]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/clk/bcm/clk-bcm2835.c
87616ded5bbe87e76795d9c5b48464fb5a7dc453
[mirror_ubuntu-zesty-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 /**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk/bcm2835.h>
40 #include <linux/debugfs.h>
41 #include <linux/module.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <dt-bindings/clock/bcm2835.h>
46
47 #define CM_PASSWORD 0x5a000000
48
49 #define CM_GNRICCTL 0x000
50 #define CM_GNRICDIV 0x004
51 # define CM_DIV_FRAC_BITS 12
52 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
53
54 #define CM_VPUCTL 0x008
55 #define CM_VPUDIV 0x00c
56 #define CM_SYSCTL 0x010
57 #define CM_SYSDIV 0x014
58 #define CM_PERIACTL 0x018
59 #define CM_PERIADIV 0x01c
60 #define CM_PERIICTL 0x020
61 #define CM_PERIIDIV 0x024
62 #define CM_H264CTL 0x028
63 #define CM_H264DIV 0x02c
64 #define CM_ISPCTL 0x030
65 #define CM_ISPDIV 0x034
66 #define CM_V3DCTL 0x038
67 #define CM_V3DDIV 0x03c
68 #define CM_CAM0CTL 0x040
69 #define CM_CAM0DIV 0x044
70 #define CM_CAM1CTL 0x048
71 #define CM_CAM1DIV 0x04c
72 #define CM_CCP2CTL 0x050
73 #define CM_CCP2DIV 0x054
74 #define CM_DSI0ECTL 0x058
75 #define CM_DSI0EDIV 0x05c
76 #define CM_DSI0PCTL 0x060
77 #define CM_DSI0PDIV 0x064
78 #define CM_DPICTL 0x068
79 #define CM_DPIDIV 0x06c
80 #define CM_GP0CTL 0x070
81 #define CM_GP0DIV 0x074
82 #define CM_GP1CTL 0x078
83 #define CM_GP1DIV 0x07c
84 #define CM_GP2CTL 0x080
85 #define CM_GP2DIV 0x084
86 #define CM_HSMCTL 0x088
87 #define CM_HSMDIV 0x08c
88 #define CM_OTPCTL 0x090
89 #define CM_OTPDIV 0x094
90 #define CM_PCMCTL 0x098
91 #define CM_PCMDIV 0x09c
92 #define CM_PWMCTL 0x0a0
93 #define CM_PWMDIV 0x0a4
94 #define CM_SLIMCTL 0x0a8
95 #define CM_SLIMDIV 0x0ac
96 #define CM_SMICTL 0x0b0
97 #define CM_SMIDIV 0x0b4
98 /* no definition for 0x0b8 and 0x0bc */
99 #define CM_TCNTCTL 0x0c0
100 #define CM_TCNTDIV 0x0c4
101 #define CM_TECCTL 0x0c8
102 #define CM_TECDIV 0x0cc
103 #define CM_TD0CTL 0x0d0
104 #define CM_TD0DIV 0x0d4
105 #define CM_TD1CTL 0x0d8
106 #define CM_TD1DIV 0x0dc
107 #define CM_TSENSCTL 0x0e0
108 #define CM_TSENSDIV 0x0e4
109 #define CM_TIMERCTL 0x0e8
110 #define CM_TIMERDIV 0x0ec
111 #define CM_UARTCTL 0x0f0
112 #define CM_UARTDIV 0x0f4
113 #define CM_VECCTL 0x0f8
114 #define CM_VECDIV 0x0fc
115 #define CM_PULSECTL 0x190
116 #define CM_PULSEDIV 0x194
117 #define CM_SDCCTL 0x1a8
118 #define CM_SDCDIV 0x1ac
119 #define CM_ARMCTL 0x1b0
120 #define CM_AVEOCTL 0x1b8
121 #define CM_AVEODIV 0x1bc
122 #define CM_EMMCCTL 0x1c0
123 #define CM_EMMCDIV 0x1c4
124
125 /* General bits for the CM_*CTL regs */
126 # define CM_ENABLE BIT(4)
127 # define CM_KILL BIT(5)
128 # define CM_GATE_BIT 6
129 # define CM_GATE BIT(CM_GATE_BIT)
130 # define CM_BUSY BIT(7)
131 # define CM_BUSYD BIT(8)
132 # define CM_FRAC BIT(9)
133 # define CM_SRC_SHIFT 0
134 # define CM_SRC_BITS 4
135 # define CM_SRC_MASK 0xf
136 # define CM_SRC_GND 0
137 # define CM_SRC_OSC 1
138 # define CM_SRC_TESTDEBUG0 2
139 # define CM_SRC_TESTDEBUG1 3
140 # define CM_SRC_PLLA_CORE 4
141 # define CM_SRC_PLLA_PER 4
142 # define CM_SRC_PLLC_CORE0 5
143 # define CM_SRC_PLLC_PER 5
144 # define CM_SRC_PLLC_CORE1 8
145 # define CM_SRC_PLLD_CORE 6
146 # define CM_SRC_PLLD_PER 6
147 # define CM_SRC_PLLH_AUX 7
148 # define CM_SRC_PLLC_CORE1 8
149 # define CM_SRC_PLLC_CORE2 9
150
151 #define CM_OSCCOUNT 0x100
152
153 #define CM_PLLA 0x104
154 # define CM_PLL_ANARST BIT(8)
155 # define CM_PLLA_HOLDPER BIT(7)
156 # define CM_PLLA_LOADPER BIT(6)
157 # define CM_PLLA_HOLDCORE BIT(5)
158 # define CM_PLLA_LOADCORE BIT(4)
159 # define CM_PLLA_HOLDCCP2 BIT(3)
160 # define CM_PLLA_LOADCCP2 BIT(2)
161 # define CM_PLLA_HOLDDSI0 BIT(1)
162 # define CM_PLLA_LOADDSI0 BIT(0)
163
164 #define CM_PLLC 0x108
165 # define CM_PLLC_HOLDPER BIT(7)
166 # define CM_PLLC_LOADPER BIT(6)
167 # define CM_PLLC_HOLDCORE2 BIT(5)
168 # define CM_PLLC_LOADCORE2 BIT(4)
169 # define CM_PLLC_HOLDCORE1 BIT(3)
170 # define CM_PLLC_LOADCORE1 BIT(2)
171 # define CM_PLLC_HOLDCORE0 BIT(1)
172 # define CM_PLLC_LOADCORE0 BIT(0)
173
174 #define CM_PLLD 0x10c
175 # define CM_PLLD_HOLDPER BIT(7)
176 # define CM_PLLD_LOADPER BIT(6)
177 # define CM_PLLD_HOLDCORE BIT(5)
178 # define CM_PLLD_LOADCORE BIT(4)
179 # define CM_PLLD_HOLDDSI1 BIT(3)
180 # define CM_PLLD_LOADDSI1 BIT(2)
181 # define CM_PLLD_HOLDDSI0 BIT(1)
182 # define CM_PLLD_LOADDSI0 BIT(0)
183
184 #define CM_PLLH 0x110
185 # define CM_PLLH_LOADRCAL BIT(2)
186 # define CM_PLLH_LOADAUX BIT(1)
187 # define CM_PLLH_LOADPIX BIT(0)
188
189 #define CM_LOCK 0x114
190 # define CM_LOCK_FLOCKH BIT(12)
191 # define CM_LOCK_FLOCKD BIT(11)
192 # define CM_LOCK_FLOCKC BIT(10)
193 # define CM_LOCK_FLOCKB BIT(9)
194 # define CM_LOCK_FLOCKA BIT(8)
195
196 #define CM_EVENT 0x118
197 #define CM_DSI1ECTL 0x158
198 #define CM_DSI1EDIV 0x15c
199 #define CM_DSI1PCTL 0x160
200 #define CM_DSI1PDIV 0x164
201 #define CM_DFTCTL 0x168
202 #define CM_DFTDIV 0x16c
203
204 #define CM_PLLB 0x170
205 # define CM_PLLB_HOLDARM BIT(1)
206 # define CM_PLLB_LOADARM BIT(0)
207
208 #define A2W_PLLA_CTRL 0x1100
209 #define A2W_PLLC_CTRL 0x1120
210 #define A2W_PLLD_CTRL 0x1140
211 #define A2W_PLLH_CTRL 0x1160
212 #define A2W_PLLB_CTRL 0x11e0
213 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
