]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/stallion.c
Merge ../linus
[mirror_ubuntu-artful-kernel.git] / drivers / char / stallion.c
1 /*****************************************************************************/
2
3 /*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 /*****************************************************************************/
28
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cd1400.h>
37 #include <linux/sc26198.h>
38 #include <linux/comstats.h>
39 #include <linux/stallion.h>
40 #include <linux/ioport.h>
41 #include <linux/init.h>
42 #include <linux/smp_lock.h>
43 #include <linux/devfs_fs_kernel.h>
44 #include <linux/device.h>
45 #include <linux/delay.h>
46
47 #include <asm/io.h>
48 #include <asm/uaccess.h>
49
50 #ifdef CONFIG_PCI
51 #include <linux/pci.h>
52 #endif
53
54 /*****************************************************************************/
55
56 /*
57 * Define different board types. Use the standard Stallion "assigned"
58 * board numbers. Boards supported in this driver are abbreviated as
59 * EIO = EasyIO and ECH = EasyConnection 8/32.
60 */
61 #define BRD_EASYIO 20
62 #define BRD_ECH 21
63 #define BRD_ECHMC 22
64 #define BRD_ECHPCI 26
65 #define BRD_ECH64PCI 27
66 #define BRD_EASYIOPCI 28
67
68 /*
69 * Define a configuration structure to hold the board configuration.
70 * Need to set this up in the code (for now) with the boards that are
71 * to be configured into the system. This is what needs to be modified
72 * when adding/removing/modifying boards. Each line entry in the
73 * stl_brdconf[] array is a board. Each line contains io/irq/memory
74 * ranges for that board (as well as what type of board it is).
75 * Some examples:
76 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
77 * This line would configure an EasyIO board (4 or 8, no difference),
78 * at io address 2a0 and irq 10.
79 * Another example:
80 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
81 * This line will configure an EasyConnection 8/32 board at primary io
82 * address 2a8, secondary io address 280 and irq 12.
83 * Enter as many lines into this array as you want (only the first 4
84 * will actually be used!). Any combination of EasyIO and EasyConnection
85 * boards can be specified. EasyConnection 8/32 boards can share their
86 * secondary io addresses between each other.
87 *
88 * NOTE: there is no need to put any entries in this table for PCI
89 * boards. They will be found automatically by the driver - provided
90 * PCI BIOS32 support is compiled into the kernel.
91 */
92
93 typedef struct {
94 int brdtype;
95 int ioaddr1;
96 int ioaddr2;
97 unsigned long memaddr;
98 int irq;
99 int irqtype;
100 } stlconf_t;
101
102 static stlconf_t stl_brdconf[] = {
103 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
104 };
105
106 static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
107
108 /*****************************************************************************/
109
110 /*
111 * Define some important driver characteristics. Device major numbers
112 * allocated as per Linux Device Registry.
113 */
114 #ifndef STL_SIOMEMMAJOR
115 #define STL_SIOMEMMAJOR 28
116 #endif
117 #ifndef STL_SERIALMAJOR
118 #define STL_SERIALMAJOR 24
119 #endif
120 #ifndef STL_CALLOUTMAJOR
121 #define STL_CALLOUTMAJOR 25
122 #endif
123
124 /*
125 * Set the TX buffer size. Bigger is better, but we don't want
126 * to chew too much memory with buffers!
127 */
128 #define STL_TXBUFLOW 512
129 #define STL_TXBUFSIZE 4096
130
131 /*****************************************************************************/
132
133 /*
134 * Define our local driver identity first. Set up stuff to deal with
135 * all the local structures required by a serial tty driver.
136 */
137 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
138 static char *stl_drvname = "stallion";
139 static char *stl_drvversion = "5.6.0";
140
141 static struct tty_driver *stl_serial;
142
143 /*
144 * We will need to allocate a temporary write buffer for chars that
145 * come direct from user space. The problem is that a copy from user
146 * space might cause a page fault (typically on a system that is
147 * swapping!). All ports will share one buffer - since if the system
148 * is already swapping a shared buffer won't make things any worse.
149 */
150 static char *stl_tmpwritebuf;
151
152 /*
153 * Define a local default termios struct. All ports will be created
154 * with this termios initially. Basically all it defines is a raw port
155 * at 9600, 8 data bits, 1 stop bit.
156 */
157 static struct termios stl_deftermios = {
158 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
159 .c_cc = INIT_C_CC,
160 };
161
162 /*
163 * Define global stats structures. Not used often, and can be
164 * re-used for each stats call.
165 */
166 static comstats_t stl_comstats;
167 static combrd_t stl_brdstats;
168 static stlbrd_t stl_dummybrd;
169 static stlport_t stl_dummyport;
170
171 /*
172 * Define global place to put buffer overflow characters.
173 */
174 static char stl_unwanted[SC26198_RXFIFOSIZE];
175
176 /*****************************************************************************/
177
178 static stlbrd_t *stl_brds[STL_MAXBRDS];
179
180 /*
181 * Per board state flags. Used with the state field of the board struct.
182 * Not really much here!
183 */
184 #define BRD_FOUND 0x1
185
186 /*
187 * Define the port structure istate flags. These set of flags are
188 * modified at interrupt time - so setting and reseting them needs
189 * to be atomic. Use the bit clear/setting routines for this.
190 */
191 #define ASYI_TXBUSY 1
192 #define ASYI_TXLOW 2
193 #define ASYI_DCDCHANGE 3
194 #define ASYI_TXFLOWED 4
195
196 /*
197 * Define an array of board names as printable strings. Handy for
198 * referencing boards when printing trace and stuff.
199 */
200 static char *stl_brdnames[] = {
201 (char *) NULL,
202 (char *) NULL,
203 (char *) NULL,
204 (char *) NULL,
205 (char *) NULL,
206 (char *) NULL,
207 (char *) NULL,
208 (char *) NULL,
209 (char *) NULL,
210 (char *) NULL,
211 (char *) NULL,
212 (char *) NULL,
213 (char *) NULL,
214 (char *) NULL,
215 (char *) NULL,
216 (char *) NULL,
217 (char *) NULL,
218 (char *) NULL,
219 (char *) NULL,
220 (char *) NULL,
221 "EasyIO",
222 "EC8/32-AT",
223 "EC8/32-MC",
224 (char *) NULL,
225 (char *) NULL,
226 (char *) NULL,
227 "EC8/32-PCI",
228 "EC8/64-PCI",
229 "EasyIO-PCI",
230 };
231
232 /*****************************************************************************/
233
234 /*
235 * Define some string labels for arguments passed from the module
236 * load line. These allow for easy board definitions, and easy
237 * modification of the io, memory and irq resoucres.
238 */
239 static int stl_nargs = 0;
240 static char *board0[4];
241 static char *board1[4];
242 static char *board2[4];
243 static char *board3[4];
244
245 static char **stl_brdsp[] = {
246 (char **) &board0,
247 (char **) &board1,
248 (char **) &board2,
249 (char **) &board3
250 };
251
252 /*
253 * Define a set of common board names, and types. This is used to
254 * parse any module arguments.
255 */
256
257 typedef struct stlbrdtype {
258 char *name;
259 int type;
260 } stlbrdtype_t;
261
262 static stlbrdtype_t stl_brdstr[] = {
263 { "easyio", BRD_EASYIO },
264 { "eio", BRD_EASYIO },
265 { "20", BRD_EASYIO },
266 { "ec8/32", BRD_ECH },
267 { "ec8/32-at", BRD_ECH },
268 { "ec8/32-isa", BRD_ECH },
269 { "ech", BRD_ECH },
270 { "echat", BRD_ECH },
271 { "21", BRD_ECH },
272 { "ec8/32-mc", BRD_ECHMC },
273 { "ec8/32-mca", BRD_ECHMC },
274 { "echmc", BRD_ECHMC },
275 { "echmca", BRD_ECHMC },
276 { "22", BRD_ECHMC },
277 { "ec8/32-pc", BRD_ECHPCI },
278 { "ec8/32-pci", BRD_ECHPCI },
279 { "26", BRD_ECHPCI },
280 { "ec8/64-pc", BRD_ECH64PCI },
281 { "ec8/64-pci", BRD_ECH64PCI },
282 { "ech-pci", BRD_ECH64PCI },
283 { "echpci", BRD_ECH64PCI },
284 { "echpc", BRD_ECH64PCI },
285 { "27", BRD_ECH64PCI },
286 { "easyio-pc", BRD_EASYIOPCI },
287 { "easyio-pci", BRD_EASYIOPCI },
288 { "eio-pci", BRD_EASYIOPCI },
289 { "eiopci", BRD_EASYIOPCI },
290 { "28", BRD_EASYIOPCI },
291 };
292
293 /*
294 * Define the module agruments.
295 */
296 MODULE_AUTHOR("Greg Ungerer");
297 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
298 MODULE_LICENSE("GPL");
299
300 module_param_array(board0, charp, &stl_nargs, 0);
301 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
302 module_param_array(board1, charp, &stl_nargs, 0);
303 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
304 module_param_array(board2, charp, &stl_nargs, 0);
305 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
306 module_param_array(board3, charp, &stl_nargs, 0);
307 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
308
309 /*****************************************************************************/
310
311 /*
312 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
313 * to the directly accessible io ports of these boards (not the uarts -
314 * they are in cd1400.h and sc26198.h).
315 */
316 #define EIO_8PORTRS 0x04
317 #define EIO_4PORTRS 0x05
318 #define EIO_8PORTDI 0x00
319 #define EIO_8PORTM 0x06
320 #define EIO_MK3 0x03
321 #define EIO_IDBITMASK 0x07
322
323 #define EIO_BRDMASK 0xf0
324 #define ID_BRD4 0x10
325 #define ID_BRD8 0x20
326 #define ID_BRD16 0x30
327
328 #define EIO_INTRPEND 0x08
329 #define EIO_INTEDGE 0x00
330 #define EIO_INTLEVEL 0x08
331 #define EIO_0WS 0x10
332
333 #define ECH_ID 0xa0
334 #define ECH_IDBITMASK 0xe0
335 #define ECH_BRDENABLE 0x08
336 #define ECH_BRDDISABLE 0x00
337 #define ECH_INTENABLE 0x01
338 #define ECH_INTDISABLE 0x00
339 #define ECH_INTLEVEL 0x02
340 #define ECH_INTEDGE 0x00
341 #define ECH_INTRPEND 0x01
342 #define ECH_BRDRESET 0x01
343
344 #define ECHMC_INTENABLE 0x01
345 #define ECHMC_BRDRESET 0x02
346
347 #define ECH_PNLSTATUS 2
348 #define ECH_PNL16PORT 0x20
349 #define ECH_PNLIDMASK 0x07
350 #define ECH_PNLXPID 0x40
351 #define ECH_PNLINTRPEND 0x80
352
353 #define ECH_ADDR2MASK 0x1e0
354
355 /*
356 * Define the vector mapping bits for the programmable interrupt board
357 * hardware. These bits encode the interrupt for the board to use - it
358 * is software selectable (except the EIO-8M).
359 */
360 static unsigned char stl_vecmap[] = {
361 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
362 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
363 };
364
365 /*
366 * Set up enable and disable macros for the ECH boards. They require
367 * the secondary io address space to be activated and deactivated.
368 * This way all ECH boards can share their secondary io region.
369 * If this is an ECH-PCI board then also need to set the page pointer
370 * to point to the correct page.
371 */
372 #define BRDENABLE(brdnr,pagenr) \
373 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
374 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
375 stl_brds[(brdnr)]->ioctrl); \
376 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
377 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
378
379 #define BRDDISABLE(brdnr) \
380 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
381 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
382 stl_brds[(brdnr)]->ioctrl);
383
384 #define STL_CD1400MAXBAUD 230400
385 #define STL_SC26198MAXBAUD 460800
386
387 #define STL_BAUDBASE 115200
388 #define STL_CLOSEDELAY (5 * HZ / 10)
389
390 /*****************************************************************************/
391
392 #ifdef CONFIG_PCI
393
394 /*
395 * Define the Stallion PCI vendor and device IDs.
396 */
397 #ifndef PCI_VENDOR_ID_STALLION
398 #define PCI_VENDOR_ID_STALLION 0x124d
399 #endif
400 #ifndef PCI_DEVICE_ID_ECHPCI832
401 #define PCI_DEVICE_ID_ECHPCI832 0x0000
402 #endif
403 #ifndef PCI_DEVICE_ID_ECHPCI864
404 #define PCI_DEVICE_ID_ECHPCI864 0x0002
405 #endif
406 #ifndef PCI_DEVICE_ID_EIOPCI
407 #define PCI_DEVICE_ID_EIOPCI 0x0003
408 #endif
409
410 /*
411 * Define structure to hold all Stallion PCI boards.
412 */
413 typedef struct stlpcibrd {
414 unsigned short vendid;
415 unsigned short devid;
416 int brdtype;
417 } stlpcibrd_t;
418
419 static stlpcibrd_t stl_pcibrds[] = {
420 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
421 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
422 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
423 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
424 };
425
426 static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
427
428 #endif
429
430 /*****************************************************************************/
431
432 /*
433 * Define macros to extract a brd/port number from a minor number.
434 */
435 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
436 #define MINOR2PORT(min) ((min) & 0x3f)
437
438 /*
439 * Define a baud rate table that converts termios baud rate selector
440 * into the actual baud rate value. All baud rate calculations are
441 * based on the actual baud rate required.
442 */
443 static unsigned int stl_baudrates[] = {
444 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
445 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
446 };
447
448 /*
449 * Define some handy local macros...
450 */
451 #undef MIN
452 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
453
454 #undef TOLOWER
455 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
456
457 /*****************************************************************************/
458
459 /*
460 * Declare all those functions in this driver!
461 */
462
463 static void stl_argbrds(void);
464 static int stl_parsebrd(stlconf_t *confp, char **argp);
465
466 static unsigned long stl_atol(char *str);
467
468 static int stl_init(void);
469 static int stl_open(struct tty_struct *tty, struct file *filp);
470 static void stl_close(struct tty_struct *tty, struct file *filp);
471 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
472 static void stl_putchar(struct tty_struct *tty, unsigned char ch);
473 static void stl_flushchars(struct tty_struct *tty);
474 static int stl_writeroom(struct tty_struct *tty);
475 static int stl_charsinbuffer(struct tty_struct *tty);
476 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
477 static void stl_settermios(struct tty_struct *tty, struct termios *old);
478 static void stl_throttle(struct tty_struct *tty);
479 static void stl_unthrottle(struct tty_struct *tty);
480 static void stl_stop(struct tty_struct *tty);
481 static void stl_start(struct tty_struct *tty);
482 static void stl_flushbuffer(struct tty_struct *tty);
483 static void stl_breakctl(struct tty_struct *tty, int state);
484 static void stl_waituntilsent(struct tty_struct *tty, int timeout);
485 static void stl_sendxchar(struct tty_struct *tty, char ch);
486 static void stl_hangup(struct tty_struct *tty);
487 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
488 static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
489 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
490
491 static int stl_brdinit(stlbrd_t *brdp);
492 static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
493 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
494 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
495 static int stl_getbrdstats(combrd_t __user *bp);
496 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
497 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
498 static int stl_getportstruct(stlport_t __user *arg);
499 static int stl_getbrdstruct(stlbrd_t __user *arg);
500 static int stl_waitcarrier(stlport_t *portp, struct file *filp);
501 static int stl_eiointr(stlbrd_t *brdp);
502 static int stl_echatintr(stlbrd_t *brdp);
503 static int stl_echmcaintr(stlbrd_t *brdp);
504 static int stl_echpciintr(stlbrd_t *brdp);
505 static int stl_echpci64intr(stlbrd_t *brdp);
506 static void stl_offintr(void *private);
507 static stlbrd_t *stl_allocbrd(void);
508 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
509
510 static inline int stl_initbrds(void);
511 static inline int stl_initeio(stlbrd_t *brdp);
512 static inline int stl_initech(stlbrd_t *brdp);
513 static inline int stl_getbrdnr(void);
514
515 #ifdef CONFIG_PCI
516 static inline int stl_findpcibrds(void);
517 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
518 #endif
519
520 /*
521 * CD1400 uart specific handling functions.
522 */
523 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
524 static int stl_cd1400getreg(stlport_t *portp, int regnr);
525 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
526 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
527 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
528 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
529 static int stl_cd1400getsignals(stlport_t *portp);
530 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
531 static void stl_cd1400ccrwait(stlport_t *portp);
532 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
533 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
534 static void stl_cd1400disableintrs(stlport_t *portp);
535 static void stl_cd1400sendbreak(stlport_t *portp, int len);
536 static void stl_cd1400flowctrl(stlport_t *portp, int state);
537 static void stl_cd1400sendflow(stlport_t *portp, int state);
538 static void stl_cd1400flush(stlport_t *portp);
539 static int stl_cd1400datastate(stlport_t *portp);
540 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
541 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
542 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
543 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
544 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
545
546 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
547
548 /*
549 * SC26198 uart specific handling functions.
550 */
551 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
552 static int stl_sc26198getreg(stlport_t *portp, int regnr);
553 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
554 static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
555 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
556 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
557 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
558 static int stl_sc26198getsignals(stlport_t *portp);
559 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
560 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
561 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
562 static void stl_sc26198disableintrs(stlport_t *portp);
563 static void stl_sc26198sendbreak(stlport_t *portp, int len);
564 static void stl_sc26198flowctrl(stlport_t *portp, int state);
565 static void stl_sc26198sendflow(stlport_t *portp, int state);
566 static void stl_sc26198flush(stlport_t *portp);
567 static int stl_sc26198datastate(stlport_t *portp);
568 static void stl_sc26198wait(stlport_t *portp);
569 static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
570 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
571 static void stl_sc26198txisr(stlport_t *port);
572 static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
573 static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
574 static void stl_sc26198rxbadchars(stlport_t *portp);
575 static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
576
577 /*****************************************************************************/
578
579 /*
580 * Generic UART support structure.
581 */
582 typedef struct uart {
583 int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
584 void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
585 void (*setport)(stlport_t *portp, struct termios *tiosp);
586 int (*getsignals)(stlport_t *portp);
587 void (*setsignals)(stlport_t *portp, int dtr, int rts);
588 void (*enablerxtx)(stlport_t *portp, int rx, int tx);
589 void (*startrxtx)(stlport_t *portp, int rx, int tx);
590 void (*disableintrs)(stlport_t *portp);
591 void (*sendbreak)(stlport_t *portp, int len);
592 void (*flowctrl)(stlport_t *portp, int state);
593 void (*sendflow)(stlport_t *portp, int state);
594 void (*flush)(stlport_t *portp);
595 int (*datastate)(stlport_t *portp);
596 void (*intr)(stlpanel_t *panelp, unsigned int iobase);
597 } uart_t;
598
599 /*
600 * Define some macros to make calling these functions nice and clean.
601 */
602 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
603 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
604 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
605 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
606 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
607 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
608 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
609 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
610 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
611 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
612 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
613 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
614 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
615
616 /*****************************************************************************/
617
618 /*
619 * CD1400 UART specific data initialization.
620 */
621 static uart_t stl_cd1400uart = {
622 stl_cd1400panelinit,
623 stl_cd1400portinit,
624 stl_cd1400setport,
625 stl_cd1400getsignals,
626 stl_cd1400setsignals,
627 stl_cd1400enablerxtx,
628 stl_cd1400startrxtx,
629 stl_cd1400disableintrs,
630 stl_cd1400sendbreak,
631 stl_cd1400flowctrl,
632 stl_cd1400sendflow,
633 stl_cd1400flush,
634 stl_cd1400datastate,
635 stl_cd1400eiointr
636 };
637
638 /*
639 * Define the offsets within the register bank of a cd1400 based panel.
