]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/char/random.c
random: add debugging code to detect early use of get_random_bytes()
[mirror_ubuntu-zesty-kernel.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42 /*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 #include <linux/workqueue.h>
259
260 #ifdef CONFIG_GENERIC_HARDIRQS
261 # include <linux/irq.h>
262 #endif
263
264 #include <asm/processor.h>
265 #include <asm/uaccess.h>
266 #include <asm/irq.h>
267 #include <asm/irq_regs.h>
268 #include <asm/io.h>
269
270 #define CREATE_TRACE_POINTS
271 #include <trace/events/random.h>
272
273 /*
274 * Configuration information
275 */
276 #define INPUT_POOL_SHIFT 12
277 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
278 #define OUTPUT_POOL_SHIFT 10
279 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
280 #define SEC_XFER_SIZE 512
281 #define EXTRACT_SIZE 10
282
283 #define DEBUG_RANDOM_BOOT 0
284
285 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
286
287 /*
288 * To allow fractional bits to be tracked, the entropy_count field is
289 * denominated in units of 1/8th bits.
290 *
291 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
292 * credit_entropy_bits() needs to be 64 bits wide.
293 */
294 #define ENTROPY_SHIFT 3
295 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
296
297 /*
298 * The minimum number of bits of entropy before we wake up a read on
299 * /dev/random. Should be enough to do a significant reseed.
300 */
301 static int random_read_wakeup_thresh = 64;
302
303 /*
304 * If the entropy count falls under this number of bits, then we
305 * should wake up processes which are selecting or polling on write
306 * access to /dev/random.
307 */
308 static int random_write_wakeup_thresh = 28 * OUTPUT_POOL_WORDS;
309
310 /*
311 * The minimum number of seconds between urandom pool resending. We
312 * do this to limit the amount of entropy that can be drained from the
313 * input pool even if there are heavy demands on /dev/urandom.
314 */
315 static int random_min_urandom_seed = 60;
316
317 /*
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Mdeling and Computer
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
361 */
362 static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
373 #if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
399 #endif
400 };
401
402 /*
403 * Static global variables
404 */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408
409 /**********************************************************************
410 *
411 * OS independent entropy store. Here are the functions which handle
412 * storing entropy in an entropy pool.
413 *
414 **********************************************************************/
415
416 struct entropy_store;
417 struct entropy_store {
418 /* read-only data: */
419 const struct poolinfo *poolinfo;
420 __u32 *pool;
421 const char *name;
422 struct entropy_store *pull;
423 struct work_struct push_work;
424
425 /* read-write data: */
426 unsigned long last_pulled;
427 spinlock_t lock;
428 unsigned short add_ptr;
429 unsigned short input_rotate;
430 int entropy_count;
431 int entropy_total;
432 unsigned int initialized:1;
433 unsigned int limit:1;
434 unsigned int last_data_init:1;
435 __u8 last_data[EXTRACT_SIZE];
436 };
437
438 static void push_to_pool(struct work_struct *work);
439 static __u32 input_pool_data[INPUT_POOL_WORDS];
440 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
441 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
442
443 static struct entropy_store input_pool = {
444 .poolinfo = &poolinfo_table[0],
445 .name = "input",
446 .limit = 1,
447 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
448 .pool = input_pool_data
449 };
450
451 static struct entropy_store blocking_pool = {
452 .poolinfo = &poolinfo_table[1],
453 .name = "blocking",
454 .limit = 1,
455 .pull = &input_pool,
456 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
457 .pool = blocking_pool_data,
458 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
459 push_to_pool),
460 };
461
462 static struct entropy_store nonblocking_pool = {
463 .poolinfo = &poolinfo_table[1],
464 .name = "nonblocking",
465 .pull = &input_pool,
466 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
467 .pool = nonblocking_pool_data,
468 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
469 push_to_pool),
470 };
471
472 static __u32 const twist_table[8] = {
473 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
474 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
475
476 /*
477 * This function adds bytes into the entropy "pool". It does not
478 * update the entropy estimate. The caller should call
479 * credit_entropy_bits if this is appropriate.
480 *
481 * The pool is stirred with a primitive polynomial of the appropriate
482 * degree, and then twisted. We twist by three bits at a time because
483 * it's cheap to do so and helps slightly in the expected case where
484 * the entropy is concentrated in the low-order bits.
485 */
486 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
487 int nbytes, __u8 out[64])
488 {
489 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
490 int input_rotate;
491 int wordmask = r->poolinfo->poolwords - 1;
492 const char *bytes = in;
493 __u32 w;
494
495 tap1 = r->poolinfo->tap1;
496 tap2 = r->poolinfo->tap2;
497 tap3 = r->poolinfo->tap3;
498 tap4 = r->poolinfo->tap4;
499 tap5 = r->poolinfo->tap5;
500
501 smp_rmb();
502 input_rotate = ACCESS_ONCE(r->input_rotate);
503 i = ACCESS_ONCE(r->add_ptr);
504
505 /* mix one byte at a time to simplify size handling and churn faster */
506 while (nbytes--) {
507 w = rol32(*bytes++, input_rotate);
508 i = (i - 1) & wordmask;
509
510 /* XOR in the various taps */
511 w ^= r->pool[i];
512 w ^= r->pool[(i + tap1) & wordmask];
513 w ^= r->pool[(i + tap2) & wordmask];
514 w ^= r->pool[(i + tap3) & wordmask];
515 w ^= r->pool[(i + tap4) & wordmask];
516 w ^= r->pool[(i + tap5) & wordmask];
517
518 /* Mix the result back in with a twist */
519 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
520
521 /*
522 * Normally, we add 7 bits of rotation to the pool.