214 # define A2W_PLL_CTRL_PWRDN BIT(16)
215 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
216 # define A2W_PLL_CTRL_PDIV_SHIFT 12
217 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
218 # define A2W_PLL_CTRL_NDIV_SHIFT 0
219
220 #define A2W_PLLA_ANA0 0x1010
221 #define A2W_PLLC_ANA0 0x1030
222 #define A2W_PLLD_ANA0 0x1050
223 #define A2W_PLLH_ANA0 0x1070
224 #define A2W_PLLB_ANA0 0x10f0
225
226 #define A2W_PLL_KA_SHIFT 7
227 #define A2W_PLL_KA_MASK GENMASK(9, 7)
228 #define A2W_PLL_KI_SHIFT 19
229 #define A2W_PLL_KI_MASK GENMASK(21, 19)
230 #define A2W_PLL_KP_SHIFT 15
231 #define A2W_PLL_KP_MASK GENMASK(18, 15)
232
233 #define A2W_PLLH_KA_SHIFT 19
234 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
235 #define A2W_PLLH_KI_LOW_SHIFT 22
236 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
237 #define A2W_PLLH_KI_HIGH_SHIFT 0
238 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
239 #define A2W_PLLH_KP_SHIFT 1
240 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
241
242 #define A2W_XOSC_CTRL 0x1190
243 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
244 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
245 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
246 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
247 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
248 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
249 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
250 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
251
252 #define A2W_PLLA_FRAC 0x1200
253 #define A2W_PLLC_FRAC 0x1220
254 #define A2W_PLLD_FRAC 0x1240
255 #define A2W_PLLH_FRAC 0x1260
256 #define A2W_PLLB_FRAC 0x12e0
257 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
258 # define A2W_PLL_FRAC_BITS 20
259
260 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
261 #define A2W_PLL_DIV_BITS 8
262 #define A2W_PLL_DIV_SHIFT 0
263
264 #define A2W_PLLA_DSI0 0x1300
265 #define A2W_PLLA_CORE 0x1400
266 #define A2W_PLLA_PER 0x1500
267 #define A2W_PLLA_CCP2 0x1600
268
269 #define A2W_PLLC_CORE2 0x1320
270 #define A2W_PLLC_CORE1 0x1420
271 #define A2W_PLLC_PER 0x1520
272 #define A2W_PLLC_CORE0 0x1620
273
274 #define A2W_PLLD_DSI0 0x1340
275 #define A2W_PLLD_CORE 0x1440
276 #define A2W_PLLD_PER 0x1540
277 #define A2W_PLLD_DSI1 0x1640
278
279 #define A2W_PLLH_AUX 0x1360
280 #define A2W_PLLH_RCAL 0x1460
281 #define A2W_PLLH_PIX 0x1560
282 #define A2W_PLLH_STS 0x1660
283
284 #define A2W_PLLH_CTRLR 0x1960
285 #define A2W_PLLH_FRACR 0x1a60
286 #define A2W_PLLH_AUXR 0x1b60
287 #define A2W_PLLH_RCALR 0x1c60
288 #define A2W_PLLH_PIXR 0x1d60
289 #define A2W_PLLH_STSR 0x1e60
290
291 #define A2W_PLLB_ARM 0x13e0
292 #define A2W_PLLB_SP0 0x14e0
293 #define A2W_PLLB_SP1 0x15e0
294 #define A2W_PLLB_SP2 0x16e0
295
296 #define LOCK_TIMEOUT_NS 100000000
297 #define BCM2835_MAX_FB_RATE 1750000000u
298
299 struct bcm2835_cprman {
300 struct device *dev;
301 void __iomem *regs;
302 spinlock_t regs_lock; /* spinlock for all clocks */
303 const char *osc_name;
304
305 struct clk_onecell_data onecell;
306 struct clk *clks[];
307 };
308
309 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
310 {
311 writel(CM_PASSWORD | val, cprman->regs + reg);
312 }
313
314 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
315 {
316 return readl(cprman->regs + reg);
317 }
318
319 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
320 struct debugfs_reg32 *regs, size_t nregs,
321 struct dentry *dentry)
322 {
323 struct dentry *regdump;
324 struct debugfs_regset32 *regset;
325
326 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
327 if (!regset)
328 return -ENOMEM;
329
330 regset->regs = regs;
331 regset->nregs = nregs;
332 regset->base = cprman->regs + base;
333
334 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
335 regset);
336
337 return regdump ? 0 : -ENOMEM;
338 }
339
340 /*
341 * These are fixed clocks. They're probably not all root clocks and it may
342 * be possible to turn them on and off but until this is mapped out better
343 * it's the only way they can be used.
344 */
345 void __init bcm2835_init_clocks(void)
346 {
347 struct clk *clk;
348 int ret;
349
350 clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
351 if (IS_ERR(clk))
352 pr_err("apb_pclk not registered\n");
353
354 clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
355 if (IS_ERR(clk))
356 pr_err("uart0_pclk not registered\n");
357 ret = clk_register_clkdev(clk, NULL, "20201000.uart");
358 if (ret)
359 pr_err("uart0_pclk alias not registered\n");
360
361 clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
362 if (IS_ERR(clk))
363 pr_err("uart1_pclk not registered\n");
364 ret = clk_register_clkdev(clk, NULL, "20215000.uart");
365 if (ret)
366 pr_err("uart1_pclk alias not registered\n");
367 }
368
369 struct bcm2835_pll_data {
370 const char *name;
371 u32 cm_ctrl_reg;
372 u32 a2w_ctrl_reg;
373 u32 frac_reg;
374 u32 ana_reg_base;
375 u32 reference_enable_mask;
376 /* Bit in CM_LOCK to indicate when the PLL has locked. */
377 u32 lock_mask;
378
379 const struct bcm2835_pll_ana_bits *ana;
380
381 unsigned long min_rate;
382 unsigned long max_rate;
383 /*
384 * Highest rate for the VCO before we have to use the
385 * pre-divide-by-2.
