]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/tty_io.c
tty: Ldisc revamp
[mirror_ubuntu-artful-kernel.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149 size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166 * alloc_tty_struct - allocate a tty object
167 *
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
170 *
171 * Locking: none
172 */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 static void tty_buffer_free_all(struct tty_struct *);
180
181 /**
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
184 *
185 * Free the write buffers, tty queue and tty memory itself.
186 *
187 * Locking: none. Must be called after tty is definitely unused
188 */
189
190 static inline void free_tty_struct(struct tty_struct *tty)
191 {
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
195 }
196
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
198
199 /**
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
203 *
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
206 *
207 * Locking: none
208 */
209
210 char *tty_name(struct tty_struct *tty, char *buf)
211 {
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
217 }
218
219 EXPORT_SYMBOL(tty_name);
220
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
223 {
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
230 }
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
236 }
237 #endif
238 return 0;
239 }
240
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
242 {
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
246
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
250 }
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
261 }
262 #endif
263 return 0;
264 }
265
266 /*
267 * Tty buffer allocation management
268 */
269
270 /**
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
273 *
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
276 *
277 * Locking: none
278 */
279
280 static void tty_buffer_free_all(struct tty_struct *tty)
281 {
282 struct tty_buffer *thead;
283 while ((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
286 }
287 while ((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
290 }
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
293 }
294
295 /**
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
298 *
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
301 *
302 * Locking: none
303 */
304
305 static void tty_buffer_init(struct tty_struct *tty)
306 {
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
312 }
313
314 /**
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
318 *
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
322 *
323 * Locking: Caller must hold tty->buf.lock
324 */
325
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
327 {
328 struct tty_buffer *p;
329
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if (p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
344 }
345
346 /**
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
350 *
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
353 *
354 * Locking: Caller must hold tty->buf.lock
355 */
356
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
358 {
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
362
363 if (b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
368 }
369 }
370
371 /**
372 * __tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
374 *
375 * flush all the buffers containing receive data. Caller must
376 * hold the buffer lock and must have ensured no parallel flush to
377 * ldisc is running.
378 *
379 * Locking: Caller must hold tty->buf.lock
380 */
381
382 static void __tty_buffer_flush(struct tty_struct *tty)
383 {
384 struct tty_buffer *thead;
385
386 while ((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
389 }
390 tty->buf.tail = NULL;
391 }
392
393 /**
394 * tty_buffer_flush - flush full tty buffers
395 * @tty: tty to flush
396 *
397 * flush all the buffers containing receive data. If the buffer is
398 * being processed by flush_to_ldisc then we defer the processing
399 * to that function
400 *
401 * Locking: none
402 */
403
404 static void tty_buffer_flush(struct tty_struct *tty)
405 {
406 unsigned long flags;
407 spin_lock_irqsave(&tty->buf.lock, flags);
408
409 /* If the data is being pushed to the tty layer then we can't
410 process it here. Instead set a flag and the flush_to_ldisc
411 path will process the flush request before it exits */
412 if (test_bit(TTY_FLUSHING, &tty->flags)) {
413 set_bit(TTY_FLUSHPENDING, &tty->flags);
414 spin_unlock_irqrestore(&tty->buf.lock, flags);
415 wait_event(tty->read_wait,
416 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
417 return;
418 } else
419 __tty_buffer_flush(tty);
420 spin_unlock_irqrestore(&tty->buf.lock, flags);
421 }
422
423 /**
424 * tty_buffer_find - find a free tty buffer
425 * @tty: tty owning the buffer
426 * @size: characters wanted
427 *
428 * Locate an existing suitable tty buffer or if we are lacking one then
429 * allocate a new one. We round our buffers off in 256 character chunks
430 * to get better allocation behaviour.
431 *
432 * Locking: Caller must hold tty->buf.lock
433 */
434
435 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
436 {
437 struct tty_buffer **tbh = &tty->buf.free;
438 while ((*tbh) != NULL) {
439 struct tty_buffer *t = *tbh;
440 if (t->size >= size) {
441 *tbh = t->next;
442 t->next = NULL;
443 t->used = 0;
444 t->commit = 0;
445 t->read = 0;
446 tty->buf.memory_used += t->size;
447 return t;
448 }
449 tbh = &((*tbh)->next);
450 }
451 /* Round the buffer size out */
452 size = (size + 0xFF) & ~0xFF;
453 return tty_buffer_alloc(tty, size);
454 /* Should possibly check if this fails for the largest buffer we
455 have queued and recycle that ? */
456 }
457
458 /**
459 * tty_buffer_request_room - grow tty buffer if needed
460 * @tty: tty structure
461 * @size: size desired
462 *
463 * Make at least size bytes of linear space available for the tty
464 * buffer. If we fail return the size we managed to find.
465 *
466 * Locking: Takes tty->buf.lock
467 */
468 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
469 {
470 struct tty_buffer *b, *n;
471 int left;
472 unsigned long flags;
473
474 spin_lock_irqsave(&tty->buf.lock, flags);
475
476 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
477 remove this conditional if its worth it. This would be invisible
478 to the callers */
479 if ((b = tty->buf.tail) != NULL)
480 left = b->size - b->used;
481 else
482 left = 0;
483
484 if (left < size) {
485 /* This is the slow path - looking for new buffers to use */
486 if ((n = tty_buffer_find(tty, size)) != NULL) {
487 if (b != NULL) {
488 b->next = n;
489 b->commit = b->used;
490 } else
491 tty->buf.head = n;
492 tty->buf.tail = n;
493 } else
494 size = left;
495 }
496
497 spin_unlock_irqrestore(&tty->buf.lock, flags);
498 return size;
499 }
500 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
501
502 /**
503 * tty_insert_flip_string - Add characters to the tty buffer
504 * @tty: tty structure
505 * @chars: characters
506 * @size: size
507 *
508 * Queue a series of bytes to the tty buffering. All the characters
509 * passed are marked as without error. Returns the number added.
510 *
511 * Locking: Called functions may take tty->buf.lock
512 */
513
514 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
515 size_t size)
516 {
517 int copied = 0;
518 do {
519 int space = tty_buffer_request_room(tty, size - copied);
520 struct tty_buffer *tb = tty->buf.tail;
521 /* If there is no space then tb may be NULL */
522 if (unlikely(space == 0))
523 break;
524 memcpy(tb->char_buf_ptr + tb->used, chars, space);
525 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
526 tb->used += space;
527 copied += space;
528 chars += space;
529 /* There is a small chance that we need to split the data over
530 several buffers. If this is the case we must loop */
531 } while (unlikely(size > copied));
532 return copied;
533 }
534 EXPORT_SYMBOL(tty_insert_flip_string);
535
536 /**
537 * tty_insert_flip_string_flags - Add characters to the tty buffer
538 * @tty: tty structure
539 * @chars: characters
540 * @flags: flag bytes
541 * @size: size
542 *
543 * Queue a series of bytes to the tty buffering. For each character
544 * the flags array indicates the status of the character. Returns the
545 * number added.
546 *
547 * Locking: Called functions may take tty->buf.lock
548 */
549
550 int tty_insert_flip_string_flags(struct tty_struct *tty,
551 const unsigned char *chars, const char *flags, size_t size)
552 {
553 int copied = 0;
554 do {
555 int space = tty_buffer_request_room(tty, size - copied);
556 struct tty_buffer *tb = tty->buf.tail;
557 /* If there is no space then tb may be NULL */
558 if (unlikely(space == 0))
559 break;
560 memcpy(tb->char_buf_ptr + tb->used, chars, space);
561 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
562 tb->used += space;
563 copied += space;
564 chars += space;
565 flags += space;
566 /* There is a small chance that we need to split the data over
567 several buffers. If this is the case we must loop */
568 } while (unlikely(size > copied));
569 return copied;
570 }
571 EXPORT_SYMBOL(tty_insert_flip_string_flags);
572
573 /**
574 * tty_schedule_flip - push characters to ldisc
575 * @tty: tty to push from
576 *
577 * Takes any pending buffers and transfers their ownership to the
578 * ldisc side of the queue. It then schedules those characters for
579 * processing by the line discipline.
580 *
581 * Locking: Takes tty->buf.lock
582 */
583
584 void tty_schedule_flip(struct tty_struct *tty)
585 {
586 unsigned long flags;
587 spin_lock_irqsave(&tty->buf.lock, flags);
588 if (tty->buf.tail != NULL)
589 tty->buf.tail->commit = tty->buf.tail->used;
590 spin_unlock_irqrestore(&tty->buf.lock, flags);
591 schedule_delayed_work(&tty->buf.work, 1);
592 }
593 EXPORT_SYMBOL(tty_schedule_flip);
594
595 /**
596 * tty_prepare_flip_string - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @size: desired size
600 *
601 * Prepare a block of space in the buffer for data. Returns the length
602 * available and buffer pointer to the space which is now allocated and
603 * accounted for as ready for normal characters. This is used for drivers
604 * that need their own block copy routines into the buffer. There is no
605 * guarantee the buffer is a DMA target!
606 *
607 * Locking: May call functions taking tty->buf.lock
608 */
609
610 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
611 size_t size)
612 {
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
618 tb->used += space;
619 }
620 return space;
621 }
622
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
624
625 /**
626 * tty_prepare_flip_string_flags - make room for characters
627 * @tty: tty
628 * @chars: return pointer for character write area
629 * @flags: return pointer for status flag write area
630 * @size: desired size
631 *
632 * Prepare a block of space in the buffer for data. Returns the length
633 * available and buffer pointer to the space which is now allocated and
634 * accounted for as ready for characters. This is used for drivers
635 * that need their own block copy routines into the buffer. There is no
636 * guarantee the buffer is a DMA target!
637 *
638 * Locking: May call functions taking tty->buf.lock
639 */
640
641 int tty_prepare_flip_string_flags(struct tty_struct *tty,
642 unsigned char **chars, char **flags, size_t size)
643 {
644 int space = tty_buffer_request_room(tty, size);
645 if (likely(space)) {
646 struct tty_buffer *tb = tty->buf.tail;
647 *chars = tb->char_buf_ptr + tb->used;
648 *flags = tb->flag_buf_ptr + tb->used;
649 tb->used += space;
650 }
651 return space;
652 }
653
654 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
655
656
657
658 /**
659 * tty_set_termios_ldisc - set ldisc field
660 * @tty: tty structure
661 * @num: line discipline number
662 *
663 * This is probably overkill for real world processors but
664 * they are not on hot paths so a little discipline won't do
665 * any harm.
666 *
667 * Locking: takes termios_mutex
668 */
669
670 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
671 {
672 mutex_lock(&tty->termios_mutex);
673 tty->termios->c_line = num;
674 mutex_unlock(&tty->termios_mutex);
675 }
676
677 /*
678 * This guards the refcounted line discipline lists. The lock
679 * must be taken with irqs off because there are hangup path
680 * callers who will do ldisc lookups and cannot sleep.
681 */
682
683 static DEFINE_SPINLOCK(tty_ldisc_lock);
684 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
685 /* Line disc dispatch table */
686 static struct tty_ldisc_ops *tty_ldiscs[NR_LDISCS];
687
688 /**
689 * tty_register_ldisc - install a line discipline
690 * @disc: ldisc number
691 * @new_ldisc: pointer to the ldisc object
692 *
693 * Installs a new line discipline into the kernel. The discipline
694 * is set up as unreferenced and then made available to the kernel
695 * from this point onwards.
696 *
697 * Locking:
698 * takes tty_ldisc_lock to guard against ldisc races
699 */
700
701 int tty_register_ldisc(int disc, struct tty_ldisc_ops *new_ldisc)
702 {
703 unsigned long flags;
704 int ret = 0;
705
706 if (disc < N_TTY || disc >= NR_LDISCS)
707 return -EINVAL;
708
709 spin_lock_irqsave(&tty_ldisc_lock, flags);
710 tty_ldiscs[disc] = new_ldisc;
711 new_ldisc->num = disc;
712 new_ldisc->refcount = 0;
713 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
714
715 return ret;
716 }
717 EXPORT_SYMBOL(tty_register_ldisc);
718
719 /**
720 * tty_unregister_ldisc - unload a line discipline
721 * @disc: ldisc number
722 * @new_ldisc: pointer to the ldisc object
723 *
724 * Remove a line discipline from the kernel providing it is not
725 * currently in use.
726 *
727 * Locking:
728 * takes tty_ldisc_lock to guard against ldisc races
729 */
730
731 int tty_unregister_ldisc(int disc)
732 {
733 unsigned long flags;
734 int ret = 0;
735
736 if (disc < N_TTY || disc >= NR_LDISCS)
737 return -EINVAL;
738
739 spin_lock_irqsave(&tty_ldisc_lock, flags);
740 if (tty_ldiscs[disc]->refcount)
741 ret = -EBUSY;
742 else
743 tty_ldiscs[disc] = NULL;
744 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
745
746 return ret;
747 }
748 EXPORT_SYMBOL(tty_unregister_ldisc);
749
750
751 /**
752 * tty_ldisc_try_get - try and reference an ldisc
753 * @disc: ldisc number
754 * @ld: tty ldisc structure to complete
755 *
756 * Attempt to open and lock a line discipline into place. Return
757 * the line discipline refcounted and assigned in ld. On an error
758 * report the error code back
759 */
760
761 static int tty_ldisc_try_get(int disc, struct tty_ldisc *ld)
762 {
763 unsigned long flags;
764 struct tty_ldisc_ops *ldops;
765 int err = -EINVAL;
766
767 spin_lock_irqsave(&tty_ldisc_lock, flags);
768 ld->ops = NULL;
769 ldops = tty_ldiscs[disc];
770 /* Check the entry is defined */
771 if (ldops) {
772 /* If the module is being unloaded we can't use it */
773 if (!try_module_get(ldops->owner))
774 err = -EAGAIN;
775 else {
776 /* lock it */
777 ldops->refcount++;
778 ld->ops = ldops;
779 err = 0;
780 }
781 }
782 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
783 return err;
784 }
785
786 /**
787 * tty_ldisc_get - take a reference to an ldisc
788 * @disc: ldisc number
789 * @ld: tty line discipline structure to use
790 *
791 * Takes a reference to a line discipline. Deals with refcounts and
792 * module locking counts. Returns NULL if the discipline is not available.
