size)*2
668 * turns no matter how large nbits is.
669 */
670 int pnfrac = nfrac;
671 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
672 /* The +2 corresponds to the /4 in the denominator */
673
674 do {
675 unsigned int anfrac = min(pnfrac, pool_size/2);
676 unsigned int add =
677 ((pool_size - entropy_count)*anfrac*3) >> s;
678
679 entropy_count += add;
680 pnfrac -= anfrac;
681 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
682 }
683
684 if (unlikely(entropy_count < 0)) {
685 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
686 r->name, entropy_count);
687 WARN_ON(1);
688 entropy_count = 0;
689 } else if (entropy_count > pool_size)
690 entropy_count = pool_size;
691 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
692 goto retry;
693
694 r->entropy_total += nbits;
695 if (!r->initialized && r->entropy_total > 128) {
696 r->initialized = 1;
697 r->entropy_total = 0;
698 }
699
700 trace_credit_entropy_bits(r->name, nbits,
701 entropy_count >> ENTROPY_SHIFT,
702 r->entropy_total, _RET_IP_);
703
704 if (r == &input_pool) {
705 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
706
707 if (crng_init < 2 && entropy_bits >= 128) {
708 crng_reseed(&primary_crng, r);
709 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
710 }
711
712 /* should we wake readers? */
713 if (entropy_bits >= random_read_wakeup_bits) {
714 wake_up_interruptible(&random_read_wait);
715 kill_fasync(&fasync, SIGIO, POLL_IN);
716 }
717 /* If the input pool is getting full, send some
718 * entropy to the blocking pool until it is 75% full.
719 */
720 if (entropy_bits > random_write_wakeup_bits &&
721 r->initialized &&
722 r->entropy_total >= 2*random_read_wakeup_bits) {
723 struct entropy_store *other = &blocking_pool;
724
725 if (other->entropy_count <=
726 3 * other->poolinfo->poolfracbits / 4) {
727 schedule_work(&other->push_work);
728 r->entropy_total = 0;
729 }
730 }
731 }
732 }
733
734 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
735 {
736 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
737
738 if (nbits < 0)
739 return -EINVAL;
740
741 /* Cap the value to avoid overflows */
742 nbits = min(nbits, nbits_max);
743
744 credit_entropy_bits(r, nbits);
745 return 0;
746 }
747
748 /*********************************************************************
749 *
750 * CRNG using CHACHA20
751 *
752 *********************************************************************/
753
754 #define CRNG_RESEED_INTERVAL (300*HZ)
755
756 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
757
758 #ifdef CONFIG_NUMA
759 /*
760 * Hack to deal with crazy userspace progams when they are all trying
761 * to access /dev/urandom in parallel. The programs are almost
762 * certainly doing something terribly wrong, but we'll work around
763 * their brain damage.
764 */
765 static struct crng_state **crng_node_pool __read_mostly;
766 #endif
767
768 static void invalidate_batched_entropy(void);
769
770 static void crng_initialize(struct crng_state *crng)
771 {
772 int i;
773 unsigned long rv;
774
775 memcpy(&crng->state[0], "expand 32-byte k", 16);
776 if (crng == &primary_crng)
777 _extract_entropy(&input_pool, &crng->state[4],
778 sizeof(__u32) * 12, 0);
779 else
780 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
781 for (i = 4; i < 16; i++) {
782 if (!arch_get_random_seed_long(&rv) &&
783 !arch_get_random_long(&rv))
784 rv = random_get_entropy();
785 crng->state[i] ^= rv;
786 }
787 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
788 }
789
790 static int crng_fast_load(const char *cp, size_t len)
791 {
792 unsigned long flags;
793 char *p;
794
795 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
796 return 0;
797 if (crng_ready()) {
798 spin_unlock_irqrestore(&primary_crng.lock, flags);
799 return 0;
800 }
801 p = (unsigned char *) &primary_crng.state[4];
802 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
803 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
804 cp++; crng_init_cnt++; len--;
805 }
806 spin_unlock_irqrestore(&primary_crng.lock, flags);
807 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
808 invalidate_batched_entropy();
809 crng_init = 1;
810 wake_up_interruptible(&crng_init_wait);
811 pr_notice("random: fast init done\n");
812 }
813 return 1;
814 }
815
816 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
817 {
818 unsigned long flags;
819 int i, num;
820 union {
821 __u8 block[CHACHA20_BLOCK_SIZE];
822 __u32 key[8];
823 } buf;
824
825 if (r) {
826 num = extract_entropy(r, &buf, 32, 16, 0);
827 if (num == 0)
828 return;
829 } else {
830 _extract_crng(&primary_crng, buf.block);
831 _crng_backtrack_protect(&primary_crng, buf.block,
832 CHACHA20_KEY_SIZE);
833 }
834 spin_lock_irqsave(&primary_crng.lock, flags);
835 for (i = 0; i < 8; i++) {
836 unsigned long rv;
837 if (!arch_get_random_seed_long(&rv) &&
838 !arch_get_random_long(&rv))
839 rv = random_get_entropy();
840 crng->state[i+4] ^= buf.key[i] ^ rv;
841 }
842 memzero_explicit(&buf, sizeof(buf));
843 crng->init_time = jiffies;
844 spin_unlock_irqrestore(&primary_crng.lock, flags);
845 if (crng == &primary_crng && crng_init < 2) {
846 invalidate_batched_entropy();
847 crng_init = 2;
848 process_random_ready_list();
849 wake_up_interruptible(&crng_init_wait);
850 pr_notice("random: crng init done\n");
851 }
852 }
853
854 static void _extract_crng(struct crng_state *crng,
855 __u8 out[CHACHA20_BLOCK_SIZE])
856 {
857 unsigned long v, flags;
858
859 if (crng_init > 1 &&
860 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
861 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
862 spin_lock_irqsave(&crng->lock, flags);
863 if (arch_get_random_long(&v))
864 crng->state[14] ^= v;
865 chacha20_block(&crng->state[0], out);
866 if (crng->state[12] == 0)
867 crng->state[13]++;
868 spin_unlock_irqrestore(&crng->lock, flags);
869 }
870
871 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
872 {
873 struct crng_state *crng = NULL;
874
875 #ifdef CONFIG_NUMA
876 if (crng_node_pool)
877 crng = crng_node_pool[numa_node_id()];
878 if (crng == NULL)
879 #endif
880 crng = &primary_crng;
881 _extract_crng(crng, out);
882 }
883
884 /*
885 * Use the leftover bytes from the CRNG block output (if there is
886 * enough) to mutate the CRNG key to provide backtracking protection.
