]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/clk/bcm/clk-bcm2835.c
clk: bcm2835: Fix ->fixed_divider of pllh_aux
[mirror_ubuntu-zesty-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 /**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47
48 #define CM_PASSWORD 0x5a000000
49
50 #define CM_GNRICCTL 0x000
51 #define CM_GNRICDIV 0x004
52 # define CM_DIV_FRAC_BITS 12
53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54
55 #define CM_VPUCTL 0x008
56 #define CM_VPUDIV 0x00c
57 #define CM_SYSCTL 0x010
58 #define CM_SYSDIV 0x014
59 #define CM_PERIACTL 0x018
60 #define CM_PERIADIV 0x01c
61 #define CM_PERIICTL 0x020
62 #define CM_PERIIDIV 0x024
63 #define CM_H264CTL 0x028
64 #define CM_H264DIV 0x02c
65 #define CM_ISPCTL 0x030
66 #define CM_ISPDIV 0x034
67 #define CM_V3DCTL 0x038
68 #define CM_V3DDIV 0x03c
69 #define CM_CAM0CTL 0x040
70 #define CM_CAM0DIV 0x044
71 #define CM_CAM1CTL 0x048
72 #define CM_CAM1DIV 0x04c
73 #define CM_CCP2CTL 0x050
74 #define CM_CCP2DIV 0x054
75 #define CM_DSI0ECTL 0x058
76 #define CM_DSI0EDIV 0x05c
77 #define CM_DSI0PCTL 0x060
78 #define CM_DSI0PDIV 0x064
79 #define CM_DPICTL 0x068
80 #define CM_DPIDIV 0x06c
81 #define CM_GP0CTL 0x070
82 #define CM_GP0DIV 0x074
83 #define CM_GP1CTL 0x078
84 #define CM_GP1DIV 0x07c
85 #define CM_GP2CTL 0x080
86 #define CM_GP2DIV 0x084
87 #define CM_HSMCTL 0x088
88 #define CM_HSMDIV 0x08c
89 #define CM_OTPCTL 0x090
90 #define CM_OTPDIV 0x094
91 #define CM_PCMCTL 0x098
92 #define CM_PCMDIV 0x09c
93 #define CM_PWMCTL 0x0a0
94 #define CM_PWMDIV 0x0a4
95 #define CM_SLIMCTL 0x0a8
96 #define CM_SLIMDIV 0x0ac
97 #define CM_SMICTL 0x0b0
98 #define CM_SMIDIV 0x0b4
99 /* no definition for 0x0b8 and 0x0bc */
100 #define CM_TCNTCTL 0x0c0
101 #define CM_TCNTDIV 0x0c4
102 #define CM_TECCTL 0x0c8
103 #define CM_TECDIV 0x0cc
104 #define CM_TD0CTL 0x0d0
105 #define CM_TD0DIV 0x0d4
106 #define CM_TD1CTL 0x0d8
107 #define CM_TD1DIV 0x0dc
108 #define CM_TSENSCTL 0x0e0
109 #define CM_TSENSDIV 0x0e4
110 #define CM_TIMERCTL 0x0e8
111 #define CM_TIMERDIV 0x0ec
112 #define CM_UARTCTL 0x0f0
113 #define CM_UARTDIV 0x0f4
114 #define CM_VECCTL 0x0f8
115 #define CM_VECDIV 0x0fc
116 #define CM_PULSECTL 0x190
117 #define CM_PULSEDIV 0x194
118 #define CM_SDCCTL 0x1a8
119 #define CM_SDCDIV 0x1ac
120 #define CM_ARMCTL 0x1b0
121 #define CM_AVEOCTL 0x1b8
122 #define CM_AVEODIV 0x1bc
123 #define CM_EMMCCTL 0x1c0
124 #define CM_EMMCDIV 0x1c4
125
126 /* General bits for the CM_*CTL regs */
127 # define CM_ENABLE BIT(4)
128 # define CM_KILL BIT(5)
129 # define CM_GATE_BIT 6
130 # define CM_GATE BIT(CM_GATE_BIT)
131 # define CM_BUSY BIT(7)
132 # define CM_BUSYD BIT(8)
133 # define CM_FRAC BIT(9)
134 # define CM_SRC_SHIFT 0
135 # define CM_SRC_BITS 4
136 # define CM_SRC_MASK 0xf
137 # define CM_SRC_GND 0
138 # define CM_SRC_OSC 1
139 # define CM_SRC_TESTDEBUG0 2
140 # define CM_SRC_TESTDEBUG1 3
141 # define CM_SRC_PLLA_CORE 4
142 # define CM_SRC_PLLA_PER 4
143 # define CM_SRC_PLLC_CORE0 5
144 # define CM_SRC_PLLC_PER 5
145 # define CM_SRC_PLLC_CORE1 8
146 # define CM_SRC_PLLD_CORE 6
147 # define CM_SRC_PLLD_PER 6
148 # define CM_SRC_PLLH_AUX 7
149 # define CM_SRC_PLLC_CORE1 8
150 # define CM_SRC_PLLC_CORE2 9
151
152 #define CM_OSCCOUNT 0x100
153
154 #define CM_PLLA 0x104
155 # define CM_PLL_ANARST BIT(8)
156 # define CM_PLLA_HOLDPER BIT(7)
157 # define CM_PLLA_LOADPER BIT(6)
158 # define CM_PLLA_HOLDCORE BIT(5)
159 # define CM_PLLA_LOADCORE BIT(4)
160 # define CM_PLLA_HOLDCCP2 BIT(3)
161 # define CM_PLLA_LOADCCP2 BIT(2)
162 # define CM_PLLA_HOLDDSI0 BIT(1)
163 # define CM_PLLA_LOADDSI0 BIT(0)
164
165 #define CM_PLLC 0x108
166 # define CM_PLLC_HOLDPER BIT(7)
167 # define CM_PLLC_LOADPER BIT(6)
168 # define CM_PLLC_HOLDCORE2 BIT(5)
169 # define CM_PLLC_LOADCORE2 BIT(4)
170 # define CM_PLLC_HOLDCORE1 BIT(3)
171 # define CM_PLLC_LOADCORE1 BIT(2)
172 # define CM_PLLC_HOLDCORE0 BIT(1)
173 # define CM_PLLC_LOADCORE0 BIT(0)
174
175 #define CM_PLLD 0x10c
176 # define CM_PLLD_HOLDPER BIT(7)
177 # define CM_PLLD_LOADPER BIT(6)
178 # define CM_PLLD_HOLDCORE BIT(5)
179 # define CM_PLLD_LOADCORE BIT(4)
180 # define CM_PLLD_HOLDDSI1 BIT(3)
181 # define CM_PLLD_LOADDSI1 BIT(2)
182 # define CM_PLLD_HOLDDSI0 BIT(1)
183 # define CM_PLLD_LOADDSI0 BIT(0)
184
185 #define CM_PLLH 0x110
186 # define CM_PLLH_LOADRCAL BIT(2)
187 # define CM_PLLH_LOADAUX BIT(1)
188 # define CM_PLLH_LOADPIX BIT(0)
189
190 #define CM_LOCK 0x114
191 # define CM_LOCK_FLOCKH BIT(12)
192 # define CM_LOCK_FLOCKD BIT(11)
193 # define CM_LOCK_FLOCKC BIT(10)
194 # define CM_LOCK_FLOCKB BIT(9)
195 # define CM_LOCK_FLOCKA BIT(8)
196
197 #define CM_EVENT 0x118
198 #define CM_DSI1ECTL 0x158
199 #define CM_DSI1EDIV 0x15c
200 #define CM_DSI1PCTL 0x160
201 #define CM_DSI1PDIV 0x164
202 #define CM_DFTCTL 0x168
203 #define CM_DFTDIV 0x16c
204
205 #define CM_PLLB 0x170
206 # define CM_PLLB_HOLDARM BIT(1)
207 # define CM_PLLB_LOADARM BIT(0)
208
209 #define A2W_PLLA_CTRL 0x1100
210 #define A2W_PLLC_CTRL 0x1120
211 #define A2W_PLLD_CTRL 0x1140
212 #define A2W_PLLH_CTRL 0x1160
213 #define A2W_PLLB_CTRL 0x11e0
214 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
215 # define A2W_PLL_CTRL_PWRDN BIT(16)