793 * Returns a pointer to the discipline and bumps the ref count if it is
794 * available
795 *
796 * Locking:
797 * takes tty_ldisc_lock to guard against ldisc races
798 */
799
800 static int tty_ldisc_get(int disc, struct tty_ldisc *ld)
801 {
802 int err;
803
804 if (disc < N_TTY || disc >= NR_LDISCS)
805 return -EINVAL;
806 err = tty_ldisc_try_get(disc, ld);
807 if (err == -EAGAIN) {
808 request_module("tty-ldisc-%d", disc);
809 err = tty_ldisc_try_get(disc, ld);
810 }
811 return err;
812 }
813
814 /**
815 * tty_ldisc_put - drop ldisc reference
816 * @disc: ldisc number
817 *
818 * Drop a reference to a line discipline. Manage refcounts and
819 * module usage counts
820 *
821 * Locking:
822 * takes tty_ldisc_lock to guard against ldisc races
823 */
824
825 static void tty_ldisc_put(struct tty_ldisc_ops *ld)
826 {
827 unsigned long flags;
828 int disc = ld->num;
829
830 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
831
832 spin_lock_irqsave(&tty_ldisc_lock, flags);
833 ld = tty_ldiscs[disc];
834 BUG_ON(ld->refcount == 0);
835 ld->refcount--;
836 module_put(ld->owner);
837 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
838 }
839
840 static void * tty_ldiscs_seq_start(struct seq_file *m, loff_t *pos)
841 {
842 return (*pos < NR_LDISCS) ? pos : NULL;
843 }
844
845 static void * tty_ldiscs_seq_next(struct seq_file *m, void *v, loff_t *pos)
846 {
847 (*pos)++;
848 return (*pos < NR_LDISCS) ? pos : NULL;
849 }
850
851 static void tty_ldiscs_seq_stop(struct seq_file *m, void *v)
852 {
853 }
854
855 static int tty_ldiscs_seq_show(struct seq_file *m, void *v)
856 {
857 int i = *(loff_t *)v;
858 struct tty_ldisc ld;
859
860 if (tty_ldisc_get(i, &ld) < 0)
861 return 0;
862 seq_printf(m, "%-10s %2d\n", ld.ops->name ? ld.ops->name : "???", i);
863 tty_ldisc_put(ld.ops);
864 return 0;
865 }
866
867 static const struct seq_operations tty_ldiscs_seq_ops = {
868 .start = tty_ldiscs_seq_start,
869 .next = tty_ldiscs_seq_next,
870 .stop = tty_ldiscs_seq_stop,
871 .show = tty_ldiscs_seq_show,
872 };
873
874 static int proc_tty_ldiscs_open(struct inode *inode, struct file *file)
875 {
876 return seq_open(file, &tty_ldiscs_seq_ops);
877 }
878
879 const struct file_operations tty_ldiscs_proc_fops = {
880 .owner = THIS_MODULE,
881 .open = proc_tty_ldiscs_open,
882 .read = seq_read,
883 .llseek = seq_lseek,
884 .release = seq_release,
885 };
886
887 /**
888 * tty_ldisc_assign - set ldisc on a tty
889 * @tty: tty to assign
890 * @ld: line discipline
891 *
892 * Install an instance of a line discipline into a tty structure. The
893 * ldisc must have a reference count above zero to ensure it remains/
894 * The tty instance refcount starts at zero.
895 *
896 * Locking:
897 * Caller must hold references
898 */
899
900 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
901 {
902 ld->refcount = 0;
903 tty->ldisc = *ld;
904 }
905
906 /**
907 * tty_ldisc_try - internal helper
908 * @tty: the tty
909 *
910 * Make a single attempt to grab and bump the refcount on
911 * the tty ldisc. Return 0 on failure or 1 on success. This is
912 * used to implement both the waiting and non waiting versions
913 * of tty_ldisc_ref
914 *
915 * Locking: takes tty_ldisc_lock
916 */
917
918 static int tty_ldisc_try(struct tty_struct *tty)
919 {
920 unsigned long flags;
921 struct tty_ldisc *ld;
922 int ret = 0;
923
924 spin_lock_irqsave(&tty_ldisc_lock, flags);
925 ld = &tty->ldisc;
926 if (test_bit(TTY_LDISC, &tty->flags)) {
927 ld->refcount++;
928 ret = 1;
929 }
930 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
931 return ret;
932 }
933
934 /**
935 * tty_ldisc_ref_wait - wait for the tty ldisc
936 * @tty: tty device
937 *
938 * Dereference the line discipline for the terminal and take a
939 * reference to it. If the line discipline is in flux then
940 * wait patiently until it changes.
941 *
942 * Note: Must not be called from an IRQ/timer context. The caller
943 * must also be careful not to hold other locks that will deadlock
944 * against a discipline change, such as an existing ldisc reference
945 * (which we check for)
946 *
947 * Locking: call functions take tty_ldisc_lock
948 */
949
950 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
951 {
952 /* wait_event is a macro */
953 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
954 if (tty->ldisc.refcount == 0)
955 printk(KERN_ERR "tty_ldisc_ref_wait\n");
956 return &tty->ldisc;
957 }
958
959 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
960
961 /**
962 * tty_ldisc_ref - get the tty ldisc
963 * @tty: tty device
964 *
965 * Dereference the line discipline for the terminal and take a
966 * reference to it. If the line discipline is in flux then
967 * return NULL. Can be called from IRQ and timer functions.
968 *
969 * Locking: called functions take tty_ldisc_lock
970 */
971
972 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
973 {
974 if (tty_ldisc_try(tty))
975 return &tty->ldisc;
976 return NULL;
977 }
978
979 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
980
981 /**
982 * tty_ldisc_deref - free a tty ldisc reference
983 * @ld: reference to free up
984 *
985 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
986 * be called in IRQ context.
987 *
988 * Locking: takes tty_ldisc_lock
989 */
990
991 void tty_ldisc_deref(struct tty_ldisc *ld)
992 {
993 unsigned long flags;
994
995 BUG_ON(ld == NULL);
996
997 spin_lock_irqsave(&tty_ldisc_lock, flags);
998 if (ld->refcount == 0)
999 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
1000 else
1001 ld->refcount--;
1002 if (ld->refcount == 0)
1003 wake_up(&tty_ldisc_wait);
1004 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1005 }
1006
1007 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
1008
1009 /**
1010 * tty_ldisc_enable - allow ldisc use
1011 * @tty: terminal to activate ldisc on
1012 *
1013 * Set the TTY_LDISC flag when the line discipline can be called
1014 * again. Do necessary wakeups for existing sleepers.
1015 *
1016 * Note: nobody should set this bit except via this function. Clearing
1017 * directly is allowed.
1018 */
1019
1020 static void tty_ldisc_enable(struct tty_struct *tty)
1021 {
1022 set_bit(TTY_LDISC, &tty->flags);
1023 wake_up(&tty_ldisc_wait);
1024 }
1025
1026 /**
1027 * tty_ldisc_restore - helper for tty ldisc change
1028 * @tty: tty to recover
1029 * @old: previous ldisc
1030 *
1031 * Restore the previous line discipline or N_TTY when a line discipline
1032 * change fails due to an open error
1033 */
1034
1035 static void tty_ldisc_restore(struct tty_struct *tty, struct tty_ldisc *old)
1036 {
1037 char buf[64];
1038 struct tty_ldisc new_ldisc;
1039
1040 /* There is an outstanding reference here so this is safe */
1041 tty_ldisc_get(old->ops->num, old);
1042 tty_ldisc_assign(tty, old);
1043 tty_set_termios_ldisc(tty, old->ops->num);
1044 if (old->ops->open && (old->ops->open(tty) < 0)) {
1045 tty_ldisc_put(old->ops);
1046 /* This driver is always present */
1047 if (tty_ldisc_get(N_TTY, &new_ldisc) < 0)
1048 panic("n_tty: get");
1049 tty_ldisc_assign(tty, &new_ldisc);
1050 tty_set_termios_ldisc(tty, N_TTY);
1051 if (new_ldisc.ops->open) {
1052 int r = new_ldisc.ops->open(tty);
1053 if (r < 0)
1054 panic("Couldn't open N_TTY ldisc for "
1055 "%s --- error %d.",
1056 tty_name(tty, buf), r);
1057 }
1058 }
1059 }
1060
1061 /**
1062 * tty_set_ldisc - set line discipline
1063 * @tty: the terminal to set
1064 * @ldisc: the line discipline
1065 *
1066 * Set the discipline of a tty line. Must be called from a process
1067 * context.
1068 *
1069 * Locking: takes tty_ldisc_lock.
1070 * called functions take termios_mutex
1071 */
1072
1073 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
1074 {
1075 int retval;
1076 struct tty_ldisc o_ldisc, new_ldisc;
1077 int work;
1078 unsigned long flags;
1079 struct tty_struct *o_tty;
1080
1081 restart:
1082 /* This is a bit ugly for now but means we can break the 'ldisc
1083 is part of the tty struct' assumption later */
1084 retval = tty_ldisc_get(ldisc, &new_ldisc);
1085 if (retval)
1086 return retval;
1087
1088 /*
1089 * Problem: What do we do if this blocks ?
1090 */
1091
1092 tty_wait_until_sent(tty, 0);
1093
1094 if (tty->ldisc.ops->num == ldisc) {
1095 tty_ldisc_put(new_ldisc.ops);
1096 return 0;
1097 }
1098
1099 /*
1100 * No more input please, we are switching. The new ldisc
1101 * will update this value in the ldisc open function
1102 */
1103
1104 tty->receive_room = 0;
1105
1106 o_ldisc = tty->ldisc;
1107 o_tty = tty->link;
1108
1109 /*
1110 * Make sure we don't change while someone holds a
1111 * reference to the line discipline. The TTY_LDISC bit
1112 * prevents anyone taking a reference once it is clear.
1113 * We need the lock to avoid racing reference takers.
1114 */
1115
1116 spin_lock_irqsave(&tty_ldisc_lock, flags);
1117 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
1118 if (tty->ldisc.refcount) {
1119 /* Free the new ldisc we grabbed. Must drop the lock
1120 first. */
1121 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1122 tty_ldisc_put(o_ldisc.ops);
1123 /*
1124 * There are several reasons we may be busy, including
1125 * random momentary I/O traffic. We must therefore
1126 * retry. We could distinguish between blocking ops
1127 * and retries if we made tty_ldisc_wait() smarter.
1128 * That is up for discussion.
1129 */
1130 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1131 return -ERESTARTSYS;
1132 goto restart;
1133 }
1134 if (o_tty && o_tty->ldisc.refcount) {
1135 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1136 tty_ldisc_put(o_tty->ldisc.ops);
1137 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1138 return -ERESTARTSYS;
1139 goto restart;
1140 }
1141 }
1142 /*
1143 * If the TTY_LDISC bit is set, then we are racing against
1144 * another ldisc change
1145 */
1146 if (!test_bit(TTY_LDISC, &tty->flags)) {
1147 struct tty_ldisc *ld;
1148 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1149 tty_ldisc_put(new_ldisc.ops);
1150 ld = tty_ldisc_ref_wait(tty);
1151 tty_ldisc_deref(ld);
1152 goto restart;
1153 }
1154
1155 clear_bit(TTY_LDISC, &tty->flags);
1156 if (o_tty)
1157 clear_bit(TTY_LDISC, &o_tty->flags);
1158 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1159
1160 /*
1161 * From this point on we know nobody has an ldisc
1162 * usage reference, nor can they obtain one until
1163 * we say so later on.
1164 */
1165
1166 work = cancel_delayed_work(&tty->buf.work);
1167 /*
1168 * Wait for ->hangup_work and ->buf.work handlers to terminate
1169 * MUST NOT hold locks here.
1170 */
1171 flush_scheduled_work();
1172 /* Shutdown the current discipline. */
1173 if (o_ldisc.ops->close)
1174 (o_ldisc.ops->close)(tty);
1175
1176 /* Now set up the new line discipline. */
1177 tty_ldisc_assign(tty, &new_ldisc);
1178 tty_set_termios_ldisc(tty, ldisc);
1179 if (new_ldisc.ops->open)
1180 retval = (new_ldisc.ops->open)(tty);
1181 if (retval < 0) {
1182 tty_ldisc_put(new_ldisc.ops);
1183 tty_ldisc_restore(tty, &o_ldisc);
1184 }
1185 /* At this point we hold a reference to the new ldisc and a
1186 a reference to the old ldisc. If we ended up flipping back
1187 to the existing ldisc we have two references to it */
1188
1189 if (tty->ldisc.ops->num != o_ldisc.ops->num && tty->ops->set_ldisc)
1190 tty->ops->set_ldisc(tty);
1191
1192 tty_ldisc_put(o_ldisc.ops);
1193
1194 /*
1195 * Allow ldisc referencing to occur as soon as the driver
1196 * ldisc callback completes.
1197 */
1198
1199 tty_ldisc_enable(tty);
1200 if (o_tty)
1201 tty_ldisc_enable(o_tty);
1202
1203 /* Restart it in case no characters kick it off. Safe if
1204 already running */
1205 if (work)
1206 schedule_delayed_work(&tty->buf.work, 1);
1207 return retval;
1208 }
1209
1210 /**
1211 * get_tty_driver - find device of a tty
1212 * @dev_t: device identifier
1213 * @index: returns the index of the tty
1214 *
1215 * This routine returns a tty driver structure, given a device number
1216 * and also passes back the index number.
1217 *
1218 * Locking: caller must hold tty_mutex
1219 */
1220
1221 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1222 {
1223 struct tty_driver *p;
1224
1225 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1226 dev_t base = MKDEV(p->major, p->minor_start);
1227 if (device < base || device >= base + p->num)
1228 continue;
1229 *index = device - base;
1230 return p;
1231 }
1232 return NULL;
1233 }
1234
1235 #ifdef CONFIG_CONSOLE_POLL
1236
1237 /**
1238 * tty_find_polling_driver - find device of a polled tty
1239 * @name: name string to match
1240 * @line: pointer to resulting tty line nr
1241 *
1242 * This routine returns a tty driver structure, given a name
1243 * and the condition that the tty driver is capable of polled
1244 * operation.
1245 */
1246 struct tty_driver *tty_find_polling_driver(char *name, int *line)
1247 {
1248 struct tty_driver *p, *res = NULL;
1249 int tty_line = 0;
1250 char *str;
1251
1252 mutex_lock(&tty_mutex);
1253 /* Search through the tty devices to look for a match */
1254 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1255 str = name + strlen(p->name);
1256 tty_line = simple_strtoul(str, &str, 10);
1257 if (*str == ',')
1258 str++;
1259 if (*str == '\0')
1260 str = NULL;
1261
1262 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
1263 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
1264 res = p;
1265 *line = tty_line;
1266 break;
1267 }
1268 }
1269 mutex_unlock(&tty_mutex);
1270
1271 return res;
1272 }
1273 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
1274 #endif
1275
1276 /**
1277 * tty_check_change - check for POSIX terminal changes
1278 * @tty: tty to check
1279 *
1280 * If we try to write to, or set the state of, a terminal and we're
1281 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1282 * ignored, go ahead and perform the operation. (POSIX 7.2)
1283 *
1284 * Locking: ctrl_lock
1285 */
1286
1287 int tty_check_change(struct tty_struct *tty)
1288 {
1289 unsigned long flags;
1290 int ret = 0;
1291
1292 if (current->signal->tty != tty)
1293 return 0;
1294
1295 spin_lock_irqsave(&tty->ctrl_lock, flags);
1296
1297 if (!tty->pgrp) {
1298 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1299 goto out_unlock;
1300 }
1301 if (task_pgrp(current) == tty->pgrp)
1302 goto out_unlock;
1303 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1304 if (is_ignored(SIGTTOU))
1305 goto out;
1306 if (is_current_pgrp_orphaned()) {
1307 ret = -EIO;
1308 goto out;
1309 }
1310 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1311 set_thread_flag(TIF_SIGPENDING);
1312 ret = -ERESTARTSYS;
1313 out:
1314 return ret;
1315 out_unlock:
1316 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1317 return ret;
1318 }
1319
1320 EXPORT_SYMBOL(tty_check_change);
1321
1322 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
1323 size_t count, loff_t *ppos)
1324 {
1325 return 0;
1326 }
1327
1328 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
1329 size_t count, loff_t *ppos)
1330 {
1331 return -EIO;
1332 }
1333
1334 /* No kernel lock held - none needed ;) */
1335 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
1336 {
1337 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1338 }
1339
1340 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
1341 unsigned long arg)
1342 {
1343 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1344 }
1345
1346 static long hung_up_tty_compat_ioctl(struct file *file,
1347 unsigned int cmd, unsigned long arg)
1348 {
1349 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1350 }
1351
1352 static const struct file_operations tty_fops = {
1353 .llseek = no_llseek,
1354 .read = tty_read,
1355 .write = tty_write,
1356 .poll = tty_poll,
1357 .unlocked_ioctl = tty_ioctl,
1358 .compat_ioctl = tty_compat_ioctl,
1359 .open = tty_open,
1360 .release = tty_release,
1361 .fasync = tty_fasync,
1362 };
1363
1364 #ifdef CONFIG_UNIX98_PTYS
1365 static const struct file_operations ptmx_fops = {
1366 .llseek = no_llseek,
1367 .read = tty_read,
1368 .write = tty_write,
1369 .poll = tty_poll,
1370 .unlocked_ioctl = tty_ioctl,
1371 .compat_ioctl = tty_compat_ioctl,
1372 .open = ptmx_open,
1373 .release = tty_release,
1374 .fasync = tty_fasync,
1375 };
1376 #endif
1377
1378 static const struct file_operations console_fops = {
1379 .llseek = no_llseek,
1380 .read = tty_read,
1381 .write = redirected_tty_write,
1382 .poll = tty_poll,
1383 .unlocked_ioctl = tty_ioctl,
1384 .compat_ioctl = tty_compat_ioctl,
1385 .open = tty_open,
1386 .release = tty_release,
1387 .fasync = tty_fasync,
1388 };
1389
1390 static const struct file_operations hung_up_tty_fops = {
1391 .llseek = no_llseek,
1392 .read = hung_up_tty_read,
1393 .write = hung_up_tty_write,
1394 .poll = hung_up_tty_poll,
1395 .unlocked_ioctl = hung_up_tty_ioctl,
1396 .compat_ioctl = hung_up_tty_compat_ioctl,
1397 .release = tty_release,
1398 };
1399
1400 static DEFINE_SPINLOCK(redirect_lock);
1401 static struct file *redirect;
1402
1403 /**
1404 * tty_wakeup - request more data
1405 * @tty: terminal
1406 *
1407 * Internal and external helper for wakeups of tty. This function
1408 * informs the line discipline if present that the driver is ready
1409 * to receive more output data.