887 */
888 static void _crng_backtrack_protect(struct crng_state *crng,
889 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
890 {
891 unsigned long flags;
892 __u32 *s, *d;
893 int i;
894
895 used = round_up(used, sizeof(__u32));
896 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
897 extract_crng(tmp);
898 used = 0;
899 }
900 spin_lock_irqsave(&crng->lock, flags);
901 s = (__u32 *) &tmp[used];
902 d = &crng->state[4];
903 for (i=0; i < 8; i++)
904 *d++ ^= *s++;
905 spin_unlock_irqrestore(&crng->lock, flags);
906 }
907
908 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
909 {
910 struct crng_state *crng = NULL;
911
912 #ifdef CONFIG_NUMA
913 if (crng_node_pool)
914 crng = crng_node_pool[numa_node_id()];
915 if (crng == NULL)
916 #endif
917 crng = &primary_crng;
918 _crng_backtrack_protect(crng, tmp, used);
919 }
920
921 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
922 {
923 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
924 __u8 tmp[CHACHA20_BLOCK_SIZE];
925 int large_request = (nbytes > 256);
926
927 while (nbytes) {
928 if (large_request && need_resched()) {
929 if (signal_pending(current)) {
930 if (ret == 0)
931 ret = -ERESTARTSYS;
932 break;
933 }
934 schedule();
935 }
936
937 extract_crng(tmp);
938 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
939 if (copy_to_user(buf, tmp, i)) {
940 ret = -EFAULT;
941 break;
942 }
943
944 nbytes -= i;
945 buf += i;
946 ret += i;
947 }
948 crng_backtrack_protect(tmp, i);
949
950 /* Wipe data just written to memory */
951 memzero_explicit(tmp, sizeof(tmp));
952
953 return ret;
954 }
955
956
957 /*********************************************************************
958 *
959 * Entropy input management
960 *
961 *********************************************************************/
962
963 /* There is one of these per entropy source */
964 struct timer_rand_state {
965 cycles_t last_time;
966 long last_delta, last_delta2;
967 unsigned dont_count_entropy:1;
968 };
969
970 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
971
972 /*
973 * Add device- or boot-specific data to the input pool to help
974 * initialize it.
975 *
976 * None of this adds any entropy; it is meant to avoid the problem of
977 * the entropy pool having similar initial state across largely
978 * identical devices.
979 */
980 void add_device_randomness(const void *buf, unsigned int size)
981 {
982 unsigned long time = random_get_entropy() ^ jiffies;
983 unsigned long flags;
984
985 if (!crng_ready()) {
986 crng_fast_load(buf, size);
987 return;
988 }
989
990 trace_add_device_randomness(size, _RET_IP_);
991 spin_lock_irqsave(&input_pool.lock, flags);
992 _mix_pool_bytes(&input_pool, buf, size);
993 _mix_pool_bytes(&input_pool, &time, sizeof(time));
994 spin_unlock_irqrestore(&input_pool.lock, flags);
995 }
996 EXPORT_SYMBOL(add_device_randomness);
997
998 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
999
1000 /*
1001 * This function adds entropy to the entropy "pool" by using timing
1002 * delays. It uses the timer_rand_state structure to make an estimate
1003 * of how many bits of entropy this call has added to the pool.
1004 *
1005 * The number "num" is also added to the pool - it should somehow describe
1006 * the type of event which just happened. This is currently 0-255 for
1007 * keyboard scan codes, and 256 upwards for interrupts.
1008 *
1009 */
1010 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1011 {
1012 struct entropy_store *r;
1013 struct {
1014 long jiffies;
1015 unsigned cycles;
1016 unsigned num;
1017 } sample;
1018 long delta, delta2, delta3;
1019
1020 preempt_disable();
1021
1022 sample.jiffies = jiffies;
1023 sample.cycles = random_get_entropy();
1024 sample.num = num;
1025 r = &input_pool;
1026 mix_pool_bytes(r, &sample, sizeof(sample));
1027
1028 /*
1029 * Calculate number of bits of randomness we probably added.
1030 * We take into account the first, second and third-order deltas
1031 * in order to make our estimate.
1032 */
1033
1034 if (!state->dont_count_entropy) {
1035 delta = sample.jiffies - state->last_time;
1036 state->last_time = sample.jiffies;
1037
1038 delta2 = delta - state->last_delta;
1039 state->last_delta = delta;
1040
1041 delta3 = delta2 - state->last_delta2;
1042 state->last_delta2 = delta2;
1043
1044 if (delta < 0)
1045 delta = -delta;
1046 if (delta2 < 0)
1047 delta2 = -delta2;
1048 if (delta3 < 0)
1049 delta3 = -delta3;
1050 if (delta > delta2)
1051 delta = delta2;
1052 if (delta > delta3)
1053 delta = delta3;
1054
1055 /*
1056 * delta is now minimum absolute delta.
1057 * Round down by 1 bit on general principles,
1058 * and limit entropy entimate to 12 bits.
