]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/char/random.c
Merge tag 'iio-fixes-for-3.16e' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42 /*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 #include <linux/workqueue.h>
259 #include <linux/irq.h>
260
261 #include <asm/processor.h>
262 #include <asm/uaccess.h>
263 #include <asm/irq.h>
264 #include <asm/irq_regs.h>
265 #include <asm/io.h>
266
267 #define CREATE_TRACE_POINTS
268 #include <trace/events/random.h>
269
270 /*
271 * Configuration information
272 */
273 #define INPUT_POOL_SHIFT 12
274 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
275 #define OUTPUT_POOL_SHIFT 10
276 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
277 #define SEC_XFER_SIZE 512
278 #define EXTRACT_SIZE 10
279
280 #define DEBUG_RANDOM_BOOT 0
281
282 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
284 /*
285 * To allow fractional bits to be tracked, the entropy_count field is
286 * denominated in units of 1/8th bits.
287 *
288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
289 * credit_entropy_bits() needs to be 64 bits wide.
290 */
291 #define ENTROPY_SHIFT 3
292 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
293
294 /*
295 * The minimum number of bits of entropy before we wake up a read on
296 * /dev/random. Should be enough to do a significant reseed.
297 */
298 static int random_read_wakeup_bits = 64;
299
300 /*
301 * If the entropy count falls under this number of bits, then we
302 * should wake up processes which are selecting or polling on write
303 * access to /dev/random.
304 */
305 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
306
307 /*
308 * The minimum number of seconds between urandom pool reseeding. We
309 * do this to limit the amount of entropy that can be drained from the
310 * input pool even if there are heavy demands on /dev/urandom.
311 */
312 static int random_min_urandom_seed = 60;
313
314 /*
315 * Originally, we used a primitive polynomial of degree .poolwords
316 * over GF(2). The taps for various sizes are defined below. They
317 * were chosen to be evenly spaced except for the last tap, which is 1
318 * to get the twisting happening as fast as possible.
319 *
320 * For the purposes of better mixing, we use the CRC-32 polynomial as
321 * well to make a (modified) twisted Generalized Feedback Shift
322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
323 * generators. ACM Transactions on Modeling and Computer Simulation
324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
325 * GFSR generators II. ACM Transactions on Modeling and Computer
326 * Simulation 4:254-266)
327 *
328 * Thanks to Colin Plumb for suggesting this.
329 *
330 * The mixing operation is much less sensitive than the output hash,
331 * where we use SHA-1. All that we want of mixing operation is that
332 * it be a good non-cryptographic hash; i.e. it not produce collisions
333 * when fed "random" data of the sort we expect to see. As long as
334 * the pool state differs for different inputs, we have preserved the
335 * input entropy and done a good job. The fact that an intelligent
336 * attacker can construct inputs that will produce controlled
337 * alterations to the pool's state is not important because we don't
338 * consider such inputs to contribute any randomness. The only
339 * property we need with respect to them is that the attacker can't
340 * increase his/her knowledge of the pool's state. Since all
341 * additions are reversible (knowing the final state and the input,
342 * you can reconstruct the initial state), if an attacker has any
343 * uncertainty about the initial state, he/she can only shuffle that
344 * uncertainty about, but never cause any collisions (which would
345 * decrease the uncertainty).
346 *
347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
348 * Videau in their paper, "The Linux Pseudorandom Number Generator
349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
350 * paper, they point out that we are not using a true Twisted GFSR,
351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
352 * is, with only three taps, instead of the six that we are using).
353 * As a result, the resulting polynomial is neither primitive nor
354 * irreducible, and hence does not have a maximal period over
355 * GF(2**32). They suggest a slight change to the generator
356 * polynomial which improves the resulting TGFSR polynomial to be
357 * irreducible, which we have made here.
358 */
359 static struct poolinfo {
360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
361 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
362 int tap1, tap2, tap3, tap4, tap5;
363 } poolinfo_table[] = {
364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
366 { S(128), 104, 76, 51, 25, 1 },
367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
369 { S(32), 26, 19, 14, 7, 1 },
370 #if 0
371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
372 { S(2048), 1638, 1231, 819, 411, 1 },
373
374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
375 { S(1024), 817, 615, 412, 204, 1 },
376
377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
378 { S(1024), 819, 616, 410, 207, 2 },
379
380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
381 { S(512), 411, 308, 208, 104, 1 },
382
383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
384 { S(512), 409, 307, 206, 102, 2 },
385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
386 { S(512), 409, 309, 205, 103, 2 },
387
388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
389 { S(256), 205, 155, 101, 52, 1 },
390
391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
392 { S(128), 103, 78, 51, 27, 2 },
393
394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
395 { S(64), 52, 39, 26, 14, 1 },
396 #endif
397 };
398
399 /*
400 * Static global variables
401 */
402 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
403 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
404 static struct fasync_struct *fasync;
405
406 /**********************************************************************
407 *
408 * OS independent entropy store. Here are the functions which handle
409 * storing entropy in an entropy pool.