386 */
387 unsigned long max_fb_rate;
388 };
389
390 struct bcm2835_pll_ana_bits {
391 u32 mask0;
392 u32 set0;
393 u32 mask1;
394 u32 set1;
395 u32 mask3;
396 u32 set3;
397 u32 fb_prediv_mask;
398 };
399
400 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
401 .mask0 = 0,
402 .set0 = 0,
403 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
404 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
405 .mask3 = (u32)~A2W_PLL_KA_MASK,
406 .set3 = (2 << A2W_PLL_KA_SHIFT),
407 .fb_prediv_mask = BIT(14),
408 };
409
410 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
411 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
412 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
413 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
414 .set1 = (6 << A2W_PLLH_KP_SHIFT),
415 .mask3 = 0,
416 .set3 = 0,
417 .fb_prediv_mask = BIT(11),
418 };
419
420 struct bcm2835_pll_divider_data {
421 const char *name;
422 const char *source_pll;
423
424 u32 cm_reg;
425 u32 a2w_reg;
426
427 u32 load_mask;
428 u32 hold_mask;
429 u32 fixed_divider;
430 };
431
432 struct bcm2835_clock_data {
433 const char *name;
434
435 const char *const *parents;
436 int num_mux_parents;
437
438 u32 ctl_reg;
439 u32 div_reg;
440
441 /* Number of integer bits in the divider */
442 u32 int_bits;
443 /* Number of fractional bits in the divider */
444 u32 frac_bits;
445
446 bool is_vpu_clock;
447 bool is_mash_clock;
448 };
449
450 struct bcm2835_gate_data {
451 const char *name;
452 const char *parent;
453
454 u32 ctl_reg;
455 };
456
457 struct bcm2835_pll {
458 struct clk_hw hw;
459 struct bcm2835_cprman *cprman;
460 const struct bcm2835_pll_data *data;
461 };
462
463 static int bcm2835_pll_is_on(struct clk_hw *hw)
464 {
465 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
466 struct bcm2835_cprman *cprman = pll->cprman;
467 const struct bcm2835_pll_data *data = pll->data;
468
469 return cprman_read(cprman, data->a2w_ctrl_reg) &
470 A2W_PLL_CTRL_PRST_DISABLE;
471 }
472
473 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
474 unsigned long parent_rate,
475 u32 *ndiv, u32 *fdiv)
476 {
477 u64 div;
478
479 div = (u64)rate << A2W_PLL_FRAC_BITS;
480 do_div(div, parent_rate);
481
482 *ndiv = div >> A2W_PLL_FRAC_BITS;
483 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
484 }
485
486 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
487 u32 ndiv, u32 fdiv, u32 pdiv)
488 {
489 u64 rate;
490
491 if (pdiv == 0)
492 return 0;
493
494 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
495 do_div(rate, pdiv);
496 return rate >> A2W_PLL_FRAC_BITS;
497 }
498
499 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
500 unsigned long *parent_rate)
501 {
502 u32 ndiv, fdiv;
503
504 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
505
506 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
507 }
508
509 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
510 unsigned long parent_rate)
511 {
512 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
513 struct bcm2835_cprman *cprman = pll->cprman;
514 const struct bcm2835_pll_data *data = pll->data;
515 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
516 u32 ndiv, pdiv, fdiv;
517 bool using_prediv;
518
519 if (parent_rate == 0)
520 return 0;
521
522 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
523 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
524 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
525 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
526 data->ana->fb_prediv_mask;
527
528 if (using_prediv)
529 ndiv *= 2;
530
531 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
532 }
533
534 static void bcm2835_pll_off(struct clk_hw *hw)
535 {
536 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
537 struct bcm2835_cprman *cprman = pll->cprman;
538 const struct bcm2835_pll_data *data = pll->data;
539
540 spin_lock(&cprman->regs_lock);
541 cprman_write(cprman, data->cm_ctrl_reg,
542 cprman_read(cprman, data->cm_ctrl_reg) |
543 CM_PLL_ANARST);
544 cprman_write(cprman, data->a2w_ctrl_reg,
545 cprman_read(cprman, data->a2w_ctrl_reg) |
546 A2W_PLL_CTRL_PWRDN);
547 spin_unlock(&cprman->regs_lock);
548 }
549
550 static int bcm2835_pll_on(struct clk_hw *hw)
551 {
552 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
553 struct bcm2835_cprman *cprman = pll->cprman;
554 const struct bcm2835_pll_data *data = pll->data;
555 ktime_t timeout;
556
557 /* Take the PLL out of reset. */
558 cprman_write(cprman, data->cm_ctrl_reg,
559 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
560
561 /* Wait for the PLL to lock. */
562 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
563 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
564 if (ktime_after(ktime_get(), timeout)) {
565 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
566 clk_hw_get_name(hw));
567 return -ETIMEDOUT;
568 }
569
570 cpu_relax();
571 }
572
573 return 0;
574 }
575
576 static void
577 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
578 {
579 int i;
580
581 /*
582 * ANA register setup is done as a series of writes to
583 * ANA3-ANA0, in that order. This lets us write all 4
584 * registers as a single cycle of the serdes interface (taking
585 * 100 xosc clocks), whereas if we were to update ana0, 1, and
586 * 3 individually through their partial-write registers, each
587 * would be their own serdes cycle.
588 */
589 for (i = 3; i >= 0; i--)
590 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
591 }
592
593 static int bcm2835_pll_set_rate(struct clk_hw *hw,
594 unsigned long rate, unsigned long parent_rate)
595 {
596 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
597 struct bcm2835_cprman *cprman = pll->cprman;
598 const struct bcm2835_pll_data *data = pll->data;
599 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
600 u32 ndiv, fdiv, a2w_ctl;
601 u32 ana[4];
602 int i;
603
604 if (rate < data->min_rate || rate > data->max_rate) {
605 dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
606 clk_hw_get_name(hw), rate,
607 data->min_rate, data->max_rate);
608 return -EINVAL;
609 }
610
611 if (rate > data->max_fb_rate) {
612 use_fb_prediv = true;
613 rate /= 2;
614 } else {
615 use_fb_prediv = false;
616 }
617
618 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
619
620 for (i = 3; i >= 0; i--)
621 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
622
623 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
624
625 ana[0] &= ~data->ana->mask0;
626 ana[0] |= data->ana->set0;
627 ana[1] &= ~data->ana->mask1;
628 ana[1] |= data->ana->set1;
629 ana[3] &= ~data->ana->mask3;
630 ana[3] |= data->ana->set3;
631
632 if (was_using_prediv && !use_fb_prediv) {
633 ana[1] &= ~data->ana->fb_prediv_mask;
634 do_ana_setup_first = true;
635 } else if (!was_using_prediv && use_fb_prediv) {
636 ana[1] |= data->ana->fb_prediv_mask;
637 do_ana_setup_first = false;
638 } else {
639 do_ana_setup_first = true;
640 }
641
642 /* Unmask the reference clock from the oscillator. */
643 cprman_write(cprman, A2W_XOSC_CTRL,
644 cprman_read(cprman, A2W_XOSC_CTRL) |
645 data->reference_enable_mask);
646
647 if (do_ana_setup_first)
648 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
649
650 /* Set the PLL multiplier from the oscillator. */
651 cprman_write(cprman, data->frac_reg, fdiv);
652
653 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
654 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
655 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
656 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
657 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
658 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
659
660 if (!do_ana_setup_first)
661 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
662
663 return 0;
664 }
665
666 static int bcm2835_pll_debug_init(struct clk_hw *hw,
667 struct dentry *dentry)
668 {
669 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
670 struct bcm2835_cprman *cprman = pll->cprman;
671 const struct bcm2835_pll_data *data = pll->data;
672 struct debugfs_reg32 *regs;
673
674 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
675 if (!regs)
676 return -ENOMEM;
677
678 regs[0].name = "cm_ctrl";
679 regs[0].offset = data->cm_ctrl_reg;
680 regs[1].name = "a2w_ctrl";
681 regs[1].offset = data->a2w_ctrl_reg;
682 regs[2].name = "frac";
683 regs[2].offset = data->frac_reg;
684 regs[3].name = "ana0";
685 regs[3].offset = data->ana_reg_base + 0 * 4;
686 regs[4].name = "ana1";
687 regs[4].offset = data->ana_reg_base + 1 * 4;
688 regs[5].name = "ana2";
689 regs[5].offset = data->ana_reg_base + 2 * 4;
690 regs[6].name = "ana3";
691 regs[6].offset = data->ana_reg_base + 3 * 4;
692
693 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
694 }
695
696 static const struct clk_ops bcm2835_pll_clk_ops = {
697 .is_prepared = bcm2835_pll_is_on,
698 .prepare = bcm2835_pll_on,
699 .unprepare = bcm2835_pll_off,
700 .recalc_rate = bcm2835_pll_get_rate,
701 .set_rate = bcm2835_pll_set_rate,
702 .round_rate = bcm2835_pll_round_rate,
703 .debug_init = bcm2835_pll_debug_init,