523 * At the beginning of the pool, add an extra 7 bits
524 * rotation, so that successive passes spread the
525 * input bits across the pool evenly.
526 */
527 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
528 }
529
530 ACCESS_ONCE(r->input_rotate) = input_rotate;
531 ACCESS_ONCE(r->add_ptr) = i;
532 smp_wmb();
533
534 if (out)
535 for (j = 0; j < 16; j++)
536 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
537 }
538
539 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
540 int nbytes, __u8 out[64])
541 {
542 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
543 _mix_pool_bytes(r, in, nbytes, out);
544 }
545
546 static void mix_pool_bytes(struct entropy_store *r, const void *in,
547 int nbytes, __u8 out[64])
548 {
549 unsigned long flags;
550
551 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
552 spin_lock_irqsave(&r->lock, flags);
553 _mix_pool_bytes(r, in, nbytes, out);
554 spin_unlock_irqrestore(&r->lock, flags);
555 }
556
557 struct fast_pool {
558 __u32 pool[4];
559 unsigned long last;
560 unsigned short count;
561 unsigned char rotate;
562 unsigned char last_timer_intr;
563 };
564
565 /*
566 * This is a fast mixing routine used by the interrupt randomness
567 * collector. It's hardcoded for an 128 bit pool and assumes that any
568 * locks that might be needed are taken by the caller.
569 */
570 static void fast_mix(struct fast_pool *f, __u32 input[4])
571 {
572 __u32 w;
573 unsigned input_rotate = f->rotate;
574
575 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
576 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
577 input_rotate = (input_rotate + 14) & 31;
578 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
579 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
580 input_rotate = (input_rotate + 7) & 31;
581 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
582 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
583 input_rotate = (input_rotate + 7) & 31;
584 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
585 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
586 input_rotate = (input_rotate + 7) & 31;
587
588 f->rotate = input_rotate;
589 f->count++;
590 }
591
592 /*
593 * Credit (or debit) the entropy store with n bits of entropy.
594 * Use credit_entropy_bits_safe() if the value comes from userspace
595 * or otherwise should be checked for extreme values.
596 */
597 static void credit_entropy_bits(struct entropy_store *r, int nbits)
598 {
599 int entropy_count, orig;
600 const int pool_size = r->poolinfo->poolfracbits;
601 int nfrac = nbits << ENTROPY_SHIFT;
602
603 if (!nbits)
604 return;
605
606 retry:
607 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
608 if (nfrac < 0) {
609 /* Debit */
610 entropy_count += nfrac;
611 } else {
612 /*
613 * Credit: we have to account for the possibility of
614 * overwriting already present entropy. Even in the
615 * ideal case of pure Shannon entropy, new contributions
616 * approach the full value asymptotically:
617 *
618 * entropy <- entropy + (pool_size - entropy) *
619 * (1 - exp(-add_entropy/pool_size))
620 *
621 * For add_entropy <= pool_size/2 then
622 * (1 - exp(-add_entropy/pool_size)) >=
623 * (add_entropy/pool_size)*0.7869...
624 * so we can approximate the exponential with
625 * 3/4*add_entropy/pool_size and still be on the
626 * safe side by adding at most pool_size/2 at a time.
627 *
628 * The use of pool_size-2 in the while statement is to
629 * prevent rounding artifacts from making the loop
630 * arbitrarily long; this limits the loop to log2(pool_size)*2
631 * turns no matter how large nbits is.
632 */
633 int pnfrac = nfrac;
634 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
635 /* The +2 corresponds to the /4 in the denominator */
636
637 do {
638 unsigned int anfrac = min(pnfrac, pool_size/2);
639 unsigned int add =
640 ((pool_size - entropy_count)*anfrac*3) >> s;
641
642 entropy_count += add;
643 pnfrac -= anfrac;
644 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
645 }
646
647 if (entropy_count < 0) {
648 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
649 r->name, entropy_count);
650 WARN_ON(1);
651 entropy_count = 0;
652 } else if (entropy_count > pool_size)
653 entropy_count = pool_size;
654 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
655 goto retry;
656
657 r->entropy_total += nbits;
658 if (!r->initialized && nbits > 0) {
659 if (r->entropy_total > 128) {
660 if (r == &nonblocking_pool)
661 pr_notice("random: %s pool is initialized\n",
662 r->name);
663 r->initialized = 1;
664 r->entropy_total = 0;
665 }
666 }
667
668 trace_credit_entropy_bits(r->name, nbits,
669 entropy_count >> ENTROPY_SHIFT,
670 r->entropy_total, _RET_IP_);
671
672 if (r == &input_pool) {
673 int entropy_bytes = entropy_count >> ENTROPY_SHIFT;
674
675 /* should we wake readers? */
676 if (entropy_bytes >= random_read_wakeup_thresh) {
677 wake_up_interruptible(&random_read_wait);
678 kill_fasync(&fasync, SIGIO, POLL_IN);
679 }
680 /* If the input pool is getting full, send some
681 * entropy to the two output pools, flipping back and
682 * forth between them, until the output pools are 75%
683 * full.