216 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
217 # define A2W_PLL_CTRL_PDIV_SHIFT 12
218 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
219 # define A2W_PLL_CTRL_NDIV_SHIFT 0
220
221 #define A2W_PLLA_ANA0 0x1010
222 #define A2W_PLLC_ANA0 0x1030
223 #define A2W_PLLD_ANA0 0x1050
224 #define A2W_PLLH_ANA0 0x1070
225 #define A2W_PLLB_ANA0 0x10f0
226
227 #define A2W_PLL_KA_SHIFT 7
228 #define A2W_PLL_KA_MASK GENMASK(9, 7)
229 #define A2W_PLL_KI_SHIFT 19
230 #define A2W_PLL_KI_MASK GENMASK(21, 19)
231 #define A2W_PLL_KP_SHIFT 15
232 #define A2W_PLL_KP_MASK GENMASK(18, 15)
233
234 #define A2W_PLLH_KA_SHIFT 19
235 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
236 #define A2W_PLLH_KI_LOW_SHIFT 22
237 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
238 #define A2W_PLLH_KI_HIGH_SHIFT 0
239 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
240 #define A2W_PLLH_KP_SHIFT 1
241 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
242
243 #define A2W_XOSC_CTRL 0x1190
244 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
245 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
246 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
247 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
248 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
249 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
250 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
251 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
252
253 #define A2W_PLLA_FRAC 0x1200
254 #define A2W_PLLC_FRAC 0x1220
255 #define A2W_PLLD_FRAC 0x1240
256 #define A2W_PLLH_FRAC 0x1260
257 #define A2W_PLLB_FRAC 0x12e0
258 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
259 # define A2W_PLL_FRAC_BITS 20
260
261 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
262 #define A2W_PLL_DIV_BITS 8
263 #define A2W_PLL_DIV_SHIFT 0
264
265 #define A2W_PLLA_DSI0 0x1300
266 #define A2W_PLLA_CORE 0x1400
267 #define A2W_PLLA_PER 0x1500
268 #define A2W_PLLA_CCP2 0x1600
269
270 #define A2W_PLLC_CORE2 0x1320
271 #define A2W_PLLC_CORE1 0x1420
272 #define A2W_PLLC_PER 0x1520
273 #define A2W_PLLC_CORE0 0x1620
274
275 #define A2W_PLLD_DSI0 0x1340
276 #define A2W_PLLD_CORE 0x1440
277 #define A2W_PLLD_PER 0x1540
278 #define A2W_PLLD_DSI1 0x1640
279
280 #define A2W_PLLH_AUX 0x1360
281 #define A2W_PLLH_RCAL 0x1460
282 #define A2W_PLLH_PIX 0x1560
283 #define A2W_PLLH_STS 0x1660
284
285 #define A2W_PLLH_CTRLR 0x1960
286 #define A2W_PLLH_FRACR 0x1a60
287 #define A2W_PLLH_AUXR 0x1b60
288 #define A2W_PLLH_RCALR 0x1c60
289 #define A2W_PLLH_PIXR 0x1d60
290 #define A2W_PLLH_STSR 0x1e60
291
292 #define A2W_PLLB_ARM 0x13e0
293 #define A2W_PLLB_SP0 0x14e0
294 #define A2W_PLLB_SP1 0x15e0
295 #define A2W_PLLB_SP2 0x16e0
296
297 #define LOCK_TIMEOUT_NS 100000000
298 #define BCM2835_MAX_FB_RATE 1750000000u
299
300 struct bcm2835_cprman {
301 struct device *dev;
302 void __iomem *regs;
303 spinlock_t regs_lock; /* spinlock for all clocks */
304 const char *osc_name;
305
306 /* Must be last */
307 struct clk_hw_onecell_data onecell;
308 };
309
310 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
311 {
312 writel(CM_PASSWORD | val, cprman->regs + reg);
313 }
314
315 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
316 {
317 return readl(cprman->regs + reg);
318 }
319
320 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
321 struct debugfs_reg32 *regs, size_t nregs,
322 struct dentry *dentry)
323 {
324 struct dentry *regdump;
325 struct debugfs_regset32 *regset;
326
327 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
328 if (!regset)
329 return -ENOMEM;
330
331 regset->regs = regs;
332 regset->nregs = nregs;
333 regset->base = cprman->regs + base;
334
335 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
336 regset);
337
338 return regdump ? 0 : -ENOMEM;
339 }
340
341 /*
342 * These are fixed clocks. They're probably not all root clocks and it may
343 * be possible to turn them on and off but until this is mapped out better
344 * it's the only way they can be used.
345 */
346 void __init bcm2835_init_clocks(void)
347 {
348 struct clk_hw *hw;
349 int ret;
350
351 hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
352 if (IS_ERR(hw))
353 pr_err("apb_pclk not registered\n");
354
355 hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
356 if (IS_ERR(hw))
357 pr_err("uart0_pclk not registered\n");
358 ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
359 if (ret)
360 pr_err("uart0_pclk alias not registered\n");
361
362 hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
363 if (IS_ERR(hw))
364 pr_err("uart1_pclk not registered\n");
365 ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
366 if (ret)
367 pr_err("uart1_pclk alias not registered\n");
368 }
369
370 struct bcm2835_pll_data {
371 const char *name;
372 u32 cm_ctrl_reg;
373 u32 a2w_ctrl_reg;
374 u32 frac_reg;
375 u32 ana_reg_base;
376 u32 reference_enable_mask;
377 /* Bit in CM_LOCK to indicate when the PLL has locked. */
378 u32 lock_mask;
379
380 const struct bcm2835_pll_ana_bits *ana;
381
382 unsigned long min_rate;
383 unsigned long max_rate;
384 /*
385 * Highest rate for the VCO before we have to use the
386 * pre-divide-by-2.