704 };
705
706 struct bcm2835_pll_divider {
707 struct clk_divider div;
708 struct bcm2835_cprman *cprman;
709 const struct bcm2835_pll_divider_data *data;
710 };
711
712 static struct bcm2835_pll_divider *
713 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
714 {
715 return container_of(hw, struct bcm2835_pll_divider, div.hw);
716 }
717
718 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
719 {
720 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
721 struct bcm2835_cprman *cprman = divider->cprman;
722 const struct bcm2835_pll_divider_data *data = divider->data;
723
724 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
725 }
726
727 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
728 unsigned long rate,
729 unsigned long *parent_rate)
730 {
731 return clk_divider_ops.round_rate(hw, rate, parent_rate);
732 }
733
734 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
735 unsigned long parent_rate)
736 {
737 return clk_divider_ops.recalc_rate(hw, parent_rate);
738 }
739
740 static void bcm2835_pll_divider_off(struct clk_hw *hw)
741 {
742 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
743 struct bcm2835_cprman *cprman = divider->cprman;
744 const struct bcm2835_pll_divider_data *data = divider->data;
745
746 spin_lock(&cprman->regs_lock);
747 cprman_write(cprman, data->cm_reg,
748 (cprman_read(cprman, data->cm_reg) &
749 ~data->load_mask) | data->hold_mask);
750 cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
751 spin_unlock(&cprman->regs_lock);
752 }
753
754 static int bcm2835_pll_divider_on(struct clk_hw *hw)
755 {
756 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
757 struct bcm2835_cprman *cprman = divider->cprman;
758 const struct bcm2835_pll_divider_data *data = divider->data;
759
760 spin_lock(&cprman->regs_lock);
761 cprman_write(cprman, data->a2w_reg,
762 cprman_read(cprman, data->a2w_reg) &
763 ~A2W_PLL_CHANNEL_DISABLE);
764
765 cprman_write(cprman, data->cm_reg,
766 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
767 spin_unlock(&cprman->regs_lock);
768
769 return 0;
770 }
771
772 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
773 unsigned long rate,
774 unsigned long parent_rate)
775 {
776 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
777 struct bcm2835_cprman *cprman = divider->cprman;
778 const struct bcm2835_pll_divider_data *data = divider->data;
779 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
780
781 div = DIV_ROUND_UP_ULL(parent_rate, rate);
782
783 div = min(div, max_div);
784 if (div == max_div)
785 div = 0;
786
787 cprman_write(cprman, data->a2w_reg, div);
788 cm = cprman_read(cprman, data->cm_reg);
789 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
790 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
791
792 return 0;
793 }
794
795 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
796 struct dentry *dentry)
797 {
798 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
799 struct bcm2835_cprman *cprman = divider->cprman;
800 const struct bcm2835_pll_divider_data *data = divider->data;
801 struct debugfs_reg32 *regs;
802
803 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
804 if (!regs)
805 return -ENOMEM;
806
807 regs[0].name = "cm";
808 regs[0].offset = data->cm_reg;
809 regs[1].name = "a2w";
810 regs[1].offset = data->a2w_reg;
811
812 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
813 }
814
815 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
816 .is_prepared = bcm2835_pll_divider_is_on,
817 .prepare = bcm2835_pll_divider_on,
818 .unprepare = bcm2835_pll_divider_off,
819 .recalc_rate = bcm2835_pll_divider_get_rate,
820 .set_rate = bcm2835_pll_divider_set_rate,
821 .round_rate = bcm2835_pll_divider_round_rate,
822 .debug_init = bcm2835_pll_divider_debug_init,
823 };
824
825 /*
826 * The CM dividers do fixed-point division, so we can't use the
827 * generic integer divider code like the PLL dividers do (and we can't
828 * fake it by having some fixed shifts preceding it in the clock tree,
829 * because we'd run out of bits in a 32-bit unsigned long).
830 */
831 struct bcm2835_clock {
832 struct clk_hw hw;
833 struct bcm2835_cprman *cprman;
834 const struct bcm2835_clock_data *data;
835 };
836
837 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
838 {
839 return container_of(hw, struct bcm2835_clock, hw);
840 }
841
842 static int bcm2835_clock_is_on(struct clk_hw *hw)
843 {
844 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
845 struct bcm2835_cprman *cprman = clock->cprman;
846 const struct bcm2835_clock_data *data = clock->data;
847
848 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
849 }
850
851 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
852 unsigned long rate,
853 unsigned long parent_rate,
854 bool round_up)
855 {
856 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
857 const struct bcm2835_clock_data *data = clock->data;
858 u32 unused_frac_mask =
859 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
860 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
861 u64 rem;
862 u32 div, mindiv, maxdiv;
863
864 rem = do_div(temp, rate);
865 div = temp;
866
867 /* Round up and mask off the unused bits */
868 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
869 div += unused_frac_mask + 1;
870 div &= ~unused_frac_mask;
871
872 /* different clamping limits apply for a mash clock */
873 if (data->is_mash_clock) {
874 /* clamp to min divider of 2 */
875 mindiv = 2 << CM_DIV_FRAC_BITS;
876 /* clamp to the highest possible integer divider */
877 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
878 } else {
879 /* clamp to min divider of 1 */
880 mindiv = 1 << CM_DIV_FRAC_BITS;
881 /* clamp to the highest possible fractional divider */
882 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
883 CM_DIV_FRAC_BITS - data->frac_bits);
884 }
885
886 /* apply the clamping limits */
887 div = max_t(u32, div, mindiv);
888 div = min_t(u32, div, maxdiv);
889
890 return div;
891 }
892
893 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
894 unsigned long parent_rate,
895 u32 div)
896 {
897 const struct bcm2835_clock_data *data = clock->data;
898 u64 temp;
899
900 /*
901 * The divisor is a 12.12 fixed point field, but only some of
902 * the bits are populated in any given clock.
903 */
904 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
905 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
906
907 if (div == 0)
908 return 0;
909
910 temp = (u64)parent_rate << data->frac_bits;
911
912 do_div(temp, div);
913
914 return temp;
915 }
916
917 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
918 unsigned long parent_rate)
919 {
920 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
921 struct bcm2835_cprman *cprman = clock->cprman;
922 const struct bcm2835_clock_data *data = clock->data;
923 u32 div = cprman_read(cprman, data->div_reg);
924
925 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
926 }
927
928 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
929 {
930 struct bcm2835_cprman *cprman = clock->cprman;
931 const struct bcm2835_clock_data *data = clock->data;
932 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
933
934 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
935 if (ktime_after(ktime_get(), timeout)) {
936 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
937 clk_hw_get_name(&clock->hw));
938 return;
939 }
940 cpu_relax();
941 }
942 }
943
944 static void bcm2835_clock_off(struct clk_hw *hw)
945 {
946 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
947 struct bcm2835_cprman *cprman = clock->cprman;
948 const struct bcm2835_clock_data *data = clock->data;
949
950 spin_lock(&cprman->regs_lock);
951 cprman_write(cprman, data->ctl_reg,
952 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
953 spin_unlock(&cprman->regs_lock);
954
955 /* BUSY will remain high until the divider completes its cycle. */
956 bcm2835_clock_wait_busy(clock);
957 }
958
959 static int bcm2835_clock_on(struct clk_hw *hw)
960 {
961 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
962 struct bcm2835_cprman *cprman = clock->cprman;
963 const struct bcm2835_clock_data *data = clock->data;
964
965 spin_lock(&cprman->regs_lock);
966 cprman_write(cprman, data->ctl_reg,
967 cprman_read(cprman, data->ctl_reg) |
968 CM_ENABLE |
969 CM_GATE);
970 spin_unlock(&cprman->regs_lock);
971
972 return 0;
973 }
974
975 static int bcm2835_clock_set_rate(struct clk_hw *hw,
976 unsigned long rate, unsigned long parent_rate)
977 {
978 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
979 struct bcm2835_cprman *cprman = clock->cprman;
980 const struct bcm2835_clock_data *data = clock->data;
981 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
982 u32 ctl;
983
984 spin_lock(&cprman->regs_lock);
985
986 /*
987 * Setting up frac support
988 *
989 * In principle it is recommended to stop/start the clock first,
990 * but as we set CLK_SET_RATE_GATE during registration of the
991 * clock this requirement should be take care of by the
992 * clk-framework.