410 *
411 **********************************************************************/
412
413 struct entropy_store;
414 struct entropy_store {
415 /* read-only data: */
416 const struct poolinfo *poolinfo;
417 __u32 *pool;
418 const char *name;
419 struct entropy_store *pull;
420 struct work_struct push_work;
421
422 /* read-write data: */
423 unsigned long last_pulled;
424 spinlock_t lock;
425 unsigned short add_ptr;
426 unsigned short input_rotate;
427 int entropy_count;
428 int entropy_total;
429 unsigned int initialized:1;
430 unsigned int limit:1;
431 unsigned int last_data_init:1;
432 __u8 last_data[EXTRACT_SIZE];
433 };
434
435 static void push_to_pool(struct work_struct *work);
436 static __u32 input_pool_data[INPUT_POOL_WORDS];
437 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
438 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
439
440 static struct entropy_store input_pool = {
441 .poolinfo = &poolinfo_table[0],
442 .name = "input",
443 .limit = 1,
444 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
445 .pool = input_pool_data
446 };
447
448 static struct entropy_store blocking_pool = {
449 .poolinfo = &poolinfo_table[1],
450 .name = "blocking",
451 .limit = 1,
452 .pull = &input_pool,
453 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
454 .pool = blocking_pool_data,
455 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
456 push_to_pool),
457 };
458
459 static struct entropy_store nonblocking_pool = {
460 .poolinfo = &poolinfo_table[1],
461 .name = "nonblocking",
462 .pull = &input_pool,
463 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
464 .pool = nonblocking_pool_data,
465 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
466 push_to_pool),
467 };
468
469 static __u32 const twist_table[8] = {
470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
472
473 /*
474 * This function adds bytes into the entropy "pool". It does not
475 * update the entropy estimate. The caller should call
476 * credit_entropy_bits if this is appropriate.
477 *
478 * The pool is stirred with a primitive polynomial of the appropriate
479 * degree, and then twisted. We twist by three bits at a time because
480 * it's cheap to do so and helps slightly in the expected case where
481 * the entropy is concentrated in the low-order bits.
482 */
483 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
484 int nbytes, __u8 out[64])
485 {
486 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
487 int input_rotate;
488 int wordmask = r->poolinfo->poolwords - 1;
489 const char *bytes = in;
490 __u32 w;
491
492 tap1 = r->poolinfo->tap1;
493 tap2 = r->poolinfo->tap2;
494 tap3 = r->poolinfo->tap3;
495 tap4 = r->poolinfo->tap4;
496 tap5 = r->poolinfo->tap5;
497
498 smp_rmb();
499 input_rotate = ACCESS_ONCE(r->input_rotate);
500 i = ACCESS_ONCE(r->add_ptr);
501
502 /* mix one byte at a time to simplify size handling and churn faster */
503 while (nbytes--) {
504 w = rol32(*bytes++, input_rotate);
505 i = (i - 1) & wordmask;
506
507 /* XOR in the various taps */
508 w ^= r->pool[i];
509 w ^= r->pool[(i + tap1) & wordmask];
510 w ^= r->pool[(i + tap2) & wordmask];
511 w ^= r->pool[(i + tap3) & wordmask];
512 w ^= r->pool[(i + tap4) & wordmask];
513 w ^= r->pool[(i + tap5) & wordmask];
514
515 /* Mix the result back in with a twist */
516 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
517
518 /*
519 * Normally, we add 7 bits of rotation to the pool.
520 * At the beginning of the pool, add an extra 7 bits
521 * rotation, so that successive passes spread the
522 * input bits across the pool evenly.
523 */
524 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
525 }
526
527 ACCESS_ONCE(r->input_rotate) = input_rotate;
528 ACCESS_ONCE(r->add_ptr) = i;
529 smp_wmb();
530
531 if (out)
532 for (j = 0; j < 16; j++)
533 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
534 }
535
536 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
537 int nbytes, __u8 out[64])
538 {
539 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
540 _mix_pool_bytes(r, in, nbytes, out);
541 }
542
543 static void mix_pool_bytes(struct entropy_store *r, const void *in,
544 int nbytes, __u8 out[64])
545 {
546 unsigned long flags;
547
548 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
549 spin_lock_irqsave(&r->lock, flags);
550 _mix_pool_bytes(r, in, nbytes, out);
551 spin_unlock_irqrestore(&r->lock, flags);
552 }
553
554 struct fast_pool {
555 __u32 pool[4];
556 unsigned long last;
557 unsigned short count;
558 unsigned char rotate;
559 unsigned char last_timer_intr;
560 };
561
562 /*
563 * This is a fast mixing routine used by the interrupt randomness
564 * collector. It's hardcoded for an 128 bit pool and assumes that any
565 * locks that might be needed are taken by the caller.
566 */
567 static void fast_mix(struct fast_pool *f, __u32 input[4])
568 {
569 __u32 w;
570 unsigned input_rotate = f->rotate;
571
572 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
573 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
574 input_rotate = (input_rotate + 14) & 31;
575 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
576 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
577 input_rotate = (input_rotate + 7) & 31;
578 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
579 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
580 input_rotate = (input_rotate + 7) & 31;
581 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
582 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
583 input_rotate = (input_rotate + 7) & 31;
584
585 f->rotate = input_rotate;
586 f->count++;
587 }
588
589 /*
590 * Credit (or debit) the entropy store with n bits of entropy.
591 * Use credit_entropy_bits_safe() if the value comes from userspace
592 * or otherwise should be checked for extreme values.
593 */
594 static void credit_entropy_bits(struct entropy_store *r, int nbits)
595 {
596 int entropy_count, orig;
597 const int pool_size = r->poolinfo->poolfracbits;
598 int nfrac = nbits << ENTROPY_SHIFT;
599
600 if (!nbits)
601 return;
602
603 retry:
604 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
605 if (nfrac < 0) {
606 /* Debit */
607 entropy_count += nfrac;
608 } else {
609 /*
610 * Credit: we have to account for the possibility of
611 * overwriting already present entropy. Even in the
612 * ideal case of pure Shannon entropy, new contributions
613 * approach the full value asymptotically:
614 *
615 * entropy <- entropy + (pool_size - entropy) *
616 * (1 - exp(-add_entropy/pool_size))
617 *
618 * For add_entropy <= pool_size/2 then
619 * (1 - exp(-add_entropy/pool_size)) >=
620 * (add_entropy/pool_size)*0.7869...