1410 */
1411
1412 void tty_wakeup(struct tty_struct *tty)
1413 {
1414 struct tty_ldisc *ld;
1415
1416 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1417 ld = tty_ldisc_ref(tty);
1418 if (ld) {
1419 if (ld->ops->write_wakeup)
1420 ld->ops->write_wakeup(tty);
1421 tty_ldisc_deref(ld);
1422 }
1423 }
1424 wake_up_interruptible(&tty->write_wait);
1425 }
1426
1427 EXPORT_SYMBOL_GPL(tty_wakeup);
1428
1429 /**
1430 * tty_ldisc_flush - flush line discipline queue
1431 * @tty: tty
1432 *
1433 * Flush the line discipline queue (if any) for this tty. If there
1434 * is no line discipline active this is a no-op.
1435 */
1436
1437 void tty_ldisc_flush(struct tty_struct *tty)
1438 {
1439 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1440 if (ld) {
1441 if (ld->ops->flush_buffer)
1442 ld->ops->flush_buffer(tty);
1443 tty_ldisc_deref(ld);
1444 }
1445 tty_buffer_flush(tty);
1446 }
1447
1448 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1449
1450 /**
1451 * tty_reset_termios - reset terminal state
1452 * @tty: tty to reset
1453 *
1454 * Restore a terminal to the driver default state
1455 */
1456
1457 static void tty_reset_termios(struct tty_struct *tty)
1458 {
1459 mutex_lock(&tty->termios_mutex);
1460 *tty->termios = tty->driver->init_termios;
1461 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1462 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1463 mutex_unlock(&tty->termios_mutex);
1464 }
1465
1466 /**
1467 * do_tty_hangup - actual handler for hangup events
1468 * @work: tty device
1469 *
1470 k * This can be called by the "eventd" kernel thread. That is process
1471 * synchronous but doesn't hold any locks, so we need to make sure we
1472 * have the appropriate locks for what we're doing.
1473 *
1474 * The hangup event clears any pending redirections onto the hung up
1475 * device. It ensures future writes will error and it does the needed
1476 * line discipline hangup and signal delivery. The tty object itself
1477 * remains intact.
1478 *
1479 * Locking:
1480 * BKL
1481 * redirect lock for undoing redirection
1482 * file list lock for manipulating list of ttys
1483 * tty_ldisc_lock from called functions
1484 * termios_mutex resetting termios data
1485 * tasklist_lock to walk task list for hangup event
1486 * ->siglock to protect ->signal/->sighand
1487 */
1488 static void do_tty_hangup(struct work_struct *work)
1489 {
1490 struct tty_struct *tty =
1491 container_of(work, struct tty_struct, hangup_work);
1492 struct file *cons_filp = NULL;
1493 struct file *filp, *f = NULL;
1494 struct task_struct *p;
1495 struct tty_ldisc *ld;
1496 int closecount = 0, n;
1497 unsigned long flags;
1498
1499 if (!tty)
1500 return;
1501
1502 /* inuse_filps is protected by the single kernel lock */
1503 lock_kernel();
1504
1505 spin_lock(&redirect_lock);
1506 if (redirect && redirect->private_data == tty) {
1507 f = redirect;
1508 redirect = NULL;
1509 }
1510 spin_unlock(&redirect_lock);
1511
1512 check_tty_count(tty, "do_tty_hangup");
1513 file_list_lock();
1514 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1515 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1516 if (filp->f_op->write == redirected_tty_write)
1517 cons_filp = filp;
1518 if (filp->f_op->write != tty_write)
1519 continue;
1520 closecount++;
1521 tty_fasync(-1, filp, 0); /* can't block */
1522 filp->f_op = &hung_up_tty_fops;
1523 }
1524 file_list_unlock();
1525 /*
1526 * FIXME! What are the locking issues here? This may me overdoing
1527 * things... This question is especially important now that we've
1528 * removed the irqlock.
1529 */
1530 ld = tty_ldisc_ref(tty);
1531 if (ld != NULL) {
1532 /* We may have no line discipline at this point */
1533 if (ld->ops->flush_buffer)
1534 ld->ops->flush_buffer(tty);
1535 tty_driver_flush_buffer(tty);
1536 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1537 ld->ops->write_wakeup)
1538 ld->ops->write_wakeup(tty);
1539 if (ld->ops->hangup)
1540 ld->ops->hangup(tty);
1541 }
1542 /*
1543 * FIXME: Once we trust the LDISC code better we can wait here for
1544 * ldisc completion and fix the driver call race
1545 */
1546 wake_up_interruptible(&tty->write_wait);
1547 wake_up_interruptible(&tty->read_wait);
1548 /*
1549 * Shutdown the current line discipline, and reset it to
1550 * N_TTY.
1551 */
1552 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1553 tty_reset_termios(tty);
1554 /* Defer ldisc switch */
1555 /* tty_deferred_ldisc_switch(N_TTY);
1556
1557 This should get done automatically when the port closes and
1558 tty_release is called */
1559
1560 read_lock(&tasklist_lock);
1561 if (tty->session) {
1562 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1563 spin_lock_irq(&p->sighand->siglock);
1564 if (p->signal->tty == tty)
1565 p->signal->tty = NULL;
1566 if (!p->signal->leader) {
1567 spin_unlock_irq(&p->sighand->siglock);
1568 continue;
1569 }
1570 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1571 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1572 put_pid(p->signal->tty_old_pgrp); /* A noop */
1573 spin_lock_irqsave(&tty->ctrl_lock, flags);
1574 if (tty->pgrp)
1575 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1576 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1577 spin_unlock_irq(&p->sighand->siglock);
1578 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1579 }
1580 read_unlock(&tasklist_lock);
1581
1582 spin_lock_irqsave(&tty->ctrl_lock, flags);
1583 tty->flags = 0;
1584 put_pid(tty->session);
1585 put_pid(tty->pgrp);
1586 tty->session = NULL;
1587 tty->pgrp = NULL;
1588 tty->ctrl_status = 0;
1589 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1590
1591 /*
1592 * If one of the devices matches a console pointer, we
1593 * cannot just call hangup() because that will cause
1594 * tty->count and state->count to go out of sync.
1595 * So we just call close() the right number of times.
1596 */
1597 if (cons_filp) {
1598 if (tty->ops->close)
1599 for (n = 0; n < closecount; n++)
1600 tty->ops->close(tty, cons_filp);
1601 } else if (tty->ops->hangup)
1602 (tty->ops->hangup)(tty);
1603 /*
1604 * We don't want to have driver/ldisc interactions beyond
1605 * the ones we did here. The driver layer expects no
1606 * calls after ->hangup() from the ldisc side. However we
1607 * can't yet guarantee all that.
1608 */
1609 set_bit(TTY_HUPPED, &tty->flags);
1610 if (ld) {
1611 tty_ldisc_enable(tty);
1612 tty_ldisc_deref(ld);
1613 }
1614 unlock_kernel();
1615 if (f)
1616 fput(f);
1617 }
1618
1619 /**
1620 * tty_hangup - trigger a hangup event
1621 * @tty: tty to hangup
1622 *
1623 * A carrier loss (virtual or otherwise) has occurred on this like
1624 * schedule a hangup sequence to run after this event.
1625 */
1626
1627 void tty_hangup(struct tty_struct *tty)
1628 {
1629 #ifdef TTY_DEBUG_HANGUP
1630 char buf[64];
1631 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1632 #endif
1633 schedule_work(&tty->hangup_work);
1634 }
1635
1636 EXPORT_SYMBOL(tty_hangup);
1637
1638 /**
1639 * tty_vhangup - process vhangup
1640 * @tty: tty to hangup
1641 *
1642 * The user has asked via system call for the terminal to be hung up.
1643 * We do this synchronously so that when the syscall returns the process
1644 * is complete. That guarantee is necessary for security reasons.
1645 */
1646
1647 void tty_vhangup(struct tty_struct *tty)
1648 {
1649 #ifdef TTY_DEBUG_HANGUP
1650 char buf[64];
1651
1652 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1653 #endif
1654 do_tty_hangup(&tty->hangup_work);
1655 }
1656
1657 EXPORT_SYMBOL(tty_vhangup);
1658
1659 /**
1660 * tty_hung_up_p - was tty hung up
1661 * @filp: file pointer of tty
1662 *
1663 * Return true if the tty has been subject to a vhangup or a carrier
1664 * loss
1665 */
1666
1667 int tty_hung_up_p(struct file *filp)
1668 {
1669 return (filp->f_op == &hung_up_tty_fops);
1670 }
1671
1672 EXPORT_SYMBOL(tty_hung_up_p);
1673
1674 /**
1675 * is_tty - checker whether file is a TTY
1676 * @filp: file handle that may be a tty
1677 *
1678 * Check if the file handle is a tty handle.
1679 */
1680
1681 int is_tty(struct file *filp)
1682 {
1683 return filp->f_op->read == tty_read
1684 || filp->f_op->read == hung_up_tty_read;
1685 }
1686
1687 static void session_clear_tty(struct pid *session)
1688 {
1689 struct task_struct *p;
1690 do_each_pid_task(session, PIDTYPE_SID, p) {
1691 proc_clear_tty(p);
1692 } while_each_pid_task(session, PIDTYPE_SID, p);
1693 }
1694
1695 /**
1696 * disassociate_ctty - disconnect controlling tty
1697 * @on_exit: true if exiting so need to "hang up" the session
1698 *
1699 * This function is typically called only by the session leader, when
1700 * it wants to disassociate itself from its controlling tty.
1701 *
1702 * It performs the following functions:
1703 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1704 * (2) Clears the tty from being controlling the session
1705 * (3) Clears the controlling tty for all processes in the
1706 * session group.
1707 *
1708 * The argument on_exit is set to 1 if called when a process is
1709 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1710 *
1711 * Locking:
1712 * BKL is taken for hysterical raisins
1713 * tty_mutex is taken to protect tty
1714 * ->siglock is taken to protect ->signal/->sighand
1715 * tasklist_lock is taken to walk process list for sessions
1716 * ->siglock is taken to protect ->signal/->sighand
1717 */
1718
1719 void disassociate_ctty(int on_exit)
1720 {
1721 struct tty_struct *tty;
1722 struct pid *tty_pgrp = NULL;
1723
1724
1725 mutex_lock(&tty_mutex);
1726 tty = get_current_tty();
1727 if (tty) {
1728 tty_pgrp = get_pid(tty->pgrp);
1729 mutex_unlock(&tty_mutex);
1730 lock_kernel();
1731 /* XXX: here we race, there is nothing protecting tty */
1732 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1733 tty_vhangup(tty);
1734 unlock_kernel();
1735 } else if (on_exit) {
1736 struct pid *old_pgrp;
1737 spin_lock_irq(&current->sighand->siglock);
1738 old_pgrp = current->signal->tty_old_pgrp;
1739 current->signal->tty_old_pgrp = NULL;
1740 spin_unlock_irq(&current->sighand->siglock);
1741 if (old_pgrp) {
1742 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1743 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1744 put_pid(old_pgrp);
1745 }
1746 mutex_unlock(&tty_mutex);
1747 return;
1748 }
1749 if (tty_pgrp) {
1750 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1751 if (!on_exit)
1752 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1753 put_pid(tty_pgrp);
1754 }
1755
1756 spin_lock_irq(&current->sighand->siglock);
1757 put_pid(current->signal->tty_old_pgrp);
1758 current->signal->tty_old_pgrp = NULL;
1759 spin_unlock_irq(&current->sighand->siglock);
1760
1761 mutex_lock(&tty_mutex);
1762 /* It is possible that do_tty_hangup has free'd this tty */
1763 tty = get_current_tty();
1764 if (tty) {
1765 unsigned long flags;
1766 spin_lock_irqsave(&tty->ctrl_lock, flags);
1767 put_pid(tty->session);
1768 put_pid(tty->pgrp);
1769 tty->session = NULL;
1770 tty->pgrp = NULL;
1771 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1772 } else {
1773 #ifdef TTY_DEBUG_HANGUP
1774 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1775 " = NULL", tty);
1776 #endif
1777 }
1778 mutex_unlock(&tty_mutex);
1779
1780 /* Now clear signal->tty under the lock */
1781 read_lock(&tasklist_lock);
1782 session_clear_tty(task_session(current));
1783 read_unlock(&tasklist_lock);
1784 }
1785
1786 /**
1787 *
1788 * no_tty - Ensure the current process does not have a controlling tty
1789 */
1790 void no_tty(void)
1791 {
1792 struct task_struct *tsk = current;
1793 lock_kernel();
1794 if (tsk->signal->leader)
1795 disassociate_ctty(0);
1796 unlock_kernel();
1797 proc_clear_tty(tsk);
1798 }
1799
1800
1801 /**
1802 * stop_tty - propagate flow control
1803 * @tty: tty to stop
1804 *
1805 * Perform flow control to the driver. For PTY/TTY pairs we
1806 * must also propagate the TIOCKPKT status. May be called
1807 * on an already stopped device and will not re-call the driver
1808 * method.
1809 *
1810 * This functionality is used by both the line disciplines for
1811 * halting incoming flow and by the driver. It may therefore be
1812 * called from any context, may be under the tty atomic_write_lock
1813 * but not always.
1814 *
1815 * Locking:
1816 * Uses the tty control lock internally
1817 */
1818
1819 void stop_tty(struct tty_struct *tty)
1820 {
1821 unsigned long flags;
1822 spin_lock_irqsave(&tty->ctrl_lock, flags);
1823 if (tty->stopped) {
1824 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1825 return;
1826 }
1827 tty->stopped = 1;
1828 if (tty->link && tty->link->packet) {
1829 tty->ctrl_status &= ~TIOCPKT_START;
1830 tty->ctrl_status |= TIOCPKT_STOP;
1831 wake_up_interruptible(&tty->link->read_wait);
1832 }
1833 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1834 if (tty->ops->stop)
1835 (tty->ops->stop)(tty);
1836 }
1837
1838 EXPORT_SYMBOL(stop_tty);
1839
1840 /**
1841 * start_tty - propagate flow control
1842 * @tty: tty to start
1843 *
1844 * Start a tty that has been stopped if at all possible. Perform
1845 * any necessary wakeups and propagate the TIOCPKT status. If this
1846 * is the tty was previous stopped and is being started then the
1847 * driver start method is invoked and the line discipline woken.