993 */
994 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
995 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
996 cprman_write(cprman, data->ctl_reg, ctl);
997
998 cprman_write(cprman, data->div_reg, div);
999
1000 spin_unlock(&cprman->regs_lock);
1001
1002 return 0;
1003 }
1004
1005 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1006 struct clk_rate_request *req)
1007 {
1008 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1009 struct clk_hw *parent, *best_parent = NULL;
1010 unsigned long rate, best_rate = 0;
1011 unsigned long prate, best_prate = 0;
1012 size_t i;
1013 u32 div;
1014
1015 /*
1016 * Select parent clock that results in the closest but lower rate
1017 */
1018 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1019 parent = clk_hw_get_parent_by_index(hw, i);
1020 if (!parent)
1021 continue;
1022 prate = clk_hw_get_rate(parent);
1023 div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1024 rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1025 if (rate > best_rate && rate <= req->rate) {
1026 best_parent = parent;
1027 best_prate = prate;
1028 best_rate = rate;
1029 }
1030 }
1031
1032 if (!best_parent)
1033 return -EINVAL;
1034
1035 req->best_parent_hw = best_parent;
1036 req->best_parent_rate = best_prate;
1037
1038 req->rate = best_rate;
1039
1040 return 0;
1041 }
1042
1043 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1044 {
1045 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1046 struct bcm2835_cprman *cprman = clock->cprman;
1047 const struct bcm2835_clock_data *data = clock->data;
1048 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1049
1050 cprman_write(cprman, data->ctl_reg, src);
1051 return 0;
1052 }
1053
1054 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1055 {
1056 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1057 struct bcm2835_cprman *cprman = clock->cprman;
1058 const struct bcm2835_clock_data *data = clock->data;
1059 u32 src = cprman_read(cprman, data->ctl_reg);
1060
1061 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1062 }
1063
1064 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1065 {
1066 .name = "ctl",
1067 .offset = 0,
1068 },
1069 {
1070 .name = "div",
1071 .offset = 4,
1072 },
1073 };
1074
1075 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1076 struct dentry *dentry)
1077 {
1078 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1079 struct bcm2835_cprman *cprman = clock->cprman;
1080 const struct bcm2835_clock_data *data = clock->data;
1081
1082 return bcm2835_debugfs_regset(
1083 cprman, data->ctl_reg,
1084 bcm2835_debugfs_clock_reg32,
1085 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1086 dentry);
1087 }
1088
1089 static const struct clk_ops bcm2835_clock_clk_ops = {
1090 .is_prepared = bcm2835_clock_is_on,
1091 .prepare = bcm2835_clock_on,
1092 .unprepare = bcm2835_clock_off,
1093 .recalc_rate = bcm2835_clock_get_rate,
1094 .set_rate = bcm2835_clock_set_rate,
1095 .determine_rate = bcm2835_clock_determine_rate,
1096 .set_parent = bcm2835_clock_set_parent,
1097 .get_parent = bcm2835_clock_get_parent,
1098 .debug_init = bcm2835_clock_debug_init,
1099 };
1100
1101 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1102 {
1103 return true;
1104 }
1105
1106 /*
1107 * The VPU clock can never be disabled (it doesn't have an ENABLE
1108 * bit), so it gets its own set of clock ops.
1109 */
1110 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1111 .is_prepared = bcm2835_vpu_clock_is_on,
1112 .recalc_rate = bcm2835_clock_get_rate,
1113 .set_rate = bcm2835_clock_set_rate,
1114 .determine_rate = bcm2835_clock_determine_rate,
1115 .set_parent = bcm2835_clock_set_parent,
1116 .get_parent = bcm2835_clock_get_parent,
1117 .debug_init = bcm2835_clock_debug_init,
1118 };
1119
1120 static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1121 const struct bcm2835_pll_data *data)
1122 {
1123 struct bcm2835_pll *pll;
1124 struct clk_init_data init;
1125
1126 memset(&init, 0, sizeof(init));
1127
1128 /* All of the PLLs derive from the external oscillator. */
1129 init.parent_names = &cprman->osc_name;
1130 init.num_parents = 1;
1131 init.name = data->name;
1132 init.ops = &bcm2835_pll_clk_ops;
1133 init.flags = CLK_IGNORE_UNUSED;
1134
1135 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1136 if (!pll)
1137 return NULL;
1138
1139 pll->cprman = cprman;
1140 pll->data = data;
1141 pll->hw.init = &init;
1142
1143 return devm_clk_register(cprman->dev, &pll->hw);
1144 }
1145
1146 static struct clk *
1147 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1148 const struct bcm2835_pll_divider_data *data)
1149 {
1150 struct bcm2835_pll_divider *divider;
1151 struct clk_init_data init;
1152 struct clk *clk;
1153 const char *divider_name;
1154
1155 if (data->fixed_divider != 1) {
1156 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1157 "%s_prediv", data->name);
1158 if (!divider_name)
1159 return NULL;
1160 } else {
1161 divider_name = data->name;
1162 }
1163
1164 memset(&init, 0, sizeof(init));
1165
1166 init.parent_names = &data->source_pll;
1167 init.num_parents = 1;
1168 init.name = divider_name;
1169 init.ops = &bcm2835_pll_divider_clk_ops;
1170 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1171
1172 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1173 if (!divider)
1174 return NULL;
1175
1176 divider->div.reg = cprman->regs + data->a2w_reg;
1177 divider->div.shift = A2W_PLL_DIV_SHIFT;
1178 divider->div.width = A2W_PLL_DIV_BITS;
1179 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1180 divider->div.lock = &cprman->regs_lock;
1181 divider->div.hw.init = &init;
1182 divider->div.table = NULL;
1183
1184 divider->cprman = cprman;
1185 divider->data = data;
1186
1187 clk = devm_clk_register(cprman->dev, &divider->div.hw);
1188 if (IS_ERR(clk))
1189 return clk;
1190
1191 /*
1192 * PLLH's channels have a fixed divide by 10 afterwards, which
1193 * is what our consumers are actually using.
1194 */
1195 if (data->fixed_divider != 1) {
1196 return clk_register_fixed_factor(cprman->dev, data->name,
1197 divider_name,
1198 CLK_SET_RATE_PARENT,
1199 1,
1200 data->fixed_divider);
1201 }
1202
1203 return clk;
1204 }
1205
1206 static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1207 const struct bcm2835_clock_data *data)
1208 {
1209 struct bcm2835_clock *clock;
1210 struct clk_init_data init;
1211 const char *parents[1 << CM_SRC_BITS];
1212 size_t i;
1213
1214 /*
1215 * Replace our "xosc" references with the oscillator's
1216 * actual name.