621 * so we can approximate the exponential with
622 * 3/4*add_entropy/pool_size and still be on the
623 * safe side by adding at most pool_size/2 at a time.
624 *
625 * The use of pool_size-2 in the while statement is to
626 * prevent rounding artifacts from making the loop
627 * arbitrarily long; this limits the loop to log2(pool_size)*2
628 * turns no matter how large nbits is.
629 */
630 int pnfrac = nfrac;
631 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
632 /* The +2 corresponds to the /4 in the denominator */
633
634 do {
635 unsigned int anfrac = min(pnfrac, pool_size/2);
636 unsigned int add =
637 ((pool_size - entropy_count)*anfrac*3) >> s;
638
639 entropy_count += add;
640 pnfrac -= anfrac;
641 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
642 }
643
644 if (unlikely(entropy_count < 0)) {
645 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
646 r->name, entropy_count);
647 WARN_ON(1);
648 entropy_count = 0;
649 } else if (entropy_count > pool_size)
650 entropy_count = pool_size;
651 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
652 goto retry;
653
654 r->entropy_total += nbits;
655 if (!r->initialized && r->entropy_total > 128) {
656 r->initialized = 1;
657 r->entropy_total = 0;
658 if (r == &nonblocking_pool) {
659 prandom_reseed_late();
660 pr_notice("random: %s pool is initialized\n", r->name);
661 }
662 }
663
664 trace_credit_entropy_bits(r->name, nbits,
665 entropy_count >> ENTROPY_SHIFT,
666 r->entropy_total, _RET_IP_);
667
668 if (r == &input_pool) {
669 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
670
671 /* should we wake readers? */
672 if (entropy_bits >= random_read_wakeup_bits) {
673 wake_up_interruptible(&random_read_wait);
674 kill_fasync(&fasync, SIGIO, POLL_IN);
675 }
676 /* If the input pool is getting full, send some
677 * entropy to the two output pools, flipping back and
678 * forth between them, until the output pools are 75%
679 * full.
680 */
681 if (entropy_bits > random_write_wakeup_bits &&
682 r->initialized &&
683 r->entropy_total >= 2*random_read_wakeup_bits) {
684 static struct entropy_store *last = &blocking_pool;
685 struct entropy_store *other = &blocking_pool;
686
687 if (last == &blocking_pool)
688 other = &nonblocking_pool;
689 if (other->entropy_count <=
690 3 * other->poolinfo->poolfracbits / 4)
691 last = other;
692 if (last->entropy_count <=
693 3 * last->poolinfo->poolfracbits / 4) {
694 schedule_work(&last->push_work);
695 r->entropy_total = 0;
696 }
697 }
698 }
699 }
700
701 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
702 {
703 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
704
705 /* Cap the value to avoid overflows */
706 nbits = min(nbits, nbits_max);
707 nbits = max(nbits, -nbits_max);
708
709 credit_entropy_bits(r, nbits);
710 }
711
712 /*********************************************************************
713 *
714 * Entropy input management
715 *
716 *********************************************************************/
717
718 /* There is one of these per entropy source */
719 struct timer_rand_state {
720 cycles_t last_time;
721 long last_delta, last_delta2;
722 unsigned dont_count_entropy:1;
723 };
724
725 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
726
727 /*
728 * Add device- or boot-specific data to the input and nonblocking
729 * pools to help initialize them to unique values.
730 *
731 * None of this adds any entropy, it is meant to avoid the
732 * problem of the nonblocking pool having similar initial state
733 * across largely identical devices.
734 */
735 void add_device_randomness(const void *buf, unsigned int size)
736 {
737 unsigned long time = random_get_entropy() ^ jiffies;
738 unsigned long flags;
739
740 trace_add_device_randomness(size, _RET_IP_);
741 spin_lock_irqsave(&input_pool.lock, flags);
742 _mix_pool_bytes(&input_pool, buf, size, NULL);
743 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
744 spin_unlock_irqrestore(&input_pool.lock, flags);
745
746 spin_lock_irqsave(&nonblocking_pool.lock, flags);
747 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
748 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
749 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
750 }
751 EXPORT_SYMBOL(add_device_randomness);
752
753 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
754
755 /*
756 * This function adds entropy to the entropy "pool" by using timing
757 * delays. It uses the timer_rand_state structure to make an estimate
758 * of how many bits of entropy this call has added to the pool.
759 *
760 * The number "num" is also added to the pool - it should somehow describe
761 * the type of event which just happened. This is currently 0-255 for
762 * keyboard scan codes, and 256 upwards for interrupts.
763 *
764 */
765 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
766 {
767 struct entropy_store *r;
768 struct {
769 long jiffies;
770 unsigned cycles;
771 unsigned num;
772 } sample;
773 long delta, delta2, delta3;
774
775 preempt_disable();
776
777 sample.jiffies = jiffies;
778 sample.cycles = random_get_entropy();
779 sample.num = num;
780 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
781 mix_pool_bytes(r, &sample, sizeof(sample), NULL);
782
783 /*
784 * Calculate number of bits of randomness we probably added.
785 * We take into account the first, second and third-order deltas
786 * in order to make our estimate.
787 */
788
789 if (!state->dont_count_entropy) {
790 delta = sample.jiffies - state->last_time;
791 state->last_time = sample.jiffies;
792
793 delta2 = delta - state->last_delta;
794 state->last_delta = delta;
795
796 delta3 = delta2 - state->last_delta2;
797 state->last_delta2 = delta2;
798
799 if (delta < 0)
800 delta = -delta;
801 if (delta2 < 0)
802 delta2 = -delta2;
803 if (delta3 < 0)
804 delta3 = -delta3;
805 if (delta > delta2)
806 delta = delta2;
807 if (delta > delta3)
808 delta = delta3;
809
810 /*
811 * delta is now minimum absolute delta.