1848 *
1849 * Locking:
1850 * ctrl_lock
1851 */
1852
1853 void start_tty(struct tty_struct *tty)
1854 {
1855 unsigned long flags;
1856 spin_lock_irqsave(&tty->ctrl_lock, flags);
1857 if (!tty->stopped || tty->flow_stopped) {
1858 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1859 return;
1860 }
1861 tty->stopped = 0;
1862 if (tty->link && tty->link->packet) {
1863 tty->ctrl_status &= ~TIOCPKT_STOP;
1864 tty->ctrl_status |= TIOCPKT_START;
1865 wake_up_interruptible(&tty->link->read_wait);
1866 }
1867 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1868 if (tty->ops->start)
1869 (tty->ops->start)(tty);
1870 /* If we have a running line discipline it may need kicking */
1871 tty_wakeup(tty);
1872 }
1873
1874 EXPORT_SYMBOL(start_tty);
1875
1876 /**
1877 * tty_read - read method for tty device files
1878 * @file: pointer to tty file
1879 * @buf: user buffer
1880 * @count: size of user buffer
1881 * @ppos: unused
1882 *
1883 * Perform the read system call function on this terminal device. Checks
1884 * for hung up devices before calling the line discipline method.
1885 *
1886 * Locking:
1887 * Locks the line discipline internally while needed. Multiple
1888 * read calls may be outstanding in parallel.
1889 */
1890
1891 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1892 loff_t *ppos)
1893 {
1894 int i;
1895 struct tty_struct *tty;
1896 struct inode *inode;
1897 struct tty_ldisc *ld;
1898
1899 tty = (struct tty_struct *)file->private_data;
1900 inode = file->f_path.dentry->d_inode;
1901 if (tty_paranoia_check(tty, inode, "tty_read"))
1902 return -EIO;
1903 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1904 return -EIO;
1905
1906 /* We want to wait for the line discipline to sort out in this
1907 situation */
1908 ld = tty_ldisc_ref_wait(tty);
1909 if (ld->ops->read)
1910 i = (ld->ops->read)(tty, file, buf, count);
1911 else
1912 i = -EIO;
1913 tty_ldisc_deref(ld);
1914 if (i > 0)
1915 inode->i_atime = current_fs_time(inode->i_sb);
1916 return i;
1917 }
1918
1919 void tty_write_unlock(struct tty_struct *tty)
1920 {
1921 mutex_unlock(&tty->atomic_write_lock);
1922 wake_up_interruptible(&tty->write_wait);
1923 }
1924
1925 int tty_write_lock(struct tty_struct *tty, int ndelay)
1926 {
1927 if (!mutex_trylock(&tty->atomic_write_lock)) {
1928 if (ndelay)
1929 return -EAGAIN;
1930 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1931 return -ERESTARTSYS;
1932 }
1933 return 0;
1934 }
1935
1936 /*
1937 * Split writes up in sane blocksizes to avoid
1938 * denial-of-service type attacks
1939 */
1940 static inline ssize_t do_tty_write(
1941 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1942 struct tty_struct *tty,
1943 struct file *file,
1944 const char __user *buf,
1945 size_t count)
1946 {
1947 ssize_t ret, written = 0;
1948 unsigned int chunk;
1949
1950 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1951 if (ret < 0)
1952 return ret;
1953
1954 /*
1955 * We chunk up writes into a temporary buffer. This
1956 * simplifies low-level drivers immensely, since they
1957 * don't have locking issues and user mode accesses.
1958 *
1959 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1960 * big chunk-size..
1961 *
1962 * The default chunk-size is 2kB, because the NTTY
1963 * layer has problems with bigger chunks. It will
1964 * claim to be able to handle more characters than
1965 * it actually does.
1966 *
1967 * FIXME: This can probably go away now except that 64K chunks
1968 * are too likely to fail unless switched to vmalloc...
1969 */
1970 chunk = 2048;
1971 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1972 chunk = 65536;
1973 if (count < chunk)
1974 chunk = count;
1975
1976 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1977 if (tty->write_cnt < chunk) {
1978 unsigned char *buf;
1979
1980 if (chunk < 1024)
1981 chunk = 1024;
1982
1983 buf = kmalloc(chunk, GFP_KERNEL);
1984 if (!buf) {
1985 ret = -ENOMEM;
1986 goto out;
1987 }
1988 kfree(tty->write_buf);
1989 tty->write_cnt = chunk;
1990 tty->write_buf = buf;
1991 }
1992
1993 /* Do the write .. */
1994 for (;;) {
1995 size_t size = count;
1996 if (size > chunk)
1997 size = chunk;
1998 ret = -EFAULT;
1999 if (copy_from_user(tty->write_buf, buf, size))
2000 break;
2001 ret = write(tty, file, tty->write_buf, size);
2002 if (ret <= 0)
2003 break;
2004 written += ret;
2005 buf += ret;
2006 count -= ret;
2007 if (!count)
2008 break;
2009 ret = -ERESTARTSYS;
2010 if (signal_pending(current))
2011 break;
2012 cond_resched();
2013 }
2014 if (written) {
2015 struct inode *inode = file->f_path.dentry->d_inode;
2016 inode->i_mtime = current_fs_time(inode->i_sb);
2017 ret = written;
2018 }
2019 out:
2020 tty_write_unlock(tty);
2021 return ret;
2022 }
2023
2024
2025 /**
2026 * tty_write - write method for tty device file
2027 * @file: tty file pointer
2028 * @buf: user data to write
2029 * @count: bytes to write
2030 * @ppos: unused
2031 *
2032 * Write data to a tty device via the line discipline.
2033 *
2034 * Locking:
2035 * Locks the line discipline as required
2036 * Writes to the tty driver are serialized by the atomic_write_lock
2037 * and are then processed in chunks to the device. The line discipline
2038 * write method will not be involked in parallel for each device
2039 * The line discipline write method is called under the big
2040 * kernel lock for historical reasons. New code should not rely on this.
2041 */
2042
2043 static ssize_t tty_write(struct file *file, const char __user *buf,
2044 size_t count, loff_t *ppos)
2045 {
2046 struct tty_struct *tty;
2047 struct inode *inode = file->f_path.dentry->d_inode;
2048 ssize_t ret;
2049 struct tty_ldisc *ld;
2050
2051 tty = (struct tty_struct *)file->private_data;
2052 if (tty_paranoia_check(tty, inode, "tty_write"))
2053 return -EIO;
2054 if (!tty || !tty->ops->write ||
2055 (test_bit(TTY_IO_ERROR, &tty->flags)))
2056 return -EIO;
2057 /* Short term debug to catch buggy drivers */
2058 if (tty->ops->write_room == NULL)
2059 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
2060 tty->driver->name);
2061 ld = tty_ldisc_ref_wait(tty);
2062 if (!ld->ops->write)
2063 ret = -EIO;
2064 else
2065 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
2066 tty_ldisc_deref(ld);
2067 return ret;
2068 }
2069
2070 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
2071 size_t count, loff_t *ppos)
2072 {
2073 struct file *p = NULL;
2074
2075 spin_lock(&redirect_lock);
2076 if (redirect) {
2077 get_file(redirect);
2078 p = redirect;
2079 }
2080 spin_unlock(&redirect_lock);
2081
2082 if (p) {
2083 ssize_t res;
2084 res = vfs_write(p, buf, count, &p->f_pos);
2085 fput(p);
2086 return res;
2087 }
2088 return tty_write(file, buf, count, ppos);
2089 }
2090
2091 static char ptychar[] = "pqrstuvwxyzabcde";
2092
2093 /**
2094 * pty_line_name - generate name for a pty
2095 * @driver: the tty driver in use
2096 * @index: the minor number
2097 * @p: output buffer of at least 6 bytes
2098 *
2099 * Generate a name from a driver reference and write it to the output
2100 * buffer.
2101 *
2102 * Locking: None
2103 */
2104 static void pty_line_name(struct tty_driver *driver, int index, char *p)
2105 {
2106 int i = index + driver->name_base;
2107 /* ->name is initialized to "ttyp", but "tty" is expected */
2108 sprintf(p, "%s%c%x",
2109 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
2110 ptychar[i >> 4 & 0xf], i & 0xf);
2111 }
2112
2113 /**
2114 * pty_line_name - generate name for a tty
2115 * @driver: the tty driver in use
2116 * @index: the minor number
2117 * @p: output buffer of at least 7 bytes
2118 *
2119 * Generate a name from a driver reference and write it to the output
2120 * buffer.
2121 *
2122 * Locking: None
2123 */
2124 static void tty_line_name(struct tty_driver *driver, int index, char *p)
2125 {
2126 sprintf(p, "%s%d", driver->name, index + driver->name_base);
2127 }
2128
2129 /**
2130 * init_dev - initialise a tty device
2131 * @driver: tty driver we are opening a device on
2132 * @idx: device index
2133 * @tty: returned tty structure
2134 *
2135 * Prepare a tty device. This may not be a "new" clean device but
2136 * could also be an active device. The pty drivers require special
2137 * handling because of this.
2138 *
2139 * Locking:
2140 * The function is called under the tty_mutex, which
2141 * protects us from the tty struct or driver itself going away.
2142 *
2143 * On exit the tty device has the line discipline attached and
2144 * a reference count of 1. If a pair was created for pty/tty use
2145 * and the other was a pty master then it too has a reference count of 1.
2146 *
2147 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
2148 * failed open. The new code protects the open with a mutex, so it's
2149 * really quite straightforward. The mutex locking can probably be
2150 * relaxed for the (most common) case of reopening a tty.
2151 */
2152
2153 static int init_dev(struct tty_driver *driver, int idx,
2154 struct tty_struct **ret_tty)
2155 {
2156 struct tty_struct *tty, *o_tty;
2157 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
2158 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
2159 int retval = 0;
2160 struct tty_ldisc *ld;
2161
2162 /* check whether we're reopening an existing tty */
2163 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2164 tty = devpts_get_tty(idx);
2165 /*
2166 * If we don't have a tty here on a slave open, it's because
2167 * the master already started the close process and there's
2168 * no relation between devpts file and tty anymore.
2169 */
2170 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
2171 retval = -EIO;
2172 goto end_init;
2173 }
2174 /*
2175 * It's safe from now on because init_dev() is called with
2176 * tty_mutex held and release_dev() won't change tty->count
2177 * or tty->flags without having to grab tty_mutex
2178 */
2179 if (tty && driver->subtype == PTY_TYPE_MASTER)
2180 tty = tty->link;
2181 } else {
2182 tty = driver->ttys[idx];
2183 }
2184 if (tty) goto fast_track;
2185
2186 /*
2187 * First time open is complex, especially for PTY devices.
2188 * This code guarantees that either everything succeeds and the
2189 * TTY is ready for operation, or else the table slots are vacated
2190 * and the allocated memory released. (Except that the termios
2191 * and locked termios may be retained.)
2192 */
2193
2194 if (!try_module_get(driver->owner)) {
2195 retval = -ENODEV;
2196 goto end_init;
2197 }
2198
2199 o_tty = NULL;
2200 tp = o_tp = NULL;
2201 ltp = o_ltp = NULL;
2202
2203 tty = alloc_tty_struct();
2204 if (!tty)
2205 goto fail_no_mem;
2206 initialize_tty_struct(tty);
2207 tty->driver = driver;
2208 tty->ops = driver->ops;
2209 tty->index = idx;
2210 tty_line_name(driver, idx, tty->name);
2211
2212 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2213 tp_loc = &tty->termios;
2214 ltp_loc = &tty->termios_locked;
2215 } else {
2216 tp_loc = &driver->termios[idx];
2217 ltp_loc = &driver->termios_locked[idx];
2218 }
2219
2220 if (!*tp_loc) {
2221 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2222 if (!tp)
2223 goto free_mem_out;
2224 *tp = driver->init_termios;
2225 }
2226
2227 if (!*ltp_loc) {
2228 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2229 if (!ltp)
2230 goto free_mem_out;
2231 }
2232
2233 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2234 o_tty = alloc_tty_struct();
2235 if (!o_tty)
2236 goto free_mem_out;
2237 initialize_tty_struct(o_tty);
2238 o_tty->driver = driver->other;
2239 o_tty->ops = driver->ops;
2240 o_tty->index = idx;
2241 tty_line_name(driver->other, idx, o_tty->name);
2242
2243 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2244 o_tp_loc = &o_tty->termios;
2245 o_ltp_loc = &o_tty->termios_locked;
2246 } else {
2247 o_tp_loc = &driver->other->termios[idx];
2248 o_ltp_loc = &driver->other->termios_locked[idx];
2249 }
2250
2251 if (!*o_tp_loc) {
2252 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2253 if (!o_tp)
2254 goto free_mem_out;
2255 *o_tp = driver->other->init_termios;
2256 }
2257
2258 if (!*o_ltp_loc) {
2259 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2260 if (!o_ltp)
2261 goto free_mem_out;
2262 }
2263
2264 /*
2265 * Everything allocated ... set up the o_tty structure.
2266 */
2267 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
2268 driver->other->ttys[idx] = o_tty;
2269 if (!*o_tp_loc)
2270 *o_tp_loc = o_tp;
2271 if (!*o_ltp_loc)
2272 *o_ltp_loc = o_ltp;
2273 o_tty->termios = *o_tp_loc;
2274 o_tty->termios_locked = *o_ltp_loc;
2275 driver->other->refcount++;
2276 if (driver->subtype == PTY_TYPE_MASTER)
2277 o_tty->count++;
2278
2279 /* Establish the links in both directions */
2280 tty->link = o_tty;
2281 o_tty->link = tty;
2282 }
2283
2284 /*
2285 * All structures have been allocated, so now we install them.
2286 * Failures after this point use release_tty to clean up, so
2287 * there's no need to null out the local pointers.
2288 */
2289 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
2290 driver->ttys[idx] = tty;
2291
2292 if (!*tp_loc)
2293 *tp_loc = tp;
2294 if (!*ltp_loc)
2295 *ltp_loc = ltp;
2296 tty->termios = *tp_loc;
2297 tty->termios_locked = *ltp_loc;
2298 /* Compatibility until drivers always set this */
2299 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2300 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2301 driver->refcount++;
2302 tty->count++;
2303
2304 /*
2305 * Structures all installed ... call the ldisc open routines.
2306 * If we fail here just call release_tty to clean up. No need
2307 * to decrement the use counts, as release_tty doesn't care.
2308 */
2309
2310 ld = &tty->ldisc;
2311
2312 if (ld->ops->open) {
2313 retval = (ld->ops->open)(tty);
2314 if (retval)
2315 goto release_mem_out;
2316 }
2317 if (o_tty && o_tty->ldisc.ops->open) {
2318 retval = (o_tty->ldisc.ops->open)(o_tty);
2319 if (retval) {
2320 if (ld->ops->close)
2321 (ld->ops->close)(tty);
2322 goto release_mem_out;
2323 }
2324 tty_ldisc_enable(o_tty);
2325 }
2326 tty_ldisc_enable(tty);
2327 goto success;
2328
2329 /*
2330 * This fast open can be used if the tty is already open.
2331 * No memory is allocated, and the only failures are from
2332 * attempting to open a closing tty or attempting multiple
2333 * opens on a pty master.