1217 */
1218 for (i = 0; i < data->num_mux_parents; i++) {
1219 if (strcmp(data->parents[i], "xosc") == 0)
1220 parents[i] = cprman->osc_name;
1221 else
1222 parents[i] = data->parents[i];
1223 }
1224
1225 memset(&init, 0, sizeof(init));
1226 init.parent_names = parents;
1227 init.num_parents = data->num_mux_parents;
1228 init.name = data->name;
1229 init.flags = CLK_IGNORE_UNUSED;
1230
1231 if (data->is_vpu_clock) {
1232 init.ops = &bcm2835_vpu_clock_clk_ops;
1233 } else {
1234 init.ops = &bcm2835_clock_clk_ops;
1235 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1236 }
1237
1238 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1239 if (!clock)
1240 return NULL;
1241
1242 clock->cprman = cprman;
1243 clock->data = data;
1244 clock->hw.init = &init;
1245
1246 return devm_clk_register(cprman->dev, &clock->hw);
1247 }
1248
1249 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1250 const struct bcm2835_gate_data *data)
1251 {
1252 return clk_register_gate(cprman->dev, data->name, data->parent,
1253 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1254 cprman->regs + data->ctl_reg,
1255 CM_GATE_BIT, 0, &cprman->regs_lock);
1256 }
1257
1258 typedef struct clk *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1259 const void *data);
1260 struct bcm2835_clk_desc {
1261 bcm2835_clk_register clk_register;
1262 const void *data;
1263 };
1264
1265 /* assignment helper macros for different clock types */
1266 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1267 .data = __VA_ARGS__ }
1268 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1269 &(struct bcm2835_pll_data) \
1270 {__VA_ARGS__})
1271 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1272 &(struct bcm2835_pll_divider_data) \
1273 {__VA_ARGS__})
1274 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1275 &(struct bcm2835_clock_data) \
1276 {__VA_ARGS__})
1277 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1278 &(struct bcm2835_gate_data) \
1279 {__VA_ARGS__})
1280
1281 /* parent mux arrays plus helper macros */
1282
1283 /* main oscillator parent mux */
1284 static const char *const bcm2835_clock_osc_parents[] = {
1285 "gnd",
1286 "xosc",
1287 "testdebug0",
1288 "testdebug1"
1289 };
1290
1291 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1292 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1293 .parents = bcm2835_clock_osc_parents, \
1294 __VA_ARGS__)
1295
1296 /* main peripherial parent mux */
1297 static const char *const bcm2835_clock_per_parents[] = {
1298 "gnd",
1299 "xosc",
1300 "testdebug0",
1301 "testdebug1",
1302 "plla_per",
1303 "pllc_per",
1304 "plld_per",
1305 "pllh_aux",
1306 };
1307
1308 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1309 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1310 .parents = bcm2835_clock_per_parents, \
1311 __VA_ARGS__)
1312
1313 /* main vpu parent mux */
1314 static const char *const bcm2835_clock_vpu_parents[] = {
1315 "gnd",
1316 "xosc",
1317 "testdebug0",
1318 "testdebug1",
1319 "plla_core",
1320 "pllc_core0",
1321 "plld_core",
1322 "pllh_aux",
1323 "pllc_core1",
1324 "pllc_core2",
1325 };
1326
1327 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1328 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1329 .parents = bcm2835_clock_vpu_parents, \
1330 __VA_ARGS__)
1331
1332 /*
1333 * the real definition of all the pll, pll_dividers and clocks
1334 * these make use of the above REGISTER_* macros
1335 */
1336 static const struct bcm2835_clk_desc clk_desc_array[] = {
1337 /* the PLL + PLL dividers */
1338
1339 /*
1340 * PLLA is the auxiliary PLL, used to drive the CCP2
1341 * (Compact Camera Port 2) transmitter clock.
1342 *
1343 * It is in the PX LDO power domain, which is on when the
1344 * AUDIO domain is on.
1345 */
1346 [BCM2835_PLLA] = REGISTER_PLL(
1347 .name = "plla",
1348 .cm_ctrl_reg = CM_PLLA,
1349 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1350 .frac_reg = A2W_PLLA_FRAC,
1351 .ana_reg_base = A2W_PLLA_ANA0,
1352 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1353 .lock_mask = CM_LOCK_FLOCKA,
1354
1355 .ana = &bcm2835_ana_default,
1356
1357 .min_rate = 600000000u,
1358 .max_rate = 2400000000u,
1359 .max_fb_rate = BCM2835_MAX_FB_RATE),
1360 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1361 .name = "plla_core",
1362 .source_pll = "plla",
1363 .cm_reg = CM_PLLA,
1364 .a2w_reg = A2W_PLLA_CORE,
1365 .load_mask = CM_PLLA_LOADCORE,
1366 .hold_mask = CM_PLLA_HOLDCORE,
1367 .fixed_divider = 1),
1368 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1369 .name = "plla_per",
1370 .source_pll = "plla",
1371 .cm_reg = CM_PLLA,
1372 .a2w_reg = A2W_PLLA_PER,
1373 .load_mask = CM_PLLA_LOADPER,
1374 .hold_mask = CM_PLLA_HOLDPER,
1375 .fixed_divider = 1),
1376 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1377 .name = "plla_dsi0",
1378 .source_pll = "plla",
1379 .cm_reg = CM_PLLA,
1380 .a2w_reg = A2W_PLLA_DSI0,
1381 .load_mask = CM_PLLA_LOADDSI0,
1382 .hold_mask = CM_PLLA_HOLDDSI0,
1383 .fixed_divider = 1),
1384 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1385 .name = "plla_ccp2",
1386 .source_pll = "plla",
1387 .cm_reg = CM_PLLA,
1388 .a2w_reg = A2W_PLLA_CCP2,
1389 .load_mask = CM_PLLA_LOADCCP2,
1390 .hold_mask = CM_PLLA_HOLDCCP2,
1391 .fixed_divider = 1),
1392
1393 /* PLLB is used for the ARM's clock. */
1394 [BCM2835_PLLB] = REGISTER_PLL(
1395 .name = "pllb",
1396 .cm_ctrl_reg = CM_PLLB,
1397 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1398 .frac_reg = A2W_PLLB_FRAC,
1399 .ana_reg_base = A2W_PLLB_ANA0,
1400 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1401 .lock_mask = CM_LOCK_FLOCKB,
1402
1403 .ana = &bcm2835_ana_default,
1404
1405 .min_rate = 600000000u,
1406 .max_rate = 3000000000u,
1407 .max_fb_rate = BCM2835_MAX_FB_RATE),
1408 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1409 .name = "pllb_arm",
1410 .source_pll = "pllb",
1411 .cm_reg = CM_PLLB,
1412 .a2w_reg = A2W_PLLB_ARM,
1413 .load_mask = CM_PLLB_LOADARM,
1414 .hold_mask = CM_PLLB_HOLDARM,
1415 .fixed_divider = 1),
1416
1417 /*
1418 * PLLC is the core PLL, used to drive the core VPU clock.
1419 *
1420 * It is in the PX LDO power domain, which is on when the
1421 * AUDIO domain is on.