387 */
388 unsigned long max_fb_rate;
389 };
390
391 struct bcm2835_pll_ana_bits {
392 u32 mask0;
393 u32 set0;
394 u32 mask1;
395 u32 set1;
396 u32 mask3;
397 u32 set3;
398 u32 fb_prediv_mask;
399 };
400
401 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
402 .mask0 = 0,
403 .set0 = 0,
404 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
405 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
406 .mask3 = (u32)~A2W_PLL_KA_MASK,
407 .set3 = (2 << A2W_PLL_KA_SHIFT),
408 .fb_prediv_mask = BIT(14),
409 };
410
411 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
412 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
413 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
414 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
415 .set1 = (6 << A2W_PLLH_KP_SHIFT),
416 .mask3 = 0,
417 .set3 = 0,
418 .fb_prediv_mask = BIT(11),
419 };
420
421 struct bcm2835_pll_divider_data {
422 const char *name;
423 const char *source_pll;
424
425 u32 cm_reg;
426 u32 a2w_reg;
427
428 u32 load_mask;
429 u32 hold_mask;
430 u32 fixed_divider;
431 };
432
433 struct bcm2835_clock_data {
434 const char *name;
435
436 const char *const *parents;
437 int num_mux_parents;
438
439 u32 ctl_reg;
440 u32 div_reg;
441
442 /* Number of integer bits in the divider */
443 u32 int_bits;
444 /* Number of fractional bits in the divider */
445 u32 frac_bits;
446
447 u32 flags;
448
449 bool is_vpu_clock;
450 bool is_mash_clock;
451 };
452
453 struct bcm2835_gate_data {
454 const char *name;
455 const char *parent;
456
457 u32 ctl_reg;
458 };
459
460 struct bcm2835_pll {
461 struct clk_hw hw;
462 struct bcm2835_cprman *cprman;
463 const struct bcm2835_pll_data *data;
464 };
465
466 static int bcm2835_pll_is_on(struct clk_hw *hw)
467 {
468 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
469 struct bcm2835_cprman *cprman = pll->cprman;
470 const struct bcm2835_pll_data *data = pll->data;
471
472 return cprman_read(cprman, data->a2w_ctrl_reg) &
473 A2W_PLL_CTRL_PRST_DISABLE;
474 }
475
476 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
477 unsigned long parent_rate,
478 u32 *ndiv, u32 *fdiv)
479 {
480 u64 div;
481
482 div = (u64)rate << A2W_PLL_FRAC_BITS;
483 do_div(div, parent_rate);
484
485 *ndiv = div >> A2W_PLL_FRAC_BITS;
486 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
487 }
488
489 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
490 u32 ndiv, u32 fdiv, u32 pdiv)
491 {
492 u64 rate;
493
494 if (pdiv == 0)
495 return 0;
496
497 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
498 do_div(rate, pdiv);
499 return rate >> A2W_PLL_FRAC_BITS;
500 }
501
502 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
503 unsigned long *parent_rate)
504 {
505 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
506 const struct bcm2835_pll_data *data = pll->data;
507 u32 ndiv, fdiv;
508
509 rate = clamp(rate, data->min_rate, data->max_rate);
510
511 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
512
513 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
514 }
515
516 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
517 unsigned long parent_rate)
518 {
519 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
520 struct bcm2835_cprman *cprman = pll->cprman;
521 const struct bcm2835_pll_data *data = pll->data;
522 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
523 u32 ndiv, pdiv, fdiv;
524 bool using_prediv;
525
526 if (parent_rate == 0)
527 return 0;
528
529 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
530 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
531 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
532 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
533 data->ana->fb_prediv_mask;
534
535 if (using_prediv)
536 ndiv *= 2;
537
538 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
539 }
540
541 static void bcm2835_pll_off(struct clk_hw *hw)
542 {
543 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
544 struct bcm2835_cprman *cprman = pll->cprman;
545 const struct bcm2835_pll_data *data = pll->data;
546
547 spin_lock(&cprman->regs_lock);
548 cprman_write(cprman, data->cm_ctrl_reg,
549 cprman_read(cprman, data->cm_ctrl_reg) |
550 CM_PLL_ANARST);
551 cprman_write(cprman, data->a2w_ctrl_reg,
552 cprman_read(cprman, data->a2w_ctrl_reg) |
553 A2W_PLL_CTRL_PWRDN);
554 spin_unlock(&cprman->regs_lock);
555 }
556
557 static int bcm2835_pll_on(struct clk_hw *hw)
558 {
559 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
560 struct bcm2835_cprman *cprman = pll->cprman;
561 const struct bcm2835_pll_data *data = pll->data;
562 ktime_t timeout;
563
564 cprman_write(cprman, data->a2w_ctrl_reg,
565 cprman_read(cprman, data->a2w_ctrl_reg) &
566 ~A2W_PLL_CTRL_PWRDN);
567
568 /* Take the PLL out of reset. */
569 cprman_write(cprman, data->cm_ctrl_reg,
570 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
571
572 /* Wait for the PLL to lock. */
573 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
574 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
575 if (ktime_after(ktime_get(), timeout)) {
576 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
577 clk_hw_get_name(hw));
578 return -ETIMEDOUT;
579 }
580
581 cpu_relax();
582 }
583
584 return 0;
585 }
586
587 static void
588 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
589 {
590 int i;
591
592 /*
593 * ANA register setup is done as a series of writes to
594 * ANA3-ANA0, in that order. This lets us write all 4
595 * registers as a single cycle of the serdes interface (taking
596 * 100 xosc clocks), whereas if we were to update ana0, 1, and
597 * 3 individually through their partial-write registers, each
598 * would be their own serdes cycle.
599 */
600 for (i = 3; i >= 0; i--)
601 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
602 }
603
604 static int bcm2835_pll_set_rate(struct clk_hw *hw,
605 unsigned long rate, unsigned long parent_rate)
606 {
607 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
608 struct bcm2835_cprman *cprman = pll->cprman;
609 const struct bcm2835_pll_data *data = pll->data;
610 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
611 u32 ndiv, fdiv, a2w_ctl;
612 u32 ana[4];
613 int i;
614
615 if (rate > data->max_fb_rate) {
616 use_fb_prediv = true;
617 rate /= 2;
618 } else {
619 use_fb_prediv = false;
620 }
621
622 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
623
624 for (i = 3; i >= 0; i--)
625 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
626
627 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
628
629 ana[0] &= ~data->ana->mask0;
630 ana[0] |= data->ana->set0;
631 ana[1] &= ~data->ana->mask1;
632 ana[1] |= data->ana->set1;
633 ana[3] &= ~data->ana->mask3;
634 ana[3] |= data->ana->set3;
635
636 if (was_using_prediv && !use_fb_prediv) {
637 ana[1] &= ~data->ana->fb_prediv_mask;
638 do_ana_setup_first = true;
639 } else if (!was_using_prediv && use_fb_prediv) {
640 ana[1] |= data->ana->fb_prediv_mask;
641 do_ana_setup_first = false;
642 } else {
643 do_ana_setup_first = true;
644 }
645
646 /* Unmask the reference clock from the oscillator. */
647 cprman_write(cprman, A2W_XOSC_CTRL,
648 cprman_read(cprman, A2W_XOSC_CTRL) |
649 data->reference_enable_mask);
650
651 if (do_ana_setup_first)
652 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
653
654 /* Set the PLL multiplier from the oscillator. */
655 cprman_write(cprman, data->frac_reg, fdiv);
656
657 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
658 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
659 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
660 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
661 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
662 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
663
664 if (!do_ana_setup_first)
665 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
666
667 return 0;
668 }
669
670 static int bcm2835_pll_debug_init(struct clk_hw *hw,
671 struct dentry *dentry)
672 {
673 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
674 struct bcm2835_cprman *cprman = pll->cprman;
675 const struct bcm2835_pll_data *data = pll->data;
676 struct debugfs_reg32 *regs;
677
678 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
679 if (!regs)
680 return -ENOMEM;
681
682 regs[0].name = "cm_ctrl";
683 regs[0].offset = data->cm_ctrl_reg;
684 regs[1].name = "a2w_ctrl";
685 regs[1].offset = data->a2w_ctrl_reg;
686 regs[2].name = "frac";
687 regs[2].offset = data->frac_reg;
688 regs[3].name = "ana0";
689 regs[3].offset = data->ana_reg_base + 0 * 4;
690 regs[4].name = "ana1";
691 regs[4].offset = data->ana_reg_base + 1 * 4;
692 regs[5].name = "ana2";
693 regs[5].offset = data->ana_reg_base + 2 * 4;
694 regs[6].name = "ana3";
695 regs[6].offset = data->ana_reg_base + 3 * 4;
696
697 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
698 }
699
700 static const struct clk_ops bcm2835_pll_clk_ops = {
701 .is_prepared = bcm2835_pll_is_on,
702 .prepare = bcm2835_pll_on,
703 .unprepare = bcm2835_pll_off,
704 .recalc_rate = bcm2835_pll_get_rate,
705 .set_rate = bcm2835_pll_set_rate,
706 .round_rate = bcm2835_pll_round_rate,
