]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/stallion.c
Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-mmc
[mirror_ubuntu-artful-kernel.git] / drivers / char / stallion.c
1 /*****************************************************************************/
2
3 /*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 /*****************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47
48 #ifdef CONFIG_PCI
49 #include <linux/pci.h>
50 #endif
51
52 /*****************************************************************************/
53
54 /*
55 * Define different board types. Use the standard Stallion "assigned"
56 * board numbers. Boards supported in this driver are abbreviated as
57 * EIO = EasyIO and ECH = EasyConnection 8/32.
58 */
59 #define BRD_EASYIO 20
60 #define BRD_ECH 21
61 #define BRD_ECHMC 22
62 #define BRD_ECHPCI 26
63 #define BRD_ECH64PCI 27
64 #define BRD_EASYIOPCI 28
65
66 /*
67 * Define a configuration structure to hold the board configuration.
68 * Need to set this up in the code (for now) with the boards that are
69 * to be configured into the system. This is what needs to be modified
70 * when adding/removing/modifying boards. Each line entry in the
71 * stl_brdconf[] array is a board. Each line contains io/irq/memory
72 * ranges for that board (as well as what type of board it is).
73 * Some examples:
74 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
75 * This line would configure an EasyIO board (4 or 8, no difference),
76 * at io address 2a0 and irq 10.
77 * Another example:
78 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
79 * This line will configure an EasyConnection 8/32 board at primary io
80 * address 2a8, secondary io address 280 and irq 12.
81 * Enter as many lines into this array as you want (only the first 4
82 * will actually be used!). Any combination of EasyIO and EasyConnection
83 * boards can be specified. EasyConnection 8/32 boards can share their
84 * secondary io addresses between each other.
85 *
86 * NOTE: there is no need to put any entries in this table for PCI
87 * boards. They will be found automatically by the driver - provided
88 * PCI BIOS32 support is compiled into the kernel.
89 */
90
91 typedef struct {
92 int brdtype;
93 int ioaddr1;
94 int ioaddr2;
95 unsigned long memaddr;
96 int irq;
97 int irqtype;
98 } stlconf_t;
99
100 static stlconf_t stl_brdconf[] = {
101 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
102 };
103
104 static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
105
106 /*****************************************************************************/
107
108 /*
109 * Define some important driver characteristics. Device major numbers
110 * allocated as per Linux Device Registry.
111 */
112 #ifndef STL_SIOMEMMAJOR
113 #define STL_SIOMEMMAJOR 28
114 #endif
115 #ifndef STL_SERIALMAJOR
116 #define STL_SERIALMAJOR 24
117 #endif
118 #ifndef STL_CALLOUTMAJOR
119 #define STL_CALLOUTMAJOR 25
120 #endif
121
122 /*
123 * Set the TX buffer size. Bigger is better, but we don't want
124 * to chew too much memory with buffers!
125 */
126 #define STL_TXBUFLOW 512
127 #define STL_TXBUFSIZE 4096
128
129 /*****************************************************************************/
130
131 /*
132 * Define our local driver identity first. Set up stuff to deal with
133 * all the local structures required by a serial tty driver.
134 */
135 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
136 static char *stl_drvname = "stallion";
137 static char *stl_drvversion = "5.6.0";
138
139 static struct tty_driver *stl_serial;
140
141 /*
142 * Define a local default termios struct. All ports will be created
143 * with this termios initially. Basically all it defines is a raw port
144 * at 9600, 8 data bits, 1 stop bit.
145 */
146 static struct termios stl_deftermios = {
147 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
148 .c_cc = INIT_C_CC,
149 };
150
151 /*
152 * Define global stats structures. Not used often, and can be
153 * re-used for each stats call.
154 */
155 static comstats_t stl_comstats;
156 static combrd_t stl_brdstats;
157 static stlbrd_t stl_dummybrd;
158 static stlport_t stl_dummyport;
159
160 /*
161 * Define global place to put buffer overflow characters.
162 */
163 static char stl_unwanted[SC26198_RXFIFOSIZE];
164
165 /*****************************************************************************/
166
167 static stlbrd_t *stl_brds[STL_MAXBRDS];
168
169 /*
170 * Per board state flags. Used with the state field of the board struct.
171 * Not really much here!
172 */
173 #define BRD_FOUND 0x1
174
175 /*
176 * Define the port structure istate flags. These set of flags are
177 * modified at interrupt time - so setting and reseting them needs
178 * to be atomic. Use the bit clear/setting routines for this.
179 */
180 #define ASYI_TXBUSY 1
181 #define ASYI_TXLOW 2
182 #define ASYI_DCDCHANGE 3
183 #define ASYI_TXFLOWED 4
184
185 /*
186 * Define an array of board names as printable strings. Handy for
187 * referencing boards when printing trace and stuff.
188 */
189 static char *stl_brdnames[] = {
190 (char *) NULL,
191 (char *) NULL,
192 (char *) NULL,
193 (char *) NULL,
194 (char *) NULL,
195 (char *) NULL,
196 (char *) NULL,
197 (char *) NULL,
198 (char *) NULL,
199 (char *) NULL,
200 (char *) NULL,
201 (char *) NULL,
202 (char *) NULL,
203 (char *) NULL,
204 (char *) NULL,
205 (char *) NULL,
206 (char *) NULL,
207 (char *) NULL,
208 (char *) NULL,
209 (char *) NULL,
210 "EasyIO",
211 "EC8/32-AT",
212 "EC8/32-MC",
213 (char *) NULL,
214 (char *) NULL,
215 (char *) NULL,
216 "EC8/32-PCI",
217 "EC8/64-PCI",
218 "EasyIO-PCI",
219 };
220
221 /*****************************************************************************/
222
223 /*
224 * Define some string labels for arguments passed from the module
225 * load line. These allow for easy board definitions, and easy
226 * modification of the io, memory and irq resoucres.
227 */
228 static int stl_nargs = 0;
229 static char *board0[4];
230 static char *board1[4];
231 static char *board2[4];
232 static char *board3[4];
233
234 static char **stl_brdsp[] = {
235 (char **) &board0,
236 (char **) &board1,
237 (char **) &board2,
238 (char **) &board3
239 };
240
241 /*
242 * Define a set of common board names, and types. This is used to
243 * parse any module arguments.
244 */
245
246 typedef struct stlbrdtype {
247 char *name;
248 int type;
249 } stlbrdtype_t;
250
251 static stlbrdtype_t stl_brdstr[] = {
252 { "easyio", BRD_EASYIO },
253 { "eio", BRD_EASYIO },
254 { "20", BRD_EASYIO },
255 { "ec8/32", BRD_ECH },
256 { "ec8/32-at", BRD_ECH },
257 { "ec8/32-isa", BRD_ECH },
258 { "ech", BRD_ECH },
259 { "echat", BRD_ECH },
260 { "21", BRD_ECH },
261 { "ec8/32-mc", BRD_ECHMC },
262 { "ec8/32-mca", BRD_ECHMC },
263 { "echmc", BRD_ECHMC },
264 { "echmca", BRD_ECHMC },
265 { "22", BRD_ECHMC },
266 { "ec8/32-pc", BRD_ECHPCI },
267 { "ec8/32-pci", BRD_ECHPCI },
268 { "26", BRD_ECHPCI },
269 { "ec8/64-pc", BRD_ECH64PCI },
270 { "ec8/64-pci", BRD_ECH64PCI },
271 { "ech-pci", BRD_ECH64PCI },
272 { "echpci", BRD_ECH64PCI },
273 { "echpc", BRD_ECH64PCI },
274 { "27", BRD_ECH64PCI },
275 { "easyio-pc", BRD_EASYIOPCI },
276 { "easyio-pci", BRD_EASYIOPCI },
277 { "eio-pci", BRD_EASYIOPCI },
278 { "eiopci", BRD_EASYIOPCI },
279 { "28", BRD_EASYIOPCI },
280 };
281
282 /*
283 * Define the module agruments.
284 */
285 MODULE_AUTHOR("Greg Ungerer");
286 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
287 MODULE_LICENSE("GPL");
288
289 module_param_array(board0, charp, &stl_nargs, 0);
290 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
291 module_param_array(board1, charp, &stl_nargs, 0);
292 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
293 module_param_array(board2, charp, &stl_nargs, 0);
294 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
295 module_param_array(board3, charp, &stl_nargs, 0);
296 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
297
298 /*****************************************************************************/
299
300 /*
301 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
302 * to the directly accessible io ports of these boards (not the uarts -
303 * they are in cd1400.h and sc26198.h).
304 */
305 #define EIO_8PORTRS 0x04
306 #define EIO_4PORTRS 0x05
307 #define EIO_8PORTDI 0x00
308 #define EIO_8PORTM 0x06
309 #define EIO_MK3 0x03
310 #define EIO_IDBITMASK 0x07
311
312 #define EIO_BRDMASK 0xf0
313 #define ID_BRD4 0x10
314 #define ID_BRD8 0x20
315 #define ID_BRD16 0x30
316
317 #define EIO_INTRPEND 0x08
318 #define EIO_INTEDGE 0x00
319 #define EIO_INTLEVEL 0x08
320 #define EIO_0WS 0x10
321
322 #define ECH_ID 0xa0
323 #define ECH_IDBITMASK 0xe0
324 #define ECH_BRDENABLE 0x08
325 #define ECH_BRDDISABLE 0x00
326 #define ECH_INTENABLE 0x01
327 #define ECH_INTDISABLE 0x00
328 #define ECH_INTLEVEL 0x02
329 #define ECH_INTEDGE 0x00
330 #define ECH_INTRPEND 0x01
331 #define ECH_BRDRESET 0x01
332
333 #define ECHMC_INTENABLE 0x01
334 #define ECHMC_BRDRESET 0x02
335
336 #define ECH_PNLSTATUS 2
337 #define ECH_PNL16PORT 0x20
338 #define ECH_PNLIDMASK 0x07
339 #define ECH_PNLXPID 0x40
340 #define ECH_PNLINTRPEND 0x80
341
342 #define ECH_ADDR2MASK 0x1e0
343
344 /*
345 * Define the vector mapping bits for the programmable interrupt board
346 * hardware. These bits encode the interrupt for the board to use - it
347 * is software selectable (except the EIO-8M).
348 */
349 static unsigned char stl_vecmap[] = {
350 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
351 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
352 };
353
354 /*
355 * Lock ordering is that you may not take stallion_lock holding
356 * brd_lock.
357 */
358
359 static spinlock_t brd_lock; /* Guard the board mapping */
360 static spinlock_t stallion_lock; /* Guard the tty driver */
361
362 /*
363 * Set up enable and disable macros for the ECH boards. They require
364 * the secondary io address space to be activated and deactivated.
365 * This way all ECH boards can share their secondary io region.
366 * If this is an ECH-PCI board then also need to set the page pointer
367 * to point to the correct page.
368 */
369 #define BRDENABLE(brdnr,pagenr) \
370 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
371 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
372 stl_brds[(brdnr)]->ioctrl); \
373 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
374 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
375
376 #define BRDDISABLE(brdnr) \
377 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
378 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
379 stl_brds[(brdnr)]->ioctrl);
380
381 #define STL_CD1400MAXBAUD 230400
382 #define STL_SC26198MAXBAUD 460800
383
384 #define STL_BAUDBASE 115200
385 #define STL_CLOSEDELAY (5 * HZ / 10)
386
387 /*****************************************************************************/
388
389 #ifdef CONFIG_PCI
390
391 /*
392 * Define the Stallion PCI vendor and device IDs.
393 */
394 #ifndef PCI_VENDOR_ID_STALLION
395 #define PCI_VENDOR_ID_STALLION 0x124d
396 #endif
397 #ifndef PCI_DEVICE_ID_ECHPCI832
398 #define PCI_DEVICE_ID_ECHPCI832 0x0000
399 #endif
400 #ifndef PCI_DEVICE_ID_ECHPCI864
401 #define PCI_DEVICE_ID_ECHPCI864 0x0002
402 #endif
403 #ifndef PCI_DEVICE_ID_EIOPCI
404 #define PCI_DEVICE_ID_EIOPCI 0x0003
405 #endif
406
407 /*
408 * Define structure to hold all Stallion PCI boards.
409 */
410 typedef struct stlpcibrd {
411 unsigned short vendid;
412 unsigned short devid;
413 int brdtype;
414 } stlpcibrd_t;
415
416 static stlpcibrd_t stl_pcibrds[] = {
417 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
418 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
419 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
420 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
421 };
422
423 static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
424
425 #endif
426
427 /*****************************************************************************/
428
429 /*
430 * Define macros to extract a brd/port number from a minor number.
431 */
432 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
433 #define MINOR2PORT(min) ((min) & 0x3f)
434
435 /*
436 * Define a baud rate table that converts termios baud rate selector
437 * into the actual baud rate value. All baud rate calculations are
438 * based on the actual baud rate required.
439 */
440 static unsigned int stl_baudrates[] = {
441 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
442 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
443 };
444
445 /*
446 * Define some handy local macros...
447 */
448 #undef MIN
449 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
450
451 #undef TOLOWER
452 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
453
454 /*****************************************************************************/
455
456 /*
457 * Declare all those functions in this driver!
458 */
459
460 static void stl_argbrds(void);
461 static int stl_parsebrd(stlconf_t *confp, char **argp);
462
463 static unsigned long stl_atol(char *str);
464
465 static int stl_init(void);
466 static int stl_open(struct tty_struct *tty, struct file *filp);
467 static void stl_close(struct tty_struct *tty, struct file *filp);
468 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
469 static void stl_putchar(struct tty_struct *tty, unsigned char ch);
470 static void stl_flushchars(struct tty_struct *tty);
471 static int stl_writeroom(struct tty_struct *tty);
472 static int stl_charsinbuffer(struct tty_struct *tty);
473 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
474 static void stl_settermios(struct tty_struct *tty, struct termios *old);
475 static void stl_throttle(struct tty_struct *tty);
476 static void stl_unthrottle(struct tty_struct *tty);
477 static void stl_stop(struct tty_struct *tty);
478 static void stl_start(struct tty_struct *tty);
479 static void stl_flushbuffer(struct tty_struct *tty);
480 static void stl_breakctl(struct tty_struct *tty, int state);
481 static void stl_waituntilsent(struct tty_struct *tty, int timeout);
482 static void stl_sendxchar(struct tty_struct *tty, char ch);
483 static void stl_hangup(struct tty_struct *tty);
484 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
485 static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
486 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
487
488 static int stl_brdinit(stlbrd_t *brdp);
489 static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
490 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
491 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
492 static int stl_getbrdstats(combrd_t __user *bp);
493 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
494 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
495 static int stl_getportstruct(stlport_t __user *arg);
496 static int stl_getbrdstruct(stlbrd_t __user *arg);
497 static int stl_waitcarrier(stlport_t *portp, struct file *filp);
498 static int stl_eiointr(stlbrd_t *brdp);
499 static int stl_echatintr(stlbrd_t *brdp);
500 static int stl_echmcaintr(stlbrd_t *brdp);
501 static int stl_echpciintr(stlbrd_t *brdp);
502 static int stl_echpci64intr(stlbrd_t *brdp);
503 static void stl_offintr(void *private);
504 static stlbrd_t *stl_allocbrd(void);
505 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
506
507 static inline int stl_initbrds(void);
508 static inline int stl_initeio(stlbrd_t *brdp);
509 static inline int stl_initech(stlbrd_t *brdp);
510 static inline int stl_getbrdnr(void);
511
512 #ifdef CONFIG_PCI
513 static inline int stl_findpcibrds(void);
514 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
515 #endif
516
517 /*
518 * CD1400 uart specific handling functions.
519 */
520 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
521 static int stl_cd1400getreg(stlport_t *portp, int regnr);
522 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
523 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
524 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
525 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
526 static int stl_cd1400getsignals(stlport_t *portp);
527 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
528 static void stl_cd1400ccrwait(stlport_t *portp);
529 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
530 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
531 static void stl_cd1400disableintrs(stlport_t *portp);
532 static void stl_cd1400sendbreak(stlport_t *portp, int len);
533 static void stl_cd1400flowctrl(stlport_t *portp, int state);
534 static void stl_cd1400sendflow(stlport_t *portp, int state);
535 static void stl_cd1400flush(stlport_t *portp);
536 static int stl_cd1400datastate(stlport_t *portp);
537 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
538 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
539 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
540 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
541 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
542
543 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
544
545 /*
546 * SC26198 uart specific handling functions.
547 */
548 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
549 static int stl_sc26198getreg(stlport_t *portp, int regnr);
550 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
551 static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
552 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
553 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
554 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
555 static int stl_sc26198getsignals(stlport_t *portp);
556 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
557 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
558 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
559 static void stl_sc26198disableintrs(stlport_t *portp);
560 static void stl_sc26198sendbreak(stlport_t *portp, int len);
561 static void stl_sc26198flowctrl(stlport_t *portp, int state);
562 static void stl_sc26198sendflow(stlport_t *portp, int state);
563 static void stl_sc26198flush(stlport_t *portp);
564 static int stl_sc26198datastate(stlport_t *portp);
565 static void stl_sc26198wait(stlport_t *portp);
566 static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
567 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
568 static void stl_sc26198txisr(stlport_t *port);
569 static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
570 static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
571 static void stl_sc26198rxbadchars(stlport_t *portp);
572 static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
573
574 /*****************************************************************************/
575
576 /*
577 * Generic UART support structure.
578 */
579 typedef struct uart {
580 int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
581 void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
582 void (*setport)(stlport_t *portp, struct termios *tiosp);
583 int (*getsignals)(stlport_t *portp);
584 void (*setsignals)(stlport_t *portp, int dtr, int rts);
585 void (*enablerxtx)(stlport_t *portp, int rx, int tx);
586 void (*startrxtx)(stlport_t *portp, int rx, int tx);
587 void (*disableintrs)(stlport_t *portp);
588 void (*sendbreak)(stlport_t *portp, int len);
589 void (*flowctrl)(stlport_t *portp, int state);
590 void (*sendflow)(stlport_t *portp, int state);
591 void (*flush)(stlport_t *portp);
592 int (*datastate)(stlport_t *portp);
593 void (*intr)(stlpanel_t *panelp, unsigned int iobase);
594 } uart_t;
595
596 /*
597 * Define some macros to make calling these functions nice and clean.
598 */
599 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
600 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
601 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
602 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
603 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
604 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
605 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
606 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
607 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
608 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
609 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
610 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
611 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
612
613 /*****************************************************************************/
614
615 /*
616 * CD1400 UART specific data initialization.
617 */
618 static uart_t stl_cd1400uart = {
619 stl_cd1400panelinit,
620 stl_cd1400portinit,
621 stl_cd1400setport,
622 stl_cd1400getsignals,
623 stl_cd1400setsignals,
624 stl_cd1400enablerxtx,
625 stl_cd1400startrxtx,
626 stl_cd1400disableintrs,
627 stl_cd1400sendbreak,
628 stl_cd1400flowctrl,
629 stl_cd1400sendflow,
630 stl_cd1400flush,
631 stl_cd1400datastate,
632 stl_cd1400eiointr
633 };
634
635 /*
636 * Define the offsets within the register bank of a cd1400 based panel.
637 * These io address offsets are common to the EasyIO board as well.
638 */
639 #define EREG_ADDR 0
640 #define EREG_DATA 4
641 #define EREG_RXACK 5
642 #define EREG_TXACK 6
643 #define EREG_MDACK 7
644
645 #define EREG_BANKSIZE 8
646
647 #define CD1400_CLK 25000000
648 #define CD1400_CLK8M 20000000
649
650 /*
651 * Define the cd1400 baud rate clocks. These are used when calculating
652 * what clock and divisor to use for the required baud rate. Also
653 * define the maximum baud rate allowed, and the default base baud.