640 * These io address offsets are common to the EasyIO board as well.
641 */
642 #define EREG_ADDR 0
643 #define EREG_DATA 4
644 #define EREG_RXACK 5
645 #define EREG_TXACK 6
646 #define EREG_MDACK 7
647
648 #define EREG_BANKSIZE 8
649
650 #define CD1400_CLK 25000000
651 #define CD1400_CLK8M 20000000
652
653 /*
654 * Define the cd1400 baud rate clocks. These are used when calculating
655 * what clock and divisor to use for the required baud rate. Also
656 * define the maximum baud rate allowed, and the default base baud.
657 */
658 static int stl_cd1400clkdivs[] = {
659 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
660 };
661
662 /*****************************************************************************/
663
664 /*
665 * SC26198 UART specific data initization.
666 */
667 static uart_t stl_sc26198uart = {
668 stl_sc26198panelinit,
669 stl_sc26198portinit,
670 stl_sc26198setport,
671 stl_sc26198getsignals,
672 stl_sc26198setsignals,
673 stl_sc26198enablerxtx,
674 stl_sc26198startrxtx,
675 stl_sc26198disableintrs,
676 stl_sc26198sendbreak,
677 stl_sc26198flowctrl,
678 stl_sc26198sendflow,
679 stl_sc26198flush,
680 stl_sc26198datastate,
681 stl_sc26198intr
682 };
683
684 /*
685 * Define the offsets within the register bank of a sc26198 based panel.
686 */
687 #define XP_DATA 0
688 #define XP_ADDR 1
689 #define XP_MODID 2
690 #define XP_STATUS 2
691 #define XP_IACK 3
692
693 #define XP_BANKSIZE 4
694
695 /*
696 * Define the sc26198 baud rate table. Offsets within the table
697 * represent the actual baud rate selector of sc26198 registers.
698 */
699 static unsigned int sc26198_baudtable[] = {
700 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
701 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
702 230400, 460800, 921600
703 };
704
705 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
706
707 /*****************************************************************************/
708
709 /*
710 * Define the driver info for a user level control device. Used mainly
711 * to get at port stats - only not using the port device itself.
712 */
713 static struct file_operations stl_fsiomem = {
714 .owner = THIS_MODULE,
715 .ioctl = stl_memioctl,
716 };
717
718 /*****************************************************************************/
719
720 static struct class *stallion_class;
721
722 /*
723 * Loadable module initialization stuff.
724 */
725
726 static int __init stallion_module_init(void)
727 {
728 unsigned long flags;
729
730 #ifdef DEBUG
731 printk("init_module()\n");
732 #endif
733
734 save_flags(flags);
735 cli();
736 stl_init();
737 restore_flags(flags);
738
739 return 0;
740 }
741
742 /*****************************************************************************/
743
744 static void __exit stallion_module_exit(void)
745 {
746 stlbrd_t *brdp;
747 stlpanel_t *panelp;
748 stlport_t *portp;
749 unsigned long flags;
750 int i, j, k;
751
752 #ifdef DEBUG
753 printk("cleanup_module()\n");
754 #endif
755
756 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
757 stl_drvversion);
758
759 save_flags(flags);
760 cli();
761
762 /*
763 * Free up all allocated resources used by the ports. This includes
764 * memory and interrupts. As part of this process we will also do
765 * a hangup on every open port - to try to flush out any processes
766 * hanging onto ports.
767 */
768 i = tty_unregister_driver(stl_serial);
769 put_tty_driver(stl_serial);
770 if (i) {
771 printk("STALLION: failed to un-register tty driver, "
772 "errno=%d\n", -i);
773 restore_flags(flags);
774 return;
775 }
776 for (i = 0; i < 4; i++) {
777 devfs_remove("staliomem/%d", i);
778 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
779 }
780 devfs_remove("staliomem");
781 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
782 printk("STALLION: failed to un-register serial memory device, "
783 "errno=%d\n", -i);
784 class_destroy(stallion_class);
785
786 kfree(stl_tmpwritebuf);
787
788 for (i = 0; (i < stl_nrbrds); i++) {
789 if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
790 continue;
791
792 free_irq(brdp->irq, brdp);
793
794 for (j = 0; (j < STL_MAXPANELS); j++) {
795 panelp = brdp->panels[j];
796 if (panelp == (stlpanel_t *) NULL)
797 continue;
798 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
799 portp = panelp->ports[k];
800 if (portp == (stlport_t *) NULL)
801 continue;
802 if (portp->tty != (struct tty_struct *) NULL)
803 stl_hangup(portp->tty);
804 kfree(portp->tx.buf);
805 kfree(portp);
806 }
807 kfree(panelp);
808 }
809
810 release_region(brdp->ioaddr1, brdp->iosize1);
811 if (brdp->iosize2 > 0)
812 release_region(brdp->ioaddr2, brdp->iosize2);
813
814 kfree(brdp);
815 stl_brds[i] = (stlbrd_t *) NULL;
816 }
817
818 restore_flags(flags);
819 }
820
821 module_init(stallion_module_init);
822 module_exit(stallion_module_exit);
823
824 /*****************************************************************************/
825
826 /*
827 * Check for any arguments passed in on the module load command line.
828 */
829
830 static void stl_argbrds(void)
831 {
832 stlconf_t conf;
833 stlbrd_t *brdp;
834 int i;
835
836 #ifdef DEBUG
837 printk("stl_argbrds()\n");
838 #endif
839
840 for (i = stl_nrbrds; (i < stl_nargs); i++) {
841 memset(&conf, 0, sizeof(conf));
842 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
843 continue;
844 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
845 continue;
846 stl_nrbrds = i + 1;
847 brdp->brdnr = i;
848 brdp->brdtype = conf.brdtype;
849 brdp->ioaddr1 = conf.ioaddr1;
850 brdp->ioaddr2 = conf.ioaddr2;
851 brdp->irq = conf.irq;
852 brdp->irqtype = conf.irqtype;
853 stl_brdinit(brdp);
854 }
855 }
856
857 /*****************************************************************************/
858
859 /*
860 * Convert an ascii string number into an unsigned long.
861 */
862
863 static unsigned long stl_atol(char *str)
864 {
865 unsigned long val;
866 int base, c;
867 char *sp;
868
869 val = 0;
870 sp = str;
871 if ((*sp == '0') && (*(sp+1) == 'x')) {
872 base = 16;
873 sp += 2;
874 } else if (*sp == '0') {
875 base = 8;
876 sp++;
877 } else {
878 base = 10;
879 }
880
881 for (; (*sp != 0); sp++) {
882 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
883 if ((c < 0) || (c >= base)) {
884 printk("STALLION: invalid argument %s\n", str);
885 val = 0;
886 break;
887 }
888 val = (val * base) + c;
889 }
890 return val;
891 }
892
893 /*****************************************************************************/
894
895 /*
896 * Parse the supplied argument string, into the board conf struct.
897 */
898
899 static int stl_parsebrd(stlconf_t *confp, char **argp)
900 {
901 char *sp;
902 int i;
903
904 #ifdef DEBUG
905 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
906 #endif
907
908 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
909 return 0;
910
911 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
912 *sp = TOLOWER(*sp);
913
914 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
915 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
916 break;
917 }
918 if (i == ARRAY_SIZE(stl_brdstr)) {
919 printk("STALLION: unknown board name, %s?\n", argp[0]);
920 return 0;
921 }
922
923 confp->brdtype = stl_brdstr[i].type;
924
925 i = 1;
926 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
927 confp->ioaddr1 = stl_atol(argp[i]);
928 i++;
929 if (confp->brdtype == BRD_ECH) {
930 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
931 confp->ioaddr2 = stl_atol(argp[i]);
932 i++;
933 }
934 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
935 confp->irq = stl_atol(argp[i]);
936 return 1;
937 }
938
939 /*****************************************************************************/
940
941 /*
942 * Allocate a new board structure. Fill out the basic info in it.
943 */
944
945 static stlbrd_t *stl_allocbrd(void)
946 {
947 stlbrd_t *brdp;
948
949 brdp = kzalloc(sizeof(stlbrd_t), GFP_KERNEL);
950 if (!brdp) {
951 printk("STALLION: failed to allocate memory (size=%d)\n",
952 sizeof(stlbrd_t));
953 return NULL;
954 }
955
956 brdp->magic = STL_BOARDMAGIC;
957 return brdp;
958 }
959
960 /*****************************************************************************/
961
962 static int stl_open(struct tty_struct *tty, struct file *filp)
963 {
964 stlport_t *portp;
965 stlbrd_t *brdp;
966 unsigned int minordev;
967 int brdnr, panelnr, portnr, rc;
968
969 #ifdef DEBUG
970 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
971 (int) filp, tty->name);
972 #endif
973
974 minordev = tty->index;
975 brdnr = MINOR2BRD(minordev);
976 if (brdnr >= stl_nrbrds)
977 return -ENODEV;
978 brdp = stl_brds[brdnr];
979 if (brdp == (stlbrd_t *) NULL)
980 return -ENODEV;
981 minordev = MINOR2PORT(minordev);
982 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
983 if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
984 break;
985 if (minordev < brdp->panels[panelnr]->nrports) {
986 portnr = minordev;
987 break;
988 }
989 minordev -= brdp->panels[panelnr]->nrports;
990 }
991 if (portnr < 0)
992 return -ENODEV;
993
994 portp = brdp->panels[panelnr]->ports[portnr];
995 if (portp == (stlport_t *) NULL)
996 return -ENODEV;
997
998 /*
999 * On the first open of the device setup the port hardware, and
1000 * initialize the per port data structure.
1001 */
1002 portp->tty = tty;
1003 tty->driver_data = portp;
1004 portp->refcount++;
1005
1006 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1007 if (!portp->tx.buf) {
1008 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
1009 if (!portp->tx.buf)
1010 return -ENOMEM;
1011 portp->tx.head = portp->tx.buf;
1012 portp->tx.tail = portp->tx.buf;
1013 }
1014 stl_setport(portp, tty->termios);
1015 portp->sigs = stl_getsignals(portp);
1016 stl_setsignals(portp, 1, 1);
1017 stl_enablerxtx(portp, 1, 1);
1018 stl_startrxtx(portp, 1, 0);
1019 clear_bit(TTY_IO_ERROR, &tty->flags);
1020 portp->flags |= ASYNC_INITIALIZED;
1021 }
1022
1023 /*
1024 * Check if this port is in the middle of closing. If so then wait
1025 * until it is closed then return error status, based on flag settings.
1026 * The sleep here does not need interrupt protection since the wakeup
1027 * for it is done with the same context.
1028 */
1029 if (portp->flags & ASYNC_CLOSING) {
1030 interruptible_sleep_on(&portp->close_wait);
1031 if (portp->flags & ASYNC_HUP_NOTIFY)
1032 return -EAGAIN;
1033 return -ERESTARTSYS;
1034 }
1035
1036 /*
1037 * Based on type of open being done check if it can overlap with any
1038 * previous opens still in effect. If we are a normal serial device
1039 * then also we might have to wait for carrier.
1040 */
1041 if (!(filp->f_flags & O_NONBLOCK)) {
1042 if ((rc = stl_waitcarrier(portp, filp)) != 0)
1043 return rc;
1044 }
1045 portp->flags |= ASYNC_NORMAL_ACTIVE;
1046
1047 return 0;
1048 }
1049
1050 /*****************************************************************************/
1051
1052 /*
1053 * Possibly need to wait for carrier (DCD signal) to come high. Say
1054 * maybe because if we are clocal then we don't need to wait...
1055 */
1056
1057 static int stl_waitcarrier(stlport_t *portp, struct file *filp)
1058 {
1059 unsigned long flags;
1060 int rc, doclocal;
1061
1062 #ifdef DEBUG
1063 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
1064 #endif
1065
1066 rc = 0;
1067 doclocal = 0;
1068
1069 if (portp->tty->termios->c_cflag & CLOCAL)
1070 doclocal++;
1071
1072 save_flags(flags);
1073 cli();
1074 portp->openwaitcnt++;
1075 if (! tty_hung_up_p(filp))
1076 portp->refcount--;
1077
1078 for (;;) {
1079 stl_setsignals(portp, 1, 1);
1080 if (tty_hung_up_p(filp) ||
1081 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1082 if (portp->flags & ASYNC_HUP_NOTIFY)
1083 rc = -EBUSY;
1084 else
1085 rc = -ERESTARTSYS;
1086 break;
1087 }
1088 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1089 (doclocal || (portp->sigs & TIOCM_CD))) {
1090 break;
1091 }
1092 if (signal_pending(current)) {
1093 rc = -ERESTARTSYS;
1094 break;
1095 }
1096 interruptible_sleep_on(&portp->open_wait);
1097 }
1098
1099 if (! tty_hung_up_p(filp))
1100 portp->refcount++;
1101 portp->openwaitcnt--;
1102 restore_flags(flags);
1103
1104 return rc;
1105 }
1106
1107 /*****************************************************************************/
1108
1109 static void stl_close(struct tty_struct *tty, struct file *filp)
1110 {
1111 stlport_t *portp;
1112 unsigned long flags;
1113
1114 #ifdef DEBUG
1115 printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1116 #endif
1117
1118 portp = tty->driver_data;
1119 if (portp == (stlport_t *) NULL)
1120 return;
1121
1122 save_flags(flags);
1123 cli();
1124 if (tty_hung_up_p(filp)) {
1125 restore_flags(flags);
1126 return;
1127 }
1128 if ((tty->count == 1) && (portp->refcount != 1))
1129 portp->refcount = 1;
1130 if (portp->refcount-- > 1) {
1131 restore_flags(flags);
1132 return;
1133 }
1134
1135 portp->refcount = 0;
1136 portp->flags |= ASYNC_CLOSING;
1137
1138 /*
1139 * May want to wait for any data to drain before closing. The BUSY
1140 * flag keeps track of whether we are still sending or not - it is
1141 * very accurate for the cd1400, not quite so for the sc26198.
1142 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1143 */
1144 tty->closing = 1;
1145 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1146 tty_wait_until_sent(tty, portp->closing_wait);
1147 stl_waituntilsent(tty, (HZ / 2));
1148
1149 portp->flags &= ~ASYNC_INITIALIZED;
1150 stl_disableintrs(portp);
1151 if (tty->termios->c_cflag & HUPCL)
1152 stl_setsignals(portp, 0, 0);
1153 stl_enablerxtx(portp, 0, 0);
1154 stl_flushbuffer(tty);
1155 portp->istate = 0;
1156 if (portp->tx.buf != (char *) NULL) {
1157 kfree(portp->tx.buf);
1158 portp->tx.buf = (char *) NULL;
1159 portp->tx.head = (char *) NULL;
1160 portp->tx.tail = (char *) NULL;
1161 }
1162 set_bit(TTY_IO_ERROR, &tty->flags);
1163 tty_ldisc_flush(tty);
1164
1165 tty->closing = 0;
1166 portp->tty = (struct tty_struct *) NULL;
1167
1168 if (portp->openwaitcnt) {
1169 if (portp->close_delay)
1170 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1171 wake_up_interruptible(&portp->open_wait);
1172 }
1173
1174 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1175 wake_up_interruptible(&portp->close_wait);
1176 restore_flags(flags);
1177 }
1178
1179 /*****************************************************************************/
1180
1181 /*
1182 * Write routine. Take data and stuff it in to the TX ring queue.
1183 * If transmit interrupts are not running then start them.
1184 */
1185
1186 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1187 {
1188 stlport_t *portp;
1189 unsigned int len, stlen;
1190 unsigned char *chbuf;
1191 char *head, *tail;
1192
1193 #ifdef DEBUG
1194 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1195 (int) tty, (int) buf, count);
1196 #endif
1197
1198 if ((tty == (struct tty_struct *) NULL) ||
1199 (stl_tmpwritebuf == (char *) NULL))
1200 return 0;
1201 portp = tty->driver_data;
1202 if (portp == (stlport_t *) NULL)
1203 return 0;
1204 if (portp->tx.buf == (char *) NULL)
1205 return 0;
1206
1207 /*
1208 * If copying direct from user space we must cater for page faults,
1209 * causing us to "sleep" here for a while. To handle this copy in all
1210 * the data we need now, into a local buffer. Then when we got it all
1211 * copy it into the TX buffer.
1212 */
1213 chbuf = (unsigned char *) buf;
1214
1215 head = portp->tx.head;
1216 tail = portp->tx.tail;
1217 if (head >= tail) {
1218 len = STL_TXBUFSIZE - (head - tail) - 1;
1219 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1220 } else {
1221 len = tail - head - 1;
1222 stlen = len;
1223 }
1224
1225 len = MIN(len, count);
1226 count = 0;
1227 while (len > 0) {
1228 stlen = MIN(len, stlen);
1229 memcpy(head, chbuf, stlen);
1230 len -= stlen;
1231 chbuf += stlen;
1232 count += stlen;
1233 head += stlen;
1234 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1235 head = portp->tx.buf;
1236 stlen = tail - head;
1237 }
1238 }
1239 portp->tx.head = head;
1240
1241 clear_bit(ASYI_TXLOW, &portp->istate);
1242 stl_startrxtx(portp, -1, 1);
1243
1244 return count;
1245 }
1246
1247 /*****************************************************************************/
1248
1249 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1250 {
1251 stlport_t *portp;
1252 unsigned int len;
1253 char *head, *tail;
1254
1255 #ifdef DEBUG
1256 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1257 #endif
1258
1259 if (tty == (struct tty_struct *) NULL)
1260 return;
1261 portp = tty->driver_data;
1262 if (portp == (stlport_t *) NULL)
1263 return;
1264 if (portp->tx.buf == (char *) NULL)
1265 return;
1266
1267 head = portp->tx.head;
1268 tail = portp->tx.tail;
1269
1270 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1271 len--;
1272
1273 if (len > 0) {
1274 *head++ = ch;
1275 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1276 head = portp->tx.buf;
1277 }
1278 portp->tx.head = head;
1279 }
1280
1281 /*****************************************************************************/
1282
1283 /*
1284 * If there are any characters in the buffer then make sure that TX
1285 * interrupts are on and get'em out. Normally used after the putchar
1286 * routine has been called.
1287 */
1288
1289 static void stl_flushchars(struct tty_struct *tty)
1290 {
1291 stlport_t *portp;
1292
1293 #ifdef DEBUG
1294 printk("stl_flushchars(tty=%x)\n", (int) tty);
1295 #endif
1296
1297 if (tty == (struct tty_struct *) NULL)
1298 return;
1299 portp = tty->driver_data;
1300 if (portp == (stlport_t *) NULL)
1301 return;
1302 if (portp->tx.buf == (char *) NULL)
1303 return;
1304
1305 #if 0
1306 if (tty->stopped || tty->hw_stopped ||
1307 (portp->tx.head == portp->tx.tail))
1308 return;
1309 #endif
1310 stl_startrxtx(portp, -1, 1);
1311 }
1312
1313 /*****************************************************************************/
1314
1315 static int stl_writeroom(struct tty_struct *tty)
1316 {
1317 stlport_t *portp;
1318 char *head, *tail;
1319
1320 #ifdef DEBUG
1321 printk("stl_writeroom(tty=%x)\n", (int) tty);
1322 #endif
1323
1324 if (tty == (struct tty_struct *) NULL)
1325 return 0;
1326 portp = tty->driver_data;
1327 if (portp == (stlport_t *) NULL)
1328 return 0;
1329 if (portp->tx.buf == (char *) NULL)
1330 return 0;
1331
1332 head = portp->tx.head;
1333 tail = portp->tx.tail;
1334 return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1335 }
1336
1337 /*****************************************************************************/
1338
1339 /*
1340 * Return number of chars in the TX buffer. Normally we would just
1341 * calculate the number of chars in the buffer and return that, but if
1342 * the buffer is empty and TX interrupts are still on then we return
1343 * that the buffer still has 1 char in it. This way whoever called us
1344 * will not think that ALL chars have drained - since the UART still
1345 * must have some chars in it (we are busy after all).