1059 */
1060 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1061 }
1062 preempt_enable();
1063 }
1064
1065 void add_input_randomness(unsigned int type, unsigned int code,
1066 unsigned int value)
1067 {
1068 static unsigned char last_value;
1069
1070 /* ignore autorepeat and the like */
1071 if (value == last_value)
1072 return;
1073
1074 last_value = value;
1075 add_timer_randomness(&input_timer_state,
1076 (type << 4) ^ code ^ (code >> 4) ^ value);
1077 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1078 }
1079 EXPORT_SYMBOL_GPL(add_input_randomness);
1080
1081 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1082
1083 #ifdef ADD_INTERRUPT_BENCH
1084 static unsigned long avg_cycles, avg_deviation;
1085
1086 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1087 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1088
1089 static void add_interrupt_bench(cycles_t start)
1090 {
1091 long delta = random_get_entropy() - start;
1092
1093 /* Use a weighted moving average */
1094 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1095 avg_cycles += delta;
1096 /* And average deviation */
1097 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1098 avg_deviation += delta;
1099 }
1100 #else
1101 #define add_interrupt_bench(x)
1102 #endif
1103
1104 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1105 {
1106 __u32 *ptr = (__u32 *) regs;
1107 unsigned int idx;
1108
1109 if (regs == NULL)
1110 return 0;
1111 idx = READ_ONCE(f->reg_idx);
1112 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1113 idx = 0;
1114 ptr += idx++;
1115 WRITE_ONCE(f->reg_idx, idx);
1116 return *ptr;
1117 }
1118
1119 void add_interrupt_randomness(int irq, int irq_flags)
1120 {
1121 struct entropy_store *r;
1122 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1123 struct pt_regs *regs = get_irq_regs();
1124 unsigned long now = jiffies;
1125 cycles_t cycles = random_get_entropy();
1126 __u32 c_high, j_high;
1127 __u64 ip;
1128 unsigned long seed;
1129 int credit = 0;
1130
1131 if (cycles == 0)
1132 cycles = get_reg(fast_pool, regs);
1133 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1134 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1135 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1136 fast_pool->pool[1] ^= now ^ c_high;
1137 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1138 fast_pool->pool[2] ^= ip;
1139 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1140 get_reg(fast_pool, regs);
1141
1142 fast_mix(fast_pool);
1143 add_interrupt_bench(cycles);
1144
1145 if (!crng_ready()) {
1146 if ((fast_pool->count >= 64) &&
1147 crng_fast_load((char *) fast_pool->pool,
1148 sizeof(fast_pool->pool))) {
1149 fast_pool->count = 0;
1150 fast_pool->last = now;
1151 }
1152 return;
1153 }
1154
1155 if ((fast_pool->count < 64) &&
1156 !time_after(now, fast_pool->last + HZ))
1157 return;
1158
1159 r = &input_pool;
1160 if (!spin_trylock(&r->lock))
1161 return;
1162
1163 fast_pool->last = now;
1164 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1165
1166 /*
1167 * If we have architectural seed generator, produce a seed and
1168 * add it to the pool. For the sake of paranoia don't let the
1169 * architectural seed generator dominate the input from the
1170 * interrupt noise.
1171 */
1172 if (arch_get_random_seed_long(&seed)) {
1173 __mix_pool_bytes(r, &seed, sizeof(seed));
1174 credit = 1;
1175 }
1176 spin_unlock(&r->lock);
1177
1178 fast_pool->count = 0;
1179
1180 /* award one bit for the contents of the fast pool */
1181 credit_entropy_bits(r, credit + 1);
1182 }
1183 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1184
1185 #ifdef CONFIG_BLOCK
1186 void add_disk_randomness(struct gendisk *disk)
1187 {
1188 if (!disk || !disk->random)
1189 return;
1190 /* first major is 1, so we get >= 0x200 here */
1191 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1192 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1193 }
1194 EXPORT_SYMBOL_GPL(add_disk_randomness);
1195 #endif
1196
1197 /*********************************************************************
1198 *
1199 * Entropy extraction routines
1200 *
1201 *********************************************************************/
1202
1203 /*
1204 * This utility inline function is responsible for transferring entropy
1205 * from the primary pool to the secondary extraction pool. We make
1206 * sure we pull enough for a 'catastrophic reseed'.
1207 */
1208 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1209 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1210 {
1211 if (!r->pull ||
1212 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1213 r->entropy_count > r->poolinfo->poolfracbits)
1214 return;
1215
1216 _xfer_secondary_pool(r, nbytes);
1217 }
1218
1219 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1220 {
1221 __u32 tmp[OUTPUT_POOL_WORDS];
1222
1223 int bytes = nbytes;
1224
1225 /* pull at least as much as a wakeup */
1226 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1227 /* but never more than the buffer size */
1228 bytes = min_t(int, bytes, sizeof(tmp));
1229
1230 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1231 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1232 bytes = extract_entropy(r->pull, tmp, bytes,
1233 random_read_wakeup_bits / 8, 0);
1234 mix_pool_bytes(r, tmp, bytes);
1235 credit_entropy_bits(r, bytes*8);
1236 }
1237
1238 /*
1239 * Used as a workqueue function so that when the input pool is getting
1240 * full, we can "spill over" some entropy to the output pools. That
1241 * way the output pools can store some of the excess entropy instead
1242 * of letting it go to waste.
1243 */
1244 static void push_to_pool(struct work_struct *work)
1245 {
1246 struct entropy_store *r = container_of(work, struct entropy_store,
1247 push_work);
1248 BUG_ON(!r);
1249 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1250 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1251 r->pull->entropy_count >> ENTROPY_SHIFT);
1252 }
1253
1254 /*
1255 * This function decides how many bytes to actually take from the
1256 * given pool, and also debits the entropy count accordingly.