684 */
685 if (entropy_bytes > random_write_wakeup_thresh &&
686 r->initialized &&
687 r->entropy_total >= 2*random_read_wakeup_thresh) {
688 static struct entropy_store *last = &blocking_pool;
689 struct entropy_store *other = &blocking_pool;
690
691 if (last == &blocking_pool)
692 other = &nonblocking_pool;
693 if (other->entropy_count <=
694 3 * other->poolinfo->poolfracbits / 4)
695 last = other;
696 if (last->entropy_count <=
697 3 * last->poolinfo->poolfracbits / 4) {
698 schedule_work(&last->push_work);
699 r->entropy_total = 0;
700 }
701 }
702 }
703 }
704
705 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
706 {
707 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
708
709 /* Cap the value to avoid overflows */
710 nbits = min(nbits, nbits_max);
711 nbits = max(nbits, -nbits_max);
712
713 credit_entropy_bits(r, nbits);
714 }
715
716 /*********************************************************************
717 *
718 * Entropy input management
719 *
720 *********************************************************************/
721
722 /* There is one of these per entropy source */
723 struct timer_rand_state {
724 cycles_t last_time;
725 long last_delta, last_delta2;
726 unsigned dont_count_entropy:1;
727 };
728
729 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
730
731 /*
732 * Add device- or boot-specific data to the input and nonblocking
733 * pools to help initialize them to unique values.
734 *
735 * None of this adds any entropy, it is meant to avoid the
736 * problem of the nonblocking pool having similar initial state
737 * across largely identical devices.
738 */
739 void add_device_randomness(const void *buf, unsigned int size)
740 {
741 unsigned long time = random_get_entropy() ^ jiffies;
742 unsigned long flags;
743
744 trace_add_device_randomness(size, _RET_IP_);
745 spin_lock_irqsave(&input_pool.lock, flags);
746 _mix_pool_bytes(&input_pool, buf, size, NULL);
747 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
748 spin_unlock_irqrestore(&input_pool.lock, flags);
749
750 spin_lock_irqsave(&nonblocking_pool.lock, flags);
751 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
752 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
753 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
754 }
755 EXPORT_SYMBOL(add_device_randomness);
756
757 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
758
759 /*
760 * This function adds entropy to the entropy "pool" by using timing
761 * delays. It uses the timer_rand_state structure to make an estimate
762 * of how many bits of entropy this call has added to the pool.
763 *
764 * The number "num" is also added to the pool - it should somehow describe
765 * the type of event which just happened. This is currently 0-255 for
766 * keyboard scan codes, and 256 upwards for interrupts.
767 *
768 */
769 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
770 {
771 struct entropy_store *r;
772 struct {
773 long jiffies;
774 unsigned cycles;
775 unsigned num;
776 } sample;
777 long delta, delta2, delta3;
778
779 preempt_disable();
780
781 sample.jiffies = jiffies;
782 sample.cycles = random_get_entropy();
783 sample.num = num;
784 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
785 mix_pool_bytes(r, &sample, sizeof(sample), NULL);
786
787 /*
788 * Calculate number of bits of randomness we probably added.
789 * We take into account the first, second and third-order deltas
790 * in order to make our estimate.
791 */
792
793 if (!state->dont_count_entropy) {
794 delta = sample.jiffies - state->last_time;
795 state->last_time = sample.jiffies;
796
797 delta2 = delta - state->last_delta;
798 state->last_delta = delta;
799
800 delta3 = delta2 - state->last_delta2;
801 state->last_delta2 = delta2;
802
803 if (delta < 0)
804 delta = -delta;
805 if (delta2 < 0)
806 delta2 = -delta2;
807 if (delta3 < 0)
808 delta3 = -delta3;
809 if (delta > delta2)
810 delta = delta2;
811 if (delta > delta3)
812 delta = delta3;
813
814 /*
815 * delta is now minimum absolute delta.
816 * Round down by 1 bit on general principles,
817 * and limit entropy entimate to 12 bits.
818 */
819 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
820 }
821 preempt_enable();
822 }
823
824 void add_input_randomness(unsigned int type, unsigned int code,
825 unsigned int value)
826 {
827 static unsigned char last_value;
828
829 /* ignore autorepeat and the like */
830 if (value == last_value)
831 return;
832
833 last_value = value;
834 add_timer_randomness(&input_timer_state,
835 (type << 4) ^ code ^ (code >> 4) ^ value);
836 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
837 }
838 EXPORT_SYMBOL_GPL(add_input_randomness);
839
840 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
841
842 void add_interrupt_randomness(int irq, int irq_flags)
843 {
844 struct entropy_store *r;
845 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
846 struct pt_regs *regs = get_irq_regs();
847 unsigned long now = jiffies;
848 cycles_t cycles = random_get_entropy();
849 __u32 input[4], c_high, j_high;
850 __u64 ip;
851
852 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
853 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
854 input[0] = cycles ^ j_high ^ irq;
855 input[1] = now ^ c_high;
856 ip = regs ? instruction_pointer(regs) : _RET_IP_;
857 input[2] = ip;
858 input[3] = ip >> 32;
859
860 fast_mix(fast_pool, input);
861
862 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
863 return;
864
865 fast_pool->last = now;
866
867 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
868 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
869 /*
870 * If we don't have a valid cycle counter, and we see
871 * back-to-back timer interrupts, then skip giving credit for
872 * any entropy.
