]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/char/tty_io.c
tty: rewrite the ldisc locking
[mirror_ubuntu-zesty-kernel.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159 * alloc_tty_struct - allocate a tty object
160 *
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
163 *
164 * Locking: none
165 */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
175 *
176 * Free the write buffers, tty queue and tty memory itself.
177 *
178 * Locking: none. Must be called after tty is definitely unused
179 */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
194 *
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
197 *
198 * Locking: none
199 */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
221 }
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
227 }
228 #endif
229 return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
237
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
241 }
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
252 }
253 #endif
254 return 0;
255 }
256
257 /**
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
261 *
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
264 *
265 * Locking: caller must hold tty_mutex
266 */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270 struct tty_driver *p;
271
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
278 }
279 return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
288 *
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
292 */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str, *stp;
299
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
305
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
308
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 stp = str;
315 if (*stp == ',')
316 stp++;
317 if (*stp == '\0')
318 stp = NULL;
319
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
323 *line = tty_line;
324 break;
325 }
326 }
327 mutex_unlock(&tty_mutex);
328
329 return res;
330 }
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
333
334 /**
335 * tty_check_change - check for POSIX terminal changes
336 * @tty: tty to check
337 *
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
341 *
342 * Locking: ctrl_lock
343 */
344
345 int tty_check_change(struct tty_struct *tty)
346 {
347 unsigned long flags;
348 int ret = 0;
349
350 if (current->signal->tty != tty)
351 return 0;
352
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
354
355 if (!tty->pgrp) {
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357 goto out_unlock;
358 }
359 if (task_pgrp(current) == tty->pgrp)
360 goto out_unlock;
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
363 goto out;
364 if (is_current_pgrp_orphaned()) {
365 ret = -EIO;
366 goto out;
367 }
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
370 ret = -ERESTARTSYS;
371 out:
372 return ret;
373 out_unlock:
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375 return ret;
376 }
377
378 EXPORT_SYMBOL(tty_check_change);
379
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
382 {
383 return 0;
384 }
385
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
388 {
389 return -EIO;
390 }
391
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 {
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
396 }
397
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399 unsigned long arg)
400 {
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
402 }
403
404 static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
406 {
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static const struct file_operations tty_fops = {
411 .llseek = no_llseek,
412 .read = tty_read,
413 .write = tty_write,
414 .poll = tty_poll,
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
417 .open = tty_open,
418 .release = tty_release,
419 .fasync = tty_fasync,
420 };
421
422 static const struct file_operations console_fops = {
423 .llseek = no_llseek,
424 .read = tty_read,
425 .write = redirected_tty_write,
426 .poll = tty_poll,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
429 .open = tty_open,
430 .release = tty_release,
431 .fasync = tty_fasync,
432 };
433
434 static const struct file_operations hung_up_tty_fops = {
435 .llseek = no_llseek,
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
442 };
443
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
446
447 /**
448 * tty_wakeup - request more data
449 * @tty: terminal
450 *
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
454 */
455
456 void tty_wakeup(struct tty_struct *tty)
457 {
458 struct tty_ldisc *ld;
459
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
462 if (ld) {
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
465 tty_ldisc_deref(ld);
466 }
467 }
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
469 }
470
471 EXPORT_SYMBOL_GPL(tty_wakeup);
472
473 /**
474 * tty_ldisc_flush - flush line discipline queue
475 * @tty: tty
476 *
477 * Flush the line discipline queue (if any) for this tty. If there
478 * is no line discipline active this is a no-op.
479 */
480
481 void tty_ldisc_flush(struct tty_struct *tty)
482 {
483 struct tty_ldisc *ld = tty_ldisc_ref(tty);
484 if (ld) {
485 if (ld->ops->flush_buffer)
486 ld->ops->flush_buffer(tty);
487 tty_ldisc_deref(ld);
488 }
489 tty_buffer_flush(tty);
490 }
491
492 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
493
494 /**
495 * do_tty_hangup - actual handler for hangup events
496 * @work: tty device
497 *
498 * This can be called by the "eventd" kernel thread. That is process
499 * synchronous but doesn't hold any locks, so we need to make sure we
500 * have the appropriate locks for what we're doing.
501 *
502 * The hangup event clears any pending redirections onto the hung up
503 * device. It ensures future writes will error and it does the needed
504 * line discipline hangup and signal delivery. The tty object itself
505 * remains intact.
506 *
507 * Locking:
508 * BKL
509 * redirect lock for undoing redirection
510 * file list lock for manipulating list of ttys
511 * tty_ldisc_lock from called functions
512 * termios_mutex resetting termios data
513 * tasklist_lock to walk task list for hangup event
514 * ->siglock to protect ->signal/->sighand
515 */
516 static void do_tty_hangup(struct work_struct *work)
517 {
518 struct tty_struct *tty =
519 container_of(work, struct tty_struct, hangup_work);
520 struct file *cons_filp = NULL;
521 struct file *filp, *f = NULL;
522 struct task_struct *p;
523 int closecount = 0, n;
524 unsigned long flags;
525 int refs = 0;
526
527 if (!tty)
528 return;
529
530 /* inuse_filps is protected by the single kernel lock */
531 lock_kernel();
532
533 spin_lock(&redirect_lock);
534 if (redirect && redirect->private_data == tty) {
535 f = redirect;
536 redirect = NULL;
537 }
538 spin_unlock(&redirect_lock);
539
540 check_tty_count(tty, "do_tty_hangup");
541 file_list_lock();
542 /* This breaks for file handles being sent over AF_UNIX sockets ? */
543 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
544 if (filp->f_op->write == redirected_tty_write)
545 cons_filp = filp;
546 if (filp->f_op->write != tty_write)
547 continue;
548 closecount++;
549 tty_fasync(-1, filp, 0); /* can't block */
550 filp->f_op = &hung_up_tty_fops;
551 }
552 file_list_unlock();
553
554 tty_ldisc_hangup(tty);
555
556 read_lock(&tasklist_lock);
557 if (tty->session) {
558 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
559 spin_lock_irq(&p->sighand->siglock);
560 if (p->signal->tty == tty) {
561 p->signal->tty = NULL;
562 /* We defer the dereferences outside fo
563 the tasklist lock */
564 refs++;
565 }
566 if (!p->signal->leader) {
567 spin_unlock_irq(&p->sighand->siglock);
568 continue;
569 }
570 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
571 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
572 put_pid(p->signal->tty_old_pgrp); /* A noop */
573 spin_lock_irqsave(&tty->ctrl_lock, flags);
574 if (tty->pgrp)
575 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
576 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
577 spin_unlock_irq(&p->sighand->siglock);
578 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
579 }
580 read_unlock(&tasklist_lock);
581
582 spin_lock_irqsave(&tty->ctrl_lock, flags);
583 clear_bit(TTY_THROTTLED, &tty->flags);
584 clear_bit(TTY_PUSH, &tty->flags);
585 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
586 put_pid(tty->session);
587 put_pid(tty->pgrp);
588 tty->session = NULL;
589 tty->pgrp = NULL;
590 tty->ctrl_status = 0;
591 set_bit(TTY_HUPPED, &tty->flags);
592 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
593
594 /* Account for the p->signal references we killed */
595 while (refs--)
596 tty_kref_put(tty);
597
598 /*
599 * If one of the devices matches a console pointer, we
600 * cannot just call hangup() because that will cause
601 * tty->count and state->count to go out of sync.
602 * So we just call close() the right number of times.
603 */
604 if (cons_filp) {
605 if (tty->ops->close)
606 for (n = 0; n < closecount; n++)
607 tty->ops->close(tty, cons_filp);
608 } else if (tty->ops->hangup)
609 (tty->ops->hangup)(tty);
610 /*
611 * We don't want to have driver/ldisc interactions beyond
612 * the ones we did here. The driver layer expects no
613 * calls after ->hangup() from the ldisc side. However we
614 * can't yet guarantee all that.
615 */
616 set_bit(TTY_HUPPED, &tty->flags);
617 tty_ldisc_enable(tty);
618 unlock_kernel();
619 if (f)
620 fput(f);
621 }
622
623 /**
624 * tty_hangup - trigger a hangup event
625 * @tty: tty to hangup
626 *
627 * A carrier loss (virtual or otherwise) has occurred on this like
628 * schedule a hangup sequence to run after this event.
629 */
630
631 void tty_hangup(struct tty_struct *tty)
632 {
633 #ifdef TTY_DEBUG_HANGUP
634 char buf[64];
635 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
636 #endif
637 schedule_work(&tty->hangup_work);
638 }
639
640 EXPORT_SYMBOL(tty_hangup);
641
642 /**
643 * tty_vhangup - process vhangup
644 * @tty: tty to hangup
645 *
646 * The user has asked via system call for the terminal to be hung up.
647 * We do this synchronously so that when the syscall returns the process
648 * is complete. That guarantee is necessary for security reasons.
649 */
650
651 void tty_vhangup(struct tty_struct *tty)
652 {
653 #ifdef TTY_DEBUG_HANGUP
654 char buf[64];
655
656 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
657 #endif
658 do_tty_hangup(&tty->hangup_work);
659 }
660
661 EXPORT_SYMBOL(tty_vhangup);
662
663 /**
664 * tty_vhangup_self - process vhangup for own ctty
665 *
666 * Perform a vhangup on the current controlling tty
667 */
668
669 void tty_vhangup_self(void)
670 {
671 struct tty_struct *tty;
672
673 tty = get_current_tty();
674 if (tty) {
675 tty_vhangup(tty);
676 tty_kref_put(tty);
677 }
678 }
679
680 /**
681 * tty_hung_up_p - was tty hung up
682 * @filp: file pointer of tty
683 *
684 * Return true if the tty has been subject to a vhangup or a carrier
685 * loss
686 */
687
688 int tty_hung_up_p(struct file *filp)
689 {
690 return (filp->f_op == &hung_up_tty_fops);
691 }
692
693 EXPORT_SYMBOL(tty_hung_up_p);
694
695 static void session_clear_tty(struct pid *session)
696 {
697 struct task_struct *p;
698 do_each_pid_task(session, PIDTYPE_SID, p) {
699 proc_clear_tty(p);
700 } while_each_pid_task(session, PIDTYPE_SID, p);
701 }
702
703 /**
704 * disassociate_ctty - disconnect controlling tty
705 * @on_exit: true if exiting so need to "hang up" the session
706 *
707 * This function is typically called only by the session leader, when
708 * it wants to disassociate itself from its controlling tty.
709 *
710 * It performs the following functions:
711 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
712 * (2) Clears the tty from being controlling the session
713 * (3) Clears the controlling tty for all processes in the
714 * session group.