707 .debug_init = bcm2835_pll_debug_init,
708 };
709
710 struct bcm2835_pll_divider {
711 struct clk_divider div;
712 struct bcm2835_cprman *cprman;
713 const struct bcm2835_pll_divider_data *data;
714 };
715
716 static struct bcm2835_pll_divider *
717 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
718 {
719 return container_of(hw, struct bcm2835_pll_divider, div.hw);
720 }
721
722 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
723 {
724 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
725 struct bcm2835_cprman *cprman = divider->cprman;
726 const struct bcm2835_pll_divider_data *data = divider->data;
727
728 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
729 }
730
731 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
732 unsigned long rate,
733 unsigned long *parent_rate)
734 {
735 return clk_divider_ops.round_rate(hw, rate, parent_rate);
736 }
737
738 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
739 unsigned long parent_rate)
740 {
741 return clk_divider_ops.recalc_rate(hw, parent_rate);
742 }
743
744 static void bcm2835_pll_divider_off(struct clk_hw *hw)
745 {
746 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
747 struct bcm2835_cprman *cprman = divider->cprman;
748 const struct bcm2835_pll_divider_data *data = divider->data;
749
750 spin_lock(&cprman->regs_lock);
751 cprman_write(cprman, data->cm_reg,
752 (cprman_read(cprman, data->cm_reg) &
753 ~data->load_mask) | data->hold_mask);
754 cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
755 spin_unlock(&cprman->regs_lock);
756 }
757
758 static int bcm2835_pll_divider_on(struct clk_hw *hw)
759 {
760 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
761 struct bcm2835_cprman *cprman = divider->cprman;
762 const struct bcm2835_pll_divider_data *data = divider->data;
763
764 spin_lock(&cprman->regs_lock);
765 cprman_write(cprman, data->a2w_reg,
766 cprman_read(cprman, data->a2w_reg) &
767 ~A2W_PLL_CHANNEL_DISABLE);
768
769 cprman_write(cprman, data->cm_reg,
770 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
771 spin_unlock(&cprman->regs_lock);
772
773 return 0;
774 }
775
776 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
777 unsigned long rate,
778 unsigned long parent_rate)
779 {
780 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
781 struct bcm2835_cprman *cprman = divider->cprman;
782 const struct bcm2835_pll_divider_data *data = divider->data;
783 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
784
785 div = DIV_ROUND_UP_ULL(parent_rate, rate);
786
787 div = min(div, max_div);
788 if (div == max_div)
789 div = 0;
790
791 cprman_write(cprman, data->a2w_reg, div);
792 cm = cprman_read(cprman, data->cm_reg);
793 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
794 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
795
796 return 0;
797 }
798
799 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
800 struct dentry *dentry)
801 {
802 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
803 struct bcm2835_cprman *cprman = divider->cprman;
804 const struct bcm2835_pll_divider_data *data = divider->data;
805 struct debugfs_reg32 *regs;
806
807 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
808 if (!regs)
809 return -ENOMEM;
810
811 regs[0].name = "cm";
812 regs[0].offset = data->cm_reg;
813 regs[1].name = "a2w";
814 regs[1].offset = data->a2w_reg;
815
816 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
817 }
818
819 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
820 .is_prepared = bcm2835_pll_divider_is_on,
821 .prepare = bcm2835_pll_divider_on,
822 .unprepare = bcm2835_pll_divider_off,
823 .recalc_rate = bcm2835_pll_divider_get_rate,
824 .set_rate = bcm2835_pll_divider_set_rate,
825 .round_rate = bcm2835_pll_divider_round_rate,
826 .debug_init = bcm2835_pll_divider_debug_init,
827 };
828
829 /*
830 * The CM dividers do fixed-point division, so we can't use the
831 * generic integer divider code like the PLL dividers do (and we can't
832 * fake it by having some fixed shifts preceding it in the clock tree,
833 * because we'd run out of bits in a 32-bit unsigned long).
834 */
835 struct bcm2835_clock {
836 struct clk_hw hw;
837 struct bcm2835_cprman *cprman;
838 const struct bcm2835_clock_data *data;
839 };
840
841 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
842 {
843 return container_of(hw, struct bcm2835_clock, hw);
844 }
845
846 static int bcm2835_clock_is_on(struct clk_hw *hw)
847 {
848 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
849 struct bcm2835_cprman *cprman = clock->cprman;
850 const struct bcm2835_clock_data *data = clock->data;
851
852 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
853 }
854
855 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
856 unsigned long rate,
857 unsigned long parent_rate,
858 bool round_up)
859 {
860 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
861 const struct bcm2835_clock_data *data = clock->data;
862 u32 unused_frac_mask =
863 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
864 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
865 u64 rem;
866 u32 div, mindiv, maxdiv;
867
868 rem = do_div(temp, rate);
869 div = temp;
870
871 /* Round up and mask off the unused bits */
872 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
873 div += unused_frac_mask + 1;
874 div &= ~unused_frac_mask;
875
876 /* different clamping limits apply for a mash clock */
877 if (data->is_mash_clock) {
878 /* clamp to min divider of 2 */
879 mindiv = 2 << CM_DIV_FRAC_BITS;
880 /* clamp to the highest possible integer divider */
881 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
882 } else {
883 /* clamp to min divider of 1 */
884 mindiv = 1 << CM_DIV_FRAC_BITS;
885 /* clamp to the highest possible fractional divider */
886 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
887 CM_DIV_FRAC_BITS - data->frac_bits);
888 }
889
890 /* apply the clamping limits */
891 div = max_t(u32, div, mindiv);
892 div = min_t(u32, div, maxdiv);
893
894 return div;
895 }
896
897 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
898 unsigned long parent_rate,
899 u32 div)
900 {
901 const struct bcm2835_clock_data *data = clock->data;
902 u64 temp;
903
904 /*
905 * The divisor is a 12.12 fixed point field, but only some of
906 * the bits are populated in any given clock.
907 */
908 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
909 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
910
911 if (div == 0)
912 return 0;
913
914 temp = (u64)parent_rate << data->frac_bits;
915
916 do_div(temp, div);
917
918 return temp;
919 }
920
921 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
922 unsigned long parent_rate)
923 {
924 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
925 struct bcm2835_cprman *cprman = clock->cprman;
926 const struct bcm2835_clock_data *data = clock->data;
927 u32 div = cprman_read(cprman, data->div_reg);
928
929 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
930 }
931
932 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
933 {
934 struct bcm2835_cprman *cprman = clock->cprman;
935 const struct bcm2835_clock_data *data = clock->data;
936 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
937
938 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
939 if (ktime_after(ktime_get(), timeout)) {
940 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
941 clk_hw_get_name(&clock->hw));
942 return;
943 }
944 cpu_relax();
945 }
946 }
947
948 static void bcm2835_clock_off(struct clk_hw *hw)
949 {
950 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
951 struct bcm2835_cprman *cprman = clock->cprman;
952 const struct bcm2835_clock_data *data = clock->data;
953
954 spin_lock(&cprman->regs_lock);
955 cprman_write(cprman, data->ctl_reg,
956 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
957 spin_unlock(&cprman->regs_lock);
958
959 /* BUSY will remain high until the divider completes its cycle. */
960 bcm2835_clock_wait_busy(clock);
961 }
962
963 static int bcm2835_clock_on(struct clk_hw *hw)
964 {
965 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
966 struct bcm2835_cprman *cprman = clock->cprman;
967 const struct bcm2835_clock_data *data = clock->data;
968
969 spin_lock(&cprman->regs_lock);
970 cprman_write(cprman, data->ctl_reg,
971 cprman_read(cprman, data->ctl_reg) |
972 CM_ENABLE |
973 CM_GATE);
974 spin_unlock(&cprman->regs_lock);
975
976 return 0;
977 }
978
979 static int bcm2835_clock_set_rate(struct clk_hw *hw,
980 unsigned long rate, unsigned long parent_rate)
981 {
982 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
983 struct bcm2835_cprman *cprman = clock->cprman;
984 const struct bcm2835_clock_data *data = clock->data;
985 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
986 u32 ctl;
987
988 spin_lock(&cprman->regs_lock);
989
990 /*
991 * Setting up frac support
992 *
993 * In principle it is recommended to stop/start the clock first,
994 * but as we set CLK_SET_RATE_GATE during registration of the
995 * clock this requirement should be take care of by the
996 * clk-framework.