873 */
874 if (cycles == 0) {
875 if (irq_flags & __IRQF_TIMER) {
876 if (fast_pool->last_timer_intr)
877 return;
878 fast_pool->last_timer_intr = 1;
879 } else
880 fast_pool->last_timer_intr = 0;
881 }
882 credit_entropy_bits(r, 1);
883 }
884
885 #ifdef CONFIG_BLOCK
886 void add_disk_randomness(struct gendisk *disk)
887 {
888 if (!disk || !disk->random)
889 return;
890 /* first major is 1, so we get >= 0x200 here */
891 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
892 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
893 }
894 #endif
895
896 /*********************************************************************
897 *
898 * Entropy extraction routines
899 *
900 *********************************************************************/
901
902 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
903 size_t nbytes, int min, int rsvd);
904
905 /*
906 * This utility inline function is responsible for transferring entropy
907 * from the primary pool to the secondary extraction pool. We make
908 * sure we pull enough for a 'catastrophic reseed'.
909 */
910 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
911 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
912 {
913 if (r->limit == 0 && random_min_urandom_seed) {
914 unsigned long now = jiffies;
915
916 if (time_before(now,
917 r->last_pulled + random_min_urandom_seed * HZ))
918 return;
919 r->last_pulled = now;
920 }
921 if (r->pull &&
922 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
923 r->entropy_count < r->poolinfo->poolfracbits)
924 _xfer_secondary_pool(r, nbytes);
925 }
926
927 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
928 {
929 __u32 tmp[OUTPUT_POOL_WORDS];
930
931 /* For /dev/random's pool, always leave two wakeup worth's BITS */
932 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
933 int bytes = nbytes;
934
935 /* pull at least as many as BYTES as wakeup BITS */
936 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
937 /* but never more than the buffer size */
938 bytes = min_t(int, bytes, sizeof(tmp));
939
940 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
941 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
942 bytes = extract_entropy(r->pull, tmp, bytes,
943 random_read_wakeup_thresh / 8, rsvd);
944 mix_pool_bytes(r, tmp, bytes, NULL);
945 credit_entropy_bits(r, bytes*8);
946 }
947
948 /*
949 * Used as a workqueue function so that when the input pool is getting
950 * full, we can "spill over" some entropy to the output pools. That
951 * way the output pools can store some of the excess entropy instead
952 * of letting it go to waste.
953 */
954 static void push_to_pool(struct work_struct *work)
955 {
956 struct entropy_store *r = container_of(work, struct entropy_store,
957 push_work);
958 BUG_ON(!r);
959 _xfer_secondary_pool(r, random_read_wakeup_thresh/8);
960 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
961 r->pull->entropy_count >> ENTROPY_SHIFT);
962 }
963
964 /*
965 * These functions extracts randomness from the "entropy pool", and
966 * returns it in a buffer.
967 *
968 * The min parameter specifies the minimum amount we can pull before
969 * failing to avoid races that defeat catastrophic reseeding while the
970 * reserved parameter indicates how much entropy we must leave in the
971 * pool after each pull to avoid starving other readers.
972 *
973 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
974 */
975
976 static size_t account(struct entropy_store *r, size_t nbytes, int min,
977 int reserved)
978 {
979 unsigned long flags;
980 int wakeup_write = 0;
981 int have_bytes;
982 int entropy_count, orig;
983 size_t ibytes;
984
985 /* Hold lock while accounting */
986 spin_lock_irqsave(&r->lock, flags);
987
988 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
989
990 /* Can we pull enough? */
991 retry:
992 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
993 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
994 ibytes = nbytes;
995 if (have_bytes < min + reserved) {
996 ibytes = 0;
997 } else {
998 /* If limited, never pull more than available */
999 if (r->limit && ibytes + reserved >= have_bytes)
1000 ibytes = have_bytes - reserved;
1001
1002 if (have_bytes >= ibytes + reserved)
1003 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
1004 else
1005 entropy_count = reserved << (ENTROPY_SHIFT + 3);
1006
1007 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1008 goto retry;
1009
1010 if ((r->entropy_count >> ENTROPY_SHIFT)
1011 < random_write_wakeup_thresh)
1012 wakeup_write = 1;
1013 }
1014 spin_unlock_irqrestore(&r->lock, flags);
1015
1016 trace_debit_entropy(r->name, 8 * ibytes);
1017 if (wakeup_write) {
1018 wake_up_interruptible(&random_write_wait);
1019 kill_fasync(&fasync, SIGIO, POLL_OUT);
1020 }
1021
1022 return ibytes;
1023 }
1024
1025 static void extract_buf(struct entropy_store *r, __u8 *out)
1026 {
1027 int i;
1028 union {
1029 __u32 w[5];
1030 unsigned long l[LONGS(20)];
1031 } hash;
1032 __u32 workspace[SHA_WORKSPACE_WORDS];
1033 __u8 extract[64];
1034 unsigned long flags;
1035
1036 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1037 sha_init(hash.w);
1038 spin_lock_irqsave(&r->lock, flags);
1039 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1040 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1041
1042 /*
1043 * If we have a architectural hardware random number
1044 * generator, mix that in, too.