654 */
655 static int stl_cd1400clkdivs[] = {
656 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
657 };
658
659 /*****************************************************************************/
660
661 /*
662 * SC26198 UART specific data initization.
663 */
664 static uart_t stl_sc26198uart = {
665 stl_sc26198panelinit,
666 stl_sc26198portinit,
667 stl_sc26198setport,
668 stl_sc26198getsignals,
669 stl_sc26198setsignals,
670 stl_sc26198enablerxtx,
671 stl_sc26198startrxtx,
672 stl_sc26198disableintrs,
673 stl_sc26198sendbreak,
674 stl_sc26198flowctrl,
675 stl_sc26198sendflow,
676 stl_sc26198flush,
677 stl_sc26198datastate,
678 stl_sc26198intr
679 };
680
681 /*
682 * Define the offsets within the register bank of a sc26198 based panel.
683 */
684 #define XP_DATA 0
685 #define XP_ADDR 1
686 #define XP_MODID 2
687 #define XP_STATUS 2
688 #define XP_IACK 3
689
690 #define XP_BANKSIZE 4
691
692 /*
693 * Define the sc26198 baud rate table. Offsets within the table
694 * represent the actual baud rate selector of sc26198 registers.
695 */
696 static unsigned int sc26198_baudtable[] = {
697 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
698 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
699 230400, 460800, 921600
700 };
701
702 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
703
704 /*****************************************************************************/
705
706 /*
707 * Define the driver info for a user level control device. Used mainly
708 * to get at port stats - only not using the port device itself.
709 */
710 static struct file_operations stl_fsiomem = {
711 .owner = THIS_MODULE,
712 .ioctl = stl_memioctl,
713 };
714
715 /*****************************************************************************/
716
717 static struct class *stallion_class;
718
719 /*
720 * Loadable module initialization stuff.
721 */
722
723 static int __init stallion_module_init(void)
724 {
725 stl_init();
726 return 0;
727 }
728
729 /*****************************************************************************/
730
731 static void __exit stallion_module_exit(void)
732 {
733 stlbrd_t *brdp;
734 stlpanel_t *panelp;
735 stlport_t *portp;
736 int i, j, k;
737
738 #ifdef DEBUG
739 printk("cleanup_module()\n");
740 #endif
741
742 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
743 stl_drvversion);
744
745 /*
746 * Free up all allocated resources used by the ports. This includes
747 * memory and interrupts. As part of this process we will also do
748 * a hangup on every open port - to try to flush out any processes
749 * hanging onto ports.
750 */
751 i = tty_unregister_driver(stl_serial);
752 put_tty_driver(stl_serial);
753 if (i) {
754 printk("STALLION: failed to un-register tty driver, "
755 "errno=%d\n", -i);
756 return;
757 }
758 for (i = 0; i < 4; i++)
759 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
760 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
761 printk("STALLION: failed to un-register serial memory device, "
762 "errno=%d\n", -i);
763 class_destroy(stallion_class);
764
765 for (i = 0; (i < stl_nrbrds); i++) {
766 if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
767 continue;
768
769 free_irq(brdp->irq, brdp);
770
771 for (j = 0; (j < STL_MAXPANELS); j++) {
772 panelp = brdp->panels[j];
773 if (panelp == (stlpanel_t *) NULL)
774 continue;
775 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
776 portp = panelp->ports[k];
777 if (portp == (stlport_t *) NULL)
778 continue;
779 if (portp->tty != (struct tty_struct *) NULL)
780 stl_hangup(portp->tty);
781 kfree(portp->tx.buf);
782 kfree(portp);
783 }
784 kfree(panelp);
785 }
786
787 release_region(brdp->ioaddr1, brdp->iosize1);
788 if (brdp->iosize2 > 0)
789 release_region(brdp->ioaddr2, brdp->iosize2);
790
791 kfree(brdp);
792 stl_brds[i] = (stlbrd_t *) NULL;
793 }
794 }
795
796 module_init(stallion_module_init);
797 module_exit(stallion_module_exit);
798
799 /*****************************************************************************/
800
801 /*
802 * Check for any arguments passed in on the module load command line.
803 */
804
805 static void stl_argbrds(void)
806 {
807 stlconf_t conf;
808 stlbrd_t *brdp;
809 int i;
810
811 #ifdef DEBUG
812 printk("stl_argbrds()\n");
813 #endif
814
815 for (i = stl_nrbrds; (i < stl_nargs); i++) {
816 memset(&conf, 0, sizeof(conf));
817 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
818 continue;
819 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
820 continue;
821 stl_nrbrds = i + 1;
822 brdp->brdnr = i;
823 brdp->brdtype = conf.brdtype;
824 brdp->ioaddr1 = conf.ioaddr1;
825 brdp->ioaddr2 = conf.ioaddr2;
826 brdp->irq = conf.irq;
827 brdp->irqtype = conf.irqtype;
828 stl_brdinit(brdp);
829 }
830 }
831
832 /*****************************************************************************/
833
834 /*
835 * Convert an ascii string number into an unsigned long.
836 */
837
838 static unsigned long stl_atol(char *str)
839 {
840 unsigned long val;
841 int base, c;
842 char *sp;
843
844 val = 0;
845 sp = str;
846 if ((*sp == '0') && (*(sp+1) == 'x')) {
847 base = 16;
848 sp += 2;
849 } else if (*sp == '0') {
850 base = 8;
851 sp++;
852 } else {
853 base = 10;
854 }
855
856 for (; (*sp != 0); sp++) {
857 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
858 if ((c < 0) || (c >= base)) {
859 printk("STALLION: invalid argument %s\n", str);
860 val = 0;
861 break;
862 }
863 val = (val * base) + c;
864 }
865 return val;
866 }
867
868 /*****************************************************************************/
869
870 /*
871 * Parse the supplied argument string, into the board conf struct.
872 */
873
874 static int stl_parsebrd(stlconf_t *confp, char **argp)
875 {
876 char *sp;
877 int i;
878
879 #ifdef DEBUG
880 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
881 #endif
882
883 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
884 return 0;
885
886 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
887 *sp = TOLOWER(*sp);
888
889 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
890 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
891 break;
892 }
893 if (i == ARRAY_SIZE(stl_brdstr)) {
894 printk("STALLION: unknown board name, %s?\n", argp[0]);
895 return 0;
896 }
897
898 confp->brdtype = stl_brdstr[i].type;
899
900 i = 1;
901 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
902 confp->ioaddr1 = stl_atol(argp[i]);
903 i++;
904 if (confp->brdtype == BRD_ECH) {
905 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
906 confp->ioaddr2 = stl_atol(argp[i]);
907 i++;
908 }
909 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
910 confp->irq = stl_atol(argp[i]);
911 return 1;
912 }
913
914 /*****************************************************************************/
915
916 /*
917 * Allocate a new board structure. Fill out the basic info in it.
918 */
919
920 static stlbrd_t *stl_allocbrd(void)
921 {
922 stlbrd_t *brdp;
923
924 brdp = kzalloc(sizeof(stlbrd_t), GFP_KERNEL);
925 if (!brdp) {
926 printk("STALLION: failed to allocate memory (size=%Zd)\n",
927 sizeof(stlbrd_t));
928 return NULL;
929 }
930
931 brdp->magic = STL_BOARDMAGIC;
932 return brdp;
933 }
934
935 /*****************************************************************************/
936
937 static int stl_open(struct tty_struct *tty, struct file *filp)
938 {
939 stlport_t *portp;
940 stlbrd_t *brdp;
941 unsigned int minordev;
942 int brdnr, panelnr, portnr, rc;
943
944 #ifdef DEBUG
945 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
946 (int) filp, tty->name);
947 #endif
948
949 minordev = tty->index;
950 brdnr = MINOR2BRD(minordev);
951 if (brdnr >= stl_nrbrds)
952 return -ENODEV;
953 brdp = stl_brds[brdnr];
954 if (brdp == (stlbrd_t *) NULL)
955 return -ENODEV;
956 minordev = MINOR2PORT(minordev);
957 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
958 if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
959 break;
960 if (minordev < brdp->panels[panelnr]->nrports) {
961 portnr = minordev;
962 break;
963 }
964 minordev -= brdp->panels[panelnr]->nrports;
965 }
966 if (portnr < 0)
967 return -ENODEV;
968
969 portp = brdp->panels[panelnr]->ports[portnr];
970 if (portp == (stlport_t *) NULL)
971 return -ENODEV;
972
973 /*
974 * On the first open of the device setup the port hardware, and
975 * initialize the per port data structure.
976 */
977 portp->tty = tty;
978 tty->driver_data = portp;
979 portp->refcount++;
980
981 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
982 if (!portp->tx.buf) {
983 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
984 if (!portp->tx.buf)
985 return -ENOMEM;
986 portp->tx.head = portp->tx.buf;
987 portp->tx.tail = portp->tx.buf;
988 }
989 stl_setport(portp, tty->termios);
990 portp->sigs = stl_getsignals(portp);
991 stl_setsignals(portp, 1, 1);
992 stl_enablerxtx(portp, 1, 1);
993 stl_startrxtx(portp, 1, 0);
994 clear_bit(TTY_IO_ERROR, &tty->flags);
995 portp->flags |= ASYNC_INITIALIZED;
996 }
997
998 /*
999 * Check if this port is in the middle of closing. If so then wait
1000 * until it is closed then return error status, based on flag settings.
1001 * The sleep here does not need interrupt protection since the wakeup
1002 * for it is done with the same context.
1003 */
1004 if (portp->flags & ASYNC_CLOSING) {
1005 interruptible_sleep_on(&portp->close_wait);
1006 if (portp->flags & ASYNC_HUP_NOTIFY)
1007 return -EAGAIN;
1008 return -ERESTARTSYS;
1009 }
1010
1011 /*
1012 * Based on type of open being done check if it can overlap with any
1013 * previous opens still in effect. If we are a normal serial device
1014 * then also we might have to wait for carrier.
1015 */
1016 if (!(filp->f_flags & O_NONBLOCK)) {
1017 if ((rc = stl_waitcarrier(portp, filp)) != 0)
1018 return rc;
1019 }
1020 portp->flags |= ASYNC_NORMAL_ACTIVE;
1021
1022 return 0;
1023 }
1024
1025 /*****************************************************************************/
1026
1027 /*
1028 * Possibly need to wait for carrier (DCD signal) to come high. Say
1029 * maybe because if we are clocal then we don't need to wait...
1030 */
1031
1032 static int stl_waitcarrier(stlport_t *portp, struct file *filp)
1033 {
1034 unsigned long flags;
1035 int rc, doclocal;
1036
1037 #ifdef DEBUG
1038 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
1039 #endif
1040
1041 rc = 0;
1042 doclocal = 0;
1043
1044 spin_lock_irqsave(&stallion_lock, flags);
1045
1046 if (portp->tty->termios->c_cflag & CLOCAL)
1047 doclocal++;
1048
1049 portp->openwaitcnt++;
1050 if (! tty_hung_up_p(filp))
1051 portp->refcount--;
1052
1053 for (;;) {
1054 /* Takes brd_lock internally */
1055 stl_setsignals(portp, 1, 1);
1056 if (tty_hung_up_p(filp) ||
1057 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1058 if (portp->flags & ASYNC_HUP_NOTIFY)
1059 rc = -EBUSY;
1060 else
1061 rc = -ERESTARTSYS;
1062 break;
1063 }
1064 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1065 (doclocal || (portp->sigs & TIOCM_CD))) {
1066 break;
1067 }
1068 if (signal_pending(current)) {
1069 rc = -ERESTARTSYS;
1070 break;
1071 }
1072 /* FIXME */
1073 interruptible_sleep_on(&portp->open_wait);
1074 }
1075
1076 if (! tty_hung_up_p(filp))
1077 portp->refcount++;
1078 portp->openwaitcnt--;
1079 spin_unlock_irqrestore(&stallion_lock, flags);
1080
1081 return rc;
1082 }
1083
1084 /*****************************************************************************/
1085
1086 static void stl_close(struct tty_struct *tty, struct file *filp)
1087 {
1088 stlport_t *portp;
1089 unsigned long flags;
1090
1091 #ifdef DEBUG
1092 printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1093 #endif
1094
1095 portp = tty->driver_data;
1096 if (portp == (stlport_t *) NULL)
1097 return;
1098
1099 spin_lock_irqsave(&stallion_lock, flags);
1100 if (tty_hung_up_p(filp)) {
1101 spin_unlock_irqrestore(&stallion_lock, flags);
1102 return;
1103 }
1104 if ((tty->count == 1) && (portp->refcount != 1))
1105 portp->refcount = 1;
1106 if (portp->refcount-- > 1) {
1107 spin_unlock_irqrestore(&stallion_lock, flags);
1108 return;
1109 }
1110
1111 portp->refcount = 0;
1112 portp->flags |= ASYNC_CLOSING;
1113
1114 /*
1115 * May want to wait for any data to drain before closing. The BUSY
1116 * flag keeps track of whether we are still sending or not - it is
1117 * very accurate for the cd1400, not quite so for the sc26198.
1118 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1119 */
1120 tty->closing = 1;
1121
1122 spin_unlock_irqrestore(&stallion_lock, flags);
1123
1124 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1125 tty_wait_until_sent(tty, portp->closing_wait);
1126 stl_waituntilsent(tty, (HZ / 2));
1127
1128
1129 spin_lock_irqsave(&stallion_lock, flags);
1130 portp->flags &= ~ASYNC_INITIALIZED;
1131 spin_unlock_irqrestore(&stallion_lock, flags);
1132
1133 stl_disableintrs(portp);
1134 if (tty->termios->c_cflag & HUPCL)
1135 stl_setsignals(portp, 0, 0);
1136 stl_enablerxtx(portp, 0, 0);
1137 stl_flushbuffer(tty);
1138 portp->istate = 0;
1139 if (portp->tx.buf != (char *) NULL) {
1140 kfree(portp->tx.buf);
1141 portp->tx.buf = (char *) NULL;
1142 portp->tx.head = (char *) NULL;
1143 portp->tx.tail = (char *) NULL;
1144 }
1145 set_bit(TTY_IO_ERROR, &tty->flags);
1146 tty_ldisc_flush(tty);
1147
1148 tty->closing = 0;
1149 portp->tty = (struct tty_struct *) NULL;
1150
1151 if (portp->openwaitcnt) {
1152 if (portp->close_delay)
1153 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1154 wake_up_interruptible(&portp->open_wait);
1155 }
1156
1157 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1158 wake_up_interruptible(&portp->close_wait);
1159 }
1160
1161 /*****************************************************************************/
1162
1163 /*
1164 * Write routine. Take data and stuff it in to the TX ring queue.
1165 * If transmit interrupts are not running then start them.
1166 */
1167
1168 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1169 {
1170 stlport_t *portp;
1171 unsigned int len, stlen;
1172 unsigned char *chbuf;
1173 char *head, *tail;
1174
1175 #ifdef DEBUG
1176 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1177 (int) tty, (int) buf, count);
1178 #endif
1179
1180 portp = tty->driver_data;
1181 if (portp == (stlport_t *) NULL)
1182 return 0;
1183 if (portp->tx.buf == (char *) NULL)
1184 return 0;
1185
1186 /*
1187 * If copying direct from user space we must cater for page faults,
1188 * causing us to "sleep" here for a while. To handle this copy in all
1189 * the data we need now, into a local buffer. Then when we got it all
1190 * copy it into the TX buffer.
1191 */
1192 chbuf = (unsigned char *) buf;
1193
1194 head = portp->tx.head;
1195 tail = portp->tx.tail;
1196 if (head >= tail) {
1197 len = STL_TXBUFSIZE - (head - tail) - 1;
1198 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1199 } else {
1200 len = tail - head - 1;
1201 stlen = len;
1202 }
1203
1204 len = MIN(len, count);
1205 count = 0;
1206 while (len > 0) {
1207 stlen = MIN(len, stlen);
1208 memcpy(head, chbuf, stlen);
1209 len -= stlen;
1210 chbuf += stlen;
1211 count += stlen;
1212 head += stlen;
1213 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1214 head = portp->tx.buf;
1215 stlen = tail - head;
1216 }
1217 }
1218 portp->tx.head = head;
1219
1220 clear_bit(ASYI_TXLOW, &portp->istate);
1221 stl_startrxtx(portp, -1, 1);
1222
1223 return count;
1224 }
1225
1226 /*****************************************************************************/
1227
1228 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1229 {
1230 stlport_t *portp;
1231 unsigned int len;
1232 char *head, *tail;
1233
1234 #ifdef DEBUG
1235 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1236 #endif
1237
1238 if (tty == (struct tty_struct *) NULL)
1239 return;
1240 portp = tty->driver_data;
1241 if (portp == (stlport_t *) NULL)
1242 return;
1243 if (portp->tx.buf == (char *) NULL)
1244 return;
1245
1246 head = portp->tx.head;
1247 tail = portp->tx.tail;
1248
1249 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1250 len--;
1251
1252 if (len > 0) {
1253 *head++ = ch;
1254 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1255 head = portp->tx.buf;
1256 }
1257 portp->tx.head = head;
1258 }
1259
1260 /*****************************************************************************/
1261
1262 /*
1263 * If there are any characters in the buffer then make sure that TX
1264 * interrupts are on and get'em out. Normally used after the putchar
1265 * routine has been called.
1266 */
1267
1268 static void stl_flushchars(struct tty_struct *tty)
1269 {
1270 stlport_t *portp;
1271
1272 #ifdef DEBUG
1273 printk("stl_flushchars(tty=%x)\n", (int) tty);
1274 #endif
1275
1276 if (tty == (struct tty_struct *) NULL)
1277 return;
1278 portp = tty->driver_data;
1279 if (portp == (stlport_t *) NULL)
1280 return;
1281 if (portp->tx.buf == (char *) NULL)
1282 return;
1283
1284 stl_startrxtx(portp, -1, 1);
1285 }
1286
1287 /*****************************************************************************/
1288
1289 static int stl_writeroom(struct tty_struct *tty)
1290 {
1291 stlport_t *portp;
1292 char *head, *tail;
1293
1294 #ifdef DEBUG
1295 printk("stl_writeroom(tty=%x)\n", (int) tty);
1296 #endif
1297
1298 if (tty == (struct tty_struct *) NULL)
1299 return 0;
1300 portp = tty->driver_data;
1301 if (portp == (stlport_t *) NULL)
1302 return 0;
1303 if (portp->tx.buf == (char *) NULL)
1304 return 0;
1305
1306 head = portp->tx.head;
1307 tail = portp->tx.tail;
1308 return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1309 }
1310
1311 /*****************************************************************************/
1312
1313 /*
1314 * Return number of chars in the TX buffer. Normally we would just
1315 * calculate the number of chars in the buffer and return that, but if
1316 * the buffer is empty and TX interrupts are still on then we return
1317 * that the buffer still has 1 char in it. This way whoever called us
1318 * will not think that ALL chars have drained - since the UART still
1319 * must have some chars in it (we are busy after all).
1320 */
1321
1322 static int stl_charsinbuffer(struct tty_struct *tty)
1323 {
1324 stlport_t *portp;
1325 unsigned int size;
1326 char *head, *tail;
1327
1328 #ifdef DEBUG
1329 printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
1330 #endif
1331
1332 if (tty == (struct tty_struct *) NULL)
1333 return 0;
1334 portp = tty->driver_data;
1335 if (portp == (stlport_t *) NULL)
1336 return 0;
1337 if (portp->tx.buf == (char *) NULL)
1338 return 0;
1339
1340 head = portp->tx.head;
1341 tail = portp->tx.tail;
1342 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1343 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1344 size = 1;
1345 return size;
1346 }
1347
1348 /*****************************************************************************/
1349
1350 /*
1351 * Generate the serial struct info.