1346 */
1347
1348 static int stl_charsinbuffer(struct tty_struct *tty)
1349 {
1350 stlport_t *portp;
1351 unsigned int size;
1352 char *head, *tail;
1353
1354 #ifdef DEBUG
1355 printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
1356 #endif
1357
1358 if (tty == (struct tty_struct *) NULL)
1359 return 0;
1360 portp = tty->driver_data;
1361 if (portp == (stlport_t *) NULL)
1362 return 0;
1363 if (portp->tx.buf == (char *) NULL)
1364 return 0;
1365
1366 head = portp->tx.head;
1367 tail = portp->tx.tail;
1368 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1369 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1370 size = 1;
1371 return size;
1372 }
1373
1374 /*****************************************************************************/
1375
1376 /*
1377 * Generate the serial struct info.
1378 */
1379
1380 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
1381 {
1382 struct serial_struct sio;
1383 stlbrd_t *brdp;
1384
1385 #ifdef DEBUG
1386 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1387 #endif
1388
1389 memset(&sio, 0, sizeof(struct serial_struct));
1390 sio.line = portp->portnr;
1391 sio.port = portp->ioaddr;
1392 sio.flags = portp->flags;
1393 sio.baud_base = portp->baud_base;
1394 sio.close_delay = portp->close_delay;
1395 sio.closing_wait = portp->closing_wait;
1396 sio.custom_divisor = portp->custom_divisor;
1397 sio.hub6 = 0;
1398 if (portp->uartp == &stl_cd1400uart) {
1399 sio.type = PORT_CIRRUS;
1400 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1401 } else {
1402 sio.type = PORT_UNKNOWN;
1403 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1404 }
1405
1406 brdp = stl_brds[portp->brdnr];
1407 if (brdp != (stlbrd_t *) NULL)
1408 sio.irq = brdp->irq;
1409
1410 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1411 }
1412
1413 /*****************************************************************************/
1414
1415 /*
1416 * Set port according to the serial struct info.
1417 * At this point we do not do any auto-configure stuff, so we will
1418 * just quietly ignore any requests to change irq, etc.
1419 */
1420
1421 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
1422 {
1423 struct serial_struct sio;
1424
1425 #ifdef DEBUG
1426 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1427 #endif
1428
1429 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1430 return -EFAULT;
1431 if (!capable(CAP_SYS_ADMIN)) {
1432 if ((sio.baud_base != portp->baud_base) ||
1433 (sio.close_delay != portp->close_delay) ||
1434 ((sio.flags & ~ASYNC_USR_MASK) !=
1435 (portp->flags & ~ASYNC_USR_MASK)))
1436 return -EPERM;
1437 }
1438
1439 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1440 (sio.flags & ASYNC_USR_MASK);
1441 portp->baud_base = sio.baud_base;
1442 portp->close_delay = sio.close_delay;
1443 portp->closing_wait = sio.closing_wait;
1444 portp->custom_divisor = sio.custom_divisor;
1445 stl_setport(portp, portp->tty->termios);
1446 return 0;
1447 }
1448
1449 /*****************************************************************************/
1450
1451 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1452 {
1453 stlport_t *portp;
1454
1455 if (tty == (struct tty_struct *) NULL)
1456 return -ENODEV;
1457 portp = tty->driver_data;
1458 if (portp == (stlport_t *) NULL)
1459 return -ENODEV;
1460 if (tty->flags & (1 << TTY_IO_ERROR))
1461 return -EIO;
1462
1463 return stl_getsignals(portp);
1464 }
1465
1466 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1467 unsigned int set, unsigned int clear)
1468 {
1469 stlport_t *portp;
1470 int rts = -1, dtr = -1;
1471
1472 if (tty == (struct tty_struct *) NULL)
1473 return -ENODEV;
1474 portp = tty->driver_data;
1475 if (portp == (stlport_t *) NULL)
1476 return -ENODEV;
1477 if (tty->flags & (1 << TTY_IO_ERROR))
1478 return -EIO;
1479
1480 if (set & TIOCM_RTS)
1481 rts = 1;
1482 if (set & TIOCM_DTR)
1483 dtr = 1;
1484 if (clear & TIOCM_RTS)
1485 rts = 0;
1486 if (clear & TIOCM_DTR)
1487 dtr = 0;
1488
1489 stl_setsignals(portp, dtr, rts);
1490 return 0;
1491 }
1492
1493 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1494 {
1495 stlport_t *portp;
1496 unsigned int ival;
1497 int rc;
1498 void __user *argp = (void __user *)arg;
1499
1500 #ifdef DEBUG
1501 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1502 (int) tty, (int) file, cmd, (int) arg);
1503 #endif
1504
1505 if (tty == (struct tty_struct *) NULL)
1506 return -ENODEV;
1507 portp = tty->driver_data;
1508 if (portp == (stlport_t *) NULL)
1509 return -ENODEV;
1510
1511 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1512 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1513 if (tty->flags & (1 << TTY_IO_ERROR))
1514 return -EIO;
1515 }
1516
1517 rc = 0;
1518
1519 switch (cmd) {
1520 case TIOCGSOFTCAR:
1521 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1522 (unsigned __user *) argp);
1523 break;
1524 case TIOCSSOFTCAR:
1525 if (get_user(ival, (unsigned int __user *) arg))
1526 return -EFAULT;
1527 tty->termios->c_cflag =
1528 (tty->termios->c_cflag & ~CLOCAL) |
1529 (ival ? CLOCAL : 0);
1530 break;
1531 case TIOCGSERIAL:
1532 rc = stl_getserial(portp, argp);
1533 break;
1534 case TIOCSSERIAL:
1535 rc = stl_setserial(portp, argp);
1536 break;
1537 case COM_GETPORTSTATS:
1538 rc = stl_getportstats(portp, argp);
1539 break;
1540 case COM_CLRPORTSTATS:
1541 rc = stl_clrportstats(portp, argp);
1542 break;
1543 case TIOCSERCONFIG:
1544 case TIOCSERGWILD:
1545 case TIOCSERSWILD:
1546 case TIOCSERGETLSR:
1547 case TIOCSERGSTRUCT:
1548 case TIOCSERGETMULTI:
1549 case TIOCSERSETMULTI:
1550 default:
1551 rc = -ENOIOCTLCMD;
1552 break;
1553 }
1554
1555 return rc;
1556 }
1557
1558 /*****************************************************************************/
1559
1560 static void stl_settermios(struct tty_struct *tty, struct termios *old)
1561 {
1562 stlport_t *portp;
1563 struct termios *tiosp;
1564
1565 #ifdef DEBUG
1566 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
1567 #endif
1568
1569 if (tty == (struct tty_struct *) NULL)
1570 return;
1571 portp = tty->driver_data;
1572 if (portp == (stlport_t *) NULL)
1573 return;
1574
1575 tiosp = tty->termios;
1576 if ((tiosp->c_cflag == old->c_cflag) &&
1577 (tiosp->c_iflag == old->c_iflag))
1578 return;
1579
1580 stl_setport(portp, tiosp);
1581 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1582 -1);
1583 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1584 tty->hw_stopped = 0;
1585 stl_start(tty);
1586 }
1587 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1588 wake_up_interruptible(&portp->open_wait);
1589 }
1590
1591 /*****************************************************************************/
1592
1593 /*
1594 * Attempt to flow control who ever is sending us data. Based on termios
1595 * settings use software or/and hardware flow control.
1596 */
1597
1598 static void stl_throttle(struct tty_struct *tty)
1599 {
1600 stlport_t *portp;
1601
1602 #ifdef DEBUG
1603 printk("stl_throttle(tty=%x)\n", (int) tty);
1604 #endif
1605
1606 if (tty == (struct tty_struct *) NULL)
1607 return;
1608 portp = tty->driver_data;
1609 if (portp == (stlport_t *) NULL)
1610 return;
1611 stl_flowctrl(portp, 0);
1612 }
1613
1614 /*****************************************************************************/
1615
1616 /*
1617 * Unflow control the device sending us data...
1618 */
1619
1620 static void stl_unthrottle(struct tty_struct *tty)
1621 {
1622 stlport_t *portp;
1623
1624 #ifdef DEBUG
1625 printk("stl_unthrottle(tty=%x)\n", (int) tty);
1626 #endif
1627
1628 if (tty == (struct tty_struct *) NULL)
1629 return;
1630 portp = tty->driver_data;
1631 if (portp == (stlport_t *) NULL)
1632 return;
1633 stl_flowctrl(portp, 1);
1634 }
1635
1636 /*****************************************************************************/
1637
1638 /*
1639 * Stop the transmitter. Basically to do this we will just turn TX
1640 * interrupts off.
1641 */
1642
1643 static void stl_stop(struct tty_struct *tty)
1644 {
1645 stlport_t *portp;
1646
1647 #ifdef DEBUG
1648 printk("stl_stop(tty=%x)\n", (int) tty);
1649 #endif
1650
1651 if (tty == (struct tty_struct *) NULL)
1652 return;
1653 portp = tty->driver_data;
1654 if (portp == (stlport_t *) NULL)
1655 return;
1656 stl_startrxtx(portp, -1, 0);
1657 }
1658
1659 /*****************************************************************************/
1660
1661 /*
1662 * Start the transmitter again. Just turn TX interrupts back on.
1663 */
1664
1665 static void stl_start(struct tty_struct *tty)
1666 {
1667 stlport_t *portp;
1668
1669 #ifdef DEBUG
1670 printk("stl_start(tty=%x)\n", (int) tty);
1671 #endif
1672
1673 if (tty == (struct tty_struct *) NULL)
1674 return;
1675 portp = tty->driver_data;
1676 if (portp == (stlport_t *) NULL)
1677 return;
1678 stl_startrxtx(portp, -1, 1);
1679 }
1680
1681 /*****************************************************************************/
1682
1683 /*
1684 * Hangup this port. This is pretty much like closing the port, only
1685 * a little more brutal. No waiting for data to drain. Shutdown the
1686 * port and maybe drop signals.
1687 */
1688
1689 static void stl_hangup(struct tty_struct *tty)
1690 {
1691 stlport_t *portp;
1692
1693 #ifdef DEBUG
1694 printk("stl_hangup(tty=%x)\n", (int) tty);
1695 #endif
1696
1697 if (tty == (struct tty_struct *) NULL)
1698 return;
1699 portp = tty->driver_data;
1700 if (portp == (stlport_t *) NULL)
1701 return;
1702
1703 portp->flags &= ~ASYNC_INITIALIZED;
1704 stl_disableintrs(portp);
1705 if (tty->termios->c_cflag & HUPCL)
1706 stl_setsignals(portp, 0, 0);
1707 stl_enablerxtx(portp, 0, 0);
1708 stl_flushbuffer(tty);
1709 portp->istate = 0;
1710 set_bit(TTY_IO_ERROR, &tty->flags);
1711 if (portp->tx.buf != (char *) NULL) {
1712 kfree(portp->tx.buf);
1713 portp->tx.buf = (char *) NULL;
1714 portp->tx.head = (char *) NULL;
1715 portp->tx.tail = (char *) NULL;
1716 }
1717 portp->tty = (struct tty_struct *) NULL;
1718 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1719 portp->refcount = 0;
1720 wake_up_interruptible(&portp->open_wait);
1721 }
1722
1723 /*****************************************************************************/
1724
1725 static void stl_flushbuffer(struct tty_struct *tty)
1726 {
1727 stlport_t *portp;
1728
1729 #ifdef DEBUG
1730 printk("stl_flushbuffer(tty=%x)\n", (int) tty);
1731 #endif
1732
1733 if (tty == (struct tty_struct *) NULL)
1734 return;
1735 portp = tty->driver_data;
1736 if (portp == (stlport_t *) NULL)
1737 return;
1738
1739 stl_flush(portp);
1740 tty_wakeup(tty);
1741 }
1742
1743 /*****************************************************************************/
1744
1745 static void stl_breakctl(struct tty_struct *tty, int state)
1746 {
1747 stlport_t *portp;
1748
1749 #ifdef DEBUG
1750 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
1751 #endif
1752
1753 if (tty == (struct tty_struct *) NULL)
1754 return;
1755 portp = tty->driver_data;
1756 if (portp == (stlport_t *) NULL)
1757 return;
1758
1759 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1760 }
1761
1762 /*****************************************************************************/
1763
1764 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
1765 {
1766 stlport_t *portp;
1767 unsigned long tend;
1768
1769 #ifdef DEBUG
1770 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
1771 #endif
1772
1773 if (tty == (struct tty_struct *) NULL)
1774 return;
1775 portp = tty->driver_data;
1776 if (portp == (stlport_t *) NULL)
1777 return;
1778
1779 if (timeout == 0)
1780 timeout = HZ;
1781 tend = jiffies + timeout;
1782
1783 while (stl_datastate(portp)) {
1784 if (signal_pending(current))
1785 break;
1786 msleep_interruptible(20);
1787 if (time_after_eq(jiffies, tend))
1788 break;
1789 }
1790 }
1791
1792 /*****************************************************************************/
1793
1794 static void stl_sendxchar(struct tty_struct *tty, char ch)
1795 {
1796 stlport_t *portp;
1797
1798 #ifdef DEBUG
1799 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
1800 #endif
1801
1802 if (tty == (struct tty_struct *) NULL)
1803 return;
1804 portp = tty->driver_data;
1805 if (portp == (stlport_t *) NULL)
1806 return;
1807
1808 if (ch == STOP_CHAR(tty))
1809 stl_sendflow(portp, 0);
1810 else if (ch == START_CHAR(tty))
1811 stl_sendflow(portp, 1);
1812 else
1813 stl_putchar(tty, ch);
1814 }
1815
1816 /*****************************************************************************/
1817
1818 #define MAXLINE 80
1819
1820 /*
1821 * Format info for a specified port. The line is deliberately limited
1822 * to 80 characters. (If it is too long it will be truncated, if too
1823 * short then padded with spaces).
1824 */
1825
1826 static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
1827 {
1828 char *sp;
1829 int sigs, cnt;
1830
1831 sp = pos;
1832 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1833 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1834 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1835
1836 if (portp->stats.rxframing)
1837 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1838 if (portp->stats.rxparity)
1839 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1840 if (portp->stats.rxbreaks)
1841 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1842 if (portp->stats.rxoverrun)
1843 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1844
1845 sigs = stl_getsignals(portp);
1846 cnt = sprintf(sp, "%s%s%s%s%s ",
1847 (sigs & TIOCM_RTS) ? "|RTS" : "",
1848 (sigs & TIOCM_CTS) ? "|CTS" : "",
1849 (sigs & TIOCM_DTR) ? "|DTR" : "",
1850 (sigs & TIOCM_CD) ? "|DCD" : "",
1851 (sigs & TIOCM_DSR) ? "|DSR" : "");
1852 *sp = ' ';
1853 sp += cnt;
1854
1855 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1856 *sp++ = ' ';
1857 if (cnt >= MAXLINE)
1858 pos[(MAXLINE - 2)] = '+';
1859 pos[(MAXLINE - 1)] = '\n';
1860
1861 return MAXLINE;
1862 }
1863
1864 /*****************************************************************************/
1865
1866 /*
1867 * Port info, read from the /proc file system.
1868 */
1869
1870 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1871 {
1872 stlbrd_t *brdp;
1873 stlpanel_t *panelp;
1874 stlport_t *portp;
1875 int brdnr, panelnr, portnr, totalport;
1876 int curoff, maxoff;
1877 char *pos;
1878
1879 #ifdef DEBUG
1880 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1881 "data=%x\n", (int) page, (int) start, (int) off, count,
1882 (int) eof, (int) data);
1883 #endif
1884
1885 pos = page;
1886 totalport = 0;
1887 curoff = 0;
1888
1889 if (off == 0) {
1890 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1891 stl_drvversion);
1892 while (pos < (page + MAXLINE - 1))
1893 *pos++ = ' ';
1894 *pos++ = '\n';
1895 }
1896 curoff = MAXLINE;
1897
1898 /*
1899 * We scan through for each board, panel and port. The offset is
1900 * calculated on the fly, and irrelevant ports are skipped.
1901 */
1902 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1903 brdp = stl_brds[brdnr];
1904 if (brdp == (stlbrd_t *) NULL)
1905 continue;
1906 if (brdp->state == 0)
1907 continue;
1908
1909 maxoff = curoff + (brdp->nrports * MAXLINE);
1910 if (off >= maxoff) {
1911 curoff = maxoff;
1912 continue;
1913 }
1914
1915 totalport = brdnr * STL_MAXPORTS;
1916 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1917 panelp = brdp->panels[panelnr];
1918 if (panelp == (stlpanel_t *) NULL)
1919 continue;
1920
1921 maxoff = curoff + (panelp->nrports * MAXLINE);
1922 if (off >= maxoff) {
1923 curoff = maxoff;
1924 totalport += panelp->nrports;
1925 continue;
1926 }
1927
1928 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1929 totalport++) {
1930 portp = panelp->ports[portnr];
1931 if (portp == (stlport_t *) NULL)
1932 continue;
1933 if (off >= (curoff += MAXLINE))
1934 continue;
1935 if ((pos - page + MAXLINE) > count)
1936 goto stl_readdone;
1937 pos += stl_portinfo(portp, totalport, pos);
1938 }
1939 }
1940 }
1941
1942 *eof = 1;
1943
1944 stl_readdone:
1945 *start = page;
1946 return (pos - page);
1947 }
1948
1949 /*****************************************************************************/
1950
1951 /*
1952 * All board interrupts are vectored through here first. This code then
1953 * calls off to the approrpriate board interrupt handlers.
1954 */
1955
1956 static irqreturn_t stl_intr(int irq, void *dev_id, struct pt_regs *regs)
1957 {
1958 stlbrd_t *brdp = (stlbrd_t *) dev_id;
1959
1960 #ifdef DEBUG
1961 printk("stl_intr(brdp=%x,irq=%d,regs=%x)\n", (int) brdp, irq,
1962 (int) regs);
1963 #endif
1964
1965 return IRQ_RETVAL((* brdp->isr)(brdp));
1966 }
1967
1968 /*****************************************************************************/
1969
1970 /*
1971 * Interrupt service routine for EasyIO board types.
1972 */
1973
1974 static int stl_eiointr(stlbrd_t *brdp)
1975 {
1976 stlpanel_t *panelp;
1977 unsigned int iobase;
1978 int handled = 0;
1979
1980 panelp = brdp->panels[0];
1981 iobase = panelp->iobase;
1982 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1983 handled = 1;
1984 (* panelp->isr)(panelp, iobase);
1985 }
1986 return handled;
1987 }
1988
1989 /*****************************************************************************/
1990
1991 /*
1992 * Interrupt service routine for ECH-AT board types.