812 * Round down by 1 bit on general principles,
813 * and limit entropy entimate to 12 bits.
814 */
815 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
816 }
817 preempt_enable();
818 }
819
820 void add_input_randomness(unsigned int type, unsigned int code,
821 unsigned int value)
822 {
823 static unsigned char last_value;
824
825 /* ignore autorepeat and the like */
826 if (value == last_value)
827 return;
828
829 last_value = value;
830 add_timer_randomness(&input_timer_state,
831 (type << 4) ^ code ^ (code >> 4) ^ value);
832 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
833 }
834 EXPORT_SYMBOL_GPL(add_input_randomness);
835
836 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
837
838 void add_interrupt_randomness(int irq, int irq_flags)
839 {
840 struct entropy_store *r;
841 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
842 struct pt_regs *regs = get_irq_regs();
843 unsigned long now = jiffies;
844 cycles_t cycles = random_get_entropy();
845 __u32 input[4], c_high, j_high;
846 __u64 ip;
847 unsigned long seed;
848 int credit;
849
850 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
851 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
852 input[0] = cycles ^ j_high ^ irq;
853 input[1] = now ^ c_high;
854 ip = regs ? instruction_pointer(regs) : _RET_IP_;
855 input[2] = ip;
856 input[3] = ip >> 32;
857
858 fast_mix(fast_pool, input);
859
860 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
861 return;
862
863 fast_pool->last = now;
864
865 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
866 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
867
868 /*
869 * If we don't have a valid cycle counter, and we see
870 * back-to-back timer interrupts, then skip giving credit for
871 * any entropy, otherwise credit 1 bit.
872 */
873 credit = 1;
874 if (cycles == 0) {
875 if (irq_flags & __IRQF_TIMER) {
876 if (fast_pool->last_timer_intr)
877 credit = 0;
878 fast_pool->last_timer_intr = 1;
879 } else
880 fast_pool->last_timer_intr = 0;
881 }
882
883 /*
884 * If we have architectural seed generator, produce a seed and
885 * add it to the pool. For the sake of paranoia count it as
886 * 50% entropic.
887 */
888 if (arch_get_random_seed_long(&seed)) {
889 __mix_pool_bytes(r, &seed, sizeof(seed), NULL);
890 credit += sizeof(seed) * 4;
891 }
892
893 credit_entropy_bits(r, credit);
894 }
895
896 #ifdef CONFIG_BLOCK
897 void add_disk_randomness(struct gendisk *disk)
898 {
899 if (!disk || !disk->random)
900 return;
901 /* first major is 1, so we get >= 0x200 here */
902 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
903 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
904 }
905 EXPORT_SYMBOL_GPL(add_disk_randomness);
906 #endif
907
908 /*********************************************************************
909 *
910 * Entropy extraction routines
911 *
912 *********************************************************************/
913
914 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
915 size_t nbytes, int min, int rsvd);
916
917 /*
918 * This utility inline function is responsible for transferring entropy
919 * from the primary pool to the secondary extraction pool. We make
920 * sure we pull enough for a 'catastrophic reseed'.
921 */
922 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
923 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
924 {
925 if (r->limit == 0 && random_min_urandom_seed) {
926 unsigned long now = jiffies;
927
928 if (time_before(now,
929 r->last_pulled + random_min_urandom_seed * HZ))
930 return;
931 r->last_pulled = now;
932 }
933 if (r->pull &&
934 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
935 r->entropy_count < r->poolinfo->poolfracbits)
936 _xfer_secondary_pool(r, nbytes);
937 }
938
939 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
940 {
941 __u32 tmp[OUTPUT_POOL_WORDS];
942
943 /* For /dev/random's pool, always leave two wakeups' worth */
944 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
945 int bytes = nbytes;
946
947 /* pull at least as much as a wakeup */
948 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
949 /* but never more than the buffer size */
950 bytes = min_t(int, bytes, sizeof(tmp));
951
952 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
953 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
954 bytes = extract_entropy(r->pull, tmp, bytes,
955 random_read_wakeup_bits / 8, rsvd_bytes);
956 mix_pool_bytes(r, tmp, bytes, NULL);
957 credit_entropy_bits(r, bytes*8);
958 }
959
960 /*
961 * Used as a workqueue function so that when the input pool is getting
962 * full, we can "spill over" some entropy to the output pools. That
963 * way the output pools can store some of the excess entropy instead
964 * of letting it go to waste.
965 */
966 static void push_to_pool(struct work_struct *work)
967 {
968 struct entropy_store *r = container_of(work, struct entropy_store,
969 push_work);
970 BUG_ON(!r);
971 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
972 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
973 r->pull->entropy_count >> ENTROPY_SHIFT);
974 }
975
976 /*
977 * This function decides how many bytes to actually take from the
978 * given pool, and also debits the entropy count accordingly.