2334 */
2335 fast_track:
2336 if (test_bit(TTY_CLOSING, &tty->flags)) {
2337 retval = -EIO;
2338 goto end_init;
2339 }
2340 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2341 driver->subtype == PTY_TYPE_MASTER) {
2342 /*
2343 * special case for PTY masters: only one open permitted,
2344 * and the slave side open count is incremented as well.
2345 */
2346 if (tty->count) {
2347 retval = -EIO;
2348 goto end_init;
2349 }
2350 tty->link->count++;
2351 }
2352 tty->count++;
2353 tty->driver = driver; /* N.B. why do this every time?? */
2354
2355 /* FIXME */
2356 if (!test_bit(TTY_LDISC, &tty->flags))
2357 printk(KERN_ERR "init_dev but no ldisc\n");
2358 success:
2359 *ret_tty = tty;
2360
2361 /* All paths come through here to release the mutex */
2362 end_init:
2363 return retval;
2364
2365 /* Release locally allocated memory ... nothing placed in slots */
2366 free_mem_out:
2367 kfree(o_tp);
2368 if (o_tty)
2369 free_tty_struct(o_tty);
2370 kfree(ltp);
2371 kfree(tp);
2372 free_tty_struct(tty);
2373
2374 fail_no_mem:
2375 module_put(driver->owner);
2376 retval = -ENOMEM;
2377 goto end_init;
2378
2379 /* call the tty release_tty routine to clean out this slot */
2380 release_mem_out:
2381 if (printk_ratelimit())
2382 printk(KERN_INFO "init_dev: ldisc open failed, "
2383 "clearing slot %d\n", idx);
2384 release_tty(tty, idx);
2385 goto end_init;
2386 }
2387
2388 /**
2389 * release_one_tty - release tty structure memory
2390 *
2391 * Releases memory associated with a tty structure, and clears out the
2392 * driver table slots. This function is called when a device is no longer
2393 * in use. It also gets called when setup of a device fails.
2394 *
2395 * Locking:
2396 * tty_mutex - sometimes only
2397 * takes the file list lock internally when working on the list
2398 * of ttys that the driver keeps.
2399 * FIXME: should we require tty_mutex is held here ??
2400 */
2401 static void release_one_tty(struct tty_struct *tty, int idx)
2402 {
2403 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2404 struct ktermios *tp;
2405
2406 if (!devpts)
2407 tty->driver->ttys[idx] = NULL;
2408
2409 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2410 tp = tty->termios;
2411 if (!devpts)
2412 tty->driver->termios[idx] = NULL;
2413 kfree(tp);
2414
2415 tp = tty->termios_locked;
2416 if (!devpts)
2417 tty->driver->termios_locked[idx] = NULL;
2418 kfree(tp);
2419 }
2420
2421
2422 tty->magic = 0;
2423 tty->driver->refcount--;
2424
2425 file_list_lock();
2426 list_del_init(&tty->tty_files);
2427 file_list_unlock();
2428
2429 free_tty_struct(tty);
2430 }
2431
2432 /**
2433 * release_tty - release tty structure memory
2434 *
2435 * Release both @tty and a possible linked partner (think pty pair),
2436 * and decrement the refcount of the backing module.
2437 *
2438 * Locking:
2439 * tty_mutex - sometimes only
2440 * takes the file list lock internally when working on the list
2441 * of ttys that the driver keeps.
2442 * FIXME: should we require tty_mutex is held here ??
2443 */
2444 static void release_tty(struct tty_struct *tty, int idx)
2445 {
2446 struct tty_driver *driver = tty->driver;
2447
2448 if (tty->link)
2449 release_one_tty(tty->link, idx);
2450 release_one_tty(tty, idx);
2451 module_put(driver->owner);
2452 }
2453
2454 /*
2455 * Even releasing the tty structures is a tricky business.. We have
2456 * to be very careful that the structures are all released at the
2457 * same time, as interrupts might otherwise get the wrong pointers.
2458 *
2459 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2460 * lead to double frees or releasing memory still in use.
2461 */
2462 static void release_dev(struct file *filp)
2463 {
2464 struct tty_struct *tty, *o_tty;
2465 struct tty_ldisc ld;
2466 int pty_master, tty_closing, o_tty_closing, do_sleep;
2467 int devpts;
2468 int idx;
2469 char buf[64];
2470 unsigned long flags;
2471
2472 tty = (struct tty_struct *)filp->private_data;
2473 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
2474 "release_dev"))
2475 return;
2476
2477 check_tty_count(tty, "release_dev");
2478
2479 tty_fasync(-1, filp, 0);
2480
2481 idx = tty->index;
2482 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2483 tty->driver->subtype == PTY_TYPE_MASTER);
2484 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2485 o_tty = tty->link;
2486
2487 #ifdef TTY_PARANOIA_CHECK
2488 if (idx < 0 || idx >= tty->driver->num) {
2489 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2490 "free (%s)\n", tty->name);
2491 return;
2492 }
2493 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2494 if (tty != tty->driver->ttys[idx]) {
2495 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2496 "for (%s)\n", idx, tty->name);
2497 return;
2498 }
2499 if (tty->termios != tty->driver->termios[idx]) {
2500 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2501 "for (%s)\n",
2502 idx, tty->name);
2503 return;
2504 }
2505 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2506 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2507 "termios_locked for (%s)\n",
2508 idx, tty->name);
2509 return;
2510 }
2511 }
2512 #endif
2513
2514 #ifdef TTY_DEBUG_HANGUP
2515 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2516 tty_name(tty, buf), tty->count);
2517 #endif
2518
2519 #ifdef TTY_PARANOIA_CHECK
2520 if (tty->driver->other &&
2521 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2522 if (o_tty != tty->driver->other->ttys[idx]) {
2523 printk(KERN_DEBUG "release_dev: other->table[%d] "
2524 "not o_tty for (%s)\n",
2525 idx, tty->name);
2526 return;
2527 }
2528 if (o_tty->termios != tty->driver->other->termios[idx]) {
2529 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2530 "not o_termios for (%s)\n",
2531 idx, tty->name);
2532 return;
2533 }
2534 if (o_tty->termios_locked !=
2535 tty->driver->other->termios_locked[idx]) {
2536 printk(KERN_DEBUG "release_dev: other->termios_locked["
2537 "%d] not o_termios_locked for (%s)\n",
2538 idx, tty->name);
2539 return;
2540 }
2541 if (o_tty->link != tty) {
2542 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2543 return;
2544 }
2545 }
2546 #endif
2547 if (tty->ops->close)
2548 tty->ops->close(tty, filp);
2549
2550 /*
2551 * Sanity check: if tty->count is going to zero, there shouldn't be
2552 * any waiters on tty->read_wait or tty->write_wait. We test the
2553 * wait queues and kick everyone out _before_ actually starting to
2554 * close. This ensures that we won't block while releasing the tty
2555 * structure.
2556 *
2557 * The test for the o_tty closing is necessary, since the master and
2558 * slave sides may close in any order. If the slave side closes out
2559 * first, its count will be one, since the master side holds an open.
2560 * Thus this test wouldn't be triggered at the time the slave closes,
2561 * so we do it now.
2562 *
2563 * Note that it's possible for the tty to be opened again while we're
2564 * flushing out waiters. By recalculating the closing flags before
2565 * each iteration we avoid any problems.
2566 */
2567 while (1) {
2568 /* Guard against races with tty->count changes elsewhere and
2569 opens on /dev/tty */
2570
2571 mutex_lock(&tty_mutex);
2572 tty_closing = tty->count <= 1;
2573 o_tty_closing = o_tty &&
2574 (o_tty->count <= (pty_master ? 1 : 0));
2575 do_sleep = 0;
2576
2577 if (tty_closing) {
2578 if (waitqueue_active(&tty->read_wait)) {
2579 wake_up(&tty->read_wait);
2580 do_sleep++;
2581 }
2582 if (waitqueue_active(&tty->write_wait)) {
2583 wake_up(&tty->write_wait);
2584 do_sleep++;
2585 }
2586 }
2587 if (o_tty_closing) {
2588 if (waitqueue_active(&o_tty->read_wait)) {
2589 wake_up(&o_tty->read_wait);
2590 do_sleep++;
2591 }
2592 if (waitqueue_active(&o_tty->write_wait)) {
2593 wake_up(&o_tty->write_wait);
2594 do_sleep++;
2595 }
2596 }
2597 if (!do_sleep)
2598 break;
2599
2600 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2601 "active!\n", tty_name(tty, buf));
2602 mutex_unlock(&tty_mutex);
2603 schedule();
2604 }
2605
2606 /*
2607 * The closing flags are now consistent with the open counts on
2608 * both sides, and we've completed the last operation that could
2609 * block, so it's safe to proceed with closing.
2610 */
2611 if (pty_master) {
2612 if (--o_tty->count < 0) {
2613 printk(KERN_WARNING "release_dev: bad pty slave count "
2614 "(%d) for %s\n",
2615 o_tty->count, tty_name(o_tty, buf));
2616 o_tty->count = 0;
2617 }
2618 }
2619 if (--tty->count < 0) {
2620 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2621 tty->count, tty_name(tty, buf));
2622 tty->count = 0;
2623 }
2624
2625 /*
2626 * We've decremented tty->count, so we need to remove this file
2627 * descriptor off the tty->tty_files list; this serves two
2628 * purposes:
2629 * - check_tty_count sees the correct number of file descriptors
2630 * associated with this tty.
2631 * - do_tty_hangup no longer sees this file descriptor as
2632 * something that needs to be handled for hangups.
2633 */
2634 file_kill(filp);
2635 filp->private_data = NULL;
2636
2637 /*
2638 * Perform some housekeeping before deciding whether to return.
2639 *
2640 * Set the TTY_CLOSING flag if this was the last open. In the
2641 * case of a pty we may have to wait around for the other side
2642 * to close, and TTY_CLOSING makes sure we can't be reopened.
2643 */
2644 if (tty_closing)
2645 set_bit(TTY_CLOSING, &tty->flags);
2646 if (o_tty_closing)
2647 set_bit(TTY_CLOSING, &o_tty->flags);
2648
2649 /*
2650 * If _either_ side is closing, make sure there aren't any
2651 * processes that still think tty or o_tty is their controlling
2652 * tty.
2653 */
2654 if (tty_closing || o_tty_closing) {
2655 read_lock(&tasklist_lock);
2656 session_clear_tty(tty->session);
2657 if (o_tty)
2658 session_clear_tty(o_tty->session);
2659 read_unlock(&tasklist_lock);
2660 }
2661
2662 mutex_unlock(&tty_mutex);
2663
2664 /* check whether both sides are closing ... */
2665 if (!tty_closing || (o_tty && !o_tty_closing))
2666 return;
2667
2668 #ifdef TTY_DEBUG_HANGUP
2669 printk(KERN_DEBUG "freeing tty structure...");
2670 #endif
2671 /*
2672 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2673 * kill any delayed work. As this is the final close it does not
2674 * race with the set_ldisc code path.
2675 */
2676 clear_bit(TTY_LDISC, &tty->flags);
2677 cancel_delayed_work(&tty->buf.work);
2678
2679 /*
2680 * Wait for ->hangup_work and ->buf.work handlers to terminate
2681 */
2682
2683 flush_scheduled_work();
2684
2685 /*
2686 * Wait for any short term users (we know they are just driver
2687 * side waiters as the file is closing so user count on the file
2688 * side is zero.
2689 */
2690 spin_lock_irqsave(&tty_ldisc_lock, flags);
2691 while (tty->ldisc.refcount) {
2692 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2693 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2694 spin_lock_irqsave(&tty_ldisc_lock, flags);
2695 }
2696 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2697 /*
2698 * Shutdown the current line discipline, and reset it to N_TTY.
2699 *
2700 * FIXME: this MUST get fixed for the new reflocking
2701 */
2702 if (tty->ldisc.ops->close)
2703 (tty->ldisc.ops->close)(tty);
2704 tty_ldisc_put(tty->ldisc.ops);
2705
2706 /*
2707 * Switch the line discipline back
2708 */
2709 WARN_ON(tty_ldisc_get(N_TTY, &ld));
2710 tty_ldisc_assign(tty, &ld);
2711 tty_set_termios_ldisc(tty, N_TTY);
2712 if (o_tty) {
2713 /* FIXME: could o_tty be in setldisc here ? */
2714 clear_bit(TTY_LDISC, &o_tty->flags);
2715 if (o_tty->ldisc.ops->close)
2716 (o_tty->ldisc.ops->close)(o_tty);
2717 tty_ldisc_put(o_tty->ldisc.ops);
2718 WARN_ON(tty_ldisc_get(N_TTY, &ld));
2719 tty_ldisc_assign(o_tty, &ld);
2720 tty_set_termios_ldisc(o_tty, N_TTY);
2721 }
2722 /*
2723 * The release_tty function takes care of the details of clearing
2724 * the slots and preserving the termios structure.
2725 */
2726 release_tty(tty, idx);
2727
2728 /* Make this pty number available for reallocation */
2729 if (devpts)
2730 devpts_kill_index(idx);
2731 }
2732
2733 /**
2734 * tty_open - open a tty device
2735 * @inode: inode of device file
2736 * @filp: file pointer to tty
2737 *
2738 * tty_open and tty_release keep up the tty count that contains the
2739 * number of opens done on a tty. We cannot use the inode-count, as
2740 * different inodes might point to the same tty.
2741 *
2742 * Open-counting is needed for pty masters, as well as for keeping
2743 * track of serial lines: DTR is dropped when the last close happens.
2744 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2745 *
2746 * The termios state of a pty is reset on first open so that
2747 * settings don't persist across reuse.
2748 *
2749 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2750 * tty->count should protect the rest.
2751 * ->siglock protects ->signal/->sighand
2752 */
2753
2754 static int __tty_open(struct inode *inode, struct file *filp)
2755 {
2756 struct tty_struct *tty;
2757 int noctty, retval;
2758 struct tty_driver *driver;
2759 int index;
2760 dev_t device = inode->i_rdev;
2761 unsigned short saved_flags = filp->f_flags;
2762
2763 nonseekable_open(inode, filp);
2764
2765 retry_open:
2766 noctty = filp->f_flags & O_NOCTTY;
2767 index = -1;
2768 retval = 0;
2769
2770 mutex_lock(&tty_mutex);
2771
2772 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
2773 tty = get_current_tty();
2774 if (!tty) {
2775 mutex_unlock(&tty_mutex);
2776 return -ENXIO;
2777 }
2778 driver = tty->driver;
2779 index = tty->index;
2780 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2781 /* noctty = 1; */
2782 goto got_driver;
2783 }
2784 #ifdef CONFIG_VT
2785 if (device == MKDEV(TTY_MAJOR, 0)) {
2786 extern struct tty_driver *console_driver;
2787 driver = console_driver;
2788 index = fg_console;
2789 noctty = 1;
2790 goto got_driver;
2791 }
2792 #endif
2793 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
2794 driver = console_device(&index);
2795 if (driver) {
2796 /* Don't let /dev/console block */
2797 filp->f_flags |= O_NONBLOCK;
2798 noctty = 1;
2799 goto got_driver;
2800 }
2801 mutex_unlock(&tty_mutex);
2802 return -ENODEV;
2803 }
2804
2805 driver = get_tty_driver(device, &index);
2806 if (!driver) {
2807 mutex_unlock(&tty_mutex);
2808 return -ENODEV;
2809 }
2810 got_driver:
2811 retval = init_dev(driver, index, &tty);
2812 mutex_unlock(&tty_mutex);
2813 if (retval)
2814 return retval;
2815
2816 filp->private_data = tty;
2817 file_move(filp, &tty->tty_files);
2818 check_tty_count(tty, "tty_open");
2819 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2820 tty->driver->subtype == PTY_TYPE_MASTER)
2821 noctty = 1;
2822 #ifdef TTY_DEBUG_HANGUP
2823 printk(KERN_DEBUG "opening %s...", tty->name);
2824 #endif
2825 if (!retval) {
2826 if (tty->ops->open)
2827 retval = tty->ops->open(tty, filp);
2828 else
2829 retval = -ENODEV;
2830 }
2831 filp->f_flags = saved_flags;
2832
2833 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2834 !capable(CAP_SYS_ADMIN))
2835 retval = -EBUSY;
2836
2837 if (retval) {
2838 #ifdef TTY_DEBUG_HANGUP
2839 printk(KERN_DEBUG "error %d in opening %s...", retval,
2840 tty->name);
2841 #endif
2842 release_dev(filp);
2843 if (retval != -ERESTARTSYS)
2844 return retval;
2845 if (signal_pending(current))
2846 return retval;
2847 schedule();
2848 /*
2849 * Need to reset f_op in case a hangup happened.