715 *
716 * The argument on_exit is set to 1 if called when a process is
717 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
718 *
719 * Locking:
720 * BKL is taken for hysterical raisins
721 * tty_mutex is taken to protect tty
722 * ->siglock is taken to protect ->signal/->sighand
723 * tasklist_lock is taken to walk process list for sessions
724 * ->siglock is taken to protect ->signal/->sighand
725 */
726
727 void disassociate_ctty(int on_exit)
728 {
729 struct tty_struct *tty;
730 struct pid *tty_pgrp = NULL;
731
732
733 tty = get_current_tty();
734 if (tty) {
735 tty_pgrp = get_pid(tty->pgrp);
736 lock_kernel();
737 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
738 tty_vhangup(tty);
739 unlock_kernel();
740 tty_kref_put(tty);
741 } else if (on_exit) {
742 struct pid *old_pgrp;
743 spin_lock_irq(&current->sighand->siglock);
744 old_pgrp = current->signal->tty_old_pgrp;
745 current->signal->tty_old_pgrp = NULL;
746 spin_unlock_irq(&current->sighand->siglock);
747 if (old_pgrp) {
748 kill_pgrp(old_pgrp, SIGHUP, on_exit);
749 kill_pgrp(old_pgrp, SIGCONT, on_exit);
750 put_pid(old_pgrp);
751 }
752 return;
753 }
754 if (tty_pgrp) {
755 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
756 if (!on_exit)
757 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
758 put_pid(tty_pgrp);
759 }
760
761 spin_lock_irq(&current->sighand->siglock);
762 put_pid(current->signal->tty_old_pgrp);
763 current->signal->tty_old_pgrp = NULL;
764 spin_unlock_irq(&current->sighand->siglock);
765
766 tty = get_current_tty();
767 if (tty) {
768 unsigned long flags;
769 spin_lock_irqsave(&tty->ctrl_lock, flags);
770 put_pid(tty->session);
771 put_pid(tty->pgrp);
772 tty->session = NULL;
773 tty->pgrp = NULL;
774 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
775 tty_kref_put(tty);
776 } else {
777 #ifdef TTY_DEBUG_HANGUP
778 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
779 " = NULL", tty);
780 #endif
781 }
782
783 /* Now clear signal->tty under the lock */
784 read_lock(&tasklist_lock);
785 session_clear_tty(task_session(current));
786 read_unlock(&tasklist_lock);
787 }
788
789 /**
790 *
791 * no_tty - Ensure the current process does not have a controlling tty
792 */
793 void no_tty(void)
794 {
795 struct task_struct *tsk = current;
796 lock_kernel();
797 if (tsk->signal->leader)
798 disassociate_ctty(0);
799 unlock_kernel();
800 proc_clear_tty(tsk);
801 }
802
803
804 /**
805 * stop_tty - propagate flow control
806 * @tty: tty to stop
807 *
808 * Perform flow control to the driver. For PTY/TTY pairs we
809 * must also propagate the TIOCKPKT status. May be called
810 * on an already stopped device and will not re-call the driver
811 * method.
812 *
813 * This functionality is used by both the line disciplines for
814 * halting incoming flow and by the driver. It may therefore be
815 * called from any context, may be under the tty atomic_write_lock
816 * but not always.
817 *
818 * Locking:
819 * Uses the tty control lock internally
820 */
821
822 void stop_tty(struct tty_struct *tty)
823 {
824 unsigned long flags;
825 spin_lock_irqsave(&tty->ctrl_lock, flags);
826 if (tty->stopped) {
827 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
828 return;
829 }
830 tty->stopped = 1;
831 if (tty->link && tty->link->packet) {
832 tty->ctrl_status &= ~TIOCPKT_START;
833 tty->ctrl_status |= TIOCPKT_STOP;
834 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
835 }
836 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
837 if (tty->ops->stop)
838 (tty->ops->stop)(tty);
839 }
840
841 EXPORT_SYMBOL(stop_tty);
842
843 /**
844 * start_tty - propagate flow control
845 * @tty: tty to start
846 *
847 * Start a tty that has been stopped if at all possible. Perform
848 * any necessary wakeups and propagate the TIOCPKT status. If this
849 * is the tty was previous stopped and is being started then the
850 * driver start method is invoked and the line discipline woken.
851 *
852 * Locking:
853 * ctrl_lock
854 */
855
856 void start_tty(struct tty_struct *tty)
857 {
858 unsigned long flags;
859 spin_lock_irqsave(&tty->ctrl_lock, flags);
860 if (!tty->stopped || tty->flow_stopped) {
861 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
862 return;
863 }
864 tty->stopped = 0;
865 if (tty->link && tty->link->packet) {
866 tty->ctrl_status &= ~TIOCPKT_STOP;
867 tty->ctrl_status |= TIOCPKT_START;
868 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
869 }
870 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
871 if (tty->ops->start)
872 (tty->ops->start)(tty);
873 /* If we have a running line discipline it may need kicking */
874 tty_wakeup(tty);
875 }
876
877 EXPORT_SYMBOL(start_tty);
878
879 /**
880 * tty_read - read method for tty device files
881 * @file: pointer to tty file
882 * @buf: user buffer
883 * @count: size of user buffer
884 * @ppos: unused
885 *
886 * Perform the read system call function on this terminal device. Checks
887 * for hung up devices before calling the line discipline method.
888 *
889 * Locking:
890 * Locks the line discipline internally while needed. Multiple
891 * read calls may be outstanding in parallel.
892 */
893
894 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
895 loff_t *ppos)
896 {
897 int i;
898 struct tty_struct *tty;
899 struct inode *inode;
900 struct tty_ldisc *ld;
901
902 tty = (struct tty_struct *)file->private_data;
903 inode = file->f_path.dentry->d_inode;
904 if (tty_paranoia_check(tty, inode, "tty_read"))
905 return -EIO;
906 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
907 return -EIO;
908
909 /* We want to wait for the line discipline to sort out in this
910 situation */
911 ld = tty_ldisc_ref_wait(tty);
912 if (ld->ops->read)
913 i = (ld->ops->read)(tty, file, buf, count);
914 else
915 i = -EIO;
916 tty_ldisc_deref(ld);
917 if (i > 0)
918 inode->i_atime = current_fs_time(inode->i_sb);
919 return i;
920 }
921
922 void tty_write_unlock(struct tty_struct *tty)
923 {
924 mutex_unlock(&tty->atomic_write_lock);
925 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
926 }
927
928 int tty_write_lock(struct tty_struct *tty, int ndelay)
929 {
930 if (!mutex_trylock(&tty->atomic_write_lock)) {
931 if (ndelay)
932 return -EAGAIN;
933 if (mutex_lock_interruptible(&tty->atomic_write_lock))
934 return -ERESTARTSYS;
935 }
936 return 0;
937 }
938
939 /*
940 * Split writes up in sane blocksizes to avoid
941 * denial-of-service type attacks
942 */
943 static inline ssize_t do_tty_write(
944 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
945 struct tty_struct *tty,
946 struct file *file,
947 const char __user *buf,
948 size_t count)
949 {
950 ssize_t ret, written = 0;
951 unsigned int chunk;
952
953 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
954 if (ret < 0)
955 return ret;
956
957 /*
958 * We chunk up writes into a temporary buffer. This
959 * simplifies low-level drivers immensely, since they
960 * don't have locking issues and user mode accesses.
961 *
962 * But if TTY_NO_WRITE_SPLIT is set, we should use a
963 * big chunk-size..
964 *
965 * The default chunk-size is 2kB, because the NTTY
966 * layer has problems with bigger chunks. It will
967 * claim to be able to handle more characters than
968 * it actually does.
969 *
970 * FIXME: This can probably go away now except that 64K chunks
971 * are too likely to fail unless switched to vmalloc...
972 */
973 chunk = 2048;
974 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
975 chunk = 65536;
976 if (count < chunk)
977 chunk = count;
978
979 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
980 if (tty->write_cnt < chunk) {
981 unsigned char *buf_chunk;
982
983 if (chunk < 1024)
984 chunk = 1024;
985
986 buf_chunk = kmalloc(chunk, GFP_KERNEL);
987 if (!buf_chunk) {
988 ret = -ENOMEM;
989 goto out;
990 }
991 kfree(tty->write_buf);
992 tty->write_cnt = chunk;
993 tty->write_buf = buf_chunk;
994 }
995
996 /* Do the write .. */
997 for (;;) {
998 size_t size = count;
999 if (size > chunk)
1000 size = chunk;
1001 ret = -EFAULT;
1002 if (copy_from_user(tty->write_buf, buf, size))
1003 break;
1004 ret = write(tty, file, tty->write_buf, size);
1005 if (ret <= 0)
1006 break;
1007 written += ret;
1008 buf += ret;
1009 count -= ret;
1010 if (!count)
1011 break;
1012 ret = -ERESTARTSYS;
1013 if (signal_pending(current))
1014 break;
1015 cond_resched();
1016 }
1017 if (written) {
1018 struct inode *inode = file->f_path.dentry->d_inode;
1019 inode->i_mtime = current_fs_time(inode->i_sb);
1020 ret = written;
1021 }
1022 out:
1023 tty_write_unlock(tty);
1024 return ret;
1025 }
1026
1027 /**
1028 * tty_write_message - write a message to a certain tty, not just the console.
1029 * @tty: the destination tty_struct
1030 * @msg: the message to write
1031 *
1032 * This is used for messages that need to be redirected to a specific tty.
1033 * We don't put it into the syslog queue right now maybe in the future if
1034 * really needed.
1035 *
1036 * We must still hold the BKL and test the CLOSING flag for the moment.
1037 */
1038
1039 void tty_write_message(struct tty_struct *tty, char *msg)
1040 {
1041 lock_kernel();
1042 if (tty) {
1043 mutex_lock(&tty->atomic_write_lock);
1044 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1045 tty->ops->write(tty, msg, strlen(msg));
1046 tty_write_unlock(tty);
1047 }
1048 unlock_kernel();
1049 return;
1050 }
1051
1052
1053 /**
1054 * tty_write - write method for tty device file
1055 * @file: tty file pointer
1056 * @buf: user data to write
1057 * @count: bytes to write
1058 * @ppos: unused
1059 *
1060 * Write data to a tty device via the line discipline.
1061 *
1062 * Locking:
1063 * Locks the line discipline as required
1064 * Writes to the tty driver are serialized by the atomic_write_lock
1065 * and are then processed in chunks to the device. The line discipline
1066 * write method will not be invoked in parallel for each device.