979 */
980 static size_t account(struct entropy_store *r, size_t nbytes, int min,
981 int reserved)
982 {
983 int entropy_count, orig;
984 size_t ibytes, nfrac;
985
986 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
987
988 /* Can we pull enough? */
989 retry:
990 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
991 ibytes = nbytes;
992 /* If limited, never pull more than available */
993 if (r->limit) {
994 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
995
996 if ((have_bytes -= reserved) < 0)
997 have_bytes = 0;
998 ibytes = min_t(size_t, ibytes, have_bytes);
999 }
1000 if (ibytes < min)
1001 ibytes = 0;
1002
1003 if (unlikely(entropy_count < 0)) {
1004 pr_warn("random: negative entropy count: pool %s count %d\n",
1005 r->name, entropy_count);
1006 WARN_ON(1);
1007 entropy_count = 0;
1008 }
1009 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1010 if ((size_t) entropy_count > nfrac)
1011 entropy_count -= nfrac;
1012 else
1013 entropy_count = 0;
1014
1015 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1016 goto retry;
1017
1018 trace_debit_entropy(r->name, 8 * ibytes);
1019 if (ibytes &&
1020 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1021 wake_up_interruptible(&random_write_wait);
1022 kill_fasync(&fasync, SIGIO, POLL_OUT);
1023 }
1024
1025 return ibytes;
1026 }
1027
1028 /*
1029 * This function does the actual extraction for extract_entropy and
1030 * extract_entropy_user.
1031 *
1032 * Note: we assume that .poolwords is a multiple of 16 words.
1033 */
1034 static void extract_buf(struct entropy_store *r, __u8 *out)
1035 {
1036 int i;
1037 union {
1038 __u32 w[5];
1039 unsigned long l[LONGS(20)];
1040 } hash;
1041 __u32 workspace[SHA_WORKSPACE_WORDS];
1042 __u8 extract[64];
1043 unsigned long flags;
1044
1045 /*
1046 * If we have an architectural hardware random number
1047 * generator, use it for SHA's initial vector
1048 */
1049 sha_init(hash.w);
1050 for (i = 0; i < LONGS(20); i++) {
1051 unsigned long v;
1052 if (!arch_get_random_long(&v))
1053 break;
1054 hash.l[i] = v;
1055 }
1056
1057 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1058 spin_lock_irqsave(&r->lock, flags);
1059 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1060 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1061
1062 /*
1063 * We mix the hash back into the pool to prevent backtracking
1064 * attacks (where the attacker knows the state of the pool
1065 * plus the current outputs, and attempts to find previous
1066 * ouputs), unless the hash function can be inverted. By
1067 * mixing at least a SHA1 worth of hash data back, we make
1068 * brute-forcing the feedback as hard as brute-forcing the
1069 * hash.
1070 */
1071 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
1072 spin_unlock_irqrestore(&r->lock, flags);
1073
1074 /*
1075 * To avoid duplicates, we atomically extract a portion of the
1076 * pool while mixing, and hash one final time.
1077 */
1078 sha_transform(hash.w, extract, workspace);
1079 memset(extract, 0, sizeof(extract));
1080 memset(workspace, 0, sizeof(workspace));
1081
1082 /*
1083 * In case the hash function has some recognizable output
1084 * pattern, we fold it in half. Thus, we always feed back
1085 * twice as much data as we output.
1086 */
1087 hash.w[0] ^= hash.w[3];
1088 hash.w[1] ^= hash.w[4];
1089 hash.w[2] ^= rol32(hash.w[2], 16);
1090
1091 memcpy(out, &hash, EXTRACT_SIZE);
1092 memset(&hash, 0, sizeof(hash));
1093 }
1094
1095 /*
1096 * This function extracts randomness from the "entropy pool", and
1097 * returns it in a buffer.
1098 *
1099 * The min parameter specifies the minimum amount we can pull before
1100 * failing to avoid races that defeat catastrophic reseeding while the
1101 * reserved parameter indicates how much entropy we must leave in the
1102 * pool after each pull to avoid starving other readers.
1103 */
1104 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1105 size_t nbytes, int min, int reserved)
1106 {
1107 ssize_t ret = 0, i;
1108 __u8 tmp[EXTRACT_SIZE];
1109 unsigned long flags;
1110
1111 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1112 if (fips_enabled) {
1113 spin_lock_irqsave(&r->lock, flags);
1114 if (!r->last_data_init) {
1115 r->last_data_init = 1;
1116 spin_unlock_irqrestore(&r->lock, flags);
1117 trace_extract_entropy(r->name, EXTRACT_SIZE,
1118 ENTROPY_BITS(r), _RET_IP_);
1119 xfer_secondary_pool(r, EXTRACT_SIZE);
1120 extract_buf(r, tmp);
1121 spin_lock_irqsave(&r->lock, flags);
1122 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1123 }
1124 spin_unlock_irqrestore(&r->lock, flags);
1125 }
1126
1127 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1128 xfer_secondary_pool(r, nbytes);
1129 nbytes = account(r, nbytes, min, reserved);
1130
1131 while (nbytes) {
1132 extract_buf(r, tmp);
1133
1134 if (fips_enabled) {
1135 spin_lock_irqsave(&r->lock, flags);
1136 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1137 panic("Hardware RNG duplicated output!\n");
1138 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1139 spin_unlock_irqrestore(&r->lock, flags);
1140 }
1141 i = min_t(int, nbytes, EXTRACT_SIZE);
1142 memcpy(buf, tmp, i);
1143 nbytes -= i;
1144 buf += i;
1145 ret += i;
1146 }
1147
1148 /* Wipe data just returned from memory */
1149 memset(tmp, 0, sizeof(tmp));
1150
1151 return ret;
1152 }
1153
1154 /*
1155 * This function extracts randomness from the "entropy pool", and
1156 * returns it in a userspace buffer.