997 */
998 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
999 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1000 cprman_write(cprman, data->ctl_reg, ctl);
1001
1002 cprman_write(cprman, data->div_reg, div);
1003
1004 spin_unlock(&cprman->regs_lock);
1005
1006 return 0;
1007 }
1008
1009 static bool
1010 bcm2835_clk_is_pllc(struct clk_hw *hw)
1011 {
1012 if (!hw)
1013 return false;
1014
1015 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1016 }
1017
1018 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1019 struct clk_rate_request *req)
1020 {
1021 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1022 struct clk_hw *parent, *best_parent = NULL;
1023 bool current_parent_is_pllc;
1024 unsigned long rate, best_rate = 0;
1025 unsigned long prate, best_prate = 0;
1026 size_t i;
1027 u32 div;
1028
1029 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1030
1031 /*
1032 * Select parent clock that results in the closest but lower rate
1033 */
1034 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1035 parent = clk_hw_get_parent_by_index(hw, i);
1036 if (!parent)
1037 continue;
1038
1039 /*
1040 * Don't choose a PLLC-derived clock as our parent
1041 * unless it had been manually set that way. PLLC's
1042 * frequency gets adjusted by the firmware due to
1043 * over-temp or under-voltage conditions, without
1044 * prior notification to our clock consumer.
1045 */
1046 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1047 continue;
1048
1049 prate = clk_hw_get_rate(parent);
1050 div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1051 rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1052 if (rate > best_rate && rate <= req->rate) {
1053 best_parent = parent;
1054 best_prate = prate;
1055 best_rate = rate;
1056 }
1057 }
1058
1059 if (!best_parent)
1060 return -EINVAL;
1061
1062 req->best_parent_hw = best_parent;
1063 req->best_parent_rate = best_prate;
1064
1065 req->rate = best_rate;
1066
1067 return 0;
1068 }
1069
1070 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1071 {
1072 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1073 struct bcm2835_cprman *cprman = clock->cprman;
1074 const struct bcm2835_clock_data *data = clock->data;
1075 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1076
1077 cprman_write(cprman, data->ctl_reg, src);
1078 return 0;
1079 }
1080
1081 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1082 {
1083 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1084 struct bcm2835_cprman *cprman = clock->cprman;
1085 const struct bcm2835_clock_data *data = clock->data;
1086 u32 src = cprman_read(cprman, data->ctl_reg);
1087
1088 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1089 }
1090
1091 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1092 {
1093 .name = "ctl",
1094 .offset = 0,
1095 },
1096 {
1097 .name = "div",
1098 .offset = 4,
1099 },
1100 };
1101
1102 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1103 struct dentry *dentry)
1104 {
1105 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1106 struct bcm2835_cprman *cprman = clock->cprman;
1107 const struct bcm2835_clock_data *data = clock->data;
1108
1109 return bcm2835_debugfs_regset(
1110 cprman, data->ctl_reg,
1111 bcm2835_debugfs_clock_reg32,
1112 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1113 dentry);
1114 }
1115
1116 static const struct clk_ops bcm2835_clock_clk_ops = {
1117 .is_prepared = bcm2835_clock_is_on,
1118 .prepare = bcm2835_clock_on,
1119 .unprepare = bcm2835_clock_off,
1120 .recalc_rate = bcm2835_clock_get_rate,
1121 .set_rate = bcm2835_clock_set_rate,
1122 .determine_rate = bcm2835_clock_determine_rate,
1123 .set_parent = bcm2835_clock_set_parent,
1124 .get_parent = bcm2835_clock_get_parent,
1125 .debug_init = bcm2835_clock_debug_init,
1126 };
1127
1128 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1129 {
1130 return true;
1131 }
1132
1133 /*
1134 * The VPU clock can never be disabled (it doesn't have an ENABLE
1135 * bit), so it gets its own set of clock ops.
1136 */
1137 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1138 .is_prepared = bcm2835_vpu_clock_is_on,
1139 .recalc_rate = bcm2835_clock_get_rate,
1140 .set_rate = bcm2835_clock_set_rate,
1141 .determine_rate = bcm2835_clock_determine_rate,
1142 .set_parent = bcm2835_clock_set_parent,
1143 .get_parent = bcm2835_clock_get_parent,
1144 .debug_init = bcm2835_clock_debug_init,
1145 };
1146
1147 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1148 const struct bcm2835_pll_data *data)
1149 {
1150 struct bcm2835_pll *pll;
1151 struct clk_init_data init;
1152 int ret;
1153
1154 memset(&init, 0, sizeof(init));
1155
1156 /* All of the PLLs derive from the external oscillator. */
1157 init.parent_names = &cprman->osc_name;
1158 init.num_parents = 1;
1159 init.name = data->name;
1160 init.ops = &bcm2835_pll_clk_ops;
1161 init.flags = CLK_IGNORE_UNUSED;
1162
1163 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1164 if (!pll)
1165 return NULL;
1166
1167 pll->cprman = cprman;
1168 pll->data = data;
1169 pll->hw.init = &init;
1170
1171 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1172 if (ret)
1173 return NULL;
1174 return &pll->hw;
1175 }
1176
1177 static struct clk_hw *
1178 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1179 const struct bcm2835_pll_divider_data *data)
1180 {
1181 struct bcm2835_pll_divider *divider;
1182 struct clk_init_data init;
1183 const char *divider_name;
1184 int ret;
1185
1186 if (data->fixed_divider != 1) {
1187 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1188 "%s_prediv", data->name);
1189 if (!divider_name)
1190 return NULL;
1191 } else {
1192 divider_name = data->name;
1193 }
1194
1195 memset(&init, 0, sizeof(init));
1196
1197 init.parent_names = &data->source_pll;
1198 init.num_parents = 1;
1199 init.name = divider_name;
1200 init.ops = &bcm2835_pll_divider_clk_ops;
1201 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1202
1203 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1204 if (!divider)
1205 return NULL;
1206
1207 divider->div.reg = cprman->regs + data->a2w_reg;
1208 divider->div.shift = A2W_PLL_DIV_SHIFT;
1209 divider->div.width = A2W_PLL_DIV_BITS;
1210 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1211 divider->div.lock = &cprman->regs_lock;
1212 divider->div.hw.init = &init;
1213 divider->div.table = NULL;
1214
1215 divider->cprman = cprman;
1216 divider->data = data;
1217
1218 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1219 if (ret)
1220 return ERR_PTR(ret);
1221
1222 /*
1223 * PLLH's channels have a fixed divide by 10 afterwards, which
1224 * is what our consumers are actually using.
1225 */
1226 if (data->fixed_divider != 1) {
1227 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1228 divider_name,
1229 CLK_SET_RATE_PARENT,
1230 1,
1231 data->fixed_divider);
1232 }
1233
1234 return &divider->div.hw;
1235 }
1236
1237 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1238 const struct bcm2835_clock_data *data)
1239 {
1240 struct bcm2835_clock *clock;
1241 struct clk_init_data init;
1242 const char *parents[1 << CM_SRC_BITS];
1243 size_t i;
1244 int ret;
1245
1246 /*
1247 * Replace our "xosc" references with the oscillator's
1248 * actual name.