1067 */
1068
1069 static ssize_t tty_write(struct file *file, const char __user *buf,
1070 size_t count, loff_t *ppos)
1071 {
1072 struct tty_struct *tty;
1073 struct inode *inode = file->f_path.dentry->d_inode;
1074 ssize_t ret;
1075 struct tty_ldisc *ld;
1076
1077 tty = (struct tty_struct *)file->private_data;
1078 if (tty_paranoia_check(tty, inode, "tty_write"))
1079 return -EIO;
1080 if (!tty || !tty->ops->write ||
1081 (test_bit(TTY_IO_ERROR, &tty->flags)))
1082 return -EIO;
1083 /* Short term debug to catch buggy drivers */
1084 if (tty->ops->write_room == NULL)
1085 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1086 tty->driver->name);
1087 ld = tty_ldisc_ref_wait(tty);
1088 if (!ld->ops->write)
1089 ret = -EIO;
1090 else
1091 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1092 tty_ldisc_deref(ld);
1093 return ret;
1094 }
1095
1096 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1097 size_t count, loff_t *ppos)
1098 {
1099 struct file *p = NULL;
1100
1101 spin_lock(&redirect_lock);
1102 if (redirect) {
1103 get_file(redirect);
1104 p = redirect;
1105 }
1106 spin_unlock(&redirect_lock);
1107
1108 if (p) {
1109 ssize_t res;
1110 res = vfs_write(p, buf, count, &p->f_pos);
1111 fput(p);
1112 return res;
1113 }
1114 return tty_write(file, buf, count, ppos);
1115 }
1116
1117 static char ptychar[] = "pqrstuvwxyzabcde";
1118
1119 /**
1120 * pty_line_name - generate name for a pty
1121 * @driver: the tty driver in use
1122 * @index: the minor number
1123 * @p: output buffer of at least 6 bytes
1124 *
1125 * Generate a name from a driver reference and write it to the output
1126 * buffer.
1127 *
1128 * Locking: None
1129 */
1130 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1131 {
1132 int i = index + driver->name_base;
1133 /* ->name is initialized to "ttyp", but "tty" is expected */
1134 sprintf(p, "%s%c%x",
1135 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1136 ptychar[i >> 4 & 0xf], i & 0xf);
1137 }
1138
1139 /**
1140 * tty_line_name - generate name for a tty
1141 * @driver: the tty driver in use
1142 * @index: the minor number
1143 * @p: output buffer of at least 7 bytes
1144 *
1145 * Generate a name from a driver reference and write it to the output
1146 * buffer.
1147 *
1148 * Locking: None
1149 */
1150 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1151 {
1152 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1153 }
1154
1155 /**
1156 * tty_driver_lookup_tty() - find an existing tty, if any
1157 * @driver: the driver for the tty
1158 * @idx: the minor number
1159 *
1160 * Return the tty, if found or ERR_PTR() otherwise.
1161 *
1162 * Locking: tty_mutex must be held. If tty is found, the mutex must
1163 * be held until the 'fast-open' is also done. Will change once we
1164 * have refcounting in the driver and per driver locking
1165 */
1166 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1167 struct inode *inode, int idx)
1168 {
1169 struct tty_struct *tty;
1170
1171 if (driver->ops->lookup)
1172 return driver->ops->lookup(driver, inode, idx);
1173
1174 tty = driver->ttys[idx];
1175 return tty;
1176 }
1177
1178 /**
1179 * tty_init_termios - helper for termios setup
1180 * @tty: the tty to set up
1181 *
1182 * Initialise the termios structures for this tty. Thus runs under
1183 * the tty_mutex currently so we can be relaxed about ordering.
1184 */
1185
1186 int tty_init_termios(struct tty_struct *tty)
1187 {
1188 struct ktermios *tp;
1189 int idx = tty->index;
1190
1191 tp = tty->driver->termios[idx];
1192 if (tp == NULL) {
1193 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1194 if (tp == NULL)
1195 return -ENOMEM;
1196 memcpy(tp, &tty->driver->init_termios,
1197 sizeof(struct ktermios));
1198 tty->driver->termios[idx] = tp;
1199 }
1200 tty->termios = tp;
1201 tty->termios_locked = tp + 1;
1202
1203 /* Compatibility until drivers always set this */
1204 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1205 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1206 return 0;
1207 }
1208
1209 /**
1210 * tty_driver_install_tty() - install a tty entry in the driver
1211 * @driver: the driver for the tty
1212 * @tty: the tty
1213 *
1214 * Install a tty object into the driver tables. The tty->index field
1215 * will be set by the time this is called. This method is responsible
1216 * for ensuring any need additional structures are allocated and
1217 * configured.
1218 *
1219 * Locking: tty_mutex for now
1220 */
1221 static int tty_driver_install_tty(struct tty_driver *driver,
1222 struct tty_struct *tty)
1223 {
1224 int idx = tty->index;
1225
1226 if (driver->ops->install)
1227 return driver->ops->install(driver, tty);
1228
1229 if (tty_init_termios(tty) == 0) {
1230 tty_driver_kref_get(driver);
1231 tty->count++;
1232 driver->ttys[idx] = tty;
1233 return 0;
1234 }
1235 return -ENOMEM;
1236 }
1237
1238 /**
1239 * tty_driver_remove_tty() - remove a tty from the driver tables
1240 * @driver: the driver for the tty
1241 * @idx: the minor number
1242 *
1243 * Remvoe a tty object from the driver tables. The tty->index field
1244 * will be set by the time this is called.
1245 *
1246 * Locking: tty_mutex for now
1247 */
1248 static void tty_driver_remove_tty(struct tty_driver *driver,
1249 struct tty_struct *tty)
1250 {
1251 if (driver->ops->remove)
1252 driver->ops->remove(driver, tty);
1253 else
1254 driver->ttys[tty->index] = NULL;
1255 }
1256
1257 /*
1258 * tty_reopen() - fast re-open of an open tty
1259 * @tty - the tty to open
1260 *
1261 * Return 0 on success, -errno on error.
1262 *
1263 * Locking: tty_mutex must be held from the time the tty was found
1264 * till this open completes.
1265 */
1266 static int tty_reopen(struct tty_struct *tty)
1267 {
1268 struct tty_driver *driver = tty->driver;
1269
1270 if (test_bit(TTY_CLOSING, &tty->flags))
1271 return -EIO;
1272
1273 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1274 driver->subtype == PTY_TYPE_MASTER) {
1275 /*
1276 * special case for PTY masters: only one open permitted,
1277 * and the slave side open count is incremented as well.
1278 */
1279 if (tty->count)
1280 return -EIO;
1281
1282 tty->link->count++;
1283 }
1284 tty->count++;
1285 tty->driver = driver; /* N.B. why do this every time?? */
1286
1287 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1288
1289 return 0;
1290 }
1291
1292 /**
1293 * tty_init_dev - initialise a tty device
1294 * @driver: tty driver we are opening a device on
1295 * @idx: device index
1296 * @ret_tty: returned tty structure
1297 * @first_ok: ok to open a new device (used by ptmx)
1298 *
1299 * Prepare a tty device. This may not be a "new" clean device but
1300 * could also be an active device. The pty drivers require special
1301 * handling because of this.
1302 *
1303 * Locking:
1304 * The function is called under the tty_mutex, which
1305 * protects us from the tty struct or driver itself going away.
1306 *
1307 * On exit the tty device has the line discipline attached and
1308 * a reference count of 1. If a pair was created for pty/tty use
1309 * and the other was a pty master then it too has a reference count of 1.
1310 *
1311 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1312 * failed open. The new code protects the open with a mutex, so it's
1313 * really quite straightforward. The mutex locking can probably be
1314 * relaxed for the (most common) case of reopening a tty.
1315 */
1316
1317 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1318 int first_ok)
1319 {
1320 struct tty_struct *tty;
1321 int retval;
1322
1323 /* Check if pty master is being opened multiple times */
1324 if (driver->subtype == PTY_TYPE_MASTER &&
1325 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1326 return ERR_PTR(-EIO);
1327
1328 /*
1329 * First time open is complex, especially for PTY devices.
1330 * This code guarantees that either everything succeeds and the
1331 * TTY is ready for operation, or else the table slots are vacated
1332 * and the allocated memory released. (Except that the termios
1333 * and locked termios may be retained.)
1334 */
1335
1336 if (!try_module_get(driver->owner))
1337 return ERR_PTR(-ENODEV);
1338
1339 tty = alloc_tty_struct();
1340 if (!tty)
1341 goto fail_no_mem;
1342 initialize_tty_struct(tty, driver, idx);
1343
1344 retval = tty_driver_install_tty(driver, tty);
1345 if (retval < 0) {
1346 free_tty_struct(tty);
1347 module_put(driver->owner);
1348 return ERR_PTR(retval);
1349 }
1350
1351 /*
1352 * Structures all installed ... call the ldisc open routines.
1353 * If we fail here just call release_tty to clean up. No need
1354 * to decrement the use counts, as release_tty doesn't care.
1355 */
1356
1357 retval = tty_ldisc_setup(tty, tty->link);
1358 if (retval)
1359 goto release_mem_out;
1360 return tty;
1361
1362 fail_no_mem:
1363 module_put(driver->owner);
1364 return ERR_PTR(-ENOMEM);
1365
1366 /* call the tty release_tty routine to clean out this slot */
1367 release_mem_out:
1368 if (printk_ratelimit())
1369 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1370 "clearing slot %d\n", idx);
1371 release_tty(tty, idx);
1372 return ERR_PTR(retval);
1373 }
1374
1375 void tty_free_termios(struct tty_struct *tty)
1376 {
1377 struct ktermios *tp;
1378 int idx = tty->index;
1379 /* Kill this flag and push into drivers for locking etc */
1380 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1381 /* FIXME: Locking on ->termios array */
1382 tp = tty->termios;
1383 tty->driver->termios[idx] = NULL;
1384 kfree(tp);
1385 }
1386 }
1387 EXPORT_SYMBOL(tty_free_termios);
1388
1389 void tty_shutdown(struct tty_struct *tty)
1390 {
1391 tty_driver_remove_tty(tty->driver, tty);
1392 tty_free_termios(tty);
1393 }
1394 EXPORT_SYMBOL(tty_shutdown);
1395
1396 /**
1397 * release_one_tty - release tty structure memory
1398 * @kref: kref of tty we are obliterating
1399 *
1400 * Releases memory associated with a tty structure, and clears out the
1401 * driver table slots. This function is called when a device is no longer
1402 * in use. It also gets called when setup of a device fails.
1403 *
1404 * Locking:
1405 * tty_mutex - sometimes only
1406 * takes the file list lock internally when working on the list
1407 * of ttys that the driver keeps.