1993 */
1994
1995 static int stl_echatintr(stlbrd_t *brdp)
1996 {
1997 stlpanel_t *panelp;
1998 unsigned int ioaddr;
1999 int bnknr;
2000 int handled = 0;
2001
2002 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2003
2004 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2005 handled = 1;
2006 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2007 ioaddr = brdp->bnkstataddr[bnknr];
2008 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2009 panelp = brdp->bnk2panel[bnknr];
2010 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2011 }
2012 }
2013 }
2014
2015 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2016
2017 return handled;
2018 }
2019
2020 /*****************************************************************************/
2021
2022 /*
2023 * Interrupt service routine for ECH-MCA board types.
2024 */
2025
2026 static int stl_echmcaintr(stlbrd_t *brdp)
2027 {
2028 stlpanel_t *panelp;
2029 unsigned int ioaddr;
2030 int bnknr;
2031 int handled = 0;
2032
2033 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2034 handled = 1;
2035 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2036 ioaddr = brdp->bnkstataddr[bnknr];
2037 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2038 panelp = brdp->bnk2panel[bnknr];
2039 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2040 }
2041 }
2042 }
2043 return handled;
2044 }
2045
2046 /*****************************************************************************/
2047
2048 /*
2049 * Interrupt service routine for ECH-PCI board types.
2050 */
2051
2052 static int stl_echpciintr(stlbrd_t *brdp)
2053 {
2054 stlpanel_t *panelp;
2055 unsigned int ioaddr;
2056 int bnknr, recheck;
2057 int handled = 0;
2058
2059 while (1) {
2060 recheck = 0;
2061 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2062 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
2063 ioaddr = brdp->bnkstataddr[bnknr];
2064 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2065 panelp = brdp->bnk2panel[bnknr];
2066 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2067 recheck++;
2068 handled = 1;
2069 }
2070 }
2071 if (! recheck)
2072 break;
2073 }
2074 return handled;
2075 }
2076
2077 /*****************************************************************************/
2078
2079 /*
2080 * Interrupt service routine for ECH-8/64-PCI board types.
2081 */
2082
2083 static int stl_echpci64intr(stlbrd_t *brdp)
2084 {
2085 stlpanel_t *panelp;
2086 unsigned int ioaddr;
2087 int bnknr;
2088 int handled = 0;
2089
2090 while (inb(brdp->ioctrl) & 0x1) {
2091 handled = 1;
2092 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2093 ioaddr = brdp->bnkstataddr[bnknr];
2094 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2095 panelp = brdp->bnk2panel[bnknr];
2096 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2097 }
2098 }
2099 }
2100
2101 return handled;
2102 }
2103
2104 /*****************************************************************************/
2105
2106 /*
2107 * Service an off-level request for some channel.
2108 */
2109 static void stl_offintr(void *private)
2110 {
2111 stlport_t *portp;
2112 struct tty_struct *tty;
2113 unsigned int oldsigs;
2114
2115 portp = private;
2116
2117 #ifdef DEBUG
2118 printk("stl_offintr(portp=%x)\n", (int) portp);
2119 #endif
2120
2121 if (portp == (stlport_t *) NULL)
2122 return;
2123
2124 tty = portp->tty;
2125 if (tty == (struct tty_struct *) NULL)
2126 return;
2127
2128 lock_kernel();
2129 if (test_bit(ASYI_TXLOW, &portp->istate)) {
2130 tty_wakeup(tty);
2131 }
2132 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
2133 clear_bit(ASYI_DCDCHANGE, &portp->istate);
2134 oldsigs = portp->sigs;
2135 portp->sigs = stl_getsignals(portp);
2136 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
2137 wake_up_interruptible(&portp->open_wait);
2138 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
2139 if (portp->flags & ASYNC_CHECK_CD)
2140 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2141 }
2142 }
2143 unlock_kernel();
2144 }
2145
2146 /*****************************************************************************/
2147
2148 /*
2149 * Initialize all the ports on a panel.
2150 */
2151
2152 static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
2153 {
2154 stlport_t *portp;
2155 int chipmask, i;
2156
2157 #ifdef DEBUG
2158 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
2159 #endif
2160
2161 chipmask = stl_panelinit(brdp, panelp);
2162
2163 /*
2164 * All UART's are initialized (if found!). Now go through and setup
2165 * each ports data structures.
2166 */
2167 for (i = 0; (i < panelp->nrports); i++) {
2168 portp = kzalloc(sizeof(stlport_t), GFP_KERNEL);
2169 if (!portp) {
2170 printk("STALLION: failed to allocate memory "
2171 "(size=%d)\n", sizeof(stlport_t));
2172 break;
2173 }
2174
2175 portp->magic = STL_PORTMAGIC;
2176 portp->portnr = i;
2177 portp->brdnr = panelp->brdnr;
2178 portp->panelnr = panelp->panelnr;
2179 portp->uartp = panelp->uartp;
2180 portp->clk = brdp->clk;
2181 portp->baud_base = STL_BAUDBASE;
2182 portp->close_delay = STL_CLOSEDELAY;
2183 portp->closing_wait = 30 * HZ;
2184 INIT_WORK(&portp->tqueue, stl_offintr, portp);
2185 init_waitqueue_head(&portp->open_wait);
2186 init_waitqueue_head(&portp->close_wait);
2187 portp->stats.brd = portp->brdnr;
2188 portp->stats.panel = portp->panelnr;
2189 portp->stats.port = portp->portnr;
2190 panelp->ports[i] = portp;
2191 stl_portinit(brdp, panelp, portp);
2192 }
2193
2194 return(0);
2195 }
2196
2197 /*****************************************************************************/
2198
2199 /*
2200 * Try to find and initialize an EasyIO board.
2201 */
2202
2203 static inline int stl_initeio(stlbrd_t *brdp)
2204 {
2205 stlpanel_t *panelp;
2206 unsigned int status;
2207 char *name;
2208 int rc;
2209
2210 #ifdef DEBUG
2211 printk("stl_initeio(brdp=%x)\n", (int) brdp);
2212 #endif
2213
2214 brdp->ioctrl = brdp->ioaddr1 + 1;
2215 brdp->iostatus = brdp->ioaddr1 + 2;
2216
2217 status = inb(brdp->iostatus);
2218 if ((status & EIO_IDBITMASK) == EIO_MK3)
2219 brdp->ioctrl++;
2220
2221 /*
2222 * Handle board specific stuff now. The real difference is PCI
2223 * or not PCI.
2224 */
2225 if (brdp->brdtype == BRD_EASYIOPCI) {
2226 brdp->iosize1 = 0x80;
2227 brdp->iosize2 = 0x80;
2228 name = "serial(EIO-PCI)";
2229 outb(0x41, (brdp->ioaddr2 + 0x4c));
2230 } else {
2231 brdp->iosize1 = 8;
2232 name = "serial(EIO)";
2233 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2234 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2235 printk("STALLION: invalid irq=%d for brd=%d\n",
2236 brdp->irq, brdp->brdnr);
2237 return(-EINVAL);
2238 }
2239 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2240 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2241 brdp->ioctrl);
2242 }
2243
2244 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2245 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2246 "%x conflicts with another device\n", brdp->brdnr,
2247 brdp->ioaddr1);
2248 return(-EBUSY);
2249 }
2250
2251 if (brdp->iosize2 > 0)
2252 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2253 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2254 "address %x conflicts with another device\n",
2255 brdp->brdnr, brdp->ioaddr2);
2256 printk(KERN_WARNING "STALLION: Warning, also "
2257 "releasing board %d I/O address %x \n",
2258 brdp->brdnr, brdp->ioaddr1);
2259 release_region(brdp->ioaddr1, brdp->iosize1);
2260 return(-EBUSY);
2261 }
2262
2263 /*
2264 * Everything looks OK, so let's go ahead and probe for the hardware.
2265 */
2266 brdp->clk = CD1400_CLK;
2267 brdp->isr = stl_eiointr;
2268
2269 switch (status & EIO_IDBITMASK) {
2270 case EIO_8PORTM:
2271 brdp->clk = CD1400_CLK8M;
2272 /* fall thru */
2273 case EIO_8PORTRS:
2274 case EIO_8PORTDI:
2275 brdp->nrports = 8;
2276 break;
2277 case EIO_4PORTRS:
2278 brdp->nrports = 4;
2279 break;
2280 case EIO_MK3:
2281 switch (status & EIO_BRDMASK) {
2282 case ID_BRD4:
2283 brdp->nrports = 4;
2284 break;
2285 case ID_BRD8:
2286 brdp->nrports = 8;
2287 break;
2288 case ID_BRD16:
2289 brdp->nrports = 16;
2290 break;
2291 default:
2292 return(-ENODEV);
2293 }
2294 break;
2295 default:
2296 return(-ENODEV);
2297 }
2298
2299 /*
2300 * We have verified that the board is actually present, so now we
2301 * can complete the setup.
2302 */
2303
2304 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2305 if (!panelp) {
2306 printk(KERN_WARNING "STALLION: failed to allocate memory "
2307 "(size=%d)\n", sizeof(stlpanel_t));
2308 return -ENOMEM;
2309 }
2310
2311 panelp->magic = STL_PANELMAGIC;
2312 panelp->brdnr = brdp->brdnr;
2313 panelp->panelnr = 0;
2314 panelp->nrports = brdp->nrports;
2315 panelp->iobase = brdp->ioaddr1;
2316 panelp->hwid = status;
2317 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2318 panelp->uartp = (void *) &stl_sc26198uart;
2319 panelp->isr = stl_sc26198intr;
2320 } else {
2321 panelp->uartp = (void *) &stl_cd1400uart;
2322 panelp->isr = stl_cd1400eiointr;
2323 }
2324
2325 brdp->panels[0] = panelp;
2326 brdp->nrpanels = 1;
2327 brdp->state |= BRD_FOUND;
2328 brdp->hwid = status;
2329 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2330 printk("STALLION: failed to register interrupt "
2331 "routine for %s irq=%d\n", name, brdp->irq);
2332 rc = -ENODEV;
2333 } else {
2334 rc = 0;
2335 }
2336 return rc;
2337 }
2338
2339 /*****************************************************************************/
2340
2341 /*
2342 * Try to find an ECH board and initialize it. This code is capable of
2343 * dealing with all types of ECH board.
2344 */
2345
2346 static inline int stl_initech(stlbrd_t *brdp)
2347 {
2348 stlpanel_t *panelp;
2349 unsigned int status, nxtid, ioaddr, conflict;
2350 int panelnr, banknr, i;
2351 char *name;
2352
2353 #ifdef DEBUG
2354 printk("stl_initech(brdp=%x)\n", (int) brdp);
2355 #endif
2356
2357 status = 0;
2358 conflict = 0;
2359
2360 /*
2361 * Set up the initial board register contents for boards. This varies a
2362 * bit between the different board types. So we need to handle each
2363 * separately. Also do a check that the supplied IRQ is good.
2364 */
2365 switch (brdp->brdtype) {
2366
2367 case BRD_ECH:
2368 brdp->isr = stl_echatintr;
2369 brdp->ioctrl = brdp->ioaddr1 + 1;
2370 brdp->iostatus = brdp->ioaddr1 + 1;
2371 status = inb(brdp->iostatus);
2372 if ((status & ECH_IDBITMASK) != ECH_ID)
2373 return(-ENODEV);
2374 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2375 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2376 printk("STALLION: invalid irq=%d for brd=%d\n",
2377 brdp->irq, brdp->brdnr);
2378 return(-EINVAL);
2379 }
2380 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2381 status |= (stl_vecmap[brdp->irq] << 1);
2382 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2383 brdp->ioctrlval = ECH_INTENABLE |
2384 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2385 for (i = 0; (i < 10); i++)
2386 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2387 brdp->iosize1 = 2;
2388 brdp->iosize2 = 32;
2389 name = "serial(EC8/32)";
2390 outb(status, brdp->ioaddr1);
2391 break;
2392
2393 case BRD_ECHMC:
2394 brdp->isr = stl_echmcaintr;
2395 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2396 brdp->iostatus = brdp->ioctrl;
2397 status = inb(brdp->iostatus);
2398 if ((status & ECH_IDBITMASK) != ECH_ID)
2399 return(-ENODEV);
2400 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2401 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2402 printk("STALLION: invalid irq=%d for brd=%d\n",
2403 brdp->irq, brdp->brdnr);
2404 return(-EINVAL);
2405 }
2406 outb(ECHMC_BRDRESET, brdp->ioctrl);
2407 outb(ECHMC_INTENABLE, brdp->ioctrl);
2408 brdp->iosize1 = 64;
2409 name = "serial(EC8/32-MC)";
2410 break;
2411
2412 case BRD_ECHPCI:
2413 brdp->isr = stl_echpciintr;
2414 brdp->ioctrl = brdp->ioaddr1 + 2;
2415 brdp->iosize1 = 4;
2416 brdp->iosize2 = 8;
2417 name = "serial(EC8/32-PCI)";
2418 break;
2419
2420 case BRD_ECH64PCI:
2421 brdp->isr = stl_echpci64intr;
2422 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2423 outb(0x43, (brdp->ioaddr1 + 0x4c));
2424 brdp->iosize1 = 0x80;
2425 brdp->iosize2 = 0x80;
2426 name = "serial(EC8/64-PCI)";
2427 break;
2428
2429 default:
2430 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2431 return(-EINVAL);
2432 break;
2433 }
2434
2435 /*
2436 * Check boards for possible IO address conflicts and return fail status
2437 * if an IO conflict found.
2438 */
2439 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2440 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2441 "%x conflicts with another device\n", brdp->brdnr,
2442 brdp->ioaddr1);
2443 return(-EBUSY);
2444 }
2445
2446 if (brdp->iosize2 > 0)
2447 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2448 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2449 "address %x conflicts with another device\n",
2450 brdp->brdnr, brdp->ioaddr2);
2451 printk(KERN_WARNING "STALLION: Warning, also "
2452 "releasing board %d I/O address %x \n",
2453 brdp->brdnr, brdp->ioaddr1);
2454 release_region(brdp->ioaddr1, brdp->iosize1);
2455 return(-EBUSY);
2456 }
2457
2458 /*
2459 * Scan through the secondary io address space looking for panels.
2460 * As we find'em allocate and initialize panel structures for each.
2461 */
2462 brdp->clk = CD1400_CLK;
2463 brdp->hwid = status;
2464
2465 ioaddr = brdp->ioaddr2;
2466 banknr = 0;
2467 panelnr = 0;
2468 nxtid = 0;
2469
2470 for (i = 0; (i < STL_MAXPANELS); i++) {
2471 if (brdp->brdtype == BRD_ECHPCI) {
2472 outb(nxtid, brdp->ioctrl);
2473 ioaddr = brdp->ioaddr2;
2474 }
2475 status = inb(ioaddr + ECH_PNLSTATUS);
2476 if ((status & ECH_PNLIDMASK) != nxtid)
2477 break;
2478 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2479 if (!panelp) {
2480 printk("STALLION: failed to allocate memory "
2481 "(size=%d)\n", sizeof(stlpanel_t));
2482 break;
2483 }
2484 panelp->magic = STL_PANELMAGIC;
2485 panelp->brdnr = brdp->brdnr;
2486 panelp->panelnr = panelnr;
2487 panelp->iobase = ioaddr;
2488 panelp->pagenr = nxtid;
2489 panelp->hwid = status;
2490 brdp->bnk2panel[banknr] = panelp;
2491 brdp->bnkpageaddr[banknr] = nxtid;
2492 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2493
2494 if (status & ECH_PNLXPID) {
2495 panelp->uartp = (void *) &stl_sc26198uart;
2496 panelp->isr = stl_sc26198intr;
2497 if (status & ECH_PNL16PORT) {
2498 panelp->nrports = 16;
2499 brdp->bnk2panel[banknr] = panelp;
2500 brdp->bnkpageaddr[banknr] = nxtid;
2501 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2502 ECH_PNLSTATUS;
2503 } else {
2504 panelp->nrports = 8;
2505 }
2506 } else {
2507 panelp->uartp = (void *) &stl_cd1400uart;
2508 panelp->isr = stl_cd1400echintr;
2509 if (status & ECH_PNL16PORT) {
2510 panelp->nrports = 16;
2511 panelp->ackmask = 0x80;
2512 if (brdp->brdtype != BRD_ECHPCI)
2513 ioaddr += EREG_BANKSIZE;
2514 brdp->bnk2panel[banknr] = panelp;
2515 brdp->bnkpageaddr[banknr] = ++nxtid;
2516 brdp->bnkstataddr[banknr++] = ioaddr +
2517 ECH_PNLSTATUS;
2518 } else {
2519 panelp->nrports = 8;
2520 panelp->ackmask = 0xc0;
2521 }
2522 }
2523
2524 nxtid++;
2525 ioaddr += EREG_BANKSIZE;
2526 brdp->nrports += panelp->nrports;
2527 brdp->panels[panelnr++] = panelp;
2528 if ((brdp->brdtype != BRD_ECHPCI) &&
2529 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2530 break;
2531 }
2532
2533 brdp->nrpanels = panelnr;
2534 brdp->nrbnks = banknr;
2535 if (brdp->brdtype == BRD_ECH)
2536 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2537
2538 brdp->state |= BRD_FOUND;
2539 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2540 printk("STALLION: failed to register interrupt "
2541 "routine for %s irq=%d\n", name, brdp->irq);
2542 i = -ENODEV;
2543 } else {
2544 i = 0;
2545 }
2546
2547 return(i);
2548 }
2549
2550 /*****************************************************************************/
2551
2552 /*
2553 * Initialize and configure the specified board.
2554 * Scan through all the boards in the configuration and see what we
2555 * can find. Handle EIO and the ECH boards a little differently here
2556 * since the initial search and setup is very different.
2557 */
2558
2559 static int __init stl_brdinit(stlbrd_t *brdp)
2560 {
2561 int i;
2562
2563 #ifdef DEBUG
2564 printk("stl_brdinit(brdp=%x)\n", (int) brdp);
2565 #endif
2566
2567 switch (brdp->brdtype) {
2568 case BRD_EASYIO:
2569 case BRD_EASYIOPCI:
2570 stl_initeio(brdp);
2571 break;
2572 case BRD_ECH:
2573 case BRD_ECHMC:
2574 case BRD_ECHPCI:
2575 case BRD_ECH64PCI:
2576 stl_initech(brdp);
2577 break;
2578 default:
2579 printk("STALLION: board=%d is unknown board type=%d\n",
2580 brdp->brdnr, brdp->brdtype);
2581 return(ENODEV);
2582 }
2583
2584 stl_brds[brdp->brdnr] = brdp;
2585 if ((brdp->state & BRD_FOUND) == 0) {
2586 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2587 stl_brdnames[brdp->brdtype], brdp->brdnr,
2588 brdp->ioaddr1, brdp->irq);
2589 return(ENODEV);
2590 }
2591
2592 for (i = 0; (i < STL_MAXPANELS); i++)
2593 if (brdp->panels[i] != (stlpanel_t *) NULL)
2594 stl_initports(brdp, brdp->panels[i]);
2595
2596 printk("STALLION: %s found, board=%d io=%x irq=%d "
2597 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2598 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2599 brdp->nrports);
2600 return(0);
2601 }
2602
2603 /*****************************************************************************/
2604
2605 /*
2606 * Find the next available board number that is free.
2607 */
2608
2609 static inline int stl_getbrdnr(void)
2610 {
2611 int i;
2612
2613 for (i = 0; (i < STL_MAXBRDS); i++) {
2614 if (stl_brds[i] == (stlbrd_t *) NULL) {
2615 if (i >= stl_nrbrds)
2616 stl_nrbrds = i + 1;
2617 return(i);
2618 }
2619 }
2620 return(-1);
2621 }
2622
2623 /*****************************************************************************/
2624
2625 #ifdef CONFIG_PCI
2626
2627 /*
2628 * We have a Stallion board. Allocate a board structure and
2629 * initialize it. Read its IO and IRQ resources from PCI
2630 * configuration space.