1352 */
1353
1354 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
1355 {
1356 struct serial_struct sio;
1357 stlbrd_t *brdp;
1358
1359 #ifdef DEBUG
1360 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1361 #endif
1362
1363 memset(&sio, 0, sizeof(struct serial_struct));
1364 sio.line = portp->portnr;
1365 sio.port = portp->ioaddr;
1366 sio.flags = portp->flags;
1367 sio.baud_base = portp->baud_base;
1368 sio.close_delay = portp->close_delay;
1369 sio.closing_wait = portp->closing_wait;
1370 sio.custom_divisor = portp->custom_divisor;
1371 sio.hub6 = 0;
1372 if (portp->uartp == &stl_cd1400uart) {
1373 sio.type = PORT_CIRRUS;
1374 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1375 } else {
1376 sio.type = PORT_UNKNOWN;
1377 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1378 }
1379
1380 brdp = stl_brds[portp->brdnr];
1381 if (brdp != (stlbrd_t *) NULL)
1382 sio.irq = brdp->irq;
1383
1384 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1385 }
1386
1387 /*****************************************************************************/
1388
1389 /*
1390 * Set port according to the serial struct info.
1391 * At this point we do not do any auto-configure stuff, so we will
1392 * just quietly ignore any requests to change irq, etc.
1393 */
1394
1395 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
1396 {
1397 struct serial_struct sio;
1398
1399 #ifdef DEBUG
1400 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1401 #endif
1402
1403 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1404 return -EFAULT;
1405 if (!capable(CAP_SYS_ADMIN)) {
1406 if ((sio.baud_base != portp->baud_base) ||
1407 (sio.close_delay != portp->close_delay) ||
1408 ((sio.flags & ~ASYNC_USR_MASK) !=
1409 (portp->flags & ~ASYNC_USR_MASK)))
1410 return -EPERM;
1411 }
1412
1413 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1414 (sio.flags & ASYNC_USR_MASK);
1415 portp->baud_base = sio.baud_base;
1416 portp->close_delay = sio.close_delay;
1417 portp->closing_wait = sio.closing_wait;
1418 portp->custom_divisor = sio.custom_divisor;
1419 stl_setport(portp, portp->tty->termios);
1420 return 0;
1421 }
1422
1423 /*****************************************************************************/
1424
1425 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1426 {
1427 stlport_t *portp;
1428
1429 if (tty == (struct tty_struct *) NULL)
1430 return -ENODEV;
1431 portp = tty->driver_data;
1432 if (portp == (stlport_t *) NULL)
1433 return -ENODEV;
1434 if (tty->flags & (1 << TTY_IO_ERROR))
1435 return -EIO;
1436
1437 return stl_getsignals(portp);
1438 }
1439
1440 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1441 unsigned int set, unsigned int clear)
1442 {
1443 stlport_t *portp;
1444 int rts = -1, dtr = -1;
1445
1446 if (tty == (struct tty_struct *) NULL)
1447 return -ENODEV;
1448 portp = tty->driver_data;
1449 if (portp == (stlport_t *) NULL)
1450 return -ENODEV;
1451 if (tty->flags & (1 << TTY_IO_ERROR))
1452 return -EIO;
1453
1454 if (set & TIOCM_RTS)
1455 rts = 1;
1456 if (set & TIOCM_DTR)
1457 dtr = 1;
1458 if (clear & TIOCM_RTS)
1459 rts = 0;
1460 if (clear & TIOCM_DTR)
1461 dtr = 0;
1462
1463 stl_setsignals(portp, dtr, rts);
1464 return 0;
1465 }
1466
1467 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1468 {
1469 stlport_t *portp;
1470 unsigned int ival;
1471 int rc;
1472 void __user *argp = (void __user *)arg;
1473
1474 #ifdef DEBUG
1475 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1476 (int) tty, (int) file, cmd, (int) arg);
1477 #endif
1478
1479 if (tty == (struct tty_struct *) NULL)
1480 return -ENODEV;
1481 portp = tty->driver_data;
1482 if (portp == (stlport_t *) NULL)
1483 return -ENODEV;
1484
1485 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1486 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1487 if (tty->flags & (1 << TTY_IO_ERROR))
1488 return -EIO;
1489 }
1490
1491 rc = 0;
1492
1493 switch (cmd) {
1494 case TIOCGSOFTCAR:
1495 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1496 (unsigned __user *) argp);
1497 break;
1498 case TIOCSSOFTCAR:
1499 if (get_user(ival, (unsigned int __user *) arg))
1500 return -EFAULT;
1501 tty->termios->c_cflag =
1502 (tty->termios->c_cflag & ~CLOCAL) |
1503 (ival ? CLOCAL : 0);
1504 break;
1505 case TIOCGSERIAL:
1506 rc = stl_getserial(portp, argp);
1507 break;
1508 case TIOCSSERIAL:
1509 rc = stl_setserial(portp, argp);
1510 break;
1511 case COM_GETPORTSTATS:
1512 rc = stl_getportstats(portp, argp);
1513 break;
1514 case COM_CLRPORTSTATS:
1515 rc = stl_clrportstats(portp, argp);
1516 break;
1517 case TIOCSERCONFIG:
1518 case TIOCSERGWILD:
1519 case TIOCSERSWILD:
1520 case TIOCSERGETLSR:
1521 case TIOCSERGSTRUCT:
1522 case TIOCSERGETMULTI:
1523 case TIOCSERSETMULTI:
1524 default:
1525 rc = -ENOIOCTLCMD;
1526 break;
1527 }
1528
1529 return rc;
1530 }
1531
1532 /*****************************************************************************/
1533
1534 static void stl_settermios(struct tty_struct *tty, struct termios *old)
1535 {
1536 stlport_t *portp;
1537 struct termios *tiosp;
1538
1539 #ifdef DEBUG
1540 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
1541 #endif
1542
1543 if (tty == (struct tty_struct *) NULL)
1544 return;
1545 portp = tty->driver_data;
1546 if (portp == (stlport_t *) NULL)
1547 return;
1548
1549 tiosp = tty->termios;
1550 if ((tiosp->c_cflag == old->c_cflag) &&
1551 (tiosp->c_iflag == old->c_iflag))
1552 return;
1553
1554 stl_setport(portp, tiosp);
1555 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1556 -1);
1557 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1558 tty->hw_stopped = 0;
1559 stl_start(tty);
1560 }
1561 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1562 wake_up_interruptible(&portp->open_wait);
1563 }
1564
1565 /*****************************************************************************/
1566
1567 /*
1568 * Attempt to flow control who ever is sending us data. Based on termios
1569 * settings use software or/and hardware flow control.
1570 */
1571
1572 static void stl_throttle(struct tty_struct *tty)
1573 {
1574 stlport_t *portp;
1575
1576 #ifdef DEBUG
1577 printk("stl_throttle(tty=%x)\n", (int) tty);
1578 #endif
1579
1580 if (tty == (struct tty_struct *) NULL)
1581 return;
1582 portp = tty->driver_data;
1583 if (portp == (stlport_t *) NULL)
1584 return;
1585 stl_flowctrl(portp, 0);
1586 }
1587
1588 /*****************************************************************************/
1589
1590 /*
1591 * Unflow control the device sending us data...
1592 */
1593
1594 static void stl_unthrottle(struct tty_struct *tty)
1595 {
1596 stlport_t *portp;
1597
1598 #ifdef DEBUG
1599 printk("stl_unthrottle(tty=%x)\n", (int) tty);
1600 #endif
1601
1602 if (tty == (struct tty_struct *) NULL)
1603 return;
1604 portp = tty->driver_data;
1605 if (portp == (stlport_t *) NULL)
1606 return;
1607 stl_flowctrl(portp, 1);
1608 }
1609
1610 /*****************************************************************************/
1611
1612 /*
1613 * Stop the transmitter. Basically to do this we will just turn TX
1614 * interrupts off.
1615 */
1616
1617 static void stl_stop(struct tty_struct *tty)
1618 {
1619 stlport_t *portp;
1620
1621 #ifdef DEBUG
1622 printk("stl_stop(tty=%x)\n", (int) tty);
1623 #endif
1624
1625 if (tty == (struct tty_struct *) NULL)
1626 return;
1627 portp = tty->driver_data;
1628 if (portp == (stlport_t *) NULL)
1629 return;
1630 stl_startrxtx(portp, -1, 0);
1631 }
1632
1633 /*****************************************************************************/
1634
1635 /*
1636 * Start the transmitter again. Just turn TX interrupts back on.
1637 */
1638
1639 static void stl_start(struct tty_struct *tty)
1640 {
1641 stlport_t *portp;
1642
1643 #ifdef DEBUG
1644 printk("stl_start(tty=%x)\n", (int) tty);
1645 #endif
1646
1647 if (tty == (struct tty_struct *) NULL)
1648 return;
1649 portp = tty->driver_data;
1650 if (portp == (stlport_t *) NULL)
1651 return;
1652 stl_startrxtx(portp, -1, 1);
1653 }
1654
1655 /*****************************************************************************/
1656
1657 /*
1658 * Hangup this port. This is pretty much like closing the port, only
1659 * a little more brutal. No waiting for data to drain. Shutdown the
1660 * port and maybe drop signals.
1661 */
1662
1663 static void stl_hangup(struct tty_struct *tty)
1664 {
1665 stlport_t *portp;
1666
1667 #ifdef DEBUG
1668 printk("stl_hangup(tty=%x)\n", (int) tty);
1669 #endif
1670
1671 if (tty == (struct tty_struct *) NULL)
1672 return;
1673 portp = tty->driver_data;
1674 if (portp == (stlport_t *) NULL)
1675 return;
1676
1677 portp->flags &= ~ASYNC_INITIALIZED;
1678 stl_disableintrs(portp);
1679 if (tty->termios->c_cflag & HUPCL)
1680 stl_setsignals(portp, 0, 0);
1681 stl_enablerxtx(portp, 0, 0);
1682 stl_flushbuffer(tty);
1683 portp->istate = 0;
1684 set_bit(TTY_IO_ERROR, &tty->flags);
1685 if (portp->tx.buf != (char *) NULL) {
1686 kfree(portp->tx.buf);
1687 portp->tx.buf = (char *) NULL;
1688 portp->tx.head = (char *) NULL;
1689 portp->tx.tail = (char *) NULL;
1690 }
1691 portp->tty = (struct tty_struct *) NULL;
1692 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1693 portp->refcount = 0;
1694 wake_up_interruptible(&portp->open_wait);
1695 }
1696
1697 /*****************************************************************************/
1698
1699 static void stl_flushbuffer(struct tty_struct *tty)
1700 {
1701 stlport_t *portp;
1702
1703 #ifdef DEBUG
1704 printk("stl_flushbuffer(tty=%x)\n", (int) tty);
1705 #endif
1706
1707 if (tty == (struct tty_struct *) NULL)
1708 return;
1709 portp = tty->driver_data;
1710 if (portp == (stlport_t *) NULL)
1711 return;
1712
1713 stl_flush(portp);
1714 tty_wakeup(tty);
1715 }
1716
1717 /*****************************************************************************/
1718
1719 static void stl_breakctl(struct tty_struct *tty, int state)
1720 {
1721 stlport_t *portp;
1722
1723 #ifdef DEBUG
1724 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
1725 #endif
1726
1727 if (tty == (struct tty_struct *) NULL)
1728 return;
1729 portp = tty->driver_data;
1730 if (portp == (stlport_t *) NULL)
1731 return;
1732
1733 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1734 }
1735
1736 /*****************************************************************************/
1737
1738 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
1739 {
1740 stlport_t *portp;
1741 unsigned long tend;
1742
1743 #ifdef DEBUG
1744 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
1745 #endif
1746
1747 if (tty == (struct tty_struct *) NULL)
1748 return;
1749 portp = tty->driver_data;
1750 if (portp == (stlport_t *) NULL)
1751 return;
1752
1753 if (timeout == 0)
1754 timeout = HZ;
1755 tend = jiffies + timeout;
1756
1757 while (stl_datastate(portp)) {
1758 if (signal_pending(current))
1759 break;
1760 msleep_interruptible(20);
1761 if (time_after_eq(jiffies, tend))
1762 break;
1763 }
1764 }
1765
1766 /*****************************************************************************/
1767
1768 static void stl_sendxchar(struct tty_struct *tty, char ch)
1769 {
1770 stlport_t *portp;
1771
1772 #ifdef DEBUG
1773 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
1774 #endif
1775
1776 if (tty == (struct tty_struct *) NULL)
1777 return;
1778 portp = tty->driver_data;
1779 if (portp == (stlport_t *) NULL)
1780 return;
1781
1782 if (ch == STOP_CHAR(tty))
1783 stl_sendflow(portp, 0);
1784 else if (ch == START_CHAR(tty))
1785 stl_sendflow(portp, 1);
1786 else
1787 stl_putchar(tty, ch);
1788 }
1789
1790 /*****************************************************************************/
1791
1792 #define MAXLINE 80
1793
1794 /*
1795 * Format info for a specified port. The line is deliberately limited
1796 * to 80 characters. (If it is too long it will be truncated, if too
1797 * short then padded with spaces).
1798 */
1799
1800 static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
1801 {
1802 char *sp;
1803 int sigs, cnt;
1804
1805 sp = pos;
1806 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1807 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1808 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1809
1810 if (portp->stats.rxframing)
1811 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1812 if (portp->stats.rxparity)
1813 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1814 if (portp->stats.rxbreaks)
1815 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1816 if (portp->stats.rxoverrun)
1817 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1818
1819 sigs = stl_getsignals(portp);
1820 cnt = sprintf(sp, "%s%s%s%s%s ",
1821 (sigs & TIOCM_RTS) ? "|RTS" : "",
1822 (sigs & TIOCM_CTS) ? "|CTS" : "",
1823 (sigs & TIOCM_DTR) ? "|DTR" : "",
1824 (sigs & TIOCM_CD) ? "|DCD" : "",
1825 (sigs & TIOCM_DSR) ? "|DSR" : "");
1826 *sp = ' ';
1827 sp += cnt;
1828
1829 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1830 *sp++ = ' ';
1831 if (cnt >= MAXLINE)
1832 pos[(MAXLINE - 2)] = '+';
1833 pos[(MAXLINE - 1)] = '\n';
1834
1835 return MAXLINE;
1836 }
1837
1838 /*****************************************************************************/
1839
1840 /*
1841 * Port info, read from the /proc file system.
1842 */
1843
1844 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1845 {
1846 stlbrd_t *brdp;
1847 stlpanel_t *panelp;
1848 stlport_t *portp;
1849 int brdnr, panelnr, portnr, totalport;
1850 int curoff, maxoff;
1851 char *pos;
1852
1853 #ifdef DEBUG
1854 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1855 "data=%x\n", (int) page, (int) start, (int) off, count,
1856 (int) eof, (int) data);
1857 #endif
1858
1859 pos = page;
1860 totalport = 0;
1861 curoff = 0;
1862
1863 if (off == 0) {
1864 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1865 stl_drvversion);
1866 while (pos < (page + MAXLINE - 1))
1867 *pos++ = ' ';
1868 *pos++ = '\n';
1869 }
1870 curoff = MAXLINE;
1871
1872 /*
1873 * We scan through for each board, panel and port. The offset is
1874 * calculated on the fly, and irrelevant ports are skipped.
1875 */
1876 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1877 brdp = stl_brds[brdnr];
1878 if (brdp == (stlbrd_t *) NULL)
1879 continue;
1880 if (brdp->state == 0)
1881 continue;
1882
1883 maxoff = curoff + (brdp->nrports * MAXLINE);
1884 if (off >= maxoff) {
1885 curoff = maxoff;
1886 continue;
1887 }
1888
1889 totalport = brdnr * STL_MAXPORTS;
1890 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1891 panelp = brdp->panels[panelnr];
1892 if (panelp == (stlpanel_t *) NULL)
1893 continue;
1894
1895 maxoff = curoff + (panelp->nrports * MAXLINE);
1896 if (off >= maxoff) {
1897 curoff = maxoff;
1898 totalport += panelp->nrports;
1899 continue;
1900 }
1901
1902 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1903 totalport++) {
1904 portp = panelp->ports[portnr];
1905 if (portp == (stlport_t *) NULL)
1906 continue;
1907 if (off >= (curoff += MAXLINE))
1908 continue;
1909 if ((pos - page + MAXLINE) > count)
1910 goto stl_readdone;
1911 pos += stl_portinfo(portp, totalport, pos);
1912 }
1913 }
1914 }
1915
1916 *eof = 1;
1917
1918 stl_readdone:
1919 *start = page;
1920 return (pos - page);
1921 }
1922
1923 /*****************************************************************************/
1924
1925 /*
1926 * All board interrupts are vectored through here first. This code then
1927 * calls off to the approrpriate board interrupt handlers.
1928 */
1929
1930 static irqreturn_t stl_intr(int irq, void *dev_id, struct pt_regs *regs)
1931 {
1932 stlbrd_t *brdp = (stlbrd_t *) dev_id;
1933
1934 #ifdef DEBUG
1935 printk("stl_intr(brdp=%x,irq=%d,regs=%x)\n", (int) brdp, irq,
1936 (int) regs);
1937 #endif
1938
1939 return IRQ_RETVAL((* brdp->isr)(brdp));
1940 }
1941
1942 /*****************************************************************************/
1943
1944 /*
1945 * Interrupt service routine for EasyIO board types.
1946 */
1947
1948 static int stl_eiointr(stlbrd_t *brdp)
1949 {
1950 stlpanel_t *panelp;
1951 unsigned int iobase;
1952 int handled = 0;
1953
1954 spin_lock(&brd_lock);
1955 panelp = brdp->panels[0];
1956 iobase = panelp->iobase;
1957 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1958 handled = 1;
1959 (* panelp->isr)(panelp, iobase);
1960 }
1961 spin_unlock(&brd_lock);
1962 return handled;
1963 }
1964
1965 /*****************************************************************************/
1966
1967 /*
1968 * Interrupt service routine for ECH-AT board types.
1969 */
1970
1971 static int stl_echatintr(stlbrd_t *brdp)
1972 {
1973 stlpanel_t *panelp;
1974 unsigned int ioaddr;
1975 int bnknr;
1976 int handled = 0;
1977
1978 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1979
1980 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1981 handled = 1;
1982 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1983 ioaddr = brdp->bnkstataddr[bnknr];
1984 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1985 panelp = brdp->bnk2panel[bnknr];
1986 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1987 }
1988 }
1989 }
1990
1991 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1992
1993 return handled;
1994 }
1995
1996 /*****************************************************************************/
1997
1998 /*
1999 * Interrupt service routine for ECH-MCA board types.
2000 */
2001
2002 static int stl_echmcaintr(stlbrd_t *brdp)
2003 {
2004 stlpanel_t *panelp;
2005 unsigned int ioaddr;
2006 int bnknr;
2007 int handled = 0;
2008
2009 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2010 handled = 1;
2011 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2012 ioaddr = brdp->bnkstataddr[bnknr];
2013 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2014 panelp = brdp->bnk2panel[bnknr];
2015 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2016 }
2017 }
2018 }
2019 return handled;
2020 }
2021
2022 /*****************************************************************************/
2023
2024 /*
2025 * Interrupt service routine for ECH-PCI board types.