1408 */
1409 static void release_one_tty(struct kref *kref)
1410 {
1411 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1412 struct tty_driver *driver = tty->driver;
1413
1414 if (tty->ops->shutdown)
1415 tty->ops->shutdown(tty);
1416 else
1417 tty_shutdown(tty);
1418 tty->magic = 0;
1419 tty_driver_kref_put(driver);
1420 module_put(driver->owner);
1421
1422 file_list_lock();
1423 list_del_init(&tty->tty_files);
1424 file_list_unlock();
1425
1426 free_tty_struct(tty);
1427 }
1428
1429 /**
1430 * tty_kref_put - release a tty kref
1431 * @tty: tty device
1432 *
1433 * Release a reference to a tty device and if need be let the kref
1434 * layer destruct the object for us
1435 */
1436
1437 void tty_kref_put(struct tty_struct *tty)
1438 {
1439 if (tty)
1440 kref_put(&tty->kref, release_one_tty);
1441 }
1442 EXPORT_SYMBOL(tty_kref_put);
1443
1444 /**
1445 * release_tty - release tty structure memory
1446 *
1447 * Release both @tty and a possible linked partner (think pty pair),
1448 * and decrement the refcount of the backing module.
1449 *
1450 * Locking:
1451 * tty_mutex - sometimes only
1452 * takes the file list lock internally when working on the list
1453 * of ttys that the driver keeps.
1454 * FIXME: should we require tty_mutex is held here ??
1455 *
1456 */
1457 static void release_tty(struct tty_struct *tty, int idx)
1458 {
1459 /* This should always be true but check for the moment */
1460 WARN_ON(tty->index != idx);
1461
1462 if (tty->link)
1463 tty_kref_put(tty->link);
1464 tty_kref_put(tty);
1465 }
1466
1467 /*
1468 * Even releasing the tty structures is a tricky business.. We have
1469 * to be very careful that the structures are all released at the
1470 * same time, as interrupts might otherwise get the wrong pointers.
1471 *
1472 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1473 * lead to double frees or releasing memory still in use.
1474 */
1475 void tty_release_dev(struct file *filp)
1476 {
1477 struct tty_struct *tty, *o_tty;
1478 int pty_master, tty_closing, o_tty_closing, do_sleep;
1479 int devpts;
1480 int idx;
1481 char buf[64];
1482 struct inode *inode;
1483
1484 inode = filp->f_path.dentry->d_inode;
1485 tty = (struct tty_struct *)filp->private_data;
1486 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1487 return;
1488
1489 check_tty_count(tty, "tty_release_dev");
1490
1491 tty_fasync(-1, filp, 0);
1492
1493 idx = tty->index;
1494 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1495 tty->driver->subtype == PTY_TYPE_MASTER);
1496 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1497 o_tty = tty->link;
1498
1499 #ifdef TTY_PARANOIA_CHECK
1500 if (idx < 0 || idx >= tty->driver->num) {
1501 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1502 "free (%s)\n", tty->name);
1503 return;
1504 }
1505 if (!devpts) {
1506 if (tty != tty->driver->ttys[idx]) {
1507 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1508 "for (%s)\n", idx, tty->name);
1509 return;
1510 }
1511 if (tty->termios != tty->driver->termios[idx]) {
1512 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1513 "for (%s)\n",
1514 idx, tty->name);
1515 return;
1516 }
1517 }
1518 #endif
1519
1520 #ifdef TTY_DEBUG_HANGUP
1521 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1522 tty_name(tty, buf), tty->count);
1523 #endif
1524
1525 #ifdef TTY_PARANOIA_CHECK
1526 if (tty->driver->other &&
1527 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1528 if (o_tty != tty->driver->other->ttys[idx]) {
1529 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1530 "not o_tty for (%s)\n",
1531 idx, tty->name);
1532 return;
1533 }
1534 if (o_tty->termios != tty->driver->other->termios[idx]) {
1535 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1536 "not o_termios for (%s)\n",
1537 idx, tty->name);
1538 return;
1539 }
1540 if (o_tty->link != tty) {
1541 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1542 return;
1543 }
1544 }
1545 #endif
1546 if (tty->ops->close)
1547 tty->ops->close(tty, filp);
1548
1549 /*
1550 * Sanity check: if tty->count is going to zero, there shouldn't be
1551 * any waiters on tty->read_wait or tty->write_wait. We test the
1552 * wait queues and kick everyone out _before_ actually starting to
1553 * close. This ensures that we won't block while releasing the tty
1554 * structure.
1555 *
1556 * The test for the o_tty closing is necessary, since the master and
1557 * slave sides may close in any order. If the slave side closes out
1558 * first, its count will be one, since the master side holds an open.
1559 * Thus this test wouldn't be triggered at the time the slave closes,
1560 * so we do it now.
1561 *
1562 * Note that it's possible for the tty to be opened again while we're
1563 * flushing out waiters. By recalculating the closing flags before
1564 * each iteration we avoid any problems.
1565 */
1566 while (1) {
1567 /* Guard against races with tty->count changes elsewhere and
1568 opens on /dev/tty */
1569
1570 mutex_lock(&tty_mutex);
1571 tty_closing = tty->count <= 1;
1572 o_tty_closing = o_tty &&
1573 (o_tty->count <= (pty_master ? 1 : 0));
1574 do_sleep = 0;
1575
1576 if (tty_closing) {
1577 if (waitqueue_active(&tty->read_wait)) {
1578 wake_up_poll(&tty->read_wait, POLLIN);
1579 do_sleep++;
1580 }
1581 if (waitqueue_active(&tty->write_wait)) {
1582 wake_up_poll(&tty->write_wait, POLLOUT);
1583 do_sleep++;
1584 }
1585 }
1586 if (o_tty_closing) {
1587 if (waitqueue_active(&o_tty->read_wait)) {
1588 wake_up_poll(&o_tty->read_wait, POLLIN);
1589 do_sleep++;
1590 }
1591 if (waitqueue_active(&o_tty->write_wait)) {
1592 wake_up_poll(&o_tty->write_wait, POLLOUT);
1593 do_sleep++;
1594 }
1595 }
1596 if (!do_sleep)
1597 break;
1598
1599 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1600 "active!\n", tty_name(tty, buf));
1601 mutex_unlock(&tty_mutex);
1602 schedule();
1603 }
1604
1605 /*
1606 * The closing flags are now consistent with the open counts on
1607 * both sides, and we've completed the last operation that could
1608 * block, so it's safe to proceed with closing.
1609 */
1610 if (pty_master) {
1611 if (--o_tty->count < 0) {
1612 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1613 "(%d) for %s\n",
1614 o_tty->count, tty_name(o_tty, buf));
1615 o_tty->count = 0;
1616 }
1617 }
1618 if (--tty->count < 0) {
1619 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1620 tty->count, tty_name(tty, buf));
1621 tty->count = 0;
1622 }
1623
1624 /*
1625 * We've decremented tty->count, so we need to remove this file
1626 * descriptor off the tty->tty_files list; this serves two
1627 * purposes:
1628 * - check_tty_count sees the correct number of file descriptors
1629 * associated with this tty.
1630 * - do_tty_hangup no longer sees this file descriptor as
1631 * something that needs to be handled for hangups.
1632 */
1633 file_kill(filp);
1634 filp->private_data = NULL;
1635
1636 /*
1637 * Perform some housekeeping before deciding whether to return.
1638 *
1639 * Set the TTY_CLOSING flag if this was the last open. In the
1640 * case of a pty we may have to wait around for the other side
1641 * to close, and TTY_CLOSING makes sure we can't be reopened.
1642 */
1643 if (tty_closing)
1644 set_bit(TTY_CLOSING, &tty->flags);
1645 if (o_tty_closing)
1646 set_bit(TTY_CLOSING, &o_tty->flags);
1647
1648 /*
1649 * If _either_ side is closing, make sure there aren't any
1650 * processes that still think tty or o_tty is their controlling
1651 * tty.
1652 */
1653 if (tty_closing || o_tty_closing) {
1654 read_lock(&tasklist_lock);
1655 session_clear_tty(tty->session);
1656 if (o_tty)
1657 session_clear_tty(o_tty->session);
1658 read_unlock(&tasklist_lock);
1659 }
1660
1661 mutex_unlock(&tty_mutex);
1662
1663 /* check whether both sides are closing ... */
1664 if (!tty_closing || (o_tty && !o_tty_closing))
1665 return;
1666
1667 #ifdef TTY_DEBUG_HANGUP
1668 printk(KERN_DEBUG "freeing tty structure...");
1669 #endif
1670 /*
1671 * Ask the line discipline code to release its structures
1672 */
1673 tty_ldisc_release(tty, o_tty);
1674 /*
1675 * The release_tty function takes care of the details of clearing
1676 * the slots and preserving the termios structure.
1677 */
1678 release_tty(tty, idx);
1679
1680 /* Make this pty number available for reallocation */
1681 if (devpts)
1682 devpts_kill_index(inode, idx);
1683 }
1684
1685 /**
1686 * __tty_open - open a tty device
1687 * @inode: inode of device file
1688 * @filp: file pointer to tty
1689 *
1690 * tty_open and tty_release keep up the tty count that contains the
1691 * number of opens done on a tty. We cannot use the inode-count, as
1692 * different inodes might point to the same tty.
1693 *
1694 * Open-counting is needed for pty masters, as well as for keeping
1695 * track of serial lines: DTR is dropped when the last close happens.
1696 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1697 *
1698 * The termios state of a pty is reset on first open so that
1699 * settings don't persist across reuse.
1700 *
1701 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1702 * tty->count should protect the rest.