2631 */
2632
2633 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
2634 {
2635 stlbrd_t *brdp;
2636
2637 #ifdef DEBUG
2638 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2639 devp->bus->number, devp->devfn);
2640 #endif
2641
2642 if (pci_enable_device(devp))
2643 return(-EIO);
2644 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2645 return(-ENOMEM);
2646 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2647 printk("STALLION: too many boards found, "
2648 "maximum supported %d\n", STL_MAXBRDS);
2649 return(0);
2650 }
2651 brdp->brdtype = brdtype;
2652
2653 /*
2654 * Different Stallion boards use the BAR registers in different ways,
2655 * so set up io addresses based on board type.
2656 */
2657 #ifdef DEBUG
2658 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
2659 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2660 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2661 #endif
2662
2663 /*
2664 * We have all resources from the board, so let's setup the actual
2665 * board structure now.
2666 */
2667 switch (brdtype) {
2668 case BRD_ECHPCI:
2669 brdp->ioaddr2 = pci_resource_start(devp, 0);
2670 brdp->ioaddr1 = pci_resource_start(devp, 1);
2671 break;
2672 case BRD_ECH64PCI:
2673 brdp->ioaddr2 = pci_resource_start(devp, 2);
2674 brdp->ioaddr1 = pci_resource_start(devp, 1);
2675 break;
2676 case BRD_EASYIOPCI:
2677 brdp->ioaddr1 = pci_resource_start(devp, 2);
2678 brdp->ioaddr2 = pci_resource_start(devp, 1);
2679 break;
2680 default:
2681 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2682 break;
2683 }
2684
2685 brdp->irq = devp->irq;
2686 stl_brdinit(brdp);
2687
2688 return(0);
2689 }
2690
2691 /*****************************************************************************/
2692
2693 /*
2694 * Find all Stallion PCI boards that might be installed. Initialize each
2695 * one as it is found.
2696 */
2697
2698
2699 static inline int stl_findpcibrds(void)
2700 {
2701 struct pci_dev *dev = NULL;
2702 int i, rc;
2703
2704 #ifdef DEBUG
2705 printk("stl_findpcibrds()\n");
2706 #endif
2707
2708 for (i = 0; (i < stl_nrpcibrds); i++)
2709 while ((dev = pci_find_device(stl_pcibrds[i].vendid,
2710 stl_pcibrds[i].devid, dev))) {
2711
2712 /*
2713 * Found a device on the PCI bus that has our vendor and
2714 * device ID. Need to check now that it is really us.
2715 */
2716 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2717 continue;
2718
2719 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2720 if (rc)
2721 return(rc);
2722 }
2723
2724 return(0);
2725 }
2726
2727 #endif
2728
2729 /*****************************************************************************/
2730
2731 /*
2732 * Scan through all the boards in the configuration and see what we
2733 * can find. Handle EIO and the ECH boards a little differently here
2734 * since the initial search and setup is too different.
2735 */
2736
2737 static inline int stl_initbrds(void)
2738 {
2739 stlbrd_t *brdp;
2740 stlconf_t *confp;
2741 int i;
2742
2743 #ifdef DEBUG
2744 printk("stl_initbrds()\n");
2745 #endif
2746
2747 if (stl_nrbrds > STL_MAXBRDS) {
2748 printk("STALLION: too many boards in configuration table, "
2749 "truncating to %d\n", STL_MAXBRDS);
2750 stl_nrbrds = STL_MAXBRDS;
2751 }
2752
2753 /*
2754 * Firstly scan the list of static boards configured. Allocate
2755 * resources and initialize the boards as found.
2756 */
2757 for (i = 0; (i < stl_nrbrds); i++) {
2758 confp = &stl_brdconf[i];
2759 stl_parsebrd(confp, stl_brdsp[i]);
2760 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2761 return(-ENOMEM);
2762 brdp->brdnr = i;
2763 brdp->brdtype = confp->brdtype;
2764 brdp->ioaddr1 = confp->ioaddr1;
2765 brdp->ioaddr2 = confp->ioaddr2;
2766 brdp->irq = confp->irq;
2767 brdp->irqtype = confp->irqtype;
2768 stl_brdinit(brdp);
2769 }
2770
2771 /*
2772 * Find any dynamically supported boards. That is via module load
2773 * line options or auto-detected on the PCI bus.
2774 */
2775 stl_argbrds();
2776 #ifdef CONFIG_PCI
2777 stl_findpcibrds();
2778 #endif
2779
2780 return(0);
2781 }
2782
2783 /*****************************************************************************/
2784
2785 /*
2786 * Return the board stats structure to user app.
2787 */
2788
2789 static int stl_getbrdstats(combrd_t __user *bp)
2790 {
2791 stlbrd_t *brdp;
2792 stlpanel_t *panelp;
2793 int i;
2794
2795 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2796 return -EFAULT;
2797 if (stl_brdstats.brd >= STL_MAXBRDS)
2798 return(-ENODEV);
2799 brdp = stl_brds[stl_brdstats.brd];
2800 if (brdp == (stlbrd_t *) NULL)
2801 return(-ENODEV);
2802
2803 memset(&stl_brdstats, 0, sizeof(combrd_t));
2804 stl_brdstats.brd = brdp->brdnr;
2805 stl_brdstats.type = brdp->brdtype;
2806 stl_brdstats.hwid = brdp->hwid;
2807 stl_brdstats.state = brdp->state;
2808 stl_brdstats.ioaddr = brdp->ioaddr1;
2809 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2810 stl_brdstats.irq = brdp->irq;
2811 stl_brdstats.nrpanels = brdp->nrpanels;
2812 stl_brdstats.nrports = brdp->nrports;
2813 for (i = 0; (i < brdp->nrpanels); i++) {
2814 panelp = brdp->panels[i];
2815 stl_brdstats.panels[i].panel = i;
2816 stl_brdstats.panels[i].hwid = panelp->hwid;
2817 stl_brdstats.panels[i].nrports = panelp->nrports;
2818 }
2819
2820 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2821 }
2822
2823 /*****************************************************************************/
2824
2825 /*
2826 * Resolve the referenced port number into a port struct pointer.
2827 */
2828
2829 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
2830 {
2831 stlbrd_t *brdp;
2832 stlpanel_t *panelp;
2833
2834 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2835 return((stlport_t *) NULL);
2836 brdp = stl_brds[brdnr];
2837 if (brdp == (stlbrd_t *) NULL)
2838 return((stlport_t *) NULL);
2839 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2840 return((stlport_t *) NULL);
2841 panelp = brdp->panels[panelnr];
2842 if (panelp == (stlpanel_t *) NULL)
2843 return((stlport_t *) NULL);
2844 if ((portnr < 0) || (portnr >= panelp->nrports))
2845 return((stlport_t *) NULL);
2846 return(panelp->ports[portnr]);
2847 }
2848
2849 /*****************************************************************************/
2850
2851 /*
2852 * Return the port stats structure to user app. A NULL port struct
2853 * pointer passed in means that we need to find out from the app
2854 * what port to get stats for (used through board control device).
2855 */
2856
2857 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
2858 {
2859 unsigned char *head, *tail;
2860 unsigned long flags;
2861
2862 if (!portp) {
2863 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2864 return -EFAULT;
2865 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2866 stl_comstats.port);
2867 if (portp == (stlport_t *) NULL)
2868 return(-ENODEV);
2869 }
2870
2871 portp->stats.state = portp->istate;
2872 portp->stats.flags = portp->flags;
2873 portp->stats.hwid = portp->hwid;
2874
2875 portp->stats.ttystate = 0;
2876 portp->stats.cflags = 0;
2877 portp->stats.iflags = 0;
2878 portp->stats.oflags = 0;
2879 portp->stats.lflags = 0;
2880 portp->stats.rxbuffered = 0;
2881
2882 save_flags(flags);
2883 cli();
2884 if (portp->tty != (struct tty_struct *) NULL) {
2885 if (portp->tty->driver_data == portp) {
2886 portp->stats.ttystate = portp->tty->flags;
2887 /* No longer available as a statistic */
2888 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2889 if (portp->tty->termios != (struct termios *) NULL) {
2890 portp->stats.cflags = portp->tty->termios->c_cflag;
2891 portp->stats.iflags = portp->tty->termios->c_iflag;
2892 portp->stats.oflags = portp->tty->termios->c_oflag;
2893 portp->stats.lflags = portp->tty->termios->c_lflag;
2894 }
2895 }
2896 }
2897 restore_flags(flags);
2898
2899 head = portp->tx.head;
2900 tail = portp->tx.tail;
2901 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2902 (STL_TXBUFSIZE - (tail - head)));
2903
2904 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2905
2906 return copy_to_user(cp, &portp->stats,
2907 sizeof(comstats_t)) ? -EFAULT : 0;
2908 }
2909
2910 /*****************************************************************************/
2911
2912 /*
2913 * Clear the port stats structure. We also return it zeroed out...
2914 */
2915
2916 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
2917 {
2918 if (!portp) {
2919 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2920 return -EFAULT;
2921 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2922 stl_comstats.port);
2923 if (portp == (stlport_t *) NULL)
2924 return(-ENODEV);
2925 }
2926
2927 memset(&portp->stats, 0, sizeof(comstats_t));
2928 portp->stats.brd = portp->brdnr;
2929 portp->stats.panel = portp->panelnr;
2930 portp->stats.port = portp->portnr;
2931 return copy_to_user(cp, &portp->stats,
2932 sizeof(comstats_t)) ? -EFAULT : 0;
2933 }
2934
2935 /*****************************************************************************/
2936
2937 /*
2938 * Return the entire driver ports structure to a user app.
2939 */
2940
2941 static int stl_getportstruct(stlport_t __user *arg)
2942 {
2943 stlport_t *portp;
2944
2945 if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
2946 return -EFAULT;
2947 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2948 stl_dummyport.portnr);
2949 if (!portp)
2950 return -ENODEV;
2951 return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
2952 }
2953
2954 /*****************************************************************************/
2955
2956 /*
2957 * Return the entire driver board structure to a user app.
2958 */
2959
2960 static int stl_getbrdstruct(stlbrd_t __user *arg)
2961 {
2962 stlbrd_t *brdp;
2963
2964 if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
2965 return -EFAULT;
2966 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2967 return -ENODEV;
2968 brdp = stl_brds[stl_dummybrd.brdnr];
2969 if (!brdp)
2970 return(-ENODEV);
2971 return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
2972 }
2973
2974 /*****************************************************************************/
2975
2976 /*
2977 * The "staliomem" device is also required to do some special operations
2978 * on the board and/or ports. In this driver it is mostly used for stats
2979 * collection.
2980 */
2981
2982 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2983 {
2984 int brdnr, rc;
2985 void __user *argp = (void __user *)arg;
2986
2987 #ifdef DEBUG
2988 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
2989 (int) fp, cmd, (int) arg);
2990 #endif
2991
2992 brdnr = iminor(ip);
2993 if (brdnr >= STL_MAXBRDS)
2994 return(-ENODEV);
2995 rc = 0;
2996
2997 switch (cmd) {
2998 case COM_GETPORTSTATS:
2999 rc = stl_getportstats(NULL, argp);
3000 break;
3001 case COM_CLRPORTSTATS:
3002 rc = stl_clrportstats(NULL, argp);
3003 break;
3004 case COM_GETBRDSTATS:
3005 rc = stl_getbrdstats(argp);
3006 break;
3007 case COM_READPORT:
3008 rc = stl_getportstruct(argp);
3009 break;
3010 case COM_READBOARD:
3011 rc = stl_getbrdstruct(argp);
3012 break;
3013 default:
3014 rc = -ENOIOCTLCMD;
3015 break;
3016 }
3017
3018 return(rc);
3019 }
3020
3021 static struct tty_operations stl_ops = {
3022 .open = stl_open,
3023 .close = stl_close,
3024 .write = stl_write,
3025 .put_char = stl_putchar,
3026 .flush_chars = stl_flushchars,
3027 .write_room = stl_writeroom,
3028 .chars_in_buffer = stl_charsinbuffer,
3029 .ioctl = stl_ioctl,
3030 .set_termios = stl_settermios,
3031 .throttle = stl_throttle,
3032 .unthrottle = stl_unthrottle,
3033 .stop = stl_stop,
3034 .start = stl_start,
3035 .hangup = stl_hangup,
3036 .flush_buffer = stl_flushbuffer,
3037 .break_ctl = stl_breakctl,
3038 .wait_until_sent = stl_waituntilsent,
3039 .send_xchar = stl_sendxchar,
3040 .read_proc = stl_readproc,
3041 .tiocmget = stl_tiocmget,
3042 .tiocmset = stl_tiocmset,
3043 };
3044
3045 /*****************************************************************************/
3046
3047 static int __init stl_init(void)
3048 {
3049 int i;
3050 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
3051
3052 stl_initbrds();
3053
3054 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
3055 if (!stl_serial)
3056 return -1;
3057
3058 /*
3059 * Allocate a temporary write buffer.
3060 */
3061 stl_tmpwritebuf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
3062 if (!stl_tmpwritebuf)
3063 printk("STALLION: failed to allocate memory (size=%d)\n",
3064 STL_TXBUFSIZE);
3065
3066 /*
3067 * Set up a character driver for per board stuff. This is mainly used
3068 * to do stats ioctls on the ports.
3069 */
3070 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
3071 printk("STALLION: failed to register serial board device\n");
3072 devfs_mk_dir("staliomem");
3073
3074 stallion_class = class_create(THIS_MODULE, "staliomem");
3075 for (i = 0; i < 4; i++) {
3076 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
3077 S_IFCHR|S_IRUSR|S_IWUSR,
3078 "staliomem/%d", i);
3079 class_device_create(stallion_class, NULL,
3080 MKDEV(STL_SIOMEMMAJOR, i), NULL,
3081 "staliomem%d", i);
3082 }
3083
3084 stl_serial->owner = THIS_MODULE;
3085 stl_serial->driver_name = stl_drvname;
3086 stl_serial->name = "ttyE";
3087 stl_serial->devfs_name = "tts/E";
3088 stl_serial->major = STL_SERIALMAJOR;
3089 stl_serial->minor_start = 0;
3090 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
3091 stl_serial->subtype = SERIAL_TYPE_NORMAL;
3092 stl_serial->init_termios = stl_deftermios;
3093 stl_serial->flags = TTY_DRIVER_REAL_RAW;
3094 tty_set_operations(stl_serial, &stl_ops);
3095
3096 if (tty_register_driver(stl_serial)) {
3097 put_tty_driver(stl_serial);
3098 printk("STALLION: failed to register serial driver\n");
3099 return -1;
3100 }
3101
3102 return 0;
3103 }
3104
3105 /*****************************************************************************/
3106 /* CD1400 HARDWARE FUNCTIONS */
3107 /*****************************************************************************/
3108
3109 /*
3110 * These functions get/set/update the registers of the cd1400 UARTs.
3111 * Access to the cd1400 registers is via an address/data io port pair.
3112 * (Maybe should make this inline...)
3113 */
3114
3115 static int stl_cd1400getreg(stlport_t *portp, int regnr)
3116 {
3117 outb((regnr + portp->uartaddr), portp->ioaddr);
3118 return inb(portp->ioaddr + EREG_DATA);
3119 }
3120
3121 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
3122 {
3123 outb((regnr + portp->uartaddr), portp->ioaddr);
3124 outb(value, portp->ioaddr + EREG_DATA);
3125 }
3126
3127 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
3128 {
3129 outb((regnr + portp->uartaddr), portp->ioaddr);
3130 if (inb(portp->ioaddr + EREG_DATA) != value) {
3131 outb(value, portp->ioaddr + EREG_DATA);
3132 return 1;
3133 }
3134 return 0;
3135 }
3136
3137 /*****************************************************************************/
3138
3139 /*
3140 * Inbitialize the UARTs in a panel. We don't care what sort of board
3141 * these ports are on - since the port io registers are almost
3142 * identical when dealing with ports.
3143 */
3144
3145 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
3146 {
3147 unsigned int gfrcr;
3148 int chipmask, i, j;
3149 int nrchips, uartaddr, ioaddr;
3150
3151 #ifdef DEBUG
3152 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
3153 #endif
3154
3155 BRDENABLE(panelp->brdnr, panelp->pagenr);
3156
3157 /*
3158 * Check that each chip is present and started up OK.
3159 */
3160 chipmask = 0;
3161 nrchips = panelp->nrports / CD1400_PORTS;
3162 for (i = 0; (i < nrchips); i++) {
3163 if (brdp->brdtype == BRD_ECHPCI) {
3164 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
3165 ioaddr = panelp->iobase;
3166 } else {
3167 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
3168 }
3169 uartaddr = (i & 0x01) ? 0x080 : 0;
3170 outb((GFRCR + uartaddr), ioaddr);
3171 outb(0, (ioaddr + EREG_DATA));
3172 outb((CCR + uartaddr), ioaddr);
3173 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3174 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3175 outb((GFRCR + uartaddr), ioaddr);
3176 for (j = 0; (j < CCR_MAXWAIT); j++) {
3177 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
3178 break;
3179 }
3180 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
3181 printk("STALLION: cd1400 not responding, "
3182 "brd=%d panel=%d chip=%d\n",
3183 panelp->brdnr, panelp->panelnr, i);
3184 continue;
3185 }
3186 chipmask |= (0x1 << i);
3187 outb((PPR + uartaddr), ioaddr);
3188 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
3189 }
3190
3191 BRDDISABLE(panelp->brdnr);
3192 return chipmask;
3193 }
3194
3195 /*****************************************************************************/
3196
3197 /*
3198 * Initialize hardware specific port registers.
3199 */
3200
3201 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
3202 {
3203 #ifdef DEBUG
3204 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3205 (int) brdp, (int) panelp, (int) portp);
3206 #endif
3207
3208 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
3209 (portp == (stlport_t *) NULL))
3210 return;
3211
3212 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
3213 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
3214 portp->uartaddr = (portp->portnr & 0x04) << 5;
3215 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
3216
3217 BRDENABLE(portp->brdnr, portp->pagenr);
3218 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3219 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
3220 portp->hwid = stl_cd1400getreg(portp, GFRCR);
3221 BRDDISABLE(portp->brdnr);
3222 }
3223
3224 /*****************************************************************************/
3225
3226 /*
3227 * Wait for the command register to be ready. We will poll this,
3228 * since it won't usually take too long to be ready.
3229 */
3230
3231 static void stl_cd1400ccrwait(stlport_t *portp)
3232 {
3233 int i;
3234
3235 for (i = 0; (i < CCR_MAXWAIT); i++) {
3236 if (stl_cd1400getreg(portp, CCR) == 0) {
3237 return;
3238 }
3239 }
3240
3241 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3242 portp->portnr, portp->panelnr, portp->brdnr);
3243 }
3244
3245 /*****************************************************************************/
3246
3247 /*
3248 * Set up the cd1400 registers for a port based on the termios port
3249 * settings.