1257 */
1258 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1259 int reserved)
1260 {
1261 int entropy_count, orig, have_bytes;
1262 size_t ibytes, nfrac;
1263
1264 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1265
1266 /* Can we pull enough? */
1267 retry:
1268 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1269 ibytes = nbytes;
1270 /* never pull more than available */
1271 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1272
1273 if ((have_bytes -= reserved) < 0)
1274 have_bytes = 0;
1275 ibytes = min_t(size_t, ibytes, have_bytes);
1276 if (ibytes < min)
1277 ibytes = 0;
1278
1279 if (unlikely(entropy_count < 0)) {
1280 pr_warn("random: negative entropy count: pool %s count %d\n",
1281 r->name, entropy_count);
1282 WARN_ON(1);
1283 entropy_count = 0;
1284 }
1285 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1286 if ((size_t) entropy_count > nfrac)
1287 entropy_count -= nfrac;
1288 else
1289 entropy_count = 0;
1290
1291 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1292 goto retry;
1293
1294 trace_debit_entropy(r->name, 8 * ibytes);
1295 if (ibytes &&
1296 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1297 wake_up_interruptible(&random_write_wait);
1298 kill_fasync(&fasync, SIGIO, POLL_OUT);
1299 }
1300
1301 return ibytes;
1302 }
1303
1304 /*
1305 * This function does the actual extraction for extract_entropy and
1306 * extract_entropy_user.
1307 *
1308 * Note: we assume that .poolwords is a multiple of 16 words.
1309 */
1310 static void extract_buf(struct entropy_store *r, __u8 *out)
1311 {
1312 int i;
1313 union {
1314 __u32 w[5];
1315 unsigned long l[LONGS(20)];
1316 } hash;
1317 __u32 workspace[SHA_WORKSPACE_WORDS];
1318 unsigned long flags;
1319
1320 /*
1321 * If we have an architectural hardware random number
1322 * generator, use it for SHA's initial vector
1323 */
1324 sha_init(hash.w);
1325 for (i = 0; i < LONGS(20); i++) {
1326 unsigned long v;
1327 if (!arch_get_random_long(&v))
1328 break;
1329 hash.l[i] = v;
1330 }
1331
1332 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1333 spin_lock_irqsave(&r->lock, flags);
1334 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1335 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1336
1337 /*
1338 * We mix the hash back into the pool to prevent backtracking
1339 * attacks (where the attacker knows the state of the pool
1340 * plus the current outputs, and attempts to find previous
1341 * ouputs), unless the hash function can be inverted. By
1342 * mixing at least a SHA1 worth of hash data back, we make
1343 * brute-forcing the feedback as hard as brute-forcing the
1344 * hash.
1345 */
1346 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1347 spin_unlock_irqrestore(&r->lock, flags);
1348
1349 memzero_explicit(workspace, sizeof(workspace));
1350
1351 /*
1352 * In case the hash function has some recognizable output
1353 * pattern, we fold it in half. Thus, we always feed back
1354 * twice as much data as we output.
1355 */
1356 hash.w[0] ^= hash.w[3];
1357 hash.w[1] ^= hash.w[4];
1358 hash.w[2] ^= rol32(hash.w[2], 16);
1359
1360 memcpy(out, &hash, EXTRACT_SIZE);
1361 memzero_explicit(&hash, sizeof(hash));
1362 }
1363
1364 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1365 size_t nbytes, int fips)
1366 {
1367 ssize_t ret = 0, i;
1368 __u8 tmp[EXTRACT_SIZE];
1369 unsigned long flags;
1370
1371 while (nbytes) {
1372 extract_buf(r, tmp);
1373
1374 if (fips) {
1375 spin_lock_irqsave(&r->lock, flags);
1376 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1377 panic("Hardware RNG duplicated output!\n");
1378 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1379 spin_unlock_irqrestore(&r->lock, flags);
1380 }
1381 i = min_t(int, nbytes, EXTRACT_SIZE);
1382 memcpy(buf, tmp, i);
1383 nbytes -= i;
1384 buf += i;
1385 ret += i;
1386 }
1387
1388 /* Wipe data just returned from memory */
1389 memzero_explicit(tmp, sizeof(tmp));
1390
1391 return ret;
1392 }
1393
1394 /*
1395 * This function extracts randomness from the "entropy pool", and
1396 * returns it in a buffer.
1397 *
1398 * The min parameter specifies the minimum amount we can pull before
1399 * failing to avoid races that defeat catastrophic reseeding while the
1400 * reserved parameter indicates how much entropy we must leave in the
1401 * pool after each pull to avoid starving other readers.
1402 */
1403 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1404 size_t nbytes, int min, int reserved)
1405 {
1406 __u8 tmp[EXTRACT_SIZE];
1407 unsigned long flags;
1408
1409 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1410 if (fips_enabled) {
1411 spin_lock_irqsave(&r->lock, flags);
1412 if (!r->last_data_init) {
1413 r->last_data_init = 1;
1414 spin_unlock_irqrestore(&r->lock, flags);
1415 trace_extract_entropy(r->name, EXTRACT_SIZE,
1416 ENTROPY_BITS(r), _RET_IP_);
1417 xfer_secondary_pool(r, EXTRACT_SIZE);
1418 extract_buf(r, tmp);
1419 spin_lock_irqsave(&r->lock, flags);
1420 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1421 }
1422 spin_unlock_irqrestore(&r->lock, flags);
1423 }
1424
1425 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1426 xfer_secondary_pool(r, nbytes);
1427 nbytes = account(r, nbytes, min, reserved);
1428
1429 return _extract_entropy(r, buf, nbytes, fips_enabled);
1430 }
1431
1432 /*
1433 * This function extracts randomness from the "entropy pool", and
1434 * returns it in a userspace buffer.