2026 */
2027
2028 static int stl_echpciintr(stlbrd_t *brdp)
2029 {
2030 stlpanel_t *panelp;
2031 unsigned int ioaddr;
2032 int bnknr, recheck;
2033 int handled = 0;
2034
2035 while (1) {
2036 recheck = 0;
2037 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2038 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
2039 ioaddr = brdp->bnkstataddr[bnknr];
2040 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2041 panelp = brdp->bnk2panel[bnknr];
2042 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2043 recheck++;
2044 handled = 1;
2045 }
2046 }
2047 if (! recheck)
2048 break;
2049 }
2050 return handled;
2051 }
2052
2053 /*****************************************************************************/
2054
2055 /*
2056 * Interrupt service routine for ECH-8/64-PCI board types.
2057 */
2058
2059 static int stl_echpci64intr(stlbrd_t *brdp)
2060 {
2061 stlpanel_t *panelp;
2062 unsigned int ioaddr;
2063 int bnknr;
2064 int handled = 0;
2065
2066 while (inb(brdp->ioctrl) & 0x1) {
2067 handled = 1;
2068 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2069 ioaddr = brdp->bnkstataddr[bnknr];
2070 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2071 panelp = brdp->bnk2panel[bnknr];
2072 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2073 }
2074 }
2075 }
2076
2077 return handled;
2078 }
2079
2080 /*****************************************************************************/
2081
2082 /*
2083 * Service an off-level request for some channel.
2084 */
2085 static void stl_offintr(void *private)
2086 {
2087 stlport_t *portp;
2088 struct tty_struct *tty;
2089 unsigned int oldsigs;
2090
2091 portp = private;
2092
2093 #ifdef DEBUG
2094 printk("stl_offintr(portp=%x)\n", (int) portp);
2095 #endif
2096
2097 if (portp == (stlport_t *) NULL)
2098 return;
2099
2100 tty = portp->tty;
2101 if (tty == (struct tty_struct *) NULL)
2102 return;
2103
2104 lock_kernel();
2105 if (test_bit(ASYI_TXLOW, &portp->istate)) {
2106 tty_wakeup(tty);
2107 }
2108 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
2109 clear_bit(ASYI_DCDCHANGE, &portp->istate);
2110 oldsigs = portp->sigs;
2111 portp->sigs = stl_getsignals(portp);
2112 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
2113 wake_up_interruptible(&portp->open_wait);
2114 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
2115 if (portp->flags & ASYNC_CHECK_CD)
2116 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2117 }
2118 }
2119 unlock_kernel();
2120 }
2121
2122 /*****************************************************************************/
2123
2124 /*
2125 * Initialize all the ports on a panel.
2126 */
2127
2128 static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
2129 {
2130 stlport_t *portp;
2131 int chipmask, i;
2132
2133 #ifdef DEBUG
2134 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
2135 #endif
2136
2137 chipmask = stl_panelinit(brdp, panelp);
2138
2139 /*
2140 * All UART's are initialized (if found!). Now go through and setup
2141 * each ports data structures.
2142 */
2143 for (i = 0; (i < panelp->nrports); i++) {
2144 portp = kzalloc(sizeof(stlport_t), GFP_KERNEL);
2145 if (!portp) {
2146 printk("STALLION: failed to allocate memory "
2147 "(size=%Zd)\n", sizeof(stlport_t));
2148 break;
2149 }
2150
2151 portp->magic = STL_PORTMAGIC;
2152 portp->portnr = i;
2153 portp->brdnr = panelp->brdnr;
2154 portp->panelnr = panelp->panelnr;
2155 portp->uartp = panelp->uartp;
2156 portp->clk = brdp->clk;
2157 portp->baud_base = STL_BAUDBASE;
2158 portp->close_delay = STL_CLOSEDELAY;
2159 portp->closing_wait = 30 * HZ;
2160 INIT_WORK(&portp->tqueue, stl_offintr, portp);
2161 init_waitqueue_head(&portp->open_wait);
2162 init_waitqueue_head(&portp->close_wait);
2163 portp->stats.brd = portp->brdnr;
2164 portp->stats.panel = portp->panelnr;
2165 portp->stats.port = portp->portnr;
2166 panelp->ports[i] = portp;
2167 stl_portinit(brdp, panelp, portp);
2168 }
2169
2170 return(0);
2171 }
2172
2173 /*****************************************************************************/
2174
2175 /*
2176 * Try to find and initialize an EasyIO board.
2177 */
2178
2179 static inline int stl_initeio(stlbrd_t *brdp)
2180 {
2181 stlpanel_t *panelp;
2182 unsigned int status;
2183 char *name;
2184 int rc;
2185
2186 #ifdef DEBUG
2187 printk("stl_initeio(brdp=%x)\n", (int) brdp);
2188 #endif
2189
2190 brdp->ioctrl = brdp->ioaddr1 + 1;
2191 brdp->iostatus = brdp->ioaddr1 + 2;
2192
2193 status = inb(brdp->iostatus);
2194 if ((status & EIO_IDBITMASK) == EIO_MK3)
2195 brdp->ioctrl++;
2196
2197 /*
2198 * Handle board specific stuff now. The real difference is PCI
2199 * or not PCI.
2200 */
2201 if (brdp->brdtype == BRD_EASYIOPCI) {
2202 brdp->iosize1 = 0x80;
2203 brdp->iosize2 = 0x80;
2204 name = "serial(EIO-PCI)";
2205 outb(0x41, (brdp->ioaddr2 + 0x4c));
2206 } else {
2207 brdp->iosize1 = 8;
2208 name = "serial(EIO)";
2209 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2210 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2211 printk("STALLION: invalid irq=%d for brd=%d\n",
2212 brdp->irq, brdp->brdnr);
2213 return(-EINVAL);
2214 }
2215 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2216 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2217 brdp->ioctrl);
2218 }
2219
2220 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2221 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2222 "%x conflicts with another device\n", brdp->brdnr,
2223 brdp->ioaddr1);
2224 return(-EBUSY);
2225 }
2226
2227 if (brdp->iosize2 > 0)
2228 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2229 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2230 "address %x conflicts with another device\n",
2231 brdp->brdnr, brdp->ioaddr2);
2232 printk(KERN_WARNING "STALLION: Warning, also "
2233 "releasing board %d I/O address %x \n",
2234 brdp->brdnr, brdp->ioaddr1);
2235 release_region(brdp->ioaddr1, brdp->iosize1);
2236 return(-EBUSY);
2237 }
2238
2239 /*
2240 * Everything looks OK, so let's go ahead and probe for the hardware.
2241 */
2242 brdp->clk = CD1400_CLK;
2243 brdp->isr = stl_eiointr;
2244
2245 switch (status & EIO_IDBITMASK) {
2246 case EIO_8PORTM:
2247 brdp->clk = CD1400_CLK8M;
2248 /* fall thru */
2249 case EIO_8PORTRS:
2250 case EIO_8PORTDI:
2251 brdp->nrports = 8;
2252 break;
2253 case EIO_4PORTRS:
2254 brdp->nrports = 4;
2255 break;
2256 case EIO_MK3:
2257 switch (status & EIO_BRDMASK) {
2258 case ID_BRD4:
2259 brdp->nrports = 4;
2260 break;
2261 case ID_BRD8:
2262 brdp->nrports = 8;
2263 break;
2264 case ID_BRD16:
2265 brdp->nrports = 16;
2266 break;
2267 default:
2268 return(-ENODEV);
2269 }
2270 break;
2271 default:
2272 return(-ENODEV);
2273 }
2274
2275 /*
2276 * We have verified that the board is actually present, so now we
2277 * can complete the setup.
2278 */
2279
2280 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2281 if (!panelp) {
2282 printk(KERN_WARNING "STALLION: failed to allocate memory "
2283 "(size=%Zd)\n", sizeof(stlpanel_t));
2284 return -ENOMEM;
2285 }
2286
2287 panelp->magic = STL_PANELMAGIC;
2288 panelp->brdnr = brdp->brdnr;
2289 panelp->panelnr = 0;
2290 panelp->nrports = brdp->nrports;
2291 panelp->iobase = brdp->ioaddr1;
2292 panelp->hwid = status;
2293 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2294 panelp->uartp = (void *) &stl_sc26198uart;
2295 panelp->isr = stl_sc26198intr;
2296 } else {
2297 panelp->uartp = (void *) &stl_cd1400uart;
2298 panelp->isr = stl_cd1400eiointr;
2299 }
2300
2301 brdp->panels[0] = panelp;
2302 brdp->nrpanels = 1;
2303 brdp->state |= BRD_FOUND;
2304 brdp->hwid = status;
2305 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2306 printk("STALLION: failed to register interrupt "
2307 "routine for %s irq=%d\n", name, brdp->irq);
2308 rc = -ENODEV;
2309 } else {
2310 rc = 0;
2311 }
2312 return rc;
2313 }
2314
2315 /*****************************************************************************/
2316
2317 /*
2318 * Try to find an ECH board and initialize it. This code is capable of
2319 * dealing with all types of ECH board.
2320 */
2321
2322 static inline int stl_initech(stlbrd_t *brdp)
2323 {
2324 stlpanel_t *panelp;
2325 unsigned int status, nxtid, ioaddr, conflict;
2326 int panelnr, banknr, i;
2327 char *name;
2328
2329 #ifdef DEBUG
2330 printk("stl_initech(brdp=%x)\n", (int) brdp);
2331 #endif
2332
2333 status = 0;
2334 conflict = 0;
2335
2336 /*
2337 * Set up the initial board register contents for boards. This varies a
2338 * bit between the different board types. So we need to handle each
2339 * separately. Also do a check that the supplied IRQ is good.
2340 */
2341 switch (brdp->brdtype) {
2342
2343 case BRD_ECH:
2344 brdp->isr = stl_echatintr;
2345 brdp->ioctrl = brdp->ioaddr1 + 1;
2346 brdp->iostatus = brdp->ioaddr1 + 1;
2347 status = inb(brdp->iostatus);
2348 if ((status & ECH_IDBITMASK) != ECH_ID)
2349 return(-ENODEV);
2350 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2351 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2352 printk("STALLION: invalid irq=%d for brd=%d\n",
2353 brdp->irq, brdp->brdnr);
2354 return(-EINVAL);
2355 }
2356 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2357 status |= (stl_vecmap[brdp->irq] << 1);
2358 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2359 brdp->ioctrlval = ECH_INTENABLE |
2360 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2361 for (i = 0; (i < 10); i++)
2362 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2363 brdp->iosize1 = 2;
2364 brdp->iosize2 = 32;
2365 name = "serial(EC8/32)";
2366 outb(status, brdp->ioaddr1);
2367 break;
2368
2369 case BRD_ECHMC:
2370 brdp->isr = stl_echmcaintr;
2371 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2372 brdp->iostatus = brdp->ioctrl;
2373 status = inb(brdp->iostatus);
2374 if ((status & ECH_IDBITMASK) != ECH_ID)
2375 return(-ENODEV);
2376 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2377 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2378 printk("STALLION: invalid irq=%d for brd=%d\n",
2379 brdp->irq, brdp->brdnr);
2380 return(-EINVAL);
2381 }
2382 outb(ECHMC_BRDRESET, brdp->ioctrl);
2383 outb(ECHMC_INTENABLE, brdp->ioctrl);
2384 brdp->iosize1 = 64;
2385 name = "serial(EC8/32-MC)";
2386 break;
2387
2388 case BRD_ECHPCI:
2389 brdp->isr = stl_echpciintr;
2390 brdp->ioctrl = brdp->ioaddr1 + 2;
2391 brdp->iosize1 = 4;
2392 brdp->iosize2 = 8;
2393 name = "serial(EC8/32-PCI)";
2394 break;
2395
2396 case BRD_ECH64PCI:
2397 brdp->isr = stl_echpci64intr;
2398 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2399 outb(0x43, (brdp->ioaddr1 + 0x4c));
2400 brdp->iosize1 = 0x80;
2401 brdp->iosize2 = 0x80;
2402 name = "serial(EC8/64-PCI)";
2403 break;
2404
2405 default:
2406 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2407 return(-EINVAL);
2408 break;
2409 }
2410
2411 /*
2412 * Check boards for possible IO address conflicts and return fail status
2413 * if an IO conflict found.
2414 */
2415 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2416 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2417 "%x conflicts with another device\n", brdp->brdnr,
2418 brdp->ioaddr1);
2419 return(-EBUSY);
2420 }
2421
2422 if (brdp->iosize2 > 0)
2423 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2424 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2425 "address %x conflicts with another device\n",
2426 brdp->brdnr, brdp->ioaddr2);
2427 printk(KERN_WARNING "STALLION: Warning, also "
2428 "releasing board %d I/O address %x \n",
2429 brdp->brdnr, brdp->ioaddr1);
2430 release_region(brdp->ioaddr1, brdp->iosize1);
2431 return(-EBUSY);
2432 }
2433
2434 /*
2435 * Scan through the secondary io address space looking for panels.
2436 * As we find'em allocate and initialize panel structures for each.
2437 */
2438 brdp->clk = CD1400_CLK;
2439 brdp->hwid = status;
2440
2441 ioaddr = brdp->ioaddr2;
2442 banknr = 0;
2443 panelnr = 0;
2444 nxtid = 0;
2445
2446 for (i = 0; (i < STL_MAXPANELS); i++) {
2447 if (brdp->brdtype == BRD_ECHPCI) {
2448 outb(nxtid, brdp->ioctrl);
2449 ioaddr = brdp->ioaddr2;
2450 }
2451 status = inb(ioaddr + ECH_PNLSTATUS);
2452 if ((status & ECH_PNLIDMASK) != nxtid)
2453 break;
2454 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2455 if (!panelp) {
2456 printk("STALLION: failed to allocate memory "
2457 "(size=%Zd)\n", sizeof(stlpanel_t));
2458 break;
2459 }
2460 panelp->magic = STL_PANELMAGIC;
2461 panelp->brdnr = brdp->brdnr;
2462 panelp->panelnr = panelnr;
2463 panelp->iobase = ioaddr;
2464 panelp->pagenr = nxtid;
2465 panelp->hwid = status;
2466 brdp->bnk2panel[banknr] = panelp;
2467 brdp->bnkpageaddr[banknr] = nxtid;
2468 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2469
2470 if (status & ECH_PNLXPID) {
2471 panelp->uartp = (void *) &stl_sc26198uart;
2472 panelp->isr = stl_sc26198intr;
2473 if (status & ECH_PNL16PORT) {
2474 panelp->nrports = 16;
2475 brdp->bnk2panel[banknr] = panelp;
2476 brdp->bnkpageaddr[banknr] = nxtid;
2477 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2478 ECH_PNLSTATUS;
2479 } else {
2480 panelp->nrports = 8;
2481 }
2482 } else {
2483 panelp->uartp = (void *) &stl_cd1400uart;
2484 panelp->isr = stl_cd1400echintr;
2485 if (status & ECH_PNL16PORT) {
2486 panelp->nrports = 16;
2487 panelp->ackmask = 0x80;
2488 if (brdp->brdtype != BRD_ECHPCI)
2489 ioaddr += EREG_BANKSIZE;
2490 brdp->bnk2panel[banknr] = panelp;
2491 brdp->bnkpageaddr[banknr] = ++nxtid;
2492 brdp->bnkstataddr[banknr++] = ioaddr +
2493 ECH_PNLSTATUS;
2494 } else {
2495 panelp->nrports = 8;
2496 panelp->ackmask = 0xc0;
2497 }
2498 }
2499
2500 nxtid++;
2501 ioaddr += EREG_BANKSIZE;
2502 brdp->nrports += panelp->nrports;
2503 brdp->panels[panelnr++] = panelp;
2504 if ((brdp->brdtype != BRD_ECHPCI) &&
2505 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2506 break;
2507 }
2508
2509 brdp->nrpanels = panelnr;
2510 brdp->nrbnks = banknr;
2511 if (brdp->brdtype == BRD_ECH)
2512 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2513
2514 brdp->state |= BRD_FOUND;
2515 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2516 printk("STALLION: failed to register interrupt "
2517 "routine for %s irq=%d\n", name, brdp->irq);
2518 i = -ENODEV;
2519 } else {
2520 i = 0;
2521 }
2522
2523 return(i);
2524 }
2525
2526 /*****************************************************************************/
2527
2528 /*
2529 * Initialize and configure the specified board.
2530 * Scan through all the boards in the configuration and see what we
2531 * can find. Handle EIO and the ECH boards a little differently here
2532 * since the initial search and setup is very different.
2533 */
2534
2535 static int __init stl_brdinit(stlbrd_t *brdp)
2536 {
2537 int i;
2538
2539 #ifdef DEBUG
2540 printk("stl_brdinit(brdp=%x)\n", (int) brdp);
2541 #endif
2542
2543 switch (brdp->brdtype) {
2544 case BRD_EASYIO:
2545 case BRD_EASYIOPCI:
2546 stl_initeio(brdp);
2547 break;
2548 case BRD_ECH:
2549 case BRD_ECHMC:
2550 case BRD_ECHPCI:
2551 case BRD_ECH64PCI:
2552 stl_initech(brdp);
2553 break;
2554 default:
2555 printk("STALLION: board=%d is unknown board type=%d\n",
2556 brdp->brdnr, brdp->brdtype);
2557 return(ENODEV);
2558 }
2559
2560 stl_brds[brdp->brdnr] = brdp;
2561 if ((brdp->state & BRD_FOUND) == 0) {
2562 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2563 stl_brdnames[brdp->brdtype], brdp->brdnr,
2564 brdp->ioaddr1, brdp->irq);
2565 return(ENODEV);
2566 }
2567
2568 for (i = 0; (i < STL_MAXPANELS); i++)
2569 if (brdp->panels[i] != (stlpanel_t *) NULL)
2570 stl_initports(brdp, brdp->panels[i]);
2571
2572 printk("STALLION: %s found, board=%d io=%x irq=%d "
2573 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2574 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2575 brdp->nrports);
2576 return(0);
2577 }
2578
2579 /*****************************************************************************/
2580
2581 /*
2582 * Find the next available board number that is free.
2583 */
2584
2585 static inline int stl_getbrdnr(void)
2586 {
2587 int i;
2588
2589 for (i = 0; (i < STL_MAXBRDS); i++) {
2590 if (stl_brds[i] == (stlbrd_t *) NULL) {
2591 if (i >= stl_nrbrds)
2592 stl_nrbrds = i + 1;
2593 return(i);
2594 }
2595 }
2596 return(-1);
2597 }
2598
2599 /*****************************************************************************/
2600
2601 #ifdef CONFIG_PCI
2602
2603 /*
2604 * We have a Stallion board. Allocate a board structure and
2605 * initialize it. Read its IO and IRQ resources from PCI
2606 * configuration space.
2607 */
2608
2609 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
2610 {
2611 stlbrd_t *brdp;
2612
2613 #ifdef DEBUG
2614 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2615 devp->bus->number, devp->devfn);
2616 #endif
2617
2618 if (pci_enable_device(devp))
2619 return(-EIO);
2620 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2621 return(-ENOMEM);
2622 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2623 printk("STALLION: too many boards found, "
2624 "maximum supported %d\n", STL_MAXBRDS);
2625 return(0);
2626 }
2627 brdp->brdtype = brdtype;
2628
2629 /*
2630 * Different Stallion boards use the BAR registers in different ways,
2631 * so set up io addresses based on board type.
2632 */
2633 #ifdef DEBUG
2634 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
2635 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2636 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2637 #endif
2638
2639 /*
2640 * We have all resources from the board, so let's setup the actual
2641 * board structure now.