1703 * ->siglock protects ->signal/->sighand
1704 */
1705
1706 static int __tty_open(struct inode *inode, struct file *filp)
1707 {
1708 struct tty_struct *tty = NULL;
1709 int noctty, retval;
1710 struct tty_driver *driver;
1711 int index;
1712 dev_t device = inode->i_rdev;
1713 unsigned saved_flags = filp->f_flags;
1714
1715 nonseekable_open(inode, filp);
1716
1717 retry_open:
1718 noctty = filp->f_flags & O_NOCTTY;
1719 index = -1;
1720 retval = 0;
1721
1722 mutex_lock(&tty_mutex);
1723
1724 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1725 tty = get_current_tty();
1726 if (!tty) {
1727 mutex_unlock(&tty_mutex);
1728 return -ENXIO;
1729 }
1730 driver = tty_driver_kref_get(tty->driver);
1731 index = tty->index;
1732 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1733 /* noctty = 1; */
1734 /* FIXME: Should we take a driver reference ? */
1735 tty_kref_put(tty);
1736 goto got_driver;
1737 }
1738 #ifdef CONFIG_VT
1739 if (device == MKDEV(TTY_MAJOR, 0)) {
1740 extern struct tty_driver *console_driver;
1741 driver = tty_driver_kref_get(console_driver);
1742 index = fg_console;
1743 noctty = 1;
1744 goto got_driver;
1745 }
1746 #endif
1747 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1748 struct tty_driver *console_driver = console_device(&index);
1749 if (console_driver) {
1750 driver = tty_driver_kref_get(console_driver);
1751 if (driver) {
1752 /* Don't let /dev/console block */
1753 filp->f_flags |= O_NONBLOCK;
1754 noctty = 1;
1755 goto got_driver;
1756 }
1757 }
1758 mutex_unlock(&tty_mutex);
1759 return -ENODEV;
1760 }
1761
1762 driver = get_tty_driver(device, &index);
1763 if (!driver) {
1764 mutex_unlock(&tty_mutex);
1765 return -ENODEV;
1766 }
1767 got_driver:
1768 if (!tty) {
1769 /* check whether we're reopening an existing tty */
1770 tty = tty_driver_lookup_tty(driver, inode, index);
1771
1772 if (IS_ERR(tty)) {
1773 mutex_unlock(&tty_mutex);
1774 return PTR_ERR(tty);
1775 }
1776 }
1777
1778 if (tty) {
1779 retval = tty_reopen(tty);
1780 if (retval)
1781 tty = ERR_PTR(retval);
1782 } else
1783 tty = tty_init_dev(driver, index, 0);
1784
1785 mutex_unlock(&tty_mutex);
1786 tty_driver_kref_put(driver);
1787 if (IS_ERR(tty))
1788 return PTR_ERR(tty);
1789
1790 filp->private_data = tty;
1791 file_move(filp, &tty->tty_files);
1792 check_tty_count(tty, "tty_open");
1793 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1794 tty->driver->subtype == PTY_TYPE_MASTER)
1795 noctty = 1;
1796 #ifdef TTY_DEBUG_HANGUP
1797 printk(KERN_DEBUG "opening %s...", tty->name);
1798 #endif
1799 if (!retval) {
1800 if (tty->ops->open)
1801 retval = tty->ops->open(tty, filp);
1802 else
1803 retval = -ENODEV;
1804 }
1805 filp->f_flags = saved_flags;
1806
1807 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1808 !capable(CAP_SYS_ADMIN))
1809 retval = -EBUSY;
1810
1811 if (retval) {
1812 #ifdef TTY_DEBUG_HANGUP
1813 printk(KERN_DEBUG "error %d in opening %s...", retval,
1814 tty->name);
1815 #endif
1816 tty_release_dev(filp);
1817 if (retval != -ERESTARTSYS)
1818 return retval;
1819 if (signal_pending(current))
1820 return retval;
1821 schedule();
1822 /*
1823 * Need to reset f_op in case a hangup happened.
1824 */
1825 if (filp->f_op == &hung_up_tty_fops)
1826 filp->f_op = &tty_fops;
1827 goto retry_open;
1828 }
1829
1830 mutex_lock(&tty_mutex);
1831 spin_lock_irq(&current->sighand->siglock);
1832 if (!noctty &&
1833 current->signal->leader &&
1834 !current->signal->tty &&
1835 tty->session == NULL)
1836 __proc_set_tty(current, tty);
1837 spin_unlock_irq(&current->sighand->siglock);
1838 mutex_unlock(&tty_mutex);
1839 return 0;
1840 }
1841
1842 /* BKL pushdown: scary code avoidance wrapper */
1843 static int tty_open(struct inode *inode, struct file *filp)
1844 {
1845 int ret;
1846
1847 lock_kernel();
1848 ret = __tty_open(inode, filp);
1849 unlock_kernel();
1850 return ret;
1851 }
1852
1853
1854
1855
1856 /**
1857 * tty_release - vfs callback for close
1858 * @inode: inode of tty
1859 * @filp: file pointer for handle to tty
1860 *
1861 * Called the last time each file handle is closed that references
1862 * this tty. There may however be several such references.
1863 *
1864 * Locking:
1865 * Takes bkl. See tty_release_dev
1866 */
1867
1868 static int tty_release(struct inode *inode, struct file *filp)
1869 {
1870 lock_kernel();
1871 tty_release_dev(filp);
1872 unlock_kernel();
1873 return 0;
1874 }
1875
1876 /**
1877 * tty_poll - check tty status
1878 * @filp: file being polled
1879 * @wait: poll wait structures to update
1880 *
1881 * Call the line discipline polling method to obtain the poll
1882 * status of the device.
1883 *
1884 * Locking: locks called line discipline but ldisc poll method
1885 * may be re-entered freely by other callers.
1886 */
1887
1888 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1889 {
1890 struct tty_struct *tty;
1891 struct tty_ldisc *ld;
1892 int ret = 0;
1893
1894 tty = (struct tty_struct *)filp->private_data;
1895 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1896 return 0;
1897
1898 ld = tty_ldisc_ref_wait(tty);
1899 if (ld->ops->poll)
1900 ret = (ld->ops->poll)(tty, filp, wait);
1901 tty_ldisc_deref(ld);
1902 return ret;
1903 }
1904
1905 static int tty_fasync(int fd, struct file *filp, int on)
1906 {
1907 struct tty_struct *tty;
1908 unsigned long flags;
1909 int retval = 0;
1910
1911 lock_kernel();
1912 tty = (struct tty_struct *)filp->private_data;
1913 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1914 goto out;
1915
1916 retval = fasync_helper(fd, filp, on, &tty->fasync);
1917 if (retval <= 0)
1918 goto out;
1919
1920 if (on) {
1921 enum pid_type type;
1922 struct pid *pid;
1923 if (!waitqueue_active(&tty->read_wait))
1924 tty->minimum_to_wake = 1;
1925 spin_lock_irqsave(&tty->ctrl_lock, flags);
1926 if (tty->pgrp) {
1927 pid = tty->pgrp;
1928 type = PIDTYPE_PGID;
1929 } else {
1930 pid = task_pid(current);
1931 type = PIDTYPE_PID;
1932 }
1933 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1934 retval = __f_setown(filp, pid, type, 0);
1935 if (retval)
1936 goto out;
1937 } else {
1938 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1939 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1940 }
1941 retval = 0;
1942 out:
1943 unlock_kernel();
1944 return retval;
1945 }
1946
1947 /**
1948 * tiocsti - fake input character
1949 * @tty: tty to fake input into
1950 * @p: pointer to character
1951 *
1952 * Fake input to a tty device. Does the necessary locking and
1953 * input management.
1954 *
1955 * FIXME: does not honour flow control ??
1956 *
1957 * Locking:
1958 * Called functions take tty_ldisc_lock
1959 * current->signal->tty check is safe without locks
1960 *
1961 * FIXME: may race normal receive processing
1962 */
1963
1964 static int tiocsti(struct tty_struct *tty, char __user *p)
1965 {
1966 char ch, mbz = 0;
1967 struct tty_ldisc *ld;
1968
1969 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1970 return -EPERM;
1971 if (get_user(ch, p))
1972 return -EFAULT;
1973 tty_audit_tiocsti(tty, ch);
1974 ld = tty_ldisc_ref_wait(tty);
1975 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1976 tty_ldisc_deref(ld);
1977 return 0;
1978 }
1979
1980 /**
1981 * tiocgwinsz - implement window query ioctl
1982 * @tty; tty
1983 * @arg: user buffer for result
1984 *
1985 * Copies the kernel idea of the window size into the user buffer.
1986 *
1987 * Locking: tty->termios_mutex is taken to ensure the winsize data
1988 * is consistent.
1989 */
1990
1991 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1992 {
1993 int err;
1994
1995 mutex_lock(&tty->termios_mutex);
1996 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1997 mutex_unlock(&tty->termios_mutex);
1998
1999 return err ? -EFAULT: 0;
2000 }
2001
2002 /**
2003 * tty_do_resize - resize event
2004 * @tty: tty being resized
2005 * @rows: rows (character)
2006 * @cols: cols (character)
2007 *
2008 * Update the termios variables and send the neccessary signals to
2009 * peform a terminal resize correctly
2010 */
2011
2012 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2013 {
2014 struct pid *pgrp;
2015 unsigned long flags;
2016
2017 /* Lock the tty */
2018 mutex_lock(&tty->termios_mutex);
2019 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2020 goto done;
2021 /* Get the PID values and reference them so we can
2022 avoid holding the tty ctrl lock while sending signals */
2023 spin_lock_irqsave(&tty->ctrl_lock, flags);
2024 pgrp = get_pid(tty->pgrp);
2025 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2026
2027 if (pgrp)
2028 kill_pgrp(pgrp, SIGWINCH, 1);
2029 put_pid(pgrp);
2030
2031 tty->winsize = *ws;
2032 done:
2033 mutex_unlock(&tty->termios_mutex);
2034 return 0;
2035 }
2036
2037 /**
2038 * tiocswinsz - implement window size set ioctl
2039 * @tty; tty side of tty
2040 * @arg: user buffer for result
2041 *
2042 * Copies the user idea of the window size to the kernel. Traditionally
2043 * this is just advisory information but for the Linux console it
2044 * actually has driver level meaning and triggers a VC resize.
2045 *
2046 * Locking:
2047 * Driver dependant. The default do_resize method takes the
2048 * tty termios mutex and ctrl_lock. The console takes its own lock
2049 * then calls into the default method.
2050 */
2051
2052 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2053 {
2054 struct winsize tmp_ws;
2055 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2056 return -EFAULT;
2057
2058 if (tty->ops->resize)
2059 return tty->ops->resize(tty, &tmp_ws);
2060 else
2061 return tty_do_resize(tty, &tmp_ws);
2062 }
2063
2064 /**
2065 * tioccons - allow admin to move logical console
2066 * @file: the file to become console
2067 *
2068 * Allow the adminstrator to move the redirected console device
2069 *
2070 * Locking: uses redirect_lock to guard the redirect information
2071 */
2072
2073 static int tioccons(struct file *file)
2074 {
2075 if (!capable(CAP_SYS_ADMIN))
2076 return -EPERM;
2077 if (file->f_op->write == redirected_tty_write) {
2078 struct file *f;
2079 spin_lock(&redirect_lock);
2080 f = redirect;
2081 redirect = NULL;
2082 spin_unlock(&redirect_lock);
2083 if (f)
2084 fput(f);
2085 return 0;
2086 }
2087 spin_lock(&redirect_lock);
2088 if (redirect) {
2089 spin_unlock(&redirect_lock);
2090 return -EBUSY;
2091 }
2092 get_file(file);
2093 redirect = file;
2094 spin_unlock(&redirect_lock);
2095 return 0;
2096 }
2097
2098 /**
2099 * fionbio - non blocking ioctl
2100 * @file: file to set blocking value
2101 * @p: user parameter
2102 *
2103 * Historical tty interfaces had a blocking control ioctl before
2104 * the generic functionality existed. This piece of history is preserved
2105 * in the expected tty API of posix OS's.