1435 */
1436 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1437 size_t nbytes)
1438 {
1439 ssize_t ret = 0, i;
1440 __u8 tmp[EXTRACT_SIZE];
1441 int large_request = (nbytes > 256);
1442
1443 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1444 xfer_secondary_pool(r, nbytes);
1445 nbytes = account(r, nbytes, 0, 0);
1446
1447 while (nbytes) {
1448 if (large_request && need_resched()) {
1449 if (signal_pending(current)) {
1450 if (ret == 0)
1451 ret = -ERESTARTSYS;
1452 break;
1453 }
1454 schedule();
1455 }
1456
1457 extract_buf(r, tmp);
1458 i = min_t(int, nbytes, EXTRACT_SIZE);
1459 if (copy_to_user(buf, tmp, i)) {
1460 ret = -EFAULT;
1461 break;
1462 }
1463
1464 nbytes -= i;
1465 buf += i;
1466 ret += i;
1467 }
1468
1469 /* Wipe data just returned from memory */
1470 memzero_explicit(tmp, sizeof(tmp));
1471
1472 return ret;
1473 }
1474
1475 #define warn_unseeded_randomness(previous) \
1476 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1477
1478 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1479 void **previous)
1480 {
1481 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1482 const bool print_once = false;
1483 #else
1484 static bool print_once __read_mostly;
1485 #endif
1486
1487 if (print_once ||
1488 crng_ready() ||
1489 (previous && (caller == READ_ONCE(*previous))))
1490 return;
1491 WRITE_ONCE(*previous, caller);
1492 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1493 print_once = true;
1494 #endif
1495 pr_notice("random: %s called from %pS with crng_init=%d\n",
1496 func_name, caller, crng_init);
1497 }
1498
1499 /*
1500 * This function is the exported kernel interface. It returns some
1501 * number of good random numbers, suitable for key generation, seeding
1502 * TCP sequence numbers, etc. It does not rely on the hardware random
1503 * number generator. For random bytes direct from the hardware RNG
1504 * (when available), use get_random_bytes_arch(). In order to ensure
1505 * that the randomness provided by this function is okay, the function
1506 * wait_for_random_bytes() should be called and return 0 at least once
1507 * at any point prior.
1508 */
1509 static void _get_random_bytes(void *buf, int nbytes)
1510 {
1511 __u8 tmp[CHACHA20_BLOCK_SIZE];
1512
1513 trace_get_random_bytes(nbytes, _RET_IP_);
1514
1515 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1516 extract_crng(buf);
1517 buf += CHACHA20_BLOCK_SIZE;
1518 nbytes -= CHACHA20_BLOCK_SIZE;
1519 }
1520
1521 if (nbytes > 0) {
1522 extract_crng(tmp);
1523 memcpy(buf, tmp, nbytes);
1524 crng_backtrack_protect(tmp, nbytes);
1525 } else
1526 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1527 memzero_explicit(tmp, sizeof(tmp));
1528 }
1529
1530 void get_random_bytes(void *buf, int nbytes)
1531 {
1532 static void *previous;
1533
1534 warn_unseeded_randomness(&previous);
1535 _get_random_bytes(buf, nbytes);
1536 }
1537 EXPORT_SYMBOL(get_random_bytes);
1538
1539 /*
1540 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1541 * cryptographically secure random numbers. This applies to: the /dev/urandom
1542 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1543 * family of functions. Using any of these functions without first calling
1544 * this function forfeits the guarantee of security.
1545 *
1546 * Returns: 0 if the urandom pool has been seeded.
1547 * -ERESTARTSYS if the function was interrupted by a signal.
1548 */
1549 int wait_for_random_bytes(void)
1550 {
1551 if (likely(crng_ready()))
1552 return 0;
1553 return wait_event_interruptible(crng_init_wait, crng_ready());
1554 }
1555 EXPORT_SYMBOL(wait_for_random_bytes);
1556
1557 /*
1558 * Add a callback function that will be invoked when the nonblocking
1559 * pool is initialised.
1560 *
1561 * returns: 0 if callback is successfully added
1562 * -EALREADY if pool is already initialised (callback not called)
1563 * -ENOENT if module for callback is not alive
1564 */
1565 int add_random_ready_callback(struct random_ready_callback *rdy)
1566 {
1567 struct module *owner;
1568 unsigned long flags;
1569 int err = -EALREADY;
1570
1571 if (crng_ready())
1572 return err;
1573
1574 owner = rdy->owner;
1575 if (!try_module_get(owner))
1576 return -ENOENT;
1577
1578 spin_lock_irqsave(&random_ready_list_lock, flags);
1579 if (crng_ready())
1580 goto out;
1581
1582 owner = NULL;
1583
1584 list_add(&rdy->list, &random_ready_list);
1585 err = 0;
1586
1587 out:
1588 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1589
1590 module_put(owner);
1591
1592 return err;
1593 }
1594 EXPORT_SYMBOL(add_random_ready_callback);
1595
1596 /*
1597 * Delete a previously registered readiness callback function.
1598 */
1599 void del_random_ready_callback(struct random_ready_callback *rdy)
1600 {
1601 unsigned long flags;
1602 struct module *owner = NULL;
1603
1604 spin_lock_irqsave(&random_ready_list_lock, flags);
1605 if (!list_empty(&rdy->list)) {
1606 list_del_init(&rdy->list);
1607 owner = rdy->owner;
1608 }
1609 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1610
1611 module_put(owner);
1612 }
1613 EXPORT_SYMBOL(del_random_ready_callback);
1614
1615 /*
1616 * This function will use the architecture-specific hardware random
1617 * number generator if it is available. The arch-specific hw RNG will
1618 * almost certainly be faster than what we can do in software, but it
1619 * is impossible to verify that it is implemented securely (as
1620 * opposed, to, say, the AES encryption of a sequence number using a
1621 * key known by the NSA). So it's useful if we need the speed, but
1622 * only if we're willing to trust the hardware manufacturer not to
1623 * have put in a back door.
1624 */
1625 void get_random_bytes_arch(void *buf, int nbytes)
1626 {
1627 char *p = buf;
1628
1629 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1630 while (nbytes) {
1631 unsigned long v;
1632 int chunk = min(nbytes, (int)sizeof(unsigned long));
1633
1634 if (!arch_get_random_long(&v))
1635 break;
1636
1637 memcpy(p, &v, chunk);
1638 p += chunk;
1639 nbytes -= chunk;
1640 }
1641
1642 if (nbytes)
1643 get_random_bytes(p, nbytes);
1644 }
1645 EXPORT_SYMBOL(get_random_bytes_arch);
1646
1647
1648 /*
1649 * init_std_data - initialize pool with system data
1650 *
1651 * @r: pool to initialize
1652 *
1653 * This function clears the pool's entropy count and mixes some system
1654 * data into the pool to prepare it for use. The pool is not cleared
1655 * as that can only decrease the entropy in the pool.