2850 */
2851 if (filp->f_op == &hung_up_tty_fops)
2852 filp->f_op = &tty_fops;
2853 goto retry_open;
2854 }
2855
2856 mutex_lock(&tty_mutex);
2857 spin_lock_irq(&current->sighand->siglock);
2858 if (!noctty &&
2859 current->signal->leader &&
2860 !current->signal->tty &&
2861 tty->session == NULL)
2862 __proc_set_tty(current, tty);
2863 spin_unlock_irq(&current->sighand->siglock);
2864 mutex_unlock(&tty_mutex);
2865 return 0;
2866 }
2867
2868 /* BKL pushdown: scary code avoidance wrapper */
2869 static int tty_open(struct inode *inode, struct file *filp)
2870 {
2871 int ret;
2872
2873 lock_kernel();
2874 ret = __tty_open(inode, filp);
2875 unlock_kernel();
2876 return ret;
2877 }
2878
2879
2880
2881 #ifdef CONFIG_UNIX98_PTYS
2882 /**
2883 * ptmx_open - open a unix 98 pty master
2884 * @inode: inode of device file
2885 * @filp: file pointer to tty
2886 *
2887 * Allocate a unix98 pty master device from the ptmx driver.
2888 *
2889 * Locking: tty_mutex protects theinit_dev work. tty->count should
2890 * protect the rest.
2891 * allocated_ptys_lock handles the list of free pty numbers
2892 */
2893
2894 static int __ptmx_open(struct inode *inode, struct file *filp)
2895 {
2896 struct tty_struct *tty;
2897 int retval;
2898 int index;
2899
2900 nonseekable_open(inode, filp);
2901
2902 /* find a device that is not in use. */
2903 index = devpts_new_index();
2904 if (index < 0)
2905 return index;
2906
2907 mutex_lock(&tty_mutex);
2908 retval = init_dev(ptm_driver, index, &tty);
2909 mutex_unlock(&tty_mutex);
2910
2911 if (retval)
2912 goto out;
2913
2914 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2915 filp->private_data = tty;
2916 file_move(filp, &tty->tty_files);
2917
2918 retval = devpts_pty_new(tty->link);
2919 if (retval)
2920 goto out1;
2921
2922 check_tty_count(tty, "ptmx_open");
2923 retval = ptm_driver->ops->open(tty, filp);
2924 if (!retval)
2925 return 0;
2926 out1:
2927 release_dev(filp);
2928 return retval;
2929 out:
2930 devpts_kill_index(index);
2931 return retval;
2932 }
2933
2934 static int ptmx_open(struct inode *inode, struct file *filp)
2935 {
2936 int ret;
2937
2938 lock_kernel();
2939 ret = __ptmx_open(inode, filp);
2940 unlock_kernel();
2941 return ret;
2942 }
2943 #endif
2944
2945 /**
2946 * tty_release - vfs callback for close
2947 * @inode: inode of tty
2948 * @filp: file pointer for handle to tty
2949 *
2950 * Called the last time each file handle is closed that references
2951 * this tty. There may however be several such references.
2952 *
2953 * Locking:
2954 * Takes bkl. See release_dev
2955 */
2956
2957 static int tty_release(struct inode *inode, struct file *filp)
2958 {
2959 lock_kernel();
2960 release_dev(filp);
2961 unlock_kernel();
2962 return 0;
2963 }
2964
2965 /**
2966 * tty_poll - check tty status
2967 * @filp: file being polled
2968 * @wait: poll wait structures to update
2969 *
2970 * Call the line discipline polling method to obtain the poll
2971 * status of the device.
2972 *
2973 * Locking: locks called line discipline but ldisc poll method
2974 * may be re-entered freely by other callers.
2975 */
2976
2977 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2978 {
2979 struct tty_struct *tty;
2980 struct tty_ldisc *ld;
2981 int ret = 0;
2982
2983 tty = (struct tty_struct *)filp->private_data;
2984 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2985 return 0;
2986
2987 ld = tty_ldisc_ref_wait(tty);
2988 if (ld->ops->poll)
2989 ret = (ld->ops->poll)(tty, filp, wait);
2990 tty_ldisc_deref(ld);
2991 return ret;
2992 }
2993
2994 static int tty_fasync(int fd, struct file *filp, int on)
2995 {
2996 struct tty_struct *tty;
2997 unsigned long flags;
2998 int retval = 0;
2999
3000 lock_kernel();
3001 tty = (struct tty_struct *)filp->private_data;
3002 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
3003 goto out;
3004
3005 retval = fasync_helper(fd, filp, on, &tty->fasync);
3006 if (retval <= 0)
3007 goto out;
3008
3009 if (on) {
3010 enum pid_type type;
3011 struct pid *pid;
3012 if (!waitqueue_active(&tty->read_wait))
3013 tty->minimum_to_wake = 1;
3014 spin_lock_irqsave(&tty->ctrl_lock, flags);
3015 if (tty->pgrp) {
3016 pid = tty->pgrp;
3017 type = PIDTYPE_PGID;
3018 } else {
3019 pid = task_pid(current);
3020 type = PIDTYPE_PID;
3021 }
3022 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3023 retval = __f_setown(filp, pid, type, 0);
3024 if (retval)
3025 goto out;
3026 } else {
3027 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
3028 tty->minimum_to_wake = N_TTY_BUF_SIZE;
3029 }
3030 retval = 0;
3031 out:
3032 unlock_kernel();
3033 return retval;
3034 }
3035
3036 /**
3037 * tiocsti - fake input character
3038 * @tty: tty to fake input into
3039 * @p: pointer to character
3040 *
3041 * Fake input to a tty device. Does the necessary locking and
3042 * input management.
3043 *
3044 * FIXME: does not honour flow control ??
3045 *
3046 * Locking:
3047 * Called functions take tty_ldisc_lock
3048 * current->signal->tty check is safe without locks
3049 *
3050 * FIXME: may race normal receive processing
3051 */
3052
3053 static int tiocsti(struct tty_struct *tty, char __user *p)
3054 {
3055 char ch, mbz = 0;
3056 struct tty_ldisc *ld;
3057
3058 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
3059 return -EPERM;
3060 if (get_user(ch, p))
3061 return -EFAULT;
3062 ld = tty_ldisc_ref_wait(tty);
3063 ld->ops->receive_buf(tty, &ch, &mbz, 1);
3064 tty_ldisc_deref(ld);
3065 return 0;
3066 }
3067
3068 /**
3069 * tiocgwinsz - implement window query ioctl
3070 * @tty; tty
3071 * @arg: user buffer for result
3072 *
3073 * Copies the kernel idea of the window size into the user buffer.
3074 *
3075 * Locking: tty->termios_mutex is taken to ensure the winsize data
3076 * is consistent.
3077 */
3078
3079 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
3080 {
3081 int err;
3082
3083 mutex_lock(&tty->termios_mutex);
3084 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
3085 mutex_unlock(&tty->termios_mutex);
3086
3087 return err ? -EFAULT: 0;
3088 }
3089
3090 /**
3091 * tiocswinsz - implement window size set ioctl
3092 * @tty; tty
3093 * @arg: user buffer for result
3094 *
3095 * Copies the user idea of the window size to the kernel. Traditionally
3096 * this is just advisory information but for the Linux console it
3097 * actually has driver level meaning and triggers a VC resize.
3098 *
3099 * Locking:
3100 * Called function use the console_sem is used to ensure we do
3101 * not try and resize the console twice at once.
3102 * The tty->termios_mutex is used to ensure we don't double
3103 * resize and get confused. Lock order - tty->termios_mutex before
3104 * console sem
3105 */
3106
3107 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
3108 struct winsize __user *arg)
3109 {
3110 struct winsize tmp_ws;
3111 struct pid *pgrp, *rpgrp;
3112 unsigned long flags;
3113
3114 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
3115 return -EFAULT;
3116
3117 mutex_lock(&tty->termios_mutex);
3118 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
3119 goto done;
3120
3121 #ifdef CONFIG_VT
3122 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
3123 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
3124 tmp_ws.ws_row)) {
3125 mutex_unlock(&tty->termios_mutex);
3126 return -ENXIO;
3127 }
3128 }
3129 #endif
3130 /* Get the PID values and reference them so we can
3131 avoid holding the tty ctrl lock while sending signals */
3132 spin_lock_irqsave(&tty->ctrl_lock, flags);
3133 pgrp = get_pid(tty->pgrp);
3134 rpgrp = get_pid(real_tty->pgrp);
3135 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3136
3137 if (pgrp)
3138 kill_pgrp(pgrp, SIGWINCH, 1);
3139 if (rpgrp != pgrp && rpgrp)
3140 kill_pgrp(rpgrp, SIGWINCH, 1);
3141
3142 put_pid(pgrp);
3143 put_pid(rpgrp);
3144
3145 tty->winsize = tmp_ws;
3146 real_tty->winsize = tmp_ws;
3147 done:
3148 mutex_unlock(&tty->termios_mutex);
3149 return 0;
3150 }
3151
3152 /**
3153 * tioccons - allow admin to move logical console
3154 * @file: the file to become console
3155 *
3156 * Allow the adminstrator to move the redirected console device
3157 *
3158 * Locking: uses redirect_lock to guard the redirect information
3159 */
3160
3161 static int tioccons(struct file *file)
3162 {
3163 if (!capable(CAP_SYS_ADMIN))
3164 return -EPERM;
3165 if (file->f_op->write == redirected_tty_write) {
3166 struct file *f;
3167 spin_lock(&redirect_lock);
3168 f = redirect;
3169 redirect = NULL;
3170 spin_unlock(&redirect_lock);
3171 if (f)
3172 fput(f);
3173 return 0;
3174 }
3175 spin_lock(&redirect_lock);
3176 if (redirect) {
3177 spin_unlock(&redirect_lock);
3178 return -EBUSY;
3179 }
3180 get_file(file);
3181 redirect = file;
3182 spin_unlock(&redirect_lock);
3183 return 0;
3184 }
3185
3186 /**
3187 * fionbio - non blocking ioctl
3188 * @file: file to set blocking value
3189 * @p: user parameter
3190 *
3191 * Historical tty interfaces had a blocking control ioctl before
3192 * the generic functionality existed. This piece of history is preserved
3193 * in the expected tty API of posix OS's.
3194 *
3195 * Locking: none, the open fle handle ensures it won't go away.
3196 */
3197
3198 static int fionbio(struct file *file, int __user *p)
3199 {
3200 int nonblock;
3201
3202 if (get_user(nonblock, p))
3203 return -EFAULT;
3204
3205 /* file->f_flags is still BKL protected in the fs layer - vomit */
3206 lock_kernel();
3207 if (nonblock)
3208 file->f_flags |= O_NONBLOCK;
3209 else
3210 file->f_flags &= ~O_NONBLOCK;
3211 unlock_kernel();
3212 return 0;
3213 }
3214
3215 /**
3216 * tiocsctty - set controlling tty
3217 * @tty: tty structure
3218 * @arg: user argument
3219 *
3220 * This ioctl is used to manage job control. It permits a session
3221 * leader to set this tty as the controlling tty for the session.
3222 *
3223 * Locking:
3224 * Takes tty_mutex() to protect tty instance
3225 * Takes tasklist_lock internally to walk sessions
3226 * Takes ->siglock() when updating signal->tty
3227 */
3228
3229 static int tiocsctty(struct tty_struct *tty, int arg)
3230 {
3231 int ret = 0;
3232 if (current->signal->leader && (task_session(current) == tty->session))
3233 return ret;
3234
3235 mutex_lock(&tty_mutex);
3236 /*
3237 * The process must be a session leader and
3238 * not have a controlling tty already.
3239 */
3240 if (!current->signal->leader || current->signal->tty) {
3241 ret = -EPERM;
3242 goto unlock;
3243 }
3244
3245 if (tty->session) {
3246 /*
3247 * This tty is already the controlling
3248 * tty for another session group!
3249 */
3250 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
3251 /*
3252 * Steal it away
3253 */
3254 read_lock(&tasklist_lock);
3255 session_clear_tty(tty->session);
3256 read_unlock(&tasklist_lock);
3257 } else {
3258 ret = -EPERM;
3259 goto unlock;
3260 }
3261 }
3262 proc_set_tty(current, tty);
3263 unlock:
3264 mutex_unlock(&tty_mutex);
3265 return ret;
3266 }
3267
3268 /**
3269 * tty_get_pgrp - return a ref counted pgrp pid
3270 * @tty: tty to read
3271 *
3272 * Returns a refcounted instance of the pid struct for the process
3273 * group controlling the tty.
3274 */
3275
3276 struct pid *tty_get_pgrp(struct tty_struct *tty)
3277 {
3278 unsigned long flags;
3279 struct pid *pgrp;
3280
3281 spin_lock_irqsave(&tty->ctrl_lock, flags);
3282 pgrp = get_pid(tty->pgrp);
3283 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3284
3285 return pgrp;
3286 }
3287 EXPORT_SYMBOL_GPL(tty_get_pgrp);
3288
3289 /**
3290 * tiocgpgrp - get process group
3291 * @tty: tty passed by user
3292 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3293 * @p: returned pid
3294 *
3295 * Obtain the process group of the tty. If there is no process group
3296 * return an error.
3297 *
3298 * Locking: none. Reference to current->signal->tty is safe.
3299 */
3300
3301 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3302 {
3303 struct pid *pid;
3304 int ret;
3305 /*
3306 * (tty == real_tty) is a cheap way of
3307 * testing if the tty is NOT a master pty.
3308 */
3309 if (tty == real_tty && current->signal->tty != real_tty)
3310 return -ENOTTY;
3311 pid = tty_get_pgrp(real_tty);
3312 ret = put_user(pid_vnr(pid), p);
3313 put_pid(pid);
3314 return ret;
3315 }
3316
3317 /**
3318 * tiocspgrp - attempt to set process group
3319 * @tty: tty passed by user
3320 * @real_tty: tty side device matching tty passed by user
3321 * @p: pid pointer
3322 *
3323 * Set the process group of the tty to the session passed. Only
3324 * permitted where the tty session is our session.