1157 */
1158 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1159 size_t nbytes)
1160 {
1161 ssize_t ret = 0, i;
1162 __u8 tmp[EXTRACT_SIZE];
1163
1164 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1165 xfer_secondary_pool(r, nbytes);
1166 nbytes = account(r, nbytes, 0, 0);
1167
1168 while (nbytes) {
1169 if (need_resched()) {
1170 if (signal_pending(current)) {
1171 if (ret == 0)
1172 ret = -ERESTARTSYS;
1173 break;
1174 }
1175 schedule();
1176 }
1177
1178 extract_buf(r, tmp);
1179 i = min_t(int, nbytes, EXTRACT_SIZE);
1180 if (copy_to_user(buf, tmp, i)) {
1181 ret = -EFAULT;
1182 break;
1183 }
1184
1185 nbytes -= i;
1186 buf += i;
1187 ret += i;
1188 }
1189
1190 /* Wipe data just returned from memory */
1191 memset(tmp, 0, sizeof(tmp));
1192
1193 return ret;
1194 }
1195
1196 /*
1197 * This function is the exported kernel interface. It returns some
1198 * number of good random numbers, suitable for key generation, seeding
1199 * TCP sequence numbers, etc. It does not rely on the hardware random
1200 * number generator. For random bytes direct from the hardware RNG
1201 * (when available), use get_random_bytes_arch().
1202 */
1203 void get_random_bytes(void *buf, int nbytes)
1204 {
1205 #if DEBUG_RANDOM_BOOT > 0
1206 if (unlikely(nonblocking_pool.initialized == 0))
1207 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1208 "with %d bits of entropy available\n",
1209 (void *) _RET_IP_,
1210 nonblocking_pool.entropy_total);
1211 #endif
1212 trace_get_random_bytes(nbytes, _RET_IP_);
1213 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1214 }
1215 EXPORT_SYMBOL(get_random_bytes);
1216
1217 /*
1218 * This function will use the architecture-specific hardware random
1219 * number generator if it is available. The arch-specific hw RNG will
1220 * almost certainly be faster than what we can do in software, but it
1221 * is impossible to verify that it is implemented securely (as
1222 * opposed, to, say, the AES encryption of a sequence number using a
1223 * key known by the NSA). So it's useful if we need the speed, but
1224 * only if we're willing to trust the hardware manufacturer not to
1225 * have put in a back door.
1226 */
1227 void get_random_bytes_arch(void *buf, int nbytes)
1228 {
1229 char *p = buf;
1230
1231 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1232 while (nbytes) {
1233 unsigned long v;
1234 int chunk = min(nbytes, (int)sizeof(unsigned long));
1235
1236 if (!arch_get_random_long(&v))
1237 break;
1238
1239 memcpy(p, &v, chunk);
1240 p += chunk;
1241 nbytes -= chunk;
1242 }
1243
1244 if (nbytes)
1245 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1246 }
1247 EXPORT_SYMBOL(get_random_bytes_arch);
1248
1249
1250 /*
1251 * init_std_data - initialize pool with system data
1252 *
1253 * @r: pool to initialize
1254 *
1255 * This function clears the pool's entropy count and mixes some system
1256 * data into the pool to prepare it for use. The pool is not cleared
1257 * as that can only decrease the entropy in the pool.
1258 */
1259 static void init_std_data(struct entropy_store *r)
1260 {
1261 int i;
1262 ktime_t now = ktime_get_real();
1263 unsigned long rv;
1264
1265 r->last_pulled = jiffies;
1266 mix_pool_bytes(r, &now, sizeof(now), NULL);
1267 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1268 if (!arch_get_random_seed_long(&rv) &&
1269 !arch_get_random_long(&rv))
1270 rv = random_get_entropy();
1271 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1272 }
1273 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1274 }
1275
1276 /*
1277 * Note that setup_arch() may call add_device_randomness()
1278 * long before we get here. This allows seeding of the pools
1279 * with some platform dependent data very early in the boot
1280 * process. But it limits our options here. We must use
1281 * statically allocated structures that already have all
1282 * initializations complete at compile time. We should also
1283 * take care not to overwrite the precious per platform data
1284 * we were given.
1285 */
1286 static int rand_initialize(void)
1287 {
1288 init_std_data(&input_pool);
1289 init_std_data(&blocking_pool);
1290 init_std_data(&nonblocking_pool);
1291 return 0;
1292 }
1293 early_initcall(rand_initialize);
1294
1295 #ifdef CONFIG_BLOCK
1296 void rand_initialize_disk(struct gendisk *disk)
1297 {
1298 struct timer_rand_state *state;
1299
1300 /*
1301 * If kzalloc returns null, we just won't use that entropy
1302 * source.
1303 */
1304 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1305 if (state) {
1306 state->last_time = INITIAL_JIFFIES;
1307 disk->random = state;
1308 }
1309 }
1310 #endif
1311
1312 /*
1313 * Attempt an emergency refill using arch_get_random_seed_long().
1314 *
1315 * As with add_interrupt_randomness() be paranoid and only
1316 * credit the output as 50% entropic.