1656 */
1657 static void init_std_data(struct entropy_store *r)
1658 {
1659 int i;
1660 ktime_t now = ktime_get_real();
1661 unsigned long rv;
1662
1663 r->last_pulled = jiffies;
1664 mix_pool_bytes(r, &now, sizeof(now));
1665 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1666 if (!arch_get_random_seed_long(&rv) &&
1667 !arch_get_random_long(&rv))
1668 rv = random_get_entropy();
1669 mix_pool_bytes(r, &rv, sizeof(rv));
1670 }
1671 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1672 }
1673
1674 /*
1675 * Note that setup_arch() may call add_device_randomness()
1676 * long before we get here. This allows seeding of the pools
1677 * with some platform dependent data very early in the boot
1678 * process. But it limits our options here. We must use
1679 * statically allocated structures that already have all
1680 * initializations complete at compile time. We should also
1681 * take care not to overwrite the precious per platform data
1682 * we were given.
1683 */
1684 static int rand_initialize(void)
1685 {
1686 #ifdef CONFIG_NUMA
1687 int i;
1688 struct crng_state *crng;
1689 struct crng_state **pool;
1690 #endif
1691
1692 init_std_data(&input_pool);
1693 init_std_data(&blocking_pool);
1694 crng_initialize(&primary_crng);
1695
1696 #ifdef CONFIG_NUMA
1697 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1698 for_each_online_node(i) {
1699 crng = kmalloc_node(sizeof(struct crng_state),
1700 GFP_KERNEL | __GFP_NOFAIL, i);
1701 spin_lock_init(&crng->lock);
1702 crng_initialize(crng);
1703 pool[i] = crng;
1704 }
1705 mb();
1706 crng_node_pool = pool;
1707 #endif
1708 return 0;
1709 }
1710 early_initcall(rand_initialize);
1711
1712 #ifdef CONFIG_BLOCK
1713 void rand_initialize_disk(struct gendisk *disk)
1714 {
1715 struct timer_rand_state *state;
1716
1717 /*
1718 * If kzalloc returns null, we just won't use that entropy
1719 * source.
1720 */
1721 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1722 if (state) {
1723 state->last_time = INITIAL_JIFFIES;
1724 disk->random = state;
1725 }
1726 }
1727 #endif
1728
1729 static ssize_t
1730 _random_read(int nonblock, char __user *buf, size_t nbytes)
1731 {
1732 ssize_t n;
1733
1734 if (nbytes == 0)
1735 return 0;
1736
1737 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1738 while (1) {
1739 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1740 if (n < 0)
1741 return n;
1742 trace_random_read(n*8, (nbytes-n)*8,
1743 ENTROPY_BITS(&blocking_pool),
1744 ENTROPY_BITS(&input_pool));
1745 if (n > 0)
1746 return n;
1747
1748 /* Pool is (near) empty. Maybe wait and retry. */
1749 if (nonblock)
1750 return -EAGAIN;
1751
1752 wait_event_interruptible(random_read_wait,
1753 ENTROPY_BITS(&input_pool) >=
1754 random_read_wakeup_bits);
1755 if (signal_pending(current))
1756 return -ERESTARTSYS;
1757 }
1758 }
1759
1760 static ssize_t
1761 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1762 {
1763 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1764 }
1765
1766 static ssize_t
1767 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1768 {
1769 unsigned long flags;
1770 static int maxwarn = 10;
1771 int ret;
1772
1773 if (!crng_ready() && maxwarn > 0) {
1774 maxwarn--;
1775 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1776 "(%zd bytes read)\n",
1777 current->comm, nbytes);
1778 spin_lock_irqsave(&primary_crng.lock, flags);
1779 crng_init_cnt = 0;
1780 spin_unlock_irqrestore(&primary_crng.lock, flags);
1781 }
1782 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1783 ret = extract_crng_user(buf, nbytes);
1784 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1785 return ret;
1786 }
1787
1788 static unsigned int
1789 random_poll(struct file *file, poll_table * wait)
1790 {
1791 unsigned int mask;
1792
1793 poll_wait(file, &random_read_wait, wait);
1794 poll_wait(file, &random_write_wait, wait);
1795 mask = 0;
1796 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1797 mask |= POLLIN | POLLRDNORM;
1798 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1799 mask |= POLLOUT | POLLWRNORM;
1800 return mask;
1801 }
1802
1803 static int
1804 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1805 {
1806 size_t bytes;
1807 __u32 buf[16];
1808 const char __user *p = buffer;
1809
1810 while (count > 0) {
1811 bytes = min(count, sizeof(buf));
1812 if (copy_from_user(&buf, p, bytes))
1813 return -EFAULT;
1814
1815 count -= bytes;
1816 p += bytes;
1817
1818 mix_pool_bytes(r, buf, bytes);
1819 cond_resched();
1820 }
1821
1822 return 0;
1823 }
1824
1825 static ssize_t random_write(struct file *file, const char __user *buffer,
1826 size_t count, loff_t *ppos)
1827 {
1828 size_t ret;
1829
1830 ret = write_pool(&input_pool, buffer, count);
1831 if (ret)
1832 return ret;
1833
1834 return (ssize_t)count;
1835 }
1836
1837 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1838 {
1839 int size, ent_count;
1840 int __user *p = (int __user *)arg;
1841 int retval;
1842
1843 switch (cmd) {
1844 case RNDGETENTCNT:
1845 /* inherently racy, no point locking */
1846 ent_count = ENTROPY_BITS(&input_pool);
1847 if (put_user(ent_count, p))
1848 return -EFAULT;
1849 return 0;
1850 case RNDADDTOENTCNT:
1851 if (!capable(CAP_SYS_ADMIN))
1852 return -EPERM;
1853 if (get_user(ent_count, p))
1854 return -EFAULT;
1855 return credit_entropy_bits_safe(&input_pool, ent_count);
1856 case RNDADDENTROPY:
1857 if (!capable(CAP_SYS_ADMIN))
1858 return -EPERM;
1859 if (get_user(ent_count, p++))
1860 return -EFAULT;
1861 if (ent_count < 0)
1862 return -EINVAL;
1863 if (get_user(size, p++))
1864 return -EFAULT;
1865 retval = write_pool(&input_pool, (const char __user *)p,
1866 size);
1867 if (retval < 0)
1868 return retval;
1869 return credit_entropy_bits_safe(&input_pool, ent_count);
1870 case RNDZAPENTCNT:
1871 case RNDCLEARPOOL:
1872 /*
1873 * Clear the entropy pool counters. We no longer clear
1874 * the entropy pool, as that's silly.