1422 */
1423 [BCM2835_PLLC] = REGISTER_PLL(
1424 .name = "pllc",
1425 .cm_ctrl_reg = CM_PLLC,
1426 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1427 .frac_reg = A2W_PLLC_FRAC,
1428 .ana_reg_base = A2W_PLLC_ANA0,
1429 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1430 .lock_mask = CM_LOCK_FLOCKC,
1431
1432 .ana = &bcm2835_ana_default,
1433
1434 .min_rate = 600000000u,
1435 .max_rate = 3000000000u,
1436 .max_fb_rate = BCM2835_MAX_FB_RATE),
1437 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1438 .name = "pllc_core0",
1439 .source_pll = "pllc",
1440 .cm_reg = CM_PLLC,
1441 .a2w_reg = A2W_PLLC_CORE0,
1442 .load_mask = CM_PLLC_LOADCORE0,
1443 .hold_mask = CM_PLLC_HOLDCORE0,
1444 .fixed_divider = 1),
1445 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1446 .name = "pllc_core1",
1447 .source_pll = "pllc",
1448 .cm_reg = CM_PLLC,
1449 .a2w_reg = A2W_PLLC_CORE1,
1450 .load_mask = CM_PLLC_LOADCORE1,
1451 .hold_mask = CM_PLLC_HOLDCORE1,
1452 .fixed_divider = 1),
1453 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1454 .name = "pllc_core2",
1455 .source_pll = "pllc",
1456 .cm_reg = CM_PLLC,
1457 .a2w_reg = A2W_PLLC_CORE2,
1458 .load_mask = CM_PLLC_LOADCORE2,
1459 .hold_mask = CM_PLLC_HOLDCORE2,
1460 .fixed_divider = 1),
1461 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1462 .name = "pllc_per",
1463 .source_pll = "pllc",
1464 .cm_reg = CM_PLLC,
1465 .a2w_reg = A2W_PLLC_PER,
1466 .load_mask = CM_PLLC_LOADPER,
1467 .hold_mask = CM_PLLC_HOLDPER,
1468 .fixed_divider = 1),
1469
1470 /*
1471 * PLLD is the display PLL, used to drive DSI display panels.
1472 *
1473 * It is in the PX LDO power domain, which is on when the
1474 * AUDIO domain is on.
1475 */
1476 [BCM2835_PLLD] = REGISTER_PLL(
1477 .name = "plld",
1478 .cm_ctrl_reg = CM_PLLD,
1479 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1480 .frac_reg = A2W_PLLD_FRAC,
1481 .ana_reg_base = A2W_PLLD_ANA0,
1482 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1483 .lock_mask = CM_LOCK_FLOCKD,
1484
1485 .ana = &bcm2835_ana_default,
1486
1487 .min_rate = 600000000u,
1488 .max_rate = 2400000000u,
1489 .max_fb_rate = BCM2835_MAX_FB_RATE),
1490 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1491 .name = "plld_core",
1492 .source_pll = "plld",
1493 .cm_reg = CM_PLLD,
1494 .a2w_reg = A2W_PLLD_CORE,
1495 .load_mask = CM_PLLD_LOADCORE,
1496 .hold_mask = CM_PLLD_HOLDCORE,
1497 .fixed_divider = 1),
1498 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1499 .name = "plld_per",
1500 .source_pll = "plld",
1501 .cm_reg = CM_PLLD,
1502 .a2w_reg = A2W_PLLD_PER,
1503 .load_mask = CM_PLLD_LOADPER,
1504 .hold_mask = CM_PLLD_HOLDPER,
1505 .fixed_divider = 1),
1506 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1507 .name = "plld_dsi0",
1508 .source_pll = "plld",
1509 .cm_reg = CM_PLLD,
1510 .a2w_reg = A2W_PLLD_DSI0,
1511 .load_mask = CM_PLLD_LOADDSI0,
1512 .hold_mask = CM_PLLD_HOLDDSI0,
1513 .fixed_divider = 1),
1514 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1515 .name = "plld_dsi1",
1516 .source_pll = "plld",
1517 .cm_reg = CM_PLLD,
1518 .a2w_reg = A2W_PLLD_DSI1,
1519 .load_mask = CM_PLLD_LOADDSI1,
1520 .hold_mask = CM_PLLD_HOLDDSI1,
1521 .fixed_divider = 1),
1522
1523 /*
1524 * PLLH is used to supply the pixel clock or the AUX clock for the
1525 * TV encoder.
1526 *
1527 * It is in the HDMI power domain.
1528 */
1529 [BCM2835_PLLH] = REGISTER_PLL(
1530 "pllh",
1531 .cm_ctrl_reg = CM_PLLH,
1532 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1533 .frac_reg = A2W_PLLH_FRAC,
1534 .ana_reg_base = A2W_PLLH_ANA0,
1535 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1536 .lock_mask = CM_LOCK_FLOCKH,
1537
1538 .ana = &bcm2835_ana_pllh,
1539
1540 .min_rate = 600000000u,
1541 .max_rate = 3000000000u,
1542 .max_fb_rate = BCM2835_MAX_FB_RATE),
1543 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1544 .name = "pllh_rcal",
1545 .source_pll = "pllh",
1546 .cm_reg = CM_PLLH,
1547 .a2w_reg = A2W_PLLH_RCAL,
1548 .load_mask = CM_PLLH_LOADRCAL,
1549 .hold_mask = 0,
1550 .fixed_divider = 10),
1551 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1552 .name = "pllh_aux",
1553 .source_pll = "pllh",
1554 .cm_reg = CM_PLLH,
1555 .a2w_reg = A2W_PLLH_AUX,
1556 .load_mask = CM_PLLH_LOADAUX,
1557 .hold_mask = 0,
1558 .fixed_divider = 10),
1559 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1560 .name = "pllh_pix",
1561 .source_pll = "pllh",
1562 .cm_reg = CM_PLLH,
1563 .a2w_reg = A2W_PLLH_PIX,
1564 .load_mask = CM_PLLH_LOADPIX,
1565 .hold_mask = 0,
1566 .fixed_divider = 10),
1567
1568 /* the clocks */
1569
1570 /* clocks with oscillator parent mux */
1571
1572 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1573 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1574 .name = "otp",
1575 .ctl_reg = CM_OTPCTL,
1576 .div_reg = CM_OTPDIV,
1577 .int_bits = 4,
1578 .frac_bits = 0),
1579 /*
1580 * Used for a 1Mhz clock for the system clocksource, and also used
1581 * bythe watchdog timer and the camera pulse generator.
1582 */
1583 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1584 .name = "timer",
1585 .ctl_reg = CM_TIMERCTL,
1586 .div_reg = CM_TIMERDIV,
1587 .int_bits = 6,
1588 .frac_bits = 12),
1589 /*
1590 * Clock for the temperature sensor.
1591 * Generally run at 2Mhz, max 5Mhz.
1592 */
1593 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1594 .name = "tsens",
1595 .ctl_reg = CM_TSENSCTL,
1596 .div_reg = CM_TSENSDIV,
1597 .int_bits = 5,
1598 .frac_bits = 0),
1599 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1600 .name = "tec",
1601 .ctl_reg = CM_TECCTL,
1602 .div_reg = CM_TECDIV,
1603 .int_bits = 6,
1604 .frac_bits = 0),
1605
1606 /* clocks with vpu parent mux */
1607 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1608 .name = "h264",
1609 .ctl_reg = CM_H264CTL,
1610 .div_reg = CM_H264DIV,
1611 .int_bits = 4,
1612 .frac_bits = 8),
1613 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1614 .name = "isp",
1615 .ctl_reg = CM_ISPCTL,
1616 .div_reg = CM_ISPDIV,
1617 .int_bits = 4,
1618 .frac_bits = 8),
1619
1620 /*
1621 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1622 * in the SDRAM controller can't be used.