1317 */
1318 static int arch_random_refill(void)
1319 {
1320 const unsigned int nlongs = 64; /* Arbitrary number */
1321 unsigned int n = 0;
1322 unsigned int i;
1323 unsigned long buf[nlongs];
1324
1325 if (!arch_has_random_seed())
1326 return 0;
1327
1328 for (i = 0; i < nlongs; i++) {
1329 if (arch_get_random_seed_long(&buf[n]))
1330 n++;
1331 }
1332
1333 if (n) {
1334 unsigned int rand_bytes = n * sizeof(unsigned long);
1335
1336 mix_pool_bytes(&input_pool, buf, rand_bytes, NULL);
1337 credit_entropy_bits(&input_pool, rand_bytes*4);
1338 }
1339
1340 return n;
1341 }
1342
1343 static ssize_t
1344 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1345 {
1346 ssize_t n;
1347
1348 if (nbytes == 0)
1349 return 0;
1350
1351 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1352 while (1) {
1353 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1354 if (n < 0)
1355 return n;
1356 trace_random_read(n*8, (nbytes-n)*8,
1357 ENTROPY_BITS(&blocking_pool),
1358 ENTROPY_BITS(&input_pool));
1359 if (n > 0)
1360 return n;
1361
1362 /* Pool is (near) empty. Maybe wait and retry. */
1363
1364 /* First try an emergency refill */
1365 if (arch_random_refill())
1366 continue;
1367
1368 if (file->f_flags & O_NONBLOCK)
1369 return -EAGAIN;
1370
1371 wait_event_interruptible(random_read_wait,
1372 ENTROPY_BITS(&input_pool) >=
1373 random_read_wakeup_bits);
1374 if (signal_pending(current))
1375 return -ERESTARTSYS;
1376 }
1377 }
1378
1379 static ssize_t
1380 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1381 {
1382 int ret;
1383
1384 if (unlikely(nonblocking_pool.initialized == 0))
1385 printk_once(KERN_NOTICE "random: %s urandom read "
1386 "with %d bits of entropy available\n",
1387 current->comm, nonblocking_pool.entropy_total);
1388
1389 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1390 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1391
1392 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1393 ENTROPY_BITS(&input_pool));
1394 return ret;
1395 }
1396
1397 static unsigned int
1398 random_poll(struct file *file, poll_table * wait)
1399 {
1400 unsigned int mask;
1401
1402 poll_wait(file, &random_read_wait, wait);
1403 poll_wait(file, &random_write_wait, wait);
1404 mask = 0;
1405 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1406 mask |= POLLIN | POLLRDNORM;
1407 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1408 mask |= POLLOUT | POLLWRNORM;
1409 return mask;
1410 }
1411
1412 static int
1413 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1414 {
1415 size_t bytes;
1416 __u32 buf[16];
1417 const char __user *p = buffer;
1418
1419 while (count > 0) {
1420 bytes = min(count, sizeof(buf));
1421 if (copy_from_user(&buf, p, bytes))
1422 return -EFAULT;
1423
1424 count -= bytes;
1425 p += bytes;
1426
1427 mix_pool_bytes(r, buf, bytes, NULL);
1428 cond_resched();
1429 }
1430
1431 return 0;
1432 }
1433
1434 static ssize_t random_write(struct file *file, const char __user *buffer,
1435 size_t count, loff_t *ppos)
1436 {
1437 size_t ret;
1438
1439 ret = write_pool(&blocking_pool, buffer, count);
1440 if (ret)
1441 return ret;
1442 ret = write_pool(&nonblocking_pool, buffer, count);
1443 if (ret)
1444 return ret;
1445
1446 return (ssize_t)count;
1447 }
1448
1449 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1450 {
1451 int size, ent_count;
1452 int __user *p = (int __user *)arg;
1453 int retval;
1454
1455 switch (cmd) {
1456 case RNDGETENTCNT:
1457 /* inherently racy, no point locking */
1458 ent_count = ENTROPY_BITS(&input_pool);
1459 if (put_user(ent_count, p))
1460 return -EFAULT;
1461 return 0;
1462 case RNDADDTOENTCNT:
1463 if (!capable(CAP_SYS_ADMIN))
1464 return -EPERM;
1465 if (get_user(ent_count, p))
1466 return -EFAULT;
1467 credit_entropy_bits_safe(&input_pool, ent_count);
1468 return 0;
1469 case RNDADDENTROPY:
1470 if (!capable(CAP_SYS_ADMIN))
1471 return -EPERM;
1472 if (get_user(ent_count, p++))
1473 return -EFAULT;
1474 if (ent_count < 0)
1475 return -EINVAL;
1476 if (get_user(size, p++))
1477 return -EFAULT;
1478 retval = write_pool(&input_pool, (const char __user *)p,
1479 size);
1480 if (retval < 0)
1481 return retval;
1482 credit_entropy_bits_safe(&input_pool, ent_count);
1483 return 0;
1484 case RNDZAPENTCNT:
1485 case RNDCLEARPOOL:
1486 /*
1487 * Clear the entropy pool counters. We no longer clear
1488 * the entropy pool, as that's silly.
1489 */
1490 if (!capable(CAP_SYS_ADMIN))
1491 return -EPERM;
1492 input_pool.entropy_count = 0;
1493 nonblocking_pool.entropy_count = 0;
1494 blocking_pool.entropy_count = 0;
1495 return 0;
1496 default:
1497 return -EINVAL;
1498 }
1499 }
1500
1501 static int random_fasync(int fd, struct file *filp, int on)
1502 {
1503 return fasync_helper(fd, filp, on, &fasync);
1504 }
1505
1506 const struct file_operations random_fops = {
1507 .read = random_read,
1508 .write = random_write,
1509 .poll = random_poll,
1510 .unlocked_ioctl = random_ioctl,
1511 .fasync = random_fasync,
1512 .llseek = noop_llseek,
1513 };
1514
1515 const struct file_operations urandom_fops = {
1516 .read = urandom_read,
1517 .write = random_write,
1518 .unlocked_ioctl = random_ioctl,
1519 .fasync = random_fasync,
1520 .llseek = noop_llseek,
1521 };
1522
1523 /***************************************************************
1524 * Random UUID interface
1525 *
1526 * Used here for a Boot ID, but can be useful for other kernel
1527 * drivers.