1249 */
1250 for (i = 0; i < data->num_mux_parents; i++) {
1251 if (strcmp(data->parents[i], "xosc") == 0)
1252 parents[i] = cprman->osc_name;
1253 else
1254 parents[i] = data->parents[i];
1255 }
1256
1257 memset(&init, 0, sizeof(init));
1258 init.parent_names = parents;
1259 init.num_parents = data->num_mux_parents;
1260 init.name = data->name;
1261 init.flags = data->flags | CLK_IGNORE_UNUSED;
1262
1263 if (data->is_vpu_clock) {
1264 init.ops = &bcm2835_vpu_clock_clk_ops;
1265 } else {
1266 init.ops = &bcm2835_clock_clk_ops;
1267 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1268
1269 /* If the clock wasn't actually enabled at boot, it's not
1270 * critical.
1271 */
1272 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1273 init.flags &= ~CLK_IS_CRITICAL;
1274 }
1275
1276 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1277 if (!clock)
1278 return NULL;
1279
1280 clock->cprman = cprman;
1281 clock->data = data;
1282 clock->hw.init = &init;
1283
1284 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1285 if (ret)
1286 return ERR_PTR(ret);
1287 return &clock->hw;
1288 }
1289
1290 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1291 const struct bcm2835_gate_data *data)
1292 {
1293 return clk_register_gate(cprman->dev, data->name, data->parent,
1294 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1295 cprman->regs + data->ctl_reg,
1296 CM_GATE_BIT, 0, &cprman->regs_lock);
1297 }
1298
1299 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1300 const void *data);
1301 struct bcm2835_clk_desc {
1302 bcm2835_clk_register clk_register;
1303 const void *data;
1304 };
1305
1306 /* assignment helper macros for different clock types */
1307 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1308 .data = __VA_ARGS__ }
1309 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1310 &(struct bcm2835_pll_data) \
1311 {__VA_ARGS__})
1312 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1313 &(struct bcm2835_pll_divider_data) \
1314 {__VA_ARGS__})
1315 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1316 &(struct bcm2835_clock_data) \
1317 {__VA_ARGS__})
1318 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1319 &(struct bcm2835_gate_data) \
1320 {__VA_ARGS__})
1321
1322 /* parent mux arrays plus helper macros */
1323
1324 /* main oscillator parent mux */
1325 static const char *const bcm2835_clock_osc_parents[] = {
1326 "gnd",
1327 "xosc",
1328 "testdebug0",
1329 "testdebug1"
1330 };
1331
1332 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1333 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1334 .parents = bcm2835_clock_osc_parents, \
1335 __VA_ARGS__)
1336
1337 /* main peripherial parent mux */
1338 static const char *const bcm2835_clock_per_parents[] = {
1339 "gnd",
1340 "xosc",
1341 "testdebug0",
1342 "testdebug1",
1343 "plla_per",
1344 "pllc_per",
1345 "plld_per",
1346 "pllh_aux",
1347 };
1348
1349 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1350 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1351 .parents = bcm2835_clock_per_parents, \
1352 __VA_ARGS__)
1353
1354 /* main vpu parent mux */
1355 static const char *const bcm2835_clock_vpu_parents[] = {
1356 "gnd",
1357 "xosc",
1358 "testdebug0",
1359 "testdebug1",
1360 "plla_core",
1361 "pllc_core0",
1362 "plld_core",
1363 "pllh_aux",
1364 "pllc_core1",
1365 "pllc_core2",
1366 };
1367
1368 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1369 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1370 .parents = bcm2835_clock_vpu_parents, \
1371 __VA_ARGS__)
1372
1373 /*
1374 * the real definition of all the pll, pll_dividers and clocks
1375 * these make use of the above REGISTER_* macros
1376 */
1377 static const struct bcm2835_clk_desc clk_desc_array[] = {
1378 /* the PLL + PLL dividers */
1379
1380 /*
1381 * PLLA is the auxiliary PLL, used to drive the CCP2
1382 * (Compact Camera Port 2) transmitter clock.
1383 *
1384 * It is in the PX LDO power domain, which is on when the
1385 * AUDIO domain is on.
1386 */
1387 [BCM2835_PLLA] = REGISTER_PLL(
1388 .name = "plla",
1389 .cm_ctrl_reg = CM_PLLA,
1390 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1391 .frac_reg = A2W_PLLA_FRAC,
1392 .ana_reg_base = A2W_PLLA_ANA0,
1393 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1394 .lock_mask = CM_LOCK_FLOCKA,
1395
1396 .ana = &bcm2835_ana_default,
1397
1398 .min_rate = 600000000u,
1399 .max_rate = 2400000000u,
1400 .max_fb_rate = BCM2835_MAX_FB_RATE),
1401 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1402 .name = "plla_core",
1403 .source_pll = "plla",
1404 .cm_reg = CM_PLLA,
1405 .a2w_reg = A2W_PLLA_CORE,
1406 .load_mask = CM_PLLA_LOADCORE,
1407 .hold_mask = CM_PLLA_HOLDCORE,
1408 .fixed_divider = 1),
1409 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1410 .name = "plla_per",
1411 .source_pll = "plla",
1412 .cm_reg = CM_PLLA,
1413 .a2w_reg = A2W_PLLA_PER,
1414 .load_mask = CM_PLLA_LOADPER,
1415 .hold_mask = CM_PLLA_HOLDPER,
1416 .fixed_divider = 1),
1417 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1418 .name = "plla_dsi0",
1419 .source_pll = "plla",
1420 .cm_reg = CM_PLLA,
1421 .a2w_reg = A2W_PLLA_DSI0,
1422 .load_mask = CM_PLLA_LOADDSI0,
1423 .hold_mask = CM_PLLA_HOLDDSI0,
1424 .fixed_divider = 1),
1425 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1426 .name = "plla_ccp2",
1427 .source_pll = "plla",
1428 .cm_reg = CM_PLLA,
1429 .a2w_reg = A2W_PLLA_CCP2,
1430 .load_mask = CM_PLLA_LOADCCP2,
1431 .hold_mask = CM_PLLA_HOLDCCP2,
1432 .fixed_divider = 1),
1433
1434 /* PLLB is used for the ARM's clock. */
1435 [BCM2835_PLLB] = REGISTER_PLL(
1436 .name = "pllb",
1437 .cm_ctrl_reg = CM_PLLB,
1438 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1439 .frac_reg = A2W_PLLB_FRAC,
1440 .ana_reg_base = A2W_PLLB_ANA0,
1441 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1442 .lock_mask = CM_LOCK_FLOCKB,
1443
1444 .ana = &bcm2835_ana_default,
1445
1446 .min_rate = 600000000u,
1447 .max_rate = 3000000000u,
1448 .max_fb_rate = BCM2835_MAX_FB_RATE),
1449 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1450 .name = "pllb_arm",
1451 .source_pll = "pllb",
1452 .cm_reg = CM_PLLB,
1453 .a2w_reg = A2W_PLLB_ARM,
1454 .load_mask = CM_PLLB_LOADARM,
1455 .hold_mask = CM_PLLB_HOLDARM,
1456 .fixed_divider = 1),
1457
1458 /*
1459 * PLLC is the core PLL, used to drive the core VPU clock.
1460 *
1461 * It is in the PX LDO power domain, which is on when the
1462 * AUDIO domain is on.