2642 */
2643 switch (brdtype) {
2644 case BRD_ECHPCI:
2645 brdp->ioaddr2 = pci_resource_start(devp, 0);
2646 brdp->ioaddr1 = pci_resource_start(devp, 1);
2647 break;
2648 case BRD_ECH64PCI:
2649 brdp->ioaddr2 = pci_resource_start(devp, 2);
2650 brdp->ioaddr1 = pci_resource_start(devp, 1);
2651 break;
2652 case BRD_EASYIOPCI:
2653 brdp->ioaddr1 = pci_resource_start(devp, 2);
2654 brdp->ioaddr2 = pci_resource_start(devp, 1);
2655 break;
2656 default:
2657 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2658 break;
2659 }
2660
2661 brdp->irq = devp->irq;
2662 stl_brdinit(brdp);
2663
2664 return(0);
2665 }
2666
2667 /*****************************************************************************/
2668
2669 /*
2670 * Find all Stallion PCI boards that might be installed. Initialize each
2671 * one as it is found.
2672 */
2673
2674
2675 static inline int stl_findpcibrds(void)
2676 {
2677 struct pci_dev *dev = NULL;
2678 int i, rc;
2679
2680 #ifdef DEBUG
2681 printk("stl_findpcibrds()\n");
2682 #endif
2683
2684 for (i = 0; (i < stl_nrpcibrds); i++)
2685 while ((dev = pci_find_device(stl_pcibrds[i].vendid,
2686 stl_pcibrds[i].devid, dev))) {
2687
2688 /*
2689 * Found a device on the PCI bus that has our vendor and
2690 * device ID. Need to check now that it is really us.
2691 */
2692 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2693 continue;
2694
2695 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2696 if (rc)
2697 return(rc);
2698 }
2699
2700 return(0);
2701 }
2702
2703 #endif
2704
2705 /*****************************************************************************/
2706
2707 /*
2708 * Scan through all the boards in the configuration and see what we
2709 * can find. Handle EIO and the ECH boards a little differently here
2710 * since the initial search and setup is too different.
2711 */
2712
2713 static inline int stl_initbrds(void)
2714 {
2715 stlbrd_t *brdp;
2716 stlconf_t *confp;
2717 int i;
2718
2719 #ifdef DEBUG
2720 printk("stl_initbrds()\n");
2721 #endif
2722
2723 if (stl_nrbrds > STL_MAXBRDS) {
2724 printk("STALLION: too many boards in configuration table, "
2725 "truncating to %d\n", STL_MAXBRDS);
2726 stl_nrbrds = STL_MAXBRDS;
2727 }
2728
2729 /*
2730 * Firstly scan the list of static boards configured. Allocate
2731 * resources and initialize the boards as found.
2732 */
2733 for (i = 0; (i < stl_nrbrds); i++) {
2734 confp = &stl_brdconf[i];
2735 stl_parsebrd(confp, stl_brdsp[i]);
2736 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2737 return(-ENOMEM);
2738 brdp->brdnr = i;
2739 brdp->brdtype = confp->brdtype;
2740 brdp->ioaddr1 = confp->ioaddr1;
2741 brdp->ioaddr2 = confp->ioaddr2;
2742 brdp->irq = confp->irq;
2743 brdp->irqtype = confp->irqtype;
2744 stl_brdinit(brdp);
2745 }
2746
2747 /*
2748 * Find any dynamically supported boards. That is via module load
2749 * line options or auto-detected on the PCI bus.
2750 */
2751 stl_argbrds();
2752 #ifdef CONFIG_PCI
2753 stl_findpcibrds();
2754 #endif
2755
2756 return(0);
2757 }
2758
2759 /*****************************************************************************/
2760
2761 /*
2762 * Return the board stats structure to user app.
2763 */
2764
2765 static int stl_getbrdstats(combrd_t __user *bp)
2766 {
2767 stlbrd_t *brdp;
2768 stlpanel_t *panelp;
2769 int i;
2770
2771 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2772 return -EFAULT;
2773 if (stl_brdstats.brd >= STL_MAXBRDS)
2774 return(-ENODEV);
2775 brdp = stl_brds[stl_brdstats.brd];
2776 if (brdp == (stlbrd_t *) NULL)
2777 return(-ENODEV);
2778
2779 memset(&stl_brdstats, 0, sizeof(combrd_t));
2780 stl_brdstats.brd = brdp->brdnr;
2781 stl_brdstats.type = brdp->brdtype;
2782 stl_brdstats.hwid = brdp->hwid;
2783 stl_brdstats.state = brdp->state;
2784 stl_brdstats.ioaddr = brdp->ioaddr1;
2785 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2786 stl_brdstats.irq = brdp->irq;
2787 stl_brdstats.nrpanels = brdp->nrpanels;
2788 stl_brdstats.nrports = brdp->nrports;
2789 for (i = 0; (i < brdp->nrpanels); i++) {
2790 panelp = brdp->panels[i];
2791 stl_brdstats.panels[i].panel = i;
2792 stl_brdstats.panels[i].hwid = panelp->hwid;
2793 stl_brdstats.panels[i].nrports = panelp->nrports;
2794 }
2795
2796 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2797 }
2798
2799 /*****************************************************************************/
2800
2801 /*
2802 * Resolve the referenced port number into a port struct pointer.
2803 */
2804
2805 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
2806 {
2807 stlbrd_t *brdp;
2808 stlpanel_t *panelp;
2809
2810 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2811 return((stlport_t *) NULL);
2812 brdp = stl_brds[brdnr];
2813 if (brdp == (stlbrd_t *) NULL)
2814 return((stlport_t *) NULL);
2815 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2816 return((stlport_t *) NULL);
2817 panelp = brdp->panels[panelnr];
2818 if (panelp == (stlpanel_t *) NULL)
2819 return((stlport_t *) NULL);
2820 if ((portnr < 0) || (portnr >= panelp->nrports))
2821 return((stlport_t *) NULL);
2822 return(panelp->ports[portnr]);
2823 }
2824
2825 /*****************************************************************************/
2826
2827 /*
2828 * Return the port stats structure to user app. A NULL port struct
2829 * pointer passed in means that we need to find out from the app
2830 * what port to get stats for (used through board control device).
2831 */
2832
2833 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
2834 {
2835 unsigned char *head, *tail;
2836 unsigned long flags;
2837
2838 if (!portp) {
2839 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2840 return -EFAULT;
2841 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2842 stl_comstats.port);
2843 if (portp == (stlport_t *) NULL)
2844 return(-ENODEV);
2845 }
2846
2847 portp->stats.state = portp->istate;
2848 portp->stats.flags = portp->flags;
2849 portp->stats.hwid = portp->hwid;
2850
2851 portp->stats.ttystate = 0;
2852 portp->stats.cflags = 0;
2853 portp->stats.iflags = 0;
2854 portp->stats.oflags = 0;
2855 portp->stats.lflags = 0;
2856 portp->stats.rxbuffered = 0;
2857
2858 spin_lock_irqsave(&stallion_lock, flags);
2859 if (portp->tty != (struct tty_struct *) NULL) {
2860 if (portp->tty->driver_data == portp) {
2861 portp->stats.ttystate = portp->tty->flags;
2862 /* No longer available as a statistic */
2863 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2864 if (portp->tty->termios != (struct termios *) NULL) {
2865 portp->stats.cflags = portp->tty->termios->c_cflag;
2866 portp->stats.iflags = portp->tty->termios->c_iflag;
2867 portp->stats.oflags = portp->tty->termios->c_oflag;
2868 portp->stats.lflags = portp->tty->termios->c_lflag;
2869 }
2870 }
2871 }
2872 spin_unlock_irqrestore(&stallion_lock, flags);
2873
2874 head = portp->tx.head;
2875 tail = portp->tx.tail;
2876 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2877 (STL_TXBUFSIZE - (tail - head)));
2878
2879 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2880
2881 return copy_to_user(cp, &portp->stats,
2882 sizeof(comstats_t)) ? -EFAULT : 0;
2883 }
2884
2885 /*****************************************************************************/
2886
2887 /*
2888 * Clear the port stats structure. We also return it zeroed out...
2889 */
2890
2891 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
2892 {
2893 if (!portp) {
2894 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2895 return -EFAULT;
2896 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2897 stl_comstats.port);
2898 if (portp == (stlport_t *) NULL)
2899 return(-ENODEV);
2900 }
2901
2902 memset(&portp->stats, 0, sizeof(comstats_t));
2903 portp->stats.brd = portp->brdnr;
2904 portp->stats.panel = portp->panelnr;
2905 portp->stats.port = portp->portnr;
2906 return copy_to_user(cp, &portp->stats,
2907 sizeof(comstats_t)) ? -EFAULT : 0;
2908 }
2909
2910 /*****************************************************************************/
2911
2912 /*
2913 * Return the entire driver ports structure to a user app.
2914 */
2915
2916 static int stl_getportstruct(stlport_t __user *arg)
2917 {
2918 stlport_t *portp;
2919
2920 if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
2921 return -EFAULT;
2922 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2923 stl_dummyport.portnr);
2924 if (!portp)
2925 return -ENODEV;
2926 return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
2927 }
2928
2929 /*****************************************************************************/
2930
2931 /*
2932 * Return the entire driver board structure to a user app.
2933 */
2934
2935 static int stl_getbrdstruct(stlbrd_t __user *arg)
2936 {
2937 stlbrd_t *brdp;
2938
2939 if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
2940 return -EFAULT;
2941 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2942 return -ENODEV;
2943 brdp = stl_brds[stl_dummybrd.brdnr];
2944 if (!brdp)
2945 return(-ENODEV);
2946 return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
2947 }
2948
2949 /*****************************************************************************/
2950
2951 /*
2952 * The "staliomem" device is also required to do some special operations
2953 * on the board and/or ports. In this driver it is mostly used for stats
2954 * collection.
2955 */
2956
2957 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2958 {
2959 int brdnr, rc;
2960 void __user *argp = (void __user *)arg;
2961
2962 #ifdef DEBUG
2963 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
2964 (int) fp, cmd, (int) arg);
2965 #endif
2966
2967 brdnr = iminor(ip);
2968 if (brdnr >= STL_MAXBRDS)
2969 return(-ENODEV);
2970 rc = 0;
2971
2972 switch (cmd) {
2973 case COM_GETPORTSTATS:
2974 rc = stl_getportstats(NULL, argp);
2975 break;
2976 case COM_CLRPORTSTATS:
2977 rc = stl_clrportstats(NULL, argp);
2978 break;
2979 case COM_GETBRDSTATS:
2980 rc = stl_getbrdstats(argp);
2981 break;
2982 case COM_READPORT:
2983 rc = stl_getportstruct(argp);
2984 break;
2985 case COM_READBOARD:
2986 rc = stl_getbrdstruct(argp);
2987 break;
2988 default:
2989 rc = -ENOIOCTLCMD;
2990 break;
2991 }
2992
2993 return(rc);
2994 }
2995
2996 static struct tty_operations stl_ops = {
2997 .open = stl_open,
2998 .close = stl_close,
2999 .write = stl_write,
3000 .put_char = stl_putchar,
3001 .flush_chars = stl_flushchars,
3002 .write_room = stl_writeroom,
3003 .chars_in_buffer = stl_charsinbuffer,
3004 .ioctl = stl_ioctl,
3005 .set_termios = stl_settermios,
3006 .throttle = stl_throttle,
3007 .unthrottle = stl_unthrottle,
3008 .stop = stl_stop,
3009 .start = stl_start,
3010 .hangup = stl_hangup,
3011 .flush_buffer = stl_flushbuffer,
3012 .break_ctl = stl_breakctl,
3013 .wait_until_sent = stl_waituntilsent,
3014 .send_xchar = stl_sendxchar,
3015 .read_proc = stl_readproc,
3016 .tiocmget = stl_tiocmget,
3017 .tiocmset = stl_tiocmset,
3018 };
3019
3020 /*****************************************************************************/
3021
3022 static int __init stl_init(void)
3023 {
3024 int i;
3025 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
3026
3027 spin_lock_init(&stallion_lock);
3028 spin_lock_init(&brd_lock);
3029
3030 stl_initbrds();
3031
3032 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
3033 if (!stl_serial)
3034 return -1;
3035
3036 /*
3037 * Set up a character driver for per board stuff. This is mainly used
3038 * to do stats ioctls on the ports.
3039 */
3040 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
3041 printk("STALLION: failed to register serial board device\n");
3042
3043 stallion_class = class_create(THIS_MODULE, "staliomem");
3044 for (i = 0; i < 4; i++)
3045 class_device_create(stallion_class, NULL,
3046 MKDEV(STL_SIOMEMMAJOR, i), NULL,
3047 "staliomem%d", i);
3048
3049 stl_serial->owner = THIS_MODULE;
3050 stl_serial->driver_name = stl_drvname;
3051 stl_serial->name = "ttyE";
3052 stl_serial->major = STL_SERIALMAJOR;
3053 stl_serial->minor_start = 0;
3054 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
3055 stl_serial->subtype = SERIAL_TYPE_NORMAL;
3056 stl_serial->init_termios = stl_deftermios;
3057 stl_serial->flags = TTY_DRIVER_REAL_RAW;
3058 tty_set_operations(stl_serial, &stl_ops);
3059
3060 if (tty_register_driver(stl_serial)) {
3061 put_tty_driver(stl_serial);
3062 printk("STALLION: failed to register serial driver\n");
3063 return -1;
3064 }
3065
3066 return 0;
3067 }
3068
3069 /*****************************************************************************/
3070 /* CD1400 HARDWARE FUNCTIONS */
3071 /*****************************************************************************/
3072
3073 /*
3074 * These functions get/set/update the registers of the cd1400 UARTs.
3075 * Access to the cd1400 registers is via an address/data io port pair.
3076 * (Maybe should make this inline...)
3077 */
3078
3079 static int stl_cd1400getreg(stlport_t *portp, int regnr)
3080 {
3081 outb((regnr + portp->uartaddr), portp->ioaddr);
3082 return inb(portp->ioaddr + EREG_DATA);
3083 }
3084
3085 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
3086 {
3087 outb((regnr + portp->uartaddr), portp->ioaddr);
3088 outb(value, portp->ioaddr + EREG_DATA);
3089 }
3090
3091 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
3092 {
3093 outb((regnr + portp->uartaddr), portp->ioaddr);
3094 if (inb(portp->ioaddr + EREG_DATA) != value) {
3095 outb(value, portp->ioaddr + EREG_DATA);
3096 return 1;
3097 }
3098 return 0;
3099 }
3100
3101 /*****************************************************************************/
3102
3103 /*
3104 * Inbitialize the UARTs in a panel. We don't care what sort of board
3105 * these ports are on - since the port io registers are almost
3106 * identical when dealing with ports.
3107 */
3108
3109 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
3110 {
3111 unsigned int gfrcr;
3112 int chipmask, i, j;
3113 int nrchips, uartaddr, ioaddr;
3114 unsigned long flags;
3115
3116 #ifdef DEBUG
3117 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
3118 #endif
3119
3120 spin_lock_irqsave(&brd_lock, flags);
3121 BRDENABLE(panelp->brdnr, panelp->pagenr);
3122
3123 /*
3124 * Check that each chip is present and started up OK.
3125 */
3126 chipmask = 0;
3127 nrchips = panelp->nrports / CD1400_PORTS;
3128 for (i = 0; (i < nrchips); i++) {
3129 if (brdp->brdtype == BRD_ECHPCI) {
3130 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
3131 ioaddr = panelp->iobase;
3132 } else {
3133 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
3134 }
3135 uartaddr = (i & 0x01) ? 0x080 : 0;
3136 outb((GFRCR + uartaddr), ioaddr);
3137 outb(0, (ioaddr + EREG_DATA));
3138 outb((CCR + uartaddr), ioaddr);
3139 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3140 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3141 outb((GFRCR + uartaddr), ioaddr);
3142 for (j = 0; (j < CCR_MAXWAIT); j++) {
3143 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
3144 break;
3145 }
3146 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
3147 printk("STALLION: cd1400 not responding, "
3148 "brd=%d panel=%d chip=%d\n",
3149 panelp->brdnr, panelp->panelnr, i);
3150 continue;
3151 }
3152 chipmask |= (0x1 << i);
3153 outb((PPR + uartaddr), ioaddr);
3154 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
3155 }
3156
3157 BRDDISABLE(panelp->brdnr);
3158 spin_unlock_irqrestore(&brd_lock, flags);
3159 return chipmask;
3160 }
3161
3162 /*****************************************************************************/
3163
3164 /*
3165 * Initialize hardware specific port registers.
3166 */
3167
3168 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
3169 {
3170 unsigned long flags;
3171 #ifdef DEBUG
3172 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3173 (int) brdp, (int) panelp, (int) portp);
3174 #endif
3175
3176 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
3177 (portp == (stlport_t *) NULL))
3178 return;
3179
3180 spin_lock_irqsave(&brd_lock, flags);
3181 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
3182 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
3183 portp->uartaddr = (portp->portnr & 0x04) << 5;
3184 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
3185
3186 BRDENABLE(portp->brdnr, portp->pagenr);
3187 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3188 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
3189 portp->hwid = stl_cd1400getreg(portp, GFRCR);
3190 BRDDISABLE(portp->brdnr);
3191 spin_unlock_irqrestore(&brd_lock, flags);
3192 }
3193
3194 /*****************************************************************************/
3195
3196 /*
3197 * Wait for the command register to be ready. We will poll this,
3198 * since it won't usually take too long to be ready.
3199 */
3200
3201 static void stl_cd1400ccrwait(stlport_t *portp)
3202 {
3203 int i;
3204
3205 for (i = 0; (i < CCR_MAXWAIT); i++) {
3206 if (stl_cd1400getreg(portp, CCR) == 0) {
3207 return;
3208 }
3209 }
3210
3211 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3212 portp->portnr, portp->panelnr, portp->brdnr);
3213 }
3214
3215 /*****************************************************************************/
3216
3217 /*
3218 * Set up the cd1400 registers for a port based on the termios port
3219 * settings.
3220 */
3221
3222 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
3223 {
3224 stlbrd_t *brdp;
3225 unsigned long flags;
3226 unsigned int clkdiv, baudrate;
3227 unsigned char cor1, cor2, cor3;
3228 unsigned char cor4, cor5, ccr;
3229 unsigned char srer, sreron, sreroff;
3230 unsigned char mcor1, mcor2, rtpr;
3231 unsigned char clk, div;
3232
3233 cor1 = 0;
3234 cor2 = 0;
3235 cor3 = 0;
3236 cor4 = 0;
3237 cor5 = 0;
3238 ccr = 0;
3239 rtpr = 0;
3240 clk = 0;
3241 div = 0;
3242 mcor1 = 0;
3243 mcor2 = 0;
3244 sreron = 0;
3245 sreroff = 0;
3246
3247 brdp = stl_brds[portp->brdnr];
3248 if (brdp == (stlbrd_t *) NULL)
3249 return;
3250
3251 /*
3252 * Set up the RX char ignore mask with those RX error types we
3253 * can ignore. We can get the cd1400 to help us out a little here,
3254 * it will ignore parity errors and breaks for us.
3255 */
3256 portp->rxignoremsk = 0;
3257 if (tiosp->c_iflag & IGNPAR) {
3258 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
3259 cor1 |= COR1_PARIGNORE;
3260 }
3261 if (tiosp->c_iflag & IGNBRK) {
3262 portp->rxignoremsk |= ST_BREAK;
3263 cor4 |= COR4_IGNBRK;
3264 }
3265
3266 portp->rxmarkmsk = ST_OVERRUN;
3267 if (tiosp->c_iflag & (INPCK | PARMRK))
3268 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
3269 if (tiosp->c_iflag & BRKINT)
3270 portp->rxmarkmsk |= ST_BREAK;
3271
3272 /*
3273 * Go through the char size, parity and stop bits and set all the
3274 * option register appropriately.