1528 ***************************************************************/
1529
1530 /*
1531 * Generate random UUID
1532 */
1533 void generate_random_uuid(unsigned char uuid_out[16])
1534 {
1535 get_random_bytes(uuid_out, 16);
1536 /* Set UUID version to 4 --- truly random generation */
1537 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1538 /* Set the UUID variant to DCE */
1539 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1540 }
1541 EXPORT_SYMBOL(generate_random_uuid);
1542
1543 /********************************************************************
1544 *
1545 * Sysctl interface
1546 *
1547 ********************************************************************/
1548
1549 #ifdef CONFIG_SYSCTL
1550
1551 #include <linux/sysctl.h>
1552
1553 static int min_read_thresh = 8, min_write_thresh;
1554 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1555 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1556 static char sysctl_bootid[16];
1557
1558 /*
1559 * This function is used to return both the bootid UUID, and random
1560 * UUID. The difference is in whether table->data is NULL; if it is,
1561 * then a new UUID is generated and returned to the user.
1562 *
1563 * If the user accesses this via the proc interface, the UUID will be
1564 * returned as an ASCII string in the standard UUID format; if via the
1565 * sysctl system call, as 16 bytes of binary data.
1566 */
1567 static int proc_do_uuid(struct ctl_table *table, int write,
1568 void __user *buffer, size_t *lenp, loff_t *ppos)
1569 {
1570 struct ctl_table fake_table;
1571 unsigned char buf[64], tmp_uuid[16], *uuid;
1572
1573 uuid = table->data;
1574 if (!uuid) {
1575 uuid = tmp_uuid;
1576 generate_random_uuid(uuid);
1577 } else {
1578 static DEFINE_SPINLOCK(bootid_spinlock);
1579
1580 spin_lock(&bootid_spinlock);
1581 if (!uuid[8])
1582 generate_random_uuid(uuid);
1583 spin_unlock(&bootid_spinlock);
1584 }
1585
1586 sprintf(buf, "%pU", uuid);
1587
1588 fake_table.data = buf;
1589 fake_table.maxlen = sizeof(buf);
1590
1591 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1592 }
1593
1594 /*
1595 * Return entropy available scaled to integral bits
1596 */
1597 static int proc_do_entropy(struct ctl_table *table, int write,
1598 void __user *buffer, size_t *lenp, loff_t *ppos)
1599 {
1600 struct ctl_table fake_table;
1601 int entropy_count;
1602
1603 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1604
1605 fake_table.data = &entropy_count;
1606 fake_table.maxlen = sizeof(entropy_count);
1607
1608 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1609 }
1610
1611 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1612 extern struct ctl_table random_table[];
1613 struct ctl_table random_table[] = {
1614 {
1615 .procname = "poolsize",
1616 .data = &sysctl_poolsize,
1617 .maxlen = sizeof(int),
1618 .mode = 0444,
1619 .proc_handler = proc_dointvec,
1620 },
1621 {
1622 .procname = "entropy_avail",
1623 .maxlen = sizeof(int),
1624 .mode = 0444,
1625 .proc_handler = proc_do_entropy,
1626 .data = &input_pool.entropy_count,
1627 },
1628 {
1629 .procname = "read_wakeup_threshold",
1630 .data = &random_read_wakeup_bits,
1631 .maxlen = sizeof(int),
1632 .mode = 0644,
1633 .proc_handler = proc_dointvec_minmax,
1634 .extra1 = &min_read_thresh,
1635 .extra2 = &max_read_thresh,
1636 },
1637 {
1638 .procname = "write_wakeup_threshold",
1639 .data = &random_write_wakeup_bits,
1640 .maxlen = sizeof(int),
1641 .mode = 0644,
1642 .proc_handler = proc_dointvec_minmax,
1643 .extra1 = &min_write_thresh,
1644 .extra2 = &max_write_thresh,
1645 },
1646 {
1647 .procname = "urandom_min_reseed_secs",
1648 .data = &random_min_urandom_seed,
1649 .maxlen = sizeof(int),
1650 .mode = 0644,
1651 .proc_handler = proc_dointvec,
1652 },
1653 {
1654 .procname = "boot_id",
1655 .data = &sysctl_bootid,
1656 .maxlen = 16,
1657 .mode = 0444,
1658 .proc_handler = proc_do_uuid,
1659 },
1660 {
1661 .procname = "uuid",
1662 .maxlen = 16,
1663 .mode = 0444,
1664 .proc_handler = proc_do_uuid,
1665 },
1666 { }
1667 };
1668 #endif /* CONFIG_SYSCTL */
1669
1670 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1671
1672 int random_int_secret_init(void)
1673 {
1674 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1675 return 0;
1676 }
1677
1678 /*
1679 * Get a random word for internal kernel use only. Similar to urandom but
1680 * with the goal of minimal entropy pool depletion. As a result, the random
1681 * value is not cryptographically secure but for several uses the cost of
1682 * depleting entropy is too high
1683 */
1684 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1685 unsigned int get_random_int(void)
1686 {
1687 __u32 *hash;
1688 unsigned int ret;
1689
1690 if (arch_get_random_int(&ret))
1691 return ret;
1692
1693 hash = get_cpu_var(get_random_int_hash);
1694
1695 hash[0] += current->pid + jiffies + random_get_entropy();
1696 md5_transform(hash, random_int_secret);
1697 ret = hash[0];
1698 put_cpu_var(get_random_int_hash);
1699
1700 return ret;
1701 }
1702 EXPORT_SYMBOL(get_random_int);
1703
1704 /*
1705 * randomize_range() returns a start address such that
1706 *
1707 * [...... <range> .....]
1708 * start end
1709 *
1710 * a <range> with size "len" starting at the return value is inside in the
1711 * area defined by [start, end], but is otherwise randomized.
1712 */
1713 unsigned long
1714 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1715 {
1716 unsigned long range = end - len - start;
1717
1718 if (end <= start + len)
1719 return 0;
1720 return PAGE_ALIGN(get_random_int() % range + start);
1721 }