3250 */
3251
3252 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
3253 {
3254 stlbrd_t *brdp;
3255 unsigned long flags;
3256 unsigned int clkdiv, baudrate;
3257 unsigned char cor1, cor2, cor3;
3258 unsigned char cor4, cor5, ccr;
3259 unsigned char srer, sreron, sreroff;
3260 unsigned char mcor1, mcor2, rtpr;
3261 unsigned char clk, div;
3262
3263 cor1 = 0;
3264 cor2 = 0;
3265 cor3 = 0;
3266 cor4 = 0;
3267 cor5 = 0;
3268 ccr = 0;
3269 rtpr = 0;
3270 clk = 0;
3271 div = 0;
3272 mcor1 = 0;
3273 mcor2 = 0;
3274 sreron = 0;
3275 sreroff = 0;
3276
3277 brdp = stl_brds[portp->brdnr];
3278 if (brdp == (stlbrd_t *) NULL)
3279 return;
3280
3281 /*
3282 * Set up the RX char ignore mask with those RX error types we
3283 * can ignore. We can get the cd1400 to help us out a little here,
3284 * it will ignore parity errors and breaks for us.
3285 */
3286 portp->rxignoremsk = 0;
3287 if (tiosp->c_iflag & IGNPAR) {
3288 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
3289 cor1 |= COR1_PARIGNORE;
3290 }
3291 if (tiosp->c_iflag & IGNBRK) {
3292 portp->rxignoremsk |= ST_BREAK;
3293 cor4 |= COR4_IGNBRK;
3294 }
3295
3296 portp->rxmarkmsk = ST_OVERRUN;
3297 if (tiosp->c_iflag & (INPCK | PARMRK))
3298 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
3299 if (tiosp->c_iflag & BRKINT)
3300 portp->rxmarkmsk |= ST_BREAK;
3301
3302 /*
3303 * Go through the char size, parity and stop bits and set all the
3304 * option register appropriately.
3305 */
3306 switch (tiosp->c_cflag & CSIZE) {
3307 case CS5:
3308 cor1 |= COR1_CHL5;
3309 break;
3310 case CS6:
3311 cor1 |= COR1_CHL6;
3312 break;
3313 case CS7:
3314 cor1 |= COR1_CHL7;
3315 break;
3316 default:
3317 cor1 |= COR1_CHL8;
3318 break;
3319 }
3320
3321 if (tiosp->c_cflag & CSTOPB)
3322 cor1 |= COR1_STOP2;
3323 else
3324 cor1 |= COR1_STOP1;
3325
3326 if (tiosp->c_cflag & PARENB) {
3327 if (tiosp->c_cflag & PARODD)
3328 cor1 |= (COR1_PARENB | COR1_PARODD);
3329 else
3330 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3331 } else {
3332 cor1 |= COR1_PARNONE;
3333 }
3334
3335 /*
3336 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3337 * space for hardware flow control and the like. This should be set to
3338 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3339 * really be based on VTIME.
3340 */
3341 cor3 |= FIFO_RXTHRESHOLD;
3342 rtpr = 2;
3343
3344 /*
3345 * Calculate the baud rate timers. For now we will just assume that
3346 * the input and output baud are the same. Could have used a baud
3347 * table here, but this way we can generate virtually any baud rate
3348 * we like!
3349 */
3350 baudrate = tiosp->c_cflag & CBAUD;
3351 if (baudrate & CBAUDEX) {
3352 baudrate &= ~CBAUDEX;
3353 if ((baudrate < 1) || (baudrate > 4))
3354 tiosp->c_cflag &= ~CBAUDEX;
3355 else
3356 baudrate += 15;
3357 }
3358 baudrate = stl_baudrates[baudrate];
3359 if ((tiosp->c_cflag & CBAUD) == B38400) {
3360 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3361 baudrate = 57600;
3362 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3363 baudrate = 115200;
3364 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3365 baudrate = 230400;
3366 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3367 baudrate = 460800;
3368 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3369 baudrate = (portp->baud_base / portp->custom_divisor);
3370 }
3371 if (baudrate > STL_CD1400MAXBAUD)
3372 baudrate = STL_CD1400MAXBAUD;
3373
3374 if (baudrate > 0) {
3375 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3376 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3377 if (clkdiv < 0x100)
3378 break;
3379 }
3380 div = (unsigned char) clkdiv;
3381 }
3382
3383 /*
3384 * Check what form of modem signaling is required and set it up.
3385 */
3386 if ((tiosp->c_cflag & CLOCAL) == 0) {
3387 mcor1 |= MCOR1_DCD;
3388 mcor2 |= MCOR2_DCD;
3389 sreron |= SRER_MODEM;
3390 portp->flags |= ASYNC_CHECK_CD;
3391 } else {
3392 portp->flags &= ~ASYNC_CHECK_CD;
3393 }
3394
3395 /*
3396 * Setup cd1400 enhanced modes if we can. In particular we want to
3397 * handle as much of the flow control as possible automatically. As
3398 * well as saving a few CPU cycles it will also greatly improve flow
3399 * control reliability.
3400 */
3401 if (tiosp->c_iflag & IXON) {
3402 cor2 |= COR2_TXIBE;
3403 cor3 |= COR3_SCD12;
3404 if (tiosp->c_iflag & IXANY)
3405 cor2 |= COR2_IXM;
3406 }
3407
3408 if (tiosp->c_cflag & CRTSCTS) {
3409 cor2 |= COR2_CTSAE;
3410 mcor1 |= FIFO_RTSTHRESHOLD;
3411 }
3412
3413 /*
3414 * All cd1400 register values calculated so go through and set
3415 * them all up.
3416 */
3417
3418 #ifdef DEBUG
3419 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3420 portp->portnr, portp->panelnr, portp->brdnr);
3421 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3422 cor1, cor2, cor3, cor4, cor5);
3423 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3424 mcor1, mcor2, rtpr, sreron, sreroff);
3425 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3426 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3427 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3428 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3429 #endif
3430
3431 save_flags(flags);
3432 cli();
3433 BRDENABLE(portp->brdnr, portp->pagenr);
3434 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3435 srer = stl_cd1400getreg(portp, SRER);
3436 stl_cd1400setreg(portp, SRER, 0);
3437 if (stl_cd1400updatereg(portp, COR1, cor1))
3438 ccr = 1;
3439 if (stl_cd1400updatereg(portp, COR2, cor2))
3440 ccr = 1;
3441 if (stl_cd1400updatereg(portp, COR3, cor3))
3442 ccr = 1;
3443 if (ccr) {
3444 stl_cd1400ccrwait(portp);
3445 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3446 }
3447 stl_cd1400setreg(portp, COR4, cor4);
3448 stl_cd1400setreg(portp, COR5, cor5);
3449 stl_cd1400setreg(portp, MCOR1, mcor1);
3450 stl_cd1400setreg(portp, MCOR2, mcor2);
3451 if (baudrate > 0) {
3452 stl_cd1400setreg(portp, TCOR, clk);
3453 stl_cd1400setreg(portp, TBPR, div);
3454 stl_cd1400setreg(portp, RCOR, clk);
3455 stl_cd1400setreg(portp, RBPR, div);
3456 }
3457 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3458 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3459 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3460 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3461 stl_cd1400setreg(portp, RTPR, rtpr);
3462 mcor1 = stl_cd1400getreg(portp, MSVR1);
3463 if (mcor1 & MSVR1_DCD)
3464 portp->sigs |= TIOCM_CD;
3465 else
3466 portp->sigs &= ~TIOCM_CD;
3467 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3468 BRDDISABLE(portp->brdnr);
3469 restore_flags(flags);
3470 }
3471
3472 /*****************************************************************************/
3473
3474 /*
3475 * Set the state of the DTR and RTS signals.
3476 */
3477
3478 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
3479 {
3480 unsigned char msvr1, msvr2;
3481 unsigned long flags;
3482
3483 #ifdef DEBUG
3484 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3485 (int) portp, dtr, rts);
3486 #endif
3487
3488 msvr1 = 0;
3489 msvr2 = 0;
3490 if (dtr > 0)
3491 msvr1 = MSVR1_DTR;
3492 if (rts > 0)
3493 msvr2 = MSVR2_RTS;
3494
3495 save_flags(flags);
3496 cli();
3497 BRDENABLE(portp->brdnr, portp->pagenr);
3498 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3499 if (rts >= 0)
3500 stl_cd1400setreg(portp, MSVR2, msvr2);
3501 if (dtr >= 0)
3502 stl_cd1400setreg(portp, MSVR1, msvr1);
3503 BRDDISABLE(portp->brdnr);
3504 restore_flags(flags);
3505 }
3506
3507 /*****************************************************************************/
3508
3509 /*
3510 * Return the state of the signals.
3511 */
3512
3513 static int stl_cd1400getsignals(stlport_t *portp)
3514 {
3515 unsigned char msvr1, msvr2;
3516 unsigned long flags;
3517 int sigs;
3518
3519 #ifdef DEBUG
3520 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
3521 #endif
3522
3523 save_flags(flags);
3524 cli();
3525 BRDENABLE(portp->brdnr, portp->pagenr);
3526 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3527 msvr1 = stl_cd1400getreg(portp, MSVR1);
3528 msvr2 = stl_cd1400getreg(portp, MSVR2);
3529 BRDDISABLE(portp->brdnr);
3530 restore_flags(flags);
3531
3532 sigs = 0;
3533 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3534 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3535 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3536 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3537 #if 0
3538 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3539 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3540 #else
3541 sigs |= TIOCM_DSR;
3542 #endif
3543 return sigs;
3544 }
3545
3546 /*****************************************************************************/
3547
3548 /*
3549 * Enable/Disable the Transmitter and/or Receiver.
3550 */
3551
3552 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
3553 {
3554 unsigned char ccr;
3555 unsigned long flags;
3556
3557 #ifdef DEBUG
3558 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3559 (int) portp, rx, tx);
3560 #endif
3561 ccr = 0;
3562
3563 if (tx == 0)
3564 ccr |= CCR_TXDISABLE;
3565 else if (tx > 0)
3566 ccr |= CCR_TXENABLE;
3567 if (rx == 0)
3568 ccr |= CCR_RXDISABLE;
3569 else if (rx > 0)
3570 ccr |= CCR_RXENABLE;
3571
3572 save_flags(flags);
3573 cli();
3574 BRDENABLE(portp->brdnr, portp->pagenr);
3575 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3576 stl_cd1400ccrwait(portp);
3577 stl_cd1400setreg(portp, CCR, ccr);
3578 stl_cd1400ccrwait(portp);
3579 BRDDISABLE(portp->brdnr);
3580 restore_flags(flags);
3581 }
3582
3583 /*****************************************************************************/
3584
3585 /*
3586 * Start/stop the Transmitter and/or Receiver.
3587 */
3588
3589 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
3590 {
3591 unsigned char sreron, sreroff;
3592 unsigned long flags;
3593
3594 #ifdef DEBUG
3595 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3596 (int) portp, rx, tx);
3597 #endif
3598
3599 sreron = 0;
3600 sreroff = 0;
3601 if (tx == 0)
3602 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3603 else if (tx == 1)
3604 sreron |= SRER_TXDATA;
3605 else if (tx >= 2)
3606 sreron |= SRER_TXEMPTY;
3607 if (rx == 0)
3608 sreroff |= SRER_RXDATA;
3609 else if (rx > 0)
3610 sreron |= SRER_RXDATA;
3611
3612 save_flags(flags);
3613 cli();
3614 BRDENABLE(portp->brdnr, portp->pagenr);
3615 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3616 stl_cd1400setreg(portp, SRER,
3617 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3618 BRDDISABLE(portp->brdnr);
3619 if (tx > 0)
3620 set_bit(ASYI_TXBUSY, &portp->istate);
3621 restore_flags(flags);
3622 }
3623
3624 /*****************************************************************************/
3625
3626 /*
3627 * Disable all interrupts from this port.
3628 */
3629
3630 static void stl_cd1400disableintrs(stlport_t *portp)
3631 {
3632 unsigned long flags;
3633
3634 #ifdef DEBUG
3635 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
3636 #endif
3637 save_flags(flags);
3638 cli();
3639 BRDENABLE(portp->brdnr, portp->pagenr);
3640 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3641 stl_cd1400setreg(portp, SRER, 0);
3642 BRDDISABLE(portp->brdnr);
3643 restore_flags(flags);
3644 }
3645
3646 /*****************************************************************************/
3647
3648 static void stl_cd1400sendbreak(stlport_t *portp, int len)
3649 {
3650 unsigned long flags;
3651
3652 #ifdef DEBUG
3653 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
3654 #endif
3655
3656 save_flags(flags);
3657 cli();
3658 BRDENABLE(portp->brdnr, portp->pagenr);
3659 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3660 stl_cd1400setreg(portp, SRER,
3661 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3662 SRER_TXEMPTY));
3663 BRDDISABLE(portp->brdnr);
3664 portp->brklen = len;
3665 if (len == 1)
3666 portp->stats.txbreaks++;
3667 restore_flags(flags);
3668 }
3669
3670 /*****************************************************************************/
3671
3672 /*
3673 * Take flow control actions...
3674 */
3675
3676 static void stl_cd1400flowctrl(stlport_t *portp, int state)
3677 {
3678 struct tty_struct *tty;
3679 unsigned long flags;
3680
3681 #ifdef DEBUG
3682 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
3683 #endif
3684
3685 if (portp == (stlport_t *) NULL)
3686 return;
3687 tty = portp->tty;
3688 if (tty == (struct tty_struct *) NULL)
3689 return;
3690
3691 save_flags(flags);
3692 cli();
3693 BRDENABLE(portp->brdnr, portp->pagenr);
3694 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3695
3696 if (state) {
3697 if (tty->termios->c_iflag & IXOFF) {
3698 stl_cd1400ccrwait(portp);
3699 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3700 portp->stats.rxxon++;
3701 stl_cd1400ccrwait(portp);
3702 }
3703 /*
3704 * Question: should we return RTS to what it was before? It may
3705 * have been set by an ioctl... Suppose not, since if you have
3706 * hardware flow control set then it is pretty silly to go and
3707 * set the RTS line by hand.
3708 */
3709 if (tty->termios->c_cflag & CRTSCTS) {
3710 stl_cd1400setreg(portp, MCOR1,
3711 (stl_cd1400getreg(portp, MCOR1) |
3712 FIFO_RTSTHRESHOLD));
3713 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3714 portp->stats.rxrtson++;
3715 }
3716 } else {
3717 if (tty->termios->c_iflag & IXOFF) {
3718 stl_cd1400ccrwait(portp);
3719 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3720 portp->stats.rxxoff++;
3721 stl_cd1400ccrwait(portp);
3722 }
3723 if (tty->termios->c_cflag & CRTSCTS) {
3724 stl_cd1400setreg(portp, MCOR1,
3725 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3726 stl_cd1400setreg(portp, MSVR2, 0);
3727 portp->stats.rxrtsoff++;
3728 }
3729 }
3730
3731 BRDDISABLE(portp->brdnr);
3732 restore_flags(flags);
3733 }
3734
3735 /*****************************************************************************/
3736
3737 /*
3738 * Send a flow control character...
3739 */
3740
3741 static void stl_cd1400sendflow(stlport_t *portp, int state)
3742 {
3743 struct tty_struct *tty;
3744 unsigned long flags;
3745
3746 #ifdef DEBUG
3747 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
3748 #endif
3749
3750 if (portp == (stlport_t *) NULL)
3751 return;
3752 tty = portp->tty;
3753 if (tty == (struct tty_struct *) NULL)
3754 return;
3755
3756 save_flags(flags);
3757 cli();
3758 BRDENABLE(portp->brdnr, portp->pagenr);
3759 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3760 if (state) {
3761 stl_cd1400ccrwait(portp);
3762 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3763 portp->stats.rxxon++;
3764 stl_cd1400ccrwait(portp);
3765 } else {
3766 stl_cd1400ccrwait(portp);
3767 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3768 portp->stats.rxxoff++;
3769 stl_cd1400ccrwait(portp);
3770 }
3771 BRDDISABLE(portp->brdnr);
3772 restore_flags(flags);
3773 }
3774
3775 /*****************************************************************************/
3776
3777 static void stl_cd1400flush(stlport_t *portp)
3778 {
3779 unsigned long flags;
3780
3781 #ifdef DEBUG
3782 printk("stl_cd1400flush(portp=%x)\n", (int) portp);
3783 #endif
3784
3785 if (portp == (stlport_t *) NULL)
3786 return;
3787
3788 save_flags(flags);
3789 cli();
3790 BRDENABLE(portp->brdnr, portp->pagenr);
3791 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3792 stl_cd1400ccrwait(portp);
3793 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3794 stl_cd1400ccrwait(portp);
3795 portp->tx.tail = portp->tx.head;
3796 BRDDISABLE(portp->brdnr);
3797 restore_flags(flags);
3798 }
3799
3800 /*****************************************************************************/
3801
3802 /*
3803 * Return the current state of data flow on this port. This is only
3804 * really interresting when determining if data has fully completed
3805 * transmission or not... This is easy for the cd1400, it accurately
3806 * maintains the busy port flag.
3807 */
3808
3809 static int stl_cd1400datastate(stlport_t *portp)
3810 {
3811 #ifdef DEBUG
3812 printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
3813 #endif
3814
3815 if (portp == (stlport_t *) NULL)
3816 return 0;
3817
3818 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3819 }
3820
3821 /*****************************************************************************/
3822
3823 /*
3824 * Interrupt service routine for cd1400 EasyIO boards.
3825 */
3826
3827 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
3828 {
3829 unsigned char svrtype;
3830
3831 #ifdef DEBUG
3832 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3833 (int) panelp, iobase);
3834 #endif
3835
3836 outb(SVRR, iobase);
3837 svrtype = inb(iobase + EREG_DATA);
3838 if (panelp->nrports > 4) {
3839 outb((SVRR + 0x80), iobase);
3840 svrtype |= inb(iobase + EREG_DATA);
3841 }
3842
3843 if (svrtype & SVRR_RX)
3844 stl_cd1400rxisr(panelp, iobase);
3845 else if (svrtype & SVRR_TX)
3846 stl_cd1400txisr(panelp, iobase);
3847 else if (svrtype & SVRR_MDM)
3848 stl_cd1400mdmisr(panelp, iobase);
3849 }
3850
3851 /*****************************************************************************/
3852
3853 /*
3854 * Interrupt service routine for cd1400 panels.
3855 */
3856
3857 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
3858 {
3859 unsigned char svrtype;
3860
3861 #ifdef DEBUG
3862 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
3863 iobase);
3864 #endif
3865
3866 outb(SVRR, iobase);
3867 svrtype = inb(iobase + EREG_DATA);
3868 outb((SVRR + 0x80), iobase);
3869 svrtype |= inb(iobase + EREG_DATA);
3870 if (svrtype & SVRR_RX)
3871 stl_cd1400rxisr(panelp, iobase);
3872 else if (svrtype & SVRR_TX)
3873 stl_cd1400txisr(panelp, iobase);
3874 else if (svrtype & SVRR_MDM)
3875 stl_cd1400mdmisr(panelp, iobase);
3876 }
3877
3878
3879 /*****************************************************************************/
3880
3881 /*
3882 * Unfortunately we need to handle breaks in the TX data stream, since
3883 * this is the only way to generate them on the cd1400.
3884 */
3885
3886 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
3887 {
3888 if (portp->brklen == 1) {
3889 outb((COR2 + portp->uartaddr), ioaddr);
3890 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3891 (ioaddr + EREG_DATA));
3892 outb((TDR + portp->uartaddr), ioaddr);
3893 outb(ETC_CMD, (ioaddr + EREG_DATA));
3894 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3895 outb((SRER + portp->uartaddr), ioaddr);
3896 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3897 (ioaddr + EREG_DATA));
3898 return 1;
3899 } else if (portp->brklen > 1) {
3900 outb((TDR + portp->uartaddr), ioaddr);
3901 outb(ETC_CMD, (ioaddr + EREG_DATA));
3902 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3903 portp->brklen = -1;
3904 return 1;
3905 } else {
3906 outb((COR2 + portp->uartaddr), ioaddr);
3907 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3908 (ioaddr + EREG_DATA));
3909 portp->brklen = 0;
3910 }
3911 return 0;
3912 }
3913
3914 /*****************************************************************************/
3915
3916 /*
3917 * Transmit interrupt handler. This has gotta be fast! Handling TX
3918 * chars is pretty simple, stuff as many as possible from the TX buffer
3919 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3920 * are embedded as commands in the data stream. Oh no, had to use a goto!