3275 */
3276 switch (tiosp->c_cflag & CSIZE) {
3277 case CS5:
3278 cor1 |= COR1_CHL5;
3279 break;
3280 case CS6:
3281 cor1 |= COR1_CHL6;
3282 break;
3283 case CS7:
3284 cor1 |= COR1_CHL7;
3285 break;
3286 default:
3287 cor1 |= COR1_CHL8;
3288 break;
3289 }
3290
3291 if (tiosp->c_cflag & CSTOPB)
3292 cor1 |= COR1_STOP2;
3293 else
3294 cor1 |= COR1_STOP1;
3295
3296 if (tiosp->c_cflag & PARENB) {
3297 if (tiosp->c_cflag & PARODD)
3298 cor1 |= (COR1_PARENB | COR1_PARODD);
3299 else
3300 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3301 } else {
3302 cor1 |= COR1_PARNONE;
3303 }
3304
3305 /*
3306 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3307 * space for hardware flow control and the like. This should be set to
3308 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3309 * really be based on VTIME.
3310 */
3311 cor3 |= FIFO_RXTHRESHOLD;
3312 rtpr = 2;
3313
3314 /*
3315 * Calculate the baud rate timers. For now we will just assume that
3316 * the input and output baud are the same. Could have used a baud
3317 * table here, but this way we can generate virtually any baud rate
3318 * we like!
3319 */
3320 baudrate = tiosp->c_cflag & CBAUD;
3321 if (baudrate & CBAUDEX) {
3322 baudrate &= ~CBAUDEX;
3323 if ((baudrate < 1) || (baudrate > 4))
3324 tiosp->c_cflag &= ~CBAUDEX;
3325 else
3326 baudrate += 15;
3327 }
3328 baudrate = stl_baudrates[baudrate];
3329 if ((tiosp->c_cflag & CBAUD) == B38400) {
3330 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3331 baudrate = 57600;
3332 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3333 baudrate = 115200;
3334 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3335 baudrate = 230400;
3336 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3337 baudrate = 460800;
3338 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3339 baudrate = (portp->baud_base / portp->custom_divisor);
3340 }
3341 if (baudrate > STL_CD1400MAXBAUD)
3342 baudrate = STL_CD1400MAXBAUD;
3343
3344 if (baudrate > 0) {
3345 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3346 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3347 if (clkdiv < 0x100)
3348 break;
3349 }
3350 div = (unsigned char) clkdiv;
3351 }
3352
3353 /*
3354 * Check what form of modem signaling is required and set it up.
3355 */
3356 if ((tiosp->c_cflag & CLOCAL) == 0) {
3357 mcor1 |= MCOR1_DCD;
3358 mcor2 |= MCOR2_DCD;
3359 sreron |= SRER_MODEM;
3360 portp->flags |= ASYNC_CHECK_CD;
3361 } else {
3362 portp->flags &= ~ASYNC_CHECK_CD;
3363 }
3364
3365 /*
3366 * Setup cd1400 enhanced modes if we can. In particular we want to
3367 * handle as much of the flow control as possible automatically. As
3368 * well as saving a few CPU cycles it will also greatly improve flow
3369 * control reliability.
3370 */
3371 if (tiosp->c_iflag & IXON) {
3372 cor2 |= COR2_TXIBE;
3373 cor3 |= COR3_SCD12;
3374 if (tiosp->c_iflag & IXANY)
3375 cor2 |= COR2_IXM;
3376 }
3377
3378 if (tiosp->c_cflag & CRTSCTS) {
3379 cor2 |= COR2_CTSAE;
3380 mcor1 |= FIFO_RTSTHRESHOLD;
3381 }
3382
3383 /*
3384 * All cd1400 register values calculated so go through and set
3385 * them all up.
3386 */
3387
3388 #ifdef DEBUG
3389 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3390 portp->portnr, portp->panelnr, portp->brdnr);
3391 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3392 cor1, cor2, cor3, cor4, cor5);
3393 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3394 mcor1, mcor2, rtpr, sreron, sreroff);
3395 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3396 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3397 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3398 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3399 #endif
3400
3401 spin_lock_irqsave(&brd_lock, flags);
3402 BRDENABLE(portp->brdnr, portp->pagenr);
3403 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3404 srer = stl_cd1400getreg(portp, SRER);
3405 stl_cd1400setreg(portp, SRER, 0);
3406 if (stl_cd1400updatereg(portp, COR1, cor1))
3407 ccr = 1;
3408 if (stl_cd1400updatereg(portp, COR2, cor2))
3409 ccr = 1;
3410 if (stl_cd1400updatereg(portp, COR3, cor3))
3411 ccr = 1;
3412 if (ccr) {
3413 stl_cd1400ccrwait(portp);
3414 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3415 }
3416 stl_cd1400setreg(portp, COR4, cor4);
3417 stl_cd1400setreg(portp, COR5, cor5);
3418 stl_cd1400setreg(portp, MCOR1, mcor1);
3419 stl_cd1400setreg(portp, MCOR2, mcor2);
3420 if (baudrate > 0) {
3421 stl_cd1400setreg(portp, TCOR, clk);
3422 stl_cd1400setreg(portp, TBPR, div);
3423 stl_cd1400setreg(portp, RCOR, clk);
3424 stl_cd1400setreg(portp, RBPR, div);
3425 }
3426 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3427 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3428 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3429 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3430 stl_cd1400setreg(portp, RTPR, rtpr);
3431 mcor1 = stl_cd1400getreg(portp, MSVR1);
3432 if (mcor1 & MSVR1_DCD)
3433 portp->sigs |= TIOCM_CD;
3434 else
3435 portp->sigs &= ~TIOCM_CD;
3436 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3437 BRDDISABLE(portp->brdnr);
3438 spin_unlock_irqrestore(&brd_lock, flags);
3439 }
3440
3441 /*****************************************************************************/
3442
3443 /*
3444 * Set the state of the DTR and RTS signals.
3445 */
3446
3447 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
3448 {
3449 unsigned char msvr1, msvr2;
3450 unsigned long flags;
3451
3452 #ifdef DEBUG
3453 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3454 (int) portp, dtr, rts);
3455 #endif
3456
3457 msvr1 = 0;
3458 msvr2 = 0;
3459 if (dtr > 0)
3460 msvr1 = MSVR1_DTR;
3461 if (rts > 0)
3462 msvr2 = MSVR2_RTS;
3463
3464 spin_lock_irqsave(&brd_lock, flags);
3465 BRDENABLE(portp->brdnr, portp->pagenr);
3466 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3467 if (rts >= 0)
3468 stl_cd1400setreg(portp, MSVR2, msvr2);
3469 if (dtr >= 0)
3470 stl_cd1400setreg(portp, MSVR1, msvr1);
3471 BRDDISABLE(portp->brdnr);
3472 spin_unlock_irqrestore(&brd_lock, flags);
3473 }
3474
3475 /*****************************************************************************/
3476
3477 /*
3478 * Return the state of the signals.
3479 */
3480
3481 static int stl_cd1400getsignals(stlport_t *portp)
3482 {
3483 unsigned char msvr1, msvr2;
3484 unsigned long flags;
3485 int sigs;
3486
3487 #ifdef DEBUG
3488 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
3489 #endif
3490
3491 spin_lock_irqsave(&brd_lock, flags);
3492 BRDENABLE(portp->brdnr, portp->pagenr);
3493 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3494 msvr1 = stl_cd1400getreg(portp, MSVR1);
3495 msvr2 = stl_cd1400getreg(portp, MSVR2);
3496 BRDDISABLE(portp->brdnr);
3497 spin_unlock_irqrestore(&brd_lock, flags);
3498
3499 sigs = 0;
3500 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3501 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3502 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3503 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3504 #if 0
3505 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3506 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3507 #else
3508 sigs |= TIOCM_DSR;
3509 #endif
3510 return sigs;
3511 }
3512
3513 /*****************************************************************************/
3514
3515 /*
3516 * Enable/Disable the Transmitter and/or Receiver.
3517 */
3518
3519 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
3520 {
3521 unsigned char ccr;
3522 unsigned long flags;
3523
3524 #ifdef DEBUG
3525 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3526 (int) portp, rx, tx);
3527 #endif
3528 ccr = 0;
3529
3530 if (tx == 0)
3531 ccr |= CCR_TXDISABLE;
3532 else if (tx > 0)
3533 ccr |= CCR_TXENABLE;
3534 if (rx == 0)
3535 ccr |= CCR_RXDISABLE;
3536 else if (rx > 0)
3537 ccr |= CCR_RXENABLE;
3538
3539 spin_lock_irqsave(&brd_lock, flags);
3540 BRDENABLE(portp->brdnr, portp->pagenr);
3541 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3542 stl_cd1400ccrwait(portp);
3543 stl_cd1400setreg(portp, CCR, ccr);
3544 stl_cd1400ccrwait(portp);
3545 BRDDISABLE(portp->brdnr);
3546 spin_unlock_irqrestore(&brd_lock, flags);
3547 }
3548
3549 /*****************************************************************************/
3550
3551 /*
3552 * Start/stop the Transmitter and/or Receiver.
3553 */
3554
3555 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
3556 {
3557 unsigned char sreron, sreroff;
3558 unsigned long flags;
3559
3560 #ifdef DEBUG
3561 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3562 (int) portp, rx, tx);
3563 #endif
3564
3565 sreron = 0;
3566 sreroff = 0;
3567 if (tx == 0)
3568 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3569 else if (tx == 1)
3570 sreron |= SRER_TXDATA;
3571 else if (tx >= 2)
3572 sreron |= SRER_TXEMPTY;
3573 if (rx == 0)
3574 sreroff |= SRER_RXDATA;
3575 else if (rx > 0)
3576 sreron |= SRER_RXDATA;
3577
3578 spin_lock_irqsave(&brd_lock, flags);
3579 BRDENABLE(portp->brdnr, portp->pagenr);
3580 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3581 stl_cd1400setreg(portp, SRER,
3582 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3583 BRDDISABLE(portp->brdnr);
3584 if (tx > 0)
3585 set_bit(ASYI_TXBUSY, &portp->istate);
3586 spin_unlock_irqrestore(&brd_lock, flags);
3587 }
3588
3589 /*****************************************************************************/
3590
3591 /*
3592 * Disable all interrupts from this port.
3593 */
3594
3595 static void stl_cd1400disableintrs(stlport_t *portp)
3596 {
3597 unsigned long flags;
3598
3599 #ifdef DEBUG
3600 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
3601 #endif
3602 spin_lock_irqsave(&brd_lock, flags);
3603 BRDENABLE(portp->brdnr, portp->pagenr);
3604 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3605 stl_cd1400setreg(portp, SRER, 0);
3606 BRDDISABLE(portp->brdnr);
3607 spin_unlock_irqrestore(&brd_lock, flags);
3608 }
3609
3610 /*****************************************************************************/
3611
3612 static void stl_cd1400sendbreak(stlport_t *portp, int len)
3613 {
3614 unsigned long flags;
3615
3616 #ifdef DEBUG
3617 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
3618 #endif
3619
3620 spin_lock_irqsave(&brd_lock, flags);
3621 BRDENABLE(portp->brdnr, portp->pagenr);
3622 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3623 stl_cd1400setreg(portp, SRER,
3624 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3625 SRER_TXEMPTY));
3626 BRDDISABLE(portp->brdnr);
3627 portp->brklen = len;
3628 if (len == 1)
3629 portp->stats.txbreaks++;
3630 spin_unlock_irqrestore(&brd_lock, flags);
3631 }
3632
3633 /*****************************************************************************/
3634
3635 /*
3636 * Take flow control actions...
3637 */
3638
3639 static void stl_cd1400flowctrl(stlport_t *portp, int state)
3640 {
3641 struct tty_struct *tty;
3642 unsigned long flags;
3643
3644 #ifdef DEBUG
3645 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
3646 #endif
3647
3648 if (portp == (stlport_t *) NULL)
3649 return;
3650 tty = portp->tty;
3651 if (tty == (struct tty_struct *) NULL)
3652 return;
3653
3654 spin_lock_irqsave(&brd_lock, flags);
3655 BRDENABLE(portp->brdnr, portp->pagenr);
3656 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3657
3658 if (state) {
3659 if (tty->termios->c_iflag & IXOFF) {
3660 stl_cd1400ccrwait(portp);
3661 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3662 portp->stats.rxxon++;
3663 stl_cd1400ccrwait(portp);
3664 }
3665 /*
3666 * Question: should we return RTS to what it was before? It may
3667 * have been set by an ioctl... Suppose not, since if you have
3668 * hardware flow control set then it is pretty silly to go and
3669 * set the RTS line by hand.
3670 */
3671 if (tty->termios->c_cflag & CRTSCTS) {
3672 stl_cd1400setreg(portp, MCOR1,
3673 (stl_cd1400getreg(portp, MCOR1) |
3674 FIFO_RTSTHRESHOLD));
3675 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3676 portp->stats.rxrtson++;
3677 }
3678 } else {
3679 if (tty->termios->c_iflag & IXOFF) {
3680 stl_cd1400ccrwait(portp);
3681 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3682 portp->stats.rxxoff++;
3683 stl_cd1400ccrwait(portp);
3684 }
3685 if (tty->termios->c_cflag & CRTSCTS) {
3686 stl_cd1400setreg(portp, MCOR1,
3687 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3688 stl_cd1400setreg(portp, MSVR2, 0);
3689 portp->stats.rxrtsoff++;
3690 }
3691 }
3692
3693 BRDDISABLE(portp->brdnr);
3694 spin_unlock_irqrestore(&brd_lock, flags);
3695 }
3696
3697 /*****************************************************************************/
3698
3699 /*
3700 * Send a flow control character...
3701 */
3702
3703 static void stl_cd1400sendflow(stlport_t *portp, int state)
3704 {
3705 struct tty_struct *tty;
3706 unsigned long flags;
3707
3708 #ifdef DEBUG
3709 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
3710 #endif
3711
3712 if (portp == (stlport_t *) NULL)
3713 return;
3714 tty = portp->tty;
3715 if (tty == (struct tty_struct *) NULL)
3716 return;
3717
3718 spin_lock_irqsave(&brd_lock, flags);
3719 BRDENABLE(portp->brdnr, portp->pagenr);
3720 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3721 if (state) {
3722 stl_cd1400ccrwait(portp);
3723 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3724 portp->stats.rxxon++;
3725 stl_cd1400ccrwait(portp);
3726 } else {
3727 stl_cd1400ccrwait(portp);
3728 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3729 portp->stats.rxxoff++;
3730 stl_cd1400ccrwait(portp);
3731 }
3732 BRDDISABLE(portp->brdnr);
3733 spin_unlock_irqrestore(&brd_lock, flags);
3734 }
3735
3736 /*****************************************************************************/
3737
3738 static void stl_cd1400flush(stlport_t *portp)
3739 {
3740 unsigned long flags;
3741
3742 #ifdef DEBUG
3743 printk("stl_cd1400flush(portp=%x)\n", (int) portp);
3744 #endif
3745
3746 if (portp == (stlport_t *) NULL)
3747 return;
3748
3749 spin_lock_irqsave(&brd_lock, flags);
3750 BRDENABLE(portp->brdnr, portp->pagenr);
3751 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3752 stl_cd1400ccrwait(portp);
3753 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3754 stl_cd1400ccrwait(portp);
3755 portp->tx.tail = portp->tx.head;
3756 BRDDISABLE(portp->brdnr);
3757 spin_unlock_irqrestore(&brd_lock, flags);
3758 }
3759
3760 /*****************************************************************************/
3761
3762 /*
3763 * Return the current state of data flow on this port. This is only
3764 * really interresting when determining if data has fully completed
3765 * transmission or not... This is easy for the cd1400, it accurately
3766 * maintains the busy port flag.
3767 */
3768
3769 static int stl_cd1400datastate(stlport_t *portp)
3770 {
3771 #ifdef DEBUG
3772 printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
3773 #endif
3774
3775 if (portp == (stlport_t *) NULL)
3776 return 0;
3777
3778 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3779 }
3780
3781 /*****************************************************************************/
3782
3783 /*
3784 * Interrupt service routine for cd1400 EasyIO boards.
3785 */
3786
3787 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
3788 {
3789 unsigned char svrtype;
3790
3791 #ifdef DEBUG
3792 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3793 (int) panelp, iobase);
3794 #endif
3795
3796 spin_lock(&brd_lock);
3797 outb(SVRR, iobase);
3798 svrtype = inb(iobase + EREG_DATA);
3799 if (panelp->nrports > 4) {
3800 outb((SVRR + 0x80), iobase);
3801 svrtype |= inb(iobase + EREG_DATA);
3802 }
3803
3804 if (svrtype & SVRR_RX)
3805 stl_cd1400rxisr(panelp, iobase);
3806 else if (svrtype & SVRR_TX)
3807 stl_cd1400txisr(panelp, iobase);
3808 else if (svrtype & SVRR_MDM)
3809 stl_cd1400mdmisr(panelp, iobase);
3810
3811 spin_unlock(&brd_lock);
3812 }
3813
3814 /*****************************************************************************/
3815
3816 /*
3817 * Interrupt service routine for cd1400 panels.
3818 */
3819
3820 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
3821 {
3822 unsigned char svrtype;
3823
3824 #ifdef DEBUG
3825 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
3826 iobase);
3827 #endif
3828
3829 outb(SVRR, iobase);
3830 svrtype = inb(iobase + EREG_DATA);
3831 outb((SVRR + 0x80), iobase);
3832 svrtype |= inb(iobase + EREG_DATA);
3833 if (svrtype & SVRR_RX)
3834 stl_cd1400rxisr(panelp, iobase);
3835 else if (svrtype & SVRR_TX)
3836 stl_cd1400txisr(panelp, iobase);
3837 else if (svrtype & SVRR_MDM)
3838 stl_cd1400mdmisr(panelp, iobase);
3839 }
3840
3841
3842 /*****************************************************************************/
3843
3844 /*
3845 * Unfortunately we need to handle breaks in the TX data stream, since
3846 * this is the only way to generate them on the cd1400.
3847 */
3848
3849 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
3850 {
3851 if (portp->brklen == 1) {
3852 outb((COR2 + portp->uartaddr), ioaddr);
3853 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3854 (ioaddr + EREG_DATA));
3855 outb((TDR + portp->uartaddr), ioaddr);
3856 outb(ETC_CMD, (ioaddr + EREG_DATA));
3857 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3858 outb((SRER + portp->uartaddr), ioaddr);
3859 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3860 (ioaddr + EREG_DATA));
3861 return 1;
3862 } else if (portp->brklen > 1) {
3863 outb((TDR + portp->uartaddr), ioaddr);
3864 outb(ETC_CMD, (ioaddr + EREG_DATA));
3865 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3866 portp->brklen = -1;
3867 return 1;
3868 } else {
3869 outb((COR2 + portp->uartaddr), ioaddr);
3870 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3871 (ioaddr + EREG_DATA));
3872 portp->brklen = 0;
3873 }
3874 return 0;
3875 }
3876
3877 /*****************************************************************************/
3878
3879 /*
3880 * Transmit interrupt handler. This has gotta be fast! Handling TX
3881 * chars is pretty simple, stuff as many as possible from the TX buffer
3882 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3883 * are embedded as commands in the data stream. Oh no, had to use a goto!
3884 * This could be optimized more, will do when I get time...