1045 */
1046 for (i = 0; i < LONGS(20); i++) {
1047 unsigned long v;
1048 if (!arch_get_random_long(&v))
1049 break;
1050 hash.l[i] ^= v;
1051 }
1052
1053 /*
1054 * We mix the hash back into the pool to prevent backtracking
1055 * attacks (where the attacker knows the state of the pool
1056 * plus the current outputs, and attempts to find previous
1057 * ouputs), unless the hash function can be inverted. By
1058 * mixing at least a SHA1 worth of hash data back, we make
1059 * brute-forcing the feedback as hard as brute-forcing the
1060 * hash.
1061 */
1062 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
1063 spin_unlock_irqrestore(&r->lock, flags);
1064
1065 /*
1066 * To avoid duplicates, we atomically extract a portion of the
1067 * pool while mixing, and hash one final time.
1068 */
1069 sha_transform(hash.w, extract, workspace);
1070 memset(extract, 0, sizeof(extract));
1071 memset(workspace, 0, sizeof(workspace));
1072
1073 /*
1074 * In case the hash function has some recognizable output
1075 * pattern, we fold it in half. Thus, we always feed back
1076 * twice as much data as we output.
1077 */
1078 hash.w[0] ^= hash.w[3];
1079 hash.w[1] ^= hash.w[4];
1080 hash.w[2] ^= rol32(hash.w[2], 16);
1081
1082 memcpy(out, &hash, EXTRACT_SIZE);
1083 memset(&hash, 0, sizeof(hash));
1084 }
1085
1086 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1087 size_t nbytes, int min, int reserved)
1088 {
1089 ssize_t ret = 0, i;
1090 __u8 tmp[EXTRACT_SIZE];
1091 unsigned long flags;
1092
1093 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1094 if (fips_enabled) {
1095 spin_lock_irqsave(&r->lock, flags);
1096 if (!r->last_data_init) {
1097 r->last_data_init = 1;
1098 spin_unlock_irqrestore(&r->lock, flags);
1099 trace_extract_entropy(r->name, EXTRACT_SIZE,
1100 ENTROPY_BITS(r), _RET_IP_);
1101 xfer_secondary_pool(r, EXTRACT_SIZE);
1102 extract_buf(r, tmp);
1103 spin_lock_irqsave(&r->lock, flags);
1104 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1105 }
1106 spin_unlock_irqrestore(&r->lock, flags);
1107 }
1108
1109 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1110 xfer_secondary_pool(r, nbytes);
1111 nbytes = account(r, nbytes, min, reserved);
1112
1113 while (nbytes) {
1114 extract_buf(r, tmp);
1115
1116 if (fips_enabled) {
1117 spin_lock_irqsave(&r->lock, flags);
1118 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1119 panic("Hardware RNG duplicated output!\n");
1120 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1121 spin_unlock_irqrestore(&r->lock, flags);
1122 }
1123 i = min_t(int, nbytes, EXTRACT_SIZE);
1124 memcpy(buf, tmp, i);
1125 nbytes -= i;
1126 buf += i;
1127 ret += i;
1128 }
1129
1130 /* Wipe data just returned from memory */
1131 memset(tmp, 0, sizeof(tmp));
1132
1133 return ret;
1134 }
1135
1136 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1137 size_t nbytes)
1138 {
1139 ssize_t ret = 0, i;
1140 __u8 tmp[EXTRACT_SIZE];
1141
1142 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1143 xfer_secondary_pool(r, nbytes);
1144 nbytes = account(r, nbytes, 0, 0);
1145
1146 while (nbytes) {
1147 if (need_resched()) {
1148 if (signal_pending(current)) {
1149 if (ret == 0)
1150 ret = -ERESTARTSYS;
1151 break;
1152 }
1153 schedule();
1154 }
1155
1156 extract_buf(r, tmp);
1157 i = min_t(int, nbytes, EXTRACT_SIZE);
1158 if (copy_to_user(buf, tmp, i)) {
1159 ret = -EFAULT;
1160 break;
1161 }
1162
1163 nbytes -= i;
1164 buf += i;
1165 ret += i;
1166 }
1167
1168 /* Wipe data just returned from memory */
1169 memset(tmp, 0, sizeof(tmp));
1170
1171 return ret;
1172 }
1173
1174 /*
1175 * This function is the exported kernel interface. It returns some
1176 * number of good random numbers, suitable for key generation, seeding
1177 * TCP sequence numbers, etc. It does not use the hw random number
1178 * generator, if available; use get_random_bytes_arch() for that.