1463 */
1464 [BCM2835_PLLC] = REGISTER_PLL(
1465 .name = "pllc",
1466 .cm_ctrl_reg = CM_PLLC,
1467 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1468 .frac_reg = A2W_PLLC_FRAC,
1469 .ana_reg_base = A2W_PLLC_ANA0,
1470 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1471 .lock_mask = CM_LOCK_FLOCKC,
1472
1473 .ana = &bcm2835_ana_default,
1474
1475 .min_rate = 600000000u,
1476 .max_rate = 3000000000u,
1477 .max_fb_rate = BCM2835_MAX_FB_RATE),
1478 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1479 .name = "pllc_core0",
1480 .source_pll = "pllc",
1481 .cm_reg = CM_PLLC,
1482 .a2w_reg = A2W_PLLC_CORE0,
1483 .load_mask = CM_PLLC_LOADCORE0,
1484 .hold_mask = CM_PLLC_HOLDCORE0,
1485 .fixed_divider = 1),
1486 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1487 .name = "pllc_core1",
1488 .source_pll = "pllc",
1489 .cm_reg = CM_PLLC,
1490 .a2w_reg = A2W_PLLC_CORE1,
1491 .load_mask = CM_PLLC_LOADCORE1,
1492 .hold_mask = CM_PLLC_HOLDCORE1,
1493 .fixed_divider = 1),
1494 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1495 .name = "pllc_core2",
1496 .source_pll = "pllc",
1497 .cm_reg = CM_PLLC,
1498 .a2w_reg = A2W_PLLC_CORE2,
1499 .load_mask = CM_PLLC_LOADCORE2,
1500 .hold_mask = CM_PLLC_HOLDCORE2,
1501 .fixed_divider = 1),
1502 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1503 .name = "pllc_per",
1504 .source_pll = "pllc",
1505 .cm_reg = CM_PLLC,
1506 .a2w_reg = A2W_PLLC_PER,
1507 .load_mask = CM_PLLC_LOADPER,
1508 .hold_mask = CM_PLLC_HOLDPER,
1509 .fixed_divider = 1),
1510
1511 /*
1512 * PLLD is the display PLL, used to drive DSI display panels.
1513 *
1514 * It is in the PX LDO power domain, which is on when the
1515 * AUDIO domain is on.
1516 */
1517 [BCM2835_PLLD] = REGISTER_PLL(
1518 .name = "plld",
1519 .cm_ctrl_reg = CM_PLLD,
1520 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1521 .frac_reg = A2W_PLLD_FRAC,
1522 .ana_reg_base = A2W_PLLD_ANA0,
1523 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1524 .lock_mask = CM_LOCK_FLOCKD,
1525
1526 .ana = &bcm2835_ana_default,
1527
1528 .min_rate = 600000000u,
1529 .max_rate = 2400000000u,
1530 .max_fb_rate = BCM2835_MAX_FB_RATE),
1531 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1532 .name = "plld_core",
1533 .source_pll = "plld",
1534 .cm_reg = CM_PLLD,
1535 .a2w_reg = A2W_PLLD_CORE,
1536 .load_mask = CM_PLLD_LOADCORE,
1537 .hold_mask = CM_PLLD_HOLDCORE,
1538 .fixed_divider = 1),
1539 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1540 .name = "plld_per",
1541 .source_pll = "plld",
1542 .cm_reg = CM_PLLD,
1543 .a2w_reg = A2W_PLLD_PER,
1544 .load_mask = CM_PLLD_LOADPER,
1545 .hold_mask = CM_PLLD_HOLDPER,
1546 .fixed_divider = 1),
1547 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1548 .name = "plld_dsi0",
1549 .source_pll = "plld",
1550 .cm_reg = CM_PLLD,
1551 .a2w_reg = A2W_PLLD_DSI0,
1552 .load_mask = CM_PLLD_LOADDSI0,
1553 .hold_mask = CM_PLLD_HOLDDSI0,
1554 .fixed_divider = 1),
1555 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1556 .name = "plld_dsi1",
1557 .source_pll = "plld",
1558 .cm_reg = CM_PLLD,
1559 .a2w_reg = A2W_PLLD_DSI1,
1560 .load_mask = CM_PLLD_LOADDSI1,
1561 .hold_mask = CM_PLLD_HOLDDSI1,
1562 .fixed_divider = 1),
1563
1564 /*
1565 * PLLH is used to supply the pixel clock or the AUX clock for the
1566 * TV encoder.
1567 *
1568 * It is in the HDMI power domain.
1569 */
1570 [BCM2835_PLLH] = REGISTER_PLL(
1571 "pllh",
1572 .cm_ctrl_reg = CM_PLLH,
1573 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1574 .frac_reg = A2W_PLLH_FRAC,
1575 .ana_reg_base = A2W_PLLH_ANA0,
1576 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1577 .lock_mask = CM_LOCK_FLOCKH,
1578
1579 .ana = &bcm2835_ana_pllh,
1580
1581 .min_rate = 600000000u,
1582 .max_rate = 3000000000u,
1583 .max_fb_rate = BCM2835_MAX_FB_RATE),
1584 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1585 .name = "pllh_rcal",
1586 .source_pll = "pllh",
1587 .cm_reg = CM_PLLH,
1588 .a2w_reg = A2W_PLLH_RCAL,
1589 .load_mask = CM_PLLH_LOADRCAL,
1590 .hold_mask = 0,
1591 .fixed_divider = 10),
1592 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1593 .name = "pllh_aux",
1594 .source_pll = "pllh",
1595 .cm_reg = CM_PLLH,
1596 .a2w_reg = A2W_PLLH_AUX,
1597 .load_mask = CM_PLLH_LOADAUX,
1598 .hold_mask = 0,
1599 .fixed_divider = 1),
1600 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1601 .name = "pllh_pix",
1602 .source_pll = "pllh",
1603 .cm_reg = CM_PLLH,
1604 .a2w_reg = A2W_PLLH_PIX,
1605 .load_mask = CM_PLLH_LOADPIX,
1606 .hold_mask = 0,
1607 .fixed_divider = 10),
1608
1609 /* the clocks */
1610
1611 /* clocks with oscillator parent mux */
1612
1613 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1614 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1615 .name = "otp",
1616 .ctl_reg = CM_OTPCTL,
1617 .div_reg = CM_OTPDIV,
1618 .int_bits = 4,
1619 .frac_bits = 0),
1620 /*
1621 * Used for a 1Mhz clock for the system clocksource, and also used
1622 * bythe watchdog timer and the camera pulse generator.
1623 */
1624 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1625 .name = "timer",
1626 .ctl_reg = CM_TIMERCTL,
1627 .div_reg = CM_TIMERDIV,
1628 .int_bits = 6,
1629 .frac_bits = 12),
1630 /*
1631 * Clock for the temperature sensor.
1632 * Generally run at 2Mhz, max 5Mhz.
1633 */
1634 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1635 .name = "tsens",
1636 .ctl_reg = CM_TSENSCTL,
1637 .div_reg = CM_TSENSDIV,
1638 .int_bits = 5,
1639 .frac_bits = 0),
1640 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1641 .name = "tec",
1642 .ctl_reg = CM_TECCTL,
1643 .div_reg = CM_TECDIV,
1644 .int_bits = 6,
1645 .frac_bits = 0),
1646
1647 /* clocks with vpu parent mux */
1648 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1649 .name = "h264",
1650 .ctl_reg = CM_H264CTL,
1651 .div_reg = CM_H264DIV,
1652 .int_bits = 4,
1653 .frac_bits = 8),
1654 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1655 .name = "isp",
1656 .ctl_reg = CM_ISPCTL,
1657 .div_reg = CM_ISPDIV,
1658 .int_bits = 4,
1659 .frac_bits = 8),
1660
1661 /*
1662 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1663 * in the SDRAM controller can't be used.
1664 */
1665 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1666 .name = "sdram",
1667 .ctl_reg = CM_SDCCTL,
1668 .div_reg = CM_SDCDIV,
1669 .int_bits = 6,
1670 .frac_bits = 0),
1671 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1672 .name = "v3d",
1673 .ctl_reg = CM_V3DCTL,
1674 .div_reg = CM_V3DDIV,
1675 .int_bits = 4,
1676 .frac_bits = 8),
1677 /*
1678 * VPU clock. This doesn't have an enable bit, since it drives
1679 * the bus for everything else, and is special so it doesn't need
1680 * to be gated for rate changes. It is also known as "clk_audio"
1681 * in various hardware documentation.