3885 * In practice it is possible that interrupts are enabled but that the
3886 * port has been hung up. Need to handle not having any TX buffer here,
3887 * this is done by using the side effect that head and tail will also
3888 * be NULL if the buffer has been freed.
3889 */
3890
3891 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
3892 {
3893 stlport_t *portp;
3894 int len, stlen;
3895 char *head, *tail;
3896 unsigned char ioack, srer;
3897
3898 #ifdef DEBUG
3899 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3900 #endif
3901
3902 ioack = inb(ioaddr + EREG_TXACK);
3903 if (((ioack & panelp->ackmask) != 0) ||
3904 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3905 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3906 return;
3907 }
3908 portp = panelp->ports[(ioack >> 3)];
3909
3910 /*
3911 * Unfortunately we need to handle breaks in the data stream, since
3912 * this is the only way to generate them on the cd1400. Do it now if
3913 * a break is to be sent.
3914 */
3915 if (portp->brklen != 0)
3916 if (stl_cd1400breakisr(portp, ioaddr))
3917 goto stl_txalldone;
3918
3919 head = portp->tx.head;
3920 tail = portp->tx.tail;
3921 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3922 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3923 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3924 set_bit(ASYI_TXLOW, &portp->istate);
3925 schedule_work(&portp->tqueue);
3926 }
3927
3928 if (len == 0) {
3929 outb((SRER + portp->uartaddr), ioaddr);
3930 srer = inb(ioaddr + EREG_DATA);
3931 if (srer & SRER_TXDATA) {
3932 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3933 } else {
3934 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3935 clear_bit(ASYI_TXBUSY, &portp->istate);
3936 }
3937 outb(srer, (ioaddr + EREG_DATA));
3938 } else {
3939 len = MIN(len, CD1400_TXFIFOSIZE);
3940 portp->stats.txtotal += len;
3941 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3942 outb((TDR + portp->uartaddr), ioaddr);
3943 outsb((ioaddr + EREG_DATA), tail, stlen);
3944 len -= stlen;
3945 tail += stlen;
3946 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3947 tail = portp->tx.buf;
3948 if (len > 0) {
3949 outsb((ioaddr + EREG_DATA), tail, len);
3950 tail += len;
3951 }
3952 portp->tx.tail = tail;
3953 }
3954
3955 stl_txalldone:
3956 outb((EOSRR + portp->uartaddr), ioaddr);
3957 outb(0, (ioaddr + EREG_DATA));
3958 }
3959
3960 /*****************************************************************************/
3961
3962 /*
3963 * Receive character interrupt handler. Determine if we have good chars
3964 * or bad chars and then process appropriately. Good chars are easy
3965 * just shove the lot into the RX buffer and set all status byte to 0.
3966 * If a bad RX char then process as required. This routine needs to be
3967 * fast! In practice it is possible that we get an interrupt on a port
3968 * that is closed. This can happen on hangups - since they completely
3969 * shutdown a port not in user context. Need to handle this case.
3970 */
3971
3972 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
3973 {
3974 stlport_t *portp;
3975 struct tty_struct *tty;
3976 unsigned int ioack, len, buflen;
3977 unsigned char status;
3978 char ch;
3979
3980 #ifdef DEBUG
3981 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3982 #endif
3983
3984 ioack = inb(ioaddr + EREG_RXACK);
3985 if ((ioack & panelp->ackmask) != 0) {
3986 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3987 return;
3988 }
3989 portp = panelp->ports[(ioack >> 3)];
3990 tty = portp->tty;
3991
3992 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3993 outb((RDCR + portp->uartaddr), ioaddr);
3994 len = inb(ioaddr + EREG_DATA);
3995 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3996 len = MIN(len, sizeof(stl_unwanted));
3997 outb((RDSR + portp->uartaddr), ioaddr);
3998 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3999 portp->stats.rxlost += len;
4000 portp->stats.rxtotal += len;
4001 } else {
4002 len = MIN(len, buflen);
4003 if (len > 0) {
4004 unsigned char *ptr;
4005 outb((RDSR + portp->uartaddr), ioaddr);
4006 tty_prepare_flip_string(tty, &ptr, len);
4007 insb((ioaddr + EREG_DATA), ptr, len);
4008 tty_schedule_flip(tty);
4009 portp->stats.rxtotal += len;
4010 }
4011 }
4012 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
4013 outb((RDSR + portp->uartaddr), ioaddr);
4014 status = inb(ioaddr + EREG_DATA);
4015 ch = inb(ioaddr + EREG_DATA);
4016 if (status & ST_PARITY)
4017 portp->stats.rxparity++;
4018 if (status & ST_FRAMING)
4019 portp->stats.rxframing++;
4020 if (status & ST_OVERRUN)
4021 portp->stats.rxoverrun++;
4022 if (status & ST_BREAK)
4023 portp->stats.rxbreaks++;
4024 if (status & ST_SCHARMASK) {
4025 if ((status & ST_SCHARMASK) == ST_SCHAR1)
4026 portp->stats.txxon++;
4027 if ((status & ST_SCHARMASK) == ST_SCHAR2)
4028 portp->stats.txxoff++;
4029 goto stl_rxalldone;
4030 }
4031 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
4032 if (portp->rxmarkmsk & status) {
4033 if (status & ST_BREAK) {
4034 status = TTY_BREAK;
4035 if (portp->flags & ASYNC_SAK) {
4036 do_SAK(tty);
4037 BRDENABLE(portp->brdnr, portp->pagenr);
4038 }
4039 } else if (status & ST_PARITY) {
4040 status = TTY_PARITY;
4041 } else if (status & ST_FRAMING) {
4042 status = TTY_FRAME;
4043 } else if(status & ST_OVERRUN) {
4044 status = TTY_OVERRUN;
4045 } else {
4046 status = 0;
4047 }
4048 } else {
4049 status = 0;
4050 }
4051 tty_insert_flip_char(tty, ch, status);
4052 tty_schedule_flip(tty);
4053 }
4054 } else {
4055 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4056 return;
4057 }
4058
4059 stl_rxalldone:
4060 outb((EOSRR + portp->uartaddr), ioaddr);
4061 outb(0, (ioaddr + EREG_DATA));
4062 }
4063
4064 /*****************************************************************************/
4065
4066 /*
4067 * Modem interrupt handler. The is called when the modem signal line
4068 * (DCD) has changed state. Leave most of the work to the off-level
4069 * processing routine.
4070 */
4071
4072 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
4073 {
4074 stlport_t *portp;
4075 unsigned int ioack;
4076 unsigned char misr;
4077
4078 #ifdef DEBUG
4079 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
4080 #endif
4081
4082 ioack = inb(ioaddr + EREG_MDACK);
4083 if (((ioack & panelp->ackmask) != 0) ||
4084 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
4085 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
4086 return;
4087 }
4088 portp = panelp->ports[(ioack >> 3)];
4089
4090 outb((MISR + portp->uartaddr), ioaddr);
4091 misr = inb(ioaddr + EREG_DATA);
4092 if (misr & MISR_DCD) {
4093 set_bit(ASYI_DCDCHANGE, &portp->istate);
4094 schedule_work(&portp->tqueue);
4095 portp->stats.modem++;
4096 }
4097
4098 outb((EOSRR + portp->uartaddr), ioaddr);
4099 outb(0, (ioaddr + EREG_DATA));
4100 }
4101
4102 /*****************************************************************************/
4103 /* SC26198 HARDWARE FUNCTIONS */
4104 /*****************************************************************************/
4105
4106 /*
4107 * These functions get/set/update the registers of the sc26198 UARTs.
4108 * Access to the sc26198 registers is via an address/data io port pair.
4109 * (Maybe should make this inline...)
4110 */
4111
4112 static int stl_sc26198getreg(stlport_t *portp, int regnr)
4113 {
4114 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4115 return inb(portp->ioaddr + XP_DATA);
4116 }
4117
4118 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
4119 {
4120 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4121 outb(value, (portp->ioaddr + XP_DATA));
4122 }
4123
4124 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
4125 {
4126 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4127 if (inb(portp->ioaddr + XP_DATA) != value) {
4128 outb(value, (portp->ioaddr + XP_DATA));
4129 return 1;
4130 }
4131 return 0;
4132 }
4133
4134 /*****************************************************************************/
4135
4136 /*
4137 * Functions to get and set the sc26198 global registers.
4138 */
4139
4140 static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
4141 {
4142 outb(regnr, (portp->ioaddr + XP_ADDR));
4143 return inb(portp->ioaddr + XP_DATA);
4144 }
4145
4146 #if 0
4147 static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
4148 {
4149 outb(regnr, (portp->ioaddr + XP_ADDR));
4150 outb(value, (portp->ioaddr + XP_DATA));
4151 }
4152 #endif
4153
4154 /*****************************************************************************/
4155
4156 /*
4157 * Inbitialize the UARTs in a panel. We don't care what sort of board
4158 * these ports are on - since the port io registers are almost
4159 * identical when dealing with ports.
4160 */
4161
4162 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
4163 {
4164 int chipmask, i;
4165 int nrchips, ioaddr;
4166
4167 #ifdef DEBUG
4168 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4169 (int) brdp, (int) panelp);
4170 #endif
4171
4172 BRDENABLE(panelp->brdnr, panelp->pagenr);
4173
4174 /*
4175 * Check that each chip is present and started up OK.
4176 */
4177 chipmask = 0;
4178 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
4179 if (brdp->brdtype == BRD_ECHPCI)
4180 outb(panelp->pagenr, brdp->ioctrl);
4181
4182 for (i = 0; (i < nrchips); i++) {
4183 ioaddr = panelp->iobase + (i * 4);
4184 outb(SCCR, (ioaddr + XP_ADDR));
4185 outb(CR_RESETALL, (ioaddr + XP_DATA));
4186 outb(TSTR, (ioaddr + XP_ADDR));
4187 if (inb(ioaddr + XP_DATA) != 0) {
4188 printk("STALLION: sc26198 not responding, "
4189 "brd=%d panel=%d chip=%d\n",
4190 panelp->brdnr, panelp->panelnr, i);
4191 continue;
4192 }
4193 chipmask |= (0x1 << i);
4194 outb(GCCR, (ioaddr + XP_ADDR));
4195 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
4196 outb(WDTRCR, (ioaddr + XP_ADDR));
4197 outb(0xff, (ioaddr + XP_DATA));
4198 }
4199
4200 BRDDISABLE(panelp->brdnr);
4201 return chipmask;
4202 }
4203
4204 /*****************************************************************************/
4205
4206 /*
4207 * Initialize hardware specific port registers.
4208 */
4209
4210 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
4211 {
4212 #ifdef DEBUG
4213 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4214 (int) brdp, (int) panelp, (int) portp);
4215 #endif
4216
4217 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
4218 (portp == (stlport_t *) NULL))
4219 return;
4220
4221 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
4222 portp->uartaddr = (portp->portnr & 0x07) << 4;
4223 portp->pagenr = panelp->pagenr;
4224 portp->hwid = 0x1;
4225
4226 BRDENABLE(portp->brdnr, portp->pagenr);
4227 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
4228 BRDDISABLE(portp->brdnr);
4229 }
4230
4231 /*****************************************************************************/
4232
4233 /*
4234 * Set up the sc26198 registers for a port based on the termios port
4235 * settings.
4236 */
4237
4238 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
4239 {
4240 stlbrd_t *brdp;
4241 unsigned long flags;
4242 unsigned int baudrate;
4243 unsigned char mr0, mr1, mr2, clk;
4244 unsigned char imron, imroff, iopr, ipr;
4245
4246 mr0 = 0;
4247 mr1 = 0;
4248 mr2 = 0;
4249 clk = 0;
4250 iopr = 0;
4251 imron = 0;
4252 imroff = 0;
4253
4254 brdp = stl_brds[portp->brdnr];
4255 if (brdp == (stlbrd_t *) NULL)
4256 return;
4257
4258 /*
4259 * Set up the RX char ignore mask with those RX error types we
4260 * can ignore.
4261 */
4262 portp->rxignoremsk = 0;
4263 if (tiosp->c_iflag & IGNPAR)
4264 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
4265 SR_RXOVERRUN);
4266 if (tiosp->c_iflag & IGNBRK)
4267 portp->rxignoremsk |= SR_RXBREAK;
4268
4269 portp->rxmarkmsk = SR_RXOVERRUN;
4270 if (tiosp->c_iflag & (INPCK | PARMRK))
4271 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
4272 if (tiosp->c_iflag & BRKINT)
4273 portp->rxmarkmsk |= SR_RXBREAK;
4274
4275 /*
4276 * Go through the char size, parity and stop bits and set all the
4277 * option register appropriately.
4278 */
4279 switch (tiosp->c_cflag & CSIZE) {
4280 case CS5:
4281 mr1 |= MR1_CS5;
4282 break;
4283 case CS6:
4284 mr1 |= MR1_CS6;
4285 break;
4286 case CS7:
4287 mr1 |= MR1_CS7;
4288 break;
4289 default:
4290 mr1 |= MR1_CS8;
4291 break;
4292 }
4293
4294 if (tiosp->c_cflag & CSTOPB)
4295 mr2 |= MR2_STOP2;
4296 else
4297 mr2 |= MR2_STOP1;
4298
4299 if (tiosp->c_cflag & PARENB) {
4300 if (tiosp->c_cflag & PARODD)
4301 mr1 |= (MR1_PARENB | MR1_PARODD);
4302 else
4303 mr1 |= (MR1_PARENB | MR1_PAREVEN);
4304 } else {
4305 mr1 |= MR1_PARNONE;
4306 }
4307
4308 mr1 |= MR1_ERRBLOCK;
4309
4310 /*
4311 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4312 * space for hardware flow control and the like. This should be set to
4313 * VMIN.
4314 */
4315 mr2 |= MR2_RXFIFOHALF;
4316
4317 /*
4318 * Calculate the baud rate timers. For now we will just assume that
4319 * the input and output baud are the same. The sc26198 has a fixed
4320 * baud rate table, so only discrete baud rates possible.
4321 */
4322 baudrate = tiosp->c_cflag & CBAUD;
4323 if (baudrate & CBAUDEX) {
4324 baudrate &= ~CBAUDEX;
4325 if ((baudrate < 1) || (baudrate > 4))
4326 tiosp->c_cflag &= ~CBAUDEX;
4327 else
4328 baudrate += 15;
4329 }
4330 baudrate = stl_baudrates[baudrate];
4331 if ((tiosp->c_cflag & CBAUD) == B38400) {
4332 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4333 baudrate = 57600;
4334 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4335 baudrate = 115200;
4336 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4337 baudrate = 230400;
4338 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4339 baudrate = 460800;
4340 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4341 baudrate = (portp->baud_base / portp->custom_divisor);
4342 }
4343 if (baudrate > STL_SC26198MAXBAUD)
4344 baudrate = STL_SC26198MAXBAUD;
4345
4346 if (baudrate > 0) {
4347 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4348 if (baudrate <= sc26198_baudtable[clk])
4349 break;
4350 }
4351 }
4352
4353 /*
4354 * Check what form of modem signaling is required and set it up.
4355 */
4356 if (tiosp->c_cflag & CLOCAL) {
4357 portp->flags &= ~ASYNC_CHECK_CD;
4358 } else {
4359 iopr |= IOPR_DCDCOS;
4360 imron |= IR_IOPORT;
4361 portp->flags |= ASYNC_CHECK_CD;
4362 }
4363
4364 /*
4365 * Setup sc26198 enhanced modes if we can. In particular we want to
4366 * handle as much of the flow control as possible automatically. As
4367 * well as saving a few CPU cycles it will also greatly improve flow
4368 * control reliability.
4369 */
4370 if (tiosp->c_iflag & IXON) {
4371 mr0 |= MR0_SWFTX | MR0_SWFT;
4372 imron |= IR_XONXOFF;
4373 } else {
4374 imroff |= IR_XONXOFF;
4375 }
4376 if (tiosp->c_iflag & IXOFF)
4377 mr0 |= MR0_SWFRX;
4378
4379 if (tiosp->c_cflag & CRTSCTS) {
4380 mr2 |= MR2_AUTOCTS;
4381 mr1 |= MR1_AUTORTS;
4382 }
4383
4384 /*
4385 * All sc26198 register values calculated so go through and set
4386 * them all up.
4387 */
4388
4389 #ifdef DEBUG
4390 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4391 portp->portnr, portp->panelnr, portp->brdnr);
4392 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4393 printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4394 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4395 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4396 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4397 #endif
4398
4399 spin_lock_irqsave(&brd_lock, flags);
4400 BRDENABLE(portp->brdnr, portp->pagenr);
4401 stl_sc26198setreg(portp, IMR, 0);
4402 stl_sc26198updatereg(portp, MR0, mr0);
4403 stl_sc26198updatereg(portp, MR1, mr1);
4404 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4405 stl_sc26198updatereg(portp, MR2, mr2);
4406 stl_sc26198updatereg(portp, IOPIOR,
4407 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4408
4409 if (baudrate > 0) {
4410 stl_sc26198setreg(portp, TXCSR, clk);
4411 stl_sc26198setreg(portp, RXCSR, clk);
4412 }
4413
4414 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4415 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4416
4417 ipr = stl_sc26198getreg(portp, IPR);
4418 if (ipr & IPR_DCD)
4419 portp->sigs &= ~TIOCM_CD;
4420 else
4421 portp->sigs |= TIOCM_CD;
4422
4423 portp->imr = (portp->imr & ~imroff) | imron;
4424 stl_sc26198setreg(portp, IMR, portp->imr);
4425 BRDDISABLE(portp->brdnr);
4426 spin_unlock_irqrestore(&brd_lock, flags);
4427 }
4428
4429 /*****************************************************************************/
4430
4431 /*
4432 * Set the state of the DTR and RTS signals.
4433 */
4434
4435 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
4436 {
4437 unsigned char iopioron, iopioroff;
4438 unsigned long flags;
4439
4440 #ifdef DEBUG
4441 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4442 (int) portp, dtr, rts);
4443 #endif
4444
4445 iopioron = 0;
4446 iopioroff = 0;
4447 if (dtr == 0)
4448 iopioroff |= IPR_DTR;
4449 else if (dtr > 0)
4450 iopioron |= IPR_DTR;
4451 if (rts == 0)
4452 iopioroff |= IPR_RTS;
4453 else if (rts > 0)
4454 iopioron |= IPR_RTS;
4455
4456 spin_lock_irqsave(&brd_lock, flags);
4457 BRDENABLE(portp->brdnr, portp->pagenr);
4458 stl_sc26198setreg(portp, IOPIOR,
4459 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4460 BRDDISABLE(portp->brdnr);
4461 spin_unlock_irqrestore(&brd_lock, flags);
4462 }
4463
4464 /*****************************************************************************/
4465
4466 /*
4467 * Return the state of the signals.
4468 */
4469
4470 static int stl_sc26198getsignals(stlport_t *portp)
4471 {
4472 unsigned char ipr;
4473 unsigned long flags;
4474 int sigs;
4475
4476 #ifdef DEBUG
4477 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
4478 #endif
4479
4480 spin_lock_irqsave(&brd_lock, flags);
4481 BRDENABLE(portp->brdnr, portp->pagenr);
4482 ipr = stl_sc26198getreg(portp, IPR);
4483 BRDDISABLE(portp->brdnr);
4484 spin_unlock_irqrestore(&brd_lock, flags);
4485
4486 sigs = 0;
4487 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4488 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4489 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4490 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4491 sigs |= TIOCM_DSR;
4492 return sigs;
4493 }
4494
4495 /*****************************************************************************/
4496
4497 /*
4498 * Enable/Disable the Transmitter and/or Receiver.