2106 *
2107 * Locking: none, the open fle handle ensures it won't go away.
2108 */
2109
2110 static int fionbio(struct file *file, int __user *p)
2111 {
2112 int nonblock;
2113
2114 if (get_user(nonblock, p))
2115 return -EFAULT;
2116
2117 spin_lock(&file->f_lock);
2118 if (nonblock)
2119 file->f_flags |= O_NONBLOCK;
2120 else
2121 file->f_flags &= ~O_NONBLOCK;
2122 spin_unlock(&file->f_lock);
2123 return 0;
2124 }
2125
2126 /**
2127 * tiocsctty - set controlling tty
2128 * @tty: tty structure
2129 * @arg: user argument
2130 *
2131 * This ioctl is used to manage job control. It permits a session
2132 * leader to set this tty as the controlling tty for the session.
2133 *
2134 * Locking:
2135 * Takes tty_mutex() to protect tty instance
2136 * Takes tasklist_lock internally to walk sessions
2137 * Takes ->siglock() when updating signal->tty
2138 */
2139
2140 static int tiocsctty(struct tty_struct *tty, int arg)
2141 {
2142 int ret = 0;
2143 if (current->signal->leader && (task_session(current) == tty->session))
2144 return ret;
2145
2146 mutex_lock(&tty_mutex);
2147 /*
2148 * The process must be a session leader and
2149 * not have a controlling tty already.
2150 */
2151 if (!current->signal->leader || current->signal->tty) {
2152 ret = -EPERM;
2153 goto unlock;
2154 }
2155
2156 if (tty->session) {
2157 /*
2158 * This tty is already the controlling
2159 * tty for another session group!
2160 */
2161 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2162 /*
2163 * Steal it away
2164 */
2165 read_lock(&tasklist_lock);
2166 session_clear_tty(tty->session);
2167 read_unlock(&tasklist_lock);
2168 } else {
2169 ret = -EPERM;
2170 goto unlock;
2171 }
2172 }
2173 proc_set_tty(current, tty);
2174 unlock:
2175 mutex_unlock(&tty_mutex);
2176 return ret;
2177 }
2178
2179 /**
2180 * tty_get_pgrp - return a ref counted pgrp pid
2181 * @tty: tty to read
2182 *
2183 * Returns a refcounted instance of the pid struct for the process
2184 * group controlling the tty.
2185 */
2186
2187 struct pid *tty_get_pgrp(struct tty_struct *tty)
2188 {
2189 unsigned long flags;
2190 struct pid *pgrp;
2191
2192 spin_lock_irqsave(&tty->ctrl_lock, flags);
2193 pgrp = get_pid(tty->pgrp);
2194 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2195
2196 return pgrp;
2197 }
2198 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2199
2200 /**
2201 * tiocgpgrp - get process group
2202 * @tty: tty passed by user
2203 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2204 * @p: returned pid
2205 *
2206 * Obtain the process group of the tty. If there is no process group
2207 * return an error.
2208 *
2209 * Locking: none. Reference to current->signal->tty is safe.
2210 */
2211
2212 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2213 {
2214 struct pid *pid;
2215 int ret;
2216 /*
2217 * (tty == real_tty) is a cheap way of
2218 * testing if the tty is NOT a master pty.
2219 */
2220 if (tty == real_tty && current->signal->tty != real_tty)
2221 return -ENOTTY;
2222 pid = tty_get_pgrp(real_tty);
2223 ret = put_user(pid_vnr(pid), p);
2224 put_pid(pid);
2225 return ret;
2226 }
2227
2228 /**
2229 * tiocspgrp - attempt to set process group
2230 * @tty: tty passed by user
2231 * @real_tty: tty side device matching tty passed by user
2232 * @p: pid pointer
2233 *
2234 * Set the process group of the tty to the session passed. Only
2235 * permitted where the tty session is our session.
2236 *
2237 * Locking: RCU, ctrl lock
2238 */
2239
2240 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2241 {
2242 struct pid *pgrp;
2243 pid_t pgrp_nr;
2244 int retval = tty_check_change(real_tty);
2245 unsigned long flags;
2246
2247 if (retval == -EIO)
2248 return -ENOTTY;
2249 if (retval)
2250 return retval;
2251 if (!current->signal->tty ||
2252 (current->signal->tty != real_tty) ||
2253 (real_tty->session != task_session(current)))
2254 return -ENOTTY;
2255 if (get_user(pgrp_nr, p))
2256 return -EFAULT;
2257 if (pgrp_nr < 0)
2258 return -EINVAL;
2259 rcu_read_lock();
2260 pgrp = find_vpid(pgrp_nr);
2261 retval = -ESRCH;
2262 if (!pgrp)
2263 goto out_unlock;
2264 retval = -EPERM;
2265 if (session_of_pgrp(pgrp) != task_session(current))
2266 goto out_unlock;
2267 retval = 0;
2268 spin_lock_irqsave(&tty->ctrl_lock, flags);
2269 put_pid(real_tty->pgrp);
2270 real_tty->pgrp = get_pid(pgrp);
2271 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2272 out_unlock:
2273 rcu_read_unlock();
2274 return retval;
2275 }
2276
2277 /**
2278 * tiocgsid - get session id
2279 * @tty: tty passed by user
2280 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2281 * @p: pointer to returned session id
2282 *
2283 * Obtain the session id of the tty. If there is no session
2284 * return an error.
2285 *
2286 * Locking: none. Reference to current->signal->tty is safe.
2287 */
2288
2289 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2290 {
2291 /*
2292 * (tty == real_tty) is a cheap way of
2293 * testing if the tty is NOT a master pty.
2294 */
2295 if (tty == real_tty && current->signal->tty != real_tty)
2296 return -ENOTTY;
2297 if (!real_tty->session)
2298 return -ENOTTY;
2299 return put_user(pid_vnr(real_tty->session), p);
2300 }
2301
2302 /**
2303 * tiocsetd - set line discipline
2304 * @tty: tty device
2305 * @p: pointer to user data
2306 *
2307 * Set the line discipline according to user request.
2308 *
2309 * Locking: see tty_set_ldisc, this function is just a helper
2310 */
2311
2312 static int tiocsetd(struct tty_struct *tty, int __user *p)
2313 {
2314 int ldisc;
2315 int ret;
2316
2317 if (get_user(ldisc, p))
2318 return -EFAULT;
2319
2320 lock_kernel();
2321 ret = tty_set_ldisc(tty, ldisc);
2322 unlock_kernel();
2323
2324 return ret;
2325 }
2326
2327 /**
2328 * send_break - performed time break
2329 * @tty: device to break on
2330 * @duration: timeout in mS
2331 *
2332 * Perform a timed break on hardware that lacks its own driver level
2333 * timed break functionality.
2334 *
2335 * Locking:
2336 * atomic_write_lock serializes
2337 *
2338 */
2339
2340 static int send_break(struct tty_struct *tty, unsigned int duration)
2341 {
2342 int retval;
2343
2344 if (tty->ops->break_ctl == NULL)
2345 return 0;
2346
2347 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2348 retval = tty->ops->break_ctl(tty, duration);
2349 else {
2350 /* Do the work ourselves */
2351 if (tty_write_lock(tty, 0) < 0)
2352 return -EINTR;
2353 retval = tty->ops->break_ctl(tty, -1);
2354 if (retval)
2355 goto out;
2356 if (!signal_pending(current))
2357 msleep_interruptible(duration);
2358 retval = tty->ops->break_ctl(tty, 0);
2359 out:
2360 tty_write_unlock(tty);
2361 if (signal_pending(current))
2362 retval = -EINTR;
2363 }
2364 return retval;
2365 }
2366
2367 /**
2368 * tty_tiocmget - get modem status
2369 * @tty: tty device
2370 * @file: user file pointer
2371 * @p: pointer to result
2372 *
2373 * Obtain the modem status bits from the tty driver if the feature
2374 * is supported. Return -EINVAL if it is not available.
2375 *
2376 * Locking: none (up to the driver)
2377 */
2378
2379 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2380 {
2381 int retval = -EINVAL;
2382
2383 if (tty->ops->tiocmget) {
2384 retval = tty->ops->tiocmget(tty, file);
2385
2386 if (retval >= 0)
2387 retval = put_user(retval, p);
2388 }
2389 return retval;
2390 }
2391
2392 /**
2393 * tty_tiocmset - set modem status
2394 * @tty: tty device
2395 * @file: user file pointer
2396 * @cmd: command - clear bits, set bits or set all
2397 * @p: pointer to desired bits
2398 *
2399 * Set the modem status bits from the tty driver if the feature
2400 * is supported. Return -EINVAL if it is not available.
2401 *
2402 * Locking: none (up to the driver)
2403 */
2404
2405 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2406 unsigned __user *p)
2407 {
2408 int retval;
2409 unsigned int set, clear, val;
2410
2411 if (tty->ops->tiocmset == NULL)
2412 return -EINVAL;
2413
2414 retval = get_user(val, p);
2415 if (retval)
2416 return retval;
2417 set = clear = 0;
2418 switch (cmd) {
2419 case TIOCMBIS:
2420 set = val;
2421 break;
2422 case TIOCMBIC:
2423 clear = val;
2424 break;
2425 case TIOCMSET:
2426 set = val;
2427 clear = ~val;
2428 break;
2429 }
2430 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2431 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2432 return tty->ops->tiocmset(tty, file, set, clear);
2433 }
2434
2435 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2436 {
2437 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2438 tty->driver->subtype == PTY_TYPE_MASTER)
2439 tty = tty->link;
2440 return tty;
2441 }
2442 EXPORT_SYMBOL(tty_pair_get_tty);
2443
2444 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2445 {
2446 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2447 tty->driver->subtype == PTY_TYPE_MASTER)
2448 return tty;
2449 return tty->link;
2450 }
2451 EXPORT_SYMBOL(tty_pair_get_pty);
2452
2453 /*
2454 * Split this up, as gcc can choke on it otherwise..