3921 * This could be optimized more, will do when I get time...
3922 * In practice it is possible that interrupts are enabled but that the
3923 * port has been hung up. Need to handle not having any TX buffer here,
3924 * this is done by using the side effect that head and tail will also
3925 * be NULL if the buffer has been freed.
3926 */
3927
3928 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
3929 {
3930 stlport_t *portp;
3931 int len, stlen;
3932 char *head, *tail;
3933 unsigned char ioack, srer;
3934
3935 #ifdef DEBUG
3936 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3937 #endif
3938
3939 ioack = inb(ioaddr + EREG_TXACK);
3940 if (((ioack & panelp->ackmask) != 0) ||
3941 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3942 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3943 return;
3944 }
3945 portp = panelp->ports[(ioack >> 3)];
3946
3947 /*
3948 * Unfortunately we need to handle breaks in the data stream, since
3949 * this is the only way to generate them on the cd1400. Do it now if
3950 * a break is to be sent.
3951 */
3952 if (portp->brklen != 0)
3953 if (stl_cd1400breakisr(portp, ioaddr))
3954 goto stl_txalldone;
3955
3956 head = portp->tx.head;
3957 tail = portp->tx.tail;
3958 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3959 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3960 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3961 set_bit(ASYI_TXLOW, &portp->istate);
3962 schedule_work(&portp->tqueue);
3963 }
3964
3965 if (len == 0) {
3966 outb((SRER + portp->uartaddr), ioaddr);
3967 srer = inb(ioaddr + EREG_DATA);
3968 if (srer & SRER_TXDATA) {
3969 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3970 } else {
3971 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3972 clear_bit(ASYI_TXBUSY, &portp->istate);
3973 }
3974 outb(srer, (ioaddr + EREG_DATA));
3975 } else {
3976 len = MIN(len, CD1400_TXFIFOSIZE);
3977 portp->stats.txtotal += len;
3978 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3979 outb((TDR + portp->uartaddr), ioaddr);
3980 outsb((ioaddr + EREG_DATA), tail, stlen);
3981 len -= stlen;
3982 tail += stlen;
3983 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3984 tail = portp->tx.buf;
3985 if (len > 0) {
3986 outsb((ioaddr + EREG_DATA), tail, len);
3987 tail += len;
3988 }
3989 portp->tx.tail = tail;
3990 }
3991
3992 stl_txalldone:
3993 outb((EOSRR + portp->uartaddr), ioaddr);
3994 outb(0, (ioaddr + EREG_DATA));
3995 }
3996
3997 /*****************************************************************************/
3998
3999 /*
4000 * Receive character interrupt handler. Determine if we have good chars
4001 * or bad chars and then process appropriately. Good chars are easy
4002 * just shove the lot into the RX buffer and set all status byte to 0.
4003 * If a bad RX char then process as required. This routine needs to be
4004 * fast! In practice it is possible that we get an interrupt on a port
4005 * that is closed. This can happen on hangups - since they completely
4006 * shutdown a port not in user context. Need to handle this case.
4007 */
4008
4009 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
4010 {
4011 stlport_t *portp;
4012 struct tty_struct *tty;
4013 unsigned int ioack, len, buflen;
4014 unsigned char status;
4015 char ch;
4016
4017 #ifdef DEBUG
4018 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
4019 #endif
4020
4021 ioack = inb(ioaddr + EREG_RXACK);
4022 if ((ioack & panelp->ackmask) != 0) {
4023 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4024 return;
4025 }
4026 portp = panelp->ports[(ioack >> 3)];
4027 tty = portp->tty;
4028
4029 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
4030 outb((RDCR + portp->uartaddr), ioaddr);
4031 len = inb(ioaddr + EREG_DATA);
4032 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4033 len = MIN(len, sizeof(stl_unwanted));
4034 outb((RDSR + portp->uartaddr), ioaddr);
4035 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
4036 portp->stats.rxlost += len;
4037 portp->stats.rxtotal += len;
4038 } else {
4039 len = MIN(len, buflen);
4040 if (len > 0) {
4041 unsigned char *ptr;
4042 outb((RDSR + portp->uartaddr), ioaddr);
4043 tty_prepare_flip_string(tty, &ptr, len);
4044 insb((ioaddr + EREG_DATA), ptr, len);
4045 tty_schedule_flip(tty);
4046 portp->stats.rxtotal += len;
4047 }
4048 }
4049 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
4050 outb((RDSR + portp->uartaddr), ioaddr);
4051 status = inb(ioaddr + EREG_DATA);
4052 ch = inb(ioaddr + EREG_DATA);
4053 if (status & ST_PARITY)
4054 portp->stats.rxparity++;
4055 if (status & ST_FRAMING)
4056 portp->stats.rxframing++;
4057 if (status & ST_OVERRUN)
4058 portp->stats.rxoverrun++;
4059 if (status & ST_BREAK)
4060 portp->stats.rxbreaks++;
4061 if (status & ST_SCHARMASK) {
4062 if ((status & ST_SCHARMASK) == ST_SCHAR1)
4063 portp->stats.txxon++;
4064 if ((status & ST_SCHARMASK) == ST_SCHAR2)
4065 portp->stats.txxoff++;
4066 goto stl_rxalldone;
4067 }
4068 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
4069 if (portp->rxmarkmsk & status) {
4070 if (status & ST_BREAK) {
4071 status = TTY_BREAK;
4072 if (portp->flags & ASYNC_SAK) {
4073 do_SAK(tty);
4074 BRDENABLE(portp->brdnr, portp->pagenr);
4075 }
4076 } else if (status & ST_PARITY) {
4077 status = TTY_PARITY;
4078 } else if (status & ST_FRAMING) {
4079 status = TTY_FRAME;
4080 } else if(status & ST_OVERRUN) {
4081 status = TTY_OVERRUN;
4082 } else {
4083 status = 0;
4084 }
4085 } else {
4086 status = 0;
4087 }
4088 tty_insert_flip_char(tty, ch, status);
4089 tty_schedule_flip(tty);
4090 }
4091 } else {
4092 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4093 return;
4094 }
4095
4096 stl_rxalldone:
4097 outb((EOSRR + portp->uartaddr), ioaddr);
4098 outb(0, (ioaddr + EREG_DATA));
4099 }
4100
4101 /*****************************************************************************/
4102
4103 /*
4104 * Modem interrupt handler. The is called when the modem signal line
4105 * (DCD) has changed state. Leave most of the work to the off-level
4106 * processing routine.
4107 */
4108
4109 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
4110 {
4111 stlport_t *portp;
4112 unsigned int ioack;
4113 unsigned char misr;
4114
4115 #ifdef DEBUG
4116 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
4117 #endif
4118
4119 ioack = inb(ioaddr + EREG_MDACK);
4120 if (((ioack & panelp->ackmask) != 0) ||
4121 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
4122 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
4123 return;
4124 }
4125 portp = panelp->ports[(ioack >> 3)];
4126
4127 outb((MISR + portp->uartaddr), ioaddr);
4128 misr = inb(ioaddr + EREG_DATA);
4129 if (misr & MISR_DCD) {
4130 set_bit(ASYI_DCDCHANGE, &portp->istate);
4131 schedule_work(&portp->tqueue);
4132 portp->stats.modem++;
4133 }
4134
4135 outb((EOSRR + portp->uartaddr), ioaddr);
4136 outb(0, (ioaddr + EREG_DATA));
4137 }
4138
4139 /*****************************************************************************/
4140 /* SC26198 HARDWARE FUNCTIONS */
4141 /*****************************************************************************/
4142
4143 /*
4144 * These functions get/set/update the registers of the sc26198 UARTs.
4145 * Access to the sc26198 registers is via an address/data io port pair.
4146 * (Maybe should make this inline...)
4147 */
4148
4149 static int stl_sc26198getreg(stlport_t *portp, int regnr)
4150 {
4151 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4152 return inb(portp->ioaddr + XP_DATA);
4153 }
4154
4155 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
4156 {
4157 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4158 outb(value, (portp->ioaddr + XP_DATA));
4159 }
4160
4161 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
4162 {
4163 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4164 if (inb(portp->ioaddr + XP_DATA) != value) {
4165 outb(value, (portp->ioaddr + XP_DATA));
4166 return 1;
4167 }
4168 return 0;
4169 }
4170
4171 /*****************************************************************************/
4172
4173 /*
4174 * Functions to get and set the sc26198 global registers.
4175 */
4176
4177 static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
4178 {
4179 outb(regnr, (portp->ioaddr + XP_ADDR));
4180 return inb(portp->ioaddr + XP_DATA);
4181 }
4182
4183 #if 0
4184 static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
4185 {
4186 outb(regnr, (portp->ioaddr + XP_ADDR));
4187 outb(value, (portp->ioaddr + XP_DATA));
4188 }
4189 #endif
4190
4191 /*****************************************************************************/
4192
4193 /*
4194 * Inbitialize the UARTs in a panel. We don't care what sort of board
4195 * these ports are on - since the port io registers are almost
4196 * identical when dealing with ports.
4197 */
4198
4199 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
4200 {
4201 int chipmask, i;
4202 int nrchips, ioaddr;
4203
4204 #ifdef DEBUG
4205 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4206 (int) brdp, (int) panelp);
4207 #endif
4208
4209 BRDENABLE(panelp->brdnr, panelp->pagenr);
4210
4211 /*
4212 * Check that each chip is present and started up OK.
4213 */
4214 chipmask = 0;
4215 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
4216 if (brdp->brdtype == BRD_ECHPCI)
4217 outb(panelp->pagenr, brdp->ioctrl);
4218
4219 for (i = 0; (i < nrchips); i++) {
4220 ioaddr = panelp->iobase + (i * 4);
4221 outb(SCCR, (ioaddr + XP_ADDR));
4222 outb(CR_RESETALL, (ioaddr + XP_DATA));
4223 outb(TSTR, (ioaddr + XP_ADDR));
4224 if (inb(ioaddr + XP_DATA) != 0) {
4225 printk("STALLION: sc26198 not responding, "
4226 "brd=%d panel=%d chip=%d\n",
4227 panelp->brdnr, panelp->panelnr, i);
4228 continue;
4229 }
4230 chipmask |= (0x1 << i);
4231 outb(GCCR, (ioaddr + XP_ADDR));
4232 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
4233 outb(WDTRCR, (ioaddr + XP_ADDR));
4234 outb(0xff, (ioaddr + XP_DATA));
4235 }
4236
4237 BRDDISABLE(panelp->brdnr);
4238 return chipmask;
4239 }
4240
4241 /*****************************************************************************/
4242
4243 /*
4244 * Initialize hardware specific port registers.
4245 */
4246
4247 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
4248 {
4249 #ifdef DEBUG
4250 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4251 (int) brdp, (int) panelp, (int) portp);
4252 #endif
4253
4254 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
4255 (portp == (stlport_t *) NULL))
4256 return;
4257
4258 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
4259 portp->uartaddr = (portp->portnr & 0x07) << 4;
4260 portp->pagenr = panelp->pagenr;
4261 portp->hwid = 0x1;
4262
4263 BRDENABLE(portp->brdnr, portp->pagenr);
4264 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
4265 BRDDISABLE(portp->brdnr);
4266 }
4267
4268 /*****************************************************************************/
4269
4270 /*
4271 * Set up the sc26198 registers for a port based on the termios port
4272 * settings.
4273 */
4274
4275 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
4276 {
4277 stlbrd_t *brdp;
4278 unsigned long flags;
4279 unsigned int baudrate;
4280 unsigned char mr0, mr1, mr2, clk;
4281 unsigned char imron, imroff, iopr, ipr;
4282
4283 mr0 = 0;
4284 mr1 = 0;
4285 mr2 = 0;
4286 clk = 0;
4287 iopr = 0;
4288 imron = 0;
4289 imroff = 0;
4290
4291 brdp = stl_brds[portp->brdnr];
4292 if (brdp == (stlbrd_t *) NULL)
4293 return;
4294
4295 /*
4296 * Set up the RX char ignore mask with those RX error types we
4297 * can ignore.
4298 */
4299 portp->rxignoremsk = 0;
4300 if (tiosp->c_iflag & IGNPAR)
4301 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
4302 SR_RXOVERRUN);
4303 if (tiosp->c_iflag & IGNBRK)
4304 portp->rxignoremsk |= SR_RXBREAK;
4305
4306 portp->rxmarkmsk = SR_RXOVERRUN;
4307 if (tiosp->c_iflag & (INPCK | PARMRK))
4308 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
4309 if (tiosp->c_iflag & BRKINT)
4310 portp->rxmarkmsk |= SR_RXBREAK;
4311
4312 /*
4313 * Go through the char size, parity and stop bits and set all the
4314 * option register appropriately.
4315 */
4316 switch (tiosp->c_cflag & CSIZE) {
4317 case CS5:
4318 mr1 |= MR1_CS5;
4319 break;
4320 case CS6:
4321 mr1 |= MR1_CS6;
4322 break;
4323 case CS7:
4324 mr1 |= MR1_CS7;
4325 break;
4326 default:
4327 mr1 |= MR1_CS8;
4328 break;
4329 }
4330
4331 if (tiosp->c_cflag & CSTOPB)
4332 mr2 |= MR2_STOP2;
4333 else
4334 mr2 |= MR2_STOP1;
4335
4336 if (tiosp->c_cflag & PARENB) {
4337 if (tiosp->c_cflag & PARODD)
4338 mr1 |= (MR1_PARENB | MR1_PARODD);
4339 else
4340 mr1 |= (MR1_PARENB | MR1_PAREVEN);
4341 } else {
4342 mr1 |= MR1_PARNONE;
4343 }
4344
4345 mr1 |= MR1_ERRBLOCK;
4346
4347 /*
4348 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4349 * space for hardware flow control and the like. This should be set to
4350 * VMIN.
4351 */
4352 mr2 |= MR2_RXFIFOHALF;
4353
4354 /*
4355 * Calculate the baud rate timers. For now we will just assume that
4356 * the input and output baud are the same. The sc26198 has a fixed
4357 * baud rate table, so only discrete baud rates possible.
4358 */
4359 baudrate = tiosp->c_cflag & CBAUD;
4360 if (baudrate & CBAUDEX) {
4361 baudrate &= ~CBAUDEX;
4362 if ((baudrate < 1) || (baudrate > 4))
4363 tiosp->c_cflag &= ~CBAUDEX;
4364 else
4365 baudrate += 15;
4366 }
4367 baudrate = stl_baudrates[baudrate];
4368 if ((tiosp->c_cflag & CBAUD) == B38400) {
4369 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4370 baudrate = 57600;
4371 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4372 baudrate = 115200;
4373 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4374 baudrate = 230400;
4375 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4376 baudrate = 460800;
4377 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4378 baudrate = (portp->baud_base / portp->custom_divisor);
4379 }
4380 if (baudrate > STL_SC26198MAXBAUD)
4381 baudrate = STL_SC26198MAXBAUD;
4382
4383 if (baudrate > 0) {
4384 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4385 if (baudrate <= sc26198_baudtable[clk])
4386 break;
4387 }
4388 }
4389
4390 /*
4391 * Check what form of modem signaling is required and set it up.
4392 */
4393 if (tiosp->c_cflag & CLOCAL) {
4394 portp->flags &= ~ASYNC_CHECK_CD;
4395 } else {
4396 iopr |= IOPR_DCDCOS;
4397 imron |= IR_IOPORT;
4398 portp->flags |= ASYNC_CHECK_CD;
4399 }
4400
4401 /*
4402 * Setup sc26198 enhanced modes if we can. In particular we want to
4403 * handle as much of the flow control as possible automatically. As
4404 * well as saving a few CPU cycles it will also greatly improve flow
4405 * control reliability.
4406 */
4407 if (tiosp->c_iflag & IXON) {
4408 mr0 |= MR0_SWFTX | MR0_SWFT;
4409 imron |= IR_XONXOFF;
4410 } else {
4411 imroff |= IR_XONXOFF;
4412 }
4413 if (tiosp->c_iflag & IXOFF)
4414 mr0 |= MR0_SWFRX;
4415
4416 if (tiosp->c_cflag & CRTSCTS) {
4417 mr2 |= MR2_AUTOCTS;
4418 mr1 |= MR1_AUTORTS;
4419 }
4420
4421 /*
4422 * All sc26198 register values calculated so go through and set
4423 * them all up.
4424 */
4425
4426 #ifdef DEBUG
4427 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4428 portp->portnr, portp->panelnr, portp->brdnr);
4429 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4430 printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4431 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4432 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4433 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4434 #endif
4435
4436 save_flags(flags);
4437 cli();
4438 BRDENABLE(portp->brdnr, portp->pagenr);
4439 stl_sc26198setreg(portp, IMR, 0);
4440 stl_sc26198updatereg(portp, MR0, mr0);
4441 stl_sc26198updatereg(portp, MR1, mr1);
4442 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4443 stl_sc26198updatereg(portp, MR2, mr2);
4444 stl_sc26198updatereg(portp, IOPIOR,
4445 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4446
4447 if (baudrate > 0) {
4448 stl_sc26198setreg(portp, TXCSR, clk);
4449 stl_sc26198setreg(portp, RXCSR, clk);
4450 }
4451
4452 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4453 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4454
4455 ipr = stl_sc26198getreg(portp, IPR);
4456 if (ipr & IPR_DCD)
4457 portp->sigs &= ~TIOCM_CD;
4458 else
4459 portp->sigs |= TIOCM_CD;
4460
4461 portp->imr = (portp->imr & ~imroff) | imron;
4462 stl_sc26198setreg(portp, IMR, portp->imr);
4463 BRDDISABLE(portp->brdnr);
4464 restore_flags(flags);
4465 }
4466
4467 /*****************************************************************************/
4468
4469 /*
4470 * Set the state of the DTR and RTS signals.
4471 */
4472
4473 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
4474 {
4475 unsigned char iopioron, iopioroff;
4476 unsigned long flags;
4477
4478 #ifdef DEBUG
4479 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4480 (int) portp, dtr, rts);
4481 #endif
4482
4483 iopioron = 0;
4484 iopioroff = 0;
4485 if (dtr == 0)
4486 iopioroff |= IPR_DTR;
4487 else if (dtr > 0)
4488 iopioron |= IPR_DTR;
4489 if (rts == 0)
4490 iopioroff |= IPR_RTS;
4491 else if (rts > 0)
4492 iopioron |= IPR_RTS;
4493
4494 save_flags(flags);
4495 cli();
4496 BRDENABLE(portp->brdnr, portp->pagenr);
4497 stl_sc26198setreg(portp, IOPIOR,
4498 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4499 BRDDISABLE(portp->brdnr);
4500 restore_flags(flags);
4501 }
4502
4503 /*****************************************************************************/
4504
4505 /*
4506 * Return the state of the signals.