4499 */
4500
4501 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
4502 {
4503 unsigned char ccr;
4504 unsigned long flags;
4505
4506 #ifdef DEBUG
4507 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4508 (int) portp, rx, tx);
4509 #endif
4510
4511 ccr = portp->crenable;
4512 if (tx == 0)
4513 ccr &= ~CR_TXENABLE;
4514 else if (tx > 0)
4515 ccr |= CR_TXENABLE;
4516 if (rx == 0)
4517 ccr &= ~CR_RXENABLE;
4518 else if (rx > 0)
4519 ccr |= CR_RXENABLE;
4520
4521 spin_lock_irqsave(&brd_lock, flags);
4522 BRDENABLE(portp->brdnr, portp->pagenr);
4523 stl_sc26198setreg(portp, SCCR, ccr);
4524 BRDDISABLE(portp->brdnr);
4525 portp->crenable = ccr;
4526 spin_unlock_irqrestore(&brd_lock, flags);
4527 }
4528
4529 /*****************************************************************************/
4530
4531 /*
4532 * Start/stop the Transmitter and/or Receiver.
4533 */
4534
4535 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
4536 {
4537 unsigned char imr;
4538 unsigned long flags;
4539
4540 #ifdef DEBUG
4541 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4542 (int) portp, rx, tx);
4543 #endif
4544
4545 imr = portp->imr;
4546 if (tx == 0)
4547 imr &= ~IR_TXRDY;
4548 else if (tx == 1)
4549 imr |= IR_TXRDY;
4550 if (rx == 0)
4551 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4552 else if (rx > 0)
4553 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4554
4555 spin_lock_irqsave(&brd_lock, flags);
4556 BRDENABLE(portp->brdnr, portp->pagenr);
4557 stl_sc26198setreg(portp, IMR, imr);
4558 BRDDISABLE(portp->brdnr);
4559 portp->imr = imr;
4560 if (tx > 0)
4561 set_bit(ASYI_TXBUSY, &portp->istate);
4562 spin_unlock_irqrestore(&brd_lock, flags);
4563 }
4564
4565 /*****************************************************************************/
4566
4567 /*
4568 * Disable all interrupts from this port.
4569 */
4570
4571 static void stl_sc26198disableintrs(stlport_t *portp)
4572 {
4573 unsigned long flags;
4574
4575 #ifdef DEBUG
4576 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
4577 #endif
4578
4579 spin_lock_irqsave(&brd_lock, flags);
4580 BRDENABLE(portp->brdnr, portp->pagenr);
4581 portp->imr = 0;
4582 stl_sc26198setreg(portp, IMR, 0);
4583 BRDDISABLE(portp->brdnr);
4584 spin_unlock_irqrestore(&brd_lock, flags);
4585 }
4586
4587 /*****************************************************************************/
4588
4589 static void stl_sc26198sendbreak(stlport_t *portp, int len)
4590 {
4591 unsigned long flags;
4592
4593 #ifdef DEBUG
4594 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
4595 #endif
4596
4597 spin_lock_irqsave(&brd_lock, flags);
4598 BRDENABLE(portp->brdnr, portp->pagenr);
4599 if (len == 1) {
4600 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4601 portp->stats.txbreaks++;
4602 } else {
4603 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4604 }
4605 BRDDISABLE(portp->brdnr);
4606 spin_unlock_irqrestore(&brd_lock, flags);
4607 }
4608
4609 /*****************************************************************************/
4610
4611 /*
4612 * Take flow control actions...
4613 */
4614
4615 static void stl_sc26198flowctrl(stlport_t *portp, int state)
4616 {
4617 struct tty_struct *tty;
4618 unsigned long flags;
4619 unsigned char mr0;
4620
4621 #ifdef DEBUG
4622 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
4623 #endif
4624
4625 if (portp == (stlport_t *) NULL)
4626 return;
4627 tty = portp->tty;
4628 if (tty == (struct tty_struct *) NULL)
4629 return;
4630
4631 spin_lock_irqsave(&brd_lock, flags);
4632 BRDENABLE(portp->brdnr, portp->pagenr);
4633
4634 if (state) {
4635 if (tty->termios->c_iflag & IXOFF) {
4636 mr0 = stl_sc26198getreg(portp, MR0);
4637 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4638 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4639 mr0 |= MR0_SWFRX;
4640 portp->stats.rxxon++;
4641 stl_sc26198wait(portp);
4642 stl_sc26198setreg(portp, MR0, mr0);
4643 }
4644 /*
4645 * Question: should we return RTS to what it was before? It may
4646 * have been set by an ioctl... Suppose not, since if you have
4647 * hardware flow control set then it is pretty silly to go and
4648 * set the RTS line by hand.
4649 */
4650 if (tty->termios->c_cflag & CRTSCTS) {
4651 stl_sc26198setreg(portp, MR1,
4652 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4653 stl_sc26198setreg(portp, IOPIOR,
4654 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4655 portp->stats.rxrtson++;
4656 }
4657 } else {
4658 if (tty->termios->c_iflag & IXOFF) {
4659 mr0 = stl_sc26198getreg(portp, MR0);
4660 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4661 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4662 mr0 &= ~MR0_SWFRX;
4663 portp->stats.rxxoff++;
4664 stl_sc26198wait(portp);
4665 stl_sc26198setreg(portp, MR0, mr0);
4666 }
4667 if (tty->termios->c_cflag & CRTSCTS) {
4668 stl_sc26198setreg(portp, MR1,
4669 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4670 stl_sc26198setreg(portp, IOPIOR,
4671 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4672 portp->stats.rxrtsoff++;
4673 }
4674 }
4675
4676 BRDDISABLE(portp->brdnr);
4677 spin_unlock_irqrestore(&brd_lock, flags);
4678 }
4679
4680 /*****************************************************************************/
4681
4682 /*
4683 * Send a flow control character.
4684 */
4685
4686 static void stl_sc26198sendflow(stlport_t *portp, int state)
4687 {
4688 struct tty_struct *tty;
4689 unsigned long flags;
4690 unsigned char mr0;
4691
4692 #ifdef DEBUG
4693 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
4694 #endif
4695
4696 if (portp == (stlport_t *) NULL)
4697 return;
4698 tty = portp->tty;
4699 if (tty == (struct tty_struct *) NULL)
4700 return;
4701
4702 spin_lock_irqsave(&brd_lock, flags);
4703 BRDENABLE(portp->brdnr, portp->pagenr);
4704 if (state) {
4705 mr0 = stl_sc26198getreg(portp, MR0);
4706 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4707 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4708 mr0 |= MR0_SWFRX;
4709 portp->stats.rxxon++;
4710 stl_sc26198wait(portp);
4711 stl_sc26198setreg(portp, MR0, mr0);
4712 } else {
4713 mr0 = stl_sc26198getreg(portp, MR0);
4714 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4715 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4716 mr0 &= ~MR0_SWFRX;
4717 portp->stats.rxxoff++;
4718 stl_sc26198wait(portp);
4719 stl_sc26198setreg(portp, MR0, mr0);
4720 }
4721 BRDDISABLE(portp->brdnr);
4722 spin_unlock_irqrestore(&brd_lock, flags);
4723 }
4724
4725 /*****************************************************************************/
4726
4727 static void stl_sc26198flush(stlport_t *portp)
4728 {
4729 unsigned long flags;
4730
4731 #ifdef DEBUG
4732 printk("stl_sc26198flush(portp=%x)\n", (int) portp);
4733 #endif
4734
4735 if (portp == (stlport_t *) NULL)
4736 return;
4737
4738 spin_lock_irqsave(&brd_lock, flags);
4739 BRDENABLE(portp->brdnr, portp->pagenr);
4740 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4741 stl_sc26198setreg(portp, SCCR, portp->crenable);
4742 BRDDISABLE(portp->brdnr);
4743 portp->tx.tail = portp->tx.head;
4744 spin_unlock_irqrestore(&brd_lock, flags);
4745 }
4746
4747 /*****************************************************************************/
4748
4749 /*
4750 * Return the current state of data flow on this port. This is only
4751 * really interresting when determining if data has fully completed
4752 * transmission or not... The sc26198 interrupt scheme cannot
4753 * determine when all data has actually drained, so we need to
4754 * check the port statusy register to be sure.
4755 */
4756
4757 static int stl_sc26198datastate(stlport_t *portp)
4758 {
4759 unsigned long flags;
4760 unsigned char sr;
4761
4762 #ifdef DEBUG
4763 printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
4764 #endif
4765
4766 if (portp == (stlport_t *) NULL)
4767 return 0;
4768 if (test_bit(ASYI_TXBUSY, &portp->istate))
4769 return 1;
4770
4771 spin_lock_irqsave(&brd_lock, flags);
4772 BRDENABLE(portp->brdnr, portp->pagenr);
4773 sr = stl_sc26198getreg(portp, SR);
4774 BRDDISABLE(portp->brdnr);
4775 spin_unlock_irqrestore(&brd_lock, flags);
4776
4777 return (sr & SR_TXEMPTY) ? 0 : 1;
4778 }
4779
4780 /*****************************************************************************/
4781
4782 /*
4783 * Delay for a small amount of time, to give the sc26198 a chance
4784 * to process a command...
4785 */
4786
4787 static void stl_sc26198wait(stlport_t *portp)
4788 {
4789 int i;
4790
4791 #ifdef DEBUG
4792 printk("stl_sc26198wait(portp=%x)\n", (int) portp);
4793 #endif
4794
4795 if (portp == (stlport_t *) NULL)
4796 return;
4797
4798 for (i = 0; (i < 20); i++)
4799 stl_sc26198getglobreg(portp, TSTR);
4800 }
4801
4802 /*****************************************************************************/
4803
4804 /*
4805 * If we are TX flow controlled and in IXANY mode then we may
4806 * need to unflow control here. We gotta do this because of the
4807 * automatic flow control modes of the sc26198.
4808 */
4809
4810 static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
4811 {
4812 unsigned char mr0;
4813
4814 mr0 = stl_sc26198getreg(portp, MR0);
4815 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4816 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4817 stl_sc26198wait(portp);
4818 stl_sc26198setreg(portp, MR0, mr0);
4819 clear_bit(ASYI_TXFLOWED, &portp->istate);
4820 }
4821
4822 /*****************************************************************************/
4823
4824 /*
4825 * Interrupt service routine for sc26198 panels.
4826 */
4827
4828 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
4829 {
4830 stlport_t *portp;
4831 unsigned int iack;
4832
4833 spin_lock(&brd_lock);
4834
4835 /*
4836 * Work around bug in sc26198 chip... Cannot have A6 address
4837 * line of UART high, else iack will be returned as 0.
4838 */
4839 outb(0, (iobase + 1));
4840
4841 iack = inb(iobase + XP_IACK);
4842 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4843
4844 if (iack & IVR_RXDATA)
4845 stl_sc26198rxisr(portp, iack);
4846 else if (iack & IVR_TXDATA)
4847 stl_sc26198txisr(portp);
4848 else
4849 stl_sc26198otherisr(portp, iack);
4850
4851 spin_unlock(&brd_lock);
4852 }
4853
4854 /*****************************************************************************/
4855
4856 /*
4857 * Transmit interrupt handler. This has gotta be fast! Handling TX
4858 * chars is pretty simple, stuff as many as possible from the TX buffer
4859 * into the sc26198 FIFO.
4860 * In practice it is possible that interrupts are enabled but that the
4861 * port has been hung up. Need to handle not having any TX buffer here,
4862 * this is done by using the side effect that head and tail will also
4863 * be NULL if the buffer has been freed.
4864 */
4865
4866 static void stl_sc26198txisr(stlport_t *portp)
4867 {
4868 unsigned int ioaddr;
4869 unsigned char mr0;
4870 int len, stlen;
4871 char *head, *tail;
4872
4873 #ifdef DEBUG
4874 printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
4875 #endif
4876
4877 ioaddr = portp->ioaddr;
4878 head = portp->tx.head;
4879 tail = portp->tx.tail;
4880 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4881 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4882 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4883 set_bit(ASYI_TXLOW, &portp->istate);
4884 schedule_work(&portp->tqueue);
4885 }
4886
4887 if (len == 0) {
4888 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4889 mr0 = inb(ioaddr + XP_DATA);
4890 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4891 portp->imr &= ~IR_TXRDY;
4892 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4893 outb(portp->imr, (ioaddr + XP_DATA));
4894 clear_bit(ASYI_TXBUSY, &portp->istate);
4895 } else {
4896 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4897 outb(mr0, (ioaddr + XP_DATA));
4898 }
4899 } else {
4900 len = MIN(len, SC26198_TXFIFOSIZE);
4901 portp->stats.txtotal += len;
4902 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4903 outb(GTXFIFO, (ioaddr + XP_ADDR));
4904 outsb((ioaddr + XP_DATA), tail, stlen);
4905 len -= stlen;
4906 tail += stlen;
4907 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4908 tail = portp->tx.buf;
4909 if (len > 0) {
4910 outsb((ioaddr + XP_DATA), tail, len);
4911 tail += len;
4912 }
4913 portp->tx.tail = tail;
4914 }
4915 }
4916
4917 /*****************************************************************************/
4918
4919 /*
4920 * Receive character interrupt handler. Determine if we have good chars
4921 * or bad chars and then process appropriately. Good chars are easy
4922 * just shove the lot into the RX buffer and set all status byte to 0.
4923 * If a bad RX char then process as required. This routine needs to be
4924 * fast! In practice it is possible that we get an interrupt on a port
4925 * that is closed. This can happen on hangups - since they completely
4926 * shutdown a port not in user context. Need to handle this case.
4927 */
4928
4929 static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
4930 {
4931 struct tty_struct *tty;
4932 unsigned int len, buflen, ioaddr;
4933
4934 #ifdef DEBUG
4935 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
4936 #endif
4937
4938 tty = portp->tty;
4939 ioaddr = portp->ioaddr;
4940 outb(GIBCR, (ioaddr + XP_ADDR));
4941 len = inb(ioaddr + XP_DATA) + 1;
4942
4943 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4944 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4945 len = MIN(len, sizeof(stl_unwanted));
4946 outb(GRXFIFO, (ioaddr + XP_ADDR));
4947 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4948 portp->stats.rxlost += len;
4949 portp->stats.rxtotal += len;
4950 } else {
4951 len = MIN(len, buflen);
4952 if (len > 0) {
4953 unsigned char *ptr;
4954 outb(GRXFIFO, (ioaddr + XP_ADDR));
4955 tty_prepare_flip_string(tty, &ptr, len);
4956 insb((ioaddr + XP_DATA), ptr, len);
4957 tty_schedule_flip(tty);
4958 portp->stats.rxtotal += len;
4959 }
4960 }
4961 } else {
4962 stl_sc26198rxbadchars(portp);
4963 }
4964
4965 /*
4966 * If we are TX flow controlled and in IXANY mode then we may need
4967 * to unflow control here. We gotta do this because of the automatic
4968 * flow control modes of the sc26198.
4969 */
4970 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4971 if ((tty != (struct tty_struct *) NULL) &&
4972 (tty->termios != (struct termios *) NULL) &&
4973 (tty->termios->c_iflag & IXANY)) {
4974 stl_sc26198txunflow(portp, tty);
4975 }
4976 }
4977 }
4978
4979 /*****************************************************************************/
4980
4981 /*
4982 * Process an RX bad character.
4983 */
4984
4985 static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
4986 {
4987 struct tty_struct *tty;
4988 unsigned int ioaddr;
4989
4990 tty = portp->tty;
4991 ioaddr = portp->ioaddr;
4992
4993 if (status & SR_RXPARITY)
4994 portp->stats.rxparity++;
4995 if (status & SR_RXFRAMING)
4996 portp->stats.rxframing++;
4997 if (status & SR_RXOVERRUN)
4998 portp->stats.rxoverrun++;
4999 if (status & SR_RXBREAK)
5000 portp->stats.rxbreaks++;
5001
5002 if ((tty != (struct tty_struct *) NULL) &&
5003 ((portp->rxignoremsk & status) == 0)) {
5004 if (portp->rxmarkmsk & status) {
5005 if (status & SR_RXBREAK) {
5006 status = TTY_BREAK;
5007 if (portp->flags & ASYNC_SAK) {
5008 do_SAK(tty);
5009 BRDENABLE(portp->brdnr, portp->pagenr);
5010 }
5011 } else if (status & SR_RXPARITY) {
5012 status = TTY_PARITY;
5013 } else if (status & SR_RXFRAMING) {
5014 status = TTY_FRAME;
5015 } else if(status & SR_RXOVERRUN) {
5016 status = TTY_OVERRUN;
5017 } else {
5018 status = 0;
5019 }
5020 } else {
5021 status = 0;
5022 }
5023
5024 tty_insert_flip_char(tty, ch, status);
5025 tty_schedule_flip(tty);
5026
5027 if (status == 0)
5028 portp->stats.rxtotal++;
5029 }
5030 }
5031
5032 /*****************************************************************************/
5033
5034 /*
5035 * Process all characters in the RX FIFO of the UART. Check all char
5036 * status bytes as well, and process as required. We need to check
5037 * all bytes in the FIFO, in case some more enter the FIFO while we
5038 * are here. To get the exact character error type we need to switch
5039 * into CHAR error mode (that is why we need to make sure we empty
5040 * the FIFO).
5041 */
5042
5043 static void stl_sc26198rxbadchars(stlport_t *portp)
5044 {
5045 unsigned char status, mr1;
5046 char ch;
5047
5048 /*
5049 * To get the precise error type for each character we must switch
5050 * back into CHAR error mode.
5051 */
5052 mr1 = stl_sc26198getreg(portp, MR1);
5053 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
5054
5055 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
5056 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
5057 ch = stl_sc26198getreg(portp, RXFIFO);
5058 stl_sc26198rxbadch(portp, status, ch);
5059 }
5060
5061 /*
5062 * To get correct interrupt class we must switch back into BLOCK
5063 * error mode.
5064 */
5065 stl_sc26198setreg(portp, MR1, mr1);
5066 }
5067
5068 /*****************************************************************************/
5069
5070 /*
5071 * Other interrupt handler. This includes modem signals, flow
5072 * control actions, etc. Most stuff is left to off-level interrupt
5073 * processing time.
5074 */
5075
5076 static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
5077 {
5078 unsigned char cir, ipr, xisr;
5079
5080 #ifdef DEBUG
5081 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
5082 #endif
5083
5084 cir = stl_sc26198getglobreg(portp, CIR);
5085
5086 switch (cir & CIR_SUBTYPEMASK) {
5087 case CIR_SUBCOS:
5088 ipr = stl_sc26198getreg(portp, IPR);
5089 if (ipr & IPR_DCDCHANGE) {
5090 set_bit(ASYI_DCDCHANGE, &portp->istate);
5091 schedule_work(&portp->tqueue);
5092 portp->stats.modem++;
5093 }
5094 break;
5095 case CIR_SUBXONXOFF:
5096 xisr = stl_sc26198getreg(portp, XISR);
5097 if (xisr & XISR_RXXONGOT) {
5098 set_bit(ASYI_TXFLOWED, &portp->istate);
5099 portp->stats.txxoff++;
5100 }
5101 if (xisr & XISR_RXXOFFGOT) {
5102 clear_bit(ASYI_TXFLOWED, &portp->istate);
5103 portp->stats.txxon++;
5104 }
5105 break;
5106 case CIR_SUBBREAK:
5107 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
5108 stl_sc26198rxbadchars(portp);
5109 break;
5110 default:
5111 break;
5112 }
5113 }
5114
5115 /*****************************************************************************/