1875 */
1876 if (!capable(CAP_SYS_ADMIN))
1877 return -EPERM;
1878 input_pool.entropy_count = 0;
1879 blocking_pool.entropy_count = 0;
1880 return 0;
1881 default:
1882 return -EINVAL;
1883 }
1884 }
1885
1886 static int random_fasync(int fd, struct file *filp, int on)
1887 {
1888 return fasync_helper(fd, filp, on, &fasync);
1889 }
1890
1891 const struct file_operations random_fops = {
1892 .read = random_read,
1893 .write = random_write,
1894 .poll = random_poll,
1895 .unlocked_ioctl = random_ioctl,
1896 .fasync = random_fasync,
1897 .llseek = noop_llseek,
1898 };
1899
1900 const struct file_operations urandom_fops = {
1901 .read = urandom_read,
1902 .write = random_write,
1903 .unlocked_ioctl = random_ioctl,
1904 .fasync = random_fasync,
1905 .llseek = noop_llseek,
1906 };
1907
1908 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1909 unsigned int, flags)
1910 {
1911 int ret;
1912
1913 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1914 return -EINVAL;
1915
1916 if (count > INT_MAX)
1917 count = INT_MAX;
1918
1919 if (flags & GRND_RANDOM)
1920 return _random_read(flags & GRND_NONBLOCK, buf, count);
1921
1922 if (!crng_ready()) {
1923 if (flags & GRND_NONBLOCK)
1924 return -EAGAIN;
1925 ret = wait_for_random_bytes();
1926 if (unlikely(ret))
1927 return ret;
1928 }
1929 return urandom_read(NULL, buf, count, NULL);
1930 }
1931
1932 /********************************************************************
1933 *
1934 * Sysctl interface
1935 *
1936 ********************************************************************/
1937
1938 #ifdef CONFIG_SYSCTL
1939
1940 #include <linux/sysctl.h>
1941
1942 static int min_read_thresh = 8, min_write_thresh;
1943 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1944 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1945 static int random_min_urandom_seed = 60;
1946 static char sysctl_bootid[16];
1947
1948 /*
1949 * This function is used to return both the bootid UUID, and random
1950 * UUID. The difference is in whether table->data is NULL; if it is,
1951 * then a new UUID is generated and returned to the user.
1952 *
1953 * If the user accesses this via the proc interface, the UUID will be
1954 * returned as an ASCII string in the standard UUID format; if via the
1955 * sysctl system call, as 16 bytes of binary data.
1956 */
1957 static int proc_do_uuid(struct ctl_table *table, int write,
1958 void __user *buffer, size_t *lenp, loff_t *ppos)
1959 {
1960 struct ctl_table fake_table;
1961 unsigned char buf[64], tmp_uuid[16], *uuid;
1962
1963 uuid = table->data;
1964 if (!uuid) {
1965 uuid = tmp_uuid;
1966 generate_random_uuid(uuid);
1967 } else {
1968 static DEFINE_SPINLOCK(bootid_spinlock);
1969
1970 spin_lock(&bootid_spinlock);
1971 if (!uuid[8])
1972 generate_random_uuid(uuid);
1973 spin_unlock(&bootid_spinlock);
1974 }
1975
1976 sprintf(buf, "%pU", uuid);
1977
1978 fake_table.data = buf;
1979 fake_table.maxlen = sizeof(buf);
1980
1981 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1982 }
1983
1984 /*
1985 * Return entropy available scaled to integral bits
1986 */
1987 static int proc_do_entropy(struct ctl_table *table, int write,
1988 void __user *buffer, size_t *lenp, loff_t *ppos)
1989 {
1990 struct ctl_table fake_table;
1991 int entropy_count;
1992
1993 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1994
1995 fake_table.data = &entropy_count;
1996 fake_table.maxlen = sizeof(entropy_count);
1997
1998 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1999 }
2000
2001 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2002 extern struct ctl_table random_table[];
2003 struct ctl_table random_table[] = {
2004 {
2005 .procname = "poolsize",
2006 .data = &sysctl_poolsize,
2007 .maxlen = sizeof(int),
2008 .mode = 0444,
2009 .proc_handler = proc_dointvec,
2010 },
2011 {
2012 .procname = "entropy_avail",
2013 .maxlen = sizeof(int),
2014 .mode = 0444,
2015 .proc_handler = proc_do_entropy,
2016 .data = &input_pool.entropy_count,
2017 },
2018 {
2019 .procname = "read_wakeup_threshold",
2020 .data = &random_read_wakeup_bits,
2021 .maxlen = sizeof(int),
2022 .mode = 0644,
2023 .proc_handler = proc_dointvec_minmax,
2024 .extra1 = &min_read_thresh,
2025 .extra2 = &max_read_thresh,
2026 },
2027 {
2028 .procname = "write_wakeup_threshold",
2029 .data = &random_write_wakeup_bits,
2030 .maxlen = sizeof(int),
2031 .mode = 0644,
2032 .proc_handler = proc_dointvec_minmax,
2033 .extra1 = &min_write_thresh,
2034 .extra2 = &max_write_thresh,
2035 },
2036 {
2037 .procname = "urandom_min_reseed_secs",
2038 .data = &random_min_urandom_seed,
2039 .maxlen = sizeof(int),
2040 .mode = 0644,
2041 .proc_handler = proc_dointvec,
2042 },
2043 {
2044 .procname = "boot_id",
2045 .data = &sysctl_bootid,
2046 .maxlen = 16,
2047 .mode = 0444,
2048 .proc_handler = proc_do_uuid,
2049 },
2050 {
2051 .procname = "uuid",
2052 .maxlen = 16,
2053 .mode = 0444,
2054 .proc_handler = proc_do_uuid,
2055 },
2056 #ifdef ADD_INTERRUPT_BENCH
2057 {
2058 .procname = "add_interrupt_avg_cycles",
2059 .data = &avg_cycles,
2060 .maxlen = sizeof(avg_cycles),
2061 .mode = 0444,
2062 .proc_handler = proc_doulongvec_minmax,
2063 },
2064 {
2065 .procname = "add_interrupt_avg_deviation",
2066 .data = &avg_deviation,
2067 .maxlen = sizeof(avg_deviation),
2068 .mode = 0444,
2069 .proc_handler = proc_doulongvec_minmax,
2070 },
2071 #endif
2072 { }
2073 };
2074 #endif /* CONFIG_SYSCTL */
2075
2076 struct batched_entropy {
2077 union {
2078 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2079 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2080 };
2081 unsigned int position;
2082 };
2083 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2084
2085 /*
2086 * Get a random word for internal kernel use only. The quality of the random
2087 * number is either as good as RDRAND or as good as /dev/urandom, with the
2088 * goal of being quite fast and not depleting entropy. In order to ensure
2089 * that the randomness provided by this function is okay, the function
2090 * wait_for_random_bytes() should be called and return 0 at least once
2091 * at any point prior.