3325 *
3326 * Locking: RCU, ctrl lock
3327 */
3328
3329 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3330 {
3331 struct pid *pgrp;
3332 pid_t pgrp_nr;
3333 int retval = tty_check_change(real_tty);
3334 unsigned long flags;
3335
3336 if (retval == -EIO)
3337 return -ENOTTY;
3338 if (retval)
3339 return retval;
3340 if (!current->signal->tty ||
3341 (current->signal->tty != real_tty) ||
3342 (real_tty->session != task_session(current)))
3343 return -ENOTTY;
3344 if (get_user(pgrp_nr, p))
3345 return -EFAULT;
3346 if (pgrp_nr < 0)
3347 return -EINVAL;
3348 rcu_read_lock();
3349 pgrp = find_vpid(pgrp_nr);
3350 retval = -ESRCH;
3351 if (!pgrp)
3352 goto out_unlock;
3353 retval = -EPERM;
3354 if (session_of_pgrp(pgrp) != task_session(current))
3355 goto out_unlock;
3356 retval = 0;
3357 spin_lock_irqsave(&tty->ctrl_lock, flags);
3358 put_pid(real_tty->pgrp);
3359 real_tty->pgrp = get_pid(pgrp);
3360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3361 out_unlock:
3362 rcu_read_unlock();
3363 return retval;
3364 }
3365
3366 /**
3367 * tiocgsid - get session id
3368 * @tty: tty passed by user
3369 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3370 * @p: pointer to returned session id
3371 *
3372 * Obtain the session id of the tty. If there is no session
3373 * return an error.
3374 *
3375 * Locking: none. Reference to current->signal->tty is safe.
3376 */
3377
3378 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3379 {
3380 /*
3381 * (tty == real_tty) is a cheap way of
3382 * testing if the tty is NOT a master pty.
3383 */
3384 if (tty == real_tty && current->signal->tty != real_tty)
3385 return -ENOTTY;
3386 if (!real_tty->session)
3387 return -ENOTTY;
3388 return put_user(pid_vnr(real_tty->session), p);
3389 }
3390
3391 /**
3392 * tiocsetd - set line discipline
3393 * @tty: tty device
3394 * @p: pointer to user data
3395 *
3396 * Set the line discipline according to user request.
3397 *
3398 * Locking: see tty_set_ldisc, this function is just a helper
3399 */
3400
3401 static int tiocsetd(struct tty_struct *tty, int __user *p)
3402 {
3403 int ldisc;
3404 int ret;
3405
3406 if (get_user(ldisc, p))
3407 return -EFAULT;
3408
3409 lock_kernel();
3410 ret = tty_set_ldisc(tty, ldisc);
3411 unlock_kernel();
3412
3413 return ret;
3414 }
3415
3416 /**
3417 * send_break - performed time break
3418 * @tty: device to break on
3419 * @duration: timeout in mS
3420 *
3421 * Perform a timed break on hardware that lacks its own driver level
3422 * timed break functionality.
3423 *
3424 * Locking:
3425 * atomic_write_lock serializes
3426 *
3427 */
3428
3429 static int send_break(struct tty_struct *tty, unsigned int duration)
3430 {
3431 if (tty_write_lock(tty, 0) < 0)
3432 return -EINTR;
3433 tty->ops->break_ctl(tty, -1);
3434 if (!signal_pending(current))
3435 msleep_interruptible(duration);
3436 tty->ops->break_ctl(tty, 0);
3437 tty_write_unlock(tty);
3438 if (signal_pending(current))
3439 return -EINTR;
3440 return 0;
3441 }
3442
3443 /**
3444 * tty_tiocmget - get modem status
3445 * @tty: tty device
3446 * @file: user file pointer
3447 * @p: pointer to result
3448 *
3449 * Obtain the modem status bits from the tty driver if the feature
3450 * is supported. Return -EINVAL if it is not available.
3451 *
3452 * Locking: none (up to the driver)
3453 */
3454
3455 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3456 {
3457 int retval = -EINVAL;
3458
3459 if (tty->ops->tiocmget) {
3460 retval = tty->ops->tiocmget(tty, file);
3461
3462 if (retval >= 0)
3463 retval = put_user(retval, p);
3464 }
3465 return retval;
3466 }
3467
3468 /**
3469 * tty_tiocmset - set modem status
3470 * @tty: tty device
3471 * @file: user file pointer
3472 * @cmd: command - clear bits, set bits or set all
3473 * @p: pointer to desired bits
3474 *
3475 * Set the modem status bits from the tty driver if the feature
3476 * is supported. Return -EINVAL if it is not available.
3477 *
3478 * Locking: none (up to the driver)
3479 */
3480
3481 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3482 unsigned __user *p)
3483 {
3484 int retval = -EINVAL;
3485
3486 if (tty->ops->tiocmset) {
3487 unsigned int set, clear, val;
3488
3489 retval = get_user(val, p);
3490 if (retval)
3491 return retval;
3492
3493 set = clear = 0;
3494 switch (cmd) {
3495 case TIOCMBIS:
3496 set = val;
3497 break;
3498 case TIOCMBIC:
3499 clear = val;
3500 break;
3501 case TIOCMSET:
3502 set = val;
3503 clear = ~val;
3504 break;
3505 }
3506
3507 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3508 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3509
3510 retval = tty->ops->tiocmset(tty, file, set, clear);
3511 }
3512 return retval;
3513 }
3514
3515 /*
3516 * Split this up, as gcc can choke on it otherwise..
3517 */
3518 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3519 {
3520 struct tty_struct *tty, *real_tty;
3521 void __user *p = (void __user *)arg;
3522 int retval;
3523 struct tty_ldisc *ld;
3524 struct inode *inode = file->f_dentry->d_inode;
3525
3526 tty = (struct tty_struct *)file->private_data;
3527 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3528 return -EINVAL;
3529
3530 real_tty = tty;
3531 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3532 tty->driver->subtype == PTY_TYPE_MASTER)
3533 real_tty = tty->link;
3534
3535 /*
3536 * Break handling by driver
3537 */
3538
3539 retval = -EINVAL;
3540
3541 if (!tty->ops->break_ctl) {
3542 switch (cmd) {
3543 case TIOCSBRK:
3544 case TIOCCBRK:
3545 if (tty->ops->ioctl)
3546 retval = tty->ops->ioctl(tty, file, cmd, arg);
3547 if (retval != -EINVAL && retval != -ENOIOCTLCMD)
3548 printk(KERN_WARNING "tty: driver %s needs updating to use break_ctl\n", tty->driver->name);
3549 return retval;
3550
3551 /* These two ioctl's always return success; even if */
3552 /* the driver doesn't support them. */
3553 case TCSBRK:
3554 case TCSBRKP:
3555 if (!tty->ops->ioctl)
3556 return 0;
3557 retval = tty->ops->ioctl(tty, file, cmd, arg);
3558 if (retval != -EINVAL && retval != -ENOIOCTLCMD)
3559 printk(KERN_WARNING "tty: driver %s needs updating to use break_ctl\n", tty->driver->name);
3560 if (retval == -ENOIOCTLCMD)
3561 retval = 0;
3562 return retval;
3563 }
3564 }
3565
3566 /*
3567 * Factor out some common prep work
3568 */
3569 switch (cmd) {
3570 case TIOCSETD:
3571 case TIOCSBRK:
3572 case TIOCCBRK:
3573 case TCSBRK:
3574 case TCSBRKP:
3575 retval = tty_check_change(tty);
3576 if (retval)
3577 return retval;
3578 if (cmd != TIOCCBRK) {
3579 tty_wait_until_sent(tty, 0);
3580 if (signal_pending(current))
3581 return -EINTR;
3582 }
3583 break;
3584 }
3585
3586 switch (cmd) {
3587 case TIOCSTI:
3588 return tiocsti(tty, p);
3589 case TIOCGWINSZ:
3590 return tiocgwinsz(tty, p);
3591 case TIOCSWINSZ:
3592 return tiocswinsz(tty, real_tty, p);
3593 case TIOCCONS:
3594 return real_tty != tty ? -EINVAL : tioccons(file);
3595 case FIONBIO:
3596 return fionbio(file, p);
3597 case TIOCEXCL:
3598 set_bit(TTY_EXCLUSIVE, &tty->flags);
3599 return 0;
3600 case TIOCNXCL:
3601 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3602 return 0;
3603 case TIOCNOTTY:
3604 if (current->signal->tty != tty)
3605 return -ENOTTY;
3606 no_tty();
3607 return 0;
3608 case TIOCSCTTY:
3609 return tiocsctty(tty, arg);
3610 case TIOCGPGRP:
3611 return tiocgpgrp(tty, real_tty, p);
3612 case TIOCSPGRP:
3613 return tiocspgrp(tty, real_tty, p);
3614 case TIOCGSID:
3615 return tiocgsid(tty, real_tty, p);
3616 case TIOCGETD:
3617 return put_user(tty->ldisc.ops->num, (int __user *)p);
3618 case TIOCSETD:
3619 return tiocsetd(tty, p);
3620 #ifdef CONFIG_VT
3621 case TIOCLINUX:
3622 return tioclinux(tty, arg);
3623 #endif
3624 /*
3625 * Break handling
3626 */
3627 case TIOCSBRK: /* Turn break on, unconditionally */
3628 if (tty->ops->break_ctl)
3629 tty->ops->break_ctl(tty, -1);
3630 return 0;
3631
3632 case TIOCCBRK: /* Turn break off, unconditionally */
3633 if (tty->ops->break_ctl)
3634 tty->ops->break_ctl(tty, 0);
3635 return 0;
3636 case TCSBRK: /* SVID version: non-zero arg --> no break */
3637 /* non-zero arg means wait for all output data
3638 * to be sent (performed above) but don't send break.
3639 * This is used by the tcdrain() termios function.
3640 */
3641 if (!arg)
3642 return send_break(tty, 250);
3643 return 0;
3644 case TCSBRKP: /* support for POSIX tcsendbreak() */
3645 return send_break(tty, arg ? arg*100 : 250);
3646
3647 case TIOCMGET:
3648 return tty_tiocmget(tty, file, p);
3649 case TIOCMSET:
3650 case TIOCMBIC:
3651 case TIOCMBIS:
3652 return tty_tiocmset(tty, file, cmd, p);
3653 case TCFLSH:
3654 switch (arg) {
3655 case TCIFLUSH:
3656 case TCIOFLUSH:
3657 /* flush tty buffer and allow ldisc to process ioctl */
3658 tty_buffer_flush(tty);
3659 break;
3660 }
3661 break;
3662 }
3663 if (tty->ops->ioctl) {
3664 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
3665 if (retval != -ENOIOCTLCMD)
3666 return retval;
3667 }
3668 ld = tty_ldisc_ref_wait(tty);
3669 retval = -EINVAL;
3670 if (ld->ops->ioctl) {
3671 retval = ld->ops->ioctl(tty, file, cmd, arg);
3672 if (retval == -ENOIOCTLCMD)
3673 retval = -EINVAL;
3674 }
3675 tty_ldisc_deref(ld);
3676 return retval;
3677 }
3678
3679 #ifdef CONFIG_COMPAT
3680 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3681 unsigned long arg)
3682 {
3683 struct inode *inode = file->f_dentry->d_inode;
3684 struct tty_struct *tty = file->private_data;
3685 struct tty_ldisc *ld;
3686 int retval = -ENOIOCTLCMD;
3687
3688 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3689 return -EINVAL;
3690
3691 if (tty->ops->compat_ioctl) {
3692 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
3693 if (retval != -ENOIOCTLCMD)
3694 return retval;
3695 }
3696
3697 ld = tty_ldisc_ref_wait(tty);
3698 if (ld->ops->compat_ioctl)
3699 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3700 tty_ldisc_deref(ld);
3701
3702 return retval;
3703 }
3704 #endif
3705
3706 /*
3707 * This implements the "Secure Attention Key" --- the idea is to
3708 * prevent trojan horses by killing all processes associated with this
3709 * tty when the user hits the "Secure Attention Key". Required for
3710 * super-paranoid applications --- see the Orange Book for more details.
3711 *
3712 * This code could be nicer; ideally it should send a HUP, wait a few
3713 * seconds, then send a INT, and then a KILL signal. But you then
3714 * have to coordinate with the init process, since all processes associated
3715 * with the current tty must be dead before the new getty is allowed
3716 * to spawn.
3717 *
3718 * Now, if it would be correct ;-/ The current code has a nasty hole -
3719 * it doesn't catch files in flight. We may send the descriptor to ourselves
3720 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3721 *
3722 * Nasty bug: do_SAK is being called in interrupt context. This can
3723 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3724 */
3725 void __do_SAK(struct tty_struct *tty)
3726 {
3727 #ifdef TTY_SOFT_SAK
3728 tty_hangup(tty);
3729 #else
3730 struct task_struct *g, *p;
3731 struct pid *session;
3732 int i;
3733 struct file *filp;
3734 struct fdtable *fdt;
3735
3736 if (!tty)
3737 return;
3738 session = tty->session;
3739
3740 tty_ldisc_flush(tty);
3741
3742 tty_driver_flush_buffer(tty);
3743
3744 read_lock(&tasklist_lock);
3745 /* Kill the entire session */
3746 do_each_pid_task(session, PIDTYPE_SID, p) {
3747 printk(KERN_NOTICE "SAK: killed process %d"
3748 " (%s): task_session_nr(p)==tty->session\n",
3749 task_pid_nr(p), p->comm);
3750 send_sig(SIGKILL, p, 1);
3751 } while_each_pid_task(session, PIDTYPE_SID, p);
3752 /* Now kill any processes that happen to have the
3753 * tty open.
3754 */
3755 do_each_thread(g, p) {
3756 if (p->signal->tty == tty) {
3757 printk(KERN_NOTICE "SAK: killed process %d"
3758 " (%s): task_session_nr(p)==tty->session\n",
3759 task_pid_nr(p), p->comm);
3760 send_sig(SIGKILL, p, 1);
3761 continue;
3762 }
3763 task_lock(p);
3764 if (p->files) {
3765 /*
3766 * We don't take a ref to the file, so we must
3767 * hold ->file_lock instead.
3768 */
3769 spin_lock(&p->files->file_lock);
3770 fdt = files_fdtable(p->files);
3771 for (i = 0; i < fdt->max_fds; i++) {
3772 filp = fcheck_files(p->files, i);
3773 if (!filp)
3774 continue;
3775 if (filp->f_op->read == tty_read &&
3776 filp->private_data == tty) {
3777 printk(KERN_NOTICE "SAK: killed process %d"
3778 " (%s): fd#%d opened to the tty\n",
3779 task_pid_nr(p), p->comm, i);
3780 force_sig(SIGKILL, p);
3781 break;
3782 }
3783 }
3784 spin_unlock(&p->files->file_lock);
3785 }
3786 task_unlock(p);
3787 } while_each_thread(g, p);
3788 read_unlock(&tasklist_lock);
3789 #endif
3790 }
3791
3792 static void do_SAK_work(struct work_struct *work)
3793 {
3794 struct tty_struct *tty =
3795 container_of(work, struct tty_struct, SAK_work);
3796 __do_SAK(tty);
3797 }
3798
3799 /*
3800 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3801 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3802 * the values which we write to it will be identical to the values which it
3803 * already has. --akpm
3804 */
3805 void do_SAK(struct tty_struct *tty)
3806 {
3807 if (!tty)
3808 return;
3809 schedule_work(&tty->SAK_work);
3810 }
3811
3812 EXPORT_SYMBOL(do_SAK);
3813
3814 /**
3815 * flush_to_ldisc
3816 * @work: tty structure passed from work queue.
3817 *
3818 * This routine is called out of the software interrupt to flush data
3819 * from the buffer chain to the line discipline.
3820 *
3821 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3822 * while invoking the line discipline receive_buf method. The
3823 * receive_buf method is single threaded for each tty instance.