1682 */
1683 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1684 .name = "vpu",
1685 .ctl_reg = CM_VPUCTL,
1686 .div_reg = CM_VPUDIV,
1687 .int_bits = 12,
1688 .frac_bits = 8,
1689 .flags = CLK_IS_CRITICAL,
1690 .is_vpu_clock = true),
1691
1692 /* clocks with per parent mux */
1693 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1694 .name = "aveo",
1695 .ctl_reg = CM_AVEOCTL,
1696 .div_reg = CM_AVEODIV,
1697 .int_bits = 4,
1698 .frac_bits = 0),
1699 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1700 .name = "cam0",
1701 .ctl_reg = CM_CAM0CTL,
1702 .div_reg = CM_CAM0DIV,
1703 .int_bits = 4,
1704 .frac_bits = 8),
1705 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1706 .name = "cam1",
1707 .ctl_reg = CM_CAM1CTL,
1708 .div_reg = CM_CAM1DIV,
1709 .int_bits = 4,
1710 .frac_bits = 8),
1711 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1712 .name = "dft",
1713 .ctl_reg = CM_DFTCTL,
1714 .div_reg = CM_DFTDIV,
1715 .int_bits = 5,
1716 .frac_bits = 0),
1717 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1718 .name = "dpi",
1719 .ctl_reg = CM_DPICTL,
1720 .div_reg = CM_DPIDIV,
1721 .int_bits = 4,
1722 .frac_bits = 8),
1723
1724 /* Arasan EMMC clock */
1725 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1726 .name = "emmc",
1727 .ctl_reg = CM_EMMCCTL,
1728 .div_reg = CM_EMMCDIV,
1729 .int_bits = 4,
1730 .frac_bits = 8),
1731
1732 /* General purpose (GPIO) clocks */
1733 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1734 .name = "gp0",
1735 .ctl_reg = CM_GP0CTL,
1736 .div_reg = CM_GP0DIV,
1737 .int_bits = 12,
1738 .frac_bits = 12,
1739 .is_mash_clock = true),
1740 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1741 .name = "gp1",
1742 .ctl_reg = CM_GP1CTL,
1743 .div_reg = CM_GP1DIV,
1744 .int_bits = 12,
1745 .frac_bits = 12,
1746 .flags = CLK_IS_CRITICAL,
1747 .is_mash_clock = true),
1748 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
1749 .name = "gp2",
1750 .ctl_reg = CM_GP2CTL,
1751 .div_reg = CM_GP2DIV,
1752 .int_bits = 12,
1753 .frac_bits = 12,
1754 .flags = CLK_IS_CRITICAL),
1755
1756 /* HDMI state machine */
1757 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
1758 .name = "hsm",
1759 .ctl_reg = CM_HSMCTL,
1760 .div_reg = CM_HSMDIV,
1761 .int_bits = 4,
1762 .frac_bits = 8),
1763 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
1764 .name = "pcm",
1765 .ctl_reg = CM_PCMCTL,
1766 .div_reg = CM_PCMDIV,
1767 .int_bits = 12,
1768 .frac_bits = 12,
1769 .is_mash_clock = true),
1770 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
1771 .name = "pwm",
1772 .ctl_reg = CM_PWMCTL,
1773 .div_reg = CM_PWMDIV,
1774 .int_bits = 12,
1775 .frac_bits = 12,
1776 .is_mash_clock = true),
1777 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
1778 .name = "slim",
1779 .ctl_reg = CM_SLIMCTL,
1780 .div_reg = CM_SLIMDIV,
1781 .int_bits = 12,
1782 .frac_bits = 12,
1783 .is_mash_clock = true),
1784 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
1785 .name = "smi",
1786 .ctl_reg = CM_SMICTL,
1787 .div_reg = CM_SMIDIV,
1788 .int_bits = 4,
1789 .frac_bits = 8),
1790 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
1791 .name = "uart",
1792 .ctl_reg = CM_UARTCTL,
1793 .div_reg = CM_UARTDIV,
1794 .int_bits = 10,
1795 .frac_bits = 12),
1796
1797 /* TV encoder clock. Only operating frequency is 108Mhz. */
1798 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
1799 .name = "vec",
1800 .ctl_reg = CM_VECCTL,
1801 .div_reg = CM_VECDIV,
1802 .int_bits = 4,
1803 .frac_bits = 0),
1804
1805 /* dsi clocks */
1806 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
1807 .name = "dsi0e",
1808 .ctl_reg = CM_DSI0ECTL,
1809 .div_reg = CM_DSI0EDIV,
1810 .int_bits = 4,
1811 .frac_bits = 8),
1812 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
1813 .name = "dsi1e",
1814 .ctl_reg = CM_DSI1ECTL,
1815 .div_reg = CM_DSI1EDIV,
1816 .int_bits = 4,
1817 .frac_bits = 8),
1818
1819 /* the gates */
1820
1821 /*
1822 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1823 * you have the debug bit set in the power manager, which we
1824 * don't bother exposing) are individual gates off of the
1825 * non-stop vpu clock.
1826 */
1827 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1828 .name = "peri_image",
1829 .parent = "vpu",
1830 .ctl_reg = CM_PERIICTL),
1831 };
1832
1833 /*
1834 * Permanently take a reference on the parent of the SDRAM clock.
1835 *
1836 * While the SDRAM is being driven by its dedicated PLL most of the
1837 * time, there is a little loop running in the firmware that
1838 * periodically switches the SDRAM to using our CM clock to do PVT
1839 * recalibration, with the assumption that the previously configured
1840 * SDRAM parent is still enabled and running.
1841 */
1842 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
1843 {
1844 struct clk *parent = clk_get_parent(sdc);
1845
1846 if (IS_ERR(parent))
1847 return PTR_ERR(parent);
1848
1849 return clk_prepare_enable(parent);
1850 }
1851
1852 static int bcm2835_clk_probe(struct platform_device *pdev)
1853 {
1854 struct device *dev = &pdev->dev;
1855 struct clk_hw **hws;
1856 struct bcm2835_cprman *cprman;
1857 struct resource *res;
1858 const struct bcm2835_clk_desc *desc;
1859 const size_t asize = ARRAY_SIZE(clk_desc_array);
1860 size_t i;
1861 int ret;
1862
1863 cprman = devm_kzalloc(dev, sizeof(*cprman) +
1864 sizeof(*cprman->onecell.hws) * asize,
1865 GFP_KERNEL);
1866 if (!cprman)
1867 return -ENOMEM;
1868
1869 spin_lock_init(&cprman->regs_lock);
1870 cprman->dev = dev;
1871 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1872 cprman->regs = devm_ioremap_resource(dev, res);
1873 if (IS_ERR(cprman->regs))
1874 return PTR_ERR(cprman->regs);
1875
1876 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1877 if (!cprman->osc_name)
1878 return -ENODEV;
1879
1880 platform_set_drvdata(pdev, cprman);
1881
1882 cprman->onecell.num = asize;
1883 hws = cprman->onecell.hws;
1884
1885 for (i = 0; i < asize; i++) {
1886 desc = &clk_desc_array[i];
1887 if (desc->clk_register && desc->data)
1888 hws[i] = desc->clk_register(cprman, desc->data);
1889 }
1890
1891 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
1892 if (ret)
1893 return ret;
1894
1895 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
1896 &cprman->onecell);
1897 }
1898
1899 static const struct of_device_id bcm2835_clk_of_match[] = {
1900 { .compatible = "brcm,bcm2835-cprman", },
1901 {}
1902 };
1903 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1904
1905 static struct platform_driver bcm2835_clk_driver = {
1906 .driver = {
1907 .name = "bcm2835-clk",
1908 .of_match_table = bcm2835_clk_of_match,
1909 },
1910 .probe = bcm2835_clk_probe,
1911 };
1912
1913 builtin_platform_driver(bcm2835_clk_driver);
1914
1915 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1916 MODULE_DESCRIPTION("BCM2835 clock driver");
1917 MODULE_LICENSE("GPL v2");