1179 */
1180 void get_random_bytes(void *buf, int nbytes)
1181 {
1182 #if DEBUG_RANDOM_BOOT > 0
1183 if (unlikely(nonblocking_pool.initialized == 0))
1184 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1185 "with %d bits of entropy available\n",
1186 (void *) _RET_IP_,
1187 nonblocking_pool.entropy_total);
1188 #endif
1189 trace_get_random_bytes(nbytes, _RET_IP_);
1190 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1191 }
1192 EXPORT_SYMBOL(get_random_bytes);
1193
1194 /*
1195 * This function will use the architecture-specific hardware random
1196 * number generator if it is available. The arch-specific hw RNG will
1197 * almost certainly be faster than what we can do in software, but it
1198 * is impossible to verify that it is implemented securely (as
1199 * opposed, to, say, the AES encryption of a sequence number using a
1200 * key known by the NSA). So it's useful if we need the speed, but
1201 * only if we're willing to trust the hardware manufacturer not to
1202 * have put in a back door.
1203 */
1204 void get_random_bytes_arch(void *buf, int nbytes)
1205 {
1206 char *p = buf;
1207
1208 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1209 while (nbytes) {
1210 unsigned long v;
1211 int chunk = min(nbytes, (int)sizeof(unsigned long));
1212
1213 if (!arch_get_random_long(&v))
1214 break;
1215
1216 memcpy(p, &v, chunk);
1217 p += chunk;
1218 nbytes -= chunk;
1219 }
1220
1221 if (nbytes)
1222 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1223 }
1224 EXPORT_SYMBOL(get_random_bytes_arch);
1225
1226
1227 /*
1228 * init_std_data - initialize pool with system data
1229 *
1230 * @r: pool to initialize
1231 *
1232 * This function clears the pool's entropy count and mixes some system
1233 * data into the pool to prepare it for use. The pool is not cleared
1234 * as that can only decrease the entropy in the pool.
1235 */
1236 static void init_std_data(struct entropy_store *r)
1237 {
1238 int i;
1239 ktime_t now = ktime_get_real();
1240 unsigned long rv;
1241
1242 r->last_pulled = jiffies;
1243 mix_pool_bytes(r, &now, sizeof(now), NULL);
1244 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1245 if (!arch_get_random_long(&rv))
1246 rv = random_get_entropy();
1247 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1248 }
1249 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1250 }
1251
1252 /*
1253 * Note that setup_arch() may call add_device_randomness()
1254 * long before we get here. This allows seeding of the pools
1255 * with some platform dependent data very early in the boot
1256 * process. But it limits our options here. We must use
1257 * statically allocated structures that already have all
1258 * initializations complete at compile time. We should also
1259 * take care not to overwrite the precious per platform data
1260 * we were given.
1261 */
1262 static int rand_initialize(void)
1263 {
1264 init_std_data(&input_pool);
1265 init_std_data(&blocking_pool);
1266 init_std_data(&nonblocking_pool);
1267 return 0;
1268 }
1269 early_initcall(rand_initialize);
1270
1271 #ifdef CONFIG_BLOCK
1272 void rand_initialize_disk(struct gendisk *disk)
1273 {
1274 struct timer_rand_state *state;
1275
1276 /*
1277 * If kzalloc returns null, we just won't use that entropy
1278 * source.
1279 */
1280 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1281 if (state) {
1282 state->last_time = INITIAL_JIFFIES;
1283 disk->random = state;
1284 }
1285 }
1286 #endif
1287
1288 static ssize_t
1289 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1290 {
1291 ssize_t n, retval = 0, count = 0;
1292
1293 if (nbytes == 0)
1294 return 0;
1295
1296 while (nbytes > 0) {
1297 n = nbytes;
1298 if (n > SEC_XFER_SIZE)
1299 n = SEC_XFER_SIZE;
1300
1301 n = extract_entropy_user(&blocking_pool, buf, n);
1302
1303 if (n < 0) {
1304 retval = n;
1305 break;
1306 }
1307
1308 trace_random_read(n*8, (nbytes-n)*8,
1309 ENTROPY_BITS(&blocking_pool),
1310 ENTROPY_BITS(&input_pool));
1311
1312 if (n == 0) {
1313 if (file->f_flags & O_NONBLOCK) {
1314 retval = -EAGAIN;
1315 break;
1316 }
1317
1318 wait_event_interruptible(random_read_wait,
1319 ENTROPY_BITS(&input_pool) >=
1320 random_read_wakeup_thresh);
1321
1322 if (signal_pending(current)) {
1323 retval = -ERESTARTSYS;
1324 break;
1325 }
1326
1327 continue;
1328 }
1329
1330 count += n;
1331 buf += n;
1332 nbytes -= n;
1333 break; /* This break makes the device work */
1334 /* like a named pipe */
1335 }
1336
1337 return (count ? count : retval);
1338 }
1339
1340 static ssize_t
1341 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1342 {
1343 int ret;
1344
1345 if (unlikely(nonblocking_pool.initialized == 0))
1346 printk_once(KERN_NOTICE "random: %s urandom read "
1347 "with %d bits of entropy available\n",
1348 current->comm, nonblocking_pool.entropy_total);