1623 */
1624 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1625 .name = "sdram",
1626 .ctl_reg = CM_SDCCTL,
1627 .div_reg = CM_SDCDIV,
1628 .int_bits = 6,
1629 .frac_bits = 0),
1630 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1631 .name = "v3d",
1632 .ctl_reg = CM_V3DCTL,
1633 .div_reg = CM_V3DDIV,
1634 .int_bits = 4,
1635 .frac_bits = 8),
1636 /*
1637 * VPU clock. This doesn't have an enable bit, since it drives
1638 * the bus for everything else, and is special so it doesn't need
1639 * to be gated for rate changes. It is also known as "clk_audio"
1640 * in various hardware documentation.
1641 */
1642 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1643 .name = "vpu",
1644 .ctl_reg = CM_VPUCTL,
1645 .div_reg = CM_VPUDIV,
1646 .int_bits = 12,
1647 .frac_bits = 8,
1648 .is_vpu_clock = true),
1649
1650 /* clocks with per parent mux */
1651 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1652 .name = "aveo",
1653 .ctl_reg = CM_AVEOCTL,
1654 .div_reg = CM_AVEODIV,
1655 .int_bits = 4,
1656 .frac_bits = 0),
1657 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1658 .name = "cam0",
1659 .ctl_reg = CM_CAM0CTL,
1660 .div_reg = CM_CAM0DIV,
1661 .int_bits = 4,
1662 .frac_bits = 8),
1663 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1664 .name = "cam1",
1665 .ctl_reg = CM_CAM1CTL,
1666 .div_reg = CM_CAM1DIV,
1667 .int_bits = 4,
1668 .frac_bits = 8),
1669 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1670 .name = "dft",
1671 .ctl_reg = CM_DFTCTL,
1672 .div_reg = CM_DFTDIV,
1673 .int_bits = 5,
1674 .frac_bits = 0),
1675 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1676 .name = "dpi",
1677 .ctl_reg = CM_DPICTL,
1678 .div_reg = CM_DPIDIV,
1679 .int_bits = 4,
1680 .frac_bits = 8),
1681
1682 /* Arasan EMMC clock */
1683 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1684 .name = "emmc",
1685 .ctl_reg = CM_EMMCCTL,
1686 .div_reg = CM_EMMCDIV,
1687 .int_bits = 4,
1688 .frac_bits = 8),
1689
1690 /* General purpose (GPIO) clocks */
1691 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1692 .name = "gp0",
1693 .ctl_reg = CM_GP0CTL,
1694 .div_reg = CM_GP0DIV,
1695 .int_bits = 12,
1696 .frac_bits = 12,
1697 .is_mash_clock = true),
1698 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1699 .name = "gp1",
1700 .ctl_reg = CM_GP1CTL,
1701 .div_reg = CM_GP1DIV,
1702 .int_bits = 12,
1703 .frac_bits = 12,
1704 .is_mash_clock = true),
1705 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
1706 .name = "gp2",
1707 .ctl_reg = CM_GP2CTL,
1708 .div_reg = CM_GP2DIV,
1709 .int_bits = 12,
1710 .frac_bits = 12),
1711
1712 /* HDMI state machine */
1713 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
1714 .name = "hsm",
1715 .ctl_reg = CM_HSMCTL,
1716 .div_reg = CM_HSMDIV,
1717 .int_bits = 4,
1718 .frac_bits = 8),
1719 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
1720 .name = "pcm",
1721 .ctl_reg = CM_PCMCTL,
1722 .div_reg = CM_PCMDIV,
1723 .int_bits = 12,
1724 .frac_bits = 12,
1725 .is_mash_clock = true),
1726 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
1727 .name = "pwm",
1728 .ctl_reg = CM_PWMCTL,
1729 .div_reg = CM_PWMDIV,
1730 .int_bits = 12,
1731 .frac_bits = 12,
1732 .is_mash_clock = true),
1733 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
1734 .name = "slim",
1735 .ctl_reg = CM_SLIMCTL,
1736 .div_reg = CM_SLIMDIV,
1737 .int_bits = 12,
1738 .frac_bits = 12,
1739 .is_mash_clock = true),
1740 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
1741 .name = "smi",
1742 .ctl_reg = CM_SMICTL,
1743 .div_reg = CM_SMIDIV,
1744 .int_bits = 4,
1745 .frac_bits = 8),
1746 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
1747 .name = "uart",
1748 .ctl_reg = CM_UARTCTL,
1749 .div_reg = CM_UARTDIV,
1750 .int_bits = 10,
1751 .frac_bits = 12),
1752
1753 /* TV encoder clock. Only operating frequency is 108Mhz. */
1754 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
1755 .name = "vec",
1756 .ctl_reg = CM_VECCTL,
1757 .div_reg = CM_VECDIV,
1758 .int_bits = 4,
1759 .frac_bits = 0),
1760
1761 /* dsi clocks */
1762 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
1763 .name = "dsi0e",
1764 .ctl_reg = CM_DSI0ECTL,
1765 .div_reg = CM_DSI0EDIV,
1766 .int_bits = 4,
1767 .frac_bits = 8),
1768 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
1769 .name = "dsi1e",
1770 .ctl_reg = CM_DSI1ECTL,
1771 .div_reg = CM_DSI1EDIV,
1772 .int_bits = 4,
1773 .frac_bits = 8),
1774
1775 /* the gates */
1776
1777 /*
1778 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1779 * you have the debug bit set in the power manager, which we
1780 * don't bother exposing) are individual gates off of the
1781 * non-stop vpu clock.
1782 */
1783 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1784 .name = "peri_image",
1785 .parent = "vpu",
1786 .ctl_reg = CM_PERIICTL),
1787 };
1788
1789 static int bcm2835_clk_probe(struct platform_device *pdev)
1790 {
1791 struct device *dev = &pdev->dev;
1792 struct clk **clks;
1793 struct bcm2835_cprman *cprman;
1794 struct resource *res;
1795 const struct bcm2835_clk_desc *desc;
1796 const size_t asize = ARRAY_SIZE(clk_desc_array);
1797 size_t i;
1798
1799 cprman = devm_kzalloc(dev,
1800 sizeof(*cprman) + asize * sizeof(*clks),
1801 GFP_KERNEL);
1802 if (!cprman)
1803 return -ENOMEM;
1804
1805 spin_lock_init(&cprman->regs_lock);
1806 cprman->dev = dev;
1807 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1808 cprman->regs = devm_ioremap_resource(dev, res);
1809 if (IS_ERR(cprman->regs))
1810 return PTR_ERR(cprman->regs);
1811
1812 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1813 if (!cprman->osc_name)
1814 return -ENODEV;
1815
1816 platform_set_drvdata(pdev, cprman);
1817
1818 cprman->onecell.clk_num = asize;
1819 cprman->onecell.clks = cprman->clks;
1820 clks = cprman->clks;
1821
1822 for (i = 0; i < asize; i++) {
1823 desc = &clk_desc_array[i];
1824 if (desc->clk_register && desc->data)
1825 clks[i] = desc->clk_register(cprman, desc->data);
1826 }
1827
1828 return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
1829 &cprman->onecell);
1830 }
1831
1832 static const struct of_device_id bcm2835_clk_of_match[] = {
1833 { .compatible = "brcm,bcm2835-cprman", },
1834 {}
1835 };
1836 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1837
1838 static struct platform_driver bcm2835_clk_driver = {
1839 .driver = {
1840 .name = "bcm2835-clk",
1841 .of_match_table = bcm2835_clk_of_match,
1842 },
1843 .probe = bcm2835_clk_probe,
1844 };
1845
1846 builtin_platform_driver(bcm2835_clk_driver);
1847
1848 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1849 MODULE_DESCRIPTION("BCM2835 clock driver");
1850 MODULE_LICENSE("GPL v2");