2455 */
2456 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2457 {
2458 struct tty_struct *tty, *real_tty;
2459 void __user *p = (void __user *)arg;
2460 int retval;
2461 struct tty_ldisc *ld;
2462 struct inode *inode = file->f_dentry->d_inode;
2463
2464 tty = (struct tty_struct *)file->private_data;
2465 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2466 return -EINVAL;
2467
2468 real_tty = tty_pair_get_tty(tty);
2469
2470 /*
2471 * Factor out some common prep work
2472 */
2473 switch (cmd) {
2474 case TIOCSETD:
2475 case TIOCSBRK:
2476 case TIOCCBRK:
2477 case TCSBRK:
2478 case TCSBRKP:
2479 retval = tty_check_change(tty);
2480 if (retval)
2481 return retval;
2482 if (cmd != TIOCCBRK) {
2483 tty_wait_until_sent(tty, 0);
2484 if (signal_pending(current))
2485 return -EINTR;
2486 }
2487 break;
2488 }
2489
2490 /*
2491 * Now do the stuff.
2492 */
2493 switch (cmd) {
2494 case TIOCSTI:
2495 return tiocsti(tty, p);
2496 case TIOCGWINSZ:
2497 return tiocgwinsz(real_tty, p);
2498 case TIOCSWINSZ:
2499 return tiocswinsz(real_tty, p);
2500 case TIOCCONS:
2501 return real_tty != tty ? -EINVAL : tioccons(file);
2502 case FIONBIO:
2503 return fionbio(file, p);
2504 case TIOCEXCL:
2505 set_bit(TTY_EXCLUSIVE, &tty->flags);
2506 return 0;
2507 case TIOCNXCL:
2508 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2509 return 0;
2510 case TIOCNOTTY:
2511 if (current->signal->tty != tty)
2512 return -ENOTTY;
2513 no_tty();
2514 return 0;
2515 case TIOCSCTTY:
2516 return tiocsctty(tty, arg);
2517 case TIOCGPGRP:
2518 return tiocgpgrp(tty, real_tty, p);
2519 case TIOCSPGRP:
2520 return tiocspgrp(tty, real_tty, p);
2521 case TIOCGSID:
2522 return tiocgsid(tty, real_tty, p);
2523 case TIOCGETD:
2524 return put_user(tty->ldisc->ops->num, (int __user *)p);
2525 case TIOCSETD:
2526 return tiocsetd(tty, p);
2527 /*
2528 * Break handling
2529 */
2530 case TIOCSBRK: /* Turn break on, unconditionally */
2531 if (tty->ops->break_ctl)
2532 return tty->ops->break_ctl(tty, -1);
2533 return 0;
2534 case TIOCCBRK: /* Turn break off, unconditionally */
2535 if (tty->ops->break_ctl)
2536 return tty->ops->break_ctl(tty, 0);
2537 return 0;
2538 case TCSBRK: /* SVID version: non-zero arg --> no break */
2539 /* non-zero arg means wait for all output data
2540 * to be sent (performed above) but don't send break.
2541 * This is used by the tcdrain() termios function.
2542 */
2543 if (!arg)
2544 return send_break(tty, 250);
2545 return 0;
2546 case TCSBRKP: /* support for POSIX tcsendbreak() */
2547 return send_break(tty, arg ? arg*100 : 250);
2548
2549 case TIOCMGET:
2550 return tty_tiocmget(tty, file, p);
2551 case TIOCMSET:
2552 case TIOCMBIC:
2553 case TIOCMBIS:
2554 return tty_tiocmset(tty, file, cmd, p);
2555 case TCFLSH:
2556 switch (arg) {
2557 case TCIFLUSH:
2558 case TCIOFLUSH:
2559 /* flush tty buffer and allow ldisc to process ioctl */
2560 tty_buffer_flush(tty);
2561 break;
2562 }
2563 break;
2564 }
2565 if (tty->ops->ioctl) {
2566 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2567 if (retval != -ENOIOCTLCMD)
2568 return retval;
2569 }
2570 ld = tty_ldisc_ref_wait(tty);
2571 retval = -EINVAL;
2572 if (ld->ops->ioctl) {
2573 retval = ld->ops->ioctl(tty, file, cmd, arg);
2574 if (retval == -ENOIOCTLCMD)
2575 retval = -EINVAL;
2576 }
2577 tty_ldisc_deref(ld);
2578 return retval;
2579 }
2580
2581 #ifdef CONFIG_COMPAT
2582 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2583 unsigned long arg)
2584 {
2585 struct inode *inode = file->f_dentry->d_inode;
2586 struct tty_struct *tty = file->private_data;
2587 struct tty_ldisc *ld;
2588 int retval = -ENOIOCTLCMD;
2589
2590 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2591 return -EINVAL;
2592
2593 if (tty->ops->compat_ioctl) {
2594 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2595 if (retval != -ENOIOCTLCMD)
2596 return retval;
2597 }
2598
2599 ld = tty_ldisc_ref_wait(tty);
2600 if (ld->ops->compat_ioctl)
2601 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2602 tty_ldisc_deref(ld);
2603
2604 return retval;
2605 }
2606 #endif
2607
2608 /*
2609 * This implements the "Secure Attention Key" --- the idea is to
2610 * prevent trojan horses by killing all processes associated with this
2611 * tty when the user hits the "Secure Attention Key". Required for
2612 * super-paranoid applications --- see the Orange Book for more details.
2613 *
2614 * This code could be nicer; ideally it should send a HUP, wait a few
2615 * seconds, then send a INT, and then a KILL signal. But you then
2616 * have to coordinate with the init process, since all processes associated
2617 * with the current tty must be dead before the new getty is allowed
2618 * to spawn.
2619 *
2620 * Now, if it would be correct ;-/ The current code has a nasty hole -
2621 * it doesn't catch files in flight. We may send the descriptor to ourselves
2622 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2623 *
2624 * Nasty bug: do_SAK is being called in interrupt context. This can
2625 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2626 */
2627 void __do_SAK(struct tty_struct *tty)
2628 {
2629 #ifdef TTY_SOFT_SAK
2630 tty_hangup(tty);
2631 #else
2632 struct task_struct *g, *p;
2633 struct pid *session;
2634 int i;
2635 struct file *filp;
2636 struct fdtable *fdt;
2637
2638 if (!tty)
2639 return;
2640 session = tty->session;
2641
2642 tty_ldisc_flush(tty);
2643
2644 tty_driver_flush_buffer(tty);
2645
2646 read_lock(&tasklist_lock);
2647 /* Kill the entire session */
2648 do_each_pid_task(session, PIDTYPE_SID, p) {
2649 printk(KERN_NOTICE "SAK: killed process %d"
2650 " (%s): task_session(p)==tty->session\n",
2651 task_pid_nr(p), p->comm);
2652 send_sig(SIGKILL, p, 1);
2653 } while_each_pid_task(session, PIDTYPE_SID, p);
2654 /* Now kill any processes that happen to have the
2655 * tty open.
2656 */
2657 do_each_thread(g, p) {
2658 if (p->signal->tty == tty) {
2659 printk(KERN_NOTICE "SAK: killed process %d"
2660 " (%s): task_session(p)==tty->session\n",
2661 task_pid_nr(p), p->comm);
2662 send_sig(SIGKILL, p, 1);
2663 continue;
2664 }
2665 task_lock(p);
2666 if (p->files) {
2667 /*
2668 * We don't take a ref to the file, so we must
2669 * hold ->file_lock instead.
2670 */
2671 spin_lock(&p->files->file_lock);
2672 fdt = files_fdtable(p->files);
2673 for (i = 0; i < fdt->max_fds; i++) {
2674 filp = fcheck_files(p->files, i);
2675 if (!filp)
2676 continue;
2677 if (filp->f_op->read == tty_read &&
2678 filp->private_data == tty) {
2679 printk(KERN_NOTICE "SAK: killed process %d"
2680 " (%s): fd#%d opened to the tty\n",
2681 task_pid_nr(p), p->comm, i);
2682 force_sig(SIGKILL, p);
2683 break;
2684 }
2685 }
2686 spin_unlock(&p->files->file_lock);
2687 }
2688 task_unlock(p);
2689 } while_each_thread(g, p);
2690 read_unlock(&tasklist_lock);
2691 #endif
2692 }
2693
2694 static void do_SAK_work(struct work_struct *work)
2695 {
2696 struct tty_struct *tty =
2697 container_of(work, struct tty_struct, SAK_work);
2698 __do_SAK(tty);
2699 }
2700
2701 /*
2702 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2703 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2704 * the values which we write to it will be identical to the values which it
2705 * already has. --akpm
2706 */
2707 void do_SAK(struct tty_struct *tty)
2708 {
2709 if (!tty)
2710 return;
2711 schedule_work(&tty->SAK_work);
2712 }
2713
2714 EXPORT_SYMBOL(do_SAK);
2715
2716 /**
2717 * initialize_tty_struct
2718 * @tty: tty to initialize
2719 *
2720 * This subroutine initializes a tty structure that has been newly
2721 * allocated.
2722 *
2723 * Locking: none - tty in question must not be exposed at this point
2724 */
2725
2726 void initialize_tty_struct(struct tty_struct *tty,
2727 struct tty_driver *driver, int idx)
2728 {
2729 memset(tty, 0, sizeof(struct tty_struct));
2730 kref_init(&tty->kref);
2731 tty->magic = TTY_MAGIC;
2732 tty_ldisc_init(tty);
2733 tty->session = NULL;
2734 tty->pgrp = NULL;
2735 tty->overrun_time = jiffies;
2736 tty->buf.head = tty->buf.tail = NULL;
2737 tty_buffer_init(tty);
2738 mutex_init(&tty->termios_mutex);
2739 mutex_init(&tty->ldisc_mutex);
2740 init_waitqueue_head(&tty->write_wait);
2741 init_waitqueue_head(&tty->read_wait);
2742 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2743 mutex_init(&tty->atomic_read_lock);
2744 mutex_init(&tty->atomic_write_lock);
2745 mutex_init(&tty->output_lock);
2746 mutex_init(&tty->echo_lock);
2747 spin_lock_init(&tty->read_lock);
2748 spin_lock_init(&tty->ctrl_lock);
2749 INIT_LIST_HEAD(&tty->tty_files);
2750 INIT_WORK(&tty->SAK_work, do_SAK_work);
2751
2752 tty->driver = driver;
2753 tty->ops = driver->ops;
2754 tty->index = idx;
2755 tty_line_name(driver, idx, tty->name);
2756 }
2757
2758 /**
2759 * tty_put_char - write one character to a tty
2760 * @tty: tty
2761 * @ch: character
2762 *
2763 * Write one byte to the tty using the provided put_char method
2764 * if present. Returns the number of characters successfully output.