1349
1350 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1351
1352 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1353 ENTROPY_BITS(&input_pool));
1354 return ret;
1355 }
1356
1357 static unsigned int
1358 random_poll(struct file *file, poll_table * wait)
1359 {
1360 unsigned int mask;
1361
1362 poll_wait(file, &random_read_wait, wait);
1363 poll_wait(file, &random_write_wait, wait);
1364 mask = 0;
1365 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1366 mask |= POLLIN | POLLRDNORM;
1367 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1368 mask |= POLLOUT | POLLWRNORM;
1369 return mask;
1370 }
1371
1372 static int
1373 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1374 {
1375 size_t bytes;
1376 __u32 buf[16];
1377 const char __user *p = buffer;
1378
1379 while (count > 0) {
1380 bytes = min(count, sizeof(buf));
1381 if (copy_from_user(&buf, p, bytes))
1382 return -EFAULT;
1383
1384 count -= bytes;
1385 p += bytes;
1386
1387 mix_pool_bytes(r, buf, bytes, NULL);
1388 cond_resched();
1389 }
1390
1391 return 0;
1392 }
1393
1394 static ssize_t random_write(struct file *file, const char __user *buffer,
1395 size_t count, loff_t *ppos)
1396 {
1397 size_t ret;
1398
1399 ret = write_pool(&blocking_pool, buffer, count);
1400 if (ret)
1401 return ret;
1402 ret = write_pool(&nonblocking_pool, buffer, count);
1403 if (ret)
1404 return ret;
1405
1406 return (ssize_t)count;
1407 }
1408
1409 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1410 {
1411 int size, ent_count;
1412 int __user *p = (int __user *)arg;
1413 int retval;
1414
1415 switch (cmd) {
1416 case RNDGETENTCNT:
1417 /* inherently racy, no point locking */
1418 ent_count = ENTROPY_BITS(&input_pool);
1419 if (put_user(ent_count, p))
1420 return -EFAULT;
1421 return 0;
1422 case RNDADDTOENTCNT:
1423 if (!capable(CAP_SYS_ADMIN))
1424 return -EPERM;
1425 if (get_user(ent_count, p))
1426 return -EFAULT;
1427 credit_entropy_bits_safe(&input_pool, ent_count);
1428 return 0;
1429 case RNDADDENTROPY:
1430 if (!capable(CAP_SYS_ADMIN))
1431 return -EPERM;
1432 if (get_user(ent_count, p++))
1433 return -EFAULT;
1434 if (ent_count < 0)
1435 return -EINVAL;
1436 if (get_user(size, p++))
1437 return -EFAULT;
1438 retval = write_pool(&input_pool, (const char __user *)p,
1439 size);
1440 if (retval < 0)
1441 return retval;
1442 credit_entropy_bits_safe(&input_pool, ent_count);
1443 return 0;
1444 case RNDZAPENTCNT:
1445 case RNDCLEARPOOL:
1446 /*
1447 * Clear the entropy pool counters. We no longer clear
1448 * the entropy pool, as that's silly.
1449 */
1450 if (!capable(CAP_SYS_ADMIN))
1451 return -EPERM;
1452 input_pool.entropy_count = 0;
1453 nonblocking_pool.entropy_count = 0;
1454 blocking_pool.entropy_count = 0;
1455 return 0;
1456 default:
1457 return -EINVAL;
1458 }
1459 }
1460
1461 static int random_fasync(int fd, struct file *filp, int on)
1462 {
1463 return fasync_helper(fd, filp, on, &fasync);
1464 }
1465
1466 const struct file_operations random_fops = {
1467 .read = random_read,
1468 .write = random_write,
1469 .poll = random_poll,
1470 .unlocked_ioctl = random_ioctl,
1471 .fasync = random_fasync,
1472 .llseek = noop_llseek,
1473 };
1474
1475 const struct file_operations urandom_fops = {
1476 .read = urandom_read,
1477 .write = random_write,
1478 .unlocked_ioctl = random_ioctl,
1479 .fasync = random_fasync,
1480 .llseek = noop_llseek,
1481 };
1482
1483 /***************************************************************
1484 * Random UUID interface
1485 *
1486 * Used here for a Boot ID, but can be useful for other kernel
1487 * drivers.
1488 ***************************************************************/
1489
1490 /*
1491 * Generate random UUID
1492 */
1493 void generate_random_uuid(unsigned char uuid_out[16])
1494 {
1495 get_random_bytes(uuid_out, 16);
1496 /* Set UUID version to 4 --- truly random generation */
1497 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1498 /* Set the UUID variant to DCE */
1499 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1500 }
1501 EXPORT_SYMBOL(generate_random_uuid);
1502
1503 /********************************************************************
1504 *
1505 * Sysctl interface
1506 *
1507 ********************************************************************/
1508
1509 #ifdef CONFIG_SYSCTL
1510
1511 #include <linux/sysctl.h>
1512
1513 static int min_read_thresh = 8, min_write_thresh;
1514 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1515 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1516 static char sysctl_bootid[16];
1517
1518 /*
1519 * These functions is used to return both the bootid UUID, and random
1520 * UUID. The difference is in whether table->data is NULL; if it is,
1521 * then a new UUID is generated and returned to the user.