3824 */
3825
3826 static void flush_to_ldisc(struct work_struct *work)
3827 {
3828 struct tty_struct *tty =
3829 container_of(work, struct tty_struct, buf.work.work);
3830 unsigned long flags;
3831 struct tty_ldisc *disc;
3832 struct tty_buffer *tbuf, *head;
3833 char *char_buf;
3834 unsigned char *flag_buf;
3835
3836 disc = tty_ldisc_ref(tty);
3837 if (disc == NULL) /* !TTY_LDISC */
3838 return;
3839
3840 spin_lock_irqsave(&tty->buf.lock, flags);
3841 /* So we know a flush is running */
3842 set_bit(TTY_FLUSHING, &tty->flags);
3843 head = tty->buf.head;
3844 if (head != NULL) {
3845 tty->buf.head = NULL;
3846 for (;;) {
3847 int count = head->commit - head->read;
3848 if (!count) {
3849 if (head->next == NULL)
3850 break;
3851 tbuf = head;
3852 head = head->next;
3853 tty_buffer_free(tty, tbuf);
3854 continue;
3855 }
3856 /* Ldisc or user is trying to flush the buffers
3857 we are feeding to the ldisc, stop feeding the
3858 line discipline as we want to empty the queue */
3859 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3860 break;
3861 if (!tty->receive_room) {
3862 schedule_delayed_work(&tty->buf.work, 1);
3863 break;
3864 }
3865 if (count > tty->receive_room)
3866 count = tty->receive_room;
3867 char_buf = head->char_buf_ptr + head->read;
3868 flag_buf = head->flag_buf_ptr + head->read;
3869 head->read += count;
3870 spin_unlock_irqrestore(&tty->buf.lock, flags);
3871 disc->ops->receive_buf(tty, char_buf,
3872 flag_buf, count);
3873 spin_lock_irqsave(&tty->buf.lock, flags);
3874 }
3875 /* Restore the queue head */
3876 tty->buf.head = head;
3877 }
3878 /* We may have a deferred request to flush the input buffer,
3879 if so pull the chain under the lock and empty the queue */
3880 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3881 __tty_buffer_flush(tty);
3882 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3883 wake_up(&tty->read_wait);
3884 }
3885 clear_bit(TTY_FLUSHING, &tty->flags);
3886 spin_unlock_irqrestore(&tty->buf.lock, flags);
3887
3888 tty_ldisc_deref(disc);
3889 }
3890
3891 /**
3892 * tty_flip_buffer_push - terminal
3893 * @tty: tty to push
3894 *
3895 * Queue a push of the terminal flip buffers to the line discipline. This
3896 * function must not be called from IRQ context if tty->low_latency is set.
3897 *
3898 * In the event of the queue being busy for flipping the work will be
3899 * held off and retried later.
3900 *
3901 * Locking: tty buffer lock. Driver locks in low latency mode.
3902 */
3903
3904 void tty_flip_buffer_push(struct tty_struct *tty)
3905 {
3906 unsigned long flags;
3907 spin_lock_irqsave(&tty->buf.lock, flags);
3908 if (tty->buf.tail != NULL)
3909 tty->buf.tail->commit = tty->buf.tail->used;
3910 spin_unlock_irqrestore(&tty->buf.lock, flags);
3911
3912 if (tty->low_latency)
3913 flush_to_ldisc(&tty->buf.work.work);
3914 else
3915 schedule_delayed_work(&tty->buf.work, 1);
3916 }
3917
3918 EXPORT_SYMBOL(tty_flip_buffer_push);
3919
3920
3921 /**
3922 * initialize_tty_struct
3923 * @tty: tty to initialize
3924 *
3925 * This subroutine initializes a tty structure that has been newly
3926 * allocated.
3927 *
3928 * Locking: none - tty in question must not be exposed at this point
3929 */
3930
3931 static void initialize_tty_struct(struct tty_struct *tty)
3932 {
3933 struct tty_ldisc ld;
3934 memset(tty, 0, sizeof(struct tty_struct));
3935 tty->magic = TTY_MAGIC;
3936 if (tty_ldisc_get(N_TTY, &ld) < 0)
3937 panic("n_tty: init_tty");
3938 tty_ldisc_assign(tty, &ld);
3939 tty->session = NULL;
3940 tty->pgrp = NULL;
3941 tty->overrun_time = jiffies;
3942 tty->buf.head = tty->buf.tail = NULL;
3943 tty_buffer_init(tty);
3944 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3945 mutex_init(&tty->termios_mutex);
3946 init_waitqueue_head(&tty->write_wait);
3947 init_waitqueue_head(&tty->read_wait);
3948 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3949 mutex_init(&tty->atomic_read_lock);
3950 mutex_init(&tty->atomic_write_lock);
3951 spin_lock_init(&tty->read_lock);
3952 spin_lock_init(&tty->ctrl_lock);
3953 INIT_LIST_HEAD(&tty->tty_files);
3954 INIT_WORK(&tty->SAK_work, do_SAK_work);
3955 }
3956
3957 /**
3958 * tty_put_char - write one character to a tty
3959 * @tty: tty
3960 * @ch: character
3961 *
3962 * Write one byte to the tty using the provided put_char method
3963 * if present. Returns the number of characters successfully output.
3964 *
3965 * Note: the specific put_char operation in the driver layer may go
3966 * away soon. Don't call it directly, use this method
3967 */
3968
3969 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3970 {
3971 if (tty->ops->put_char)
3972 return tty->ops->put_char(tty, ch);
3973 return tty->ops->write(tty, &ch, 1);
3974 }
3975
3976 EXPORT_SYMBOL_GPL(tty_put_char);
3977
3978 static struct class *tty_class;
3979
3980 /**
3981 * tty_register_device - register a tty device
3982 * @driver: the tty driver that describes the tty device
3983 * @index: the index in the tty driver for this tty device
3984 * @device: a struct device that is associated with this tty device.
3985 * This field is optional, if there is no known struct device
3986 * for this tty device it can be set to NULL safely.
3987 *
3988 * Returns a pointer to the struct device for this tty device
3989 * (or ERR_PTR(-EFOO) on error).
3990 *
3991 * This call is required to be made to register an individual tty device
3992 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3993 * that bit is not set, this function should not be called by a tty
3994 * driver.
3995 *
3996 * Locking: ??
3997 */
3998
3999 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
4000 struct device *device)
4001 {
4002 char name[64];
4003 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
4004
4005 if (index >= driver->num) {
4006 printk(KERN_ERR "Attempt to register invalid tty line number "
4007 " (%d).\n", index);
4008 return ERR_PTR(-EINVAL);
4009 }
4010
4011 if (driver->type == TTY_DRIVER_TYPE_PTY)
4012 pty_line_name(driver, index, name);
4013 else
4014 tty_line_name(driver, index, name);
4015
4016 return device_create(tty_class, device, dev, name);
4017 }
4018
4019 /**
4020 * tty_unregister_device - unregister a tty device
4021 * @driver: the tty driver that describes the tty device
4022 * @index: the index in the tty driver for this tty device
4023 *
4024 * If a tty device is registered with a call to tty_register_device() then
4025 * this function must be called when the tty device is gone.
4026 *
4027 * Locking: ??
4028 */
4029
4030 void tty_unregister_device(struct tty_driver *driver, unsigned index)
4031 {
4032 device_destroy(tty_class,
4033 MKDEV(driver->major, driver->minor_start) + index);
4034 }
4035
4036 EXPORT_SYMBOL(tty_register_device);
4037 EXPORT_SYMBOL(tty_unregister_device);
4038
4039 struct tty_driver *alloc_tty_driver(int lines)
4040 {
4041 struct tty_driver *driver;
4042
4043 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
4044 if (driver) {
4045 driver->magic = TTY_DRIVER_MAGIC;
4046 driver->num = lines;
4047 /* later we'll move allocation of tables here */
4048 }
4049 return driver;
4050 }
4051
4052 void put_tty_driver(struct tty_driver *driver)
4053 {
4054 kfree(driver);
4055 }
4056
4057 void tty_set_operations(struct tty_driver *driver,
4058 const struct tty_operations *op)
4059 {
4060 driver->ops = op;
4061 };
4062
4063 EXPORT_SYMBOL(alloc_tty_driver);
4064 EXPORT_SYMBOL(put_tty_driver);
4065 EXPORT_SYMBOL(tty_set_operations);
4066
4067 /*
4068 * Called by a tty driver to register itself.
4069 */
4070 int tty_register_driver(struct tty_driver *driver)
4071 {
4072 int error;
4073 int i;
4074 dev_t dev;
4075 void **p = NULL;
4076
4077 if (driver->flags & TTY_DRIVER_INSTALLED)
4078 return 0;
4079
4080 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
4081 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
4082 if (!p)
4083 return -ENOMEM;
4084 }
4085
4086 if (!driver->major) {
4087 error = alloc_chrdev_region(&dev, driver->minor_start,
4088 driver->num, driver->name);
4089 if (!error) {
4090 driver->major = MAJOR(dev);
4091 driver->minor_start = MINOR(dev);
4092 }
4093 } else {
4094 dev = MKDEV(driver->major, driver->minor_start);
4095 error = register_chrdev_region(dev, driver->num, driver->name);
4096 }
4097 if (error < 0) {
4098 kfree(p);
4099 return error;
4100 }
4101
4102 if (p) {
4103 driver->ttys = (struct tty_struct **)p;
4104 driver->termios = (struct ktermios **)(p + driver->num);
4105 driver->termios_locked = (struct ktermios **)
4106 (p + driver->num * 2);
4107 } else {
4108 driver->ttys = NULL;
4109 driver->termios = NULL;
4110 driver->termios_locked = NULL;
4111 }
4112
4113 cdev_init(&driver->cdev, &tty_fops);
4114 driver->cdev.owner = driver->owner;
4115 error = cdev_add(&driver->cdev, dev, driver->num);
4116 if (error) {
4117 unregister_chrdev_region(dev, driver->num);
4118 driver->ttys = NULL;
4119 driver->termios = driver->termios_locked = NULL;
4120 kfree(p);
4121 return error;
4122 }
4123
4124 mutex_lock(&tty_mutex);
4125 list_add(&driver->tty_drivers, &tty_drivers);
4126 mutex_unlock(&tty_mutex);
4127
4128 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
4129 for (i = 0; i < driver->num; i++)
4130 tty_register_device(driver, i, NULL);
4131 }
4132 proc_tty_register_driver(driver);
4133 return 0;
4134 }
4135
4136 EXPORT_SYMBOL(tty_register_driver);
4137
4138 /*
4139 * Called by a tty driver to unregister itself.
4140 */
4141 int tty_unregister_driver(struct tty_driver *driver)
4142 {
4143 int i;
4144 struct ktermios *tp;
4145 void *p;
4146
4147 if (driver->refcount)
4148 return -EBUSY;
4149
4150 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
4151 driver->num);
4152 mutex_lock(&tty_mutex);
4153 list_del(&driver->tty_drivers);
4154 mutex_unlock(&tty_mutex);
4155
4156 /*
4157 * Free the termios and termios_locked structures because
4158 * we don't want to get memory leaks when modular tty
4159 * drivers are removed from the kernel.
4160 */
4161 for (i = 0; i < driver->num; i++) {
4162 tp = driver->termios[i];
4163 if (tp) {
4164 driver->termios[i] = NULL;
4165 kfree(tp);
4166 }
4167 tp = driver->termios_locked[i];
4168 if (tp) {
4169 driver->termios_locked[i] = NULL;
4170 kfree(tp);
4171 }
4172 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
4173 tty_unregister_device(driver, i);
4174 }
4175 p = driver->ttys;
4176 proc_tty_unregister_driver(driver);
4177 driver->ttys = NULL;
4178 driver->termios = driver->termios_locked = NULL;
4179 kfree(p);
4180 cdev_del(&driver->cdev);
4181 return 0;
4182 }
4183 EXPORT_SYMBOL(tty_unregister_driver);
4184
4185 dev_t tty_devnum(struct tty_struct *tty)
4186 {
4187 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
4188 }
4189 EXPORT_SYMBOL(tty_devnum);
4190
4191 void proc_clear_tty(struct task_struct *p)
4192 {
4193 spin_lock_irq(&p->sighand->siglock);
4194 p->signal->tty = NULL;
4195 spin_unlock_irq(&p->sighand->siglock);
4196 }
4197 EXPORT_SYMBOL(proc_clear_tty);
4198
4199 /* Called under the sighand lock */
4200
4201 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4202 {
4203 if (tty) {
4204 unsigned long flags;
4205 /* We should not have a session or pgrp to put here but.... */
4206 spin_lock_irqsave(&tty->ctrl_lock, flags);
4207 put_pid(tty->session);
4208 put_pid(tty->pgrp);
4209 tty->pgrp = get_pid(task_pgrp(tsk));
4210 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
4211 tty->session = get_pid(task_session(tsk));
4212 }
4213 put_pid(tsk->signal->tty_old_pgrp);
4214 tsk->signal->tty = tty;
4215 tsk->signal->tty_old_pgrp = NULL;
4216 }
4217
4218 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4219 {
4220 spin_lock_irq(&tsk->sighand->siglock);
4221 __proc_set_tty(tsk, tty);
4222 spin_unlock_irq(&tsk->sighand->siglock);
4223 }
4224
4225 struct tty_struct *get_current_tty(void)
4226 {
4227 struct tty_struct *tty;
4228 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
4229 tty = current->signal->tty;
4230 /*
4231 * session->tty can be changed/cleared from under us, make sure we
4232 * issue the load. The obtained pointer, when not NULL, is valid as
4233 * long as we hold tty_mutex.
4234 */
4235 barrier();
4236 return tty;
4237 }
4238 EXPORT_SYMBOL_GPL(get_current_tty);
4239
4240 /*
4241 * Initialize the console device. This is called *early*, so
4242 * we can't necessarily depend on lots of kernel help here.
4243 * Just do some early initializations, and do the complex setup
4244 * later.
4245 */
4246 void __init console_init(void)
4247 {
4248 initcall_t *call;
4249
4250 /* Setup the default TTY line discipline. */
4251 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
4252
4253 /*
4254 * set up the console device so that later boot sequences can
4255 * inform about problems etc..
4256 */
4257 call = __con_initcall_start;
4258 while (call < __con_initcall_end) {
4259 (*call)();
4260 call++;
4261 }
4262 }
4263
4264 static int __init tty_class_init(void)
4265 {
4266 tty_class = class_create(THIS_MODULE, "tty");
4267 if (IS_ERR(tty_class))
4268 return PTR_ERR(tty_class);
4269 return 0;
4270 }
4271
4272 postcore_initcall(tty_class_init);
4273
4274 /* 3/2004 jmc: why do these devices exist? */
4275
4276 static struct cdev tty_cdev, console_cdev;
4277 #ifdef CONFIG_UNIX98_PTYS
4278 static struct cdev ptmx_cdev;
4279 #endif
4280 #ifdef CONFIG_VT
4281 static struct cdev vc0_cdev;
4282 #endif
4283
4284 /*
4285 * Ok, now we can initialize the rest of the tty devices and can count
4286 * on memory allocations, interrupts etc..
4287 */
4288 static int __init tty_init(void)
4289 {
4290 cdev_init(&tty_cdev, &tty_fops);
4291 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4292 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4293 panic("Couldn't register /dev/tty driver\n");
4294 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4295
4296 cdev_init(&console_cdev, &console_fops);
4297 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4298 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4299 panic("Couldn't register /dev/console driver\n");
4300 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4301
4302 #ifdef CONFIG_UNIX98_PTYS
4303 cdev_init(&ptmx_cdev, &ptmx_fops);
4304 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4305 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4306 panic("Couldn't register /dev/ptmx driver\n");
4307 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4308 #endif
4309
4310 #ifdef CONFIG_VT
4311 cdev_init(&vc0_cdev, &console_fops);
4312 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4313 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4314 panic("Couldn't register /dev/tty0 driver\n");
4315 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4316
4317 vty_init();
4318 #endif
4319 return 0;
4320 }
4321 module_init(tty_init);