4507 */
4508
4509 static int stl_sc26198getsignals(stlport_t *portp)
4510 {
4511 unsigned char ipr;
4512 unsigned long flags;
4513 int sigs;
4514
4515 #ifdef DEBUG
4516 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
4517 #endif
4518
4519 save_flags(flags);
4520 cli();
4521 BRDENABLE(portp->brdnr, portp->pagenr);
4522 ipr = stl_sc26198getreg(portp, IPR);
4523 BRDDISABLE(portp->brdnr);
4524 restore_flags(flags);
4525
4526 sigs = 0;
4527 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4528 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4529 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4530 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4531 sigs |= TIOCM_DSR;
4532 return sigs;
4533 }
4534
4535 /*****************************************************************************/
4536
4537 /*
4538 * Enable/Disable the Transmitter and/or Receiver.
4539 */
4540
4541 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
4542 {
4543 unsigned char ccr;
4544 unsigned long flags;
4545
4546 #ifdef DEBUG
4547 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4548 (int) portp, rx, tx);
4549 #endif
4550
4551 ccr = portp->crenable;
4552 if (tx == 0)
4553 ccr &= ~CR_TXENABLE;
4554 else if (tx > 0)
4555 ccr |= CR_TXENABLE;
4556 if (rx == 0)
4557 ccr &= ~CR_RXENABLE;
4558 else if (rx > 0)
4559 ccr |= CR_RXENABLE;
4560
4561 save_flags(flags);
4562 cli();
4563 BRDENABLE(portp->brdnr, portp->pagenr);
4564 stl_sc26198setreg(portp, SCCR, ccr);
4565 BRDDISABLE(portp->brdnr);
4566 portp->crenable = ccr;
4567 restore_flags(flags);
4568 }
4569
4570 /*****************************************************************************/
4571
4572 /*
4573 * Start/stop the Transmitter and/or Receiver.
4574 */
4575
4576 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
4577 {
4578 unsigned char imr;
4579 unsigned long flags;
4580
4581 #ifdef DEBUG
4582 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4583 (int) portp, rx, tx);
4584 #endif
4585
4586 imr = portp->imr;
4587 if (tx == 0)
4588 imr &= ~IR_TXRDY;
4589 else if (tx == 1)
4590 imr |= IR_TXRDY;
4591 if (rx == 0)
4592 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4593 else if (rx > 0)
4594 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4595
4596 save_flags(flags);
4597 cli();
4598 BRDENABLE(portp->brdnr, portp->pagenr);
4599 stl_sc26198setreg(portp, IMR, imr);
4600 BRDDISABLE(portp->brdnr);
4601 portp->imr = imr;
4602 if (tx > 0)
4603 set_bit(ASYI_TXBUSY, &portp->istate);
4604 restore_flags(flags);
4605 }
4606
4607 /*****************************************************************************/
4608
4609 /*
4610 * Disable all interrupts from this port.
4611 */
4612
4613 static void stl_sc26198disableintrs(stlport_t *portp)
4614 {
4615 unsigned long flags;
4616
4617 #ifdef DEBUG
4618 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
4619 #endif
4620
4621 save_flags(flags);
4622 cli();
4623 BRDENABLE(portp->brdnr, portp->pagenr);
4624 portp->imr = 0;
4625 stl_sc26198setreg(portp, IMR, 0);
4626 BRDDISABLE(portp->brdnr);
4627 restore_flags(flags);
4628 }
4629
4630 /*****************************************************************************/
4631
4632 static void stl_sc26198sendbreak(stlport_t *portp, int len)
4633 {
4634 unsigned long flags;
4635
4636 #ifdef DEBUG
4637 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
4638 #endif
4639
4640 save_flags(flags);
4641 cli();
4642 BRDENABLE(portp->brdnr, portp->pagenr);
4643 if (len == 1) {
4644 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4645 portp->stats.txbreaks++;
4646 } else {
4647 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4648 }
4649 BRDDISABLE(portp->brdnr);
4650 restore_flags(flags);
4651 }
4652
4653 /*****************************************************************************/
4654
4655 /*
4656 * Take flow control actions...
4657 */
4658
4659 static void stl_sc26198flowctrl(stlport_t *portp, int state)
4660 {
4661 struct tty_struct *tty;
4662 unsigned long flags;
4663 unsigned char mr0;
4664
4665 #ifdef DEBUG
4666 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
4667 #endif
4668
4669 if (portp == (stlport_t *) NULL)
4670 return;
4671 tty = portp->tty;
4672 if (tty == (struct tty_struct *) NULL)
4673 return;
4674
4675 save_flags(flags);
4676 cli();
4677 BRDENABLE(portp->brdnr, portp->pagenr);
4678
4679 if (state) {
4680 if (tty->termios->c_iflag & IXOFF) {
4681 mr0 = stl_sc26198getreg(portp, MR0);
4682 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4683 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4684 mr0 |= MR0_SWFRX;
4685 portp->stats.rxxon++;
4686 stl_sc26198wait(portp);
4687 stl_sc26198setreg(portp, MR0, mr0);
4688 }
4689 /*
4690 * Question: should we return RTS to what it was before? It may
4691 * have been set by an ioctl... Suppose not, since if you have
4692 * hardware flow control set then it is pretty silly to go and
4693 * set the RTS line by hand.
4694 */
4695 if (tty->termios->c_cflag & CRTSCTS) {
4696 stl_sc26198setreg(portp, MR1,
4697 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4698 stl_sc26198setreg(portp, IOPIOR,
4699 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4700 portp->stats.rxrtson++;
4701 }
4702 } else {
4703 if (tty->termios->c_iflag & IXOFF) {
4704 mr0 = stl_sc26198getreg(portp, MR0);
4705 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4706 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4707 mr0 &= ~MR0_SWFRX;
4708 portp->stats.rxxoff++;
4709 stl_sc26198wait(portp);
4710 stl_sc26198setreg(portp, MR0, mr0);
4711 }
4712 if (tty->termios->c_cflag & CRTSCTS) {
4713 stl_sc26198setreg(portp, MR1,
4714 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4715 stl_sc26198setreg(portp, IOPIOR,
4716 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4717 portp->stats.rxrtsoff++;
4718 }
4719 }
4720
4721 BRDDISABLE(portp->brdnr);
4722 restore_flags(flags);
4723 }
4724
4725 /*****************************************************************************/
4726
4727 /*
4728 * Send a flow control character.
4729 */
4730
4731 static void stl_sc26198sendflow(stlport_t *portp, int state)
4732 {
4733 struct tty_struct *tty;
4734 unsigned long flags;
4735 unsigned char mr0;
4736
4737 #ifdef DEBUG
4738 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
4739 #endif
4740
4741 if (portp == (stlport_t *) NULL)
4742 return;
4743 tty = portp->tty;
4744 if (tty == (struct tty_struct *) NULL)
4745 return;
4746
4747 save_flags(flags);
4748 cli();
4749 BRDENABLE(portp->brdnr, portp->pagenr);
4750 if (state) {
4751 mr0 = stl_sc26198getreg(portp, MR0);
4752 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4753 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4754 mr0 |= MR0_SWFRX;
4755 portp->stats.rxxon++;
4756 stl_sc26198wait(portp);
4757 stl_sc26198setreg(portp, MR0, mr0);
4758 } else {
4759 mr0 = stl_sc26198getreg(portp, MR0);
4760 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4761 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4762 mr0 &= ~MR0_SWFRX;
4763 portp->stats.rxxoff++;
4764 stl_sc26198wait(portp);
4765 stl_sc26198setreg(portp, MR0, mr0);
4766 }
4767 BRDDISABLE(portp->brdnr);
4768 restore_flags(flags);
4769 }
4770
4771 /*****************************************************************************/
4772
4773 static void stl_sc26198flush(stlport_t *portp)
4774 {
4775 unsigned long flags;
4776
4777 #ifdef DEBUG
4778 printk("stl_sc26198flush(portp=%x)\n", (int) portp);
4779 #endif
4780
4781 if (portp == (stlport_t *) NULL)
4782 return;
4783
4784 save_flags(flags);
4785 cli();
4786 BRDENABLE(portp->brdnr, portp->pagenr);
4787 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4788 stl_sc26198setreg(portp, SCCR, portp->crenable);
4789 BRDDISABLE(portp->brdnr);
4790 portp->tx.tail = portp->tx.head;
4791 restore_flags(flags);
4792 }
4793
4794 /*****************************************************************************/
4795
4796 /*
4797 * Return the current state of data flow on this port. This is only
4798 * really interresting when determining if data has fully completed
4799 * transmission or not... The sc26198 interrupt scheme cannot
4800 * determine when all data has actually drained, so we need to
4801 * check the port statusy register to be sure.
4802 */
4803
4804 static int stl_sc26198datastate(stlport_t *portp)
4805 {
4806 unsigned long flags;
4807 unsigned char sr;
4808
4809 #ifdef DEBUG
4810 printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
4811 #endif
4812
4813 if (portp == (stlport_t *) NULL)
4814 return 0;
4815 if (test_bit(ASYI_TXBUSY, &portp->istate))
4816 return 1;
4817
4818 save_flags(flags);
4819 cli();
4820 BRDENABLE(portp->brdnr, portp->pagenr);
4821 sr = stl_sc26198getreg(portp, SR);
4822 BRDDISABLE(portp->brdnr);
4823 restore_flags(flags);
4824
4825 return (sr & SR_TXEMPTY) ? 0 : 1;
4826 }
4827
4828 /*****************************************************************************/
4829
4830 /*
4831 * Delay for a small amount of time, to give the sc26198 a chance
4832 * to process a command...
4833 */
4834
4835 static void stl_sc26198wait(stlport_t *portp)
4836 {
4837 int i;
4838
4839 #ifdef DEBUG
4840 printk("stl_sc26198wait(portp=%x)\n", (int) portp);
4841 #endif
4842
4843 if (portp == (stlport_t *) NULL)
4844 return;
4845
4846 for (i = 0; (i < 20); i++)
4847 stl_sc26198getglobreg(portp, TSTR);
4848 }
4849
4850 /*****************************************************************************/
4851
4852 /*
4853 * If we are TX flow controlled and in IXANY mode then we may
4854 * need to unflow control here. We gotta do this because of the
4855 * automatic flow control modes of the sc26198.
4856 */
4857
4858 static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
4859 {
4860 unsigned char mr0;
4861
4862 mr0 = stl_sc26198getreg(portp, MR0);
4863 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4864 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4865 stl_sc26198wait(portp);
4866 stl_sc26198setreg(portp, MR0, mr0);
4867 clear_bit(ASYI_TXFLOWED, &portp->istate);
4868 }
4869
4870 /*****************************************************************************/
4871
4872 /*
4873 * Interrupt service routine for sc26198 panels.
4874 */
4875
4876 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
4877 {
4878 stlport_t *portp;
4879 unsigned int iack;
4880
4881 /*
4882 * Work around bug in sc26198 chip... Cannot have A6 address
4883 * line of UART high, else iack will be returned as 0.
4884 */
4885 outb(0, (iobase + 1));
4886
4887 iack = inb(iobase + XP_IACK);
4888 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4889
4890 if (iack & IVR_RXDATA)
4891 stl_sc26198rxisr(portp, iack);
4892 else if (iack & IVR_TXDATA)
4893 stl_sc26198txisr(portp);
4894 else
4895 stl_sc26198otherisr(portp, iack);
4896 }
4897
4898 /*****************************************************************************/
4899
4900 /*
4901 * Transmit interrupt handler. This has gotta be fast! Handling TX
4902 * chars is pretty simple, stuff as many as possible from the TX buffer
4903 * into the sc26198 FIFO.
4904 * In practice it is possible that interrupts are enabled but that the
4905 * port has been hung up. Need to handle not having any TX buffer here,
4906 * this is done by using the side effect that head and tail will also
4907 * be NULL if the buffer has been freed.
4908 */
4909
4910 static void stl_sc26198txisr(stlport_t *portp)
4911 {
4912 unsigned int ioaddr;
4913 unsigned char mr0;
4914 int len, stlen;
4915 char *head, *tail;
4916
4917 #ifdef DEBUG
4918 printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
4919 #endif
4920
4921 ioaddr = portp->ioaddr;
4922 head = portp->tx.head;
4923 tail = portp->tx.tail;
4924 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4925 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4926 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4927 set_bit(ASYI_TXLOW, &portp->istate);
4928 schedule_work(&portp->tqueue);
4929 }
4930
4931 if (len == 0) {
4932 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4933 mr0 = inb(ioaddr + XP_DATA);
4934 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4935 portp->imr &= ~IR_TXRDY;
4936 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4937 outb(portp->imr, (ioaddr + XP_DATA));
4938 clear_bit(ASYI_TXBUSY, &portp->istate);
4939 } else {
4940 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4941 outb(mr0, (ioaddr + XP_DATA));
4942 }
4943 } else {
4944 len = MIN(len, SC26198_TXFIFOSIZE);
4945 portp->stats.txtotal += len;
4946 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4947 outb(GTXFIFO, (ioaddr + XP_ADDR));
4948 outsb((ioaddr + XP_DATA), tail, stlen);
4949 len -= stlen;
4950 tail += stlen;
4951 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4952 tail = portp->tx.buf;
4953 if (len > 0) {
4954 outsb((ioaddr + XP_DATA), tail, len);
4955 tail += len;
4956 }
4957 portp->tx.tail = tail;
4958 }
4959 }
4960
4961 /*****************************************************************************/
4962
4963 /*
4964 * Receive character interrupt handler. Determine if we have good chars
4965 * or bad chars and then process appropriately. Good chars are easy
4966 * just shove the lot into the RX buffer and set all status byte to 0.
4967 * If a bad RX char then process as required. This routine needs to be
4968 * fast! In practice it is possible that we get an interrupt on a port
4969 * that is closed. This can happen on hangups - since they completely
4970 * shutdown a port not in user context. Need to handle this case.
4971 */
4972
4973 static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
4974 {
4975 struct tty_struct *tty;
4976 unsigned int len, buflen, ioaddr;
4977
4978 #ifdef DEBUG
4979 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
4980 #endif
4981
4982 tty = portp->tty;
4983 ioaddr = portp->ioaddr;
4984 outb(GIBCR, (ioaddr + XP_ADDR));
4985 len = inb(ioaddr + XP_DATA) + 1;
4986
4987 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4988 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4989 len = MIN(len, sizeof(stl_unwanted));
4990 outb(GRXFIFO, (ioaddr + XP_ADDR));
4991 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4992 portp->stats.rxlost += len;
4993 portp->stats.rxtotal += len;
4994 } else {
4995 len = MIN(len, buflen);
4996 if (len > 0) {
4997 unsigned char *ptr;
4998 outb(GRXFIFO, (ioaddr + XP_ADDR));
4999 tty_prepare_flip_string(tty, &ptr, len);
5000 insb((ioaddr + XP_DATA), ptr, len);
5001 tty_schedule_flip(tty);
5002 portp->stats.rxtotal += len;
5003 }
5004 }
5005 } else {
5006 stl_sc26198rxbadchars(portp);
5007 }
5008
5009 /*
5010 * If we are TX flow controlled and in IXANY mode then we may need
5011 * to unflow control here. We gotta do this because of the automatic
5012 * flow control modes of the sc26198.
5013 */
5014 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
5015 if ((tty != (struct tty_struct *) NULL) &&
5016 (tty->termios != (struct termios *) NULL) &&
5017 (tty->termios->c_iflag & IXANY)) {
5018 stl_sc26198txunflow(portp, tty);
5019 }
5020 }
5021 }
5022
5023 /*****************************************************************************/
5024
5025 /*
5026 * Process an RX bad character.
5027 */
5028
5029 static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
5030 {
5031 struct tty_struct *tty;
5032 unsigned int ioaddr;
5033
5034 tty = portp->tty;
5035 ioaddr = portp->ioaddr;
5036
5037 if (status & SR_RXPARITY)
5038 portp->stats.rxparity++;
5039 if (status & SR_RXFRAMING)
5040 portp->stats.rxframing++;
5041 if (status & SR_RXOVERRUN)
5042 portp->stats.rxoverrun++;
5043 if (status & SR_RXBREAK)
5044 portp->stats.rxbreaks++;
5045
5046 if ((tty != (struct tty_struct *) NULL) &&
5047 ((portp->rxignoremsk & status) == 0)) {
5048 if (portp->rxmarkmsk & status) {
5049 if (status & SR_RXBREAK) {
5050 status = TTY_BREAK;
5051 if (portp->flags & ASYNC_SAK) {
5052 do_SAK(tty);
5053 BRDENABLE(portp->brdnr, portp->pagenr);
5054 }
5055 } else if (status & SR_RXPARITY) {
5056 status = TTY_PARITY;
5057 } else if (status & SR_RXFRAMING) {
5058 status = TTY_FRAME;
5059 } else if(status & SR_RXOVERRUN) {
5060 status = TTY_OVERRUN;
5061 } else {
5062 status = 0;
5063 }
5064 } else {
5065 status = 0;
5066 }
5067
5068 tty_insert_flip_char(tty, ch, status);
5069 tty_schedule_flip(tty);
5070
5071 if (status == 0)
5072 portp->stats.rxtotal++;
5073 }
5074 }
5075
5076 /*****************************************************************************/
5077
5078 /*
5079 * Process all characters in the RX FIFO of the UART. Check all char
5080 * status bytes as well, and process as required. We need to check
5081 * all bytes in the FIFO, in case some more enter the FIFO while we
5082 * are here. To get the exact character error type we need to switch
5083 * into CHAR error mode (that is why we need to make sure we empty
5084 * the FIFO).
5085 */
5086
5087 static void stl_sc26198rxbadchars(stlport_t *portp)
5088 {
5089 unsigned char status, mr1;
5090 char ch;
5091
5092 /*
5093 * To get the precise error type for each character we must switch
5094 * back into CHAR error mode.
5095 */
5096 mr1 = stl_sc26198getreg(portp, MR1);
5097 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
5098
5099 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
5100 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
5101 ch = stl_sc26198getreg(portp, RXFIFO);
5102 stl_sc26198rxbadch(portp, status, ch);
5103 }
5104
5105 /*
5106 * To get correct interrupt class we must switch back into BLOCK
5107 * error mode.
5108 */
5109 stl_sc26198setreg(portp, MR1, mr1);
5110 }
5111
5112 /*****************************************************************************/
5113
5114 /*
5115 * Other interrupt handler. This includes modem signals, flow
5116 * control actions, etc. Most stuff is left to off-level interrupt
5117 * processing time.
5118 */
5119
5120 static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
5121 {
5122 unsigned char cir, ipr, xisr;
5123
5124 #ifdef DEBUG
5125 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
5126 #endif
5127
5128 cir = stl_sc26198getglobreg(portp, CIR);
5129
5130 switch (cir & CIR_SUBTYPEMASK) {
5131 case CIR_SUBCOS:
5132 ipr = stl_sc26198getreg(portp, IPR);
5133 if (ipr & IPR_DCDCHANGE) {
5134 set_bit(ASYI_DCDCHANGE, &portp->istate);
5135 schedule_work(&portp->tqueue);
5136 portp->stats.modem++;
5137 }
5138 break;
5139 case CIR_SUBXONXOFF:
5140 xisr = stl_sc26198getreg(portp, XISR);
5141 if (xisr & XISR_RXXONGOT) {
5142 set_bit(ASYI_TXFLOWED, &portp->istate);
5143 portp->stats.txxoff++;
5144 }
5145 if (xisr & XISR_RXXOFFGOT) {
5146 clear_bit(ASYI_TXFLOWED, &portp->istate);
5147 portp->stats.txxon++;
5148 }
5149 break;
5150 case CIR_SUBBREAK:
5151 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
5152 stl_sc26198rxbadchars(portp);
5153 break;
5154 default:
5155 break;
5156 }
5157 }
5158
5159 /*****************************************************************************/