1522 *
1523 * If the user accesses this via the proc interface, it will be returned
1524 * as an ASCII string in the standard UUID format. If accesses via the
1525 * sysctl system call, it is returned as 16 bytes of binary data.
1526 */
1527 static int proc_do_uuid(struct ctl_table *table, int write,
1528 void __user *buffer, size_t *lenp, loff_t *ppos)
1529 {
1530 struct ctl_table fake_table;
1531 unsigned char buf[64], tmp_uuid[16], *uuid;
1532
1533 uuid = table->data;
1534 if (!uuid) {
1535 uuid = tmp_uuid;
1536 generate_random_uuid(uuid);
1537 } else {
1538 static DEFINE_SPINLOCK(bootid_spinlock);
1539
1540 spin_lock(&bootid_spinlock);
1541 if (!uuid[8])
1542 generate_random_uuid(uuid);
1543 spin_unlock(&bootid_spinlock);
1544 }
1545
1546 sprintf(buf, "%pU", uuid);
1547
1548 fake_table.data = buf;
1549 fake_table.maxlen = sizeof(buf);
1550
1551 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1552 }
1553
1554 /*
1555 * Return entropy available scaled to integral bits
1556 */
1557 static int proc_do_entropy(ctl_table *table, int write,
1558 void __user *buffer, size_t *lenp, loff_t *ppos)
1559 {
1560 ctl_table fake_table;
1561 int entropy_count;
1562
1563 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1564
1565 fake_table.data = &entropy_count;
1566 fake_table.maxlen = sizeof(entropy_count);
1567
1568 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1569 }
1570
1571 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1572 extern struct ctl_table random_table[];
1573 struct ctl_table random_table[] = {
1574 {
1575 .procname = "poolsize",
1576 .data = &sysctl_poolsize,
1577 .maxlen = sizeof(int),
1578 .mode = 0444,
1579 .proc_handler = proc_dointvec,
1580 },
1581 {
1582 .procname = "entropy_avail",
1583 .maxlen = sizeof(int),
1584 .mode = 0444,
1585 .proc_handler = proc_do_entropy,
1586 .data = &input_pool.entropy_count,
1587 },
1588 {
1589 .procname = "read_wakeup_threshold",
1590 .data = &random_read_wakeup_thresh,
1591 .maxlen = sizeof(int),
1592 .mode = 0644,
1593 .proc_handler = proc_dointvec_minmax,
1594 .extra1 = &min_read_thresh,
1595 .extra2 = &max_read_thresh,
1596 },
1597 {
1598 .procname = "write_wakeup_threshold",
1599 .data = &random_write_wakeup_thresh,
1600 .maxlen = sizeof(int),
1601 .mode = 0644,
1602 .proc_handler = proc_dointvec_minmax,
1603 .extra1 = &min_write_thresh,
1604 .extra2 = &max_write_thresh,
1605 },
1606 {
1607 .procname = "urandom_min_reseed_secs",
1608 .data = &random_min_urandom_seed,
1609 .maxlen = sizeof(int),
1610 .mode = 0644,
1611 .proc_handler = proc_dointvec,
1612 },
1613 {
1614 .procname = "boot_id",
1615 .data = &sysctl_bootid,
1616 .maxlen = 16,
1617 .mode = 0444,
1618 .proc_handler = proc_do_uuid,
1619 },
1620 {
1621 .procname = "uuid",
1622 .maxlen = 16,
1623 .mode = 0444,
1624 .proc_handler = proc_do_uuid,
1625 },
1626 { }
1627 };
1628 #endif /* CONFIG_SYSCTL */
1629
1630 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1631
1632 int random_int_secret_init(void)
1633 {
1634 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1635 return 0;
1636 }
1637
1638 /*
1639 * Get a random word for internal kernel use only. Similar to urandom but
1640 * with the goal of minimal entropy pool depletion. As a result, the random
1641 * value is not cryptographically secure but for several uses the cost of
1642 * depleting entropy is too high
1643 */
1644 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1645 unsigned int get_random_int(void)
1646 {
1647 __u32 *hash;
1648 unsigned int ret;
1649
1650 if (arch_get_random_int(&ret))
1651 return ret;
1652
1653 hash = get_cpu_var(get_random_int_hash);
1654
1655 hash[0] += current->pid + jiffies + random_get_entropy();
1656 md5_transform(hash, random_int_secret);
1657 ret = hash[0];
1658 put_cpu_var(get_random_int_hash);
1659
1660 return ret;
1661 }
1662 EXPORT_SYMBOL(get_random_int);
1663
1664 /*
1665 * randomize_range() returns a start address such that
1666 *
1667 * [...... <range> .....]
1668 * start end
1669 *
1670 * a <range> with size "len" starting at the return value is inside in the
1671 * area defined by [start, end], but is otherwise randomized.
1672 */
1673 unsigned long
1674 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1675 {
1676 unsigned long range = end - len - start;
1677
1678 if (end <= start + len)
1679 return 0;
1680 return PAGE_ALIGN(get_random_int() % range + start);
1681 }