2765 *
2766 * Note: the specific put_char operation in the driver layer may go
2767 * away soon. Don't call it directly, use this method
2768 */
2769
2770 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2771 {
2772 if (tty->ops->put_char)
2773 return tty->ops->put_char(tty, ch);
2774 return tty->ops->write(tty, &ch, 1);
2775 }
2776 EXPORT_SYMBOL_GPL(tty_put_char);
2777
2778 struct class *tty_class;
2779
2780 /**
2781 * tty_register_device - register a tty device
2782 * @driver: the tty driver that describes the tty device
2783 * @index: the index in the tty driver for this tty device
2784 * @device: a struct device that is associated with this tty device.
2785 * This field is optional, if there is no known struct device
2786 * for this tty device it can be set to NULL safely.
2787 *
2788 * Returns a pointer to the struct device for this tty device
2789 * (or ERR_PTR(-EFOO) on error).
2790 *
2791 * This call is required to be made to register an individual tty device
2792 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2793 * that bit is not set, this function should not be called by a tty
2794 * driver.
2795 *
2796 * Locking: ??
2797 */
2798
2799 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2800 struct device *device)
2801 {
2802 char name[64];
2803 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2804
2805 if (index >= driver->num) {
2806 printk(KERN_ERR "Attempt to register invalid tty line number "
2807 " (%d).\n", index);
2808 return ERR_PTR(-EINVAL);
2809 }
2810
2811 if (driver->type == TTY_DRIVER_TYPE_PTY)
2812 pty_line_name(driver, index, name);
2813 else
2814 tty_line_name(driver, index, name);
2815
2816 return device_create(tty_class, device, dev, NULL, name);
2817 }
2818 EXPORT_SYMBOL(tty_register_device);
2819
2820 /**
2821 * tty_unregister_device - unregister a tty device
2822 * @driver: the tty driver that describes the tty device
2823 * @index: the index in the tty driver for this tty device
2824 *
2825 * If a tty device is registered with a call to tty_register_device() then
2826 * this function must be called when the tty device is gone.
2827 *
2828 * Locking: ??
2829 */
2830
2831 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2832 {
2833 device_destroy(tty_class,
2834 MKDEV(driver->major, driver->minor_start) + index);
2835 }
2836 EXPORT_SYMBOL(tty_unregister_device);
2837
2838 struct tty_driver *alloc_tty_driver(int lines)
2839 {
2840 struct tty_driver *driver;
2841
2842 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2843 if (driver) {
2844 kref_init(&driver->kref);
2845 driver->magic = TTY_DRIVER_MAGIC;
2846 driver->num = lines;
2847 /* later we'll move allocation of tables here */
2848 }
2849 return driver;
2850 }
2851 EXPORT_SYMBOL(alloc_tty_driver);
2852
2853 static void destruct_tty_driver(struct kref *kref)
2854 {
2855 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2856 int i;
2857 struct ktermios *tp;
2858 void *p;
2859
2860 if (driver->flags & TTY_DRIVER_INSTALLED) {
2861 /*
2862 * Free the termios and termios_locked structures because
2863 * we don't want to get memory leaks when modular tty
2864 * drivers are removed from the kernel.
2865 */
2866 for (i = 0; i < driver->num; i++) {
2867 tp = driver->termios[i];
2868 if (tp) {
2869 driver->termios[i] = NULL;
2870 kfree(tp);
2871 }
2872 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2873 tty_unregister_device(driver, i);
2874 }
2875 p = driver->ttys;
2876 proc_tty_unregister_driver(driver);
2877 driver->ttys = NULL;
2878 driver->termios = NULL;
2879 kfree(p);
2880 cdev_del(&driver->cdev);
2881 }
2882 kfree(driver);
2883 }
2884
2885 void tty_driver_kref_put(struct tty_driver *driver)
2886 {
2887 kref_put(&driver->kref, destruct_tty_driver);
2888 }
2889 EXPORT_SYMBOL(tty_driver_kref_put);
2890
2891 void tty_set_operations(struct tty_driver *driver,
2892 const struct tty_operations *op)
2893 {
2894 driver->ops = op;
2895 };
2896 EXPORT_SYMBOL(tty_set_operations);
2897
2898 void put_tty_driver(struct tty_driver *d)
2899 {
2900 tty_driver_kref_put(d);
2901 }
2902 EXPORT_SYMBOL(put_tty_driver);
2903
2904 /*
2905 * Called by a tty driver to register itself.
2906 */
2907 int tty_register_driver(struct tty_driver *driver)
2908 {
2909 int error;
2910 int i;
2911 dev_t dev;
2912 void **p = NULL;
2913
2914 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2915 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2916 if (!p)
2917 return -ENOMEM;
2918 }
2919
2920 if (!driver->major) {
2921 error = alloc_chrdev_region(&dev, driver->minor_start,
2922 driver->num, driver->name);
2923 if (!error) {
2924 driver->major = MAJOR(dev);
2925 driver->minor_start = MINOR(dev);
2926 }
2927 } else {
2928 dev = MKDEV(driver->major, driver->minor_start);
2929 error = register_chrdev_region(dev, driver->num, driver->name);
2930 }
2931 if (error < 0) {
2932 kfree(p);
2933 return error;
2934 }
2935
2936 if (p) {
2937 driver->ttys = (struct tty_struct **)p;
2938 driver->termios = (struct ktermios **)(p + driver->num);
2939 } else {
2940 driver->ttys = NULL;
2941 driver->termios = NULL;
2942 }
2943
2944 cdev_init(&driver->cdev, &tty_fops);
2945 driver->cdev.owner = driver->owner;
2946 error = cdev_add(&driver->cdev, dev, driver->num);
2947 if (error) {
2948 unregister_chrdev_region(dev, driver->num);
2949 driver->ttys = NULL;
2950 driver->termios = NULL;
2951 kfree(p);
2952 return error;
2953 }
2954
2955 mutex_lock(&tty_mutex);
2956 list_add(&driver->tty_drivers, &tty_drivers);
2957 mutex_unlock(&tty_mutex);
2958
2959 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2960 for (i = 0; i < driver->num; i++)
2961 tty_register_device(driver, i, NULL);
2962 }
2963 proc_tty_register_driver(driver);
2964 driver->flags |= TTY_DRIVER_INSTALLED;
2965 return 0;
2966 }
2967
2968 EXPORT_SYMBOL(tty_register_driver);
2969
2970 /*
2971 * Called by a tty driver to unregister itself.
2972 */
2973 int tty_unregister_driver(struct tty_driver *driver)
2974 {
2975 #if 0
2976 /* FIXME */
2977 if (driver->refcount)
2978 return -EBUSY;
2979 #endif
2980 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2981 driver->num);
2982 mutex_lock(&tty_mutex);
2983 list_del(&driver->tty_drivers);
2984 mutex_unlock(&tty_mutex);
2985 return 0;
2986 }
2987
2988 EXPORT_SYMBOL(tty_unregister_driver);
2989
2990 dev_t tty_devnum(struct tty_struct *tty)
2991 {
2992 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2993 }
2994 EXPORT_SYMBOL(tty_devnum);
2995
2996 void proc_clear_tty(struct task_struct *p)
2997 {
2998 unsigned long flags;
2999 struct tty_struct *tty;
3000 spin_lock_irqsave(&p->sighand->siglock, flags);
3001 tty = p->signal->tty;
3002 p->signal->tty = NULL;
3003 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3004 tty_kref_put(tty);
3005 }
3006
3007 /* Called under the sighand lock */
3008
3009 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3010 {
3011 if (tty) {
3012 unsigned long flags;
3013 /* We should not have a session or pgrp to put here but.... */
3014 spin_lock_irqsave(&tty->ctrl_lock, flags);
3015 put_pid(tty->session);
3016 put_pid(tty->pgrp);
3017 tty->pgrp = get_pid(task_pgrp(tsk));
3018 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3019 tty->session = get_pid(task_session(tsk));
3020 if (tsk->signal->tty) {
3021 printk(KERN_DEBUG "tty not NULL!!\n");
3022 tty_kref_put(tsk->signal->tty);
3023 }
3024 }
3025 put_pid(tsk->signal->tty_old_pgrp);
3026 tsk->signal->tty = tty_kref_get(tty);
3027 tsk->signal->tty_old_pgrp = NULL;
3028 }
3029
3030 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3031 {
3032 spin_lock_irq(&tsk->sighand->siglock);
3033 __proc_set_tty(tsk, tty);
3034 spin_unlock_irq(&tsk->sighand->siglock);
3035 }
3036
3037 struct tty_struct *get_current_tty(void)
3038 {
3039 struct tty_struct *tty;
3040 unsigned long flags;
3041
3042 spin_lock_irqsave(&current->sighand->siglock, flags);
3043 tty = tty_kref_get(current->signal->tty);
3044 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3045 return tty;
3046 }
3047 EXPORT_SYMBOL_GPL(get_current_tty);
3048
3049 void tty_default_fops(struct file_operations *fops)
3050 {
3051 *fops = tty_fops;
3052 }
3053
3054 /*
3055 * Initialize the console device. This is called *early*, so
3056 * we can't necessarily depend on lots of kernel help here.
3057 * Just do some early initializations, and do the complex setup
3058 * later.
3059 */
3060 void __init console_init(void)
3061 {
3062 initcall_t *call;
3063
3064 /* Setup the default TTY line discipline. */
3065 tty_ldisc_begin();
3066
3067 /*
3068 * set up the console device so that later boot sequences can
3069 * inform about problems etc..
3070 */
3071 call = __con_initcall_start;
3072 while (call < __con_initcall_end) {
3073 (*call)();
3074 call++;
3075 }
3076 }
3077
3078 static int __init tty_class_init(void)
3079 {
3080 tty_class = class_create(THIS_MODULE, "tty");
3081 if (IS_ERR(tty_class))
3082 return PTR_ERR(tty_class);
3083 return 0;
3084 }
3085
3086 postcore_initcall(tty_class_init);
3087
3088 /* 3/2004 jmc: why do these devices exist? */
3089
3090 static struct cdev tty_cdev, console_cdev;
3091
3092 /*
3093 * Ok, now we can initialize the rest of the tty devices and can count
3094 * on memory allocations, interrupts etc..
3095 */
3096 static int __init tty_init(void)
3097 {
3098 cdev_init(&tty_cdev, &tty_fops);
3099 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3100 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3101 panic("Couldn't register /dev/tty driver\n");
3102 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3103 "tty");
3104
3105 cdev_init(&console_cdev, &console_fops);
3106 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3107 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3108 panic("Couldn't register /dev/console driver\n");
3109 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3110 "console");
3111
3112 #ifdef CONFIG_VT
3113 vty_init(&console_fops);
3114 #endif
3115 return 0;
3116 }
3117 module_init(tty_init);