2092 */
2093 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2094 u64 get_random_u64(void)
2095 {
2096 u64 ret;
2097 bool use_lock;
2098 unsigned long flags = 0;
2099 struct batched_entropy *batch;
2100 static void *previous;
2101
2102 #if BITS_PER_LONG == 64
2103 if (arch_get_random_long((unsigned long *)&ret))
2104 return ret;
2105 #else
2106 if (arch_get_random_long((unsigned long *)&ret) &&
2107 arch_get_random_long((unsigned long *)&ret + 1))
2108 return ret;
2109 #endif
2110
2111 warn_unseeded_randomness(&previous);
2112
2113 use_lock = READ_ONCE(crng_init) < 2;
2114 batch = &get_cpu_var(batched_entropy_u64);
2115 if (use_lock)
2116 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2117 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2118 extract_crng((u8 *)batch->entropy_u64);
2119 batch->position = 0;
2120 }
2121 ret = batch->entropy_u64[batch->position++];
2122 if (use_lock)
2123 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2124 put_cpu_var(batched_entropy_u64);
2125 return ret;
2126 }
2127 EXPORT_SYMBOL(get_random_u64);
2128
2129 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2130 u32 get_random_u32(void)
2131 {
2132 u32 ret;
2133 bool use_lock;
2134 unsigned long flags = 0;
2135 struct batched_entropy *batch;
2136 static void *previous;
2137
2138 if (arch_get_random_int(&ret))
2139 return ret;
2140
2141 warn_unseeded_randomness(&previous);
2142
2143 use_lock = READ_ONCE(crng_init) < 2;
2144 batch = &get_cpu_var(batched_entropy_u32);
2145 if (use_lock)
2146 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2147 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2148 extract_crng((u8 *)batch->entropy_u32);
2149 batch->position = 0;
2150 }
2151 ret = batch->entropy_u32[batch->position++];
2152 if (use_lock)
2153 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2154 put_cpu_var(batched_entropy_u32);
2155 return ret;
2156 }
2157 EXPORT_SYMBOL(get_random_u32);
2158
2159 /* It's important to invalidate all potential batched entropy that might
2160 * be stored before the crng is initialized, which we can do lazily by
2161 * simply resetting the counter to zero so that it's re-extracted on the
2162 * next usage. */
2163 static void invalidate_batched_entropy(void)
2164 {
2165 int cpu;
2166 unsigned long flags;
2167
2168 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2169 for_each_possible_cpu (cpu) {
2170 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2171 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2172 }
2173 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2174 }
2175
2176 /**
2177 * randomize_page - Generate a random, page aligned address
2178 * @start: The smallest acceptable address the caller will take.
2179 * @range: The size of the area, starting at @start, within which the
2180 * random address must fall.
2181 *
2182 * If @start + @range would overflow, @range is capped.
2183 *
2184 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2185 * @start was already page aligned. We now align it regardless.
2186 *
2187 * Return: A page aligned address within [start, start + range). On error,
2188 * @start is returned.
2189 */
2190 unsigned long
2191 randomize_page(unsigned long start, unsigned long range)
2192 {
2193 if (!PAGE_ALIGNED(start)) {
2194 range -= PAGE_ALIGN(start) - start;
2195 start = PAGE_ALIGN(start);
2196 }
2197
2198 if (start > ULONG_MAX - range)
2199 range = ULONG_MAX - start;
2200
2201 range >>= PAGE_SHIFT;
2202
2203 if (range == 0)
2204 return start;
2205
2206 return start + (get_random_long() % range << PAGE_SHIFT);
2207 }
2208
2209 /* Interface for in-kernel drivers of true hardware RNGs.
2210 * Those devices may produce endless random bits and will be throttled
2211 * when our pool is full.
2212 */
2213 void add_hwgenerator_randomness(const char *buffer, size_t count,
2214 size_t entropy)
2215 {
2216 struct entropy_store *poolp = &input_pool;
2217
2218 if (!crng_ready()) {
2219 crng_fast_load(buffer, count);
2220 return;
2221 }
2222
2223 /* Suspend writing if we're above the trickle threshold.
2224 * We'll be woken up again once below random_write_wakeup_thresh,
2225 * or when the calling thread is about to terminate.
2226 */
2227 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2228 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2229 mix_pool_bytes(poolp, buffer, count);
2230 credit_entropy_bits(poolp, entropy);
2231 }
2232 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);